1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/numa.h" 31 #include "hw/hw.h" 32 #include "qemu/log.h" 33 #include "hw/fw-path-provider.h" 34 #include "elf.h" 35 #include "net/net.h" 36 #include "sysemu/device_tree.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/device_tree.h" 41 #include "kvm_ppc.h" 42 #include "migration/migration.h" 43 #include "mmu-hash64.h" 44 #include "qom/cpu.h" 45 46 #include "hw/boards.h" 47 #include "hw/ppc/ppc.h" 48 #include "hw/loader.h" 49 50 #include "hw/ppc/fdt.h" 51 #include "hw/ppc/spapr.h" 52 #include "hw/ppc/spapr_vio.h" 53 #include "hw/pci-host/spapr.h" 54 #include "hw/ppc/xics.h" 55 #include "hw/pci/msi.h" 56 57 #include "hw/pci/pci.h" 58 #include "hw/scsi/scsi.h" 59 #include "hw/virtio/virtio-scsi.h" 60 61 #include "exec/address-spaces.h" 62 #include "hw/usb.h" 63 #include "qemu/config-file.h" 64 #include "qemu/error-report.h" 65 #include "trace.h" 66 #include "hw/nmi.h" 67 68 #include "hw/compat.h" 69 #include "qemu/cutils.h" 70 #include "hw/ppc/spapr_cpu_core.h" 71 #include "qmp-commands.h" 72 73 #include <libfdt.h> 74 75 /* SLOF memory layout: 76 * 77 * SLOF raw image loaded at 0, copies its romfs right below the flat 78 * device-tree, then position SLOF itself 31M below that 79 * 80 * So we set FW_OVERHEAD to 40MB which should account for all of that 81 * and more 82 * 83 * We load our kernel at 4M, leaving space for SLOF initial image 84 */ 85 #define FDT_MAX_SIZE 0x100000 86 #define RTAS_MAX_SIZE 0x10000 87 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 88 #define FW_MAX_SIZE 0x400000 89 #define FW_FILE_NAME "slof.bin" 90 #define FW_OVERHEAD 0x2800000 91 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 92 93 #define MIN_RMA_SLOF 128UL 94 95 #define PHANDLE_XICP 0x00001111 96 97 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) 98 99 static XICSState *try_create_xics(const char *type, int nr_servers, 100 int nr_irqs, Error **errp) 101 { 102 Error *err = NULL; 103 DeviceState *dev; 104 105 dev = qdev_create(NULL, type); 106 qdev_prop_set_uint32(dev, "nr_servers", nr_servers); 107 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs); 108 object_property_set_bool(OBJECT(dev), true, "realized", &err); 109 if (err) { 110 error_propagate(errp, err); 111 object_unparent(OBJECT(dev)); 112 return NULL; 113 } 114 return XICS_COMMON(dev); 115 } 116 117 static XICSState *xics_system_init(MachineState *machine, 118 int nr_servers, int nr_irqs, Error **errp) 119 { 120 XICSState *xics = NULL; 121 122 if (kvm_enabled()) { 123 Error *err = NULL; 124 125 if (machine_kernel_irqchip_allowed(machine)) { 126 xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs, 127 &err); 128 } 129 if (machine_kernel_irqchip_required(machine) && !xics) { 130 error_reportf_err(err, 131 "kernel_irqchip requested but unavailable: "); 132 } else { 133 error_free(err); 134 } 135 } 136 137 if (!xics) { 138 xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp); 139 } 140 141 return xics; 142 } 143 144 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 145 int smt_threads) 146 { 147 int i, ret = 0; 148 uint32_t servers_prop[smt_threads]; 149 uint32_t gservers_prop[smt_threads * 2]; 150 int index = ppc_get_vcpu_dt_id(cpu); 151 152 if (cpu->cpu_version) { 153 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version); 154 if (ret < 0) { 155 return ret; 156 } 157 } 158 159 /* Build interrupt servers and gservers properties */ 160 for (i = 0; i < smt_threads; i++) { 161 servers_prop[i] = cpu_to_be32(index + i); 162 /* Hack, direct the group queues back to cpu 0 */ 163 gservers_prop[i*2] = cpu_to_be32(index + i); 164 gservers_prop[i*2 + 1] = 0; 165 } 166 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 167 servers_prop, sizeof(servers_prop)); 168 if (ret < 0) { 169 return ret; 170 } 171 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 172 gservers_prop, sizeof(gservers_prop)); 173 174 return ret; 175 } 176 177 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs) 178 { 179 int ret = 0; 180 PowerPCCPU *cpu = POWERPC_CPU(cs); 181 int index = ppc_get_vcpu_dt_id(cpu); 182 uint32_t associativity[] = {cpu_to_be32(0x5), 183 cpu_to_be32(0x0), 184 cpu_to_be32(0x0), 185 cpu_to_be32(0x0), 186 cpu_to_be32(cs->numa_node), 187 cpu_to_be32(index)}; 188 189 /* Advertise NUMA via ibm,associativity */ 190 if (nb_numa_nodes > 1) { 191 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, 192 sizeof(associativity)); 193 } 194 195 return ret; 196 } 197 198 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 199 { 200 int ret = 0, offset, cpus_offset; 201 CPUState *cs; 202 char cpu_model[32]; 203 int smt = kvmppc_smt_threads(); 204 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 205 206 CPU_FOREACH(cs) { 207 PowerPCCPU *cpu = POWERPC_CPU(cs); 208 DeviceClass *dc = DEVICE_GET_CLASS(cs); 209 int index = ppc_get_vcpu_dt_id(cpu); 210 211 if ((index % smt) != 0) { 212 continue; 213 } 214 215 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 216 217 cpus_offset = fdt_path_offset(fdt, "/cpus"); 218 if (cpus_offset < 0) { 219 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), 220 "cpus"); 221 if (cpus_offset < 0) { 222 return cpus_offset; 223 } 224 } 225 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 226 if (offset < 0) { 227 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 228 if (offset < 0) { 229 return offset; 230 } 231 } 232 233 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 234 pft_size_prop, sizeof(pft_size_prop)); 235 if (ret < 0) { 236 return ret; 237 } 238 239 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs); 240 if (ret < 0) { 241 return ret; 242 } 243 244 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, 245 ppc_get_compat_smt_threads(cpu)); 246 if (ret < 0) { 247 return ret; 248 } 249 } 250 return ret; 251 } 252 253 static hwaddr spapr_node0_size(void) 254 { 255 MachineState *machine = MACHINE(qdev_get_machine()); 256 257 if (nb_numa_nodes) { 258 int i; 259 for (i = 0; i < nb_numa_nodes; ++i) { 260 if (numa_info[i].node_mem) { 261 return MIN(pow2floor(numa_info[i].node_mem), 262 machine->ram_size); 263 } 264 } 265 } 266 return machine->ram_size; 267 } 268 269 static void add_str(GString *s, const gchar *s1) 270 { 271 g_string_append_len(s, s1, strlen(s1) + 1); 272 } 273 274 static void *spapr_create_fdt_skel(hwaddr initrd_base, 275 hwaddr initrd_size, 276 hwaddr kernel_size, 277 bool little_endian, 278 const char *kernel_cmdline, 279 uint32_t epow_irq) 280 { 281 void *fdt; 282 uint32_t start_prop = cpu_to_be32(initrd_base); 283 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); 284 GString *hypertas = g_string_sized_new(256); 285 GString *qemu_hypertas = g_string_sized_new(256); 286 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; 287 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)}; 288 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; 289 char *buf; 290 291 add_str(hypertas, "hcall-pft"); 292 add_str(hypertas, "hcall-term"); 293 add_str(hypertas, "hcall-dabr"); 294 add_str(hypertas, "hcall-interrupt"); 295 add_str(hypertas, "hcall-tce"); 296 add_str(hypertas, "hcall-vio"); 297 add_str(hypertas, "hcall-splpar"); 298 add_str(hypertas, "hcall-bulk"); 299 add_str(hypertas, "hcall-set-mode"); 300 add_str(hypertas, "hcall-sprg0"); 301 add_str(hypertas, "hcall-copy"); 302 add_str(hypertas, "hcall-debug"); 303 add_str(qemu_hypertas, "hcall-memop1"); 304 305 fdt = g_malloc0(FDT_MAX_SIZE); 306 _FDT((fdt_create(fdt, FDT_MAX_SIZE))); 307 308 if (kernel_size) { 309 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); 310 } 311 if (initrd_size) { 312 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); 313 } 314 _FDT((fdt_finish_reservemap(fdt))); 315 316 /* Root node */ 317 _FDT((fdt_begin_node(fdt, ""))); 318 _FDT((fdt_property_string(fdt, "device_type", "chrp"))); 319 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); 320 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries"))); 321 322 /* 323 * Add info to guest to indentify which host is it being run on 324 * and what is the uuid of the guest 325 */ 326 if (kvmppc_get_host_model(&buf)) { 327 _FDT((fdt_property_string(fdt, "host-model", buf))); 328 g_free(buf); 329 } 330 if (kvmppc_get_host_serial(&buf)) { 331 _FDT((fdt_property_string(fdt, "host-serial", buf))); 332 g_free(buf); 333 } 334 335 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 336 337 _FDT((fdt_property_string(fdt, "vm,uuid", buf))); 338 if (qemu_uuid_set) { 339 _FDT((fdt_property_string(fdt, "system-id", buf))); 340 } 341 g_free(buf); 342 343 if (qemu_get_vm_name()) { 344 _FDT((fdt_property_string(fdt, "ibm,partition-name", 345 qemu_get_vm_name()))); 346 } 347 348 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); 349 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); 350 351 /* /chosen */ 352 _FDT((fdt_begin_node(fdt, "chosen"))); 353 354 /* Set Form1_affinity */ 355 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); 356 357 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); 358 _FDT((fdt_property(fdt, "linux,initrd-start", 359 &start_prop, sizeof(start_prop)))); 360 _FDT((fdt_property(fdt, "linux,initrd-end", 361 &end_prop, sizeof(end_prop)))); 362 if (kernel_size) { 363 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 364 cpu_to_be64(kernel_size) }; 365 366 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); 367 if (little_endian) { 368 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0))); 369 } 370 } 371 if (boot_menu) { 372 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu))); 373 } 374 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); 375 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); 376 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); 377 378 _FDT((fdt_end_node(fdt))); 379 380 /* RTAS */ 381 _FDT((fdt_begin_node(fdt, "rtas"))); 382 383 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 384 add_str(hypertas, "hcall-multi-tce"); 385 } 386 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str, 387 hypertas->len))); 388 g_string_free(hypertas, TRUE); 389 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str, 390 qemu_hypertas->len))); 391 g_string_free(qemu_hypertas, TRUE); 392 393 _FDT((fdt_property(fdt, "ibm,associativity-reference-points", 394 refpoints, sizeof(refpoints)))); 395 396 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX))); 397 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate", 398 RTAS_EVENT_SCAN_RATE))); 399 400 if (msi_nonbroken) { 401 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0))); 402 } 403 404 /* 405 * According to PAPR, rtas ibm,os-term does not guarantee a return 406 * back to the guest cpu. 407 * 408 * While an additional ibm,extended-os-term property indicates that 409 * rtas call return will always occur. Set this property. 