xref: /openbmc/qemu/hw/ppc/spapr.c (revision 954a6c4f)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58 
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61 
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_vio.h"
65 #include "hw/qdev-properties.h"
66 #include "hw/pci-host/spapr.h"
67 #include "hw/pci/msi.h"
68 
69 #include "hw/pci/pci.h"
70 #include "hw/scsi/scsi.h"
71 #include "hw/virtio/virtio-scsi.h"
72 #include "hw/virtio/vhost-scsi-common.h"
73 
74 #include "exec/ram_addr.h"
75 #include "hw/usb.h"
76 #include "qemu/config-file.h"
77 #include "qemu/error-report.h"
78 #include "trace.h"
79 #include "hw/nmi.h"
80 #include "hw/intc/intc.h"
81 
82 #include "hw/ppc/spapr_cpu_core.h"
83 #include "hw/mem/memory-device.h"
84 #include "hw/ppc/spapr_tpm_proxy.h"
85 #include "hw/ppc/spapr_nvdimm.h"
86 #include "hw/ppc/spapr_numa.h"
87 #include "hw/ppc/pef.h"
88 
89 #include "monitor/monitor.h"
90 
91 #include <libfdt.h>
92 
93 /* SLOF memory layout:
94  *
95  * SLOF raw image loaded at 0, copies its romfs right below the flat
96  * device-tree, then position SLOF itself 31M below that
97  *
98  * So we set FW_OVERHEAD to 40MB which should account for all of that
99  * and more
100  *
101  * We load our kernel at 4M, leaving space for SLOF initial image
102  */
103 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
104 #define FW_MAX_SIZE             0x400000
105 #define FW_FILE_NAME            "slof.bin"
106 #define FW_FILE_NAME_VOF        "vof.bin"
107 #define FW_OVERHEAD             0x2800000
108 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
109 
110 #define MIN_RMA_SLOF            (128 * MiB)
111 
112 #define PHANDLE_INTC            0x00001111
113 
114 /* These two functions implement the VCPU id numbering: one to compute them
115  * all and one to identify thread 0 of a VCORE. Any change to the first one
116  * is likely to have an impact on the second one, so let's keep them close.
117  */
118 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
119 {
120     MachineState *ms = MACHINE(spapr);
121     unsigned int smp_threads = ms->smp.threads;
122 
123     assert(spapr->vsmt);
124     return
125         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
126 }
127 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
128                                       PowerPCCPU *cpu)
129 {
130     assert(spapr->vsmt);
131     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
132 }
133 
134 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
135 {
136     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
137      * and newer QEMUs don't even have them. In both cases, we don't want
138      * to send anything on the wire.
139      */
140     return false;
141 }
142 
143 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
144     .name = "icp/server",
145     .version_id = 1,
146     .minimum_version_id = 1,
147     .needed = pre_2_10_vmstate_dummy_icp_needed,
148     .fields = (VMStateField[]) {
149         VMSTATE_UNUSED(4), /* uint32_t xirr */
150         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
151         VMSTATE_UNUSED(1), /* uint8_t mfrr */
152         VMSTATE_END_OF_LIST()
153     },
154 };
155 
156 static void pre_2_10_vmstate_register_dummy_icp(int i)
157 {
158     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
159                      (void *)(uintptr_t) i);
160 }
161 
162 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
163 {
164     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
165                        (void *)(uintptr_t) i);
166 }
167 
168 int spapr_max_server_number(SpaprMachineState *spapr)
169 {
170     MachineState *ms = MACHINE(spapr);
171 
172     assert(spapr->vsmt);
173     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
174 }
175 
176 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
177                                   int smt_threads)
178 {
179     int i, ret = 0;
180     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
181     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
182     int index = spapr_get_vcpu_id(cpu);
183 
184     if (cpu->compat_pvr) {
185         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
186         if (ret < 0) {
187             return ret;
188         }
189     }
190 
191     /* Build interrupt servers and gservers properties */
192     for (i = 0; i < smt_threads; i++) {
193         servers_prop[i] = cpu_to_be32(index + i);
194         /* Hack, direct the group queues back to cpu 0 */
195         gservers_prop[i*2] = cpu_to_be32(index + i);
196         gservers_prop[i*2 + 1] = 0;
197     }
198     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
199                       servers_prop, sizeof(*servers_prop) * smt_threads);
200     if (ret < 0) {
201         return ret;
202     }
203     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
204                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
205 
206     return ret;
207 }
208 
209 static void spapr_dt_pa_features(SpaprMachineState *spapr,
210                                  PowerPCCPU *cpu,
211                                  void *fdt, int offset)
212 {
213     uint8_t pa_features_206[] = { 6, 0,
214         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215     uint8_t pa_features_207[] = { 24, 0,
216         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220     uint8_t pa_features_300[] = { 66, 0,
221         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224         /* 6: DS207 */
225         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226         /* 16: Vector */
227         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236         /* 42: PM, 44: PC RA, 46: SC vec'd */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238         /* 48: SIMD, 50: QP BFP, 52: String */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240         /* 54: DecFP, 56: DecI, 58: SHA */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242         /* 60: NM atomic, 62: RNG */
243         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244     };
245     uint8_t *pa_features = NULL;
246     size_t pa_size;
247 
248     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249         pa_features = pa_features_206;
250         pa_size = sizeof(pa_features_206);
251     }
252     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253         pa_features = pa_features_207;
254         pa_size = sizeof(pa_features_207);
255     }
256     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257         pa_features = pa_features_300;
258         pa_size = sizeof(pa_features_300);
259     }
260     if (!pa_features) {
261         return;
262     }
263 
264     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265         /*
266          * Note: we keep CI large pages off by default because a 64K capable
267          * guest provisioned with large pages might otherwise try to map a qemu
268          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269          * even if that qemu runs on a 4k host.
270          * We dd this bit back here if we are confident this is not an issue
271          */
272         pa_features[3] |= 0x20;
273     }
274     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275         pa_features[24] |= 0x80;    /* Transactional memory support */
276     }
277     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
278         /* Workaround for broken kernels that attempt (guest) radix
279          * mode when they can't handle it, if they see the radix bit set
280          * in pa-features. So hide it from them. */
281         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282     }
283 
284     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286 
287 static hwaddr spapr_node0_size(MachineState *machine)
288 {
289     if (machine->numa_state->num_nodes) {
290         int i;
291         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
292             if (machine->numa_state->nodes[i].node_mem) {
293                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
294                            machine->ram_size);
295             }
296         }
297     }
298     return machine->ram_size;
299 }
300 
301 static void add_str(GString *s, const gchar *s1)
302 {
303     g_string_append_len(s, s1, strlen(s1) + 1);
304 }
305 
306 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
307                                 hwaddr start, hwaddr size)
308 {
309     char mem_name[32];
310     uint64_t mem_reg_property[2];
311     int off;
312 
313     mem_reg_property[0] = cpu_to_be64(start);
314     mem_reg_property[1] = cpu_to_be64(size);
315 
316     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
317     off = fdt_add_subnode(fdt, 0, mem_name);
318     _FDT(off);
319     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
320     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
321                       sizeof(mem_reg_property))));
322     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
323     return off;
324 }
325 
326 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
327 {
328     MemoryDeviceInfoList *info;
329 
330     for (info = list; info; info = info->next) {
331         MemoryDeviceInfo *value = info->value;
332 
333         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
334             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
335 
336             if (addr >= pcdimm_info->addr &&
337                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
338                 return pcdimm_info->node;
339             }
340         }
341     }
342 
343     return -1;
344 }
345 
346 struct sPAPRDrconfCellV2 {
347      uint32_t seq_lmbs;
348      uint64_t base_addr;
349      uint32_t drc_index;
350      uint32_t aa_index;
351      uint32_t flags;
352 } QEMU_PACKED;
353 
354 typedef struct DrconfCellQueue {
355     struct sPAPRDrconfCellV2 cell;
356     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
357 } DrconfCellQueue;
358 
359 static DrconfCellQueue *
360 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
361                       uint32_t drc_index, uint32_t aa_index,
362                       uint32_t flags)
363 {
364     DrconfCellQueue *elem;
365 
366     elem = g_malloc0(sizeof(*elem));
367     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
368     elem->cell.base_addr = cpu_to_be64(base_addr);
369     elem->cell.drc_index = cpu_to_be32(drc_index);
370     elem->cell.aa_index = cpu_to_be32(aa_index);
371     elem->cell.flags = cpu_to_be32(flags);
372 
373     return elem;
374 }
375 
376 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
377                                       int offset, MemoryDeviceInfoList *dimms)
378 {
379     MachineState *machine = MACHINE(spapr);
380     uint8_t *int_buf, *cur_index;
381     int ret;
382     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
383     uint64_t addr, cur_addr, size;
384     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
385     uint64_t mem_end = machine->device_memory->base +
386                        memory_region_size(&machine->device_memory->mr);
387     uint32_t node, buf_len, nr_entries = 0;
388     SpaprDrc *drc;
389     DrconfCellQueue *elem, *next;
390     MemoryDeviceInfoList *info;
391     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
392         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
393 
394     /* Entry to cover RAM and the gap area */
395     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
396                                  SPAPR_LMB_FLAGS_RESERVED |
397                                  SPAPR_LMB_FLAGS_DRC_INVALID);
398     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
399     nr_entries++;
400 
401     cur_addr = machine->device_memory->base;
402     for (info = dimms; info; info = info->next) {
403         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
404 
405         addr = di->addr;
406         size = di->size;
407         node = di->node;
408 
409         /*
410          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
411          * area is marked hotpluggable in the next iteration for the bigger
412          * chunk including the NVDIMM occupied area.
413          */
414         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
415             continue;
416 
417         /* Entry for hot-pluggable area */
418         if (cur_addr < addr) {
419             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
420             g_assert(drc);
421             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
422                                          cur_addr, spapr_drc_index(drc), -1, 0);
423             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
424             nr_entries++;
425         }
426 
427         /* Entry for DIMM */
428         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
429         g_assert(drc);
430         elem = spapr_get_drconf_cell(size / lmb_size, addr,
431                                      spapr_drc_index(drc), node,
432                                      (SPAPR_LMB_FLAGS_ASSIGNED |
433                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
434         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
435         nr_entries++;
436         cur_addr = addr + size;
437     }
438 
439     /* Entry for remaining hotpluggable area */
440     if (cur_addr < mem_end) {
441         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
442         g_assert(drc);
443         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
444                                      cur_addr, spapr_drc_index(drc), -1, 0);
445         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
446         nr_entries++;
447     }
448 
449     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
450     int_buf = cur_index = g_malloc0(buf_len);
451     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
452     cur_index += sizeof(nr_entries);
453 
454     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
455         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
456         cur_index += sizeof(elem->cell);
457         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
458         g_free(elem);
459     }
460 
461     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
462     g_free(int_buf);
463     if (ret < 0) {
464         return -1;
465     }
466     return 0;
467 }
468 
469 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
470                                    int offset, MemoryDeviceInfoList *dimms)
471 {
472     MachineState *machine = MACHINE(spapr);
473     int i, ret;
474     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
475     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
476     uint32_t nr_lmbs = (machine->device_memory->base +
477                        memory_region_size(&machine->device_memory->mr)) /
478                        lmb_size;
479     uint32_t *int_buf, *cur_index, buf_len;
480 
481     /*
482      * Allocate enough buffer size to fit in ibm,dynamic-memory
483      */
484     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
485     cur_index = int_buf = g_malloc0(buf_len);
486     int_buf[0] = cpu_to_be32(nr_lmbs);
487     cur_index++;
488     for (i = 0; i < nr_lmbs; i++) {
489         uint64_t addr = i * lmb_size;
490         uint32_t *dynamic_memory = cur_index;
491 
492         if (i >= device_lmb_start) {
493             SpaprDrc *drc;
494 
495             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
496             g_assert(drc);
497 
498             dynamic_memory[0] = cpu_to_be32(addr >> 32);
499             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
500             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
501             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
502             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
503             if (memory_region_present(get_system_memory(), addr)) {
504                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
505             } else {
506                 dynamic_memory[5] = cpu_to_be32(0);
507             }
508         } else {
509             /*
510              * LMB information for RMA, boot time RAM and gap b/n RAM and
511              * device memory region -- all these are marked as reserved
512              * and as having no valid DRC.
513              */
514             dynamic_memory[0] = cpu_to_be32(addr >> 32);
515             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
516             dynamic_memory[2] = cpu_to_be32(0);
517             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
518             dynamic_memory[4] = cpu_to_be32(-1);
519             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
520                                             SPAPR_LMB_FLAGS_DRC_INVALID);
521         }
522 
523         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
524     }
525     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
526     g_free(int_buf);
527     if (ret < 0) {
528         return -1;
529     }
530     return 0;
531 }
532 
533 /*
534  * Adds ibm,dynamic-reconfiguration-memory node.
535  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
536  * of this device tree node.
537  */
538 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
539                                                    void *fdt)
540 {
541     MachineState *machine = MACHINE(spapr);
542     int ret, offset;
543     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
544     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
545                                 cpu_to_be32(lmb_size & 0xffffffff)};
546     MemoryDeviceInfoList *dimms = NULL;
547 
548     /*
549      * Don't create the node if there is no device memory
550      */
551     if (machine->ram_size == machine->maxram_size) {
552         return 0;
553     }
554 
555     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
556 
557     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558                     sizeof(prop_lmb_size));
559     if (ret < 0) {
560         return ret;
561     }
562 
563     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564     if (ret < 0) {
565         return ret;
566     }
567 
568     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569     if (ret < 0) {
570         return ret;
571     }
572 
573     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574     dimms = qmp_memory_device_list();
575     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577     } else {
578         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
579     }
580     qapi_free_MemoryDeviceInfoList(dimms);
581 
582     if (ret < 0) {
583         return ret;
584     }
585 
586     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
587 
588     return ret;
589 }
590 
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
592 {
593     MachineState *machine = MACHINE(spapr);
594     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595     hwaddr mem_start, node_size;
596     int i, nb_nodes = machine->numa_state->num_nodes;
597     NodeInfo *nodes = machine->numa_state->nodes;
598 
599     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600         if (!nodes[i].node_mem) {
601             continue;
602         }
603         if (mem_start >= machine->ram_size) {
604             node_size = 0;
605         } else {
606             node_size = nodes[i].node_mem;
607             if (node_size > machine->ram_size - mem_start) {
608                 node_size = machine->ram_size - mem_start;
609             }
610         }
611         if (!mem_start) {
612             /* spapr_machine_init() checks for rma_size <= node0_size
613              * already */
614             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615             mem_start += spapr->rma_size;
616             node_size -= spapr->rma_size;
617         }
618         for ( ; node_size; ) {
619             hwaddr sizetmp = pow2floor(node_size);
620 
621             /* mem_start != 0 here */
622             if (ctzl(mem_start) < ctzl(sizetmp)) {
623                 sizetmp = 1ULL << ctzl(mem_start);
624             }
625 
626             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627             node_size -= sizetmp;
628             mem_start += sizetmp;
629         }
630     }
631 
632     /* Generate ibm,dynamic-reconfiguration-memory node if required */
633     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634         int ret;
635 
636         g_assert(smc->dr_lmb_enabled);
637         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638         if (ret) {
639             return ret;
640         }
641     }
642 
643     return 0;
644 }
645 
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647                          SpaprMachineState *spapr)
648 {
649     MachineState *ms = MACHINE(spapr);
650     PowerPCCPU *cpu = POWERPC_CPU(cs);
651     CPUPPCState *env = &cpu->env;
652     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653     int index = spapr_get_vcpu_id(cpu);
654     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655                        0xffffffff, 0xffffffff};
656     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657         : SPAPR_TIMEBASE_FREQ;
658     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659     uint32_t page_sizes_prop[64];
660     size_t page_sizes_prop_size;
661     unsigned int smp_threads = ms->smp.threads;
662     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665     SpaprDrc *drc;
666     int drc_index;
667     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668     int i;
669 
670     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671     if (drc) {
672         drc_index = spapr_drc_index(drc);
673         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
674     }
675 
676     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
678 
679     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681                            env->dcache_line_size)));
682     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683                            env->dcache_line_size)));
684     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685                            env->icache_line_size)));
686     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687                            env->icache_line_size)));
688 
689     if (pcc->l1_dcache_size) {
690         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691                                pcc->l1_dcache_size)));
692     } else {
693         warn_report("Unknown L1 dcache size for cpu");
694     }
695     if (pcc->l1_icache_size) {
696         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697                                pcc->l1_icache_size)));
698     } else {
699         warn_report("Unknown L1 icache size for cpu");
700     }
701 
702     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
708 
709     if (ppc_has_spr(cpu, SPR_PURR)) {
710         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
711     }
712     if (ppc_has_spr(cpu, SPR_PURR)) {
713         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
714     }
715 
716     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718                           segs, sizeof(segs))));
719     }
720 
721     /* Advertise VSX (vector extensions) if available
722      *   1               == VMX / Altivec available
723      *   2               == VSX available
724      *
725      * Only CPUs for which we create core types in spapr_cpu_core.c
726      * are possible, and all of those have VMX */
727     if (env->insns_flags & PPC_ALTIVEC) {
728         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730         } else {
731             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
732         }
733     }
734 
735     /* Advertise DFP (Decimal Floating Point) if available
736      *   0 / no property == no DFP
737      *   1               == DFP available */
738     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
740     }
741 
742     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743                                                       sizeof(page_sizes_prop));
744     if (page_sizes_prop_size) {
745         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746                           page_sizes_prop, page_sizes_prop_size)));
747     }
748 
749     spapr_dt_pa_features(spapr, cpu, fdt, offset);
750 
751     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752                            cs->cpu_index / vcpus_per_socket)));
753 
754     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755                       pft_size_prop, sizeof(pft_size_prop))));
756 
757     if (ms->numa_state->num_nodes > 1) {
758         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
759     }
760 
761     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
762 
763     if (pcc->radix_page_info) {
764         for (i = 0; i < pcc->radix_page_info->count; i++) {
765             radix_AP_encodings[i] =
766                 cpu_to_be32(pcc->radix_page_info->entries[i]);
767         }
768         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769                           radix_AP_encodings,
770                           pcc->radix_page_info->count *
771                           sizeof(radix_AP_encodings[0]))));
772     }
773 
774     /*
775      * We set this property to let the guest know that it can use the large
776      * decrementer and its width in bits.
