1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "hw/hw.h" 33 #include "qemu/log.h" 34 #include "hw/fw-path-provider.h" 35 #include "elf.h" 36 #include "net/net.h" 37 #include "sysemu/device_tree.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/misc.h" 42 #include "migration/global_state.h" 43 #include "migration/register.h" 44 #include "mmu-hash64.h" 45 #include "mmu-book3s-v3.h" 46 #include "cpu-models.h" 47 #include "qom/cpu.h" 48 49 #include "hw/boards.h" 50 #include "hw/ppc/ppc.h" 51 #include "hw/loader.h" 52 53 #include "hw/ppc/fdt.h" 54 #include "hw/ppc/spapr.h" 55 #include "hw/ppc/spapr_vio.h" 56 #include "hw/pci-host/spapr.h" 57 #include "hw/pci/msi.h" 58 59 #include "hw/pci/pci.h" 60 #include "hw/scsi/scsi.h" 61 #include "hw/virtio/virtio-scsi.h" 62 #include "hw/virtio/vhost-scsi-common.h" 63 64 #include "exec/address-spaces.h" 65 #include "exec/ram_addr.h" 66 #include "hw/usb.h" 67 #include "qemu/config-file.h" 68 #include "qemu/error-report.h" 69 #include "trace.h" 70 #include "hw/nmi.h" 71 #include "hw/intc/intc.h" 72 73 #include "qemu/cutils.h" 74 #include "hw/ppc/spapr_cpu_core.h" 75 #include "hw/mem/memory-device.h" 76 77 #include <libfdt.h> 78 79 /* SLOF memory layout: 80 * 81 * SLOF raw image loaded at 0, copies its romfs right below the flat 82 * device-tree, then position SLOF itself 31M below that 83 * 84 * So we set FW_OVERHEAD to 40MB which should account for all of that 85 * and more 86 * 87 * We load our kernel at 4M, leaving space for SLOF initial image 88 */ 89 #define FDT_MAX_SIZE 0x100000 90 #define RTAS_MAX_SIZE 0x10000 91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 92 #define FW_MAX_SIZE 0x400000 93 #define FW_FILE_NAME "slof.bin" 94 #define FW_OVERHEAD 0x2800000 95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 96 97 #define MIN_RMA_SLOF 128UL 98 99 #define PHANDLE_XICP 0x00001111 100 101 /* These two functions implement the VCPU id numbering: one to compute them 102 * all and one to identify thread 0 of a VCORE. Any change to the first one 103 * is likely to have an impact on the second one, so let's keep them close. 104 */ 105 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index) 106 { 107 assert(spapr->vsmt); 108 return 109 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 110 } 111 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr, 112 PowerPCCPU *cpu) 113 { 114 assert(spapr->vsmt); 115 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 116 } 117 118 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 119 { 120 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 121 * and newer QEMUs don't even have them. In both cases, we don't want 122 * to send anything on the wire. 123 */ 124 return false; 125 } 126 127 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 128 .name = "icp/server", 129 .version_id = 1, 130 .minimum_version_id = 1, 131 .needed = pre_2_10_vmstate_dummy_icp_needed, 132 .fields = (VMStateField[]) { 133 VMSTATE_UNUSED(4), /* uint32_t xirr */ 134 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 135 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 136 VMSTATE_END_OF_LIST() 137 }, 138 }; 139 140 static void pre_2_10_vmstate_register_dummy_icp(int i) 141 { 142 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 143 (void *)(uintptr_t) i); 144 } 145 146 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 147 { 148 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 149 (void *)(uintptr_t) i); 150 } 151 152 int spapr_max_server_number(sPAPRMachineState *spapr) 153 { 154 assert(spapr->vsmt); 155 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 156 } 157 158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 159 int smt_threads) 160 { 161 int i, ret = 0; 162 uint32_t servers_prop[smt_threads]; 163 uint32_t gservers_prop[smt_threads * 2]; 164 int index = spapr_get_vcpu_id(cpu); 165 166 if (cpu->compat_pvr) { 167 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 168 if (ret < 0) { 169 return ret; 170 } 171 } 172 173 /* Build interrupt servers and gservers properties */ 174 for (i = 0; i < smt_threads; i++) { 175 servers_prop[i] = cpu_to_be32(index + i); 176 /* Hack, direct the group queues back to cpu 0 */ 177 gservers_prop[i*2] = cpu_to_be32(index + i); 178 gservers_prop[i*2 + 1] = 0; 179 } 180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 181 servers_prop, sizeof(servers_prop)); 182 if (ret < 0) { 183 return ret; 184 } 185 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 186 gservers_prop, sizeof(gservers_prop)); 187 188 return ret; 189 } 190 191 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 192 { 193 int index = spapr_get_vcpu_id(cpu); 194 uint32_t associativity[] = {cpu_to_be32(0x5), 195 cpu_to_be32(0x0), 196 cpu_to_be32(0x0), 197 cpu_to_be32(0x0), 198 cpu_to_be32(cpu->node_id), 199 cpu_to_be32(index)}; 200 201 /* Advertise NUMA via ibm,associativity */ 202 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 203 sizeof(associativity)); 204 } 205 206 /* Populate the "ibm,pa-features" property */ 207 static void spapr_populate_pa_features(sPAPRMachineState *spapr, 208 PowerPCCPU *cpu, 209 void *fdt, int offset, 210 bool legacy_guest) 211 { 212 uint8_t pa_features_206[] = { 6, 0, 213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 214 uint8_t pa_features_207[] = { 24, 0, 215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 219 uint8_t pa_features_300[] = { 66, 0, 220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 223 /* 6: DS207 */ 224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 225 /* 16: Vector */ 226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 235 /* 42: PM, 44: PC RA, 46: SC vec'd */ 236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 237 /* 48: SIMD, 50: QP BFP, 52: String */ 238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 239 /* 54: DecFP, 56: DecI, 58: SHA */ 240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 241 /* 60: NM atomic, 62: RNG */ 242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 243 }; 244 uint8_t *pa_features = NULL; 245 size_t pa_size; 246 247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 248 pa_features = pa_features_206; 249 pa_size = sizeof(pa_features_206); 250 } 251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 252 pa_features = pa_features_207; 253 pa_size = sizeof(pa_features_207); 254 } 255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 256 pa_features = pa_features_300; 257 pa_size = sizeof(pa_features_300); 258 } 259 if (!pa_features) { 260 return; 261 } 262 263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 264 /* 265 * Note: we keep CI large pages off by default because a 64K capable 266 * guest provisioned with large pages might otherwise try to map a qemu 267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 268 * even if that qemu runs on a 4k host. 269 * We dd this bit back here if we are confident this is not an issue 270 */ 271 pa_features[3] |= 0x20; 272 } 273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 274 pa_features[24] |= 0x80; /* Transactional memory support */ 275 } 276 if (legacy_guest && pa_size > 40) { 277 /* Workaround for broken kernels that attempt (guest) radix 278 * mode when they can't handle it, if they see the radix bit set 279 * in pa-features. So hide it from them. */ 280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 281 } 282 283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 284 } 285 286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 287 { 288 int ret = 0, offset, cpus_offset; 289 CPUState *cs; 290 char cpu_model[32]; 291 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 292 293 CPU_FOREACH(cs) { 294 PowerPCCPU *cpu = POWERPC_CPU(cs); 295 DeviceClass *dc = DEVICE_GET_CLASS(cs); 296 int index = spapr_get_vcpu_id(cpu); 297 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 298 299 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 300 continue; 301 } 302 303 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 304 305 cpus_offset = fdt_path_offset(fdt, "/cpus"); 306 if (cpus_offset < 0) { 307 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 308 if (cpus_offset < 0) { 309 return cpus_offset; 310 } 311 } 312 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 313 if (offset < 0) { 314 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 315 if (offset < 0) { 316 return offset; 317 } 318 } 319 320 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 321 pft_size_prop, sizeof(pft_size_prop)); 322 if (ret < 0) { 323 return ret; 324 } 325 326 if (nb_numa_nodes > 1) { 327 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 328 if (ret < 0) { 329 return ret; 330 } 331 } 332 333 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 334 if (ret < 0) { 335 return ret; 336 } 337 338 spapr_populate_pa_features(spapr, cpu, fdt, offset, 339 spapr->cas_legacy_guest_workaround); 340 } 341 return ret; 342 } 343 344 static hwaddr spapr_node0_size(MachineState *machine) 345 { 346 if (nb_numa_nodes) { 347 int i; 348 for (i = 0; i < nb_numa_nodes; ++i) { 349 if (numa_info[i].node_mem) { 350 return MIN(pow2floor(numa_info[i].node_mem), 351 machine->ram_size); 352 } 353 } 354 } 355 return machine->ram_size; 356 } 357 358 static void add_str(GString *s, const gchar *s1) 359 { 360 g_string_append_len(s, s1, strlen(s1) + 1); 361 } 362 363 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 364 hwaddr size) 365 { 366 uint32_t associativity[] = { 367 cpu_to_be32(0x4), /* length */ 368 cpu_to_be32(0x0), cpu_to_be32(0x0), 369 cpu_to_be32(0x0), cpu_to_be32(nodeid) 370 }; 371 char mem_name[32]; 372 uint64_t mem_reg_property[2]; 373 int off; 374 375 mem_reg_property[0] = cpu_to_be64(start); 376 mem_reg_property[1] = cpu_to_be64(size); 377 378 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 379 off = fdt_add_subnode(fdt, 0, mem_name); 380 _FDT(off); 381 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 382 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 383 sizeof(mem_reg_property)))); 384 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 385 sizeof(associativity)))); 386 return off; 387 } 388 389 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 390 { 391 MachineState *machine = MACHINE(spapr); 392 hwaddr mem_start, node_size; 393 int i, nb_nodes = nb_numa_nodes; 394 NodeInfo *nodes = numa_info; 395 NodeInfo ramnode; 396 397 /* No NUMA nodes, assume there is just one node with whole RAM */ 398 if (!nb_numa_nodes) { 399 nb_nodes = 1; 400 ramnode.node_mem = machine->ram_size; 401 nodes = &ramnode; 402 } 403 404 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 405 if (!nodes[i].node_mem) { 406 continue; 407 } 408 if (mem_start >= machine->ram_size) { 409 node_size = 0; 410 } else { 411 node_size = nodes[i].node_mem; 412 if (node_size > machine->ram_size - mem_start) { 413 node_size = machine->ram_size - mem_start; 414 } 415 } 416 if (!mem_start) { 417 /* spapr_machine_init() checks for rma_size <= node0_size 418 * already */ 419 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 420 mem_start += spapr->rma_size; 421 node_size -= spapr->rma_size; 422 } 423 for ( ; node_size; ) { 424 hwaddr sizetmp = pow2floor(node_size); 425 426 /* mem_start != 0 here */ 427 if (ctzl(mem_start) < ctzl(sizetmp)) { 428 sizetmp = 1ULL << ctzl(mem_start); 429 } 430 431 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 432 node_size -= sizetmp; 433 mem_start += sizetmp; 434 } 435 } 436 437 return 0; 438 } 439 440 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 441 sPAPRMachineState *spapr) 442 { 443 PowerPCCPU *cpu = POWERPC_CPU(cs); 444 CPUPPCState *env = &cpu->env; 445 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 446 int index = spapr_get_vcpu_id(cpu); 447 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 448 0xffffffff, 0xffffffff}; 449 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 450 : SPAPR_TIMEBASE_FREQ; 451 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 452 uint32_t page_sizes_prop[64]; 453 size_t page_sizes_prop_size; 454 uint32_t vcpus_per_socket = smp_threads * smp_cores; 455 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 456 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 457 sPAPRDRConnector *drc; 458 int drc_index; 459 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 460 int i; 461 462 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 463 if (drc) { 464 drc_index = spapr_drc_index(drc); 465 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 466 } 467 468 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 469 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 470 471 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 472 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 473 env->dcache_line_size))); 474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 475 env->dcache_line_size))); 476 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 477 env->icache_line_size))); 478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 479 env->icache_line_size))); 480 481 if (pcc->l1_dcache_size) { 482 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 483 pcc->l1_dcache_size))); 484 } else { 485 warn_report("Unknown L1 dcache size for cpu"); 486 } 487 if (pcc->l1_icache_size) { 488 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 489 pcc->l1_icache_size))); 490 } else { 491 warn_report("Unknown L1 icache size for cpu"); 492 } 493 494 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 495 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 496 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 497 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 498 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 499 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 500 501 if (env->spr_cb[SPR_PURR].oea_read) { 502 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 503 } 504 505 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 506 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 507 segs, sizeof(segs)))); 508 } 509 510 /* Advertise VSX (vector extensions) if available 511 * 1 == VMX / Altivec available 512 * 2 == VSX available 513 * 514 * Only CPUs for which we create core types in spapr_cpu_core.c 515 * are possible, and all of those have VMX */ 516 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 518 } else { 519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 520 } 521 522 /* Advertise DFP (Decimal Floating Point) if available 523 * 0 / no property == no DFP 524 * 1 == DFP available */ 525 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 526 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 527 } 528 529 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 530 sizeof(page_sizes_prop)); 531 if (page_sizes_prop_size) { 532 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 533 page_sizes_prop, page_sizes_prop_size))); 534 } 535 536 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 537 538 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 539 cs->cpu_index / vcpus_per_socket))); 540 541 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 542 pft_size_prop, sizeof(pft_size_prop)))); 543 544 if (nb_numa_nodes > 1) { 545 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 546 } 547 548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 549 550 if (pcc->radix_page_info) { 551 for (i = 0; i < pcc->radix_page_info->count; i++) { 552 radix_AP_encodings[i] = 553 cpu_to_be32(pcc->radix_page_info->entries[i]); 554 } 555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 556 radix_AP_encodings, 557 pcc->radix_page_info->count * 558 sizeof(radix_AP_encodings[0])))); 559 } 560 } 561 562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 563 { 564 CPUState **rev; 565 CPUState *cs; 566 int n_cpus; 567 int cpus_offset; 568 char *nodename; 569 int i; 570 571 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 572 _FDT(cpus_offset); 573 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 575 576 /* 577 * We walk the CPUs in reverse order to ensure that CPU DT nodes 578 * created by fdt_add_subnode() end up in the right order in FDT 579 * for the guest kernel the enumerate the CPUs correctly. 