410 */ 411 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0))); 412 413 _FDT((fdt_end_node(fdt))); 414 415 /* interrupt controller */ 416 _FDT((fdt_begin_node(fdt, "interrupt-controller"))); 417 418 _FDT((fdt_property_string(fdt, "device_type", 419 "PowerPC-External-Interrupt-Presentation"))); 420 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); 421 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); 422 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", 423 interrupt_server_ranges_prop, 424 sizeof(interrupt_server_ranges_prop)))); 425 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); 426 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); 427 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); 428 429 _FDT((fdt_end_node(fdt))); 430 431 /* vdevice */ 432 _FDT((fdt_begin_node(fdt, "vdevice"))); 433 434 _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); 435 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); 436 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); 437 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); 438 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); 439 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); 440 441 _FDT((fdt_end_node(fdt))); 442 443 /* event-sources */ 444 spapr_events_fdt_skel(fdt, epow_irq); 445 446 /* /hypervisor node */ 447 if (kvm_enabled()) { 448 uint8_t hypercall[16]; 449 450 /* indicate KVM hypercall interface */ 451 _FDT((fdt_begin_node(fdt, "hypervisor"))); 452 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm"))); 453 if (kvmppc_has_cap_fixup_hcalls()) { 454 /* 455 * Older KVM versions with older guest kernels were broken with the 456 * magic page, don't allow the guest to map it. 457 */ 458 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 459 sizeof(hypercall))) { 460 _FDT((fdt_property(fdt, "hcall-instructions", hypercall, 461 sizeof(hypercall)))); 462 } 463 } 464 _FDT((fdt_end_node(fdt))); 465 } 466 467 _FDT((fdt_end_node(fdt))); /* close root node */ 468 _FDT((fdt_finish(fdt))); 469 470 return fdt; 471 } 472 473 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 474 hwaddr size) 475 { 476 uint32_t associativity[] = { 477 cpu_to_be32(0x4), /* length */ 478 cpu_to_be32(0x0), cpu_to_be32(0x0), 479 cpu_to_be32(0x0), cpu_to_be32(nodeid) 480 }; 481 char mem_name[32]; 482 uint64_t mem_reg_property[2]; 483 int off; 484 485 mem_reg_property[0] = cpu_to_be64(start); 486 mem_reg_property[1] = cpu_to_be64(size); 487 488 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 489 off = fdt_add_subnode(fdt, 0, mem_name); 490 _FDT(off); 491 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 492 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 493 sizeof(mem_reg_property)))); 494 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 495 sizeof(associativity)))); 496 return off; 497 } 498 499 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 500 { 501 MachineState *machine = MACHINE(spapr); 502 hwaddr mem_start, node_size; 503 int i, nb_nodes = nb_numa_nodes; 504 NodeInfo *nodes = numa_info; 505 NodeInfo ramnode; 506 507 /* No NUMA nodes, assume there is just one node with whole RAM */ 508 if (!nb_numa_nodes) { 509 nb_nodes = 1; 510 ramnode.node_mem = machine->ram_size; 511 nodes = &ramnode; 512 } 513 514 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 515 if (!nodes[i].node_mem) { 516 continue; 517 } 518 if (mem_start >= machine->ram_size) { 519 node_size = 0; 520 } else { 521 node_size = nodes[i].node_mem; 522 if (node_size > machine->ram_size - mem_start) { 523 node_size = machine->ram_size - mem_start; 524 } 525 } 526 if (!mem_start) { 527 /* ppc_spapr_init() checks for rma_size <= node0_size already */ 528 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 529 mem_start += spapr->rma_size; 530 node_size -= spapr->rma_size; 531 } 532 for ( ; node_size; ) { 533 hwaddr sizetmp = pow2floor(node_size); 534 535 /* mem_start != 0 here */ 536 if (ctzl(mem_start) < ctzl(sizetmp)) { 537 sizetmp = 1ULL << ctzl(mem_start); 538 } 539 540 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 541 node_size -= sizetmp; 542 mem_start += sizetmp; 543 } 544 } 545 546 return 0; 547 } 548 549 /* Populate the "ibm,pa-features" property */ 550 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset) 551 { 552 uint8_t pa_features_206[] = { 6, 0, 553 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 554 uint8_t pa_features_207[] = { 24, 0, 555 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 556 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 557 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 558 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 559 uint8_t *pa_features; 560 size_t pa_size; 561 562 switch (env->mmu_model) { 563 case POWERPC_MMU_2_06: 564 case POWERPC_MMU_2_06a: 565 pa_features = pa_features_206; 566 pa_size = sizeof(pa_features_206); 567 break; 568 case POWERPC_MMU_2_07: 569 case POWERPC_MMU_2_07a: 570 pa_features = pa_features_207; 571 pa_size = sizeof(pa_features_207); 572 break; 573 default: 574 return; 575 } 576 577 if (env->ci_large_pages) { 578 /* 579 * Note: we keep CI large pages off by default because a 64K capable 580 * guest provisioned with large pages might otherwise try to map a qemu 581 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 582 * even if that qemu runs on a 4k host. 583 * We dd this bit back here if we are confident this is not an issue 584 */ 585 pa_features[3] |= 0x20; 586 } 587 if (kvmppc_has_cap_htm() && pa_size > 24) { 588 pa_features[24] |= 0x80; /* Transactional memory support */ 589 } 590 591 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 592 } 593 594 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 595 sPAPRMachineState *spapr) 596 { 597 PowerPCCPU *cpu = POWERPC_CPU(cs); 598 CPUPPCState *env = &cpu->env; 599 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 600 int index = ppc_get_vcpu_dt_id(cpu); 601 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 602 0xffffffff, 0xffffffff}; 603 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 604 : SPAPR_TIMEBASE_FREQ; 605 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 606 uint32_t page_sizes_prop[64]; 607 size_t page_sizes_prop_size; 608 uint32_t vcpus_per_socket = smp_threads * smp_cores; 609 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 610 sPAPRDRConnector *drc; 611 sPAPRDRConnectorClass *drck; 612 int drc_index; 613 614 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index); 615 if (drc) { 616 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 617 drc_index = drck->get_index(drc); 618 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 619 } 620 621 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 622 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 623 624 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 625 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 626 env->dcache_line_size))); 627 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 628 env->dcache_line_size))); 629 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 630 env->icache_line_size))); 631 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 632 env->icache_line_size))); 633 634 if (pcc->l1_dcache_size) { 635 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 636 pcc->l1_dcache_size))); 637 } else { 638 error_report("Warning: Unknown L1 dcache size for cpu"); 639 } 640 if (pcc->l1_icache_size) { 641 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 642 pcc->l1_icache_size))); 643 } else { 644 error_report("Warning: Unknown L1 icache size for cpu"); 645 } 646 647 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 648 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 649 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); 650 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); 651 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 652 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 653 654 if (env->spr_cb[SPR_PURR].oea_read) { 655 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 656 } 657 658 if (env->mmu_model & POWERPC_MMU_1TSEG) { 659 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 660 segs, sizeof(segs)))); 661 } 662 663 /* Advertise VMX/VSX (vector extensions) if available 664 * 0 / no property == no vector extensions 665 * 1 == VMX / Altivec available 666 * 2 == VSX available */ 667 if (env->insns_flags & PPC_ALTIVEC) { 668 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 669 670 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 671 } 672 673 /* Advertise DFP (Decimal Floating Point) if available 674 * 0 / no property == no DFP 675 * 1 == DFP available */ 676 if (env->insns_flags2 & PPC2_DFP) { 677 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 678 } 679 680 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, 681 sizeof(page_sizes_prop)); 682 if (page_sizes_prop_size) { 683 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 684 page_sizes_prop, page_sizes_prop_size))); 685 } 686 687 spapr_populate_pa_features(env, fdt, offset); 688 689 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 690 cs->cpu_index / vcpus_per_socket))); 691 692 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 693 pft_size_prop, sizeof(pft_size_prop)))); 694 695 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs)); 696 697 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, 698 ppc_get_compat_smt_threads(cpu))); 699 } 700 701 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 702 { 703 CPUState *cs; 704 int cpus_offset; 705 char *nodename; 706 int smt = kvmppc_smt_threads(); 707 708 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 709 _FDT(cpus_offset); 710 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 711 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 712 713 /* 714 * We walk the CPUs in reverse order to ensure that CPU DT nodes 715 * created by fdt_add_subnode() end up in the right order in FDT 716 * for the guest kernel the enumerate the CPUs correctly. 717 */ 718 CPU_FOREACH_REVERSE(cs) { 719 PowerPCCPU *cpu = POWERPC_CPU(cs); 720 int index = ppc_get_vcpu_dt_id(cpu); 721 DeviceClass *dc = DEVICE_GET_CLASS(cs); 722 int offset; 723 724 if ((index % smt) != 0) { 725 continue; 726 } 727 728 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 729 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 730 g_free(nodename); 731 _FDT(offset); 732 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 733 } 734 735 } 736 737 /* 738 * Adds ibm,dynamic-reconfiguration-memory node. 739 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 740 * of this device tree node. 741 */ 742 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 743 { 744 MachineState *machine = MACHINE(spapr); 745 int ret, i, offset; 746 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 747 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 748 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; 749 uint32_t nr_lmbs = (spapr->hotplug_memory.base + 750 memory_region_size(&spapr->hotplug_memory.mr)) / 751 lmb_size; 752 uint32_t *int_buf, *cur_index, buf_len; 753 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 754 755 /* 756 * Don't create the node if there is no hotpluggable memory 757 */ 758 if (machine->ram_size == machine->maxram_size) { 759 return 0; 760 } 761 762 /* 763 * Allocate enough buffer size to fit in ibm,dynamic-memory 764 * or ibm,associativity-lookup-arrays 765 */ 766 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) 767 * sizeof(uint32_t); 768 cur_index = int_buf = g_malloc0(buf_len); 769 770 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 771 772 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 773 sizeof(prop_lmb_size)); 774 if (ret < 0) { 775 goto out; 776 } 777 778 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 779 if (ret < 0) { 780 goto out; 781 } 782 783 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 784 if (ret < 0) { 785 goto out; 786 } 787 788 /* ibm,dynamic-memory */ 789 int_buf[0] = cpu_to_be32(nr_lmbs); 790 cur_index++; 791 for (i = 0; i < nr_lmbs; i++) { 792 uint64_t addr = i * lmb_size; 793 uint32_t *dynamic_memory = cur_index; 794 795 if (i >= hotplug_lmb_start) { 796 sPAPRDRConnector *drc; 797 sPAPRDRConnectorClass *drck; 798 799 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i); 800 g_assert(drc); 801 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 802 803 dynamic_memory[0] = cpu_to_be32(addr >> 32); 804 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 805 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc)); 806 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 807 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL)); 808 if (memory_region_present(get_system_memory(), addr)) { 809 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 810 } else { 811 dynamic_memory[5] = cpu_to_be32(0); 812 } 813 } else { 814 /* 815 * LMB information for RMA, boot time RAM and gap b/n RAM and 816 * hotplug memory region -- all these are marked as reserved 817 * and as having no valid DRC. 818 */ 819 dynamic_memory[0] = cpu_to_be32(addr >> 32); 820 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 821 dynamic_memory[2] = cpu_to_be32(0); 822 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 823 dynamic_memory[4] = cpu_to_be32(-1); 824 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 825 SPAPR_LMB_FLAGS_DRC_INVALID); 826 } 827 828 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 829 } 830 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 831 if (ret < 0) { 832 goto out; 833 } 834 835 /* ibm,associativity-lookup-arrays */ 836 cur_index = int_buf; 837 int_buf[0] = cpu_to_be32(nr_nodes); 838 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 839 cur_index += 2; 840 for (i = 0; i < nr_nodes; i++) { 841 uint32_t associativity[] = { 842 cpu_to_be32(0x0), 843 cpu_to_be32(0x0), 844 cpu_to_be32(0x0), 845 cpu_to_be32(i) 846 }; 847 memcpy(cur_index, associativity, sizeof(associativity)); 848 cur_index += 4; 849 } 850 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 851 (cur_index - int_buf) * sizeof(uint32_t)); 852 out: 853 g_free(int_buf); 854 return ret; 855 } 856 857 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 858 target_ulong addr, target_ulong size, 859 bool cpu_update, bool memory_update) 860 { 861 void *fdt, *fdt_skel; 862 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 863 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); 864 865 size -= sizeof(hdr); 866 867 /* Create sceleton */ 868 fdt_skel = g_malloc0(size); 869 _FDT((fdt_create(fdt_skel, size))); 870 _FDT((fdt_begin_node(fdt_skel, ""))); 871 _FDT((fdt_end_node(fdt_skel))); 872 _FDT((fdt_finish(fdt_skel))); 873 fdt = g_malloc0(size); 874 _FDT((fdt_open_into(fdt_skel, fdt, size))); 875 g_free(fdt_skel); 876 877 /* Fixup cpu nodes */ 878 if (cpu_update) { 879 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 880 } 881 882 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 883 if (memory_update && smc->dr_lmb_enabled) { 884 _FDT((spapr_populate_drconf_memory(spapr, fdt))); 885 } 886 887 /* Pack resulting tree */ 888 _FDT((fdt_pack(fdt))); 889 890 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 891 trace_spapr_cas_failed(size); 892 return -1; 893 } 894 895 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 896 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 897 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 898 g_free(fdt); 899 900 return 0; 901 } 902 903 static void spapr_finalize_fdt(sPAPRMachineState *spapr, 904 hwaddr fdt_addr, 905 hwaddr rtas_addr, 906 hwaddr rtas_size) 907 { 908 MachineState *machine = MACHINE(qdev_get_machine()); 909 MachineClass *mc = MACHINE_GET_CLASS(machine); 910 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 911 const char *boot_device = machine->boot_order; 912 int ret, i; 913 size_t cb = 0; 914 char *bootlist; 915 void *fdt; 916 sPAPRPHBState *phb; 917 918 fdt = g_malloc(FDT_MAX_SIZE); 919 920 /* open out the base tree into a temp buffer for the final tweaks */ 921 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); 922 923 ret = spapr_populate_memory(spapr, fdt); 924 if (ret < 0) { 925 error_report("couldn't setup memory nodes in fdt"); 926 exit(1); 927 } 928 929 ret = spapr_populate_vdevice(spapr->vio_bus, fdt); 930 if (ret < 0) { 931 error_report("couldn't setup vio devices in fdt"); 932 exit(1); 933 } 934 935 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 936 ret = spapr_rng_populate_dt(fdt); 937 if (ret < 0) { 938 error_report("could not set up rng device in the fdt"); 939 exit(1); 940 } 941 } 942 943 QLIST_FOREACH(phb, &spapr->phbs, list) { 944 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 945 if (ret < 0) { 946 error_report("couldn't setup PCI devices in fdt"); 947 exit(1); 948 } 949 } 950 951 /* RTAS */ 952 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); 953 if (ret < 0) { 954 error_report("Couldn't set up RTAS device tree properties"); 955 } 956 957 /* cpus */ 958 spapr_populate_cpus_dt_node(fdt, spapr); 959 960 bootlist = get_boot_devices_list(&cb, true); 961 if (cb && bootlist) { 962 int offset = fdt_path_offset(fdt, "/chosen"); 963 if (offset < 0) { 964 exit(1); 965 } 966 for (i = 0; i < cb; i++) { 967 if (bootlist[i] == '\n') { 968 bootlist[i] = ' '; 969 } 970 971 } 972 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist); 973 } 974 975 if (boot_device && strlen(boot_device)) { 976 int offset = fdt_path_offset(fdt, "/chosen"); 977 978 if (offset < 0) { 979 exit(1); 980 } 981 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device); 982 } 983 984 if (!spapr->has_graphics) { 985 spapr_populate_chosen_stdout(fdt, spapr->vio_bus); 986 } 987 988 if (smc->dr_lmb_enabled) { 989 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 990 } 991 992 if (mc->query_hotpluggable_cpus) { 993 int offset = fdt_path_offset(fdt, "/cpus"); 994 ret = spapr_drc_populate_dt(fdt, offset, NULL, 995 SPAPR_DR_CONNECTOR_TYPE_CPU); 996 if (ret < 0) { 997 error_report("Couldn't set up CPU DR device tree properties"); 998 exit(1); 999 } 1000 } 1001 1002 _FDT((fdt_pack(fdt))); 1003 1004 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1005 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1006 fdt_totalsize(fdt), FDT_MAX_SIZE); 1007 exit(1); 1008 } 1009 1010 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1011 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1012 1013 g_free(bootlist); 1014 g_free(fdt); 1015 } 1016 1017 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1018 { 1019 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1020 } 1021 1022 static void emulate_spapr_hypercall(PowerPCCPU *cpu) 1023 { 1024 CPUPPCState *env = &cpu->env; 1025 1026 if (msr_pr) { 1027 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1028 env->gpr[3] = H_PRIVILEGE; 1029 } else { 1030 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1031 } 1032 } 1033 1034 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1035 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1036 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1037 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1038 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1039 1040 /* 1041 * Get the fd to access the kernel htab, re-opening it if necessary 1042 */ 1043 static int get_htab_fd(sPAPRMachineState *spapr) 1044 { 1045 if (spapr->htab_fd >= 0) { 1046 return spapr->htab_fd; 1047 } 1048 1049 spapr->htab_fd = kvmppc_get_htab_fd(false); 1050 if (spapr->htab_fd < 0) { 1051 error_report("Unable to open fd for reading hash table from KVM: %s", 1052 strerror(errno)); 1053 } 1054 1055 return spapr->htab_fd; 1056 } 1057 1058 static void close_htab_fd(sPAPRMachineState *spapr) 1059 { 1060 if (spapr->htab_fd >= 0) { 1061 close(spapr->htab_fd); 1062 } 1063 spapr->htab_fd = -1; 1064 } 1065 1066 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1067 { 1068 int shift; 1069 1070 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1071 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1072 * that's much more than is needed for Linux guests */ 1073 shift = ctz64(pow2ceil(ramsize)) - 7; 1074 shift = MAX(shift, 18); /* Minimum architected size */ 1075 shift = MIN(shift, 46); /* Maximum architected size */ 1076 return shift; 1077 } 1078 1079 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1080 Error **errp) 1081 { 1082 long rc; 1083 1084 /* Clean up any HPT info from a previous boot */ 1085 g_free(spapr->htab); 1086 spapr->htab = NULL; 1087 spapr->htab_shift = 0; 1088 close_htab_fd(spapr); 1089 1090 rc = kvmppc_reset_htab(shift); 1091 if (rc < 0) { 1092 /* kernel-side HPT needed, but couldn't allocate one */ 1093 error_setg_errno(errp, errno, 1094 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1095 shift); 1096 /* This is almost certainly fatal, but if the caller really 1097 * wants to carry on with shift == 0, it's welcome to try */ 1098 } else if (rc > 0) { 1099 /* kernel-side HPT allocated */ 1100 if (rc != shift) { 1101 error_setg(errp, 1102 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1103 shift, rc); 1104 } 1105 1106 spapr->htab_shift = shift; 1107 spapr->htab = NULL; 1108 } else { 1109 /* kernel-side HPT not needed, allocate in userspace instead */ 1110 size_t size = 1ULL << shift; 1111 int i; 1112 1113 spapr->htab = qemu_memalign(size, size); 1114 if (!spapr->htab) { 1115 error_setg_errno(errp, errno, 1116 "Could not allocate HPT of order %d", shift); 1117 return; 1118 } 1119 1120 memset(spapr->htab, 0, size); 1121 spapr->htab_shift = shift; 1122 1123 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1124 DIRTY_HPTE(HPTE(spapr->htab, i)); 1125 } 1126 } 1127 } 1128 1129 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) 1130 { 1131 bool matched = false; 1132 1133 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 1134 matched = true; 1135 } 1136 1137 if (!matched) { 1138 error_report("Device %s is not supported by this machine yet.", 1139 qdev_fw_name(DEVICE(sbdev))); 1140 exit(1); 1141 } 1142 } 1143 1144 static void ppc_spapr_reset(void) 1145 { 1146 MachineState *machine = MACHINE(qdev_get_machine()); 1147 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1148 PowerPCCPU *first_ppc_cpu; 1149 uint32_t rtas_limit; 1150 1151 /* Check for unknown sysbus devices */ 1152 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); 1153 1154 /* Allocate and/or reset the hash page table */ 1155 spapr_reallocate_hpt(spapr, 1156 spapr_hpt_shift_for_ramsize(machine->maxram_size), 1157 &error_fatal); 1158 1159 /* Update the RMA size if necessary */ 1160 if (spapr->vrma_adjust) { 1161 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(), 1162 spapr->htab_shift); 1163 } 1164 1165 qemu_devices_reset(); 1166 1167 /* 1168 * We place the device tree and RTAS just below either the top of the RMA, 1169 * or just below 2GB, whichever is lowere, so that it can be 1170 * processed with 32-bit real mode code if necessary 1171 */ 1172 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1173 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1174 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; 1175 1176 /* Load the fdt */ 1177 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, 1178 spapr->rtas_size); 1179 1180 /* Copy RTAS over */ 1181 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob, 1182 spapr->rtas_size); 1183 1184 /* Set up the entry state */ 1185 first_ppc_cpu = POWERPC_CPU(first_cpu); 1186 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr; 1187 first_ppc_cpu->env.gpr[5] = 0; 1188 first_cpu->halted = 0; 1189 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; 1190 1191 } 1192 1193 static void spapr_create_nvram(sPAPRMachineState *spapr) 1194 { 1195 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1196 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1197 1198 if (dinfo) { 1199 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1200 &error_fatal); 1201 } 1202 1203 qdev_init_nofail(dev); 1204 1205 spapr->nvram = (struct sPAPRNVRAM *)dev; 1206 } 1207 1208 static void spapr_rtc_create(sPAPRMachineState *spapr) 1209 { 1210 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC); 1211 1212 qdev_init_nofail(dev); 1213 spapr->rtc = dev; 1214 1215 object_property_add_alias(qdev_get_machine(), "rtc-time", 1216 OBJECT(spapr->rtc), "date", NULL); 1217 } 1218 1219 /* Returns whether we want to use VGA or not */ 1220 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1221 { 1222 switch (vga_interface_type) { 1223 case VGA_NONE: 1224 return false; 1225 case VGA_DEVICE: 1226 return true; 1227 case VGA_STD: 1228 case VGA_VIRTIO: 1229 return pci_vga_init(pci_bus) != NULL; 1230 default: 1231 error_setg(errp, 1232 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1233 return false; 1234 } 1235 } 1236 1237 static int spapr_post_load(void *opaque, int version_id) 1238 { 1239 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1240 int err = 0; 1241 1242 /* In earlier versions, there was no separate qdev for the PAPR 1243 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1244 * So when migrating from those versions, poke the incoming offset 1245 * value into the RTC device */ 1246 if (version_id < 3) { 1247 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset); 1248 } 1249 1250 return err; 1251 } 1252 1253 static bool version_before_3(void *opaque, int version_id) 1254 { 1255 return version_id < 3; 1256 } 1257 1258 static const VMStateDescription vmstate_spapr = { 1259 .name = "spapr", 1260 .version_id = 3, 1261 .minimum_version_id = 1, 1262 .post_load = spapr_post_load, 1263 .fields = (VMStateField[]) { 1264 /* used to be @next_irq */ 1265 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1266 1267 /* RTC offset */ 1268 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1269 1270 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1271 VMSTATE_END_OF_LIST() 1272 }, 1273 }; 1274 1275 static int htab_save_setup(QEMUFile *f, void *opaque) 1276 { 1277 sPAPRMachineState *spapr = opaque; 1278 1279 /* "Iteration" header */ 1280 qemu_put_be32(f, spapr->htab_shift); 1281 1282 if (spapr->htab) { 1283 spapr->htab_save_index = 0; 1284 spapr->htab_first_pass = true; 1285 } else { 1286 assert(kvm_enabled()); 1287 } 1288 1289 1290 return 0; 1291 } 1292 1293 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1294 int64_t max_ns) 1295 { 1296 bool has_timeout = max_ns != -1; 1297 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1298 int index = spapr->htab_save_index; 1299 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1300 1301 assert(spapr->htab_first_pass); 1302 1303 do { 1304 int chunkstart; 1305 1306 /* Consume invalid HPTEs */ 1307 while ((index < htabslots) 1308 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1309 index++; 1310 CLEAN_HPTE(HPTE(spapr->htab, index)); 1311 } 1312 1313 /* Consume valid HPTEs */ 1314 chunkstart = index; 1315 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1316 && HPTE_VALID(HPTE(spapr->htab, index))) { 1317 index++; 1318 CLEAN_HPTE(HPTE(spapr->htab, index)); 1319 } 1320 1321 if (index > chunkstart) { 1322 int n_valid = index - chunkstart; 1323 1324 qemu_put_be32(f, chunkstart); 1325 qemu_put_be16(f, n_valid); 1326 qemu_put_be16(f, 0); 1327 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1328 HASH_PTE_SIZE_64 * n_valid); 1329 1330 if (has_timeout && 1331 