777      */
778     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780                               pcc->lrg_decr_bits)));
781 }
782 
783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
784 {
785     CPUState **rev;
786     CPUState *cs;
787     int n_cpus;
788     int cpus_offset;
789     int i;
790 
791     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
792     _FDT(cpus_offset);
793     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
794     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
795 
796     /*
797      * We walk the CPUs in reverse order to ensure that CPU DT nodes
798      * created by fdt_add_subnode() end up in the right order in FDT
799      * for the guest kernel the enumerate the CPUs correctly.
800      *
801      * The CPU list cannot be traversed in reverse order, so we need
802      * to do extra work.
803      */
804     n_cpus = 0;
805     rev = NULL;
806     CPU_FOREACH(cs) {
807         rev = g_renew(CPUState *, rev, n_cpus + 1);
808         rev[n_cpus++] = cs;
809     }
810 
811     for (i = n_cpus - 1; i >= 0; i--) {
812         CPUState *cs = rev[i];
813         PowerPCCPU *cpu = POWERPC_CPU(cs);
814         int index = spapr_get_vcpu_id(cpu);
815         DeviceClass *dc = DEVICE_GET_CLASS(cs);
816         g_autofree char *nodename = NULL;
817         int offset;
818 
819         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
820             continue;
821         }
822 
823         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
824         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
825         _FDT(offset);
826         spapr_dt_cpu(cs, fdt, offset, spapr);
827     }
828 
829     g_free(rev);
830 }
831 
832 static int spapr_dt_rng(void *fdt)
833 {
834     int node;
835     int ret;
836 
837     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
838     if (node <= 0) {
839         return -1;
840     }
841     ret = fdt_setprop_string(fdt, node, "device_type",
842                              "ibm,platform-facilities");
843     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
844     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
845 
846     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
847     if (node <= 0) {
848         return -1;
849     }
850     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
851 
852     return ret ? -1 : 0;
853 }
854 
855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
856 {
857     MachineState *ms = MACHINE(spapr);
858     int rtas;
859     GString *hypertas = g_string_sized_new(256);
860     GString *qemu_hypertas = g_string_sized_new(256);
861     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
862         memory_region_size(&MACHINE(spapr)->device_memory->mr);
863     uint32_t lrdr_capacity[] = {
864         cpu_to_be32(max_device_addr >> 32),
865         cpu_to_be32(max_device_addr & 0xffffffff),
866         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
867         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
868         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
869     };
870 
871     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
872 
873     /* hypertas */
874     add_str(hypertas, "hcall-pft");
875     add_str(hypertas, "hcall-term");
876     add_str(hypertas, "hcall-dabr");
877     add_str(hypertas, "hcall-interrupt");
878     add_str(hypertas, "hcall-tce");
879     add_str(hypertas, "hcall-vio");
880     add_str(hypertas, "hcall-splpar");
881     add_str(hypertas, "hcall-join");
882     add_str(hypertas, "hcall-bulk");
883     add_str(hypertas, "hcall-set-mode");
884     add_str(hypertas, "hcall-sprg0");
885     add_str(hypertas, "hcall-copy");
886     add_str(hypertas, "hcall-debug");
887     add_str(hypertas, "hcall-vphn");
888     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
889         add_str(hypertas, "hcall-rpt-invalidate");
890     }
891 
892     add_str(qemu_hypertas, "hcall-memop1");
893 
894     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
895         add_str(hypertas, "hcall-multi-tce");
896     }
897 
898     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
899         add_str(hypertas, "hcall-hpt-resize");
900     }
901 
902     add_str(hypertas, "hcall-watchdog");
903 
904     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
905                      hypertas->str, hypertas->len));
906     g_string_free(hypertas, TRUE);
907     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
908                      qemu_hypertas->str, qemu_hypertas->len));
909     g_string_free(qemu_hypertas, TRUE);
910 
911     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
912 
913     /*
914      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
915      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
916      *
917      * The system reset requirements are driven by existing Linux and PowerVM
918      * implementation which (contrary to PAPR) saves r3 in the error log
919      * structure like machine check, so Linux expects to find the saved r3
920      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
921      * does not look at the error value).
922      *
923      * System reset interrupts are not subject to interlock like machine
924      * check, so this memory area could be corrupted if the sreset is
925      * interrupted by a machine check (or vice versa) if it was shared. To
926      * prevent this, system reset uses per-CPU areas for the sreset save
927      * area. A system reset that interrupts a system reset handler could
928      * still overwrite this area, but Linux doesn't try to recover in that
929      * case anyway.
930      *
931      * The extra 8 bytes is required because Linux's FWNMI error log check
932      * is off-by-one.
933      *
934      * RTAS_MIN_SIZE is required for the RTAS blob itself.
935      */
936     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
937                           RTAS_ERROR_LOG_MAX +
938                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
939                           sizeof(uint64_t)));
940     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
941                           RTAS_ERROR_LOG_MAX));
942     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
943                           RTAS_EVENT_SCAN_RATE));
944 
945     g_assert(msi_nonbroken);
946     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
947 
948     /*
949      * According to PAPR, rtas ibm,os-term does not guarantee a return
950      * back to the guest cpu.
951      *
952      * While an additional ibm,extended-os-term property indicates
953      * that rtas call return will always occur. Set this property.
954      */
955     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
956 
957     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
958                      lrdr_capacity, sizeof(lrdr_capacity)));
959 
960     spapr_dt_rtas_tokens(fdt, rtas);
961 }
962 
963 /*
964  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
965  * and the XIVE features that the guest may request and thus the valid
966  * values for bytes 23..26 of option vector 5:
967  */
968 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
969                                           int chosen)
970 {
971     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
972 
973     char val[2 * 4] = {
974         23, 0x00, /* XICS / XIVE mode */
975         24, 0x00, /* Hash/Radix, filled in below. */
976         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
977         26, 0x40, /* Radix options: GTSE == yes. */
978     };
979 
980     if (spapr->irq->xics && spapr->irq->xive) {
981         val[1] = SPAPR_OV5_XIVE_BOTH;
982     } else if (spapr->irq->xive) {
983         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
984     } else {
985         assert(spapr->irq->xics);
986         val[1] = SPAPR_OV5_XIVE_LEGACY;
987     }
988 
989     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
990                           first_ppc_cpu->compat_pvr)) {
991         /*
992          * If we're in a pre POWER9 compat mode then the guest should
993          * do hash and use the legacy interrupt mode
994          */
995         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
996         val[3] = 0x00; /* Hash */
997         spapr_check_mmu_mode(false);
998     } else if (kvm_enabled()) {
999         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1000             val[3] = 0x80; /* OV5_MMU_BOTH */
1001         } else if (kvmppc_has_cap_mmu_radix()) {
1002             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1003         } else {
1004             val[3] = 0x00; /* Hash */
1005         }
1006     } else {
1007         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1008         val[3] = 0xC0;
1009     }
1010     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1011                      val, sizeof(val)));
1012 }
1013 
1014 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1015 {
1016     MachineState *machine = MACHINE(spapr);
1017     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1018     uint8_t rng_seed[32];
1019     int chosen;
1020 
1021     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1022 
1023     if (reset) {
1024         const char *boot_device = spapr->boot_device;
1025         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1026         size_t cb = 0;
1027         g_autofree char *bootlist = get_boot_devices_list(&cb);
1028 
1029         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1030             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1031                                     machine->kernel_cmdline));
1032         }
1033 
1034         if (spapr->initrd_size) {
1035             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1036                                   spapr->initrd_base));
1037             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1038                                   spapr->initrd_base + spapr->initrd_size));
1039         }
1040 
1041         if (spapr->kernel_size) {
1042             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1043                                   cpu_to_be64(spapr->kernel_size) };
1044 
1045             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1046                          &kprop, sizeof(kprop)));
1047             if (spapr->kernel_le) {
1048                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1049             }
1050         }
1051         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1052             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1053         }
1054         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1055         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1056         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1057 
1058         if (cb && bootlist) {
1059             int i;
1060 
1061             for (i = 0; i < cb; i++) {
1062                 if (bootlist[i] == '\n') {
1063                     bootlist[i] = ' ';
1064                 }
1065             }
1066             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1067         }
1068 
1069         if (boot_device && strlen(boot_device)) {
1070             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1071         }
1072 
1073         if (spapr->want_stdout_path && stdout_path) {
1074             /*
1075              * "linux,stdout-path" and "stdout" properties are
1076              * deprecated by linux kernel. New platforms should only
1077              * use the "stdout-path" property. Set the new property
1078              * and continue using older property to remain compatible
1079              * with the existing firmware.
1080              */
1081             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1082             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1083         }
1084 
1085         /*
1086          * We can deal with BAR reallocation just fine, advertise it
1087          * to the guest
1088          */
1089         if (smc->linux_pci_probe) {
1090             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1091         }
1092 
1093         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1094     }
1095 
1096     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1097     _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1098 
1099     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1100 }
1101 
1102 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1103 {
1104     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1105      * KVM to work under pHyp with some guest co-operation */
1106     int hypervisor;
1107     uint8_t hypercall[16];
1108 
1109     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1110     /* indicate KVM hypercall interface */
1111     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1112     if (kvmppc_has_cap_fixup_hcalls()) {
1113         /*
1114          * Older KVM versions with older guest kernels were broken
1115          * with the magic page, don't allow the guest to map it.
1116          */
1117         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1118                                   sizeof(hypercall))) {
1119             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1120                              hypercall, sizeof(hypercall)));
1121         }
1122     }
1123 }
1124 
1125 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1126 {
1127     MachineState *machine = MACHINE(spapr);
1128     MachineClass *mc = MACHINE_GET_CLASS(machine);
1129     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1130     uint32_t root_drc_type_mask = 0;
1131     int ret;
1132     void *fdt;
1133     SpaprPhbState *phb;
1134     char *buf;
1135 
1136     fdt = g_malloc0(space);
1137     _FDT((fdt_create_empty_tree(fdt, space)));
1138 
1139     /* Root node */
1140     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1141     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1142     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1143 
1144     /* Guest UUID & Name*/
1145     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1146     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1147     if (qemu_uuid_set) {
1148         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1149     }
1150     g_free(buf);
1151 
1152     if (qemu_get_vm_name()) {
1153         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1154                                 qemu_get_vm_name()));
1155     }
1156 
1157     /* Host Model & Serial Number */
1158     if (spapr->host_model) {
1159         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1160     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1161         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1162         g_free(buf);
1163     }
1164 
1165     if (spapr->host_serial) {
1166         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1167     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1168         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1169         g_free(buf);
1170     }
1171 
1172     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1173     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1174 
1175     /* /interrupt controller */
1176     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1177 
1178     ret = spapr_dt_memory(spapr, fdt);
1179     if (ret < 0) {
1180         error_report("couldn't setup memory nodes in fdt");
1181         exit(1);
1182     }
1183 
1184     /* /vdevice */
1185     spapr_dt_vdevice(spapr->vio_bus, fdt);
1186 
1187     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1188         ret = spapr_dt_rng(fdt);
1189         if (ret < 0) {
1190             error_report("could not set up rng device in the fdt");
1191             exit(1);
1192         }
1193     }
1194 
1195     QLIST_FOREACH(phb, &spapr->phbs, list) {
1196         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1197         if (ret < 0) {
1198             error_report("couldn't setup PCI devices in fdt");
1199             exit(1);
1200         }
1201     }
1202 
1203     spapr_dt_cpus(fdt, spapr);
1204 
1205     /* ibm,drc-indexes and friends */
1206     if (smc->dr_lmb_enabled) {
1207         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1208     }
1209     if (smc->dr_phb_enabled) {
1210         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1211     }
1212     if (mc->nvdimm_supported) {
1213         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1214     }
1215     if (root_drc_type_mask) {
1216         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1217     }
1218 
1219     if (mc->has_hotpluggable_cpus) {
1220         int offset = fdt_path_offset(fdt, "/cpus");
1221         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1222         if (ret < 0) {
1223             error_report("Couldn't set up CPU DR device tree properties");
1224             exit(1);
1225         }
1226     }
1227 
1228     /* /event-sources */
1229     spapr_dt_events(spapr, fdt);
1230 
1231     /* /rtas */
1232     spapr_dt_rtas(spapr, fdt);
1233 
1234     /* /chosen */
1235     spapr_dt_chosen(spapr, fdt, reset);
1236 
1237     /* /hypervisor */
1238     if (kvm_enabled()) {
1239         spapr_dt_hypervisor(spapr, fdt);
1240     }
1241 
1242     /* Build memory reserve map */
1243     if (reset) {
1244         if (spapr->kernel_size) {
1245             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1246                                   spapr->kernel_size)));
1247         }
1248         if (spapr->initrd_size) {
1249             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1250                                   spapr->initrd_size)));
1251         }
1252     }
1253 
1254     /* NVDIMM devices */
1255     if (mc->nvdimm_supported) {
1256         spapr_dt_persistent_memory(spapr, fdt);
1257     }
1258 
1259     return fdt;
1260 }
1261 
1262 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1263 {
1264     SpaprMachineState *spapr = opaque;
1265 
1266     return (addr & 0x0fffffff) + spapr->kernel_addr;
1267 }
1268 
1269 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1270                                     PowerPCCPU *cpu)
1271 {
1272     CPUPPCState *env = &cpu->env;
1273 
1274     /* The TCG path should also be holding the BQL at this point */
1275     g_assert(qemu_mutex_iothread_locked());
1276 
1277     g_assert(!vhyp_cpu_in_nested(cpu));
1278 
1279     if (FIELD_EX64(env->msr, MSR, PR)) {
1280         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1281         env->gpr[3] = H_PRIVILEGE;
1282     } else {
1283         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1284     }
1285 }
1286 
1287 struct LPCRSyncState {
1288     target_ulong value;
1289     target_ulong mask;
1290 };
1291 
1292 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1293 {
1294     struct LPCRSyncState *s = arg.host_ptr;
1295     PowerPCCPU *cpu = POWERPC_CPU(cs);
1296     CPUPPCState *env = &cpu->env;
1297     target_ulong lpcr;
1298 
1299     cpu_synchronize_state(cs);
1300     lpcr = env->spr[SPR_LPCR];
1301     lpcr &= ~s->mask;
1302     lpcr |= s->value;
1303     ppc_store_lpcr(cpu, lpcr);
1304 }
1305 
1306 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1307 {
1308     CPUState *cs;
1309     struct LPCRSyncState s = {
1310         .value = value,
1311         .mask = mask
1312     };
1313     CPU_FOREACH(cs) {
1314         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1315     }
1316 }
1317 
1318 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1319                            target_ulong lpid, ppc_v3_pate_t *entry)
1320 {
1321     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1322     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1323 
1324     if (!spapr_cpu->in_nested) {
1325         assert(lpid == 0);
1326 
1327         /* Copy PATE1:GR into PATE0:HR */
1328         entry->dw0 = spapr->patb_entry & PATE0_HR;
1329         entry->dw1 = spapr->patb_entry;
1330 
1331     } else {
1332         uint64_t patb, pats;
1333 
1334         assert(lpid != 0);
1335 
1336         patb = spapr->nested_ptcr & PTCR_PATB;
1337         pats = spapr->nested_ptcr & PTCR_PATS;
1338 
1339         /* Check if partition table is properly aligned */
1340         if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1341             return false;
1342         }
1343 
1344         /* Calculate number of entries */
1345         pats = 1ull << (pats + 12 - 4);
1346         if (pats <= lpid) {
1347             return false;
1348         }
1349 
1350         /* Grab entry */
1351         patb += 16 * lpid;
1352         entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1353         entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1354     }
1355 
1356     return true;
1357 }
1358 
1359 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1360 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1361 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1362 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1363 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1364 
1365 /*
1366  * Get the fd to access the kernel htab, re-opening it if necessary
1367  */
1368 static int get_htab_fd(SpaprMachineState *spapr)
1369 {
1370     Error *local_err = NULL;
1371 
1372     if (spapr->htab_fd >= 0) {
1373         return spapr->htab_fd;
1374     }
1375 
1376     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1377     if (spapr->htab_fd < 0) {
1378         error_report_err(local_err);
1379     }
1380 
1381     return spapr->htab_fd;
1382 }
1383 
1384 void close_htab_fd(SpaprMachineState *spapr)
1385 {
1386     if (spapr->htab_fd >= 0) {
1387         close(spapr->htab_fd);
1388     }
1389     spapr->htab_fd = -1;
1390 }
1391 
1392 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1393 {
1394     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1395 
1396     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1397 }
1398 
1399 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1400 {
1401     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1402 
1403     assert(kvm_enabled());
1404 
1405     if (!spapr->htab) {
1406         return 0;
1407     }
1408 
1409     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1410 }
1411 
1412 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1413                                                 hwaddr ptex, int n)
1414 {
1415     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1416     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1417 
1418     if (!spapr->htab) {
1419         /*
1420          * HTAB is controlled by KVM. Fetch into temporary buffer
1421          */
1422         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1423         kvmppc_read_hptes(hptes, ptex, n);
1424         return hptes;
1425     }
1426 
1427     /*
1428      * HTAB is controlled by QEMU. Just point to the internally
1429      * accessible PTEG.