580 * 581 * The CPU list cannot be traversed in reverse order, so we need 582 * to do extra work. 583 */ 584 n_cpus = 0; 585 rev = NULL; 586 CPU_FOREACH(cs) { 587 rev = g_renew(CPUState *, rev, n_cpus + 1); 588 rev[n_cpus++] = cs; 589 } 590 591 for (i = n_cpus - 1; i >= 0; i--) { 592 CPUState *cs = rev[i]; 593 PowerPCCPU *cpu = POWERPC_CPU(cs); 594 int index = spapr_get_vcpu_id(cpu); 595 DeviceClass *dc = DEVICE_GET_CLASS(cs); 596 int offset; 597 598 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 599 continue; 600 } 601 602 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 603 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 604 g_free(nodename); 605 _FDT(offset); 606 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 607 } 608 609 g_free(rev); 610 } 611 612 static int spapr_rng_populate_dt(void *fdt) 613 { 614 int node; 615 int ret; 616 617 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 618 if (node <= 0) { 619 return -1; 620 } 621 ret = fdt_setprop_string(fdt, node, "device_type", 622 "ibm,platform-facilities"); 623 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 624 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 625 626 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 627 if (node <= 0) { 628 return -1; 629 } 630 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 631 632 return ret ? -1 : 0; 633 } 634 635 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 636 { 637 MemoryDeviceInfoList *info; 638 639 for (info = list; info; info = info->next) { 640 MemoryDeviceInfo *value = info->value; 641 642 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 643 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 644 645 if (addr >= pcdimm_info->addr && 646 addr < (pcdimm_info->addr + pcdimm_info->size)) { 647 return pcdimm_info->node; 648 } 649 } 650 } 651 652 return -1; 653 } 654 655 struct sPAPRDrconfCellV2 { 656 uint32_t seq_lmbs; 657 uint64_t base_addr; 658 uint32_t drc_index; 659 uint32_t aa_index; 660 uint32_t flags; 661 } QEMU_PACKED; 662 663 typedef struct DrconfCellQueue { 664 struct sPAPRDrconfCellV2 cell; 665 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 666 } DrconfCellQueue; 667 668 static DrconfCellQueue * 669 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 670 uint32_t drc_index, uint32_t aa_index, 671 uint32_t flags) 672 { 673 DrconfCellQueue *elem; 674 675 elem = g_malloc0(sizeof(*elem)); 676 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 677 elem->cell.base_addr = cpu_to_be64(base_addr); 678 elem->cell.drc_index = cpu_to_be32(drc_index); 679 elem->cell.aa_index = cpu_to_be32(aa_index); 680 elem->cell.flags = cpu_to_be32(flags); 681 682 return elem; 683 } 684 685 /* ibm,dynamic-memory-v2 */ 686 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt, 687 int offset, MemoryDeviceInfoList *dimms) 688 { 689 MachineState *machine = MACHINE(spapr); 690 uint8_t *int_buf, *cur_index, buf_len; 691 int ret; 692 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 693 uint64_t addr, cur_addr, size; 694 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 695 uint64_t mem_end = machine->device_memory->base + 696 memory_region_size(&machine->device_memory->mr); 697 uint32_t node, nr_entries = 0; 698 sPAPRDRConnector *drc; 699 DrconfCellQueue *elem, *next; 700 MemoryDeviceInfoList *info; 701 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 702 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 703 704 /* Entry to cover RAM and the gap area */ 705 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 706 SPAPR_LMB_FLAGS_RESERVED | 707 SPAPR_LMB_FLAGS_DRC_INVALID); 708 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 709 nr_entries++; 710 711 cur_addr = machine->device_memory->base; 712 for (info = dimms; info; info = info->next) { 713 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 714 715 addr = di->addr; 716 size = di->size; 717 node = di->node; 718 719 /* Entry for hot-pluggable area */ 720 if (cur_addr < addr) { 721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 722 g_assert(drc); 723 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 724 cur_addr, spapr_drc_index(drc), -1, 0); 725 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 726 nr_entries++; 727 } 728 729 /* Entry for DIMM */ 730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 731 g_assert(drc); 732 elem = spapr_get_drconf_cell(size / lmb_size, addr, 733 spapr_drc_index(drc), node, 734 SPAPR_LMB_FLAGS_ASSIGNED); 735 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 736 nr_entries++; 737 cur_addr = addr + size; 738 } 739 740 /* Entry for remaining hotpluggable area */ 741 if (cur_addr < mem_end) { 742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 743 g_assert(drc); 744 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 745 cur_addr, spapr_drc_index(drc), -1, 0); 746 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 747 nr_entries++; 748 } 749 750 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 751 int_buf = cur_index = g_malloc0(buf_len); 752 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 753 cur_index += sizeof(nr_entries); 754 755 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 756 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 757 cur_index += sizeof(elem->cell); 758 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 759 g_free(elem); 760 } 761 762 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 763 g_free(int_buf); 764 if (ret < 0) { 765 return -1; 766 } 767 return 0; 768 } 769 770 /* ibm,dynamic-memory */ 771 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt, 772 int offset, MemoryDeviceInfoList *dimms) 773 { 774 MachineState *machine = MACHINE(spapr); 775 int i, ret; 776 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 777 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 778 uint32_t nr_lmbs = (machine->device_memory->base + 779 memory_region_size(&machine->device_memory->mr)) / 780 lmb_size; 781 uint32_t *int_buf, *cur_index, buf_len; 782 783 /* 784 * Allocate enough buffer size to fit in ibm,dynamic-memory 785 */ 786 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 787 cur_index = int_buf = g_malloc0(buf_len); 788 int_buf[0] = cpu_to_be32(nr_lmbs); 789 cur_index++; 790 for (i = 0; i < nr_lmbs; i++) { 791 uint64_t addr = i * lmb_size; 792 uint32_t *dynamic_memory = cur_index; 793 794 if (i >= device_lmb_start) { 795 sPAPRDRConnector *drc; 796 797 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 798 g_assert(drc); 799 800 dynamic_memory[0] = cpu_to_be32(addr >> 32); 801 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 802 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 803 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 804 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 805 if (memory_region_present(get_system_memory(), addr)) { 806 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 807 } else { 808 dynamic_memory[5] = cpu_to_be32(0); 809 } 810 } else { 811 /* 812 * LMB information for RMA, boot time RAM and gap b/n RAM and 813 * device memory region -- all these are marked as reserved 814 * and as having no valid DRC. 815 */ 816 dynamic_memory[0] = cpu_to_be32(addr >> 32); 817 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 818 dynamic_memory[2] = cpu_to_be32(0); 819 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 820 dynamic_memory[4] = cpu_to_be32(-1); 821 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 822 SPAPR_LMB_FLAGS_DRC_INVALID); 823 } 824 825 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 826 } 827 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 828 g_free(int_buf); 829 if (ret < 0) { 830 return -1; 831 } 832 return 0; 833 } 834 835 /* 836 * Adds ibm,dynamic-reconfiguration-memory node. 837 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 838 * of this device tree node. 839 */ 840 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 841 { 842 MachineState *machine = MACHINE(spapr); 843 int ret, i, offset; 844 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 845 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 846 uint32_t *int_buf, *cur_index, buf_len; 847 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 848 MemoryDeviceInfoList *dimms = NULL; 849 850 /* 851 * Don't create the node if there is no device memory 852 */ 853 if (machine->ram_size == machine->maxram_size) { 854 return 0; 855 } 856 857 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 858 859 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 860 sizeof(prop_lmb_size)); 861 if (ret < 0) { 862 return ret; 863 } 864 865 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 866 if (ret < 0) { 867 return ret; 868 } 869 870 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 871 if (ret < 0) { 872 return ret; 873 } 874 875 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 876 dimms = qmp_memory_device_list(); 877 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 878 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 879 } else { 880 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 881 } 882 qapi_free_MemoryDeviceInfoList(dimms); 883 884 if (ret < 0) { 885 return ret; 886 } 887 888 /* ibm,associativity-lookup-arrays */ 889 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 890 cur_index = int_buf = g_malloc0(buf_len); 891 int_buf[0] = cpu_to_be32(nr_nodes); 892 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 893 cur_index += 2; 894 for (i = 0; i < nr_nodes; i++) { 895 uint32_t associativity[] = { 896 cpu_to_be32(0x0), 897 cpu_to_be32(0x0), 898 cpu_to_be32(0x0), 899 cpu_to_be32(i) 900 }; 901 memcpy(cur_index, associativity, sizeof(associativity)); 902 cur_index += 4; 903 } 904 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 905 (cur_index - int_buf) * sizeof(uint32_t)); 906 g_free(int_buf); 907 908 return ret; 909 } 910 911 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 912 sPAPROptionVector *ov5_updates) 913 { 914 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 915 int ret = 0, offset; 916 917 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 918 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 919 g_assert(smc->dr_lmb_enabled); 920 ret = spapr_populate_drconf_memory(spapr, fdt); 921 if (ret) { 922 goto out; 923 } 924 } 925 926 offset = fdt_path_offset(fdt, "/chosen"); 927 if (offset < 0) { 928 offset = fdt_add_subnode(fdt, 0, "chosen"); 929 if (offset < 0) { 930 return offset; 931 } 932 } 933 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 934 "ibm,architecture-vec-5"); 935 936 out: 937 return ret; 938 } 939 940 static bool spapr_hotplugged_dev_before_cas(void) 941 { 942 Object *drc_container, *obj; 943 ObjectProperty *prop; 944 ObjectPropertyIterator iter; 945 946 drc_container = container_get(object_get_root(), "/dr-connector"); 947 object_property_iter_init(&iter, drc_container); 948 while ((prop = object_property_iter_next(&iter))) { 949 if (!strstart(prop->type, "link<", NULL)) { 950 continue; 951 } 952 obj = object_property_get_link(drc_container, prop->name, NULL); 953 if (spapr_drc_needed(obj)) { 954 return true; 955 } 956 } 957 return false; 958 } 959 960 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 961 target_ulong addr, target_ulong size, 962 sPAPROptionVector *ov5_updates) 963 { 964 void *fdt, *fdt_skel; 965 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 966 967 if (spapr_hotplugged_dev_before_cas()) { 968 return 1; 969 } 970 971 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 972 error_report("SLOF provided an unexpected CAS buffer size " 973 TARGET_FMT_lu " (min: %zu, max: %u)", 974 size, sizeof(hdr), FW_MAX_SIZE); 975 exit(EXIT_FAILURE); 976 } 977 978 size -= sizeof(hdr); 979 980 /* Create skeleton */ 981 fdt_skel = g_malloc0(size); 982 _FDT((fdt_create(fdt_skel, size))); 983 _FDT((fdt_finish_reservemap(fdt_skel))); 984 _FDT((fdt_begin_node(fdt_skel, ""))); 985 _FDT((fdt_end_node(fdt_skel))); 986 _FDT((fdt_finish(fdt_skel))); 987 fdt = g_malloc0(size); 988 _FDT((fdt_open_into(fdt_skel, fdt, size))); 989 g_free(fdt_skel); 990 991 /* Fixup cpu nodes */ 992 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 993 994 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 995 return -1; 996 } 997 998 /* Pack resulting tree */ 999 _FDT((fdt_pack(fdt))); 1000 1001 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1002 trace_spapr_cas_failed(size); 1003 return -1; 1004 } 1005 1006 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1007 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1008 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1009 g_free(fdt); 1010 1011 return 0; 1012 } 1013 1014 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 1015 { 1016 int rtas; 1017 GString *hypertas = g_string_sized_new(256); 1018 GString *qemu_hypertas = g_string_sized_new(256); 1019 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1020 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1021 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1022 uint32_t lrdr_capacity[] = { 1023 cpu_to_be32(max_device_addr >> 32), 1024 cpu_to_be32(max_device_addr & 0xffffffff), 1025 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1026 cpu_to_be32(max_cpus / smp_threads), 1027 }; 1028 uint32_t maxdomains[] = { 1029 cpu_to_be32(4), 1030 cpu_to_be32(0), 1031 cpu_to_be32(0), 1032 cpu_to_be32(0), 1033 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1), 1034 }; 1035 1036 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1037 1038 /* hypertas */ 1039 add_str(hypertas, "hcall-pft"); 1040 add_str(hypertas, "hcall-term"); 1041 add_str(hypertas, "hcall-dabr"); 1042 add_str(hypertas, "hcall-interrupt"); 1043 add_str(hypertas, "hcall-tce"); 1044 add_str(hypertas, "hcall-vio"); 1045 add_str(hypertas, "hcall-splpar"); 1046 add_str(hypertas, "hcall-bulk"); 1047 add_str(hypertas, "hcall-set-mode"); 1048 add_str(hypertas, "hcall-sprg0"); 1049 add_str(hypertas, "hcall-copy"); 1050 add_str(hypertas, "hcall-debug"); 1051 add_str(hypertas, "hcall-vphn"); 1052 add_str(qemu_hypertas, "hcall-memop1"); 1053 1054 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1055 add_str(hypertas, "hcall-multi-tce"); 1056 } 1057 1058 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1059 add_str(hypertas, "hcall-hpt-resize"); 1060 } 1061 1062 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1063 hypertas->str, hypertas->len)); 1064 g_string_free(hypertas, TRUE); 1065 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1066 qemu_hypertas->str, qemu_hypertas->len)); 1067 g_string_free(qemu_hypertas, TRUE); 1068 1069 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1070 refpoints, sizeof(refpoints))); 1071 1072 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1073 maxdomains, sizeof(maxdomains))); 1074 1075 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1076 RTAS_ERROR_LOG_MAX)); 1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1078 RTAS_EVENT_SCAN_RATE)); 1079 1080 g_assert(msi_nonbroken); 1081 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1082 1083 /* 1084 * According to PAPR, rtas ibm,os-term does not guarantee a return 1085 * back to the guest cpu. 1086 * 1087 * While an additional ibm,extended-os-term property indicates 1088 * that rtas call return will always occur. Set this property. 