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1332 break; 1333 } 1334 } 1335 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 1336 1337 if (index >= htabslots) { 1338 assert(index == htabslots); 1339 index = 0; 1340 spapr->htab_first_pass = false; 1341 } 1342 spapr->htab_save_index = index; 1343 } 1344 1345 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 1346 int64_t max_ns) 1347 { 1348 bool final = max_ns < 0; 1349 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1350 int examined = 0, sent = 0; 1351 int index = spapr->htab_save_index; 1352 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1353 1354 assert(!spapr->htab_first_pass); 1355 1356 do { 1357 int chunkstart, invalidstart; 1358 1359 /* Consume non-dirty HPTEs */ 1360 while ((index < htabslots) 1361 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 1362 index++; 1363 examined++; 1364 } 1365 1366 chunkstart = index; 1367 /* Consume valid dirty HPTEs */ 1368 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1369 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1370 && HPTE_VALID(HPTE(spapr->htab, index))) { 1371 CLEAN_HPTE(HPTE(spapr->htab, index)); 1372 index++; 1373 examined++; 1374 } 1375 1376 invalidstart = index; 1377 /* Consume invalid dirty HPTEs */ 1378 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 1379 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1380 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1381 CLEAN_HPTE(HPTE(spapr->htab, index)); 1382 index++; 1383 examined++; 1384 } 1385 1386 if (index > chunkstart) { 1387 int n_valid = invalidstart - chunkstart; 1388 int n_invalid = index - invalidstart; 1389 1390 qemu_put_be32(f, chunkstart); 1391 qemu_put_be16(f, n_valid); 1392 qemu_put_be16(f, n_invalid); 1393 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1394 HASH_PTE_SIZE_64 * n_valid); 1395 sent += index - chunkstart; 1396 1397 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1398 break; 1399 } 1400 } 1401 1402 if (examined >= htabslots) { 1403 break; 1404 } 1405 1406 if (index >= htabslots) { 1407 assert(index == htabslots); 1408 index = 0; 1409 } 1410 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 1411 1412 if (index >= htabslots) { 1413 assert(index == htabslots); 1414 index = 0; 1415 } 1416 1417 spapr->htab_save_index = index; 1418 1419 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 1420 } 1421 1422 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 1423 #define MAX_KVM_BUF_SIZE 2048 1424 1425 static int htab_save_iterate(QEMUFile *f, void *opaque) 1426 { 1427 sPAPRMachineState *spapr = opaque; 1428 int fd; 1429 int rc = 0; 1430 1431 /* Iteration header */ 1432 qemu_put_be32(f, 0); 1433 1434 if (!spapr->htab) { 1435 assert(kvm_enabled()); 1436 1437 fd = get_htab_fd(spapr); 1438 if (fd < 0) { 1439 return fd; 1440 } 1441 1442 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 1443 if (rc < 0) { 1444 return rc; 1445 } 1446 } else if (spapr->htab_first_pass) { 1447 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 1448 } else { 1449 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 1450 } 1451 1452 /* End marker */ 1453 qemu_put_be32(f, 0); 1454 qemu_put_be16(f, 0); 1455 qemu_put_be16(f, 0); 1456 1457 return rc; 1458 } 1459 1460 static int htab_save_complete(QEMUFile *f, void *opaque) 1461 { 1462 sPAPRMachineState *spapr = opaque; 1463 int fd; 1464 1465 /* Iteration header */ 1466 qemu_put_be32(f, 0); 1467 1468 if (!spapr->htab) { 1469 int rc; 1470 1471 assert(kvm_enabled()); 1472 1473 fd = get_htab_fd(spapr); 1474 if (fd < 0) { 1475 return fd; 1476 } 1477 1478 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 1479 if (rc < 0) { 1480 return rc; 1481 } 1482 } else { 1483 if (spapr->htab_first_pass) { 1484 htab_save_first_pass(f, spapr, -1); 1485 } 1486 htab_save_later_pass(f, spapr, -1); 1487 } 1488 1489 /* End marker */ 1490 qemu_put_be32(f, 0); 1491 qemu_put_be16(f, 0); 1492 qemu_put_be16(f, 0); 1493 1494 return 0; 1495 } 1496 1497 static int htab_load(QEMUFile *f, void *opaque, int version_id) 1498 { 1499 sPAPRMachineState *spapr = opaque; 1500 uint32_t section_hdr; 1501 int fd = -1; 1502 1503 if (version_id < 1 || version_id > 1) { 1504 error_report("htab_load() bad version"); 1505 return -EINVAL; 1506 } 1507 1508 section_hdr = qemu_get_be32(f); 1509 1510 if (section_hdr) { 1511 Error *local_err = NULL; 1512 1513 /* First section gives the htab size */ 1514 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 1515 if (local_err) { 1516 error_report_err(local_err); 1517 return -EINVAL; 1518 } 1519 return 0; 1520 } 1521 1522 if (!spapr->htab) { 1523 assert(kvm_enabled()); 1524 1525 fd = kvmppc_get_htab_fd(true); 1526 if (fd < 0) { 1527 error_report("Unable to open fd to restore KVM hash table: %s", 1528 strerror(errno)); 1529 } 1530 } 1531 1532 while (true) { 1533 uint32_t index; 1534 uint16_t n_valid, n_invalid; 1535 1536 index = qemu_get_be32(f); 1537 n_valid = qemu_get_be16(f); 1538 n_invalid = qemu_get_be16(f); 1539 1540 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 1541 /* End of Stream */ 1542 break; 1543 } 1544 1545 if ((index + n_valid + n_invalid) > 1546 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 1547 /* Bad index in stream */ 1548 error_report( 1549 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 1550 index, n_valid, n_invalid, spapr->htab_shift); 1551 return -EINVAL; 1552 } 1553 1554 if (spapr->htab) { 1555 if (n_valid) { 1556 qemu_get_buffer(f, HPTE(spapr->htab, index), 1557 HASH_PTE_SIZE_64 * n_valid); 1558 } 1559 if (n_invalid) { 1560 memset(HPTE(spapr->htab, index + n_valid), 0, 1561 HASH_PTE_SIZE_64 * n_invalid); 1562 } 1563 } else { 1564 int rc; 1565 1566 assert(fd >= 0); 1567 1568 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 1569 if (rc < 0) { 1570 return rc; 1571 } 1572 } 1573 } 1574 1575 if (!spapr->htab) { 1576 assert(fd >= 0); 1577 close(fd); 1578 } 1579 1580 return 0; 1581 } 1582 1583 static void htab_cleanup(void *opaque) 1584 { 1585 sPAPRMachineState *spapr = opaque; 1586 1587 close_htab_fd(spapr); 1588 } 1589 1590 static SaveVMHandlers savevm_htab_handlers = { 1591 .save_live_setup = htab_save_setup, 1592 .save_live_iterate = htab_save_iterate, 1593 .save_live_complete_precopy = htab_save_complete, 1594 .cleanup = htab_cleanup, 1595 .load_state = htab_load, 1596 }; 1597 1598 static void spapr_boot_set(void *opaque, const char *boot_device, 1599 Error **errp) 1600 { 1601 MachineState *machine = MACHINE(qdev_get_machine()); 1602 machine->boot_order = g_strdup(boot_device); 1603 } 1604 1605 /* 1606 * Reset routine for LMB DR devices. 1607 * 1608 * Unlike PCI DR devices, LMB DR devices explicitly register this reset 1609 * routine. Reset for PCI DR devices will be handled by PHB reset routine 1610 * when it walks all its children devices. LMB devices reset occurs 1611 * as part of spapr_ppc_reset(). 1612 */ 1613 static void spapr_drc_reset(void *opaque) 1614 { 1615 sPAPRDRConnector *drc = opaque; 1616 DeviceState *d = DEVICE(drc); 1617 1618 if (d) { 1619 device_reset(d); 1620 } 1621 } 1622 1623 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 1624 { 1625 MachineState *machine = MACHINE(spapr); 1626 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 1627 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 1628 int i; 1629 1630 for (i = 0; i < nr_lmbs; i++) { 1631 sPAPRDRConnector *drc; 1632 uint64_t addr; 1633 1634 addr = i * lmb_size + spapr->hotplug_memory.base; 1635 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB, 1636 addr/lmb_size); 1637 qemu_register_reset(spapr_drc_reset, drc); 1638 } 1639 } 1640 1641 /* 1642 * If RAM size, maxmem size and individual node mem sizes aren't aligned 1643 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 1644 * since we can't support such unaligned sizes with DRCONF_MEMORY. 1645 */ 1646 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 1647 { 1648 int i; 1649 1650 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1651 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 1652 " is not aligned to %llu MiB", 1653 machine->ram_size, 1654 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1655 return; 1656 } 1657 1658 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1659 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 1660 " is not aligned to %llu MiB", 1661 machine->ram_size, 1662 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1663 return; 1664 } 1665 1666 for (i = 0; i < nb_numa_nodes; i++) { 1667 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 1668 error_setg(errp, 1669 "Node %d memory size 0x%" PRIx64 1670 " is not aligned to %llu MiB", 1671 i, numa_info[i].node_mem, 1672 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1673 return; 1674 } 1675 } 1676 } 1677 1678 /* pSeries LPAR / sPAPR hardware init */ 1679 static void ppc_spapr_init(MachineState *machine) 1680 { 1681 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1682 MachineClass *mc = MACHINE_GET_CLASS(machine); 1683 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1684 const char *kernel_filename = machine->kernel_filename; 1685 const char *kernel_cmdline = machine->kernel_cmdline; 1686 const char *initrd_filename = machine->initrd_filename; 1687 PCIHostState *phb; 1688 int i; 1689 MemoryRegion *sysmem = get_system_memory(); 1690 MemoryRegion *ram = g_new(MemoryRegion, 1); 1691 MemoryRegion *rma_region; 1692 void *rma = NULL; 1693 hwaddr rma_alloc_size; 1694 hwaddr node0_size = spapr_node0_size(); 1695 uint32_t initrd_base = 0; 1696 long kernel_size = 0, initrd_size = 0; 1697 