1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qemu/datadir.h" 30 #include "qapi/error.h" 31 #include "qapi/qapi-events-machine.h" 32 #include "qapi/qapi-events-qdev.h" 33 #include "qapi/visitor.h" 34 #include "sysemu/sysemu.h" 35 #include "sysemu/hostmem.h" 36 #include "sysemu/numa.h" 37 #include "sysemu/qtest.h" 38 #include "sysemu/reset.h" 39 #include "sysemu/runstate.h" 40 #include "qemu/log.h" 41 #include "hw/fw-path-provider.h" 42 #include "elf.h" 43 #include "net/net.h" 44 #include "sysemu/device_tree.h" 45 #include "sysemu/cpus.h" 46 #include "sysemu/hw_accel.h" 47 #include "kvm_ppc.h" 48 #include "migration/misc.h" 49 #include "migration/qemu-file-types.h" 50 #include "migration/global_state.h" 51 #include "migration/register.h" 52 #include "migration/blocker.h" 53 #include "mmu-hash64.h" 54 #include "mmu-book3s-v3.h" 55 #include "cpu-models.h" 56 #include "hw/core/cpu.h" 57 58 #include "hw/ppc/ppc.h" 59 #include "hw/loader.h" 60 61 #include "hw/ppc/fdt.h" 62 #include "hw/ppc/spapr.h" 63 #include "hw/ppc/spapr_vio.h" 64 #include "hw/qdev-properties.h" 65 #include "hw/pci-host/spapr.h" 66 #include "hw/pci/msi.h" 67 68 #include "hw/pci/pci.h" 69 #include "hw/scsi/scsi.h" 70 #include "hw/virtio/virtio-scsi.h" 71 #include "hw/virtio/vhost-scsi-common.h" 72 73 #include "exec/ram_addr.h" 74 #include "hw/usb.h" 75 #include "qemu/config-file.h" 76 #include "qemu/error-report.h" 77 #include "trace.h" 78 #include "hw/nmi.h" 79 #include "hw/intc/intc.h" 80 81 #include "hw/ppc/spapr_cpu_core.h" 82 #include "hw/mem/memory-device.h" 83 #include "hw/ppc/spapr_tpm_proxy.h" 84 #include "hw/ppc/spapr_nvdimm.h" 85 #include "hw/ppc/spapr_numa.h" 86 #include "hw/ppc/pef.h" 87 88 #include "monitor/monitor.h" 89 90 #include <libfdt.h> 91 92 /* SLOF memory layout: 93 * 94 * SLOF raw image loaded at 0, copies its romfs right below the flat 95 * device-tree, then position SLOF itself 31M below that 96 * 97 * So we set FW_OVERHEAD to 40MB which should account for all of that 98 * and more 99 * 100 * We load our kernel at 4M, leaving space for SLOF initial image 101 */ 102 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 103 #define FW_MAX_SIZE 0x400000 104 #define FW_FILE_NAME "slof.bin" 105 #define FW_FILE_NAME_VOF "vof.bin" 106 #define FW_OVERHEAD 0x2800000 107 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 108 109 #define MIN_RMA_SLOF (128 * MiB) 110 111 #define PHANDLE_INTC 0x00001111 112 113 /* These two functions implement the VCPU id numbering: one to compute them 114 * all and one to identify thread 0 of a VCORE. Any change to the first one 115 * is likely to have an impact on the second one, so let's keep them close. 116 */ 117 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 118 { 119 MachineState *ms = MACHINE(spapr); 120 unsigned int smp_threads = ms->smp.threads; 121 122 assert(spapr->vsmt); 123 return 124 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 125 } 126 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 127 PowerPCCPU *cpu) 128 { 129 assert(spapr->vsmt); 130 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 131 } 132 133 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 134 { 135 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 136 * and newer QEMUs don't even have them. In both cases, we don't want 137 * to send anything on the wire. 138 */ 139 return false; 140 } 141 142 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 143 .name = "icp/server", 144 .version_id = 1, 145 .minimum_version_id = 1, 146 .needed = pre_2_10_vmstate_dummy_icp_needed, 147 .fields = (VMStateField[]) { 148 VMSTATE_UNUSED(4), /* uint32_t xirr */ 149 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 150 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 151 VMSTATE_END_OF_LIST() 152 }, 153 }; 154 155 static void pre_2_10_vmstate_register_dummy_icp(int i) 156 { 157 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 158 (void *)(uintptr_t) i); 159 } 160 161 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 162 { 163 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 164 (void *)(uintptr_t) i); 165 } 166 167 int spapr_max_server_number(SpaprMachineState *spapr) 168 { 169 MachineState *ms = MACHINE(spapr); 170 171 assert(spapr->vsmt); 172 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 173 } 174 175 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 176 int smt_threads) 177 { 178 int i, ret = 0; 179 uint32_t servers_prop[smt_threads]; 180 uint32_t gservers_prop[smt_threads * 2]; 181 int index = spapr_get_vcpu_id(cpu); 182 183 if (cpu->compat_pvr) { 184 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 185 if (ret < 0) { 186 return ret; 187 } 188 } 189 190 /* Build interrupt servers and gservers properties */ 191 for (i = 0; i < smt_threads; i++) { 