1089 */ 1090 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1091 1092 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1093 lrdr_capacity, sizeof(lrdr_capacity))); 1094 1095 spapr_dt_rtas_tokens(fdt, rtas); 1096 } 1097 1098 /* 1099 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1100 * and the XIVE features that the guest may request and thus the valid 1101 * values for bytes 23..26 of option vector 5: 1102 */ 1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt, 1104 int chosen) 1105 { 1106 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1107 1108 char val[2 * 4] = { 1109 23, spapr->irq->ov5, /* Xive mode. */ 1110 24, 0x00, /* Hash/Radix, filled in below. */ 1111 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1112 26, 0x40, /* Radix options: GTSE == yes. */ 1113 }; 1114 1115 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1116 first_ppc_cpu->compat_pvr)) { 1117 /* 1118 * If we're in a pre POWER9 compat mode then the guest should 1119 * do hash and use the legacy interrupt mode 1120 */ 1121 val[1] = 0x00; /* XICS */ 1122 val[3] = 0x00; /* Hash */ 1123 } else if (kvm_enabled()) { 1124 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1125 val[3] = 0x80; /* OV5_MMU_BOTH */ 1126 } else if (kvmppc_has_cap_mmu_radix()) { 1127 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1128 } else { 1129 val[3] = 0x00; /* Hash */ 1130 } 1131 } else { 1132 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1133 val[3] = 0xC0; 1134 } 1135 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1136 val, sizeof(val))); 1137 } 1138 1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 1140 { 1141 MachineState *machine = MACHINE(spapr); 1142 int chosen; 1143 const char *boot_device = machine->boot_order; 1144 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1145 size_t cb = 0; 1146 char *bootlist = get_boot_devices_list(&cb); 1147 1148 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1149 1150 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1151 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1152 spapr->initrd_base)); 1153 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1154 spapr->initrd_base + spapr->initrd_size)); 1155 1156 if (spapr->kernel_size) { 1157 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1158 cpu_to_be64(spapr->kernel_size) }; 1159 1160 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1161 &kprop, sizeof(kprop))); 1162 if (spapr->kernel_le) { 1163 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1164 } 1165 } 1166 if (boot_menu) { 1167 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1168 } 1169 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1170 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1171 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1172 1173 if (cb && bootlist) { 1174 int i; 1175 1176 for (i = 0; i < cb; i++) { 1177 if (bootlist[i] == '\n') { 1178 bootlist[i] = ' '; 1179 } 1180 } 1181 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1182 } 1183 1184 if (boot_device && strlen(boot_device)) { 1185 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1186 } 1187 1188 if (!spapr->has_graphics && stdout_path) { 1189 /* 1190 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1191 * kernel. New platforms should only use the "stdout-path" property. Set 1192 * the new property and continue using older property to remain 1193 * compatible with the existing firmware. 1194 */ 1195 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1196 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1197 } 1198 1199 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1200 1201 g_free(stdout_path); 1202 g_free(bootlist); 1203 } 1204 1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 1206 { 1207 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1208 * KVM to work under pHyp with some guest co-operation */ 1209 int hypervisor; 1210 uint8_t hypercall[16]; 1211 1212 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1213 /* indicate KVM hypercall interface */ 1214 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1215 if (kvmppc_has_cap_fixup_hcalls()) { 1216 /* 1217 * Older KVM versions with older guest kernels were broken 1218 * with the magic page, don't allow the guest to map it. 1219 */ 1220 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1221 sizeof(hypercall))) { 1222 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1223 hypercall, sizeof(hypercall))); 1224 } 1225 } 1226 } 1227 1228 static void *spapr_build_fdt(sPAPRMachineState *spapr, 1229 hwaddr rtas_addr, 1230 hwaddr rtas_size) 1231 { 1232 MachineState *machine = MACHINE(spapr); 1233 MachineClass *mc = MACHINE_GET_CLASS(machine); 1234 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1235 int ret; 1236 void *fdt; 1237 sPAPRPHBState *phb; 1238 char *buf; 1239 1240 fdt = g_malloc0(FDT_MAX_SIZE); 1241 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1242 1243 /* Root node */ 1244 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1245 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1246 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1247 1248 /* 1249 * Add info to guest to indentify which host is it being run on 1250 * and what is the uuid of the guest 1251 */ 1252 if (kvmppc_get_host_model(&buf)) { 1253 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1254 g_free(buf); 1255 } 1256 if (kvmppc_get_host_serial(&buf)) { 1257 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1258 g_free(buf); 1259 } 1260 1261 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1262 1263 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1264 if (qemu_uuid_set) { 1265 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1266 } 1267 g_free(buf); 1268 1269 if (qemu_get_vm_name()) { 1270 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1271 qemu_get_vm_name())); 1272 } 1273 1274 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1275 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1276 1277 /* /interrupt controller */ 1278 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1279 PHANDLE_XICP); 1280 1281 ret = spapr_populate_memory(spapr, fdt); 1282 if (ret < 0) { 1283 error_report("couldn't setup memory nodes in fdt"); 1284 exit(1); 1285 } 1286 1287 /* /vdevice */ 1288 spapr_dt_vdevice(spapr->vio_bus, fdt); 1289 1290 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1291 ret = spapr_rng_populate_dt(fdt); 1292 if (ret < 0) { 1293 error_report("could not set up rng device in the fdt"); 1294 exit(1); 1295 } 1296 } 1297 1298 QLIST_FOREACH(phb, &spapr->phbs, list) { 1299 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt, 1300 spapr->irq->nr_msis); 1301 if (ret < 0) { 1302 error_report("couldn't setup PCI devices in fdt"); 1303 exit(1); 1304 } 1305 } 1306 1307 /* cpus */ 1308 spapr_populate_cpus_dt_node(fdt, spapr); 1309 1310 if (smc->dr_lmb_enabled) { 1311 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1312 } 1313 1314 if (mc->has_hotpluggable_cpus) { 1315 int offset = fdt_path_offset(fdt, "/cpus"); 1316 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1317 SPAPR_DR_CONNECTOR_TYPE_CPU); 1318 if (ret < 0) { 1319 error_report("Couldn't set up CPU DR device tree properties"); 1320 exit(1); 1321 } 1322 } 1323 1324 /* /event-sources */ 1325 spapr_dt_events(spapr, fdt); 1326 1327 /* /rtas */ 1328 spapr_dt_rtas(spapr, fdt); 1329 1330 /* /chosen */ 1331 spapr_dt_chosen(spapr, fdt); 1332 1333 /* /hypervisor */ 1334 if (kvm_enabled()) { 1335 spapr_dt_hypervisor(spapr, fdt); 1336 } 1337 1338 /* Build memory reserve map */ 1339 if (spapr->kernel_size) { 1340 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1341 } 1342 if (spapr->initrd_size) { 1343 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1344 } 1345 1346 /* ibm,client-architecture-support updates */ 1347 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1348 if (ret < 0) { 1349 error_report("couldn't setup CAS properties fdt"); 1350 exit(1); 1351 } 1352 1353 return fdt; 1354 } 1355 1356 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1357 { 1358 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1359 } 1360 1361 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1362 PowerPCCPU *cpu) 1363 { 1364 CPUPPCState *env = &cpu->env; 1365 1366 /* The TCG path should also be holding the BQL at this point */ 1367 g_assert(qemu_mutex_iothread_locked()); 1368 1369 if (msr_pr) { 1370 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1371 env->gpr[3] = H_PRIVILEGE; 1372 } else { 1373 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1374 } 1375 } 1376 1377 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1378 { 1379 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1380 1381 return spapr->patb_entry; 1382 } 1383 1384 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1385 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1386 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1387 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1388 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1389 1390 /* 1391 * Get the fd to access the kernel htab, re-opening it if necessary 1392 */ 1393 static int get_htab_fd(sPAPRMachineState *spapr) 1394 { 1395 Error *local_err = NULL; 1396 1397 if (spapr->htab_fd >= 0) { 1398 return spapr->htab_fd; 1399 } 1400 1401 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1402 if (spapr->htab_fd < 0) { 1403 error_report_err(local_err); 1404 } 1405 1406 return spapr->htab_fd; 1407 } 1408 1409 void close_htab_fd(sPAPRMachineState *spapr) 1410 { 1411 if (spapr->htab_fd >= 0) { 1412 close(spapr->htab_fd); 1413 } 1414 spapr->htab_fd = -1; 1415 } 1416 1417 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1418 { 1419 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1420 1421 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1422 } 1423 1424 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1425 { 1426 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1427 1428 assert(kvm_enabled()); 1429 1430 if (!spapr->htab) { 1431 return 0; 1432 } 1433 1434 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1435 } 1436 1437 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1438 hwaddr ptex, int n) 1439 { 1440 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1441 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1442 1443 if (!spapr->htab) { 1444 /* 1445 * HTAB is controlled by KVM. Fetch into temporary buffer 1446 */ 1447 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1448 kvmppc_read_hptes(hptes, ptex, n); 1449 return hptes; 1450 } 1451 1452 /* 1453 * HTAB is controlled by QEMU. Just point to the internally 1454 * accessible PTEG. 1455 */ 1456 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1457 } 1458 1459 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1460 const ppc_hash_pte64_t *hptes, 1461 hwaddr ptex, int n) 1462 { 1463 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1464 1465 if (!spapr->htab) { 1466 g_free((void *)hptes); 1467 } 1468 1469 /* Nothing to do for qemu managed HPT */ 1470 } 1471 1472 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1473 uint64_t pte0, uint64_t pte1) 1474 { 1475 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1476 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1477 1478 if (!spapr->htab) { 1479 kvmppc_write_hpte(ptex, pte0, pte1); 1480 } else { 1481 stq_p(spapr->htab + offset, pte0); 1482 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1483 } 1484 } 1485 1486 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1487 { 1488 int shift; 1489 1490 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1491 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1492 * that's much more than is needed for Linux guests */ 1493 shift = ctz64(pow2ceil(ramsize)) - 7; 1494 shift = MAX(shift, 18); /* Minimum architected size */ 1495 shift = MIN(shift, 46); /* Maximum architected size */ 1496 return shift; 1497 } 1498 1499 void spapr_free_hpt(sPAPRMachineState *spapr) 1500 { 1501 g_free(spapr->htab); 1502 spapr->htab = NULL; 1503 spapr->htab_shift = 0; 1504 close_htab_fd(spapr); 1505 } 1506 1507 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1508 Error **errp) 1509 { 1510 long rc; 1511 1512 /* Clean up any HPT info from a previous boot */ 1513 spapr_free_hpt(spapr); 1514 1515 rc = kvmppc_reset_htab(shift); 1516 if (rc < 0) { 1517 /* kernel-side HPT needed, but couldn't allocate one */ 1518 error_setg_errno(errp, errno, 1519 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1520 shift); 1521 /* This is almost certainly fatal, but if the caller really 1522 * wants to carry on with shift == 0, it's welcome to try */ 1523 } else if (rc > 0) { 1524 /* kernel-side HPT allocated */ 1525 if (rc != shift) { 1526 error_setg(errp, 1527 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1528 shift, rc); 1529 } 1530 1531 spapr->htab_shift = shift; 1532 spapr->htab = NULL; 1533 } else { 1534 /* kernel-side HPT not needed, allocate in userspace instead */ 1535 size_t size = 1ULL << shift; 1536 int i; 1537 1538 spapr->htab = qemu_memalign(size, size); 1539 if (!spapr->htab) { 1540 error_setg_errno(errp, errno, 1541 "Could not allocate HPT of order %d", shift); 1542 return; 1543 } 1544 1545 memset(spapr->htab, 0, size); 1546 spapr->htab_shift = shift; 1547 1548 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1549 DIRTY_HPTE(HPTE(spapr->htab, i)); 1550 } 1551 } 1552 /* We're setting up a hash table, so that means we're not radix */ 1553 spapr->patb_entry = 0; 1554 } 1555 1556 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1557 { 1558 int hpt_shift; 1559 1560 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1561 || (spapr->cas_reboot 1562 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1563 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1564 } else { 1565 uint64_t current_ram_size; 1566 1567 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1568 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1569 } 1570 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1571 1572 if (spapr->vrma_adjust) { 1573 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1574 spapr->htab_shift); 1575 } 1576 } 1577 1578 static int spapr_reset_drcs(Object *child, void *opaque) 1579 { 1580 sPAPRDRConnector *drc = 1581 (sPAPRDRConnector *) object_dynamic_cast(child, 1582 TYPE_SPAPR_DR_CONNECTOR); 1583 1584 if (drc) { 1585 spapr_drc_reset(drc); 1586 } 1587 1588 return 0; 1589 } 1590 1591 static void spapr_machine_reset(void) 1592 { 1593 MachineState *machine = MACHINE(qdev_get_machine()); 1594 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1595 PowerPCCPU *first_ppc_cpu; 1596 uint32_t rtas_limit; 1597 hwaddr rtas_addr, fdt_addr; 1598 void *fdt; 1599 int rc; 1600 1601 spapr_caps_apply(spapr); 1602 1603 first_ppc_cpu = POWERPC_CPU(first_cpu); 1604 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1605 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1606 spapr->max_compat_pvr)) { 1607 /* If using KVM with radix mode available, VCPUs can be started 1608 * without a HPT because KVM will start them in radix mode. 1609 * Set the GR bit in PATB so that we know there is no HPT. */ 1610 spapr->patb_entry = PATBE1_GR; 1611 } else { 1612 spapr_setup_hpt_and_vrma(spapr); 1613 } 1614 1615 /* if this reset wasn't generated by CAS, we should reset our 1616 * negotiated options and start from scratch */ 1617 if (!spapr->cas_reboot) { 1618 spapr_ovec_cleanup(spapr->ov5_cas); 1619 spapr->ov5_cas = spapr_ovec_new(); 1620 1621 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1622 } 1623 1624 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1625 spapr_irq_msi_reset(spapr); 1626 } 1627 1628 qemu_devices_reset(); 1629 1630 /* 1631 * This is fixing some of the default configuration of the XIVE 1632 * devices. To be called after the reset of the machine devices. 1633 */ 1634 spapr_irq_reset(spapr, &error_fatal); 1635 1636 /* DRC reset may cause a device to be unplugged. This will cause troubles 1637 * if this device is used by another device (eg, a running vhost backend 1638 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1639 * situations, we reset DRCs after all devices have been reset. 