xref: /openbmc/qemu/hw/ppc/spapr.c (revision 9ac58dc59aaf9db20ec17df9b372915bee9b0f02)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/block-backend.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 #include "qom/cpu.h"
38 
39 #include "hw/boards.h"
40 #include "hw/ppc/ppc.h"
41 #include "hw/loader.h"
42 
43 #include "hw/ppc/spapr.h"
44 #include "hw/ppc/spapr_vio.h"
45 #include "hw/pci-host/spapr.h"
46 #include "hw/ppc/xics.h"
47 #include "hw/pci/msi.h"
48 
49 #include "hw/pci/pci.h"
50 #include "hw/scsi/scsi.h"
51 #include "hw/virtio/virtio-scsi.h"
52 
53 #include "exec/address-spaces.h"
54 #include "hw/usb.h"
55 #include "qemu/config-file.h"
56 #include "qemu/error-report.h"
57 #include "trace.h"
58 #include "hw/nmi.h"
59 
60 #include "hw/compat.h"
61 
62 #include <libfdt.h>
63 
64 /* SLOF memory layout:
65  *
66  * SLOF raw image loaded at 0, copies its romfs right below the flat
67  * device-tree, then position SLOF itself 31M below that
68  *
69  * So we set FW_OVERHEAD to 40MB which should account for all of that
70  * and more
71  *
72  * We load our kernel at 4M, leaving space for SLOF initial image
73  */
74 #define FDT_MAX_SIZE            0x40000
75 #define RTAS_MAX_SIZE           0x10000
76 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
77 #define FW_MAX_SIZE             0x400000
78 #define FW_FILE_NAME            "slof.bin"
79 #define FW_OVERHEAD             0x2800000
80 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
81 
82 #define MIN_RMA_SLOF            128UL
83 
84 #define TIMEBASE_FREQ           512000000ULL
85 
86 #define MAX_CPUS                255
87 
88 #define PHANDLE_XICP            0x00001111
89 
90 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
91 
92 typedef struct sPAPRMachineState sPAPRMachineState;
93 
94 #define TYPE_SPAPR_MACHINE      "spapr-machine"
95 #define SPAPR_MACHINE(obj) \
96     OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
97 
98 /**
99  * sPAPRMachineState:
100  */
101 struct sPAPRMachineState {
102     /*< private >*/
103     MachineState parent_obj;
104 
105     /*< public >*/
106     char *kvm_type;
107 };
108 
109 sPAPREnvironment *spapr;
110 
111 static XICSState *try_create_xics(const char *type, int nr_servers,
112                                   int nr_irqs)
113 {
114     DeviceState *dev;
115 
116     dev = qdev_create(NULL, type);
117     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
118     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
119     if (qdev_init(dev) < 0) {
120         return NULL;
121     }
122 
123     return XICS_COMMON(dev);
124 }
125 
126 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
127 {
128     XICSState *icp = NULL;
129 
130     if (kvm_enabled()) {
131         QemuOpts *machine_opts = qemu_get_machine_opts();
132         bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
133                                                 "kernel_irqchip", true);
134         bool irqchip_required = qemu_opt_get_bool(machine_opts,
135                                                   "kernel_irqchip", false);
136         if (irqchip_allowed) {
137             icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
138         }
139 
140         if (irqchip_required && !icp) {
141             perror("Failed to create in-kernel XICS\n");
142             abort();
143         }
144     }
145 
146     if (!icp) {
147         icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
148     }
149 
150     if (!icp) {
151         perror("Failed to create XICS\n");
152         abort();
153     }
154 
155     return icp;
156 }
157 
158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
159                                   int smt_threads)
160 {
161     int i, ret = 0;
162     uint32_t servers_prop[smt_threads];
163     uint32_t gservers_prop[smt_threads * 2];
164     int index = ppc_get_vcpu_dt_id(cpu);
165 
166     if (cpu->cpu_version) {
167         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
168         if (ret < 0) {
169             return ret;
170         }
171     }
172 
173     /* Build interrupt servers and gservers properties */
174     for (i = 0; i < smt_threads; i++) {
175         servers_prop[i] = cpu_to_be32(index + i);
176         /* Hack, direct the group queues back to cpu 0 */
177         gservers_prop[i*2] = cpu_to_be32(index + i);
178         gservers_prop[i*2 + 1] = 0;
179     }
180     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
181                       servers_prop, sizeof(servers_prop));
182     if (ret < 0) {
183         return ret;
184     }
185     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
186                       gservers_prop, sizeof(gservers_prop));
187 
188     return ret;
189 }
190 
191 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
192 {
193     int ret = 0, offset, cpus_offset;
194     CPUState *cs;
195     char cpu_model[32];
196     int smt = kvmppc_smt_threads();
197     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
198 
199     CPU_FOREACH(cs) {
200         PowerPCCPU *cpu = POWERPC_CPU(cs);
201         DeviceClass *dc = DEVICE_GET_CLASS(cs);
202         int index = ppc_get_vcpu_dt_id(cpu);
203         uint32_t associativity[] = {cpu_to_be32(0x5),
204                                     cpu_to_be32(0x0),
205                                     cpu_to_be32(0x0),
206                                     cpu_to_be32(0x0),
207                                     cpu_to_be32(cs->numa_node),
208                                     cpu_to_be32(index)};
209 
210         if ((index % smt) != 0) {
211             continue;
212         }
213 
214         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
215 
216         cpus_offset = fdt_path_offset(fdt, "/cpus");
217         if (cpus_offset < 0) {
218             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
219                                           "cpus");
220             if (cpus_offset < 0) {
221                 return cpus_offset;
222             }
223         }
224         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
225         if (offset < 0) {
226             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
227             if (offset < 0) {
228                 return offset;
229             }
230         }
231 
232         if (nb_numa_nodes > 1) {
233             ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
234                               sizeof(associativity));
235             if (ret < 0) {
236                 return ret;
237             }
238         }
239 
240         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
241                           pft_size_prop, sizeof(pft_size_prop));
242         if (ret < 0) {
243             return ret;
244         }
245 
246         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
247                                      ppc_get_compat_smt_threads(cpu));
248         if (ret < 0) {
249             return ret;
250         }
251     }
252     return ret;
253 }
254 
255 
256 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
257                                      size_t maxsize)
258 {
259     size_t maxcells = maxsize / sizeof(uint32_t);
260     int i, j, count;
261     uint32_t *p = prop;
262 
263     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
264         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
265 
266         if (!sps->page_shift) {
267             break;
268         }
269         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
270             if (sps->enc[count].page_shift == 0) {
271                 break;
272             }
273         }
274         if ((p - prop) >= (maxcells - 3 - count * 2)) {