1430      */
1431     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1432 }
1433 
1434 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1435                               const ppc_hash_pte64_t *hptes,
1436                               hwaddr ptex, int n)
1437 {
1438     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1439 
1440     if (!spapr->htab) {
1441         g_free((void *)hptes);
1442     }
1443 
1444     /* Nothing to do for qemu managed HPT */
1445 }
1446 
1447 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1448                       uint64_t pte0, uint64_t pte1)
1449 {
1450     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1451     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1452 
1453     if (!spapr->htab) {
1454         kvmppc_write_hpte(ptex, pte0, pte1);
1455     } else {
1456         if (pte0 & HPTE64_V_VALID) {
1457             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1458             /*
1459              * When setting valid, we write PTE1 first. This ensures
1460              * proper synchronization with the reading code in
1461              * ppc_hash64_pteg_search()
1462              */
1463             smp_wmb();
1464             stq_p(spapr->htab + offset, pte0);
1465         } else {
1466             stq_p(spapr->htab + offset, pte0);
1467             /*
1468              * When clearing it we set PTE0 first. This ensures proper
1469              * synchronization with the reading code in
1470              * ppc_hash64_pteg_search()
1471              */
1472             smp_wmb();
1473             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1474         }
1475     }
1476 }
1477 
1478 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1479                              uint64_t pte1)
1480 {
1481     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1482     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1483 
1484     if (!spapr->htab) {
1485         /* There should always be a hash table when this is called */
1486         error_report("spapr_hpte_set_c called with no hash table !");
1487         return;
1488     }
1489 
1490     /* The HW performs a non-atomic byte update */
1491     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1492 }
1493 
1494 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1495                              uint64_t pte1)
1496 {
1497     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1498     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1499 
1500     if (!spapr->htab) {
1501         /* There should always be a hash table when this is called */
1502         error_report("spapr_hpte_set_r called with no hash table !");
1503         return;
1504     }
1505 
1506     /* The HW performs a non-atomic byte update */
1507     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1508 }
1509 
1510 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1511 {
1512     int shift;
1513 
1514     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1515      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1516      * that's much more than is needed for Linux guests */
1517     shift = ctz64(pow2ceil(ramsize)) - 7;
1518     shift = MAX(shift, 18); /* Minimum architected size */
1519     shift = MIN(shift, 46); /* Maximum architected size */
1520     return shift;
1521 }
1522 
1523 void spapr_free_hpt(SpaprMachineState *spapr)
1524 {
1525     qemu_vfree(spapr->htab);
1526     spapr->htab = NULL;
1527     spapr->htab_shift = 0;
1528     close_htab_fd(spapr);
1529 }
1530 
1531 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1532 {
1533     ERRP_GUARD();
1534     long rc;
1535 
1536     /* Clean up any HPT info from a previous boot */
1537     spapr_free_hpt(spapr);
1538 
1539     rc = kvmppc_reset_htab(shift);
1540 
1541     if (rc == -EOPNOTSUPP) {
1542         error_setg(errp, "HPT not supported in nested guests");
1543         return -EOPNOTSUPP;
1544     }
1545 
1546     if (rc < 0) {
1547         /* kernel-side HPT needed, but couldn't allocate one */
1548         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1549                          shift);
1550         error_append_hint(errp, "Try smaller maxmem?\n");
1551         return -errno;
1552     } else if (rc > 0) {
1553         /* kernel-side HPT allocated */
1554         if (rc != shift) {
1555             error_setg(errp,
1556                        "Requested order %d HPT, but kernel allocated order %ld",
1557                        shift, rc);
1558             error_append_hint(errp, "Try smaller maxmem?\n");
1559             return -ENOSPC;
1560         }
1561 
1562         spapr->htab_shift = shift;
1563         spapr->htab = NULL;
1564     } else {
1565         /* kernel-side HPT not needed, allocate in userspace instead */
1566         size_t size = 1ULL << shift;
1567         int i;
1568 
1569         spapr->htab = qemu_memalign(size, size);
1570         memset(spapr->htab, 0, size);
1571         spapr->htab_shift = shift;
1572 
1573         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1574             DIRTY_HPTE(HPTE(spapr->htab, i));
1575         }
1576     }
1577     /* We're setting up a hash table, so that means we're not radix */
1578     spapr->patb_entry = 0;
1579     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1580     return 0;
1581 }
1582 
1583 void spapr_setup_hpt(SpaprMachineState *spapr)
1584 {
1585     int hpt_shift;
1586 
1587     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1588         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1589     } else {
1590         uint64_t current_ram_size;
1591 
1592         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1593         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1594     }
1595     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1596 
1597     if (kvm_enabled()) {
1598         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1599 
1600         /* Check our RMA fits in the possible VRMA */
1601         if (vrma_limit < spapr->rma_size) {
1602             error_report("Unable to create %" HWADDR_PRIu
1603                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1604                          spapr->rma_size / MiB, vrma_limit / MiB);
1605             exit(EXIT_FAILURE);
1606         }
1607     }
1608 }
1609 
1610 void spapr_check_mmu_mode(bool guest_radix)
1611 {
1612     if (guest_radix) {
1613         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1614             error_report("Guest requested unavailable MMU mode (radix).");
1615             exit(EXIT_FAILURE);
1616         }
1617     } else {
1618         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1619             && !kvmppc_has_cap_mmu_hash_v3()) {
1620             error_report("Guest requested unavailable MMU mode (hash).");
1621             exit(EXIT_FAILURE);
1622         }
1623     }
1624 }
1625 
1626 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1627 {
1628     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1629     PowerPCCPU *first_ppc_cpu;
1630     hwaddr fdt_addr;
1631     void *fdt;
1632     int rc;
1633 
1634     pef_kvm_reset(machine->cgs, &error_fatal);
1635     spapr_caps_apply(spapr);
1636 
1637     first_ppc_cpu = POWERPC_CPU(first_cpu);
1638     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1639         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1640                               spapr->max_compat_pvr)) {
1641         /*
1642          * If using KVM with radix mode available, VCPUs can be started
1643          * without a HPT because KVM will start them in radix mode.
1644          * Set the GR bit in PATE so that we know there is no HPT.
1645          */
1646         spapr->patb_entry = PATE1_GR;
1647         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1648     } else {
1649         spapr_setup_hpt(spapr);
1650     }
1651 
1652     qemu_devices_reset(reason);
1653 
1654     spapr_ovec_cleanup(spapr->ov5_cas);
1655     spapr->ov5_cas = spapr_ovec_new();
1656 
1657     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1658 
1659     /*
1660      * This is fixing some of the default configuration of the XIVE
1661      * devices. To be called after the reset of the machine devices.
1662      */
1663     spapr_irq_reset(spapr, &error_fatal);
1664 
1665     /*
1666      * There is no CAS under qtest. Simulate one to please the code that
1667      * depends on spapr->ov5_cas. This is especially needed to test device
1668      * unplug, so we do that before resetting the DRCs.
1669      */
1670     if (qtest_enabled()) {
1671         spapr_ovec_cleanup(spapr->ov5_cas);
1672         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1673     }
1674 
1675     spapr_nvdimm_finish_flushes();
1676 
1677     /* DRC reset may cause a device to be unplugged. This will cause troubles
1678      * if this device is used by another device (eg, a running vhost backend
1679      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1680      * situations, we reset DRCs after all devices have been reset.
1681      */
1682     spapr_drc_reset_all(spapr);
1683 
1684     spapr_clear_pending_events(spapr);
1685 
1686     /*
1687      * We place the device tree just below either the top of the RMA,
1688      * or just below 2GB, whichever is lower, so that it can be
1689      * processed with 32-bit real mode code if necessary
1690      */
1691     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1692 
1693     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1694     if (spapr->vof) {
1695         spapr_vof_reset(spapr, fdt, &error_fatal);
1696         /*
1697          * Do not pack the FDT as the client may change properties.
1698          * VOF client does not expect the FDT so we do not load it to the VM.
1699          */
1700     } else {
1701         rc = fdt_pack(fdt);
1702         /* Should only fail if we've built a corrupted tree */
1703         assert(rc == 0);
1704 
1705         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1706                                   0, fdt_addr, 0);
1707         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1708     }
1709     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1710 
1711     g_free(spapr->fdt_blob);
1712     spapr->fdt_size = fdt_totalsize(fdt);
1713     spapr->fdt_initial_size = spapr->fdt_size;
1714     spapr->fdt_blob = fdt;
1715 
1716     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1717     machine->fdt = fdt;
1718 
1719     /* Set up the entry state */
1720     first_ppc_cpu->env.gpr[5] = 0;
1721 
1722     spapr->fwnmi_system_reset_addr = -1;
1723     spapr->fwnmi_machine_check_addr = -1;
1724     spapr->fwnmi_machine_check_interlock = -1;
1725 
1726     /* Signal all vCPUs waiting on this condition */
1727     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1728 
1729     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1730 }
1731 
1732 static void spapr_create_nvram(SpaprMachineState *spapr)
1733 {
1734     DeviceState *dev = qdev_new("spapr-nvram");
1735     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1736 
1737     if (dinfo) {
1738         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1739                                 &error_fatal);
1740     }
1741 
1742     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1743 
1744     spapr->nvram = (struct SpaprNvram *)dev;
1745 }
1746 
1747 static void spapr_rtc_create(SpaprMachineState *spapr)
1748 {
1749     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1750                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1751                                        &error_fatal, NULL);
1752     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1753     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1754                               "date");
1755 }
1756 
1757 /* Returns whether we want to use VGA or not */
1758 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1759 {
1760     vga_interface_created = true;
1761     switch (vga_interface_type) {
1762     case VGA_NONE:
1763         return false;
1764     case VGA_DEVICE:
1765         return true;
1766     case VGA_STD:
1767     case VGA_VIRTIO:
1768     case VGA_CIRRUS:
1769         return pci_vga_init(pci_bus) != NULL;
1770     default:
1771         error_setg(errp,
1772                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1773         return false;
1774     }
1775 }
1776 
1777 static int spapr_pre_load(void *opaque)
1778 {
1779     int rc;
1780 
1781     rc = spapr_caps_pre_load(opaque);
1782     if (rc) {
1783         return rc;
1784     }
1785 
1786     return 0;
1787 }
1788 
1789 static int spapr_post_load(void *opaque, int version_id)
1790 {
1791     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1792     int err = 0;
1793 
1794     err = spapr_caps_post_migration(spapr);
1795     if (err) {
1796         return err;
1797     }
1798 
1799     /*
1800      * In earlier versions, there was no separate qdev for the PAPR
1801      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1802      * So when migrating from those versions, poke the incoming offset
1803      * value into the RTC device
1804      */
1805     if (version_id < 3) {
1806         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1807         if (err) {
1808             return err;
1809         }
1810     }
1811 
1812     if (kvm_enabled() && spapr->patb_entry) {
1813         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1814         bool radix = !!(spapr->patb_entry & PATE1_GR);
1815         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1816 
1817         /*
1818          * Update LPCR:HR and UPRT as they may not be set properly in
1819          * the stream
1820          */
1821         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1822                             LPCR_HR | LPCR_UPRT);
1823 
1824         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1825         if (err) {
1826             error_report("Process table config unsupported by the host");
1827             return -EINVAL;
1828         }
1829     }
1830 
1831     err = spapr_irq_post_load(spapr, version_id);
1832     if (err) {
1833         return err;
1834     }
1835 
1836     return err;
1837 }
1838 
1839 static int spapr_pre_save(void *opaque)
1840 {
1841     int rc;
1842 
1843     rc = spapr_caps_pre_save(opaque);
1844     if (rc) {
1845         return rc;
1846     }
1847 
1848     return 0;
1849 }
1850 
1851 static bool version_before_3(void *opaque, int version_id)
1852 {
1853     return version_id < 3;
1854 }
1855 
1856 static bool spapr_pending_events_needed(void *opaque)
1857 {
1858     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1859     return !QTAILQ_EMPTY(&spapr->pending_events);
1860 }
1861 
1862 static const VMStateDescription vmstate_spapr_event_entry = {
1863     .name = "spapr_event_log_entry",
1864     .version_id = 1,
1865     .minimum_version_id = 1,
1866     .fields = (VMStateField[]) {
1867         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1868         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1869         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1870                                      NULL, extended_length),
1871         VMSTATE_END_OF_LIST()
1872     },
1873 };
1874 
1875 static const VMStateDescription vmstate_spapr_pending_events = {
1876     .name = "spapr_pending_events",
1877     .version_id = 1,
1878     .minimum_version_id = 1,
1879     .needed = spapr_pending_events_needed,
1880     .fields = (VMStateField[]) {
1881         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1882                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1883         VMSTATE_END_OF_LIST()
1884     },
1885 };
1886 
1887 static bool spapr_ov5_cas_needed(void *opaque)
1888 {
1889     SpaprMachineState *spapr = opaque;
1890     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1891     bool cas_needed;
1892 
1893     /* Prior to the introduction of SpaprOptionVector, we had two option
1894      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1895      * Both of these options encode machine topology into the device-tree
1896      * in such a way that the now-booted OS should still be able to interact
1897      * appropriately with QEMU regardless of what options were actually
1898      * negotiatied on the source side.
1899      *
1900      * As such, we can avoid migrating the CAS-negotiated options if these
1901      * are the only options available on the current machine/platform.
1902      * Since these are the only options available for pseries-2.7 and
1903      * earlier, this allows us to maintain old->new/new->old migration
1904      * compatibility.
1905      *
1906      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1907      * via default pseries-2.8 machines and explicit command-line parameters.
1908      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1909      * of the actual CAS-negotiated values to continue working properly. For
1910      * example, availability of memory unplug depends on knowing whether
1911      * OV5_HP_EVT was negotiated via CAS.
1912      *
1913      * Thus, for any cases where the set of available CAS-negotiatable
1914      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1915      * include the CAS-negotiated options in the migration stream, unless
1916      * if they affect boot time behaviour only.
1917      */
1918     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1919     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1920     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1921 
1922     /* We need extra information if we have any bits outside the mask
1923      * defined above */
1924     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1925 
1926     spapr_ovec_cleanup(ov5_mask);
1927 
1928     return cas_needed;
1929 }
1930 
1931 static const VMStateDescription vmstate_spapr_ov5_cas = {
1932     .name = "spapr_option_vector_ov5_cas",
1933     .version_id = 1,
1934     .minimum_version_id = 1,
1935     .needed = spapr_ov5_cas_needed,
1936     .fields = (VMStateField[]) {
1937         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1938                                  vmstate_spapr_ovec, SpaprOptionVector),
1939         VMSTATE_END_OF_LIST()
1940     },
1941 };
1942 
1943 static bool spapr_patb_entry_needed(void *opaque)
1944 {
1945     SpaprMachineState *spapr = opaque;
1946 
1947     return !!spapr->patb_entry;
1948 }
1949 
1950 static const VMStateDescription vmstate_spapr_patb_entry = {
1951     .name = "spapr_patb_entry",
1952     .version_id = 1,
1953     .minimum_version_id = 1,
1954     .needed = spapr_patb_entry_needed,
1955     .fields = (VMStateField[]) {
1956         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1957         VMSTATE_END_OF_LIST()
1958     },
1959 };
1960 
1961 static bool spapr_irq_map_needed(void *opaque)
1962 {
1963     SpaprMachineState *spapr = opaque;
1964 
1965     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1966 }
1967 
1968 static const VMStateDescription vmstate_spapr_irq_map = {
1969     .name = "spapr_irq_map",
1970     .version_id = 1,
1971     .minimum_version_id = 1,
1972     .needed = spapr_irq_map_needed,
1973     .fields = (VMStateField[]) {
1974         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1975         VMSTATE_END_OF_LIST()
1976     },
1977 };
1978 
1979 static bool spapr_dtb_needed(void *opaque)
1980 {
1981     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1982 
1983     return smc->update_dt_enabled;
1984 }
1985 
1986 static int spapr_dtb_pre_load(void *opaque)
1987 {
1988     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1989 
1990     g_free(spapr->fdt_blob);
1991     spapr->fdt_blob = NULL;
1992     spapr->fdt_size = 0;
1993 
1994     return 0;
1995 }
1996 
1997 static const VMStateDescription vmstate_spapr_dtb = {
1998     .name = "spapr_dtb",
1999     .version_id = 1,
2000     .minimum_version_id = 1,
2001     .needed = spapr_dtb_needed,
2002     .pre_load = spapr_dtb_pre_load,
2003     .fields = (VMStateField[]) {
2004         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2005         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2006         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2007                                      fdt_size),
2008         VMSTATE_END_OF_LIST()
2009     },
2010 };
2011 
2012 static bool spapr_fwnmi_needed(void *opaque)
2013 {
2014     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2015 
2016     return spapr->fwnmi_machine_check_addr != -1;
2017 }
2018 
2019 static int spapr_fwnmi_pre_save(void *opaque)
2020 {
2021     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2022 
2023     /*
2024      * Check if machine check handling is in progress and print a
2025      * warning message.