1640 */ 1641 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1642 1643 spapr_clear_pending_events(spapr); 1644 1645 /* 1646 * We place the device tree and RTAS just below either the top of the RMA, 1647 * or just below 2GB, whichever is lowere, so that it can be 1648 * processed with 32-bit real mode code if necessary 1649 */ 1650 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1651 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1652 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1653 1654 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1655 1656 spapr_load_rtas(spapr, fdt, rtas_addr); 1657 1658 rc = fdt_pack(fdt); 1659 1660 /* Should only fail if we've built a corrupted tree */ 1661 assert(rc == 0); 1662 1663 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1664 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1665 fdt_totalsize(fdt), FDT_MAX_SIZE); 1666 exit(1); 1667 } 1668 1669 /* Load the fdt */ 1670 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1671 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1672 g_free(spapr->fdt_blob); 1673 spapr->fdt_size = fdt_totalsize(fdt); 1674 spapr->fdt_initial_size = spapr->fdt_size; 1675 spapr->fdt_blob = fdt; 1676 1677 /* Set up the entry state */ 1678 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1679 first_ppc_cpu->env.gpr[5] = 0; 1680 1681 spapr->cas_reboot = false; 1682 } 1683 1684 static void spapr_create_nvram(sPAPRMachineState *spapr) 1685 { 1686 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1687 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1688 1689 if (dinfo) { 1690 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1691 &error_fatal); 1692 } 1693 1694 qdev_init_nofail(dev); 1695 1696 spapr->nvram = (struct sPAPRNVRAM *)dev; 1697 } 1698 1699 static void spapr_rtc_create(sPAPRMachineState *spapr) 1700 { 1701 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1702 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1703 &error_fatal); 1704 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1705 &error_fatal); 1706 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1707 "date", &error_fatal); 1708 } 1709 1710 /* Returns whether we want to use VGA or not */ 1711 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1712 { 1713 switch (vga_interface_type) { 1714 case VGA_NONE: 1715 return false; 1716 case VGA_DEVICE: 1717 return true; 1718 case VGA_STD: 1719 case VGA_VIRTIO: 1720 return pci_vga_init(pci_bus) != NULL; 1721 default: 1722 error_setg(errp, 1723 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1724 return false; 1725 } 1726 } 1727 1728 static int spapr_pre_load(void *opaque) 1729 { 1730 int rc; 1731 1732 rc = spapr_caps_pre_load(opaque); 1733 if (rc) { 1734 return rc; 1735 } 1736 1737 return 0; 1738 } 1739 1740 static int spapr_post_load(void *opaque, int version_id) 1741 { 1742 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1743 int err = 0; 1744 1745 err = spapr_caps_post_migration(spapr); 1746 if (err) { 1747 return err; 1748 } 1749 1750 /* 1751 * In earlier versions, there was no separate qdev for the PAPR 1752 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1753 * So when migrating from those versions, poke the incoming offset 1754 * value into the RTC device 1755 */ 1756 if (version_id < 3) { 1757 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1758 if (err) { 1759 return err; 1760 } 1761 } 1762 1763 if (kvm_enabled() && spapr->patb_entry) { 1764 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1765 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1766 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1767 1768 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1769 if (err) { 1770 error_report("Process table config unsupported by the host"); 1771 return -EINVAL; 1772 } 1773 } 1774 1775 err = spapr_irq_post_load(spapr, version_id); 1776 if (err) { 1777 return err; 1778 } 1779 1780 return err; 1781 } 1782 1783 static int spapr_pre_save(void *opaque) 1784 { 1785 int rc; 1786 1787 rc = spapr_caps_pre_save(opaque); 1788 if (rc) { 1789 return rc; 1790 } 1791 1792 return 0; 1793 } 1794 1795 static bool version_before_3(void *opaque, int version_id) 1796 { 1797 return version_id < 3; 1798 } 1799 1800 static bool spapr_pending_events_needed(void *opaque) 1801 { 1802 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1803 return !QTAILQ_EMPTY(&spapr->pending_events); 1804 } 1805 1806 static const VMStateDescription vmstate_spapr_event_entry = { 1807 .name = "spapr_event_log_entry", 1808 .version_id = 1, 1809 .minimum_version_id = 1, 1810 .fields = (VMStateField[]) { 1811 VMSTATE_UINT32(summary, sPAPREventLogEntry), 1812 VMSTATE_UINT32(extended_length, sPAPREventLogEntry), 1813 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, 1814 NULL, extended_length), 1815 VMSTATE_END_OF_LIST() 1816 }, 1817 }; 1818 1819 static const VMStateDescription vmstate_spapr_pending_events = { 1820 .name = "spapr_pending_events", 1821 .version_id = 1, 1822 .minimum_version_id = 1, 1823 .needed = spapr_pending_events_needed, 1824 .fields = (VMStateField[]) { 1825 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, 1826 vmstate_spapr_event_entry, sPAPREventLogEntry, next), 1827 VMSTATE_END_OF_LIST() 1828 }, 1829 }; 1830 1831 static bool spapr_ov5_cas_needed(void *opaque) 1832 { 1833 sPAPRMachineState *spapr = opaque; 1834 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1835 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1836 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1837 bool cas_needed; 1838 1839 /* Prior to the introduction of sPAPROptionVector, we had two option 1840 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1841 * Both of these options encode machine topology into the device-tree 1842 * in such a way that the now-booted OS should still be able to interact 1843 * appropriately with QEMU regardless of what options were actually 1844 * negotiatied on the source side. 1845 * 1846 * As such, we can avoid migrating the CAS-negotiated options if these 1847 * are the only options available on the current machine/platform. 1848 * Since these are the only options available for pseries-2.7 and 1849 * earlier, this allows us to maintain old->new/new->old migration 1850 * compatibility. 1851 * 1852 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1853 * via default pseries-2.8 machines and explicit command-line parameters. 1854 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1855 * of the actual CAS-negotiated values to continue working properly. For 1856 * example, availability of memory unplug depends on knowing whether 1857 * OV5_HP_EVT was negotiated via CAS. 1858 * 1859 * Thus, for any cases where the set of available CAS-negotiatable 1860 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1861 * include the CAS-negotiated options in the migration stream, unless 1862 * if they affect boot time behaviour only. 1863 */ 1864 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1865 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1866 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1867 1868 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1869 * the mask itself since in the future it's possible "legacy" bits may be 1870 * removed via machine options, which could generate a false positive 1871 * that breaks migration. 1872 */ 1873 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1874 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1875 1876 spapr_ovec_cleanup(ov5_mask); 1877 spapr_ovec_cleanup(ov5_legacy); 1878 spapr_ovec_cleanup(ov5_removed); 1879 1880 return cas_needed; 1881 } 1882 1883 static const VMStateDescription vmstate_spapr_ov5_cas = { 1884 .name = "spapr_option_vector_ov5_cas", 1885 .version_id = 1, 1886 .minimum_version_id = 1, 1887 .needed = spapr_ov5_cas_needed, 1888 .fields = (VMStateField[]) { 1889 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1890 vmstate_spapr_ovec, sPAPROptionVector), 1891 VMSTATE_END_OF_LIST() 1892 }, 1893 }; 1894 1895 static bool spapr_patb_entry_needed(void *opaque) 1896 { 1897 sPAPRMachineState *spapr = opaque; 1898 1899 return !!spapr->patb_entry; 1900 } 1901 1902 static const VMStateDescription vmstate_spapr_patb_entry = { 1903 .name = "spapr_patb_entry", 1904 .version_id = 1, 1905 .minimum_version_id = 1, 1906 .needed = spapr_patb_entry_needed, 1907 .fields = (VMStateField[]) { 1908 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1909 VMSTATE_END_OF_LIST() 1910 }, 1911 }; 1912 1913 static bool spapr_irq_map_needed(void *opaque) 1914 { 1915 sPAPRMachineState *spapr = opaque; 1916 1917 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1918 } 1919 1920 static const VMStateDescription vmstate_spapr_irq_map = { 1921 .name = "spapr_irq_map", 1922 .version_id = 1, 1923 .minimum_version_id = 1, 1924 .needed = spapr_irq_map_needed, 1925 .fields = (VMStateField[]) { 1926 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr), 1927 VMSTATE_END_OF_LIST() 1928 }, 1929 }; 1930 1931 static bool spapr_dtb_needed(void *opaque) 1932 { 1933 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1934 1935 return smc->update_dt_enabled; 1936 } 1937 1938 static int spapr_dtb_pre_load(void *opaque) 1939 { 1940 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1941 1942 g_free(spapr->fdt_blob); 1943 spapr->fdt_blob = NULL; 1944 spapr->fdt_size = 0; 1945 1946 return 0; 1947 } 1948 1949 static const VMStateDescription vmstate_spapr_dtb = { 1950 .name = "spapr_dtb", 1951 .version_id = 1, 1952 .minimum_version_id = 1, 1953 .needed = spapr_dtb_needed, 1954 .pre_load = spapr_dtb_pre_load, 1955 .fields = (VMStateField[]) { 1956 VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState), 1957 VMSTATE_UINT32(fdt_size, sPAPRMachineState), 1958 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL, 1959 fdt_size), 1960 VMSTATE_END_OF_LIST() 1961 }, 1962 }; 1963 1964 static const VMStateDescription vmstate_spapr = { 1965 .name = "spapr", 1966 .version_id = 3, 1967 .minimum_version_id = 1, 1968 .pre_load = spapr_pre_load, 1969 .post_load = spapr_post_load, 1970 .pre_save = spapr_pre_save, 1971 .fields = (VMStateField[]) { 1972 /* used to be @next_irq */ 1973 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1974 1975 /* RTC offset */ 1976 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1977 1978 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1979 VMSTATE_END_OF_LIST() 1980 }, 1981 .subsections = (const VMStateDescription*[]) { 1982 &vmstate_spapr_ov5_cas, 1983 &vmstate_spapr_patb_entry, 1984 &vmstate_spapr_pending_events, 1985 &vmstate_spapr_cap_htm, 1986 &vmstate_spapr_cap_vsx, 1987 &vmstate_spapr_cap_dfp, 1988 &vmstate_spapr_cap_cfpc, 1989 &vmstate_spapr_cap_sbbc, 1990 &vmstate_spapr_cap_ibs, 1991 &vmstate_spapr_irq_map, 1992 &vmstate_spapr_cap_nested_kvm_hv, 1993 &vmstate_spapr_dtb, 1994 NULL 1995 } 1996 }; 1997 1998 static int htab_save_setup(QEMUFile *f, void *opaque) 1999 { 2000 sPAPRMachineState *spapr = opaque; 2001 2002 /* "Iteration" header */ 2003 if (!spapr->htab_shift) { 2004 qemu_put_be32(f, -1); 2005 } else { 2006 qemu_put_be32(f, spapr->htab_shift); 2007 } 2008 2009 if (spapr->htab) { 2010 spapr->htab_save_index = 0; 2011 spapr->htab_first_pass = true; 2012 } else { 2013 if (spapr->htab_shift) { 2014 assert(kvm_enabled()); 2015 } 2016 } 2017 2018 2019 return 0; 2020 } 2021 2022 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, 2023 int chunkstart, int n_valid, int n_invalid) 2024 { 2025 qemu_put_be32(f, chunkstart); 2026 qemu_put_be16(f, n_valid); 2027 qemu_put_be16(f, n_invalid); 2028 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2029 HASH_PTE_SIZE_64 * n_valid); 2030 } 2031 2032 static void htab_save_end_marker(QEMUFile *f) 2033 { 2034 qemu_put_be32(f, 0); 2035 qemu_put_be16(f, 0); 2036 qemu_put_be16(f, 0); 2037 } 2038 2039 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 2040 int64_t max_ns) 2041 { 2042 bool has_timeout = max_ns != -1; 2043 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2044 int index = spapr->htab_save_index; 2045 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2046 2047 assert(spapr->htab_first_pass); 2048 2049 do { 2050 int chunkstart; 2051 2052 /* Consume invalid HPTEs */ 2053 while ((index < htabslots) 2054 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2055 CLEAN_HPTE(HPTE(spapr->htab, index)); 2056 index++; 2057 } 2058 2059 /* Consume valid HPTEs */ 2060 chunkstart = index; 2061 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2062 && HPTE_VALID(HPTE(spapr->htab, index))) { 2063 CLEAN_HPTE(HPTE(spapr->htab, index)); 2064 index++; 2065 } 2066 2067 if (index > chunkstart) { 2068 int n_valid = index - chunkstart; 2069 2070 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2071 2072 if (has_timeout && 2073 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2074 break; 2075 } 2076 } 2077 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2078 2079 if (index >= htabslots) { 2080 assert(index == htabslots); 2081 index = 0; 2082 spapr->htab_first_pass = false; 2083 } 2084 spapr->htab_save_index = index; 2085 } 2086 2087 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 2088 int64_t max_ns) 2089 { 2090 bool final = max_ns < 0; 2091 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2092 int examined = 0, sent = 0; 2093 int index = spapr->htab_save_index; 2094 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2095 2096 assert(!spapr->htab_first_pass); 2097 2098 do { 2099 int chunkstart, invalidstart; 2100 2101 /* Consume non-dirty HPTEs */ 2102 while ((index < htabslots) 2103 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2104 index++; 2105 examined++; 2106 } 2107 2108 chunkstart = index; 2109 /* Consume valid dirty HPTEs */ 2110 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2111 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2112 && HPTE_VALID(HPTE(spapr->htab, index))) { 2113 CLEAN_HPTE(HPTE(spapr->htab, index)); 2114 index++; 2115 examined++; 2116 } 2117 2118 invalidstart = index; 2119 /* Consume invalid dirty HPTEs */ 2120 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2121 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2122 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2123 CLEAN_HPTE(HPTE(spapr->htab, index)); 2124 index++; 2125 examined++; 2126 } 2127 2128 if (index > chunkstart) { 2129 int n_valid = invalidstart - chunkstart; 2130 int n_invalid = index - invalidstart; 2131 2132 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2133 sent += index - chunkstart; 2134 2135 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2136 break; 2137 } 2138 } 2139 2140 if (examined >= htabslots) { 2141 break; 2142 } 2143 2144 if (index >= htabslots) { 2145 assert(index == htabslots); 2146 index = 0; 2147 } 2148 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2149 2150 if (index >= htabslots) { 2151 assert(index == htabslots); 2152 index = 0; 2153 } 2154 2155 spapr->htab_save_index = index; 2156 2157 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2158 } 2159 2160 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2161 #define MAX_KVM_BUF_SIZE 2048 2162 2163 static int htab_save_iterate(QEMUFile *f, void *opaque) 2164 { 2165 sPAPRMachineState *spapr = opaque; 2166 int fd; 2167 int rc = 0; 2168 2169 /* Iteration header */ 2170 if (!spapr->htab_shift) { 2171 qemu_put_be32(f, -1); 2172 return 1; 2173 } else { 2174 qemu_put_be32(f, 0); 2175 } 2176 2177 if (!spapr->htab) { 2178 assert(kvm_enabled()); 2179 2180 fd = get_htab_fd(spapr); 2181 if (fd < 0) { 2182 return fd; 2183 } 2184 2185 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2186 if (rc < 0) { 2187 return rc; 2188 } 2189 } else if (spapr->htab_first_pass) { 2190 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2191 } else { 2192 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2193 } 2194 2195 htab_save_end_marker(f); 2196 2197 return rc; 2198 } 2199 2200 static int htab_save_complete(QEMUFile *f, void *opaque) 2201 { 2202 sPAPRMachineState *spapr = opaque; 2203 int fd; 2204 2205 /* Iteration header */ 2206 if (!spapr->htab_shift) { 2207 qemu_put_be32(f, -1); 2208 return 0; 2209 } else { 2210 qemu_put_be32(f, 0); 2211 } 2212 2213 if (!spapr->htab) { 2214 int rc; 2215 2216 assert(kvm_enabled()); 2217 2218 fd = get_htab_fd(spapr); 2219 if (fd < 0) { 2220 return fd; 2221 } 2222 2223 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2224 if (rc < 0) { 2225 return rc; 2226 } 2227 } else { 2228 if (spapr->htab_first_pass) { 2229 htab_save_first_pass(f, spapr, -1); 2230 } 2231 htab_save_later_pass(f, spapr, -1); 2232 } 2233 2234 /* End marker */ 2235 htab_save_end_marker(f); 2236 2237 return 0; 2238 } 2239 2240 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2241 { 2242 sPAPRMachineState *spapr = opaque; 2243 uint32_t section_hdr; 2244 int fd = -1; 2245 Error *local_err = NULL; 2246 2247 if (version_id < 1 || version_id > 1) { 2248 error_report("htab_load() bad version"); 2249 return -EINVAL; 2250 } 2251 2252 section_hdr = qemu_get_be32(f); 2253 2254 if (section_hdr == -1) { 2255 spapr_free_hpt(spapr); 2256 return 0; 2257 } 2258 2259 if (section_hdr) { 2260 /* First section gives the htab size */ 2261 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2262 if (local_err) { 2263 error_report_err(local_err); 2264 return -EINVAL; 2265 } 2266 return 0; 2267 } 2268 2269 if (!spapr->htab) { 2270 assert(kvm_enabled()); 2271 2272 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2273 if (fd < 0) { 2274 error_report_err(local_err); 2275 return fd; 2276 } 2277 } 2278 2279 while (true) { 2280 uint32_t index; 2281 uint16_t n_valid, n_invalid; 2282 2283 index = qemu_get_be32(f); 2284 n_valid = qemu_get_be16(f); 2285 n_invalid = qemu_get_be16(f); 2286 2287 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2288 /* End of Stream */ 2289 break; 2290 } 2291 2292 if ((index + n_valid + n_invalid) > 2293 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2294 /* Bad index in stream */ 2295 error_report( 2296 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2297 