275             break;
276         }
277         *(p++) = cpu_to_be32(sps->page_shift);
278         *(p++) = cpu_to_be32(sps->slb_enc);
279         *(p++) = cpu_to_be32(count);
280         for (j = 0; j < count; j++) {
281             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
282             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
283         }
284     }
285 
286     return (p - prop) * sizeof(uint32_t);
287 }
288 
289 static hwaddr spapr_node0_size(void)
290 {
291     if (nb_numa_nodes) {
292         int i;
293         for (i = 0; i < nb_numa_nodes; ++i) {
294             if (numa_info[i].node_mem) {
295                 return MIN(pow2floor(numa_info[i].node_mem), ram_size);
296             }
297         }
298     }
299     return ram_size;
300 }
301 
302 #define _FDT(exp) \
303     do { \
304         int ret = (exp);                                           \
305         if (ret < 0) {                                             \
306             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
307                     #exp, fdt_strerror(ret));                      \
308             exit(1);                                               \
309         }                                                          \
310     } while (0)
311 
312 static void add_str(GString *s, const gchar *s1)
313 {
314     g_string_append_len(s, s1, strlen(s1) + 1);
315 }
316 
317 static void *spapr_create_fdt_skel(hwaddr initrd_base,
318                                    hwaddr initrd_size,
319                                    hwaddr kernel_size,
320                                    bool little_endian,
321                                    const char *boot_device,
322                                    const char *kernel_cmdline,
323                                    uint32_t epow_irq)
324 {
325     void *fdt;
326     CPUState *cs;
327     uint32_t start_prop = cpu_to_be32(initrd_base);
328     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
329     GString *hypertas = g_string_sized_new(256);
330     GString *qemu_hypertas = g_string_sized_new(256);
331     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
332     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
333     int smt = kvmppc_smt_threads();
334     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
335     QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
336     unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
337     uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
338     char *buf;
339 
340     add_str(hypertas, "hcall-pft");
341     add_str(hypertas, "hcall-term");
342     add_str(hypertas, "hcall-dabr");
343     add_str(hypertas, "hcall-interrupt");
344     add_str(hypertas, "hcall-tce");
345     add_str(hypertas, "hcall-vio");
346     add_str(hypertas, "hcall-splpar");
347     add_str(hypertas, "hcall-bulk");
348     add_str(hypertas, "hcall-set-mode");
349     add_str(qemu_hypertas, "hcall-memop1");
350 
351     fdt = g_malloc0(FDT_MAX_SIZE);
352     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
353 
354     if (kernel_size) {
355         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
356     }
357     if (initrd_size) {
358         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
359     }
360     _FDT((fdt_finish_reservemap(fdt)));
361 
362     /* Root node */
363     _FDT((fdt_begin_node(fdt, "")));
364     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
365     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
366     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
367 
368     /*
369      * Add info to guest to indentify which host is it being run on
370      * and what is the uuid of the guest
371      */
372     if (kvmppc_get_host_model(&buf)) {
373         _FDT((fdt_property_string(fdt, "host-model", buf)));
374         g_free(buf);
375     }
376     if (kvmppc_get_host_serial(&buf)) {
377         _FDT((fdt_property_string(fdt, "host-serial", buf)));
378         g_free(buf);
379     }
380 
381     buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
382                           qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
383                           qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
384                           qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
385                           qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
386                           qemu_uuid[14], qemu_uuid[15]);
387 
388     _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
389     g_free(buf);
390 
391     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
392     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
393 
394     /* /chosen */
395     _FDT((fdt_begin_node(fdt, "chosen")));
396 
397     /* Set Form1_affinity */
398     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
399 
400     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
401     _FDT((fdt_property(fdt, "linux,initrd-start",
402                        &start_prop, sizeof(start_prop))));
403     _FDT((fdt_property(fdt, "linux,initrd-end",
404                        &end_prop, sizeof(end_prop))));
405     if (kernel_size) {
406         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
407                               cpu_to_be64(kernel_size) };
408 
409         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
410         if (little_endian) {
411             _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
412         }
413     }
414     if (boot_device) {
415         _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
416     }
417     if (boot_menu) {
418         _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
419     }
420     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
421     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
422     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
423 
424     _FDT((fdt_end_node(fdt)));
425 
426     /* cpus */
427     _FDT((fdt_begin_node(fdt, "cpus")));
428 
429     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
430     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
431 
432     CPU_FOREACH(cs) {
433         PowerPCCPU *cpu = POWERPC_CPU(cs);
434         CPUPPCState *env = &cpu->env;
435         DeviceClass *dc = DEVICE_GET_CLASS(cs);
436         PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
437         int index = ppc_get_vcpu_dt_id(cpu);
438         char *nodename;
439         uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
440                            0xffffffff, 0xffffffff};
441         uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
442         uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
443         uint32_t page_sizes_prop[64];
444         size_t page_sizes_prop_size;
445 
446         if ((index % smt) != 0) {
447             continue;
448         }
449 
450         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
451 
452         _FDT((fdt_begin_node(fdt, nodename)));
453 
454         g_free(nodename);
455 
456         _FDT((fdt_property_cell(fdt, "reg", index)));
457         _FDT((fdt_property_string(fdt, "device_type", "cpu")));
458 
459         _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
460         _FDT((fdt_property_cell(fdt, "d-cache-block-size",
461                                 env->dcache_line_size)));
462         _FDT((fdt_property_cell(fdt, "d-cache-line-size",
463                                 env->dcache_line_size)));
464         _FDT((fdt_property_cell(fdt, "i-cache-block-size",
465                                 env->icache_line_size)));
466         _FDT((fdt_property_cell(fdt, "i-cache-line-size",