2026      */
2027     if (spapr->fwnmi_machine_check_interlock != -1) {
2028         warn_report("A machine check is being handled during migration. The"
2029                 "handler may run and log hardware error on the destination");
2030     }
2031 
2032     return 0;
2033 }
2034 
2035 static const VMStateDescription vmstate_spapr_fwnmi = {
2036     .name = "spapr_fwnmi",
2037     .version_id = 1,
2038     .minimum_version_id = 1,
2039     .needed = spapr_fwnmi_needed,
2040     .pre_save = spapr_fwnmi_pre_save,
2041     .fields = (VMStateField[]) {
2042         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2043         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2044         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2045         VMSTATE_END_OF_LIST()
2046     },
2047 };
2048 
2049 static const VMStateDescription vmstate_spapr = {
2050     .name = "spapr",
2051     .version_id = 3,
2052     .minimum_version_id = 1,
2053     .pre_load = spapr_pre_load,
2054     .post_load = spapr_post_load,
2055     .pre_save = spapr_pre_save,
2056     .fields = (VMStateField[]) {
2057         /* used to be @next_irq */
2058         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2059 
2060         /* RTC offset */
2061         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2062 
2063         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2064         VMSTATE_END_OF_LIST()
2065     },
2066     .subsections = (const VMStateDescription*[]) {
2067         &vmstate_spapr_ov5_cas,
2068         &vmstate_spapr_patb_entry,
2069         &vmstate_spapr_pending_events,
2070         &vmstate_spapr_cap_htm,
2071         &vmstate_spapr_cap_vsx,
2072         &vmstate_spapr_cap_dfp,
2073         &vmstate_spapr_cap_cfpc,
2074         &vmstate_spapr_cap_sbbc,
2075         &vmstate_spapr_cap_ibs,
2076         &vmstate_spapr_cap_hpt_maxpagesize,
2077         &vmstate_spapr_irq_map,
2078         &vmstate_spapr_cap_nested_kvm_hv,
2079         &vmstate_spapr_dtb,
2080         &vmstate_spapr_cap_large_decr,
2081         &vmstate_spapr_cap_ccf_assist,
2082         &vmstate_spapr_cap_fwnmi,
2083         &vmstate_spapr_fwnmi,
2084         &vmstate_spapr_cap_rpt_invalidate,
2085         NULL
2086     }
2087 };
2088 
2089 static int htab_save_setup(QEMUFile *f, void *opaque)
2090 {
2091     SpaprMachineState *spapr = opaque;
2092 
2093     /* "Iteration" header */
2094     if (!spapr->htab_shift) {
2095         qemu_put_be32(f, -1);
2096     } else {
2097         qemu_put_be32(f, spapr->htab_shift);
2098     }
2099 
2100     if (spapr->htab) {
2101         spapr->htab_save_index = 0;
2102         spapr->htab_first_pass = true;
2103     } else {
2104         if (spapr->htab_shift) {
2105             assert(kvm_enabled());
2106         }
2107     }
2108 
2109 
2110     return 0;
2111 }
2112 
2113 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2114                             int chunkstart, int n_valid, int n_invalid)
2115 {
2116     qemu_put_be32(f, chunkstart);
2117     qemu_put_be16(f, n_valid);
2118     qemu_put_be16(f, n_invalid);
2119     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2120                     HASH_PTE_SIZE_64 * n_valid);
2121 }
2122 
2123 static void htab_save_end_marker(QEMUFile *f)
2124 {
2125     qemu_put_be32(f, 0);
2126     qemu_put_be16(f, 0);
2127     qemu_put_be16(f, 0);
2128 }
2129 
2130 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2131                                  int64_t max_ns)
2132 {
2133     bool has_timeout = max_ns != -1;
2134     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2135     int index = spapr->htab_save_index;
2136     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2137 
2138     assert(spapr->htab_first_pass);
2139 
2140     do {
2141         int chunkstart;
2142 
2143         /* Consume invalid HPTEs */
2144         while ((index < htabslots)
2145                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2146             CLEAN_HPTE(HPTE(spapr->htab, index));
2147             index++;
2148         }
2149 
2150         /* Consume valid HPTEs */
2151         chunkstart = index;
2152         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2153                && HPTE_VALID(HPTE(spapr->htab, index))) {
2154             CLEAN_HPTE(HPTE(spapr->htab, index));
2155             index++;
2156         }
2157 
2158         if (index > chunkstart) {
2159             int n_valid = index - chunkstart;
2160 
2161             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2162 
2163             if (has_timeout &&
2164                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2165                 break;
2166             }
2167         }
2168     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2169 
2170     if (index >= htabslots) {
2171         assert(index == htabslots);
2172         index = 0;
2173         spapr->htab_first_pass = false;
2174     }
2175     spapr->htab_save_index = index;
2176 }
2177 
2178 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2179                                 int64_t max_ns)
2180 {
2181     bool final = max_ns < 0;
2182     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2183     int examined = 0, sent = 0;
2184     int index = spapr->htab_save_index;
2185     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2186 
2187     assert(!spapr->htab_first_pass);
2188 
2189     do {
2190         int chunkstart, invalidstart;
2191 
2192         /* Consume non-dirty HPTEs */
2193         while ((index < htabslots)
2194                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2195             index++;
2196             examined++;
2197         }
2198 
2199         chunkstart = index;
2200         /* Consume valid dirty HPTEs */
2201         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2202                && HPTE_DIRTY(HPTE(spapr->htab, index))
2203                && HPTE_VALID(HPTE(spapr->htab, index))) {
2204             CLEAN_HPTE(HPTE(spapr->htab, index));
2205             index++;
2206             examined++;
2207         }
2208 
2209         invalidstart = index;
2210         /* Consume invalid dirty HPTEs */
2211         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2212                && HPTE_DIRTY(HPTE(spapr->htab, index))
2213                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2214             CLEAN_HPTE(HPTE(spapr->htab, index));
2215             index++;
2216             examined++;
2217         }
2218 
2219         if (index > chunkstart) {
2220             int n_valid = invalidstart - chunkstart;
2221             int n_invalid = index - invalidstart;
2222 
2223             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2224             sent += index - chunkstart;
2225 
2226             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2227                 break;
2228             }
2229         }
2230 
2231         if (examined >= htabslots) {
2232             break;
2233         }
2234 
2235         if (index >= htabslots) {
2236             assert(index == htabslots);
2237             index = 0;
2238         }
2239     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2240 
2241     if (index >= htabslots) {
2242         assert(index == htabslots);
2243         index = 0;
2244     }
2245 
2246     spapr->htab_save_index = index;
2247 
2248     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2249 }
2250 
2251 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2252 #define MAX_KVM_BUF_SIZE    2048
2253 
2254 static int htab_save_iterate(QEMUFile *f, void *opaque)
2255 {
2256     SpaprMachineState *spapr = opaque;
2257     int fd;
2258     int rc = 0;
2259 
2260     /* Iteration header */
2261     if (!spapr->htab_shift) {
2262         qemu_put_be32(f, -1);
2263         return 1;
2264     } else {
2265         qemu_put_be32(f, 0);
2266     }
2267 
2268     if (!spapr->htab) {
2269         assert(kvm_enabled());
2270 
2271         fd = get_htab_fd(spapr);
2272         if (fd < 0) {
2273             return fd;
2274         }
2275 
2276         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2277         if (rc < 0) {
2278             return rc;
2279         }
2280     } else  if (spapr->htab_first_pass) {
2281         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2282     } else {
2283         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2284     }
2285 
2286     htab_save_end_marker(f);
2287 
2288     return rc;
2289 }
2290 
2291 static int htab_save_complete(QEMUFile *f, void *opaque)
2292 {
2293     SpaprMachineState *spapr = opaque;
2294     int fd;
2295 
2296     /* Iteration header */
2297     if (!spapr->htab_shift) {
2298         qemu_put_be32(f, -1);
2299         return 0;
2300     } else {
2301         qemu_put_be32(f, 0);
2302     }
2303 
2304     if (!spapr->htab) {
2305         int rc;
2306 
2307         assert(kvm_enabled());
2308 
2309         fd = get_htab_fd(spapr);
2310         if (fd < 0) {
2311             return fd;
2312         }
2313 
2314         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2315         if (rc < 0) {
2316             return rc;
2317         }
2318     } else {
2319         if (spapr->htab_first_pass) {
2320             htab_save_first_pass(f, spapr, -1);
2321         }
2322         htab_save_later_pass(f, spapr, -1);
2323     }
2324 
2325     /* End marker */
2326     htab_save_end_marker(f);
2327 
2328     return 0;
2329 }
2330 
2331 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2332 {
2333     SpaprMachineState *spapr = opaque;
2334     uint32_t section_hdr;
2335     int fd = -1;
2336     Error *local_err = NULL;
2337 
2338     if (version_id < 1 || version_id > 1) {
2339         error_report("htab_load() bad version");
2340         return -EINVAL;
2341     }
2342 
2343     section_hdr = qemu_get_be32(f);
2344 
2345     if (section_hdr == -1) {
2346         spapr_free_hpt(spapr);
2347         return 0;
2348     }
2349 
2350     if (section_hdr) {
2351         int ret;
2352 
2353         /* First section gives the htab size */
2354         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2355         if (ret < 0) {
2356             error_report_err(local_err);
2357             return ret;
2358         }
2359         return 0;
2360     }
2361 
2362     if (!spapr->htab) {
2363         assert(kvm_enabled());
2364 
2365         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2366         if (fd < 0) {
2367             error_report_err(local_err);
2368             return fd;
2369         }
2370     }
2371 
2372     while (true) {
2373         uint32_t index;
2374         uint16_t n_valid, n_invalid;
2375 
2376         index = qemu_get_be32(f);
2377         n_valid = qemu_get_be16(f);
2378         n_invalid = qemu_get_be16(f);
2379 
2380         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2381             /* End of Stream */
2382             break;
2383         }
2384 
2385         if ((index + n_valid + n_invalid) >
2386             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2387             /* Bad index in stream */
2388             error_report(
2389                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2390                 index, n_valid, n_invalid, spapr->htab_shift);
2391             return -EINVAL;
2392         }
2393 
2394         if (spapr->htab) {
2395             if (n_valid) {
2396                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2397                                 HASH_PTE_SIZE_64 * n_valid);
2398             }
2399             if (n_invalid) {
2400                 memset(HPTE(spapr->htab, index + n_valid), 0,
2401                        HASH_PTE_SIZE_64 * n_invalid);
2402             }
2403         } else {
2404             int rc;
2405 
2406             assert(fd >= 0);
2407 
2408             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2409                                         &local_err);
2410             if (rc < 0) {
2411                 error_report_err(local_err);
2412                 return rc;
2413             }
2414         }
2415     }
2416 
2417     if (!spapr->htab) {
2418         assert(fd >= 0);
2419         close(fd);
2420     }
2421 
2422     return 0;
2423 }
2424 
2425 static void htab_save_cleanup(void *opaque)
2426 {
2427     SpaprMachineState *spapr = opaque;
2428 
2429     close_htab_fd(spapr);
2430 }
2431 
2432 static SaveVMHandlers savevm_htab_handlers = {
2433     .save_setup = htab_save_setup,
2434     .save_live_iterate = htab_save_iterate,
2435     .save_live_complete_precopy = htab_save_complete,
2436     .save_cleanup = htab_save_cleanup,
2437     .load_state = htab_load,
2438 };
2439 
2440 static void spapr_boot_set(void *opaque, const char *boot_device,
2441                            Error **errp)
2442 {
2443     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2444 
2445     g_free(spapr->boot_device);
2446     spapr->boot_device = g_strdup(boot_device);
2447 }
2448 
2449 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2450 {
2451     MachineState *machine = MACHINE(spapr);
2452     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2453     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2454     int i;
2455 
2456     for (i = 0; i < nr_lmbs; i++) {
2457         uint64_t addr;
2458 
2459         addr = i * lmb_size + machine->device_memory->base;
2460         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2461                                addr / lmb_size);
2462     }
2463 }
2464 
2465 /*
2466  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2467  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2468  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2469  */
2470 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2471 {
2472     int i;
2473 
2474     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2475         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2476                    " is not aligned to %" PRIu64 " MiB",
2477                    machine->ram_size,
2478                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2479         return;
2480     }
2481 
2482     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2483         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2484                    " is not aligned to %" PRIu64 " MiB",
2485                    machine->ram_size,
2486                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2487         return;
2488     }
2489 
2490     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2491         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2492             error_setg(errp,
2493                        "Node %d memory size 0x%" PRIx64
2494                        " is not aligned to %" PRIu64 " MiB",
2495                        i, machine->numa_state->nodes[i].node_mem,
2496                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2497             return;
2498         }
2499     }
2500 }
2501 
2502 /* find cpu slot in machine->possible_cpus by core_id */
2503 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2504 {
2505     int index = id / ms->smp.threads;
2506 
2507     if (index >= ms->possible_cpus->len) {
2508         return NULL;
2509     }
2510     if (idx) {
2511         *idx = index;
2512     }
2513     return &ms->possible_cpus->cpus[index];
2514 }
2515 
2516 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2517 {
2518     MachineState *ms = MACHINE(spapr);
2519     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2520     Error *local_err = NULL;
2521     bool vsmt_user = !!spapr->vsmt;
2522     int kvm_smt = kvmppc_smt_threads();
2523     int ret;
2524     unsigned int smp_threads = ms->smp.threads;
2525 
2526     if (!kvm_enabled() && (smp_threads > 1)) {
2527         error_setg(errp, "TCG cannot support more than 1 thread/core "
2528                    "on a pseries machine");
2529         return;
2530     }
2531     if (!is_power_of_2(smp_threads)) {
2532         error_setg(errp, "Cannot support %d threads/core on a pseries "
2533                    "machine because it must be a power of 2", smp_threads);
2534         return;
2535     }
2536 
2537     /* Detemine the VSMT mode to use: */
2538     if (vsmt_user) {
2539         if (spapr->vsmt < smp_threads) {
2540             error_setg(errp, "Cannot support VSMT mode %d"
2541                        " because it must be >= threads/core (%d)",
2542                        spapr->vsmt, smp_threads);
2543             return;
2544         }
2545         /* In this case, spapr->vsmt has been set by the command line */
2546     } else if (!smc->smp_threads_vsmt) {
2547         /*
2548          * Default VSMT value is tricky, because we need it to be as
2549          * consistent as possible (for migration), but this requires
2550          * changing it for at least some existing cases.  We pick 8 as
2551          * the value that we'd get with KVM on POWER8, the
2552          * overwhelmingly common case in production systems.
2553          */
2554         spapr->vsmt = MAX(8, smp_threads);
2555     } else {
2556         spapr->vsmt = smp_threads;
2557     }
2558 
2559     /* KVM: If necessary, set the SMT mode: */
2560     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2561         ret = kvmppc_set_smt_threads(spapr->vsmt);
2562         if (ret) {
2563             /* Looks like KVM isn't able to change VSMT mode */
2564             error_setg(&local_err,
2565                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2566                        spapr->vsmt, ret);
2567             /* We can live with that if the default one is big enough
2568              * for the number of threads, and a submultiple of the one
2569              * we want.  In this case we'll waste some vcpu ids, but
2570              * behaviour will be correct */
2571             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2572                 warn_report_err(local_err);
2573             } else {
2574                 if (!vsmt_user) {
2575                     error_append_hint(&local_err,
2576                                       "On PPC, a VM with %d threads/core"
2577                                       " on a host with %d threads/core"
2578                                       " requires the use of VSMT mode %d.\n",
2579                                       smp_threads, kvm_smt, spapr->vsmt);
2580                 }
2581                 kvmppc_error_append_smt_possible_hint(&local_err);
2582                 error_propagate(errp, local_err);
2583             }
2584         }
2585     }
2586     /* else TCG: nothing to do currently */
2587 }
2588 
2589 static void spapr_init_cpus(SpaprMachineState *spapr)
2590 {
2591     MachineState *machine = MACHINE(spapr);
2592     MachineClass *mc = MACHINE_GET_CLASS(machine);
2593     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2594     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2595     const CPUArchIdList *possible_cpus;
2596     unsigned int smp_cpus = machine->smp.cpus;
2597     unsigned int smp_threads = machine->smp.threads;
2598     unsigned int max_cpus = machine->smp.max_cpus;
2599     int boot_cores_nr = smp_cpus / smp_threads;
2600     int i;
2601 
2602     possible_cpus = mc->possible_cpu_arch_ids(machine);
2603     if (mc->has_hotpluggable_cpus) {
2604         if (smp_cpus % smp_threads) {
2605             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2606                          smp_cpus, smp_threads);
2607             exit(1);
2608         }
2609         if (max_cpus % smp_threads) {
2610             error_report("max_cpus (%u) must be multiple of threads (%u)",
2611                          max_cpus, smp_threads);
2612             exit(1);
2613         }
2614     } else {
2615         if (max_cpus != smp_cpus) {
2616             error_report("This machine version does not support CPU hotplug");
2617             exit(1);
2618         }
2619         boot_cores_nr = possible_cpus->len;
2620     }
2621 
2622     if (smc->pre_2_10_has_unused_icps) {
2623         int i;
2624 
2625         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2626             /* Dummy entries get deregistered when real ICPState objects
2627              * are registered during CPU core hotplug.