long load_limit, fw_size; 1698 bool kernel_le = false; 1699 char *filename; 1700 int smt = kvmppc_smt_threads(); 1701 int spapr_cores = smp_cpus / smp_threads; 1702 int spapr_max_cores = max_cpus / smp_threads; 1703 1704 if (mc->query_hotpluggable_cpus) { 1705 if (smp_cpus % smp_threads) { 1706 error_report("smp_cpus (%u) must be multiple of threads (%u)", 1707 smp_cpus, smp_threads); 1708 exit(1); 1709 } 1710 if (max_cpus % smp_threads) { 1711 error_report("max_cpus (%u) must be multiple of threads (%u)", 1712 max_cpus, smp_threads); 1713 exit(1); 1714 } 1715 } 1716 1717 msi_nonbroken = true; 1718 1719 QLIST_INIT(&spapr->phbs); 1720 1721 cpu_ppc_hypercall = emulate_spapr_hypercall; 1722 1723 /* Allocate RMA if necessary */ 1724 rma_alloc_size = kvmppc_alloc_rma(&rma); 1725 1726 if (rma_alloc_size == -1) { 1727 error_report("Unable to create RMA"); 1728 exit(1); 1729 } 1730 1731 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 1732 spapr->rma_size = rma_alloc_size; 1733 } else { 1734 spapr->rma_size = node0_size; 1735 1736 /* With KVM, we don't actually know whether KVM supports an 1737 * unbounded RMA (PR KVM) or is limited by the hash table size 1738 * (HV KVM using VRMA), so we always assume the latter 1739 * 1740 * In that case, we also limit the initial allocations for RTAS 1741 * etc... to 256M since we have no way to know what the VRMA size 1742 * is going to be as it depends on the size of the hash table 1743 * isn't determined yet. 1744 */ 1745 if (kvm_enabled()) { 1746 spapr->vrma_adjust = 1; 1747 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 1748 } 1749 1750 /* Actually we don't support unbounded RMA anymore since we 1751 * added proper emulation of HV mode. The max we can get is 1752 * 16G which also happens to be what we configure for PAPR 1753 * mode so make sure we don't do anything bigger than that 1754 */ 1755 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 1756 } 1757 1758 if (spapr->rma_size > node0_size) { 1759 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 1760 spapr->rma_size); 1761 exit(1); 1762 } 1763 1764 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 1765 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 1766 1767 /* Set up Interrupt Controller before we create the VCPUs */ 1768 spapr->xics = xics_system_init(machine, 1769 DIV_ROUND_UP(max_cpus * smt, smp_threads), 1770 XICS_IRQS_SPAPR, &error_fatal); 1771 1772 if (smc->dr_lmb_enabled) { 1773 spapr_validate_node_memory(machine, &error_fatal); 1774 } 1775 1776 /* init CPUs */ 1777 if (machine->cpu_model == NULL) { 1778 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu; 1779 } 1780 1781 ppc_cpu_parse_features(machine->cpu_model); 1782 1783 if (mc->query_hotpluggable_cpus) { 1784 char *type = spapr_get_cpu_core_type(machine->cpu_model); 1785 1786 if (type == NULL) { 1787 error_report("Unable to find sPAPR CPU Core definition"); 1788 exit(1); 1789 } 1790 1791 spapr->cores = g_new0(Object *, spapr_max_cores); 1792 for (i = 0; i < spapr_max_cores; i++) { 1793 int core_id = i * smp_threads; 1794 sPAPRDRConnector *drc = 1795 spapr_dr_connector_new(OBJECT(spapr), 1796 SPAPR_DR_CONNECTOR_TYPE_CPU, 1797 (core_id / smp_threads) * smt); 1798 1799 qemu_register_reset(spapr_drc_reset, drc); 1800 1801 if (i < spapr_cores) { 1802 Object *core = object_new(type); 1803 object_property_set_int(core, smp_threads, "nr-threads", 1804 &error_fatal); 1805 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 1806 &error_fatal); 1807 object_property_set_bool(core, true, "realized", &error_fatal); 1808 } 1809 } 1810 g_free(type); 1811 } else { 1812 for (i = 0; i < smp_cpus; i++) { 1813 PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model); 1814 if (cpu == NULL) { 1815 error_report("Unable to find PowerPC CPU definition"); 1816 exit(1); 1817 } 1818 spapr_cpu_init(spapr, cpu, &error_fatal); 1819 } 1820 } 1821 1822 if (kvm_enabled()) { 1823 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 1824 kvmppc_enable_logical_ci_hcalls(); 1825 kvmppc_enable_set_mode_hcall(); 1826 1827 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 1828 kvmppc_enable_clear_ref_mod_hcalls(); 1829 } 1830 1831 /* allocate RAM */ 1832 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 1833 machine->ram_size); 1834 memory_region_add_subregion(sysmem, 0, ram); 1835 1836 if (rma_alloc_size && rma) { 1837 rma_region = g_new(MemoryRegion, 1); 1838 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", 1839 rma_alloc_size, rma); 1840 vmstate_register_ram_global(rma_region); 1841 memory_region_add_subregion(sysmem, 0, rma_region); 1842 } 1843 1844 /* initialize hotplug memory address space */ 1845 if (machine->ram_size < machine->maxram_size) { 1846 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; 1847 /* 1848 * Limit the number of hotpluggable memory slots to half the number 1849 * slots that KVM supports, leaving the other half for PCI and other 1850 * devices. However ensure that number of slots doesn't drop below 32. 1851 */ 1852 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 1853 SPAPR_MAX_RAM_SLOTS; 1854 1855 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 1856 max_memslots = SPAPR_MAX_RAM_SLOTS; 1857 } 1858 if (machine->ram_slots > max_memslots) { 1859 error_report("Specified number of memory slots %" 1860 PRIu64" exceeds max supported %d", 1861 machine->ram_slots, max_memslots); 1862 exit(1); 1863 } 1864 1865 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, 1866 SPAPR_HOTPLUG_MEM_ALIGN); 1867 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), 1868 "hotplug-memory", hotplug_mem_size); 1869 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, 1870 &spapr->hotplug_memory.mr); 1871 } 1872 1873 if (smc->dr_lmb_enabled) { 1874 spapr_create_lmb_dr_connectors(spapr); 1875 } 1876 1877 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 1878 if (!filename) { 1879 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 1880 exit(1); 1881 } 1882 spapr->rtas_size = get_image_size(filename); 1883 if (spapr->rtas_size < 0) { 1884 error_report("Could not get size of LPAR rtas '%s'", filename); 1885 exit(1); 1886 } 1887 spapr->rtas_blob = g_malloc(spapr->rtas_size); 1888 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 1889 error_report("Could not load LPAR rtas '%s'", filename); 1890 exit(1); 1891 } 1892 if (spapr->rtas_size > RTAS_MAX_SIZE) { 1893 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 1894 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 1895 exit(1); 1896 } 1897 g_free(filename); 1898 1899 /* Set up EPOW events infrastructure */ 1900 spapr_events_init(spapr); 1901 1902 /* Set up the RTC RTAS interfaces */ 1903 spapr_rtc_create(spapr); 1904 1905 /* Set up VIO bus */ 1906 spapr->vio_bus = spapr_vio_bus_init(); 1907 1908 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 1909 if (serial_hds[i]) { 1910 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 1911 } 1912 } 1913 1914 /* We always have at least the nvram device on VIO */ 1915 spapr_create_nvram(spapr); 1916 1917 /* Set up PCI */ 1918 spapr_pci_rtas_init(); 1919 1920 phb = spapr_create_phb(spapr, 0); 1921 1922 for (i = 0; i < nb_nics; i++) { 1923 NICInfo *nd = &nd_table[i]; 1924 1925 if (!nd->model) { 1926 nd->model = g_strdup("ibmveth"); 1927 } 1928 1929 if (strcmp(nd->model, "ibmveth") == 0) { 1930 spapr_vlan_create(spapr->vio_bus, nd); 1931 } else { 1932 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 1933 } 1934 } 1935 1936 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 1937 spapr_vscsi_create(spapr->vio_bus); 1938 } 1939 1940 /* Graphics */ 1941 if (spapr_vga_init(phb->bus, &error_fatal)) { 1942 spapr->has_graphics = true; 1943 machine->usb |= defaults_enabled() && !machine->usb_disabled; 1944 } 1945 1946 if (machine->usb) { 1947 if (smc->use_ohci_by_default) { 1948 pci_create_simple(phb->bus, -1, "pci-ohci"); 1949 } else { 1950 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 1951 } 1952 1953 if (spapr->has_graphics) { 1954 USBBus *usb_bus = usb_bus_find(-1); 1955 1956 usb_create_simple(usb_bus, "usb-kbd"); 1957 usb_create_simple(usb_bus, "usb-mouse"); 1958 } 1959 } 1960 1961 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 1962 error_report( 1963 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 1964 MIN_RMA_SLOF); 1965 exit(1); 1966 } 1967 1968 if (kernel_filename) { 1969 uint64_t lowaddr = 0; 1970 1971 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, 1972 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 1973 0, 0); 1974 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) { 1975 kernel_size = load_elf(kernel_filename, 1976 translate_kernel_address, NULL, 1977 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 1978 0, 0); 1979 kernel_le = kernel_size > 0; 1980 } 1981 if (kernel_size < 0) { 1982 error_report("error loading %s: %s", 1983 kernel_filename, load_elf_strerror(kernel_size)); 1984 exit(1); 1985 } 1986 1987 /* load initrd */ 1988 if (initrd_filename) { 1989 /* Try to locate the initrd in the gap between the kernel 1990 * and the firmware. Add a bit of space just in case 1991 */ 1992 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; 1993 initrd_size = load_image_targphys(initrd_filename, initrd_base, 1994 load_limit - initrd_base); 1995 if (initrd_size < 0) { 1996 error_report("could not load initial ram disk '%s'", 1997 initrd_filename); 1998 exit(1); 1999 } 2000 } else { 2001 initrd_base = 0; 2002 initrd_size = 0; 2003 } 2004 } 2005 2006 if (bios_name == NULL) { 2007 bios_name = FW_FILE_NAME; 2008 } 