467                                 env->icache_line_size)));
468 
469         if (pcc->l1_dcache_size) {
470             _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
471         } else {
472             fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
473         }
474         if (pcc->l1_icache_size) {
475             _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
476         } else {
477             fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
478         }
479 
480         _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
481         _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
482         _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
483         _FDT((fdt_property_string(fdt, "status", "okay")));
484         _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
485 
486         if (env->spr_cb[SPR_PURR].oea_read) {
487             _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
488         }
489 
490         if (env->mmu_model & POWERPC_MMU_1TSEG) {
491             _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
492                                segs, sizeof(segs))));
493         }
494 
495         /* Advertise VMX/VSX (vector extensions) if available
496          *   0 / no property == no vector extensions
497          *   1               == VMX / Altivec available
498          *   2               == VSX available */
499         if (env->insns_flags & PPC_ALTIVEC) {
500             uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
501 
502             _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
503         }
504 
505         /* Advertise DFP (Decimal Floating Point) if available
506          *   0 / no property == no DFP
507          *   1               == DFP available */
508         if (env->insns_flags2 & PPC2_DFP) {
509             _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
510         }
511 
512         page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
513                                                       sizeof(page_sizes_prop));
514         if (page_sizes_prop_size) {
515             _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
516                                page_sizes_prop, page_sizes_prop_size)));
517         }
518 
519         _FDT((fdt_property_cell(fdt, "ibm,chip-id",
520                                 cs->cpu_index / cpus_per_socket)));
521 
522         _FDT((fdt_end_node(fdt)));
523     }
524 
525     _FDT((fdt_end_node(fdt)));
526 
527     /* RTAS */
528     _FDT((fdt_begin_node(fdt, "rtas")));
529 
530     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
531         add_str(hypertas, "hcall-multi-tce");
532     }
533     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
534                        hypertas->len)));
535     g_string_free(hypertas, TRUE);
536     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
537                        qemu_hypertas->len)));
538     g_string_free(qemu_hypertas, TRUE);
539 
540     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
541         refpoints, sizeof(refpoints))));
542 
543     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
544 
545     /*
546      * According to PAPR, rtas ibm,os-term does not guarantee a return
547      * back to the guest cpu.
548      *
549      * While an additional ibm,extended-os-term property indicates that
550      * rtas call return will always occur. Set this property.
551      */
552     _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
553 
554     _FDT((fdt_end_node(fdt)));
555 
556     /* interrupt controller */
557     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
558 
559     _FDT((fdt_property_string(fdt, "device_type",
560                               "PowerPC-External-Interrupt-Presentation")));
561     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
562     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
563     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
564                        interrupt_server_ranges_prop,
565                        sizeof(interrupt_server_ranges_prop))));
566     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
567     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
568     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
569 
570     _FDT((fdt_end_node(fdt)));
571 
572     /* vdevice */
573     _FDT((fdt_begin_node(fdt, "vdevice")));
574 
575     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
576     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
577     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
578     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
579     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
580     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
581 
582     _FDT((fdt_end_node(fdt)));
583 
584     /* event-sources */
585     spapr_events_fdt_skel(fdt, epow_irq);
586 
587     /* /hypervisor node */
588     if (kvm_enabled()) {
589         uint8_t hypercall[16];
590 
591         /* indicate KVM hypercall interface */
592         _FDT((fdt_begin_node(fdt, "hypervisor")));
593         _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
594         if (kvmppc_has_cap_fixup_hcalls()) {
595             /*
596              * Older KVM versions with older guest kernels were broken with the
597              * magic page, don't allow the guest to map it.
598              */
599             kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
600                                  sizeof(hypercall));
601             _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
602                               sizeof(hypercall))));
603         }
604         _FDT((fdt_end_node(fdt)));
605     }
606 
607     _FDT((fdt_end_node(fdt))); /* close root node */
608     _FDT((fdt_finish(fdt)));
609 
610     return fdt;
611 }
612 
613 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
614 {
615     void *fdt, *fdt_skel;
616     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
617 
618     size -= sizeof(hdr);
619 
620     /* Create sceleton */
621     fdt_skel = g_malloc0(size);
622     _FDT((fdt_create(fdt_skel, size)));
623     _FDT((fdt_begin_node(fdt_skel, "")));
624     _FDT((fdt_end_node(fdt_skel)));
625     _FDT((fdt_finish(fdt_skel)));
626     fdt = g_malloc0(size);
627     _FDT((fdt_open_into(fdt_skel, fdt, size)));
628     g_free(fdt_skel);
629 
630     /* Fix skeleton up */
631     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
632 
633     /* Pack resulting tree */
634     _FDT((fdt_pack(fdt)));
635 
636     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
637         trace_spapr_cas_failed(size);
638         return -1;
639     }
640 
641     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
642     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
643     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
644     g_free(fdt);
645 
646     return 0;
647 }
648 
649 static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
650                                        hwaddr size)
651 {
652     uint32_t associativity[] = {
653         cpu_to_be32(0x4), /* length */
654         cpu_to_be32(0x0), cpu_to_be32(0x0),
655         cpu_to_be32(0x0), cpu_to_be32(nodeid)
656     };
657     char mem_name[32];
658     uint64_t mem_reg_property[2];
659     int off;
660 
661     mem_reg_property[0] = cpu_to_be64(start);
662     mem_reg_property[1] = cpu_to_be64(size);
663 
664     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
665     off = fdt_add_subnode(fdt, 0, mem_name);
666     _FDT(off);
667     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
668     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