2628              */
2629             pre_2_10_vmstate_register_dummy_icp(i);
2630         }
2631     }
2632 
2633     for (i = 0; i < possible_cpus->len; i++) {
2634         int core_id = i * smp_threads;
2635 
2636         if (mc->has_hotpluggable_cpus) {
2637             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2638                                    spapr_vcpu_id(spapr, core_id));
2639         }
2640 
2641         if (i < boot_cores_nr) {
2642             Object *core  = object_new(type);
2643             int nr_threads = smp_threads;
2644 
2645             /* Handle the partially filled core for older machine types */
2646             if ((i + 1) * smp_threads >= smp_cpus) {
2647                 nr_threads = smp_cpus - i * smp_threads;
2648             }
2649 
2650             object_property_set_int(core, "nr-threads", nr_threads,
2651                                     &error_fatal);
2652             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2653                                     &error_fatal);
2654             qdev_realize(DEVICE(core), NULL, &error_fatal);
2655 
2656             object_unref(core);
2657         }
2658     }
2659 }
2660 
2661 static PCIHostState *spapr_create_default_phb(void)
2662 {
2663     DeviceState *dev;
2664 
2665     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2666     qdev_prop_set_uint32(dev, "index", 0);
2667     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2668 
2669     return PCI_HOST_BRIDGE(dev);
2670 }
2671 
2672 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2673 {
2674     MachineState *machine = MACHINE(spapr);
2675     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2676     hwaddr rma_size = machine->ram_size;
2677     hwaddr node0_size = spapr_node0_size(machine);
2678 
2679     /* RMA has to fit in the first NUMA node */
2680     rma_size = MIN(rma_size, node0_size);
2681 
2682     /*
2683      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2684      * never exceed that
2685      */
2686     rma_size = MIN(rma_size, 1 * TiB);
2687 
2688     /*
2689      * Clamp the RMA size based on machine type.  This is for
2690      * migration compatibility with older qemu versions, which limited
2691      * the RMA size for complicated and mostly bad reasons.
2692      */
2693     if (smc->rma_limit) {
2694         rma_size = MIN(rma_size, smc->rma_limit);
2695     }
2696 
2697     if (rma_size < MIN_RMA_SLOF) {
2698         error_setg(errp,
2699                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2700                    "ldMiB guest RMA (Real Mode Area memory)",
2701                    MIN_RMA_SLOF / MiB);
2702         return 0;
2703     }
2704 
2705     return rma_size;
2706 }
2707 
2708 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2709 {
2710     MachineState *machine = MACHINE(spapr);
2711     int i;
2712 
2713     for (i = 0; i < machine->ram_slots; i++) {
2714         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2715     }
2716 }
2717 
2718 /* pSeries LPAR / sPAPR hardware init */
2719 static void spapr_machine_init(MachineState *machine)
2720 {
2721     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2722     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2723     MachineClass *mc = MACHINE_GET_CLASS(machine);
2724     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2725     const char *bios_name = machine->firmware ?: bios_default;
2726     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2727     const char *kernel_filename = machine->kernel_filename;
2728     const char *initrd_filename = machine->initrd_filename;
2729     PCIHostState *phb;
2730     bool has_vga;
2731     int i;
2732     MemoryRegion *sysmem = get_system_memory();
2733     long load_limit, fw_size;
2734     Error *resize_hpt_err = NULL;
2735 
2736     if (!filename) {
2737         error_report("Could not find LPAR firmware '%s'", bios_name);
2738         exit(1);
2739     }
2740     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2741     if (fw_size <= 0) {
2742         error_report("Could not load LPAR firmware '%s'", filename);
2743         exit(1);
2744     }
2745 
2746     /*
2747      * if Secure VM (PEF) support is configured, then initialize it
2748      */
2749     pef_kvm_init(machine->cgs, &error_fatal);
2750 
2751     msi_nonbroken = true;
2752 
2753     QLIST_INIT(&spapr->phbs);
2754     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2755 
2756     /* Determine capabilities to run with */
2757     spapr_caps_init(spapr);
2758 
2759     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2760     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2761         /*
2762          * If the user explicitly requested a mode we should either
2763          * supply it, or fail completely (which we do below).  But if
2764          * it's not set explicitly, we reset our mode to something
2765          * that works
2766          */
2767         if (resize_hpt_err) {
2768             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2769             error_free(resize_hpt_err);
2770             resize_hpt_err = NULL;
2771         } else {
2772             spapr->resize_hpt = smc->resize_hpt_default;
2773         }
2774     }
2775 
2776     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2777 
2778     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2779         /*
2780          * User requested HPT resize, but this host can't supply it.  Bail out
2781          */
2782         error_report_err(resize_hpt_err);
2783         exit(1);
2784     }
2785     error_free(resize_hpt_err);
2786 
2787     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2788 
2789     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2790     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2791 
2792     /*
2793      * VSMT must be set in order to be able to compute VCPU ids, ie to
2794      * call spapr_max_server_number() or spapr_vcpu_id().
2795      */
2796     spapr_set_vsmt_mode(spapr, &error_fatal);
2797 
2798     /* Set up Interrupt Controller before we create the VCPUs */
2799     spapr_irq_init(spapr, &error_fatal);
2800 
2801     /* Set up containers for ibm,client-architecture-support negotiated options
2802      */
2803     spapr->ov5 = spapr_ovec_new();
2804     spapr->ov5_cas = spapr_ovec_new();
2805 
2806     if (smc->dr_lmb_enabled) {
2807         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2808         spapr_validate_node_memory(machine, &error_fatal);
2809     }
2810 
2811     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2812 
2813     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2814     if (!smc->pre_6_2_numa_affinity) {
2815         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2816     }
2817 
2818     /* advertise support for dedicated HP event source to guests */
2819     if (spapr->use_hotplug_event_source) {
2820         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2821     }
2822 
2823     /* advertise support for HPT resizing */
2824     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2825         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2826     }
2827 
2828     /* advertise support for ibm,dyamic-memory-v2 */
2829     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2830 
2831     /* advertise XIVE on POWER9 machines */
2832     if (spapr->irq->xive) {
2833         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2834     }
2835 
2836     /* init CPUs */
2837     spapr_init_cpus(spapr);
2838 
2839     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2840 
2841     /* Init numa_assoc_array */
2842     spapr_numa_associativity_init(spapr, machine);
2843 
2844     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2845         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2846                               spapr->max_compat_pvr)) {
2847         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2848         /* KVM and TCG always allow GTSE with radix... */
2849         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2850     }
2851     /* ... but not with hash (currently). */
2852 
2853     if (kvm_enabled()) {
2854         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2855         kvmppc_enable_logical_ci_hcalls();
2856         kvmppc_enable_set_mode_hcall();
2857 
2858         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2859         kvmppc_enable_clear_ref_mod_hcalls();
2860 
2861         /* Enable H_PAGE_INIT */
2862         kvmppc_enable_h_page_init();
2863     }
2864 
2865     /* map RAM */
2866     memory_region_add_subregion(sysmem, 0, machine->ram);
2867 
2868     /* always allocate the device memory information */
2869     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2870 
2871     /* initialize hotplug memory address space */
2872     if (machine->ram_size < machine->maxram_size) {
2873         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2874         /*
2875          * Limit the number of hotpluggable memory slots to half the number
2876          * slots that KVM supports, leaving the other half for PCI and other
2877          * devices. However ensure that number of slots doesn't drop below 32.
2878          */
2879         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2880                            SPAPR_MAX_RAM_SLOTS;
2881 
2882         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2883             max_memslots = SPAPR_MAX_RAM_SLOTS;
2884         }
2885         if (machine->ram_slots > max_memslots) {
2886             error_report("Specified number of memory slots %"
2887                          PRIu64" exceeds max supported %d",
2888                          machine->ram_slots, max_memslots);
2889             exit(1);
2890         }
2891 
2892         machine->device_memory->base = ROUND_UP(machine->ram_size,
2893                                                 SPAPR_DEVICE_MEM_ALIGN);
2894         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2895                            "device-memory", device_mem_size);
2896         memory_region_add_subregion(sysmem, machine->device_memory->base,
2897                                     &machine->device_memory->mr);
2898     }
2899 
2900     if (smc->dr_lmb_enabled) {
2901         spapr_create_lmb_dr_connectors(spapr);
2902     }
2903 
2904     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2905         /* Create the error string for live migration blocker */
2906         error_setg(&spapr->fwnmi_migration_blocker,
2907             "A machine check is being handled during migration. The handler"
2908             "may run and log hardware error on the destination");
2909     }
2910 
2911     if (mc->nvdimm_supported) {
2912         spapr_create_nvdimm_dr_connectors(spapr);
2913     }
2914 
2915     /* Set up RTAS event infrastructure */
2916     spapr_events_init(spapr);
2917 
2918     /* Set up the RTC RTAS interfaces */
2919     spapr_rtc_create(spapr);
2920 
2921     /* Set up VIO bus */
2922     spapr->vio_bus = spapr_vio_bus_init();
2923 
2924     for (i = 0; serial_hd(i); i++) {
2925         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2926     }
2927 
2928     /* We always have at least the nvram device on VIO */
2929     spapr_create_nvram(spapr);
2930 
2931     /*
2932      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2933      * connectors (described in root DT node's "ibm,drc-types" property)
2934      * are pre-initialized here. additional child connectors (such as
2935      * connectors for a PHBs PCI slots) are added as needed during their
2936      * parent's realization.
2937      */
2938     if (smc->dr_phb_enabled) {
2939         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2940             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2941         }
2942     }
2943 
2944     /* Set up PCI */
2945     spapr_pci_rtas_init();
2946 
2947     phb = spapr_create_default_phb();
2948 
2949     for (i = 0; i < nb_nics; i++) {
2950         NICInfo *nd = &nd_table[i];
2951 
2952         if (!nd->model) {
2953             nd->model = g_strdup("spapr-vlan");
2954         }
2955 
2956         if (g_str_equal(nd->model, "spapr-vlan") ||
2957             g_str_equal(nd->model, "ibmveth")) {
2958             spapr_vlan_create(spapr->vio_bus, nd);
2959         } else {
2960             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2961         }
2962     }
2963 
2964     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2965         spapr_vscsi_create(spapr->vio_bus);
2966     }
2967 
2968     /* Graphics */
2969     has_vga = spapr_vga_init(phb->bus, &error_fatal);
2970     if (has_vga) {
2971         spapr->want_stdout_path = !machine->enable_graphics;
2972         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2973     } else {
2974         spapr->want_stdout_path = true;
2975     }
2976 
2977     if (machine->usb) {
2978         if (smc->use_ohci_by_default) {
2979             pci_create_simple(phb->bus, -1, "pci-ohci");
2980         } else {
2981             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2982         }
2983 
2984         if (has_vga) {
2985             USBBus *usb_bus = usb_bus_find(-1);
2986 
2987             usb_create_simple(usb_bus, "usb-kbd");
2988             usb_create_simple(usb_bus, "usb-mouse");
2989         }
2990     }
2991 
2992     if (kernel_filename) {
2993         uint64_t loaded_addr = 0;
2994 
2995         spapr->kernel_size = load_elf(kernel_filename, NULL,
2996                                       translate_kernel_address, spapr,
2997                                       NULL, &loaded_addr, NULL, NULL, 1,
2998                                       PPC_ELF_MACHINE, 0, 0);
2999         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3000             spapr->kernel_size = load_elf(kernel_filename, NULL,
3001                                           translate_kernel_address, spapr,
3002                                           NULL, &loaded_addr, NULL, NULL, 0,
3003                                           PPC_ELF_MACHINE, 0, 0);
3004             spapr->kernel_le = spapr->kernel_size > 0;
3005         }
3006         if (spapr->kernel_size < 0) {
3007             error_report("error loading %s: %s", kernel_filename,
3008                          load_elf_strerror(spapr->kernel_size));
3009             exit(1);
3010         }
3011 
3012         if (spapr->kernel_addr != loaded_addr) {
3013             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3014                         " to 0x%"PRIx64,
3015                         spapr->kernel_addr, loaded_addr);
3016             spapr->kernel_addr = loaded_addr;
3017         }
3018 
3019         /* load initrd */
3020         if (initrd_filename) {
3021             /* Try to locate the initrd in the gap between the kernel
3022              * and the firmware. Add a bit of space just in case
3023              */
3024             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3025                                   + 0x1ffff) & ~0xffff;
3026             spapr->initrd_size = load_image_targphys(initrd_filename,
3027                                                      spapr->initrd_base,
3028                                                      load_limit
3029                                                      - spapr->initrd_base);
3030             if (spapr->initrd_size < 0) {
3031                 error_report("could not load initial ram disk '%s'",
3032                              initrd_filename);
3033                 exit(1);
3034             }
3035         }
3036     }
3037 
3038     /* FIXME: Should register things through the MachineState's qdev
3039      * interface, this is a legacy from the sPAPREnvironment structure
3040      * which predated MachineState but had a similar function */
3041     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3042     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3043                          &savevm_htab_handlers, spapr);
3044 
3045     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3046 
3047     qemu_register_boot_set(spapr_boot_set, spapr);
3048 
3049     /*
3050      * Nothing needs to be done to resume a suspended guest because
3051      * suspending does not change the machine state, so no need for
3052      * a ->wakeup method.
3053      */
3054     qemu_register_wakeup_support();
3055 
3056     if (kvm_enabled()) {
3057         /* to stop and start vmclock */
3058         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3059                                          &spapr->tb);
3060 
3061         kvmppc_spapr_enable_inkernel_multitce();
3062     }
3063 
3064     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3065     if (spapr->vof) {
3066         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3067         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3068     }
3069 
3070     spapr_watchdog_init(spapr);
3071 }
3072 
3073 #define DEFAULT_KVM_TYPE "auto"
3074 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3075 {
3076     /*
3077      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3078      * accomodate the 'HV' and 'PV' formats that exists in the
3079      * wild. The 'auto' mode is being introduced already as
3080      * lower-case, thus we don't need to bother checking for
3081      * "AUTO".
3082      */
3083     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3084         return 0;
3085     }
3086 
3087     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3088         return 1;
3089     }
3090 
3091     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3092         return 2;
3093     }
3094 
3095     error_report("Unknown kvm-type specified '%s'", vm_type);
3096     exit(1);
3097 }
3098 
3099 /*
3100  * Implementation of an interface to adjust firmware path
3101  * for the bootindex property handling.
3102  */
3103 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3104                                    DeviceState *dev)
3105 {
3106 #define CAST(type, obj, name) \
3107     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3108     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3109     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3110     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3111     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3112 
3113     if (d && bus) {
3114         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3115         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3116         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3117 
3118         if (spapr) {
3119             /*
3120              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3121              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3122              * 0x8000 | (target << 8) | (bus << 5) | lun
3123              * (see the "Logical unit addressing format" table in SAM5)
3124              */
3125             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3126             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3127                                    (uint64_t)id << 48);
3128         } else if (virtio) {
3129             /*
3130              * We use SRP luns of the form 01000000 | (target << 8) | lun
3131              * in the top 32 bits of the 64-bit LUN
3132              * Note: the quote above is from SLOF and it is wrong,
3133              * the actual binding is:
3134              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3135              */
3136             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3137             if (d->lun >= 256) {
3138                 /* Use the LUN "flat space addressing method" */
3139                 id |= 0x4000;
3140             }
3141             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3142                                    (uint64_t)id << 32);
3143         } else if (usb) {
3144             /*
3145              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3146              * in the top 32 bits of the 64-bit LUN
3147              */
3148             unsigned usb_port = atoi(usb->port->path);
3149             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3150             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3151                                    (uint64_t)id << 32);
3152         }
3153     }
3154 
3155     /*
3156      * SLOF probes the USB devices, and if it recognizes that the device is a
3157      * storage device, it changes its name to "storage" instead of "usb-host",
3158      * and additionally adds a child node for the SCSI LUN, so the correct
3159      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3160      */
3161     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3162         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3163         if (usb_device_is_scsi_storage(usbdev)) {
3164             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3165         }
3166     }
3167 
3168     if (phb) {
3169         /* Replace "pci" with "pci@800000020000000" */
3170         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3171     }
3172 
3173     if (vsc) {
3174         /* Same logic as virtio above */
3175         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3176         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3177     }
3178 
3179     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3180         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3181         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3182         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3183     }
3184 
3185     if (pcidev) {
3186         return spapr_pci_fw_dev_name(pcidev);
3187     }
3188 
3189     return NULL;
3190 }
3191 
3192 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3193 {
3194     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3195 
3196     return g_strdup(spapr->kvm_type);
3197 }
3198 
3199 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3200 {
3201     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3202 
3203     g_free(spapr->kvm_type);
3204     spapr->kvm_type = g_strdup(value);
3205 }
3206 
3207 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3208 {
3209     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3210 
3211     return spapr->use_hotplug_event_source;
3212 }
3213 
3214 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3215                                             Error **errp)
3216 {
3217     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3218 
3219     spapr->use_hotplug_event_source = value;
3220 }
3221 
3222 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3223 {
3224     return true;
3225 }
3226 
3227 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3228 {
3229     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3230 
3231     switch (spapr->resize_hpt) {
3232     case SPAPR_RESIZE_HPT_DEFAULT:
3233         return g_strdup("default");
3234     case SPAPR_RESIZE_HPT_DISABLED:
3235         return g_strdup("disabled");
3236     case SPAPR_RESIZE_HPT_ENABLED:
3237         return g_strdup("enabled");
3238     case SPAPR_RESIZE_HPT_REQUIRED:
3239         return g_strdup("required");
3240     }
3241     g_assert_not_reached();
3242 }
3243 
3244 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3245 {
3246     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3247 
3248     if (strcmp(value, "default") == 0) {
3249         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3250     } else if (strcmp(value, "disabled") == 0) {
3251         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3252     } else if (strcmp(value, "enabled") == 0) {
3253         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3254     } else if (strcmp(value, "required") == 0) {
3255         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3256     } else {
3257         error_setg(errp, "Bad value for \"resize-hpt\" property");
3258     }
3259 }
3260 
3261 static bool spapr_get_vof(Object *obj, Error **errp)
3262 {
3263     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264 
3265     return spapr->vof != NULL;
3266 }
3267 
3268 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3269 {
3270     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3271 
3272     if (spapr->vof) {
3273         vof_cleanup(spapr->vof);
3274         g_free(spapr->vof);
3275         spapr->vof = NULL;
3276     }
3277     if (!value) {
3278         return;
3279     }
3280     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3281 }
3282 
3283 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3284 {
3285     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3286 
3287     if (spapr->irq == &spapr_irq_xics_legacy) {
3288         return g_strdup("legacy");
3289     } else if (spapr->irq == &spapr_irq_xics) {
3290         return g_strdup("xics");
3291     } else if (spapr->irq == &spapr_irq_xive) {
3292         return g_strdup("xive");
3293     } else if (spapr->irq == &spapr_irq_dual) {
3294         return g_strdup("dual");
3295     }
3296     g_assert_not_reached();
3297 }
3298 
3299 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3300 {
3301     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3302 
3303     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3304         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3305         return;
3306     }
3307 
3308     /* The legacy IRQ backend can not be set */
3309     if (strcmp(value, "xics") == 0) {
3310         spapr->irq = &spapr_irq_xics;
3311     } else if (strcmp(value, "xive") == 0) {
3312         spapr->irq = &spapr_irq_xive;
3313     } else if (strcmp(value, "dual") == 0) {
3314         spapr->irq = &spapr_irq_dual;
3315     } else {
3316         error_setg(errp, "Bad value for \"ic-mode\" property");
3317     }
3318 }
3319 
3320 static char *spapr_get_host_model(Object *obj, Error **errp)
3321 {
3322     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3323 
3324     return g_strdup(spapr->host_model);
3325 }
3326 
3327 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3328 {
3329     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3330 
3331     g_free(spapr->host_model);
3332     spapr->host_model = g_strdup(value);
3333 }
3334 
3335 static char *spapr_get_host_serial(Object *obj, Error **errp)
3336 {
3337     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3338 
3339     return g_strdup(spapr->host_serial);
3340 }
3341 
3342 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3343 {
3344     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3345 
3346     g_free(spapr->host_serial);
3347     spapr->host_serial = g_strdup(value);
3348 }
3349 
3350 static void spapr_instance_init(Object *obj)
3351 {
3352     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3353     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3354     MachineState *ms = MACHINE(spapr);
3355     MachineClass *mc = MACHINE_GET_CLASS(ms);
3356 
3357     /*
3358      * NVDIMM support went live in 5.1 without considering that, in
3359      * other archs, the user needs to enable NVDIMM support with the
3360      * 'nvdimm' machine option and the default behavior is NVDIMM
3361      * support disabled. It is too late to roll back to the standard
3362      * behavior without breaking 5.1 guests.