index, n_valid, n_invalid, spapr->htab_shift); 2298 return -EINVAL; 2299 } 2300 2301 if (spapr->htab) { 2302 if (n_valid) { 2303 qemu_get_buffer(f, HPTE(spapr->htab, index), 2304 HASH_PTE_SIZE_64 * n_valid); 2305 } 2306 if (n_invalid) { 2307 memset(HPTE(spapr->htab, index + n_valid), 0, 2308 HASH_PTE_SIZE_64 * n_invalid); 2309 } 2310 } else { 2311 int rc; 2312 2313 assert(fd >= 0); 2314 2315 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2316 if (rc < 0) { 2317 return rc; 2318 } 2319 } 2320 } 2321 2322 if (!spapr->htab) { 2323 assert(fd >= 0); 2324 close(fd); 2325 } 2326 2327 return 0; 2328 } 2329 2330 static void htab_save_cleanup(void *opaque) 2331 { 2332 sPAPRMachineState *spapr = opaque; 2333 2334 close_htab_fd(spapr); 2335 } 2336 2337 static SaveVMHandlers savevm_htab_handlers = { 2338 .save_setup = htab_save_setup, 2339 .save_live_iterate = htab_save_iterate, 2340 .save_live_complete_precopy = htab_save_complete, 2341 .save_cleanup = htab_save_cleanup, 2342 .load_state = htab_load, 2343 }; 2344 2345 static void spapr_boot_set(void *opaque, const char *boot_device, 2346 Error **errp) 2347 { 2348 MachineState *machine = MACHINE(opaque); 2349 machine->boot_order = g_strdup(boot_device); 2350 } 2351 2352 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 2353 { 2354 MachineState *machine = MACHINE(spapr); 2355 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2356 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2357 int i; 2358 2359 for (i = 0; i < nr_lmbs; i++) { 2360 uint64_t addr; 2361 2362 addr = i * lmb_size + machine->device_memory->base; 2363 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2364 addr / lmb_size); 2365 } 2366 } 2367 2368 /* 2369 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2370 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2371 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2372 */ 2373 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2374 { 2375 int i; 2376 2377 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2378 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2379 " is not aligned to %" PRIu64 " MiB", 2380 machine->ram_size, 2381 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2382 return; 2383 } 2384 2385 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2386 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2387 " is not aligned to %" PRIu64 " MiB", 2388 machine->ram_size, 2389 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2390 return; 2391 } 2392 2393 for (i = 0; i < nb_numa_nodes; i++) { 2394 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2395 error_setg(errp, 2396 "Node %d memory size 0x%" PRIx64 2397 " is not aligned to %" PRIu64 " MiB", 2398 i, numa_info[i].node_mem, 2399 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2400 return; 2401 } 2402 } 2403 } 2404 2405 /* find cpu slot in machine->possible_cpus by core_id */ 2406 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2407 { 2408 int index = id / smp_threads; 2409 2410 if (index >= ms->possible_cpus->len) { 2411 return NULL; 2412 } 2413 if (idx) { 2414 *idx = index; 2415 } 2416 return &ms->possible_cpus->cpus[index]; 2417 } 2418 2419 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) 2420 { 2421 Error *local_err = NULL; 2422 bool vsmt_user = !!spapr->vsmt; 2423 int kvm_smt = kvmppc_smt_threads(); 2424 int ret; 2425 2426 if (!kvm_enabled() && (smp_threads > 1)) { 2427 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2428 "on a pseries machine"); 2429 goto out; 2430 } 2431 if (!is_power_of_2(smp_threads)) { 2432 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2433 "machine because it must be a power of 2", smp_threads); 2434 goto out; 2435 } 2436 2437 /* Detemine the VSMT mode to use: */ 2438 if (vsmt_user) { 2439 if (spapr->vsmt < smp_threads) { 2440 error_setg(&local_err, "Cannot support VSMT mode %d" 2441 " because it must be >= threads/core (%d)", 2442 spapr->vsmt, smp_threads); 2443 goto out; 2444 } 2445 /* In this case, spapr->vsmt has been set by the command line */ 2446 } else { 2447 /* 2448 * Default VSMT value is tricky, because we need it to be as 2449 * consistent as possible (for migration), but this requires 2450 * changing it for at least some existing cases. We pick 8 as 2451 * the value that we'd get with KVM on POWER8, the 2452 * overwhelmingly common case in production systems. 2453 */ 2454 spapr->vsmt = MAX(8, smp_threads); 2455 } 2456 2457 /* KVM: If necessary, set the SMT mode: */ 2458 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2459 ret = kvmppc_set_smt_threads(spapr->vsmt); 2460 if (ret) { 2461 /* Looks like KVM isn't able to change VSMT mode */ 2462 error_setg(&local_err, 2463 "Failed to set KVM's VSMT mode to %d (errno %d)", 2464 spapr->vsmt, ret); 2465 /* We can live with that if the default one is big enough 2466 * for the number of threads, and a submultiple of the one 2467 * we want. In this case we'll waste some vcpu ids, but 2468 * behaviour will be correct */ 2469 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2470 warn_report_err(local_err); 2471 local_err = NULL; 2472 goto out; 2473 } else { 2474 if (!vsmt_user) { 2475 error_append_hint(&local_err, 2476 "On PPC, a VM with %d threads/core" 2477 " on a host with %d threads/core" 2478 " requires the use of VSMT mode %d.\n", 2479 smp_threads, kvm_smt, spapr->vsmt); 2480 } 2481 kvmppc_hint_smt_possible(&local_err); 2482 goto out; 2483 } 2484 } 2485 } 2486 /* else TCG: nothing to do currently */ 2487 out: 2488 error_propagate(errp, local_err); 2489 } 2490 2491 static void spapr_init_cpus(sPAPRMachineState *spapr) 2492 { 2493 MachineState *machine = MACHINE(spapr); 2494 MachineClass *mc = MACHINE_GET_CLASS(machine); 2495 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2496 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2497 const CPUArchIdList *possible_cpus; 2498 int boot_cores_nr = smp_cpus / smp_threads; 2499 int i; 2500 2501 possible_cpus = mc->possible_cpu_arch_ids(machine); 2502 if (mc->has_hotpluggable_cpus) { 2503 if (smp_cpus % smp_threads) { 2504 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2505 smp_cpus, smp_threads); 2506 exit(1); 2507 } 2508 if (max_cpus % smp_threads) { 2509 error_report("max_cpus (%u) must be multiple of threads (%u)", 2510 max_cpus, smp_threads); 2511 exit(1); 2512 } 2513 } else { 2514 if (max_cpus != smp_cpus) { 2515 error_report("This machine version does not support CPU hotplug"); 2516 exit(1); 2517 } 2518 boot_cores_nr = possible_cpus->len; 2519 } 2520 2521 if (smc->pre_2_10_has_unused_icps) { 2522 int i; 2523 2524 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2525 /* Dummy entries get deregistered when real ICPState objects 2526 * are registered during CPU core hotplug. 2527 */ 2528 pre_2_10_vmstate_register_dummy_icp(i); 2529 } 2530 } 2531 2532 for (i = 0; i < possible_cpus->len; i++) { 2533 int core_id = i * smp_threads; 2534 2535 if (mc->has_hotpluggable_cpus) { 2536 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2537 spapr_vcpu_id(spapr, core_id)); 2538 } 2539 2540 if (i < boot_cores_nr) { 2541 Object *core = object_new(type); 2542 int nr_threads = smp_threads; 2543 2544 /* Handle the partially filled core for older machine types */ 2545 if ((i + 1) * smp_threads >= smp_cpus) { 2546 nr_threads = smp_cpus - i * smp_threads; 2547 } 2548 2549 object_property_set_int(core, nr_threads, "nr-threads", 2550 &error_fatal); 2551 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2552 &error_fatal); 2553 object_property_set_bool(core, true, "realized", &error_fatal); 2554 2555 object_unref(core); 2556 } 2557 } 2558 } 2559 2560 static PCIHostState *spapr_create_default_phb(void) 2561 { 2562 DeviceState *dev; 2563 2564 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2565 qdev_prop_set_uint32(dev, "index", 0); 2566 qdev_init_nofail(dev); 2567 2568 return PCI_HOST_BRIDGE(dev); 2569 } 2570 2571 /* pSeries LPAR / sPAPR hardware init */ 2572 static void spapr_machine_init(MachineState *machine) 2573 { 2574 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2575 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2576 const char *kernel_filename = machine->kernel_filename; 2577 const char *initrd_filename = machine->initrd_filename; 2578 PCIHostState *phb; 2579 int i; 2580 MemoryRegion *sysmem = get_system_memory(); 2581 MemoryRegion *ram = g_new(MemoryRegion, 1); 2582 hwaddr node0_size = spapr_node0_size(machine); 2583 long load_limit, fw_size; 2584 char *filename; 2585 Error *resize_hpt_err = NULL; 2586 2587 msi_nonbroken = true; 2588 2589 QLIST_INIT(&spapr->phbs); 2590 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2591 2592 /* Determine capabilities to run with */ 2593 spapr_caps_init(spapr); 2594 2595 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2596 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2597 /* 2598 * If the user explicitly requested a mode we should either 2599 * supply it, or fail completely (which we do below). But if 2600 * it's not set explicitly, we reset our mode to something 2601 * that works 2602 */ 2603 if (resize_hpt_err) { 2604 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2605 error_free(resize_hpt_err); 2606 resize_hpt_err = NULL; 2607 } else { 2608 spapr->resize_hpt = smc->resize_hpt_default; 2609 } 2610 } 2611 2612 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2613 2614 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2615 /* 2616 * User requested HPT resize, but this host can't supply it. Bail out 2617 */ 2618 error_report_err(resize_hpt_err); 2619 exit(1); 2620 } 2621 2622 spapr->rma_size = node0_size; 2623 2624 /* With KVM, we don't actually know whether KVM supports an 2625 * unbounded RMA (PR KVM) or is limited by the hash table size 2626 * (HV KVM using VRMA), so we always assume the latter 2627 * 2628 * In that case, we also limit the initial allocations for RTAS 2629 * etc... to 256M since we have no way to know what the VRMA size 2630 * is going to be as it depends on the size of the hash table 2631 * which isn't determined yet. 2632 */ 2633 if (kvm_enabled()) { 2634 spapr->vrma_adjust = 1; 2635 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2636 } 2637 2638 /* Actually we don't support unbounded RMA anymore since we added 2639 * proper emulation of HV mode. The max we can get is 16G which 2640 * also happens to be what we configure for PAPR mode so make sure 2641 * we don't do anything bigger than that 2642 */ 2643 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2644 2645 if (spapr->rma_size > node0_size) { 2646 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2647 spapr->rma_size); 2648 exit(1); 2649 } 2650 2651 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2652 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2653 2654 /* 2655 * VSMT must be set in order to be able to compute VCPU ids, ie to 2656 * call spapr_max_server_number() or spapr_vcpu_id(). 2657 */ 2658 spapr_set_vsmt_mode(spapr, &error_fatal); 2659 2660 /* Set up Interrupt Controller before we create the VCPUs */ 2661 spapr_irq_init(spapr, &error_fatal); 2662 2663 /* Set up containers for ibm,client-architecture-support negotiated options 2664 */ 2665 spapr->ov5 = spapr_ovec_new(); 2666 spapr->ov5_cas = spapr_ovec_new(); 2667 2668 if (smc->dr_lmb_enabled) { 2669 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2670 spapr_validate_node_memory(machine, &error_fatal); 2671 } 2672 2673 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2674 2675 /* advertise support for dedicated HP event source to guests */ 2676 if (spapr->use_hotplug_event_source) { 2677 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2678 } 2679 2680 /* advertise support for HPT resizing */ 2681 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2682 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2683 } 2684 2685 /* advertise support for ibm,dyamic-memory-v2 */ 2686 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2687 2688 /* advertise XIVE on POWER9 machines */ 2689 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2690 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 2691 0, spapr->max_compat_pvr)) { 2692 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2693 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) { 2694 error_report("XIVE-only machines require a POWER9 CPU"); 2695 exit(1); 2696 } 2697 } 2698 2699 /* init CPUs */ 2700 spapr_init_cpus(spapr); 2701 2702 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2703 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2704 spapr->max_compat_pvr)) { 2705 /* KVM and TCG always allow GTSE with radix... */ 2706 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2707 } 2708 /* ... but not with hash (currently). */ 2709 2710 if (kvm_enabled()) { 2711 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2712 kvmppc_enable_logical_ci_hcalls(); 2713 kvmppc_enable_set_mode_hcall(); 2714 2715 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2716 kvmppc_enable_clear_ref_mod_hcalls(); 2717 } 2718 2719 /* allocate RAM */ 2720 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2721 machine->ram_size); 2722 memory_region_add_subregion(sysmem, 0, ram); 2723 2724 /* always allocate the device memory information */ 2725 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2726 2727 /* initialize hotplug memory address space */ 2728 if (machine->ram_size < machine->maxram_size) { 2729 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2730 /* 2731 * Limit the number of hotpluggable memory slots to half the number 2732 * slots that KVM supports, leaving the other half for PCI and other 2733 * devices. However ensure that number of slots doesn't drop below 32. 2734 */ 2735 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2736 SPAPR_MAX_RAM_SLOTS; 2737 2738 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2739 max_memslots = SPAPR_MAX_RAM_SLOTS; 2740 } 2741 if (machine->ram_slots > max_memslots) { 2742 error_report("Specified number of memory slots %" 2743 PRIu64" exceeds max supported %d", 2744 machine->ram_slots, max_memslots); 2745 exit(1); 2746 } 2747 2748 machine->device_memory->base = ROUND_UP(machine->ram_size, 2749 SPAPR_DEVICE_MEM_ALIGN); 2750 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2751 "device-memory", device_mem_size); 2752 memory_region_add_subregion(sysmem, machine->device_memory->base, 2753 &machine->device_memory->mr); 2754 } 2755 2756 if (smc->dr_lmb_enabled) { 2757 spapr_create_lmb_dr_connectors(spapr); 2758 } 2759 2760 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2761 if (!filename) { 2762 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2763 exit(1); 2764 } 2765 spapr->rtas_size = get_image_size(filename); 2766 if (spapr->rtas_size < 0) { 2767 error_report("Could not get size of LPAR rtas '%s'", filename); 2768 exit(1); 2769 } 2770 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2771 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2772 error_report("Could not load LPAR rtas '%s'", filename); 2773 exit(1); 2774 } 2775 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2776 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2777 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2778 exit(1); 2779 } 2780 g_free(filename); 2781 2782 /* Set up RTAS event infrastructure */ 2783 spapr_events_init(spapr); 2784 2785 /* Set up the RTC RTAS interfaces */ 2786 spapr_rtc_create(spapr); 2787 2788 /* Set up VIO bus */ 2789 spapr->vio_bus = spapr_vio_bus_init(); 2790 2791 for (i = 0; i < serial_max_hds(); i++) { 2792 if (serial_hd(i)) { 2793 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2794 } 2795 } 2796 2797 /* We always have at least the nvram device on VIO */ 2798 spapr_create_nvram(spapr); 2799 2800 /* Set up PCI */ 2801 spapr_pci_rtas_init(); 2802 2803 phb = spapr_create_default_phb(); 2804 2805 for (i = 0; i < nb_nics; i++) { 2806 NICInfo *nd = &nd_table[i]; 2807 2808 if (!nd->model) { 2809 nd->model = g_strdup("spapr-vlan"); 2810 } 2811 2812 if (g_str_equal(nd->model, "spapr-vlan") || 2813 g_str_equal(nd->model, "ibmveth")) { 2814 spapr_vlan_create(spapr->vio_bus, nd); 2815 } else { 2816 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2817 } 2818 } 2819 2820 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2821 spapr_vscsi_create(spapr->vio_bus); 2822 } 2823 2824 /* Graphics */ 2825 if (spapr_vga_init(phb->bus, &error_fatal)) { 2826 spapr->has_graphics = true; 2827 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2828 } 2829 2830 if (machine->usb) { 2831 if (smc->use_ohci_by_default) { 2832 pci_create_simple(phb->bus, -1, "pci-ohci"); 2833 } else { 2834 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2835 } 2836 2837 if (spapr->has_graphics) { 2838 USBBus *usb_bus = usb_bus_find(-1); 2839 2840 usb_create_simple(usb_bus, "usb-kbd"); 2841 usb_create_simple(usb_bus, "usb-mouse"); 2842 } 2843 } 2844 2845 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2846 error_report( 2847 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2848 MIN_RMA_SLOF); 2849 exit(1); 2850 } 2851 2852 if (kernel_filename) { 2853 uint64_t lowaddr = 0; 2854 2855 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2856 NULL, NULL, &lowaddr, NULL, 1, 2857 PPC_ELF_MACHINE, 0, 0); 2858 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2859 spapr->kernel_size = load_elf(kernel_filename, 2860 translate_kernel_address, NULL, NULL, 2861 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2862 0, 0); 2863 spapr->kernel_le = spapr->kernel_size > 0; 2864 } 2865 if (spapr->kernel_size < 0) { 2866 error_report("error loading %s: %s", kernel_filename, 2867 load_elf_strerror(spapr->kernel_size)); 2868 exit(1); 2869 } 2870 2871 /* load initrd */ 2872 if (initrd_filename) { 2873 /* Try to locate the initrd in the gap between the kernel 2874 * and the firmware. Add a bit of space just in case 2875 */ 2876 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2877 + 0x1ffff) & ~0xffff; 2878 spapr->initrd_size = load_image_targphys(initrd_filename, 2879 spapr->initrd_base, 2880 load_limit 2881 - spapr->initrd_base); 2882 if (spapr->initrd_size < 0) { 2883 error_report("could not load initial ram disk '%s'", 2884 initrd_filename); 2885 exit(1); 2886 } 2887 } 2888 } 2889 2890 if (bios_name == NULL) { 2891 bios_name = FW_FILE_NAME; 2892 } 2893 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2894 if (!filename) { 2895 error_report("Could not find LPAR firmware '%s'", bios_name); 2896 exit(1); 2897 } 2898 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2899 if (fw_size <= 0) { 2900 error_report("Could not load LPAR firmware '%s'", filename); 2901 exit(1); 2902 } 2903 g_free(filename); 2904 2905 /* FIXME: Should register things through the MachineState's qdev 2906 * interface, this is a legacy from the sPAPREnvironment structure 2907 * which predated MachineState but had a similar function */ 2908 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2909 register_savevm_live(NULL, "spapr/htab", -1, 1, 2910 &savevm_htab_handlers, spapr); 2911 2912 qemu_register_boot_set(spapr_boot_set, spapr); 2913 2914 if (kvm_enabled()) { 2915 /* to stop and start vmclock */ 2916 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2917 &spapr->tb); 2918 2919 kvmppc_spapr_enable_inkernel_multitce(); 2920 } 2921 } 2922 2923 static int spapr_kvm_type(const char *vm_type) 2924 { 2925 if (!vm_type) { 2926 return 0; 2927 } 2928 2929 if (!strcmp(vm_type, "HV")) { 2930 return 1; 2931 } 2932 2933 if (!strcmp(vm_type, "PR")) { 2934 return 2; 2935 } 2936 2937 error_report("Unknown kvm-type specified '%s'", vm_type); 2938 exit(1); 2939 } 2940 2941 /* 2942 * Implementation of an interface to adjust firmware path 2943 * for the bootindex property handling. 2944 */ 2945 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2946 DeviceState *dev) 2947 { 2948 #define CAST(type, obj, name) \ 2949 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2950 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2951 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2952 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2953 2954 if (d) { 2955 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2956 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2957 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2958 2959 if (spapr) { 2960 /* 2961 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2962 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2963 * in the top 16 bits of the 64-bit LUN 2964 */ 2965 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2966 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2967 (uint64_t)id << 48); 2968 } else if (virtio) { 2969 /* 2970 * We use SRP luns of the form 01000000 | (target << 8) | lun 2971 * in the top 32 bits of the 64-bit LUN 2972 * Note: the quote above is from SLOF and it is wrong, 2973 * the actual binding is: 2974 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2975 */ 2976 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2977 if (d->lun >= 256) { 2978 /* Use the LUN "flat space addressing method" */ 2979 id |= 0x4000; 2980 } 2981 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2982 (uint64_t)id << 32); 2983 } else if (usb) { 2984 /* 2985 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2986 * in the top 32 bits of the 64-bit LUN 2987 */ 2988 unsigned usb_port = atoi(usb->port->path); 2989 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2990 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2991 (uint64_t)id << 32); 2992 } 2993 } 2994 2995 /* 2996 * SLOF probes the USB devices, and if it recognizes that the device is a 2997 * storage device, it changes its name to "storage" instead of "usb-host", 2998 * and additionally adds a child node for the SCSI LUN, so the correct 2999 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3000 */ 3001 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3002 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3003 if (usb_host_dev_is_scsi_storage(usbdev)) { 3004 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3005 } 3006 } 3007 3008 if (phb) { 3009 /* Replace "pci" with "pci@800000020000000" */ 3010 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3011 } 3012 3013 if (vsc) { 3014 /* Same logic as virtio above */ 3015 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3016 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3017 } 3018 3019 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3020 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3021 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3022 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3023 } 3024 3025 return NULL; 3026 } 3027 3028 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3029 { 3030 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3031 3032 return g_strdup(spapr->kvm_type); 3033 } 3034 3035 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3036 { 3037 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3038 3039 g_free(spapr->kvm_type); 3040 spapr->kvm_type = g_strdup(value); 3041 } 3042 3043 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3044 { 3045 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3046 3047 return spapr->use_hotplug_event_source; 3048 } 3049 3050 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3051 Error **errp) 3052 { 3053 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3054 3055 spapr->use_hotplug_event_source = value; 3056 } 3057 3058 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3059 { 3060 return true; 3061 } 3062 3063 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3064 { 3065 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3066 3067 switch (spapr->resize_hpt) { 3068 case SPAPR_RESIZE_HPT_DEFAULT: 3069 return g_strdup("default"); 3070 case SPAPR_RESIZE_HPT_DISABLED: 3071 return g_strdup("disabled"); 3072 case SPAPR_RESIZE_HPT_ENABLED: 3073 return g_strdup("enabled"); 3074 case SPAPR_RESIZE_HPT_REQUIRED: 3075 return g_strdup("required"); 3076 } 3077 g_assert_not_reached(); 3078 } 3079 3080 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3081 { 3082 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3083 3084 if (strcmp(value, "default") == 0) { 3085 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3086 } else if (strcmp(value, "disabled") == 0) { 3087 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3088 } else if (strcmp(value, "enabled") == 0) { 3089 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3090 } else if (strcmp(value, "required") == 0) { 3091 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3092 } else { 3093 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3094 } 3095 } 3096 3097 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3098 void *opaque, Error **errp) 3099 { 3100 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3101 } 3102 3103 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3104 void *opaque, Error **errp) 3105 { 3106 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3107 } 3108 3109 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3110 { 3111 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3112 3113 if (spapr->irq == &spapr_irq_xics_legacy) { 3114 return g_strdup("legacy"); 3115 } else if (spapr->irq == &spapr_irq_xics) { 3116 return g_strdup("xics"); 3117 } else if (spapr->irq == &spapr_irq_xive) { 3118 return g_strdup("xive"); 3119 } else if (spapr->irq == &spapr_irq_dual) { 3120 return g_strdup("dual"); 3121 } 3122 g_assert_not_reached(); 3123 } 3124 3125 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3126 { 3127 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3128 3129 /* The legacy IRQ backend can not be set */ 3130 if (strcmp(value, "xics") == 0) { 3131 spapr->irq = &spapr_irq_xics; 3132 } else if (strcmp(value, "xive") == 0) { 3133 spapr->irq = &spapr_irq_xive; 3134 } else if (strcmp(value, "dual") == 0) { 3135 spapr->irq = &spapr_irq_dual; 3136 } else { 3137 error_setg(errp, "Bad value for \"ic-mode\" property"); 3138 } 3139 } 3140 3141 static void spapr_instance_init(Object *obj) 3142 { 3143 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3144 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3145 3146 spapr->htab_fd = -1; 3147 spapr->use_hotplug_event_source = true; 3148 object_property_add_str(obj, "kvm-type", 3149 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3150 object_property_set_description(obj, "kvm-type", 3151 "Specifies the KVM virtualization mode (HV, PR)", 3152 NULL); 3153 object_property_add_bool(obj, "modern-hotplug-events", 3154 spapr_get_modern_hotplug_events, 3155 spapr_set_modern_hotplug_events, 3156 NULL); 3157 object_property_set_description(obj, "modern-hotplug-events", 3158 "Use dedicated hotplug event mechanism in" 3159 " place of standard EPOW events when possible" 3160 " (required for memory hot-unplug support)", 3161 NULL); 3162 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3163 "Maximum permitted CPU compatibility mode", 3164 &error_fatal); 3165 3166 object_property_add_str(obj, "resize-hpt", 3167 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3168 object_property_set_description(obj, "resize-hpt", 3169 "Resizing of the Hash Page Table (enabled, disabled, required)", 3170 NULL); 3171 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3172 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3173 object_property_set_description(obj, "vsmt", 3174 "Virtual SMT: KVM behaves as if this were" 3175 " the host's SMT mode", &error_abort); 3176 object_property_add_bool(obj, "vfio-no-msix-emulation", 3177 spapr_get_msix_emulation, NULL, NULL); 3178 3179 /* The machine class defines the default interrupt controller mode */ 3180 spapr->irq = smc->irq; 3181 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3182 spapr_set_ic_mode, NULL); 3183 object_property_set_description(obj, "ic-mode", 3184 "Specifies the interrupt controller mode (xics, xive, dual)", 3185 NULL); 3186 } 3187 3188 static void spapr_machine_finalizefn(Object *obj) 3189 { 3190 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3191 3192 g_free(spapr->kvm_type); 3193 } 3194 3195 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3196 { 3197 cpu_synchronize_state(cs); 3198 ppc_cpu_do_system_reset(cs); 3199 } 3200 3201 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3202 { 3203 CPUState *cs; 3204 3205 CPU_FOREACH(cs) { 3206 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3207 } 3208 } 3209 3210 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3211 uint32_t node, bool dedicated_hp_event_source, 3212 Error **errp) 3213 { 3214 sPAPRDRConnector *drc; 3215 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3216 int i, fdt_offset, fdt_size; 3217 void *fdt; 3218 uint64_t addr = addr_start; 3219 bool hotplugged = spapr_drc_hotplugged(dev); 3220 Error *local_err = NULL; 3221 3222 for (i = 0; i < nr_lmbs; i++) { 3223 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3224 addr / SPAPR_MEMORY_BLOCK_SIZE); 3225 g_assert(drc); 3226 3227 fdt = create_device_tree(&fdt_size); 3228 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 3229 SPAPR_MEMORY_BLOCK_SIZE); 3230 3231 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3232 if (local_err) { 3233 while (addr > addr_start) { 3234 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3235 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3236 addr / SPAPR_MEMORY_BLOCK_SIZE); 3237 spapr_drc_detach(drc); 3238 } 3239 g_free(fdt); 3240 error_propagate(errp, local_err); 3241 return; 3242 } 3243 if (!hotplugged) { 3244 spapr_drc_reset(drc); 3245 } 3246 addr += SPAPR_MEMORY_BLOCK_SIZE; 3247 } 3248 /* send hotplug notification to the 3249 * guest only in case of hotplugged memory 3250 */ 3251 if (hotplugged) { 3252 if (dedicated_hp_event_source) { 3253 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3254 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3255 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3256 nr_lmbs, 3257 spapr_drc_index(drc)); 3258 } else { 3259 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3260 nr_lmbs); 3261 } 3262 } 3263 } 3264 3265 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3266 Error **errp) 3267 { 3268 Error *local_err = NULL; 3269 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3270 PCDIMMDevice *dimm = PC_DIMM(dev); 3271 uint64_t size, addr; 3272 uint32_t node; 3273 3274 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3275 3276 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3277 if (local_err) { 3278 goto out; 3279 } 3280 3281 addr = object_property_get_uint(OBJECT(dimm), 3282 PC_DIMM_ADDR_PROP, &local_err); 3283 if (local_err) { 3284 goto out_unplug; 3285 } 3286 3287 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, 3288 &error_abort); 3289 spapr_add_lmbs(dev, addr, size, node, 3290 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3291 &local_err); 3292 if (local_err) { 3293 goto out_unplug; 3294 } 3295 3296 return; 3297 3298 out_unplug: 3299 pc_dimm_unplug(dimm, MACHINE(ms)); 3300 out: 3301 error_propagate(errp, local_err); 3302 } 3303 3304 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3305 Error **errp) 3306 { 3307 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3308 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3309 PCDIMMDevice *dimm = PC_DIMM(dev); 3310 Error *local_err = NULL; 3311 uint64_t size; 3312 Object *memdev; 3313 hwaddr pagesize; 3314 3315 if (!smc->dr_lmb_enabled) { 3316 error_setg(errp, "Memory hotplug not supported for this machine"); 3317 return; 3318 } 3319 3320 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3321 if (local_err) { 3322 error_propagate(errp, local_err); 3323 return; 3324 } 3325 3326 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3327 error_setg(errp, "Hotplugged memory size must be a multiple of " 3328 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3329 return; 3330 } 3331 3332 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3333 &error_abort); 3334 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3335 spapr_check_pagesize(spapr, pagesize, &local_err); 3336 if (local_err) { 3337 error_propagate(errp, local_err); 3338 return; 3339 } 3340 3341 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3342 } 3343 3344 struct sPAPRDIMMState { 3345 PCDIMMDevice *dimm; 3346 uint32_t nr_lmbs; 3347 QTAILQ_ENTRY(sPAPRDIMMState) next; 3348 }; 3349 3350 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 3351 PCDIMMDevice *dimm) 3352 { 3353 sPAPRDIMMState *dimm_state = NULL; 3354 3355 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3356 if (dimm_state->dimm == dimm) { 3357 break; 3358 } 3359 } 3360 return dimm_state; 3361 } 3362 3363 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 3364 uint32_t nr_lmbs, 3365 PCDIMMDevice *dimm) 3366 { 3367 sPAPRDIMMState *ds = NULL; 3368 3369 /* 3370 * If this request is for a DIMM whose removal had failed earlier 3371 * (due to guest's refusal to remove the LMBs), we would have this 3372 * dimm already in the pending_dimm_unplugs list. In that 3373 * case don't add again. 