192 servers_prop[i] = cpu_to_be32(index + i); 193 /* Hack, direct the group queues back to cpu 0 */ 194 gservers_prop[i*2] = cpu_to_be32(index + i); 195 gservers_prop[i*2 + 1] = 0; 196 } 197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 198 servers_prop, sizeof(servers_prop)); 199 if (ret < 0) { 200 return ret; 201 } 202 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 203 gservers_prop, sizeof(gservers_prop)); 204 205 return ret; 206 } 207 208 static void spapr_dt_pa_features(SpaprMachineState *spapr, 209 PowerPCCPU *cpu, 210 void *fdt, int offset) 211 { 212 uint8_t pa_features_206[] = { 6, 0, 213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 214 uint8_t pa_features_207[] = { 24, 0, 215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 219 uint8_t pa_features_300[] = { 66, 0, 220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 223 /* 6: DS207 */ 224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 225 /* 16: Vector */ 226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 235 /* 42: PM, 44: PC RA, 46: SC vec'd */ 236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 237 /* 48: SIMD, 50: QP BFP, 52: String */ 238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 239 /* 54: DecFP, 56: DecI, 58: SHA */ 240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 241 /* 60: NM atomic, 62: RNG */ 242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 243 }; 244 uint8_t *pa_features = NULL; 245 size_t pa_size; 246 247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 248 pa_features = pa_features_206; 249 pa_size = sizeof(pa_features_206); 250 } 251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 252 pa_features = pa_features_207; 253 pa_size = sizeof(pa_features_207); 254 } 255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 256 pa_features = pa_features_300; 257 pa_size = sizeof(pa_features_300); 258 } 259 if (!pa_features) { 260 return; 261 } 262 263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 264 /* 265 * Note: we keep CI large pages off by default because a 64K capable 266 * guest provisioned with large pages might otherwise try to map a qemu 267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 268 * even if that qemu runs on a 4k host. 269 * We dd this bit back here if we are confident this is not an issue 270 */ 271 pa_features[3] |= 0x20; 272 } 273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 274 pa_features[24] |= 0x80; /* Transactional memory support */ 275 } 276 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 277 /* Workaround for broken kernels that attempt (guest) radix 278 * mode when they can't handle it, if they see the radix bit set 279 * in pa-features. So hide it from them. */ 280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 281 } 282 283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 284 } 285 286 static hwaddr spapr_node0_size(MachineState *machine) 287 { 288 if (machine->numa_state->num_nodes) { 289 int i; 290 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 291 if (machine->numa_state->nodes[i].node_mem) { 292 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 293 machine->ram_size); 294 } 295 } 296 } 297 return machine->ram_size; 298 } 299 300 static void add_str(GString *s, const gchar *s1) 301 { 302 g_string_append_len(s, s1, strlen(s1) + 1); 303 } 304 305 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 306 hwaddr start, hwaddr size) 307 { 308 char mem_name[32]; 309 uint64_t mem_reg_property[2]; 310 int off; 311 312 mem_reg_property[0] = cpu_to_be64(start); 313 mem_reg_property[1] = cpu_to_be64(size); 314 315 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 316 off = fdt_add_subnode(fdt, 0, mem_name); 317 _FDT(off); 318 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 319 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 320 sizeof(mem_reg_property)))); 321 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 322 return off; 323 } 324 325 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 326 { 327 MemoryDeviceInfoList *info; 328 329 for (info = list; info; info = info->next) { 330 MemoryDeviceInfo *value = info->value; 331 332 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 333 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 334 335 if (addr >= pcdimm_info->addr && 336 addr < (pcdimm_info->addr + pcdimm_info->size)) { 337 return pcdimm_info->node; 338 } 339 } 340 } 341 342 return -1; 343 } 344 345 struct sPAPRDrconfCellV2 { 346 uint32_t seq_lmbs; 347 uint64_t base_addr; 348 uint32_t drc_index; 349 uint32_t aa_index; 350 uint32_t flags; 351 } QEMU_PACKED; 352 353 typedef struct DrconfCellQueue { 354 struct sPAPRDrconfCellV2 cell; 355 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 356 } DrconfCellQueue; 357 358 static