669                       sizeof(mem_reg_property))));
670     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
671                       sizeof(associativity))));
672 }
673 
674 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
675 {
676     hwaddr mem_start, node_size;
677     int i, nb_nodes = nb_numa_nodes;
678     NodeInfo *nodes = numa_info;
679     NodeInfo ramnode;
680 
681     /* No NUMA nodes, assume there is just one node with whole RAM */
682     if (!nb_numa_nodes) {
683         nb_nodes = 1;
684         ramnode.node_mem = ram_size;
685         nodes = &ramnode;
686     }
687 
688     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
689         if (!nodes[i].node_mem) {
690             continue;
691         }
692         if (mem_start >= ram_size) {
693             node_size = 0;
694         } else {
695             node_size = nodes[i].node_mem;
696             if (node_size > ram_size - mem_start) {
697                 node_size = ram_size - mem_start;
698             }
699         }
700         if (!mem_start) {
701             /* ppc_spapr_init() checks for rma_size <= node0_size already */
702             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
703             mem_start += spapr->rma_size;
704             node_size -= spapr->rma_size;
705         }
706         for ( ; node_size; ) {
707             hwaddr sizetmp = pow2floor(node_size);
708 
709             /* mem_start != 0 here */
710             if (ctzl(mem_start) < ctzl(sizetmp)) {
711                 sizetmp = 1ULL << ctzl(mem_start);
712             }
713 
714             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
715             node_size -= sizetmp;
716             mem_start += sizetmp;
717         }
718     }
719 
720     return 0;
721 }
722 
723 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
724                                hwaddr fdt_addr,
725                                hwaddr rtas_addr,
726                                hwaddr rtas_size)
727 {
728     int ret, i;
729     size_t cb = 0;
730     char *bootlist;
731     void *fdt;
732     sPAPRPHBState *phb;
733 
734     fdt = g_malloc(FDT_MAX_SIZE);
735 
736     /* open out the base tree into a temp buffer for the final tweaks */
737     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
738 
739     ret = spapr_populate_memory(spapr, fdt);
740     if (ret < 0) {
741         fprintf(stderr, "couldn't setup memory nodes in fdt\n");
742         exit(1);
743     }
744 
745     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
746     if (ret < 0) {
747         fprintf(stderr, "couldn't setup vio devices in fdt\n");
748         exit(1);
749     }
750 
751     QLIST_FOREACH(phb, &spapr->phbs, list) {
752         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
753     }
754 
755     if (ret < 0) {
756         fprintf(stderr, "couldn't setup PCI devices in fdt\n");
757         exit(1);
758     }
759 
760     /* RTAS */
761     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
762     if (ret < 0) {
763         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
764     }
765 
766     /* Advertise NUMA via ibm,associativity */
767     ret = spapr_fixup_cpu_dt(fdt, spapr);
768     if (ret < 0) {
769         fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
770     }
771 
772     bootlist = get_boot_devices_list(&cb, true);
773     if (cb && bootlist) {
774         int offset = fdt_path_offset(fdt, "/chosen");
775         if (offset < 0) {
776             exit(1);
777         }
778         for (i = 0; i < cb; i++) {
779             if (bootlist[i] == '\n') {
780                 bootlist[i] = ' ';
781             }
782 
783         }
784         ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
785     }
786 
787     if (!spapr->has_graphics) {
788         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
789     }
790 
791     _FDT((fdt_pack(fdt)));
792 
793     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
794         hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
795                  fdt_totalsize(fdt), FDT_MAX_SIZE);
796         exit(1);
797     }
798 
799     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
800 
801     g_free(bootlist);
802     g_free(fdt);
803 }
804 
805 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
806 {
807     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
808 }
809 
810 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
811 {
812     CPUPPCState *env = &cpu->env;
813 
814     if (msr_pr) {
815         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
816         env->gpr[3] = H_PRIVILEGE;
817     } else {
818         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
819     }
820 }
821 
822 static void spapr_reset_htab(sPAPREnvironment *spapr)
823 {
824     long shift;
825 
826     /* allocate hash page table.  For now we always make this 16mb,
827      * later we should probably make it scale to the size of guest
828      * RAM */
829 
830     shift = kvmppc_reset_htab(spapr->htab_shift);
831 
832     if (shift > 0) {
833         /* Kernel handles htab, we don't need to allocate one */
834         spapr->htab_shift = shift;
835         kvmppc_kern_htab = true;
836     } else {
837         if (!spapr->htab) {
838             /* Allocate an htab if we don't yet have one */
839             spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
840         }
841 
842         /* And clear it */
843         memset(spapr->htab, 0, HTAB_SIZE(spapr));
844     }
845 
846     /* Update the RMA size if necessary */
847     if (spapr->vrma_adjust) {
848         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
849                                           spapr->htab_shift);
850     }
851 }
852 
853 static void ppc_spapr_reset(void)
854 {
855     PowerPCCPU *first_ppc_cpu;
856     uint32_t rtas_limit;
857 
858     /* Reset the hash table & recalc the RMA */
859     spapr_reset_htab(spapr);
860 
861     qemu_devices_reset();
862 
863     /*
864      * We place the device tree and RTAS just below either the top of the RMA,
865      * or just below 2GB, whichever is lowere, so that it can be
866      * processed with 32-bit real mode code if necessary
867      */
868     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
869     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
870     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
871 
872     /* Load the fdt */
873     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
874                        spapr->rtas_size);
875 
876     /* Copy RTAS over */
877     cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
878                               spapr->rtas_size);
879 
880     /* Set up the entry state */
881     first_ppc_cpu = POWERPC_CPU(first_cpu);
882     first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
883     first_ppc_cpu->env.gpr[5] = 0;
884     first_cpu->halted = 0;
885     first_ppc_cpu->env.nip = spapr->entry_point;
886 
887 }
888 
889 static void spapr_cpu_reset(void *opaque)
890 {
891     PowerPCCPU *cpu = opaque;
892     CPUState *cs = CPU(cpu);
893     CPUPPCState *env = &cpu->env;
894 
895     cpu_reset(cs);
896 
897     /* All CPUs start halted.  CPU0 is unhalted from the machine level
898      * reset code and the rest are explicitly started up by the guest
899      * using an RTAS call */
900     cs->halted = 1;
901 
902     env->spr[SPR_HIOR] = 0;
903 
904     env->external_htab = (uint8_t *)spapr->htab;
905     if (kvm_enabled() && !env->external_htab) {
906         /*
907          * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
908          * functions do the right thing.