3363      */
3364     if (mc->nvdimm_supported) {
3365         ms->nvdimms_state->is_enabled = true;
3366     }
3367 
3368     spapr->htab_fd = -1;
3369     spapr->use_hotplug_event_source = true;
3370     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3371     object_property_add_str(obj, "kvm-type",
3372                             spapr_get_kvm_type, spapr_set_kvm_type);
3373     object_property_set_description(obj, "kvm-type",
3374                                     "Specifies the KVM virtualization mode (auto,"
3375                                     " hv, pr). Defaults to 'auto'. This mode will use"
3376                                     " any available KVM module loaded in the host,"
3377                                     " where kvm_hv takes precedence if both kvm_hv and"
3378                                     " kvm_pr are loaded.");
3379     object_property_add_bool(obj, "modern-hotplug-events",
3380                             spapr_get_modern_hotplug_events,
3381                             spapr_set_modern_hotplug_events);
3382     object_property_set_description(obj, "modern-hotplug-events",
3383                                     "Use dedicated hotplug event mechanism in"
3384                                     " place of standard EPOW events when possible"
3385                                     " (required for memory hot-unplug support)");
3386     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3387                             "Maximum permitted CPU compatibility mode");
3388 
3389     object_property_add_str(obj, "resize-hpt",
3390                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3391     object_property_set_description(obj, "resize-hpt",
3392                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3393     object_property_add_uint32_ptr(obj, "vsmt",
3394                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3395     object_property_set_description(obj, "vsmt",
3396                                     "Virtual SMT: KVM behaves as if this were"
3397                                     " the host's SMT mode");
3398 
3399     object_property_add_bool(obj, "vfio-no-msix-emulation",
3400                              spapr_get_msix_emulation, NULL);
3401 
3402     object_property_add_uint64_ptr(obj, "kernel-addr",
3403                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3404     object_property_set_description(obj, "kernel-addr",
3405                                     stringify(KERNEL_LOAD_ADDR)
3406                                     " for -kernel is the default");
3407     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3408 
3409     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3410     object_property_set_description(obj, "x-vof",
3411                                     "Enable Virtual Open Firmware (experimental)");
3412 
3413     /* The machine class defines the default interrupt controller mode */
3414     spapr->irq = smc->irq;
3415     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3416                             spapr_set_ic_mode);
3417     object_property_set_description(obj, "ic-mode",
3418                  "Specifies the interrupt controller mode (xics, xive, dual)");
3419 
3420     object_property_add_str(obj, "host-model",
3421         spapr_get_host_model, spapr_set_host_model);
3422     object_property_set_description(obj, "host-model",
3423         "Host model to advertise in guest device tree");
3424     object_property_add_str(obj, "host-serial",
3425         spapr_get_host_serial, spapr_set_host_serial);
3426     object_property_set_description(obj, "host-serial",
3427         "Host serial number to advertise in guest device tree");
3428 }
3429 
3430 static void spapr_machine_finalizefn(Object *obj)
3431 {
3432     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3433 
3434     g_free(spapr->kvm_type);
3435 }
3436 
3437 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3438 {
3439     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3440     PowerPCCPU *cpu = POWERPC_CPU(cs);
3441     CPUPPCState *env = &cpu->env;
3442 
3443     cpu_synchronize_state(cs);
3444     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3445     if (spapr->fwnmi_system_reset_addr != -1) {
3446         uint64_t rtas_addr, addr;
3447 
3448         /* get rtas addr from fdt */
3449         rtas_addr = spapr_get_rtas_addr();
3450         if (!rtas_addr) {
3451             qemu_system_guest_panicked(NULL);
3452             return;
3453         }
3454 
3455         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3456         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3457         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3458         env->gpr[3] = addr;
3459     }
3460     ppc_cpu_do_system_reset(cs);
3461     if (spapr->fwnmi_system_reset_addr != -1) {
3462         env->nip = spapr->fwnmi_system_reset_addr;
3463     }
3464 }
3465 
3466 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3467 {
3468     CPUState *cs;
3469 
3470     CPU_FOREACH(cs) {
3471         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3472     }
3473 }
3474 
3475 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3476                           void *fdt, int *fdt_start_offset, Error **errp)
3477 {
3478     uint64_t addr;
3479     uint32_t node;
3480 
3481     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3482     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3483                                     &error_abort);
3484     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3485                                              SPAPR_MEMORY_BLOCK_SIZE);
3486     return 0;
3487 }
3488 
3489 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3490                            bool dedicated_hp_event_source)
3491 {
3492     SpaprDrc *drc;
3493     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3494     int i;
3495     uint64_t addr = addr_start;
3496     bool hotplugged = spapr_drc_hotplugged(dev);
3497 
3498     for (i = 0; i < nr_lmbs; i++) {
3499         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3500                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3501         g_assert(drc);
3502 
3503         /*
3504          * memory_device_get_free_addr() provided a range of free addresses
3505          * that doesn't overlap with any existing mapping at pre-plug. The
3506          * corresponding LMB DRCs are thus assumed to be all attachable.
3507          */
3508         spapr_drc_attach(drc, dev);
3509         if (!hotplugged) {
3510             spapr_drc_reset(drc);
3511         }
3512         addr += SPAPR_MEMORY_BLOCK_SIZE;
3513     }
3514     /* send hotplug notification to the
3515      * guest only in case of hotplugged memory
3516      */
3517     if (hotplugged) {
3518         if (dedicated_hp_event_source) {
3519             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3520                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3521             g_assert(drc);
3522             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3523                                                    nr_lmbs,
3524                                                    spapr_drc_index(drc));
3525         } else {
3526             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3527                                            nr_lmbs);
3528         }
3529     }
3530 }
3531 
3532 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3533 {
3534     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3535     PCDIMMDevice *dimm = PC_DIMM(dev);
3536     uint64_t size, addr;
3537     int64_t slot;
3538     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3539 
3540     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3541 
3542     pc_dimm_plug(dimm, MACHINE(ms));
3543 
3544     if (!is_nvdimm) {
3545         addr = object_property_get_uint(OBJECT(dimm),
3546                                         PC_DIMM_ADDR_PROP, &error_abort);
3547         spapr_add_lmbs(dev, addr, size,
3548                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3549     } else {
3550         slot = object_property_get_int(OBJECT(dimm),
3551                                        PC_DIMM_SLOT_PROP, &error_abort);
3552         /* We should have valid slot number at this point */
3553         g_assert(slot >= 0);
3554         spapr_add_nvdimm(dev, slot);
3555     }
3556 }
3557 
3558 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3559                                   Error **errp)
3560 {
3561     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3562     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3563     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3564     PCDIMMDevice *dimm = PC_DIMM(dev);
3565     Error *local_err = NULL;
3566     uint64_t size;
3567     Object *memdev;
3568     hwaddr pagesize;
3569 
3570     if (!smc->dr_lmb_enabled) {
3571         error_setg(errp, "Memory hotplug not supported for this machine");
3572         return;
3573     }
3574 
3575     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3576     if (local_err) {
3577         error_propagate(errp, local_err);
3578         return;
3579     }
3580 
3581     if (is_nvdimm) {
3582         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3583             return;
3584         }
3585     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3586         error_setg(errp, "Hotplugged memory size must be a multiple of "
3587                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3588         return;
3589     }
3590 
3591     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3592                                       &error_abort);
3593     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3594     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3595         return;
3596     }
3597 
3598     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3599 }
3600 
3601 struct SpaprDimmState {
3602     PCDIMMDevice *dimm;
3603     uint32_t nr_lmbs;
3604     QTAILQ_ENTRY(SpaprDimmState) next;
3605 };
3606 
3607 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3608                                                        PCDIMMDevice *dimm)
3609 {
3610     SpaprDimmState *dimm_state = NULL;
3611 
3612     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3613         if (dimm_state->dimm == dimm) {
3614             break;
3615         }
3616     }
3617     return dimm_state;
3618 }
3619 
3620 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3621                                                       uint32_t nr_lmbs,
3622                                                       PCDIMMDevice *dimm)
3623 {
3624     SpaprDimmState *ds = NULL;
3625 
3626     /*
3627      * If this request is for a DIMM whose removal had failed earlier
3628      * (due to guest's refusal to remove the LMBs), we would have this
3629      * dimm already in the pending_dimm_unplugs list. In that
3630      * case don't add again.
3631      */
3632     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3633     if (!ds) {
3634         ds = g_new0(SpaprDimmState, 1);
3635         ds->nr_lmbs = nr_lmbs;
3636         ds->dimm = dimm;
3637         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3638     }
3639     return ds;
3640 }
3641 
3642 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3643                                               SpaprDimmState *dimm_state)
3644 {
3645     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3646     g_free(dimm_state);
3647 }
3648 
3649 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3650                                                         PCDIMMDevice *dimm)
3651 {
3652     SpaprDrc *drc;
3653     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3654                                                   &error_abort);
3655     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3656     uint32_t avail_lmbs = 0;
3657     uint64_t addr_start, addr;
3658     int i;
3659 
3660     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3661                                           &error_abort);
3662 
3663     addr = addr_start;
3664     for (i = 0; i < nr_lmbs; i++) {
3665         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3666                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3667         g_assert(drc);
3668         if (drc->dev) {
3669             avail_lmbs++;
3670         }
3671         addr += SPAPR_MEMORY_BLOCK_SIZE;
3672     }
3673 
3674     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3675 }
3676 
3677 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3678 {
3679     SpaprDimmState *ds;
3680     PCDIMMDevice *dimm;
3681     SpaprDrc *drc;
3682     uint32_t nr_lmbs;
3683     uint64_t size, addr_start, addr;
3684     g_autofree char *qapi_error = NULL;
3685     int i;
3686 
3687     if (!dev) {
3688         return;
3689     }
3690 
3691     dimm = PC_DIMM(dev);
3692     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3693 
3694     /*
3695      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3696      * unplug state, but one of its DRC is marked as unplug_requested.
3697      * This is bad and weird enough to g_assert() out.
3698      */
3699     g_assert(ds);
3700 
3701     spapr_pending_dimm_unplugs_remove(spapr, ds);
3702 
3703     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3704     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3705 
3706     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3707                                           &error_abort);
3708 
3709     addr = addr_start;
3710     for (i = 0; i < nr_lmbs; i++) {
3711         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3712                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3713         g_assert(drc);
3714 
3715         drc->unplug_requested = false;
3716         addr += SPAPR_MEMORY_BLOCK_SIZE;
3717     }
3718 
3719     /*
3720      * Tell QAPI that something happened and the memory
3721      * hotunplug wasn't successful. Keep sending
3722      * MEM_UNPLUG_ERROR even while sending
3723      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3724      * MEM_UNPLUG_ERROR is due.
3725      */
3726     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3727                                  "for device %s", dev->id);
3728 
3729     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3730 
3731     qapi_event_send_device_unplug_guest_error(dev->id,
3732                                               dev->canonical_path);
3733 }
3734 
3735 /* Callback to be called during DRC release. */
3736 void spapr_lmb_release(DeviceState *dev)
3737 {
3738     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3739     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3740     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3741 
3742     /* This information will get lost if a migration occurs
3743      * during the unplug process. In this case recover it. */
3744     if (ds == NULL) {
3745         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3746         g_assert(ds);
3747         /* The DRC being examined by the caller at least must be counted */
3748         g_assert(ds->nr_lmbs);
3749     }
3750 
3751     if (--ds->nr_lmbs) {
3752         return;
3753     }
3754 
3755     /*
3756      * Now that all the LMBs have been removed by the guest, call the
3757      * unplug handler chain. This can never fail.
3758      */
3759     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3760     object_unparent(OBJECT(dev));
3761 }
3762 
3763 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3764 {
3765     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3766     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3767 
3768     /* We really shouldn't get this far without anything to unplug */
3769     g_assert(ds);
3770 
3771     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3772     qdev_unrealize(dev);
3773     spapr_pending_dimm_unplugs_remove(spapr, ds);
3774 }
3775 
3776 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3777                                         DeviceState *dev, Error **errp)
3778 {
3779     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3780     PCDIMMDevice *dimm = PC_DIMM(dev);
3781     uint32_t nr_lmbs;
3782     uint64_t size, addr_start, addr;
3783     int i;
3784     SpaprDrc *drc;
3785 
3786     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3787         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3788         return;
3789     }
3790 
3791     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3792     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3793 
3794     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3795                                           &error_abort);
3796 
3797     /*
3798      * An existing pending dimm state for this DIMM means that there is an
3799      * unplug operation in progress, waiting for the spapr_lmb_release
3800      * callback to complete the job (BQL can't cover that far). In this case,
3801      * bail out to avoid detaching DRCs that were already released.
3802      */
3803     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3804         error_setg(errp, "Memory unplug already in progress for device %s",
3805                    dev->id);
3806         return;
3807     }
3808 
3809     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3810 
3811     addr = addr_start;
3812     for (i = 0; i < nr_lmbs; i++) {
3813         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3814                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3815         g_assert(drc);
3816 
3817         spapr_drc_unplug_request(drc);
3818         addr += SPAPR_MEMORY_BLOCK_SIZE;
3819     }
3820 
3821     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3822                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3823     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3824                                               nr_lmbs, spapr_drc_index(drc));
3825 }
3826 
3827 /* Callback to be called during DRC release. */
3828 void spapr_core_release(DeviceState *dev)
3829 {
3830     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3831 
3832     /* Call the unplug handler chain. This can never fail. */
3833     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3834     object_unparent(OBJECT(dev));
3835 }
3836 
3837 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3838 {
3839     MachineState *ms = MACHINE(hotplug_dev);
3840     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3841     CPUCore *cc = CPU_CORE(dev);
3842     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3843 
3844     if (smc->pre_2_10_has_unused_icps) {
3845         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3846         int i;
3847 
3848         for (i = 0; i < cc->nr_threads; i++) {
3849             CPUState *cs = CPU(sc->threads[i]);
3850 
3851             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3852         }
3853     }
3854 
3855     assert(core_slot);
3856     core_slot->cpu = NULL;
3857     qdev_unrealize(dev);
3858 }
3859 
3860 static
3861 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3862                                Error **errp)
3863 {
3864     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3865     int index;
3866     SpaprDrc *drc;
3867     CPUCore *cc = CPU_CORE(dev);
3868 
3869     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3870         error_setg(errp, "Unable to find CPU core with core-id: %d",
3871                    cc->core_id);
3872         return;
3873     }
3874     if (index == 0) {
3875         error_setg(errp, "Boot CPU core may not be unplugged");
3876         return;
3877     }
3878 
3879     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3880                           spapr_vcpu_id(spapr, cc->core_id));
3881     g_assert(drc);
3882 
3883     if (!spapr_drc_unplug_requested(drc)) {
3884         spapr_drc_unplug_request(drc);
3885     }
3886 
3887     /*
3888      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3889      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3890      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3891      * attempt (e.g. the kernel will refuse to remove the last online
3892      * CPU), we will never attempt it again because unplug_requested
3893      * will still be 'true' in that case.