DrconfCellQueue * 359 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 360 uint32_t drc_index, uint32_t aa_index, 361 uint32_t flags) 362 { 363 DrconfCellQueue *elem; 364 365 elem = g_malloc0(sizeof(*elem)); 366 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 367 elem->cell.base_addr = cpu_to_be64(base_addr); 368 elem->cell.drc_index = cpu_to_be32(drc_index); 369 elem->cell.aa_index = cpu_to_be32(aa_index); 370 elem->cell.flags = cpu_to_be32(flags); 371 372 return elem; 373 } 374 375 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 376 int offset, MemoryDeviceInfoList *dimms) 377 { 378 MachineState *machine = MACHINE(spapr); 379 uint8_t *int_buf, *cur_index; 380 int ret; 381 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 382 uint64_t addr, cur_addr, size; 383 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 384 uint64_t mem_end = machine->device_memory->base + 385 memory_region_size(&machine->device_memory->mr); 386 uint32_t node, buf_len, nr_entries = 0; 387 SpaprDrc *drc; 388 DrconfCellQueue *elem, *next; 389 MemoryDeviceInfoList *info; 390 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 391 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 392 393 /* Entry to cover RAM and the gap area */ 394 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 395 SPAPR_LMB_FLAGS_RESERVED | 396 SPAPR_LMB_FLAGS_DRC_INVALID); 397 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 398 nr_entries++; 399 400 cur_addr = machine->device_memory->base; 401 for (info = dimms; info; info = info->next) { 402 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 403 404 addr = di->addr; 405 size = di->size; 406 node = di->node; 407 408 /* 409 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 410 * area is marked hotpluggable in the next iteration for the bigger 411 * chunk including the NVDIMM occupied area. 412 */ 413 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 414 continue; 415 416 /* Entry for hot-pluggable area */ 417 if (cur_addr < addr) { 418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 419 g_assert(drc); 420 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 421 cur_addr, spapr_drc_index(drc), -1, 0); 422 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 423 nr_entries++; 424 } 425 426 /* Entry for DIMM */ 427 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 428 g_assert(drc); 429 elem = spapr_get_drconf_cell(size / lmb_size, addr, 430 spapr_drc_index(drc), node, 431 (SPAPR_LMB_FLAGS_ASSIGNED | 432 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 433 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 434 nr_entries++; 435 cur_addr = addr + size; 436 } 437 438 /* Entry for remaining hotpluggable area */ 439 if (cur_addr < mem_end) { 440 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 441 g_assert(drc); 442 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 443 cur_addr, spapr_drc_index(drc), -1, 0); 444 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 445 nr_entries++; 446 } 447 448 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 449 int_buf = cur_index = g_malloc0(buf_len); 450 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 451 cur_index += sizeof(nr_entries); 452 453 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 454 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 455 cur_index += sizeof(elem->cell); 456 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 457 g_free(elem); 458 } 459 460 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 461 g_free(int_buf); 462 if (ret < 0) { 463 return -1; 464 } 465 return 0; 466 } 467 468 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 469 int offset, MemoryDeviceInfoList *dimms) 470 { 471 MachineState *machine = MACHINE(spapr); 472 int i, ret; 473 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 474 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 475 uint32_t nr_lmbs = (machine->device_memory->base + 476 memory_region_size(&machine->device_memory->mr)) / 477 lmb_size; 478 uint32_t *int_buf, *cur_index, buf_len; 479 480 /* 481 * Allocate enough buffer size to fit in ibm,dynamic-memory 482 */ 483 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 484 cur_index = int_buf = g_malloc0(buf_len); 485 int_buf[0] = cpu_to_be32(nr_lmbs); 486 cur_index++; 487 for (i = 0; i < nr_lmbs; i++) { 488 uint64_t addr = i * lmb_size; 489 uint32_t *dynamic_memory = cur_index; 490 491 if (i >= device_lmb_start) { 492 SpaprDrc *drc; 493 494 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 495 g_assert(drc); 496 497 dynamic_memory[0] = cpu_to_be32(addr >> 32); 498 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 499 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 500 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 501 