909          */
910         env->external_htab = (void *)1;
911     }
912     env->htab_base = -1;
913     /*
914      * htab_mask is the mask used to normalize hash value to PTEG index.
915      * htab_shift is log2 of hash table size.
916      * We have 8 hpte per group, and each hpte is 16 bytes.
917      * ie have 128 bytes per hpte entry.
918      */
919     env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
920     env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
921         (spapr->htab_shift - 18);
922 }
923 
924 static void spapr_create_nvram(sPAPREnvironment *spapr)
925 {
926     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
927     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
928 
929     if (dinfo) {
930         qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
931     }
932 
933     qdev_init_nofail(dev);
934 
935     spapr->nvram = (struct sPAPRNVRAM *)dev;
936 }
937 
938 /* Returns whether we want to use VGA or not */
939 static int spapr_vga_init(PCIBus *pci_bus)
940 {
941     switch (vga_interface_type) {
942     case VGA_NONE:
943         return false;
944     case VGA_DEVICE:
945         return true;
946     case VGA_STD:
947         return pci_vga_init(pci_bus) != NULL;
948     default:
949         fprintf(stderr, "This vga model is not supported,"
950                 "currently it only supports -vga std\n");
951         exit(0);
952     }
953 }
954 
955 static const VMStateDescription vmstate_spapr = {
956     .name = "spapr",
957     .version_id = 2,
958     .minimum_version_id = 1,
959     .fields = (VMStateField[]) {
960         VMSTATE_UNUSED(4), /* used to be @next_irq */
961 
962         /* RTC offset */
963         VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
964         VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
965         VMSTATE_END_OF_LIST()
966     },
967 };
968 
969 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
970 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
971 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
972 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
973 
974 static int htab_save_setup(QEMUFile *f, void *opaque)
975 {
976     sPAPREnvironment *spapr = opaque;
977 
978     /* "Iteration" header */
979     qemu_put_be32(f, spapr->htab_shift);
980 
981     if (spapr->htab) {
982         spapr->htab_save_index = 0;
983         spapr->htab_first_pass = true;
984     } else {
985         assert(kvm_enabled());
986 
987         spapr->htab_fd = kvmppc_get_htab_fd(false);
988         if (spapr->htab_fd < 0) {
989             fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
990                     strerror(errno));
991             return -1;
992         }
993     }
994 
995 
996     return 0;
997 }
998 
999 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
1000                                  int64_t max_ns)
1001 {
1002     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1003     int index = spapr->htab_save_index;
1004     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1005 
1006     assert(spapr->htab_first_pass);
1007 
1008     do {
1009         int chunkstart;
1010 
1011         /* Consume invalid HPTEs */
1012         while ((index < htabslots)
1013                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1014             index++;
1015             CLEAN_HPTE(HPTE(spapr->htab, index));
1016         }
1017 
1018         /* Consume valid HPTEs */
1019         chunkstart = index;
1020         while ((index < htabslots)
1021                && HPTE_VALID(HPTE(spapr->htab, index))) {
1022             index++;
1023             CLEAN_HPTE(HPTE(spapr->htab, index));
1024         }
1025 
1026         if (index > chunkstart) {
1027             int n_valid = index - chunkstart;
1028 
1029             qemu_put_be32(f, chunkstart);
1030             qemu_put_be16(f, n_valid);
1031             qemu_put_be16(f, 0);
1032             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1033                             HASH_PTE_SIZE_64 * n_valid);
1034 
1035             if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1036                 break;
1037             }
1038         }
1039     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1040 
1041     if (index >= htabslots) {
1042         assert(index == htabslots);
1043         index = 0;
1044         spapr->htab_first_pass = false;
1045     }
1046     spapr->htab_save_index = index;
1047 }
1048 
1049 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
1050                                 int64_t max_ns)
1051 {
1052     bool final = max_ns < 0;
1053     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1054     int examined = 0, sent = 0;
1055     int index = spapr->htab_save_index;
1056     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1057 
1058     assert(!spapr->htab_first_pass);
1059 
1060     do {
1061         int chunkstart, invalidstart;
1062 
1063         /* Consume non-dirty HPTEs */
1064         while ((index < htabslots)
1065                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1066             index++;
1067             examined++;
1068         }
1069 
1070         chunkstart = index;
1071         /* Consume valid dirty HPTEs */
1072         while ((index < htabslots)
1073                && HPTE_DIRTY(HPTE(spapr->htab, index))
1074                && HPTE_VALID(HPTE(spapr->htab, index))) {
1075             CLEAN_HPTE(HPTE(spapr->htab, index));
1076             index++;
1077             examined++;
1078         }
1079 
1080         invalidstart = index;
1081         /* Consume invalid dirty HPTEs */
1082         while ((index < htabslots)
1083                && HPTE_DIRTY(HPTE(spapr->htab, index))
1084                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1085             CLEAN_HPTE(HPTE(spapr->htab, index));
1086             index++;
1087             examined++;
1088         }
1089 
1090         if (index > chunkstart) {
1091             int n_valid = invalidstart - chunkstart;
1092             int n_invalid = index - invalidstart;
1093 
1094             qemu_put_be32(f, chunkstart);
1095             qemu_put_be16(f, n_valid);
1096             qemu_put_be16(f, n_invalid);
1097             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1098                             HASH_PTE_SIZE_64 * n_valid);
1099             sent += index - chunkstart;
1100 
1101             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1102                 break;
1103             }
1104         }
1105 
1106         if (examined >= htabslots) {
1107             break;
1108         }
1109 
1110         if (index >= htabslots) {
1111             assert(index == htabslots);
1112             index = 0;
1113         }