2009 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2010 if (!filename) { 2011 error_report("Could not find LPAR firmware '%s'", bios_name); 2012 exit(1); 2013 } 2014 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2015 if (fw_size <= 0) { 2016 error_report("Could not load LPAR firmware '%s'", filename); 2017 exit(1); 2018 } 2019 g_free(filename); 2020 2021 /* FIXME: Should register things through the MachineState's qdev 2022 * interface, this is a legacy from the sPAPREnvironment structure 2023 * which predated MachineState but had a similar function */ 2024 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2025 register_savevm_live(NULL, "spapr/htab", -1, 1, 2026 &savevm_htab_handlers, spapr); 2027 2028 /* Prepare the device tree */ 2029 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size, 2030 kernel_size, kernel_le, 2031 kernel_cmdline, 2032 spapr->check_exception_irq); 2033 assert(spapr->fdt_skel != NULL); 2034 2035 /* used by RTAS */ 2036 QTAILQ_INIT(&spapr->ccs_list); 2037 qemu_register_reset(spapr_ccs_reset_hook, spapr); 2038 2039 qemu_register_boot_set(spapr_boot_set, spapr); 2040 } 2041 2042 static int spapr_kvm_type(const char *vm_type) 2043 { 2044 if (!vm_type) { 2045 return 0; 2046 } 2047 2048 if (!strcmp(vm_type, "HV")) { 2049 return 1; 2050 } 2051 2052 if (!strcmp(vm_type, "PR")) { 2053 return 2; 2054 } 2055 2056 error_report("Unknown kvm-type specified '%s'", vm_type); 2057 exit(1); 2058 } 2059 2060 /* 2061 * Implementation of an interface to adjust firmware path 2062 * for the bootindex property handling. 2063 */ 2064 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2065 DeviceState *dev) 2066 { 2067 #define CAST(type, obj, name) \ 2068 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2069 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2070 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2071 2072 if (d) { 2073 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2074 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2075 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2076 2077 if (spapr) { 2078 /* 2079 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2080 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2081 * in the top 16 bits of the 64-bit LUN 2082 */ 2083 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2084 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2085 (uint64_t)id << 48); 2086 } else if (virtio) { 2087 /* 2088 * We use SRP luns of the form 01000000 | (target << 8) | lun 2089 * in the top 32 bits of the 64-bit LUN 2090 * Note: the quote above is from SLOF and it is wrong, 2091 * the actual binding is: 2092 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2093 */ 2094 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2095 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2096 (uint64_t)id << 32); 2097 } else if (usb) { 2098 /* 2099 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2100 * in the top 32 bits of the 64-bit LUN 2101 */ 2102 unsigned usb_port = atoi(usb->port->path); 2103 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2104 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2105 (uint64_t)id << 32); 2106 } 2107 } 2108 2109 if (phb) { 2110 /* Replace "pci" with "pci@800000020000000" */ 2111 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2112 } 2113 2114 return NULL; 2115 } 2116 2117 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2118 { 2119 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2120 2121 return g_strdup(spapr->kvm_type); 2122 } 2123 2124 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2125 { 2126 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2127 2128 g_free(spapr->kvm_type); 2129 spapr->kvm_type = g_strdup(value); 2130 } 2131 2132 static void spapr_machine_initfn(Object *obj) 2133 { 2134 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2135 2136 spapr->htab_fd = -1; 2137 object_property_add_str(obj, "kvm-type", 2138 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 2139 object_property_set_description(obj, "kvm-type", 2140 "Specifies the KVM virtualization mode (HV, PR)", 2141 NULL); 2142 } 2143 2144 static void spapr_machine_finalizefn(Object *obj) 2145 { 2146 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2147 2148 g_free(spapr->kvm_type); 2149 } 2150 2151 static void ppc_cpu_do_nmi_on_cpu(CPUState *cs, void *arg) 2152 { 2153 cpu_synchronize_state(cs); 2154 ppc_cpu_do_system_reset(cs); 2155 } 2156 2157 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 2158 { 2159 CPUState *cs; 2160 2161 CPU_FOREACH(cs) { 2162 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, NULL); 2163 } 2164 } 2165 2166 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size, 2167 uint32_t node, Error **errp) 2168 { 2169 sPAPRDRConnector *drc; 2170 sPAPRDRConnectorClass *drck; 2171 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 2172 int i, fdt_offset, fdt_size; 2173 void *fdt; 2174 2175 for (i = 0; i < nr_lmbs; i++) { 2176 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2177 addr/SPAPR_MEMORY_BLOCK_SIZE); 2178 g_assert(drc); 2179 2180 fdt = create_device_tree(&fdt_size); 2181 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 2182 SPAPR_MEMORY_BLOCK_SIZE); 2183 2184 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2185 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp); 2186 addr += SPAPR_MEMORY_BLOCK_SIZE; 2187 } 2188 /* send hotplug notification to the 2189 * guest only in case of hotplugged memory 2190 */ 2191 if (dev->hotplugged) { 2192 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs); 2193 } 2194 } 2195 2196 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2197 uint32_t node, Error **errp) 2198 { 2199 Error *local_err = NULL; 2200 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2201 PCDIMMDevice *dimm = PC_DIMM(dev); 2202 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2203 MemoryRegion *mr = ddc->get_memory_region(dimm); 2204 uint64_t align = memory_region_get_alignment(mr); 2205 uint64_t size = memory_region_size(mr); 2206 uint64_t addr; 2207 2208 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 2209 error_setg(&local_err, "Hotplugged memory size must be a multiple of " 2210 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE); 2211 goto out; 2212 } 2213 2214 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); 2215 if (local_err) { 2216 goto out; 2217 } 2218 2219 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); 2220 if (local_err) { 2221 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2222 goto out; 2223 } 2224 2225 spapr_add_lmbs(dev, addr, size, node, &error_abort); 2226 2227 out: 2228 error_propagate(errp, local_err); 2229 } 2230 2231 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 2232 sPAPRMachineState *spapr) 2233 { 2234 PowerPCCPU *cpu = POWERPC_CPU(cs); 2235 DeviceClass *dc = DEVICE_GET_CLASS(cs); 2236 int id = ppc_get_vcpu_dt_id(cpu); 2237 void *fdt; 2238 int offset, fdt_size; 2239 char *nodename; 2240 2241 fdt = create_device_tree(&fdt_size); 2242 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 2243 offset = fdt_add_subnode(fdt, 0, nodename); 2244 2245 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 2246 g_free(nodename); 2247 2248 *fdt_offset = offset; 2249 return fdt; 2250 } 2251 2252 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 2253 DeviceState *dev, Error **errp) 2254 { 2255 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); 2256 2257 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2258 int node; 2259 2260 if (!smc->dr_lmb_enabled) { 2261 error_setg(errp, "Memory hotplug not supported for this machine"); 2262 return; 2263 } 2264 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 2265 if (*errp) { 2266 return; 2267 } 2268 if (node < 0 || node >= MAX_NODES) { 2269 error_setg(errp, "Invaild node %d", node); 2270 return; 2271 } 2272 2273 /* 2274 * Currently PowerPC kernel doesn't allow hot-adding memory to 2275 * memory-less node, but instead will silently add the memory 2276 * to the first node that has some memory. This causes two 2277 * unexpected behaviours for the user. 2278 * 2279 * - Memory gets hotplugged to a different node than what the user 2280 * specified. 2281 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs 2282 * to memory-less node, a reboot will set things accordingly 2283 * and the previously hotplugged memory now ends in the right node. 2284 * This appears as if some memory moved from one node to another. 