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 502 if (memory_region_present(get_system_memory(), addr)) { 503 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 504 } else { 505 dynamic_memory[5] = cpu_to_be32(0); 506 } 507 } else { 508 /* 509 * LMB information for RMA, boot time RAM and gap b/n RAM and 510 * device memory region -- all these are marked as reserved 511 * and as having no valid DRC. 512 */ 513 dynamic_memory[0] = cpu_to_be32(addr >> 32); 514 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 515 dynamic_memory[2] = cpu_to_be32(0); 516 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 517 dynamic_memory[4] = cpu_to_be32(-1); 518 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 519 SPAPR_LMB_FLAGS_DRC_INVALID); 520 } 521 522 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 523 } 524 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 525 g_free(int_buf); 526 if (ret < 0) { 527 return -1; 528 } 529 return 0; 530 } 531 532 /* 533 * Adds ibm,dynamic-reconfiguration-memory node. 534 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 535 * of this device tree node. 536 */ 537 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 538 void *fdt) 539 { 540 MachineState *machine = MACHINE(spapr); 541 int ret, offset; 542 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 543 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 544 cpu_to_be32(lmb_size & 0xffffffff)}; 545 MemoryDeviceInfoList *dimms = NULL; 546 547 /* 548 * Don't create the node if there is no device memory 549 */ 550 if (machine->ram_size == machine->maxram_size) { 551 return 0; 552 } 553 554 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 555 556 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 557 sizeof(prop_lmb_size)); 558 if (ret < 0) { 559 return ret; 560 } 561 562 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 563 if (ret < 0) { 564 return ret; 565 } 566 567 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 568 if (ret < 0) { 569 return ret; 570 } 571 572 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 573 dimms = qmp_memory_device_list(); 574 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 575 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 576 } else { 577 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 578 } 579 qapi_free_MemoryDeviceInfoList(dimms); 580 581 if (ret < 0) { 582 return ret; 583 } 584 585 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 586 587 return ret; 588 } 589 590 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 591 { 592 MachineState *machine = MACHINE(spapr); 593 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 594 hwaddr mem_start, node_size; 595 int i, nb_nodes = machine->numa_state->num_nodes; 596 NodeInfo *nodes = machine->numa_state->nodes; 597 598 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 599 if (!nodes[i].node_mem) { 600 continue; 601 } 602 if (mem_start >= machine->ram_size) { 603 node_size = 0; 604 } else { 605 node_size = nodes[i].node_mem; 606 if (node_size > machine->ram_size - mem_start) { 607 node_size = machine->ram_size - mem_start; 608 } 609 } 610 if (!mem_start) { 611 /* spapr_machine_init() checks for rma_size <= node0_size 612 * already */ 613 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 614 mem_start += spapr->rma_size; 615 node_size -= spapr->rma_size; 616 } 617 for ( ; node_size; ) { 618 hwaddr sizetmp = pow2floor(node_size); 619 620 /* mem_start != 0 here */ 621 if (ctzl(mem_start) < ctzl(sizetmp)) { 622 sizetmp = 1ULL << ctzl(mem_start); 623 } 624 625 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 626 node_size -= sizetmp; 627 mem_start += sizetmp; 628 } 629 } 630 631 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 632 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 633 int ret; 634 635 g_assert(smc->dr_lmb_enabled); 636 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 637 if (ret) { 638 return ret; 639 } 640 } 641 642 return 0; 643 } 644 645 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 646 SpaprMachineState *spapr) 647 { 648 MachineState *ms = MACHINE(spapr); 649 PowerPCCPU *cpu = POWERPC_CPU(cs); 650 CPUPPCState *env = &cpu->env; 651 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 652 int index = spapr_get_vcpu_id(cpu); 653 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 654 0xffffffff, 0xffffffff}; 655 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 656 : SPAPR_TIMEBASE_FREQ; 657 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 658 uint32_t page_sizes_prop[64]; 659 size_t page_sizes_prop_size; 660 unsigned int smp_threads = ms->smp.threads; 661 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 662 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 663 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 