3894      */
3895     spapr_hotplug_req_remove_by_index(drc);
3896 }
3897 
3898 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3899                            void *fdt, int *fdt_start_offset, Error **errp)
3900 {
3901     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3902     CPUState *cs = CPU(core->threads[0]);
3903     PowerPCCPU *cpu = POWERPC_CPU(cs);
3904     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3905     int id = spapr_get_vcpu_id(cpu);
3906     g_autofree char *nodename = NULL;
3907     int offset;
3908 
3909     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3910     offset = fdt_add_subnode(fdt, 0, nodename);
3911 
3912     spapr_dt_cpu(cs, fdt, offset, spapr);
3913 
3914     /*
3915      * spapr_dt_cpu() does not fill the 'name' property in the
3916      * CPU node. The function is called during boot process, before
3917      * and after CAS, and overwriting the 'name' property written
3918      * by SLOF is not allowed.
3919      *
3920      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3921      * CPUs more compatible with the coldplugged ones, which have
3922      * the 'name' property. Linux Kernel also relies on this
3923      * property to identify CPU nodes.
3924      */
3925     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3926 
3927     *fdt_start_offset = offset;
3928     return 0;
3929 }
3930 
3931 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3932 {
3933     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3934     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3935     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3936     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3937     CPUCore *cc = CPU_CORE(dev);
3938     CPUState *cs;
3939     SpaprDrc *drc;
3940     CPUArchId *core_slot;
3941     int index;
3942     bool hotplugged = spapr_drc_hotplugged(dev);
3943     int i;
3944 
3945     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3946     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3947 
3948     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3949                           spapr_vcpu_id(spapr, cc->core_id));
3950 
3951     g_assert(drc || !mc->has_hotpluggable_cpus);
3952 
3953     if (drc) {
3954         /*
3955          * spapr_core_pre_plug() already buys us this is a brand new
3956          * core being plugged into a free slot. Nothing should already
3957          * be attached to the corresponding DRC.
3958          */
3959         spapr_drc_attach(drc, dev);
3960 
3961         if (hotplugged) {
3962             /*
3963              * Send hotplug notification interrupt to the guest only
3964              * in case of hotplugged CPUs.
3965              */
3966             spapr_hotplug_req_add_by_index(drc);
3967         } else {
3968             spapr_drc_reset(drc);
3969         }
3970     }
3971 
3972     core_slot->cpu = OBJECT(dev);
3973 
3974     /*
3975      * Set compatibility mode to match the boot CPU, which was either set
3976      * by the machine reset code or by CAS. This really shouldn't fail at
3977      * this point.
3978      */
3979     if (hotplugged) {
3980         for (i = 0; i < cc->nr_threads; i++) {
3981             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3982                            &error_abort);
3983         }
3984     }
3985 
3986     if (smc->pre_2_10_has_unused_icps) {
3987         for (i = 0; i < cc->nr_threads; i++) {
3988             cs = CPU(core->threads[i]);
3989             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3990         }
3991     }
3992 }
3993 
3994 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3995                                 Error **errp)
3996 {
3997     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3998     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3999     CPUCore *cc = CPU_CORE(dev);
4000     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4001     const char *type = object_get_typename(OBJECT(dev));
4002     CPUArchId *core_slot;
4003     int index;
4004     unsigned int smp_threads = machine->smp.threads;
4005 
4006     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4007         error_setg(errp, "CPU hotplug not supported for this machine");
4008         return;
4009     }
4010 
4011     if (strcmp(base_core_type, type)) {
4012         error_setg(errp, "CPU core type should be %s", base_core_type);
4013         return;
4014     }
4015 
4016     if (cc->core_id % smp_threads) {
4017         error_setg(errp, "invalid core id %d", cc->core_id);
4018         return;
4019     }
4020 
4021     /*
4022      * In general we should have homogeneous threads-per-core, but old
4023      * (pre hotplug support) machine types allow the last core to have
4024      * reduced threads as a compatibility hack for when we allowed
4025      * total vcpus not a multiple of threads-per-core.
4026      */
4027     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4028         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4029                    smp_threads);
4030         return;
4031     }
4032 
4033     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4034     if (!core_slot) {
4035         error_setg(errp, "core id %d out of range", cc->core_id);
4036         return;
4037     }
4038 
4039     if (core_slot->cpu) {
4040         error_setg(errp, "core %d already populated", cc->core_id);
4041         return;
4042     }
4043 
4044     numa_cpu_pre_plug(core_slot, dev, errp);
4045 }
4046 
4047 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4048                           void *fdt, int *fdt_start_offset, Error **errp)
4049 {
4050     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4051     int intc_phandle;
4052 
4053     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4054     if (intc_phandle <= 0) {
4055         return -1;
4056     }
4057 
4058     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4059         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4060         return -1;
4061     }
4062 
4063     /* generally SLOF creates these, for hotplug it's up to QEMU */
4064     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4065 
4066     return 0;
4067 }
4068 
4069 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4070                                Error **errp)
4071 {
4072     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4073     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4074     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4075     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4076     SpaprDrc *drc;
4077 
4078     if (dev->hotplugged && !smc->dr_phb_enabled) {
4079         error_setg(errp, "PHB hotplug not supported for this machine");
4080         return false;
4081     }
4082 
4083     if (sphb->index == (uint32_t)-1) {
4084         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4085         return false;
4086     }
4087 
4088     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4089     if (drc && drc->dev) {
4090         error_setg(errp, "PHB %d already attached", sphb->index);
4091         return false;
4092     }
4093 
4094     /*
4095      * This will check that sphb->index doesn't exceed the maximum number of
4096      * PHBs for the current machine type.
4097      */
4098     return
4099         smc->phb_placement(spapr, sphb->index,
4100                            &sphb->buid, &sphb->io_win_addr,
4101                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4102                            windows_supported, sphb->dma_liobn,
4103                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4104                            errp);
4105 }
4106 
4107 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4108 {
4109     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4110     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4111     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4112     SpaprDrc *drc;
4113     bool hotplugged = spapr_drc_hotplugged(dev);
4114 
4115     if (!smc->dr_phb_enabled) {
4116         return;
4117     }
4118 
4119     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4120     /* hotplug hooks should check it's enabled before getting this far */
4121     assert(drc);
4122 
4123     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4124     spapr_drc_attach(drc, dev);
4125 
4126     if (hotplugged) {
4127         spapr_hotplug_req_add_by_index(drc);
4128     } else {
4129         spapr_drc_reset(drc);
4130     }
4131 }
4132 
4133 void spapr_phb_release(DeviceState *dev)
4134 {
4135     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4136 
4137     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4138     object_unparent(OBJECT(dev));
4139 }
4140 
4141 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4142 {
4143     qdev_unrealize(dev);
4144 }
4145 
4146 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4147                                      DeviceState *dev, Error **errp)
4148 {
4149     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4150     SpaprDrc *drc;
4151 
4152     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4153     assert(drc);
4154 
4155     if (!spapr_drc_unplug_requested(drc)) {
4156         spapr_drc_unplug_request(drc);
4157         spapr_hotplug_req_remove_by_index(drc);
4158     } else {
4159         error_setg(errp,
4160                    "PCI Host Bridge unplug already in progress for device %s",
4161                    dev->id);
4162     }
4163 }
4164 
4165 static
4166 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4167                               Error **errp)
4168 {
4169     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4170 
4171     if (spapr->tpm_proxy != NULL) {
4172         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4173         return false;
4174     }
4175 
4176     return true;
4177 }
4178 
4179 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4180 {
4181     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4182     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4183 
4184     /* Already checked in spapr_tpm_proxy_pre_plug() */
4185     g_assert(spapr->tpm_proxy == NULL);
4186 
4187     spapr->tpm_proxy = tpm_proxy;
4188 }
4189 
4190 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4191 {
4192     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4193 
4194     qdev_unrealize(dev);
4195     object_unparent(OBJECT(dev));
4196     spapr->tpm_proxy = NULL;
4197 }
4198 
4199 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4200                                       DeviceState *dev, Error **errp)
4201 {
4202     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4203         spapr_memory_plug(hotplug_dev, dev);
4204     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4205         spapr_core_plug(hotplug_dev, dev);
4206     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4207         spapr_phb_plug(hotplug_dev, dev);
4208     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4209         spapr_tpm_proxy_plug(hotplug_dev, dev);
4210     }
4211 }
4212 
4213 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4214                                         DeviceState *dev, Error **errp)
4215 {
4216     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4217         spapr_memory_unplug(hotplug_dev, dev);
4218     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4219         spapr_core_unplug(hotplug_dev, dev);
4220     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4221         spapr_phb_unplug(hotplug_dev, dev);
4222     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4223         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4224     }
4225 }
4226 
4227 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4228 {
4229     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4230         /*
4231          * CAS will process all pending unplug requests.
4232          *
4233          * HACK: a guest could theoretically have cleared all bits in OV5,
4234          * but none of the guests we care for do.
4235          */
4236         spapr_ovec_empty(spapr->ov5_cas);
4237 }
4238 
4239 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4240                                                 DeviceState *dev, Error **errp)
4241 {
4242     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4243     MachineClass *mc = MACHINE_GET_CLASS(sms);
4244     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4245 
4246     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4247         if (spapr_memory_hot_unplug_supported(sms)) {
4248             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4249         } else {
4250             error_setg(errp, "Memory hot unplug not supported for this guest");
4251         }
4252     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4253         if (!mc->has_hotpluggable_cpus) {
4254             error_setg(errp, "CPU hot unplug not supported on this machine");
4255             return;
4256         }
4257         spapr_core_unplug_request(hotplug_dev, dev, errp);
4258     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4259         if (!smc->dr_phb_enabled) {
4260             error_setg(errp, "PHB hot unplug not supported on this machine");
4261             return;
4262         }
4263         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4264     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4265         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4266     }
4267 }
4268 
4269 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4270                                           DeviceState *dev, Error **errp)
4271 {
4272     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4273         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4274     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4275         spapr_core_pre_plug(hotplug_dev, dev, errp);
4276     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4277         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4278     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4279         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4280     }
4281 }
4282 
4283 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4284                                                  DeviceState *dev)
4285 {
4286     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4287         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4288         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4289         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4290         return HOTPLUG_HANDLER(machine);
4291     }
4292     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4293         PCIDevice *pcidev = PCI_DEVICE(dev);
4294         PCIBus *root = pci_device_root_bus(pcidev);
4295         SpaprPhbState *phb =
4296             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4297                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4298 
4299         if (phb) {
4300             return HOTPLUG_HANDLER(phb);
4301         }
4302     }
4303     return NULL;
4304 }
4305 
4306 static CpuInstanceProperties
4307 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4308 {
4309     CPUArchId *core_slot;
4310     MachineClass *mc = MACHINE_GET_CLASS(machine);
4311 
4312     /* make sure possible_cpu are intialized */
4313     mc->possible_cpu_arch_ids(machine);
4314     /* get CPU core slot containing thread that matches cpu_index */
4315     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4316     assert(core_slot);
4317     return core_slot->props;
4318 }
4319 
4320 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4321 {
4322     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4323 }
4324 
4325 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4326 {
4327     int i;
4328     unsigned int smp_threads = machine->smp.threads;
4329     unsigned int smp_cpus = machine->smp.cpus;
4330     const char *core_type;
4331     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4332     MachineClass *mc = MACHINE_GET_CLASS(machine);
4333 
4334     if (!mc->has_hotpluggable_cpus) {
4335         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4336     }
4337     if (machine->possible_cpus) {
4338         assert(machine->possible_cpus->len == spapr_max_cores);
4339         return machine->possible_cpus;
4340     }
4341 
4342     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4343     if (!core_type) {
4344         error_report("Unable to find sPAPR CPU Core definition");
4345         exit(1);
4346     }
4347 
4348     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4349                              sizeof(CPUArchId) * spapr_max_cores);
4350     machine->possible_cpus->len = spapr_max_cores;
4351     for (i = 0; i < machine->possible_cpus->len; i++) {
4352         int core_id = i * smp_threads;
4353 
4354         machine->possible_cpus->cpus[i].type = core_type;
4355         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4356         machine->possible_cpus->cpus[i].arch_id = core_id;
4357         machine->possible_cpus->cpus[i].props.has_core_id = true;
4358         machine->possible_cpus->cpus[i].props.core_id = core_id;
4359     }
4360     return machine->possible_cpus;
4361 }
4362 
4363 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4364                                 uint64_t *buid, hwaddr *pio,
4365                                 hwaddr *mmio32, hwaddr *mmio64,
4366                                 unsigned n_dma, uint32_t *liobns,
4367                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4368 {
4369     /*
4370      * New-style PHB window placement.
4371      *
4372      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4373      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4374      * windows.
4375      *
4376      * Some guest kernels can't work with MMIO windows above 1<<46
4377      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4378      *
4379      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4380      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4381      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4382      * 1TiB 64-bit MMIO windows for each PHB.
4383      */
4384     const uint64_t base_buid = 0x800000020000000ULL;
4385     int i;
4386 
4387     /* Sanity check natural alignments */
4388     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4389     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4390     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4391     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4392     /* Sanity check bounds */
4393     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4394                       SPAPR_PCI_MEM32_WIN_SIZE);
4395     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4396                       SPAPR_PCI_MEM64_WIN_SIZE);
4397 
4398     if (index >= SPAPR_MAX_PHBS) {
4399         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4400                    SPAPR_MAX_PHBS - 1);
4401         return false;
4402     }
4403 
4404     *buid = base_buid + index;
4405     for (i = 0; i < n_dma; ++i) {
4406         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4407     }
4408 
4409     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4410     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4411     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4412 
4413     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4414     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4415     return true;
4416 }
4417 
4418 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4419 {
4420     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4421 
4422     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4423 }
4424 
4425 static void spapr_ics_resend(XICSFabric *dev)
4426 {
4427     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4428 
4429     ics_resend(spapr->ics);
4430 }
4431 
4432 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4433 {
4434     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4435 
4436     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4437 }
4438 
4439 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4440                                  Monitor *mon)
4441 {
4442     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4443 
4444     spapr_irq_print_info(spapr, mon);
4445     monitor_printf(mon, "irqchip: %s\n",
4446                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4447 }
4448 
4449 /*
4450  * This is a XIVE only operation
4451  */
4452 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4453                            uint8_t nvt_blk, uint32_t nvt_idx,
4454                            bool cam_ignore, uint8_t priority,
4455                            uint32_t logic_serv, XiveTCTXMatch *match)
4456 {
4457     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4458     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4459     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4460     int count;
4461 
4462     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4463                            priority, logic_serv, match);
4464     if (count < 0) {
4465         return count;
4466     }
4467 
4468     /*
4469      * When we implement the save and restore of the thread interrupt
4470      * contexts in the enter/exit CPU handlers of the machine and the
4471      * escalations in QEMU, we should be able to handle non dispatched
4472      * vCPUs.
4473      *
4474      * Until this is done, the sPAPR machine should find at least one
4475      * matching context always.
4476      */
4477     if (count == 0) {
4478         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4479                       nvt_blk, nvt_idx);
4480     }
4481 
4482     return count;
4483 }
4484 
4485 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4486 {
4487     return cpu->vcpu_id;
4488 }
4489 
4490 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4491 {
4492     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4493     MachineState *ms = MACHINE(spapr);
4494     int vcpu_id;
4495 
4496     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4497 
4498     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4499         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4500         error_append_hint(errp, "Adjust the number of cpus to %d "
4501                           "or try to raise the number of threads per core\n",
4502                           vcpu_id * ms->smp.threads / spapr->vsmt);
4503         return false;
4504     }
4505 
4506     cpu->vcpu_id = vcpu_id;
4507     return true;
4508 }
4509 
4510 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4511 {
4512     CPUState *cs;
4513 
4514     CPU_FOREACH(cs) {
4515         PowerPCCPU *cpu = POWERPC_CPU(cs);
4516 
4517         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4518             return cpu;
4519         }
4520     }
4521 
4522     return NULL;
4523 }
4524 
4525 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4526 {
4527     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4528 
4529     return spapr_cpu->in_nested;
4530 }
4531 
4532 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4533 {
4534     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4535 
4536     /* These are only called by TCG, KVM maintains dispatch state */
4537 
4538     spapr_cpu->prod = false;
4539     if (spapr_cpu->vpa_addr) {
4540         CPUState *cs = CPU(cpu);
4541         uint32_t dispatch;
4542 
4543         dispatch = ldl_be_phys(cs->as,
4544                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4545         dispatch++;
4546         if ((dispatch & 1) != 0) {
4547             qemu_log_mask(LOG_GUEST_ERROR,
4548                           "VPA: incorrect dispatch counter value for "
4549                           "dispatched partition %u, correcting.\n", dispatch);
4550             dispatch++;
4551         }
4552         stl_be_phys(cs->as,
4553                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4554     }
4555 }
4556 
4557 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4558 {
4559     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4560 
4561     if (spapr_cpu->vpa_addr) {
4562         CPUState *cs = CPU(cpu);
4563         uint32_t dispatch;
4564 
4565         dispatch = ldl_be_phys(cs->as,
4566                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4567         dispatch++;
4568         if ((dispatch & 1) != 1) {
4569             qemu_log_mask(LOG_GUEST_ERROR,
4570                           "VPA: incorrect dispatch counter value for "
4571                           "preempted partition %u, correcting.\n", dispatch);
4572             dispatch++;
4573         }
4574         stl_be_phys(cs->as,
4575                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4576     }
4577 }
4578 
4579 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4580 {
4581     MachineClass *mc = MACHINE_CLASS(oc);
4582     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4583     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4584     NMIClass *nc = NMI_CLASS(oc);
4585     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4586     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4587     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4588     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4589     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4590     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4591 
4592     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4593     mc->ignore_boot_device_suffixes = true;
4594 
4595     /*
4596      * We set up the default / latest behaviour here.  The class_init
4597      * functions for the specific versioned machine types can override
4598      * these details for backwards compatibility
4599      */
4600     mc->init = spapr_machine_init;
4601     mc->reset = spapr_machine_reset;
4602     mc->block_default_type = IF_SCSI;
4603 
4604     /*
4605      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4606      * should be limited by the host capability instead of hardcoded.