3374 */ 3375 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3376 if (!ds) { 3377 ds = g_malloc0(sizeof(sPAPRDIMMState)); 3378 ds->nr_lmbs = nr_lmbs; 3379 ds->dimm = dimm; 3380 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3381 } 3382 return ds; 3383 } 3384 3385 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 3386 sPAPRDIMMState *dimm_state) 3387 { 3388 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3389 g_free(dimm_state); 3390 } 3391 3392 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 3393 PCDIMMDevice *dimm) 3394 { 3395 sPAPRDRConnector *drc; 3396 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3397 &error_abort); 3398 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3399 uint32_t avail_lmbs = 0; 3400 uint64_t addr_start, addr; 3401 int i; 3402 3403 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3404 &error_abort); 3405 3406 addr = addr_start; 3407 for (i = 0; i < nr_lmbs; i++) { 3408 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3409 addr / SPAPR_MEMORY_BLOCK_SIZE); 3410 g_assert(drc); 3411 if (drc->dev) { 3412 avail_lmbs++; 3413 } 3414 addr += SPAPR_MEMORY_BLOCK_SIZE; 3415 } 3416 3417 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3418 } 3419 3420 /* Callback to be called during DRC release. */ 3421 void spapr_lmb_release(DeviceState *dev) 3422 { 3423 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3424 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3425 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3426 3427 /* This information will get lost if a migration occurs 3428 * during the unplug process. In this case recover it. */ 3429 if (ds == NULL) { 3430 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3431 g_assert(ds); 3432 /* The DRC being examined by the caller at least must be counted */ 3433 g_assert(ds->nr_lmbs); 3434 } 3435 3436 if (--ds->nr_lmbs) { 3437 return; 3438 } 3439 3440 /* 3441 * Now that all the LMBs have been removed by the guest, call the 3442 * unplug handler chain. This can never fail. 3443 */ 3444 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3445 } 3446 3447 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3448 { 3449 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3450 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3451 3452 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3453 object_unparent(OBJECT(dev)); 3454 spapr_pending_dimm_unplugs_remove(spapr, ds); 3455 } 3456 3457 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3458 DeviceState *dev, Error **errp) 3459 { 3460 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3461 Error *local_err = NULL; 3462 PCDIMMDevice *dimm = PC_DIMM(dev); 3463 uint32_t nr_lmbs; 3464 uint64_t size, addr_start, addr; 3465 int i; 3466 sPAPRDRConnector *drc; 3467 3468 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3469 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3470 3471 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3472 &local_err); 3473 if (local_err) { 3474 goto out; 3475 } 3476 3477 /* 3478 * An existing pending dimm state for this DIMM means that there is an 3479 * unplug operation in progress, waiting for the spapr_lmb_release 3480 * callback to complete the job (BQL can't cover that far). In this case, 3481 * bail out to avoid detaching DRCs that were already released. 3482 */ 3483 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3484 error_setg(&local_err, 3485 "Memory unplug already in progress for device %s", 3486 dev->id); 3487 goto out; 3488 } 3489 3490 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3491 3492 addr = addr_start; 3493 for (i = 0; i < nr_lmbs; i++) { 3494 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3495 addr / SPAPR_MEMORY_BLOCK_SIZE); 3496 g_assert(drc); 3497 3498 spapr_drc_detach(drc); 3499 addr += SPAPR_MEMORY_BLOCK_SIZE; 3500 } 3501 3502 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3503 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3504 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3505 nr_lmbs, spapr_drc_index(drc)); 3506 out: 3507 error_propagate(errp, local_err); 3508 } 3509 3510 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 3511 sPAPRMachineState *spapr) 3512 { 3513 PowerPCCPU *cpu = POWERPC_CPU(cs); 3514 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3515 int id = spapr_get_vcpu_id(cpu); 3516 void *fdt; 3517 int offset, fdt_size; 3518 char *nodename; 3519 3520 fdt = create_device_tree(&fdt_size); 3521 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3522 offset = fdt_add_subnode(fdt, 0, nodename); 3523 3524 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3525 g_free(nodename); 3526 3527 *fdt_offset = offset; 3528 return fdt; 3529 } 3530 3531 /* Callback to be called during DRC release. */ 3532 void spapr_core_release(DeviceState *dev) 3533 { 3534 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3535 3536 /* Call the unplug handler chain. This can never fail. */ 3537 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3538 } 3539 3540 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3541 { 3542 MachineState *ms = MACHINE(hotplug_dev); 3543 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3544 CPUCore *cc = CPU_CORE(dev); 3545 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3546 3547 if (smc->pre_2_10_has_unused_icps) { 3548 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3549 int i; 3550 3551 for (i = 0; i < cc->nr_threads; i++) { 3552 CPUState *cs = CPU(sc->threads[i]); 3553 3554 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3555 } 3556 } 3557 3558 assert(core_slot); 3559 core_slot->cpu = NULL; 3560 object_unparent(OBJECT(dev)); 3561 } 3562 3563 static 3564 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3565 Error **errp) 3566 { 3567 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3568 int index; 3569 sPAPRDRConnector *drc; 3570 CPUCore *cc = CPU_CORE(dev); 3571 3572 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3573 error_setg(errp, "Unable to find CPU core with core-id: %d", 3574 cc->core_id); 3575 return; 3576 } 3577 if (index == 0) { 3578 error_setg(errp, "Boot CPU core may not be unplugged"); 3579 return; 3580 } 3581 3582 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3583 spapr_vcpu_id(spapr, cc->core_id)); 3584 g_assert(drc); 3585 3586 spapr_drc_detach(drc); 3587 3588 spapr_hotplug_req_remove_by_index(drc); 3589 } 3590 3591 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3592 Error **errp) 3593 { 3594 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3595 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3596 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3597 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3598 CPUCore *cc = CPU_CORE(dev); 3599 CPUState *cs = CPU(core->threads[0]); 3600 sPAPRDRConnector *drc; 3601 Error *local_err = NULL; 3602 CPUArchId *core_slot; 3603 int index; 3604 bool hotplugged = spapr_drc_hotplugged(dev); 3605 3606 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3607 if (!core_slot) { 3608 error_setg(errp, "Unable to find CPU core with core-id: %d", 3609 cc->core_id); 3610 return; 3611 } 3612 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3613 spapr_vcpu_id(spapr, cc->core_id)); 3614 3615 g_assert(drc || !mc->has_hotpluggable_cpus); 3616 3617 if (drc) { 3618 void *fdt; 3619 int fdt_offset; 3620 3621 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 3622 3623 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3624 if (local_err) { 3625 g_free(fdt); 3626 error_propagate(errp, local_err); 3627 return; 3628 } 3629 3630 if (hotplugged) { 3631 /* 3632 * Send hotplug notification interrupt to the guest only 3633 * in case of hotplugged CPUs. 3634 */ 3635 spapr_hotplug_req_add_by_index(drc); 3636 } else { 3637 spapr_drc_reset(drc); 3638 } 3639 } 3640 3641 core_slot->cpu = OBJECT(dev); 3642 3643 if (smc->pre_2_10_has_unused_icps) { 3644 int i; 3645 3646 for (i = 0; i < cc->nr_threads; i++) { 3647 cs = CPU(core->threads[i]); 3648 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3649 } 3650 } 3651 } 3652 3653 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3654 Error **errp) 3655 { 3656 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3657 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3658 Error *local_err = NULL; 3659 CPUCore *cc = CPU_CORE(dev); 3660 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3661 const char *type = object_get_typename(OBJECT(dev)); 3662 CPUArchId *core_slot; 3663 int index; 3664 3665 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3666 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3667 goto out; 3668 } 3669 3670 if (strcmp(base_core_type, type)) { 3671 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3672 goto out; 3673 } 3674 3675 if (cc->core_id % smp_threads) { 3676 error_setg(&local_err, "invalid core id %d", cc->core_id); 3677 goto out; 3678 } 3679 3680 /* 3681 * In general we should have homogeneous threads-per-core, but old 3682 * (pre hotplug support) machine types allow the last core to have 3683 * reduced threads as a compatibility hack for when we allowed 3684 * total vcpus not a multiple of threads-per-core. 3685 */ 3686 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3687 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3688 cc->nr_threads, smp_threads); 3689 goto out; 3690 } 3691 3692 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3693 if (!core_slot) { 3694 error_setg(&local_err, "core id %d out of range", cc->core_id); 3695 goto out; 3696 } 3697 3698 if (core_slot->cpu) { 3699 error_setg(&local_err, "core %d already populated", cc->core_id); 3700 goto out; 3701 } 3702 3703 numa_cpu_pre_plug(core_slot, dev, &local_err); 3704 3705 out: 3706 error_propagate(errp, local_err); 3707 } 3708 3709 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3710 DeviceState *dev, Error **errp) 3711 { 3712 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3713 spapr_memory_plug(hotplug_dev, dev, errp); 3714 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3715 spapr_core_plug(hotplug_dev, dev, errp); 3716 } 3717 } 3718 3719 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 3720 DeviceState *dev, Error **errp) 3721 { 3722 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3723 spapr_memory_unplug(hotplug_dev, dev); 3724 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3725 spapr_core_unplug(hotplug_dev, dev); 3726 } 3727 } 3728 3729 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3730 DeviceState *dev, Error **errp) 3731 { 3732 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3733 MachineClass *mc = MACHINE_GET_CLASS(sms); 3734 3735 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3736 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3737 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3738 } else { 3739 /* NOTE: this means there is a window after guest reset, prior to 3740 * CAS negotiation, where unplug requests will fail due to the 3741 * capability not being detected yet. This is a bit different than 3742 * the case with PCI unplug, where the events will be queued and 3743 * eventually handled by the guest after boot 3744 */ 3745 error_setg(errp, "Memory hot unplug not supported for this guest"); 3746 } 3747 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3748 if (!mc->has_hotpluggable_cpus) { 3749 error_setg(errp, "CPU hot unplug not supported on this machine"); 3750 return; 3751 } 3752 spapr_core_unplug_request(hotplug_dev, dev, errp); 3753 } 3754 } 3755 3756 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3757 DeviceState *dev, Error **errp) 3758 { 3759 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3760 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3761 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3762 spapr_core_pre_plug(hotplug_dev, dev, errp); 3763 } 3764 } 3765 3766 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3767 DeviceState *dev) 3768 { 3769 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3770 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3771 return HOTPLUG_HANDLER(machine); 3772 } 3773 return NULL; 3774 } 3775 3776 static CpuInstanceProperties 3777 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3778 { 3779 CPUArchId *core_slot; 3780 MachineClass *mc = MACHINE_GET_CLASS(machine); 3781 3782 /* make sure possible_cpu are intialized */ 3783 mc->possible_cpu_arch_ids(machine); 3784 /* get CPU core slot containing thread that matches cpu_index */ 3785 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3786 assert(core_slot); 3787 return core_slot->props; 3788 } 3789 3790 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 3791 { 3792 return idx / smp_cores % nb_numa_nodes; 3793 } 3794 3795 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3796 { 3797 int i; 3798 const char *core_type; 3799 int spapr_max_cores = max_cpus / smp_threads; 3800 MachineClass *mc = MACHINE_GET_CLASS(machine); 3801 3802 if (!mc->has_hotpluggable_cpus) { 3803 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3804 } 3805 if (machine->possible_cpus) { 3806 assert(machine->possible_cpus->len == spapr_max_cores); 3807 return machine->possible_cpus; 3808 } 3809 3810 core_type = spapr_get_cpu_core_type(machine->cpu_type); 3811 if (!core_type) { 3812 error_report("Unable to find sPAPR CPU Core definition"); 3813 exit(1); 3814 } 3815 3816 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3817 sizeof(CPUArchId) * spapr_max_cores); 3818 machine->possible_cpus->len = spapr_max_cores; 3819 for (i = 0; i < machine->possible_cpus->len; i++) { 3820 int core_id = i * smp_threads; 3821 3822 machine->possible_cpus->cpus[i].type = core_type; 3823 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3824 machine->possible_cpus->cpus[i].arch_id = core_id; 3825 machine->possible_cpus->cpus[i].props.has_core_id = true; 3826 machine->possible_cpus->cpus[i].props.core_id = core_id; 3827 } 3828 return machine->possible_cpus; 3829 } 3830 3831 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3832 uint64_t *buid, hwaddr *pio, 3833 hwaddr *mmio32, hwaddr *mmio64, 3834 unsigned n_dma, uint32_t *liobns, Error **errp) 3835 { 3836 /* 3837 * New-style PHB window placement. 3838 * 3839 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3840 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3841 * windows. 