1114     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1115 
1116     if (index >= htabslots) {
1117         assert(index == htabslots);
1118         index = 0;
1119     }
1120 
1121     spapr->htab_save_index = index;
1122 
1123     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1124 }
1125 
1126 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1127 #define MAX_KVM_BUF_SIZE    2048
1128 
1129 static int htab_save_iterate(QEMUFile *f, void *opaque)
1130 {
1131     sPAPREnvironment *spapr = opaque;
1132     int rc = 0;
1133 
1134     /* Iteration header */
1135     qemu_put_be32(f, 0);
1136 
1137     if (!spapr->htab) {
1138         assert(kvm_enabled());
1139 
1140         rc = kvmppc_save_htab(f, spapr->htab_fd,
1141                               MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1142         if (rc < 0) {
1143             return rc;
1144         }
1145     } else  if (spapr->htab_first_pass) {
1146         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1147     } else {
1148         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1149     }
1150 
1151     /* End marker */
1152     qemu_put_be32(f, 0);
1153     qemu_put_be16(f, 0);
1154     qemu_put_be16(f, 0);
1155 
1156     return rc;
1157 }
1158 
1159 static int htab_save_complete(QEMUFile *f, void *opaque)
1160 {
1161     sPAPREnvironment *spapr = opaque;
1162 
1163     /* Iteration header */
1164     qemu_put_be32(f, 0);
1165 
1166     if (!spapr->htab) {
1167         int rc;
1168 
1169         assert(kvm_enabled());
1170 
1171         rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1172         if (rc < 0) {
1173             return rc;
1174         }
1175         close(spapr->htab_fd);
1176         spapr->htab_fd = -1;
1177     } else {
1178         htab_save_later_pass(f, spapr, -1);
1179     }
1180 
1181     /* End marker */
1182     qemu_put_be32(f, 0);
1183     qemu_put_be16(f, 0);
1184     qemu_put_be16(f, 0);
1185 
1186     return 0;
1187 }
1188 
1189 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1190 {
1191     sPAPREnvironment *spapr = opaque;
1192     uint32_t section_hdr;
1193     int fd = -1;
1194 
1195     if (version_id < 1 || version_id > 1) {
1196         fprintf(stderr, "htab_load() bad version\n");
1197         return -EINVAL;
1198     }
1199 
1200     section_hdr = qemu_get_be32(f);
1201 
1202     if (section_hdr) {
1203         /* First section, just the hash shift */
1204         if (spapr->htab_shift != section_hdr) {
1205             return -EINVAL;
1206         }
1207         return 0;
1208     }
1209 
1210     if (!spapr->htab) {
1211         assert(kvm_enabled());
1212 
1213         fd = kvmppc_get_htab_fd(true);
1214         if (fd < 0) {
1215             fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1216                     strerror(errno));
1217         }
1218     }
1219 
1220     while (true) {
1221         uint32_t index;
1222         uint16_t n_valid, n_invalid;
1223 
1224         index = qemu_get_be32(f);
1225         n_valid = qemu_get_be16(f);
1226         n_invalid = qemu_get_be16(f);
1227 
1228         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1229             /* End of Stream */
1230             break;
1231         }
1232 
1233         if ((index + n_valid + n_invalid) >
1234             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1235             /* Bad index in stream */
1236             fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1237                     "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1238                     spapr->htab_shift);
1239             return -EINVAL;
1240         }
1241 
1242         if (spapr->htab) {
1243             if (n_valid) {
1244                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1245                                 HASH_PTE_SIZE_64 * n_valid);
1246             }
1247             if (n_invalid) {
1248                 memset(HPTE(spapr->htab, index + n_valid), 0,
1249                        HASH_PTE_SIZE_64 * n_invalid);
1250             }
1251         } else {
1252             int rc;
1253 
1254             assert(fd >= 0);
1255 
1256             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1257             if (rc < 0) {
1258                 return rc;
1259             }
1260         }
1261     }
1262 
1263     if (!spapr->htab) {
1264         assert(fd >= 0);
1265         close(fd);
1266     }
1267 
1268     return 0;
1269 }
1270 
1271 static SaveVMHandlers savevm_htab_handlers = {
1272     .save_live_setup = htab_save_setup,
1273     .save_live_iterate = htab_save_iterate,
1274     .save_live_complete = htab_save_complete,
1275     .load_state = htab_load,
1276 };
1277 
1278 /* pSeries LPAR / sPAPR hardware init */
1279 static void ppc_spapr_init(MachineState *machine)
1280 {
1281     ram_addr_t ram_size = machine->ram_size;
1282     const char *cpu_model = machine->cpu_model;
1283     const char *kernel_filename = machine->kernel_filename;
1284     const char *kernel_cmdline = machine->kernel_cmdline;
1285     const char *initrd_filename = machine->initrd_filename;
1286     const char *boot_device = machine->boot_order;
1287     PowerPCCPU *cpu;
1288     CPUPPCState *env;
1289     PCIHostState *phb;
1290     int i;
1291     MemoryRegion *sysmem = get_system_memory();
1292     MemoryRegion *ram = g_new(MemoryRegion, 1);
1293     MemoryRegion *rma_region;
1294     void *rma = NULL;
1295     hwaddr rma_alloc_size;
1296     hwaddr node0_size = spapr_node0_size();
1297     uint32_t initrd_base = 0;
1298     long kernel_size = 0, initrd_size = 0;
1299     long load_limit, fw_size;
1300     bool kernel_le = false;
1301     char *filename;
1302 
1303     msi_supported = true;
1304 
1305     spapr = g_malloc0(sizeof(*spapr));
1306     QLIST_INIT(&spapr->phbs);
1307 
1308     cpu_ppc_hypercall = emulate_spapr_hypercall;
1309 
1310     /* Allocate RMA if necessary */
1311     rma_alloc_size = kvmppc_alloc_rma(&rma);
1312 
1313     if (rma_alloc_size == -1) {
1314         hw_error("qemu: Unable to create RMA\n");
1315         exit(1);
1316     }
1317 
1318     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1319         spapr->rma_size = rma_alloc_size;
1320     } else {
1321         spapr->rma_size = node0_size;
1322 
1323         /* With KVM, we don't actually know whether KVM supports an
1324          * unbounded RMA (PR KVM) or is limited by the hash table size
1325          * (HV KVM using VRMA), so we always assume the latter
1326          *
1327          * In that case, we also limit the initial allocations for RTAS
1328          * etc... to 256M since we have no way to know what the VRMA size
1329          * is going to be as it depends on the size of the hash table
1330          * isn't determined yet.