4607      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4608      * guests are welcome to have as many CPUs as the host are capable
4609      * of emulate.
4610      */
4611     mc->max_cpus = INT32_MAX;
4612 
4613     mc->no_parallel = 1;
4614     mc->default_boot_order = "";
4615     mc->default_ram_size = 512 * MiB;
4616     mc->default_ram_id = "ppc_spapr.ram";
4617     mc->default_display = "std";
4618     mc->kvm_type = spapr_kvm_type;
4619     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4620     mc->pci_allow_0_address = true;
4621     assert(!mc->get_hotplug_handler);
4622     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4623     hc->pre_plug = spapr_machine_device_pre_plug;
4624     hc->plug = spapr_machine_device_plug;
4625     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4626     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4627     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4628     hc->unplug_request = spapr_machine_device_unplug_request;
4629     hc->unplug = spapr_machine_device_unplug;
4630 
4631     smc->dr_lmb_enabled = true;
4632     smc->update_dt_enabled = true;
4633     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4634     mc->has_hotpluggable_cpus = true;
4635     mc->nvdimm_supported = true;
4636     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4637     fwc->get_dev_path = spapr_get_fw_dev_path;
4638     nc->nmi_monitor_handler = spapr_nmi;
4639     smc->phb_placement = spapr_phb_placement;
4640     vhc->cpu_in_nested = spapr_cpu_in_nested;
4641     vhc->deliver_hv_excp = spapr_exit_nested;
4642     vhc->hypercall = emulate_spapr_hypercall;
4643     vhc->hpt_mask = spapr_hpt_mask;
4644     vhc->map_hptes = spapr_map_hptes;
4645     vhc->unmap_hptes = spapr_unmap_hptes;
4646     vhc->hpte_set_c = spapr_hpte_set_c;
4647     vhc->hpte_set_r = spapr_hpte_set_r;
4648     vhc->get_pate = spapr_get_pate;
4649     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4650     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4651     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4652     xic->ics_get = spapr_ics_get;
4653     xic->ics_resend = spapr_ics_resend;
4654     xic->icp_get = spapr_icp_get;
4655     ispc->print_info = spapr_pic_print_info;
4656     /* Force NUMA node memory size to be a multiple of
4657      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4658      * in which LMBs are represented and hot-added
4659      */
4660     mc->numa_mem_align_shift = 28;
4661     mc->auto_enable_numa = true;
4662 
4663     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4664     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4665     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4666     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4667     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4668     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4669     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4670     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4671     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4672     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4673     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4674     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4675     spapr_caps_add_properties(smc);
4676     smc->irq = &spapr_irq_dual;
4677     smc->dr_phb_enabled = true;
4678     smc->linux_pci_probe = true;
4679     smc->smp_threads_vsmt = true;
4680     smc->nr_xirqs = SPAPR_NR_XIRQS;
4681     xfc->match_nvt = spapr_match_nvt;
4682     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4683     vmc->quiesce = spapr_vof_quiesce;
4684     vmc->setprop = spapr_vof_setprop;
4685 }
4686 
4687 static const TypeInfo spapr_machine_info = {
4688     .name          = TYPE_SPAPR_MACHINE,
4689     .parent        = TYPE_MACHINE,
4690     .abstract      = true,
4691     .instance_size = sizeof(SpaprMachineState),
4692     .instance_init = spapr_instance_init,
4693     .instance_finalize = spapr_machine_finalizefn,
4694     .class_size    = sizeof(SpaprMachineClass),
4695     .class_init    = spapr_machine_class_init,
4696     .interfaces = (InterfaceInfo[]) {
4697         { TYPE_FW_PATH_PROVIDER },
4698         { TYPE_NMI },
4699         { TYPE_HOTPLUG_HANDLER },
4700         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4701         { TYPE_XICS_FABRIC },
4702         { TYPE_INTERRUPT_STATS_PROVIDER },
4703         { TYPE_XIVE_FABRIC },
4704         { TYPE_VOF_MACHINE_IF },
4705         { }
4706     },
4707 };
4708 
4709 static void spapr_machine_latest_class_options(MachineClass *mc)
4710 {
4711     mc->alias = "pseries";
4712     mc->is_default = true;
4713 }
4714 
4715 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4716     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4717                                                     void *data)      \
4718     {                                                                \
4719         MachineClass *mc = MACHINE_CLASS(oc);                        \
4720         spapr_machine_##suffix##_class_options(mc);                  \
4721         if (latest) {                                                \
4722             spapr_machine_latest_class_options(mc);                  \
4723         }                                                            \
4724     }                                                                \
4725     static const TypeInfo spapr_machine_##suffix##_info = {          \
4726         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4727         .parent = TYPE_SPAPR_MACHINE,                                \
4728         .class_init = spapr_machine_##suffix##_class_init,           \
4729     };                                                               \
4730     static void spapr_machine_register_##suffix(void)                \
4731     {                                                                \
4732         type_register(&spapr_machine_##suffix##_info);               \
4733     }                                                                \
4734     type_init(spapr_machine_register_##suffix)
4735 
4736 /*
4737  * pseries-7.2
4738  */
4739 static void spapr_machine_7_2_class_options(MachineClass *mc)
4740 {
4741     /* Defaults for the latest behaviour inherited from the base class */
4742 }
4743 
4744 DEFINE_SPAPR_MACHINE(7_2, "7.2", true);
4745 
4746 /*
4747  * pseries-7.1
4748  */
4749 static void spapr_machine_7_1_class_options(MachineClass *mc)
4750 {
4751     spapr_machine_7_2_class_options(mc);
4752     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4753 }
4754 
4755 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4756 
4757 /*
4758  * pseries-7.0
4759  */
4760 static void spapr_machine_7_0_class_options(MachineClass *mc)
4761 {
4762     spapr_machine_7_1_class_options(mc);
4763     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4764 }
4765 
4766 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4767 
4768 /*
4769  * pseries-6.2
4770  */
4771 static void spapr_machine_6_2_class_options(MachineClass *mc)
4772 {
4773     spapr_machine_7_0_class_options(mc);
4774     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4775 }
4776 
4777 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4778 
4779 /*
4780  * pseries-6.1
4781  */
4782 static void spapr_machine_6_1_class_options(MachineClass *mc)
4783 {
4784     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4785 
4786     spapr_machine_6_2_class_options(mc);
4787     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4788     smc->pre_6_2_numa_affinity = true;
4789     mc->smp_props.prefer_sockets = true;
4790 }
4791 
4792 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4793 
4794 /*
4795  * pseries-6.0
4796  */
4797 static void spapr_machine_6_0_class_options(MachineClass *mc)
4798 {
4799     spapr_machine_6_1_class_options(mc);
4800     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4801 }
4802 
4803 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4804 
4805 /*
4806  * pseries-5.2
4807  */
4808 static void spapr_machine_5_2_class_options(MachineClass *mc)
4809 {
4810     spapr_machine_6_0_class_options(mc);
4811     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4812 }
4813 
4814 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4815 
4816 /*
4817  * pseries-5.1
4818  */
4819 static void spapr_machine_5_1_class_options(MachineClass *mc)
4820 {
4821     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4822 
4823     spapr_machine_5_2_class_options(mc);
4824     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4825     smc->pre_5_2_numa_associativity = true;
4826 }
4827 
4828 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4829 
4830 /*
4831  * pseries-5.0
4832  */
4833 static void spapr_machine_5_0_class_options(MachineClass *mc)
4834 {
4835     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4836     static GlobalProperty compat[] = {
4837         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4838     };
4839 
4840     spapr_machine_5_1_class_options(mc);
4841     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4842     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4843     mc->numa_mem_supported = true;
4844     smc->pre_5_1_assoc_refpoints = true;
4845 }
4846 
4847 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4848 
4849 /*
4850  * pseries-4.2
4851  */
4852 static void spapr_machine_4_2_class_options(MachineClass *mc)
4853 {
4854     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4855 
4856     spapr_machine_5_0_class_options(mc);
4857     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4858     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4859     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4860     smc->rma_limit = 16 * GiB;
4861     mc->nvdimm_supported = false;
4862 }
4863 
4864 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4865 
4866 /*
4867  * pseries-4.1
4868  */
4869 static void spapr_machine_4_1_class_options(MachineClass *mc)
4870 {
4871     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4872     static GlobalProperty compat[] = {
4873         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4874         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4875     };
4876 
4877     spapr_machine_4_2_class_options(mc);
4878     smc->linux_pci_probe = false;
4879     smc->smp_threads_vsmt = false;
4880     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4881     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4882 }
4883 
4884 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4885 
4886 /*
4887  * pseries-4.0
4888  */
4889 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4890                               uint64_t *buid, hwaddr *pio,
4891                               hwaddr *mmio32, hwaddr *mmio64,
4892                               unsigned n_dma, uint32_t *liobns,
4893                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4894 {
4895     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4896                              liobns, nv2gpa, nv2atsd, errp)) {
4897         return false;
4898     }
4899 
4900     *nv2gpa = 0;
4901     *nv2atsd = 0;
4902     return true;
4903 }
4904 static void spapr_machine_4_0_class_options(MachineClass *mc)
4905 {
4906     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4907 
4908     spapr_machine_4_1_class_options(mc);
4909     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4910     smc->phb_placement = phb_placement_4_0;
4911     smc->irq = &spapr_irq_xics;
4912     smc->pre_4_1_migration = true;
4913 }
4914 
4915 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4916 
4917 /*
4918  * pseries-3.1
4919  */
4920 static void spapr_machine_3_1_class_options(MachineClass *mc)
4921 {
4922     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4923 
4924     spapr_machine_4_0_class_options(mc);
4925     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4926 
4927     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4928     smc->update_dt_enabled = false;
4929     smc->dr_phb_enabled = false;
4930     smc->broken_host_serial_model = true;
4931     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4932     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4933     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4934     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4935 }
4936 
4937 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4938 
4939 /*
4940  * pseries-3.0
4941  */
4942 
4943 static void spapr_machine_3_0_class_options(MachineClass *mc)
4944 {
4945     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4946 
4947     spapr_machine_3_1_class_options(mc);
4948     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4949 
4950     smc->legacy_irq_allocation = true;
4951     smc->nr_xirqs = 0x400;
4952     smc->irq = &spapr_irq_xics_legacy;
4953 }
4954 
4955 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4956 
4957 /*
4958  * pseries-2.12
4959  */
4960 static void spapr_machine_2_12_class_options(MachineClass *mc)
4961 {
4962     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4963     static GlobalProperty compat[] = {
4964         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4965         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4966     };
4967 
4968     spapr_machine_3_0_class_options(mc);
4969     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4970     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4971 
4972     /* We depend on kvm_enabled() to choose a default value for the
4973      * hpt-max-page-size capability. Of course we can't do it here
4974      * because this is too early and the HW accelerator isn't initialzed
4975      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4976      */
4977     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4978 }
4979 
4980 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4981 
4982 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4983 {
4984     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4985 
4986     spapr_machine_2_12_class_options(mc);
4987     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4988     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4989     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4990 }
4991 
4992 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4993 
4994 /*
4995  * pseries-2.11
4996  */
4997 
4998 static void spapr_machine_2_11_class_options(MachineClass *mc)
4999 {
5000     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5001 
5002     spapr_machine_2_12_class_options(mc);
5003     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5004     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5005 }
5006 
5007 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5008 
5009 /*
5010  * pseries-2.10
5011  */
5012 
5013 static void spapr_machine_2_10_class_options(MachineClass *mc)
5014 {
5015     spapr_machine_2_11_class_options(mc);
5016     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5017 }
5018 
5019 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5020 
5021 /*
5022  * pseries-2.9
5023  */
5024 
5025 static void spapr_machine_2_9_class_options(MachineClass *mc)
5026 {
5027     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5028     static GlobalProperty compat[] = {
5029         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5030     };
5031 
5032     spapr_machine_2_10_class_options(mc);
5033     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5034     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5035     smc->pre_2_10_has_unused_icps = true;
5036     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5037 }
5038 
5039 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5040 
5041 /*
5042  * pseries-2.8
5043  */
5044 
5045 static void spapr_machine_2_8_class_options(MachineClass *mc)
5046 {
5047     static GlobalProperty compat[] = {
5048         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5049     };
5050 
5051     spapr_machine_2_9_class_options(mc);
5052     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5053     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5054     mc->numa_mem_align_shift = 23;
5055 }
5056 
5057 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5058 
5059 /*
5060  * pseries-2.7
5061  */
5062 
5063 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5064                               uint64_t *buid, hwaddr *pio,
5065                               hwaddr *mmio32, hwaddr *mmio64,
5066                               unsigned n_dma, uint32_t *liobns,
5067                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5068 {
5069     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5070     const uint64_t base_buid = 0x800000020000000ULL;
5071     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5072     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5073     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5074     const uint32_t max_index = 255;
5075     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5076 
5077     uint64_t ram_top = MACHINE(spapr)->ram_size;
5078     hwaddr phb0_base, phb_base;
5079     int i;
5080 
5081     /* Do we have device memory? */
5082     if (MACHINE(spapr)->maxram_size > ram_top) {
5083         /* Can't just use maxram_size, because there may be an
5084          * alignment gap between normal and device memory regions
5085          */
5086         ram_top = MACHINE(spapr)->device_memory->base +
5087             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5088     }
5089 
5090     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5091 
5092     if (index > max_index) {
5093         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5094                    max_index);
5095         return false;
5096     }
5097 
5098     *buid = base_buid + index;
5099     for (i = 0; i < n_dma; ++i) {
5100         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5101     }
5102 
5103     phb_base = phb0_base + index * phb_spacing;
5104     *pio = phb_base + pio_offset;
5105     *mmio32 = phb_base + mmio_offset;
5106     /*
5107      * We don't set the 64-bit MMIO window, relying on the PHB's
5108      * fallback behaviour of automatically splitting a large "32-bit"
5109      * window into contiguous 32-bit and 64-bit windows
5110      */
5111 
5112     *nv2gpa = 0;
5113     *nv2atsd = 0;
5114     return true;
5115 }
5116 
5117 static void spapr_machine_2_7_class_options(MachineClass *mc)
5118 {
5119     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5120     static GlobalProperty compat[] = {
5121         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5122         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5123         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5124         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5125     };
5126 
5127     spapr_machine_2_8_class_options(mc);
5128     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5129     mc->default_machine_opts = "modern-hotplug-events=off";
5130     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5131     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5132     smc->phb_placement = phb_placement_2_7;
5133 }
5134 
5135 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5136 
5137 /*
5138  * pseries-2.6
5139  */
5140 
5141 static void spapr_machine_2_6_class_options(MachineClass *mc)
5142 {
5143     static GlobalProperty compat[] = {
5144         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5145     };
5146 
5147     spapr_machine_2_7_class_options(mc);
5148     mc->has_hotpluggable_cpus = false;
5149     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5150     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5151 }
5152 
5153 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5154 
5155 /*
5156  * pseries-2.5
5157  */
5158 
5159 static void spapr_machine_2_5_class_options(MachineClass *mc)
5160 {
5161     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5162     static GlobalProperty compat[] = {
5163         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5164     };
5165 
5166     spapr_machine_2_6_class_options(mc);
5167     smc->use_ohci_by_default = true;
5168     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5169     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5170 }
5171 
5172 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5173 
5174 /*
5175  * pseries-2.4
5176  */
5177 
5178 static void spapr_machine_2_4_class_options(MachineClass *mc)
5179 {
5180     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5181 
5182     spapr_machine_2_5_class_options(mc);
5183     smc->dr_lmb_enabled = false;
5184     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5185 }
5186 
5187 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5188 
5189 /*
5190  * pseries-2.3
5191  */
5192 
5193 static void spapr_machine_2_3_class_options(MachineClass *mc)
5194 {
5195     static GlobalProperty compat[] = {
5196         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5197     };
5198     spapr_machine_2_4_class_options(mc);
5199     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5200     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5201 }
5202 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5203 
5204 /*
5205  * pseries-2.2
5206  */
5207 
5208 static void spapr_machine_2_2_class_options(MachineClass *mc)
5209 {
5210     static GlobalProperty compat[] = {
5211         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5212     };
5213 
5214     spapr_machine_2_3_class_options(mc);
5215     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5216     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5217     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5218 }
5219 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5220 
5221 /*
5222  * pseries-2.1
5223  */
5224 
5225 static void spapr_machine_2_1_class_options(MachineClass *mc)
5226 {
5227     spapr_machine_2_2_class_options(mc);
5228     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5229 }
5230 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5231 
5232 static void spapr_machine_register_types(void)
5233 {
5234     type_register_static(&spapr_machine_info);
5235 }
5236 
5237 type_init(spapr_machine_register_types)
5238