2285 * 2286 * So until kernel starts supporting memory hotplug to memory-less 2287 * nodes, just prevent such attempts upfront in QEMU. 2288 */ 2289 if (nb_numa_nodes && !numa_info[node].node_mem) { 2290 error_setg(errp, "Can't hotplug memory to memory-less node %d", 2291 node); 2292 return; 2293 } 2294 2295 spapr_memory_plug(hotplug_dev, dev, node, errp); 2296 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2297 spapr_core_plug(hotplug_dev, dev, errp); 2298 } 2299 } 2300 2301 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 2302 DeviceState *dev, Error **errp) 2303 { 2304 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 2305 2306 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2307 error_setg(errp, "Memory hot unplug not supported by sPAPR"); 2308 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2309 if (!mc->query_hotpluggable_cpus) { 2310 error_setg(errp, "CPU hot unplug not supported on this machine"); 2311 return; 2312 } 2313 spapr_core_unplug(hotplug_dev, dev, errp); 2314 } 2315 } 2316 2317 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 2318 DeviceState *dev, Error **errp) 2319 { 2320 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2321 spapr_core_pre_plug(hotplug_dev, dev, errp); 2322 } 2323 } 2324 2325 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 2326 DeviceState *dev) 2327 { 2328 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2329 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2330 return HOTPLUG_HANDLER(machine); 2331 } 2332 return NULL; 2333 } 2334 2335 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index) 2336 { 2337 /* Allocate to NUMA nodes on a "socket" basis (not that concept of 2338 * socket means much for the paravirtualized PAPR platform) */ 2339 return cpu_index / smp_threads / smp_cores; 2340 } 2341 2342 static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine) 2343 { 2344 int i; 2345 HotpluggableCPUList *head = NULL; 2346 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2347 int spapr_max_cores = max_cpus / smp_threads; 2348 2349 for (i = 0; i < spapr_max_cores; i++) { 2350 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1); 2351 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1); 2352 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1); 2353 2354 cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model); 2355 cpu_item->vcpus_count = smp_threads; 2356 cpu_props->has_core_id = true; 2357 cpu_props->core_id = i * smp_threads; 2358 /* TODO: add 'has_node/node' here to describe 2359 to which node core belongs */ 2360 2361 cpu_item->props = cpu_props; 2362 if (spapr->cores[i]) { 2363 cpu_item->has_qom_path = true; 2364 cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]); 2365 } 2366 list_item->value = cpu_item; 2367 list_item->next = head; 2368 head = list_item; 2369 } 2370 return head; 2371 } 2372 2373 static void spapr_machine_class_init(ObjectClass *oc, void *data) 2374 { 2375 MachineClass *mc = MACHINE_CLASS(oc); 2376 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 2377 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 2378 NMIClass *nc = NMI_CLASS(oc); 2379 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2380 2381 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 2382 2383 /* 2384 * We set up the default / latest behaviour here. The class_init 2385 * functions for the specific versioned machine types can override 2386 * these details for backwards compatibility 2387 */ 2388 mc->init = ppc_spapr_init; 2389 mc->reset = ppc_spapr_reset; 2390 mc->block_default_type = IF_SCSI; 2391 mc->max_cpus = MAX_CPUMASK_BITS; 2392 mc->no_parallel = 1; 2393 mc->default_boot_order = ""; 2394 mc->default_ram_size = 512 * M_BYTE; 2395 mc->kvm_type = spapr_kvm_type; 2396 mc->has_dynamic_sysbus = true; 2397 mc->pci_allow_0_address = true; 2398 mc->get_hotplug_handler = spapr_get_hotplug_handler; 2399 hc->pre_plug = spapr_machine_device_pre_plug; 2400 hc->plug = spapr_machine_device_plug; 2401 hc->unplug = spapr_machine_device_unplug; 2402 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id; 2403 2404 smc->dr_lmb_enabled = true; 2405 smc->tcg_default_cpu = "POWER8"; 2406 mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus; 2407 fwc->get_dev_path = spapr_get_fw_dev_path; 2408 nc->nmi_monitor_handler = spapr_nmi; 2409 } 2410 2411 static const TypeInfo spapr_machine_info = { 2412 .name = TYPE_SPAPR_MACHINE, 2413 .parent = TYPE_MACHINE, 2414 .abstract = true, 2415 .instance_size = sizeof(sPAPRMachineState), 2416 .instance_init = spapr_machine_initfn, 2417 .instance_finalize = spapr_machine_finalizefn, 2418 .class_size = sizeof(sPAPRMachineClass), 2419 .class_init = spapr_machine_class_init, 2420 .interfaces = (InterfaceInfo[]) { 2421 { TYPE_FW_PATH_PROVIDER }, 2422 { TYPE_NMI }, 2423 { TYPE_HOTPLUG_HANDLER }, 2424 { } 2425 }, 2426 }; 2427 2428 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 2429 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 2430 void *data) \ 2431 { \ 2432 MachineClass *mc = MACHINE_CLASS(oc); \ 2433 spapr_machine_##suffix##_class_options(mc); \ 2434 if (latest) { \ 2435 mc->alias = "pseries"; \ 2436 mc->is_default = 1; \ 2437 } \ 2438 } \ 2439 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 2440 { \ 2441 MachineState *machine = MACHINE(obj); \ 2442 spapr_machine_##suffix##_instance_options(machine); \ 2443 } \ 2444 static const TypeInfo spapr_machine_##suffix##_info = { \ 2445 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 2446 .parent = TYPE_SPAPR_MACHINE, \ 2447 .class_init = spapr_machine_##suffix##_class_init, \ 2448 .instance_init = spapr_machine_##suffix##_instance_init, \ 2449 }; \ 2450 static void spapr_machine_register_##suffix(void) \ 2451 { \ 2452 type_register(&spapr_machine_##suffix##_info); \ 2453 } \ 2454 type_init(spapr_machine_register_##suffix) 2455 2456 /* 2457 * pseries-2.8 2458 */ 2459 static void spapr_machine_2_8_instance_options(MachineState *machine) 2460 { 2461 } 2462 2463 static void spapr_machine_2_8_class_options(MachineClass *mc) 2464 { 2465 /* Defaults for the latest behaviour inherited from the base class */ 2466 } 2467 2468 DEFINE_SPAPR_MACHINE(2_8, "2.8", true); 2469 2470 /* 2471 * pseries-2.7 2472 */ 2473 #define SPAPR_COMPAT_2_7 \ 2474 HW_COMPAT_2_7 \ 2475 2476 static void spapr_machine_2_7_instance_options(MachineState *machine) 2477 { 2478 } 2479 2480 static void spapr_machine_2_7_class_options(MachineClass *mc) 2481 { 2482 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 2483 2484 spapr_machine_2_8_class_options(mc); 2485 smc->tcg_default_cpu = "POWER7"; 2486 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 2487 } 2488 2489 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 2490 2491 /* 2492 * pseries-2.6 2493 */ 2494 #define SPAPR_COMPAT_2_6 \ 2495 HW_COMPAT_2_6 \ 2496 { \ 2497 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 2498 .property = "ddw",\ 2499 .value = stringify(off),\ 2500 }, 2501 2502 static void spapr_machine_2_6_instance_options(MachineState *machine) 2503 { 2504 } 2505 2506 static void spapr_machine_2_6_class_options(MachineClass *mc) 2507 { 2508 spapr_machine_2_7_class_options(mc); 2509 mc->query_hotpluggable_cpus = NULL; 2510 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 2511 } 2512 2513 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 2514 2515 /* 2516 * pseries-2.5 2517 */ 2518 #define SPAPR_COMPAT_2_5 \ 2519 HW_COMPAT_2_5 \ 2520 { \ 2521 .driver = "spapr-vlan", \ 2522 .property = "use-rx-buffer-pools", \ 2523 .value = "off", \ 2524 }, 2525 2526 static void spapr_machine_2_5_instance_options(MachineState *machine) 2527 { 2528 } 2529 2530 static void spapr_machine_2_5_class_options(MachineClass *mc) 2531 { 2532 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 2533 2534 spapr_machine_2_6_class_options(mc); 2535 smc->use_ohci_by_default = true; 2536 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 2537 } 2538 2539 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 2540 2541 /* 2542 * pseries-2.4 2543 */ 2544 #define SPAPR_COMPAT_2_4 \ 2545 HW_COMPAT_2_4 2546 2547 static void spapr_machine_2_4_instance_options(MachineState *machine) 2548 { 2549 spapr_machine_2_5_instance_options(machine); 2550 } 2551 2552 static void spapr_machine_2_4_class_options(MachineClass *mc) 2553 { 2554 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 2555 2556 spapr_machine_2_5_class_options(mc); 2557 smc->dr_lmb_enabled = false; 2558 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 2559 } 2560 2561 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 2562 2563 /* 2564 * pseries-2.3 2565 */ 2566 #define SPAPR_COMPAT_2_3 \ 2567 HW_COMPAT_2_3 \ 2568 {\ 2569 .driver = "spapr-pci-host-bridge",\ 2570 .property = "dynamic-reconfiguration",\ 2571 .value = "off",\ 2572 }, 2573 2574 static void spapr_machine_2_3_instance_options(MachineState *machine) 2575 { 2576 spapr_machine_2_4_instance_options(machine); 2577 savevm_skip_section_footers(); 2578 global_state_set_optional(); 2579 savevm_skip_configuration(); 2580 } 2581 2582 static void spapr_machine_2_3_class_options(MachineClass *mc) 2583 { 2584 spapr_machine_2_4_class_options(mc); 2585 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 2586 } 2587 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 2588 2589 /* 2590 * pseries-2.2 2591 */ 2592 2593 #define SPAPR_COMPAT_2_2 \ 2594 HW_COMPAT_2_2 \ 2595 {\ 2596 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 2597 .property = "mem_win_size",\ 2598 .value = "0x20000000",\ 2599 }, 2600 2601 static void spapr_machine_2_2_instance_options(MachineState *machine) 2602 { 2603 spapr_machine_2_3_instance_options(machine); 2604 machine->suppress_vmdesc = true; 2605 } 2606 2607 static void spapr_machine_2_2_class_options(MachineClass *mc) 2608 { 2609 spapr_machine_2_3_class_options(mc); 2610 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 2611 } 2612 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 2613 2614 /* 2615 * pseries-2.1 2616 */ 2617 #define SPAPR_COMPAT_2_1 \ 2618 HW_COMPAT_2_1 2619 2620 static void spapr_machine_2_1_instance_options(MachineState *machine) 2621 { 2622 spapr_machine_2_2_instance_options(machine); 2623 } 2624 2625 static void spapr_machine_2_1_class_options(MachineClass *mc) 2626 { 2627 spapr_machine_2_2_class_options(mc); 2628 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 2629 } 2630 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 2631 2632 static void spapr_machine_register_types(void) 2633 { 2634 type_register_static(&spapr_machine_info); 2635 } 2636 2637 type_init(spapr_machine_register_types) 2638