664 SpaprDrc *drc; 665 int drc_index; 666 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 667 int i; 668 669 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 670 if (drc) { 671 drc_index = spapr_drc_index(drc); 672 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 673 } 674 675 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 676 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 677 678 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 679 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 680 env->dcache_line_size))); 681 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 682 env->dcache_line_size))); 683 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 684 env->icache_line_size))); 685 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 686 env->icache_line_size))); 687 688 if (pcc->l1_dcache_size) { 689 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 690 pcc->l1_dcache_size))); 691 } else { 692 warn_report("Unknown L1 dcache size for cpu"); 693 } 694 if (pcc->l1_icache_size) { 695 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 696 pcc->l1_icache_size))); 697 } else { 698 warn_report("Unknown L1 icache size for cpu"); 699 } 700 701 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 702 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 703 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 704 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 705 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 706 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 707 708 if (ppc_has_spr(cpu, SPR_PURR)) { 709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 710 } 711 if (ppc_has_spr(cpu, SPR_PURR)) { 712 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 713 } 714 715 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 716 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 717 segs, sizeof(segs)))); 718 } 719 720 /* Advertise VSX (vector extensions) if available 721 * 1 == VMX / Altivec available 722 * 2 == VSX available 723 * 724 * Only CPUs for which we create core types in spapr_cpu_core.c 725 * are possible, and all of those have VMX */ 726 if (env->insns_flags & PPC_ALTIVEC) { 727 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 728 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 729 } else { 730 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 731 } 732 } 733 734 /* Advertise DFP (Decimal Floating Point) if available 735 * 0 / no property == no DFP 736 * 1 == DFP available */ 737 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 738 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 739 } 740 741 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 742 sizeof(page_sizes_prop)); 743 if (page_sizes_prop_size) { 744 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 745 page_sizes_prop, page_sizes_prop_size))); 746 } 747 748 spapr_dt_pa_features(spapr, cpu, fdt, offset); 749 750 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 751 cs->cpu_index / vcpus_per_socket))); 752 753 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 754 pft_size_prop, sizeof(pft_size_prop)))); 755 756 if (ms->numa_state->num_nodes > 1) { 757 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 758 } 759 760 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 761 762 if (pcc->radix_page_info) { 763 for (i = 0; i < pcc->radix_page_info->count; i++) { 764 radix_AP_encodings[i] = 765 cpu_to_be32(pcc->radix_page_info->entries[i]); 766 } 767 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 768 radix_AP_encodings, 769 pcc->radix_page_info->count * 770 sizeof(radix_AP_encodings[0])))); 771 } 772 773 /* 774 * We set this property to let the guest know that it can use the large 775 * decrementer and its width in bits. 776 */ 777 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 778 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 779 pcc->lrg_decr_bits))); 780 } 781 782 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 783 { 784 CPUState **rev; 785 CPUState *cs; 786 int n_cpus; 787 int cpus_offset; 788 int i; 789 790 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 791 _FDT(cpus_offset); 792 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 794 795 /* 796 * We walk the CPUs in reverse order to ensure that CPU DT nodes 797 * created by fdt_add_subnode() end up in the right order in FDT 798 * for the guest kernel the enumerate the CPUs correctly. 