1331          */
1332         if (kvm_enabled()) {
1333             spapr->vrma_adjust = 1;
1334             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1335         }
1336     }
1337 
1338     if (spapr->rma_size > node0_size) {
1339         fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1340                 spapr->rma_size);
1341         exit(1);
1342     }
1343 
1344     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1345     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1346 
1347     /* We aim for a hash table of size 1/128 the size of RAM.  The
1348      * normal rule of thumb is 1/64 the size of RAM, but that's much
1349      * more than needed for the Linux guests we support. */
1350     spapr->htab_shift = 18; /* Minimum architected size */
1351     while (spapr->htab_shift <= 46) {
1352         if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1353             break;
1354         }
1355         spapr->htab_shift++;
1356     }
1357 
1358     /* Set up Interrupt Controller before we create the VCPUs */
1359     spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1360                                   XICS_IRQS);
1361 
1362     /* init CPUs */
1363     if (cpu_model == NULL) {
1364         cpu_model = kvm_enabled() ? "host" : "POWER7";
1365     }
1366     for (i = 0; i < smp_cpus; i++) {
1367         cpu = cpu_ppc_init(cpu_model);
1368         if (cpu == NULL) {
1369             fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1370             exit(1);
1371         }
1372         env = &cpu->env;
1373 
1374         /* Set time-base frequency to 512 MHz */
1375         cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1376 
1377         /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1378          * MSR[IP] should never be set.
1379          */
1380         env->msr_mask &= ~(1 << 6);
1381 
1382         /* Tell KVM that we're in PAPR mode */
1383         if (kvm_enabled()) {
1384             kvmppc_set_papr(cpu);
1385         }
1386 
1387         if (cpu->max_compat) {
1388             if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1389                 exit(1);
1390             }
1391         }
1392 
1393         xics_cpu_setup(spapr->icp, cpu);
1394 
1395         qemu_register_reset(spapr_cpu_reset, cpu);
1396     }
1397 
1398     /* allocate RAM */
1399     spapr->ram_limit = ram_size;
1400     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1401                                          spapr->ram_limit);
1402     memory_region_add_subregion(sysmem, 0, ram);
1403 
1404     if (rma_alloc_size && rma) {
1405         rma_region = g_new(MemoryRegion, 1);
1406         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1407                                    rma_alloc_size, rma);
1408         vmstate_register_ram_global(rma_region);
1409         memory_region_add_subregion(sysmem, 0, rma_region);
1410     }
1411 
1412     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1413     spapr->rtas_size = get_image_size(filename);
1414     spapr->rtas_blob = g_malloc(spapr->rtas_size);
1415     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1416         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1417         exit(1);
1418     }
1419     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1420         hw_error("RTAS too big ! 0x%zx bytes (max is 0x%x)\n",
1421                  spapr->rtas_size, RTAS_MAX_SIZE);
1422         exit(1);
1423     }
1424     g_free(filename);
1425 
1426     /* Set up EPOW events infrastructure */
1427     spapr_events_init(spapr);
1428 
1429     /* Set up VIO bus */
1430     spapr->vio_bus = spapr_vio_bus_init();
1431 
1432     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1433         if (serial_hds[i]) {
1434             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1435         }
1436     }
1437 
1438     /* We always have at least the nvram device on VIO */
1439     spapr_create_nvram(spapr);
1440 
1441     /* Set up PCI */
1442     spapr_pci_rtas_init();
1443 
1444     phb = spapr_create_phb(spapr, 0);
1445 
1446     for (i = 0; i < nb_nics; i++) {
1447         NICInfo *nd = &nd_table[i];
1448 
1449         if (!nd->model) {
1450             nd->model = g_strdup("ibmveth");
1451         }
1452 
1453         if (strcmp(nd->model, "ibmveth") == 0) {
1454             spapr_vlan_create(spapr->vio_bus, nd);
1455         } else {
1456             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1457         }
1458     }
1459 
1460     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1461         spapr_vscsi_create(spapr->vio_bus);
1462     }
1463 
1464     /* Graphics */
1465     if (spapr_vga_init(phb->bus)) {
1466         spapr->has_graphics = true;
1467     }
1468 
1469     if (usb_enabled(spapr->has_graphics)) {
1470         pci_create_simple(phb->bus, -1, "pci-ohci");
1471         if (spapr->has_graphics) {
1472             usbdevice_create("keyboard");
1473             usbdevice_create("mouse");
1474         }
1475     }
1476 
1477     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1478         fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1479                 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1480         exit(1);
1481     }
1482 
1483     if (kernel_filename) {
1484         uint64_t lowaddr = 0;
1485 
1486         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1487                                NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1488         if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1489             kernel_size = load_elf(kernel_filename,
1490                                    translate_kernel_address, NULL,
1491                                    NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1492             kernel_le = kernel_size > 0;
1493         }
1494         if (kernel_size < 0) {
1495             fprintf(stderr, "qemu: error loading %s: %s\n",
1496                     kernel_filename, load_elf_strerror(kernel_size));
1497             exit(1);
1498         }
1499 
1500         /* load initrd */
1501         if (initrd_filename) {
1502             /* Try to locate the initrd in the gap between the kernel
1503              * and the firmware. Add a bit of space just in case
1504              */
1505             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1506             initrd_size = load_image_targphys(initrd_filename, initrd_base,
1507                                               load_limit - initrd_base);
1508             if (initrd_size < 0) {
1509                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1510                         initrd_filename);
1511                 exit(1);
1512             }
1513         } else {
1514             initrd_base = 0;
1515             initrd_size = 0;
1516         }
1517     }
1518 
1519     if (bios_name == NULL) {
1520         bios_name = FW_FILE_NAME;
1521     }
1522     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1523     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1524     if (fw_size < 0) {
1525         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1526         exit(1);
1527     }
1528     g_free(filename);
1529 
1530     spapr->entry_point = 0x100;
1531 
1532     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1533     register_savevm_live(NULL, "spapr/htab", -1, 1,
1534                          &savevm_htab_handlers, spapr);
1535 
1536     /* Prepare the device tree */
1537     spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1538                                             kernel_size, kernel_le,
1539                                             boot_device, kernel_cmdline,
1540                                             spapr->epow_irq);
1541     assert(spapr->fdt_skel != NULL);
1542 }
1543 
1544 static int spapr_kvm_type(const char *vm_type)
1545 {
1546     if (!vm_type) {
1547         return 0;
1548     }
1549 
1550     if (!strcmp(vm_type, "HV")) {
1551         return 1;
1552     }
1553 
1554     if (!strcmp(vm_type, "PR")) {
1555         return 2;
1556     }
1557 
1558     error_report("Unknown kvm-type specified '%s'", vm_type);
1559     exit(1);
1560 }
1561 
1562 /*
1563  * Implementation of an interface to adjust firmware patch
1564  * for the bootindex property handling.