3842 * 3843 * Some guest kernels can't work with MMIO windows above 1<<46 3844 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3845 * 3846 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3847 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3848 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3849 * 1TiB 64-bit MMIO windows for each PHB. 3850 */ 3851 const uint64_t base_buid = 0x800000020000000ULL; 3852 int i; 3853 3854 /* Sanity check natural alignments */ 3855 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3856 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3857 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3858 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3859 /* Sanity check bounds */ 3860 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3861 SPAPR_PCI_MEM32_WIN_SIZE); 3862 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3863 SPAPR_PCI_MEM64_WIN_SIZE); 3864 3865 if (index >= SPAPR_MAX_PHBS) { 3866 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3867 SPAPR_MAX_PHBS - 1); 3868 return; 3869 } 3870 3871 *buid = base_buid + index; 3872 for (i = 0; i < n_dma; ++i) { 3873 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3874 } 3875 3876 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3877 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3878 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3879 } 3880 3881 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3882 { 3883 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3884 3885 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3886 } 3887 3888 static void spapr_ics_resend(XICSFabric *dev) 3889 { 3890 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3891 3892 ics_resend(spapr->ics); 3893 } 3894 3895 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 3896 { 3897 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 3898 3899 return cpu ? cpu->icp : NULL; 3900 } 3901 3902 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3903 Monitor *mon) 3904 { 3905 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3906 3907 spapr->irq->print_info(spapr, mon); 3908 } 3909 3910 int spapr_get_vcpu_id(PowerPCCPU *cpu) 3911 { 3912 return cpu->vcpu_id; 3913 } 3914 3915 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 3916 { 3917 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3918 int vcpu_id; 3919 3920 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 3921 3922 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 3923 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 3924 error_append_hint(errp, "Adjust the number of cpus to %d " 3925 "or try to raise the number of threads per core\n", 3926 vcpu_id * smp_threads / spapr->vsmt); 3927 return; 3928 } 3929 3930 cpu->vcpu_id = vcpu_id; 3931 } 3932 3933 PowerPCCPU *spapr_find_cpu(int vcpu_id) 3934 { 3935 CPUState *cs; 3936 3937 CPU_FOREACH(cs) { 3938 PowerPCCPU *cpu = POWERPC_CPU(cs); 3939 3940 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 3941 return cpu; 3942 } 3943 } 3944 3945 return NULL; 3946 } 3947 3948 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3949 { 3950 MachineClass *mc = MACHINE_CLASS(oc); 3951 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3952 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3953 NMIClass *nc = NMI_CLASS(oc); 3954 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3955 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3956 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3957 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3958 3959 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3960 mc->ignore_boot_device_suffixes = true; 3961 3962 /* 3963 * We set up the default / latest behaviour here. The class_init 3964 * functions for the specific versioned machine types can override 3965 * these details for backwards compatibility 3966 */ 3967 mc->init = spapr_machine_init; 3968 mc->reset = spapr_machine_reset; 3969 mc->block_default_type = IF_SCSI; 3970 mc->max_cpus = 1024; 3971 mc->no_parallel = 1; 3972 mc->default_boot_order = ""; 3973 mc->default_ram_size = 512 * MiB; 3974 mc->default_display = "std"; 3975 mc->kvm_type = spapr_kvm_type; 3976 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 3977 mc->pci_allow_0_address = true; 3978 assert(!mc->get_hotplug_handler); 3979 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3980 hc->pre_plug = spapr_machine_device_pre_plug; 3981 hc->plug = spapr_machine_device_plug; 3982 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 3983 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 3984 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3985 hc->unplug_request = spapr_machine_device_unplug_request; 3986 hc->unplug = spapr_machine_device_unplug; 3987 3988 smc->dr_lmb_enabled = true; 3989 smc->update_dt_enabled = true; 3990 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 3991 mc->has_hotpluggable_cpus = true; 3992 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 3993 fwc->get_dev_path = spapr_get_fw_dev_path; 3994 nc->nmi_monitor_handler = spapr_nmi; 3995 smc->phb_placement = spapr_phb_placement; 3996 vhc->hypercall = emulate_spapr_hypercall; 3997 vhc->hpt_mask = spapr_hpt_mask; 3998 vhc->map_hptes = spapr_map_hptes; 3999 vhc->unmap_hptes = spapr_unmap_hptes; 4000 vhc->store_hpte = spapr_store_hpte; 4001 vhc->get_patbe = spapr_get_patbe; 4002 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4003 xic->ics_get = spapr_ics_get; 4004 xic->ics_resend = spapr_ics_resend; 4005 xic->icp_get = spapr_icp_get; 4006 ispc->print_info = spapr_pic_print_info; 4007 /* Force NUMA node memory size to be a multiple of 4008 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4009 * in which LMBs are represented and hot-added 4010 */ 4011 mc->numa_mem_align_shift = 28; 4012 4013 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4014 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4015 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4016 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4017 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4018 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4019 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4020 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4021 spapr_caps_add_properties(smc, &error_abort); 4022 smc->irq = &spapr_irq_xics; 4023 } 4024 4025 static const TypeInfo spapr_machine_info = { 4026 .name = TYPE_SPAPR_MACHINE, 4027 .parent = TYPE_MACHINE, 4028 .abstract = true, 4029 .instance_size = sizeof(sPAPRMachineState), 4030 .instance_init = spapr_instance_init, 4031 .instance_finalize = spapr_machine_finalizefn, 4032 .class_size = sizeof(sPAPRMachineClass), 4033 .class_init = spapr_machine_class_init, 4034 .interfaces = (InterfaceInfo[]) { 4035 { TYPE_FW_PATH_PROVIDER }, 4036 { TYPE_NMI }, 4037 { TYPE_HOTPLUG_HANDLER }, 4038 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4039 { TYPE_XICS_FABRIC }, 4040 { TYPE_INTERRUPT_STATS_PROVIDER }, 4041 { } 4042 }, 4043 }; 4044 4045 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4046 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4047 void *data) \ 4048 { \ 4049 MachineClass *mc = MACHINE_CLASS(oc); \ 4050 spapr_machine_##suffix##_class_options(mc); \ 4051 if (latest) { \ 4052 mc->alias = "pseries"; \ 4053 mc->is_default = 1; \ 4054 } \ 4055 } \ 4056 static const TypeInfo spapr_machine_##suffix##_info = { \ 4057 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4058 .parent = TYPE_SPAPR_MACHINE, \ 4059 .class_init = spapr_machine_##suffix##_class_init, \ 4060 }; \ 4061 static void spapr_machine_register_##suffix(void) \ 4062 { \ 4063 type_register(&spapr_machine_##suffix##_info); \ 4064 } \ 4065 type_init(spapr_machine_register_##suffix) 4066 4067 /* 4068 * pseries-4.0 4069 */ 4070 static void spapr_machine_4_0_class_options(MachineClass *mc) 4071 { 4072 /* Defaults for the latest behaviour inherited from the base class */ 4073 } 4074 4075 DEFINE_SPAPR_MACHINE(4_0, "4.0", true); 4076 4077 /* 4078 * pseries-3.1 4079 */ 4080 static void spapr_machine_3_1_class_options(MachineClass *mc) 4081 { 4082 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4083 4084 spapr_machine_4_0_class_options(mc); 4085 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4086 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4087 smc->update_dt_enabled = false; 4088 } 4089 4090 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4091 4092 /* 4093 * pseries-3.0 4094 */ 4095 4096 static void spapr_machine_3_0_class_options(MachineClass *mc) 4097 { 4098 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4099 4100 spapr_machine_3_1_class_options(mc); 4101 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4102 4103 smc->legacy_irq_allocation = true; 4104 smc->irq = &spapr_irq_xics_legacy; 4105 } 4106 4107 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4108 4109 /* 4110 * pseries-2.12 4111 */ 4112 static void spapr_machine_2_12_class_options(MachineClass *mc) 4113 { 4114 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4115 static GlobalProperty compat[] = { 4116 { 4117 .driver = TYPE_POWERPC_CPU, 4118 .property = "pre-3.0-migration", 4119 .value = "on", 4120 }, 4121 { 4122 .driver = TYPE_SPAPR_CPU_CORE, 4123 .property = "pre-3.0-migration", 4124 .value = "on", 4125 }, 4126 }; 4127 4128 spapr_machine_3_0_class_options(mc); 4129 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4130 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4131 4132 /* We depend on kvm_enabled() to choose a default value for the 4133 * hpt-max-page-size capability. Of course we can't do it here 4134 * because this is too early and the HW accelerator isn't initialzed 4135 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4136 */ 4137 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4138 } 4139 4140 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4141 4142 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4143 { 4144 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4145 4146 spapr_machine_2_12_class_options(mc); 4147 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4148 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4149 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4150 } 4151 4152 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4153 4154 /* 4155 * pseries-2.11 4156 */ 4157 4158 static void spapr_machine_2_11_class_options(MachineClass *mc) 4159 { 4160 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4161 4162 spapr_machine_2_12_class_options(mc); 4163 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4164 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4165 } 4166 4167 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4168 4169 /* 4170 * pseries-2.10 4171 */ 4172 4173 static void spapr_machine_2_10_class_options(MachineClass *mc) 4174 { 4175 spapr_machine_2_11_class_options(mc); 4176 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4177 } 4178 4179 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4180 4181 /* 4182 * pseries-2.9 4183 */ 4184 4185 static void spapr_machine_2_9_class_options(MachineClass *mc) 4186 { 4187 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4188 static GlobalProperty compat[] = { 4189 { 4190 .driver = TYPE_POWERPC_CPU, 4191 .property = "pre-2.10-migration", 4192 .value = "on", 4193 }, 4194 }; 4195 4196 spapr_machine_2_10_class_options(mc); 4197 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4198 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4199 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4200 smc->pre_2_10_has_unused_icps = true; 4201 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4202 } 4203 4204 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4205 4206 /* 4207 * pseries-2.8 4208 */ 4209 4210 static void spapr_machine_2_8_class_options(MachineClass *mc) 4211 { 4212 static GlobalProperty compat[] = { 4213 { 4214 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, 4215 .property = "pcie-extended-configuration-space", 4216 .value = "off", 4217 }, 4218 }; 4219 4220 spapr_machine_2_9_class_options(mc); 4221 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4222 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4223 mc->numa_mem_align_shift = 23; 4224 } 4225 4226 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4227 4228 /* 4229 * pseries-2.7 4230 */ 4231 4232 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 4233 uint64_t *buid, hwaddr *pio, 4234 hwaddr *mmio32, hwaddr *mmio64, 4235 unsigned n_dma, uint32_t *liobns, Error **errp) 4236 { 4237 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4238 const uint64_t base_buid = 0x800000020000000ULL; 4239 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4240 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4241 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4242 const uint32_t max_index = 255; 4243 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4244 4245 uint64_t ram_top = MACHINE(spapr)->ram_size; 4246 hwaddr phb0_base, phb_base; 4247 int i; 4248 4249 /* Do we have device memory? */ 4250 if (MACHINE(spapr)->maxram_size > ram_top) { 4251 /* Can't just use maxram_size, because there may be an 4252 * alignment gap between normal and device memory regions 4253 */ 4254 ram_top = MACHINE(spapr)->device_memory->base + 4255 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4256 } 4257 4258 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4259 4260 if (index > max_index) { 4261 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4262 max_index); 4263 return; 4264 } 4265 4266 *buid = base_buid + index; 4267 for (i = 0; i < n_dma; ++i) { 4268 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4269 } 4270 4271 phb_base = phb0_base + index * phb_spacing; 4272 *pio = phb_base + pio_offset; 4273 *mmio32 = phb_base + mmio_offset; 4274 /* 4275 * We don't set the 64-bit MMIO window, relying on the PHB's 4276 * fallback behaviour of automatically splitting a large "32-bit" 4277 * window into contiguous 32-bit and 64-bit windows 4278 */ 4279 } 4280 4281 static void spapr_machine_2_7_class_options(MachineClass *mc) 4282 { 4283 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4284 static GlobalProperty compat[] = { 4285 { 4286 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, 4287 .property = "mem_win_size", 4288 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE), 4289 }, 4290 { 4291 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, 4292 .property = "mem64_win_size", 4293 .value = "0", 4294 }, 4295 { 4296 .driver = TYPE_POWERPC_CPU, 4297 .property = "pre-2.8-migration", 4298 .value = "on", 4299 }, 4300 { 4301 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, 4302 .property = "pre-2.8-migration", 4303 .value = "on", 4304 }, 4305 }; 4306 4307 spapr_machine_2_8_class_options(mc); 4308 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4309 mc->default_machine_opts = "modern-hotplug-events=off"; 4310 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4311 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4312 smc->phb_placement = phb_placement_2_7; 4313 } 4314 4315 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4316 4317 /* 4318 * pseries-2.6 4319 */ 4320 4321 static void spapr_machine_2_6_class_options(MachineClass *mc) 4322 { 4323 static GlobalProperty compat[] = { 4324 { 4325 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, 4326 .property = "ddw", 4327 .value = stringify(off), 4328 }, 4329 }; 4330 4331 spapr_machine_2_7_class_options(mc); 4332 mc->has_hotpluggable_cpus = false; 4333 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4334 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4335 } 4336 4337 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4338 4339 /* 4340 * pseries-2.5 4341 */ 4342 4343 static void spapr_machine_2_5_class_options(MachineClass *mc) 4344 { 4345 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4346 static GlobalProperty compat[] = { 4347 { 4348 .driver = "spapr-vlan", 4349 .property = "use-rx-buffer-pools", 4350 .value = "off", 4351 }, 4352 }; 4353 4354 spapr_machine_2_6_class_options(mc); 4355 smc->use_ohci_by_default = true; 4356 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4357 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4358 } 4359 4360 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4361 4362 /* 4363 * pseries-2.4 4364 */ 4365 4366 static void spapr_machine_2_4_class_options(MachineClass *mc) 4367 { 4368 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4369 4370 spapr_machine_2_5_class_options(mc); 4371 smc->dr_lmb_enabled = false; 4372 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4373 } 4374 4375 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4376 4377 /* 4378 * pseries-2.3 4379 */ 4380 4381 static void spapr_machine_2_3_class_options(MachineClass *mc) 4382 { 4383 static GlobalProperty compat[] = { 4384 { 4385 .driver = "spapr-pci-host-bridge", 4386 .property = "dynamic-reconfiguration", 4387 .value = "off", 4388 }, 4389 }; 4390 spapr_machine_2_4_class_options(mc); 4391 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4392 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4393 } 4394 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4395 4396 /* 4397 * pseries-2.2 4398 */ 4399 4400 static void spapr_machine_2_2_class_options(MachineClass *mc) 4401 { 4402 static GlobalProperty compat[] = { 4403 { 4404 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, 4405 .property = "mem_win_size", 4406 .value = "0x20000000", 4407 }, 4408 }; 4409 4410 spapr_machine_2_3_class_options(mc); 4411 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4412 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4413 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4414 } 4415 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4416 4417 /* 4418 * pseries-2.1 4419 */ 4420 4421 static void spapr_machine_2_1_class_options(MachineClass *mc) 4422 { 4423 spapr_machine_2_2_class_options(mc); 4424 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4425 } 4426 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4427 4428 static void spapr_machine_register_types(void) 4429 { 4430 type_register_static(&spapr_machine_info); 4431 } 4432 4433 type_init(spapr_machine_register_types) 4434