799 * 800 * The CPU list cannot be traversed in reverse order, so we need 801 * to do extra work. 802 */ 803 n_cpus = 0; 804 rev = NULL; 805 CPU_FOREACH(cs) { 806 rev = g_renew(CPUState *, rev, n_cpus + 1); 807 rev[n_cpus++] = cs; 808 } 809 810 for (i = n_cpus - 1; i >= 0; i--) { 811 CPUState *cs = rev[i]; 812 PowerPCCPU *cpu = POWERPC_CPU(cs); 813 int index = spapr_get_vcpu_id(cpu); 814 DeviceClass *dc = DEVICE_GET_CLASS(cs); 815 g_autofree char *nodename = NULL; 816 int offset; 817 818 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 819 continue; 820 } 821 822 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 823 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 824 _FDT(offset); 825 spapr_dt_cpu(cs, fdt, offset, spapr); 826 } 827 828 g_free(rev); 829 } 830 831 static int spapr_dt_rng(void *fdt) 832 { 833 int node; 834 int ret; 835 836 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 837 if (node <= 0) { 838 return -1; 839 } 840 ret = fdt_setprop_string(fdt, node, "device_type", 841 "ibm,platform-facilities"); 842 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 843 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 844 845 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 846 if (node <= 0) { 847 return -1; 848 } 849 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 850 851 return ret ? -1 : 0; 852 } 853 854 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 855 { 856 MachineState *ms = MACHINE(spapr); 857 int rtas; 858 GString *hypertas = g_string_sized_new(256); 859 GString *qemu_hypertas = g_string_sized_new(256); 860 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 861 memory_region_size(&MACHINE(spapr)->device_memory->mr); 862 uint32_t lrdr_capacity[] = { 863 cpu_to_be32(max_device_addr >> 32), 864 cpu_to_be32(max_device_addr & 0xffffffff), 865 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 866 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 867 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 868 }; 869 870 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 871 872 /* hypertas */ 873 add_str(hypertas, "hcall-pft"); 874 add_str(hypertas, "hcall-term"); 875 add_str(hypertas, "hcall-dabr"); 876 add_str(hypertas, "hcall-interrupt"); 877 add_str(hypertas, "hcall-tce"); 878 add_str(hypertas, "hcall-vio"); 879 add_str(hypertas, "hcall-splpar"); 880 add_str(hypertas, "hcall-join"); 881 add_str(hypertas, "hcall-bulk"); 882 add_str(hypertas, "hcall-set-mode"); 883 add_str(hypertas, "hcall-sprg0"); 884 add_str(hypertas, "hcall-copy"); 885 add_str(hypertas, "hcall-debug"); 886 add_str(hypertas, "hcall-vphn"); 887 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 888 add_str(hypertas, "hcall-rpt-invalidate"); 889 } 890 891 add_str(qemu_hypertas, "hcall-memop1"); 892 893 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 894 add_str(hypertas, "hcall-multi-tce"); 895 } 896 897 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 898 add_str(hypertas, "hcall-hpt-resize"); 899 } 900 901 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 902 hypertas->str, hypertas->len)); 903 g_string_free(hypertas, TRUE); 904 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 905 qemu_hypertas->str, qemu_hypertas->len)); 906 g_string_free(qemu_hypertas, TRUE); 907 908 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 909 910 /* 911 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 912 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 913 * 914 * The system reset requirements are driven by existing Linux and PowerVM 915 * implementation which (contrary to PAPR) saves r3 in the error log 916 * structure like machine check, so Linux expects to find the saved r3 917 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 918 * does not look at the error value). 919 * 920 * System reset interrupts are not subject to interlock like machine 921 * check, so this memory area could be corrupted if the sreset is 922 * interrupted by a machine check (or vice versa) if it was shared. To 923 * prevent this, system reset uses per-CPU areas for the sreset save 924 * area. A system reset that interrupts a system reset handler could 925 * still overwrite this area, but Linux doesn't try to recover in that 926 * case anyway. 927 * 928 * The extra 8 bytes is required because Linux's FWNMI error log check 929 * is off-by-one. 930 * 931 * RTAS_MIN_SIZE is required for the RTAS blob itself. 932 */ 933 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 934 RTAS_ERROR_LOG_MAX + 935 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 936 sizeof(uint64_t))); 937 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 938 RTAS_ERROR_LOG_MAX)); 939 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 940 RTAS_EVENT_SCAN_RATE)); 941 942 g_assert(msi_nonbroken); 943 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 944 945 /* 946 * According to PAPR, rtas ibm,os-term does not guarantee a return 947 * back to the guest cpu. 948 * 949 * While an additional ibm,extended-os-term property indicates 950 * that rtas call return will always occur. Set this property. 