1565  */
1566 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1567                                    DeviceState *dev)
1568 {
1569 #define CAST(type, obj, name) \
1570     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1571     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
1572     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1573 
1574     if (d) {
1575         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1576         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1577         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1578 
1579         if (spapr) {
1580             /*
1581              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1582              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1583              * in the top 16 bits of the 64-bit LUN
1584              */
1585             unsigned id = 0x8000 | (d->id << 8) | d->lun;
1586             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1587                                    (uint64_t)id << 48);
1588         } else if (virtio) {
1589             /*
1590              * We use SRP luns of the form 01000000 | (target << 8) | lun
1591              * in the top 32 bits of the 64-bit LUN
1592              * Note: the quote above is from SLOF and it is wrong,
1593              * the actual binding is:
1594              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1595              */
1596             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1597             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1598                                    (uint64_t)id << 32);
1599         } else if (usb) {
1600             /*
1601              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1602              * in the top 32 bits of the 64-bit LUN
1603              */
1604             unsigned usb_port = atoi(usb->port->path);
1605             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1606             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1607                                    (uint64_t)id << 32);
1608         }
1609     }
1610 
1611     if (phb) {
1612         /* Replace "pci" with "pci@800000020000000" */
1613         return g_strdup_printf("pci@%"PRIX64, phb->buid);
1614     }
1615 
1616     return NULL;
1617 }
1618 
1619 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1620 {
1621     sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1622 
1623     return g_strdup(sm->kvm_type);
1624 }
1625 
1626 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1627 {
1628     sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1629 
1630     g_free(sm->kvm_type);
1631     sm->kvm_type = g_strdup(value);
1632 }
1633 
1634 static void spapr_machine_initfn(Object *obj)
1635 {
1636     object_property_add_str(obj, "kvm-type",
1637                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1638 }
1639 
1640 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1641 {
1642     CPUState *cs = arg;
1643 
1644     cpu_synchronize_state(cs);
1645     ppc_cpu_do_system_reset(cs);
1646 }
1647 
1648 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1649 {
1650     CPUState *cs;
1651 
1652     CPU_FOREACH(cs) {
1653         async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1654     }
1655 }
1656 
1657 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1658 {
1659     MachineClass *mc = MACHINE_CLASS(oc);
1660     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1661     NMIClass *nc = NMI_CLASS(oc);
1662 
1663     mc->init = ppc_spapr_init;
1664     mc->reset = ppc_spapr_reset;
1665     mc->block_default_type = IF_SCSI;
1666     mc->max_cpus = MAX_CPUS;
1667     mc->no_parallel = 1;
1668     mc->default_boot_order = NULL;
1669     mc->kvm_type = spapr_kvm_type;
1670 
1671     fwc->get_dev_path = spapr_get_fw_dev_path;
1672     nc->nmi_monitor_handler = spapr_nmi;
1673 }
1674 
1675 static const TypeInfo spapr_machine_info = {
1676     .name          = TYPE_SPAPR_MACHINE,
1677     .parent        = TYPE_MACHINE,
1678     .abstract      = true,
1679     .instance_size = sizeof(sPAPRMachineState),
1680     .instance_init = spapr_machine_initfn,
1681     .class_init    = spapr_machine_class_init,
1682     .interfaces = (InterfaceInfo[]) {
1683         { TYPE_FW_PATH_PROVIDER },
1684         { TYPE_NMI },
1685         { }
1686     },
1687 };
1688 
1689 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1690 {
1691     MachineClass *mc = MACHINE_CLASS(oc);
1692     static GlobalProperty compat_props[] = {
1693         HW_COMPAT_2_1,
1694         { /* end of list */ }
1695     };
1696 
1697     mc->name = "pseries-2.1";
1698     mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1699     mc->compat_props = compat_props;
1700 }
1701 
1702 static const TypeInfo spapr_machine_2_1_info = {
1703     .name          = TYPE_SPAPR_MACHINE "2.1",
1704     .parent        = TYPE_SPAPR_MACHINE,
1705     .class_init    = spapr_machine_2_1_class_init,
1706 };
1707 
1708 static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
1709 {
1710     MachineClass *mc = MACHINE_CLASS(oc);
1711 
1712     mc->name = "pseries-2.2";
1713     mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
1714     mc->alias = "pseries";
1715     mc->is_default = 1;
1716 }
1717 
1718 static const TypeInfo spapr_machine_2_2_info = {
1719     .name          = TYPE_SPAPR_MACHINE "2.2",
1720     .parent        = TYPE_SPAPR_MACHINE,
1721     .class_init    = spapr_machine_2_2_class_init,
1722 };
1723 
1724 static void spapr_machine_register_types(void)
1725 {
1726     type_register_static(&spapr_machine_info);
1727     type_register_static(&spapr_machine_2_1_info);
1728     type_register_static(&spapr_machine_2_2_info);
1729 }
1730 
1731 type_init(spapr_machine_register_types)
1732