951 */ 952 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 953 954 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 955 lrdr_capacity, sizeof(lrdr_capacity))); 956 957 spapr_dt_rtas_tokens(fdt, rtas); 958 } 959 960 /* 961 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 962 * and the XIVE features that the guest may request and thus the valid 963 * values for bytes 23..26 of option vector 5: 964 */ 965 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 966 int chosen) 967 { 968 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 969 970 char val[2 * 4] = { 971 23, 0x00, /* XICS / XIVE mode */ 972 24, 0x00, /* Hash/Radix, filled in below. */ 973 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 974 26, 0x40, /* Radix options: GTSE == yes. */ 975 }; 976 977 if (spapr->irq->xics && spapr->irq->xive) { 978 val[1] = SPAPR_OV5_XIVE_BOTH; 979 } else if (spapr->irq->xive) { 980 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 981 } else { 982 assert(spapr->irq->xics); 983 val[1] = SPAPR_OV5_XIVE_LEGACY; 984 } 985 986 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 987 first_ppc_cpu->compat_pvr)) { 988 /* 989 * If we're in a pre POWER9 compat mode then the guest should 990 * do hash and use the legacy interrupt mode 991 */ 992 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 993 val[3] = 0x00; /* Hash */ 994 spapr_check_mmu_mode(false); 995 } else if (kvm_enabled()) { 996 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 997 val[3] = 0x80; /* OV5_MMU_BOTH */ 998 } else if (kvmppc_has_cap_mmu_radix()) { 999 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1000 } else { 1001 val[3] = 0x00; /* Hash */ 1002 } 1003 } else { 1004 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1005 val[3] = 0xC0; 1006 } 1007 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1008 val, sizeof(val))); 1009 } 1010 1011 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1012 { 1013 MachineState *machine = MACHINE(spapr); 1014 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1015 int chosen; 1016 1017 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1018 1019 if (reset) { 1020 const char *boot_device = spapr->boot_device; 1021 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1022 size_t cb = 0; 1023 g_autofree char *bootlist = get_boot_devices_list(&cb); 1024 1025 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1026 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1027 machine->kernel_cmdline)); 1028 } 1029 1030 if (spapr->initrd_size) { 1031 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1032 spapr->initrd_base)); 1033 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1034 spapr->initrd_base + spapr->initrd_size)); 1035 } 1036 1037 if (spapr->kernel_size) { 1038 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1039 cpu_to_be64(spapr->kernel_size) }; 1040 1041 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1042 &kprop, sizeof(kprop))); 1043 if (spapr->kernel_le) { 1044 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1045 } 1046 } 1047 if (boot_menu) { 1048 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1049 } 1050 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1051 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1052 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1053 1054 if (cb && bootlist) { 1055 int i; 1056 1057 for (i = 0; i < cb; i++) { 1058 if (bootlist[i] == '\n') { 1059 bootlist[i] = ' '; 1060 } 1061 } 1062 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1063 } 1064 1065 if (boot_device && strlen(boot_device)) { 1066 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1067 } 1068 1069 if (!spapr->has_graphics && stdout_path) { 1070 /* 1071 * "linux,stdout-path" and "stdout" properties are 1072 * deprecated by linux kernel. New platforms should only 1073 * use the "stdout-path" property. Set the new property 1074 * and continue using older property to remain compatible 1075 * with the existing firmware. 1076 */ 1077 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1078 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1079 } 1080 1081 /* 1082 * We can deal with BAR reallocation just fine, advertise it 1083 * to the guest 1084 */ 1085 if (smc->linux_pci_probe) { 1086 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1087 } 1088 1089 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1090 } 1091 1092 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1093 } 1094 1095 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1096 { 1097 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1098 * KVM to work under pHyp with some guest co-operation */ 1099 int hypervisor; 1100 uint8_t hypercall[16]; 1101 1102 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1103 /* indicate KVM hypercall interface */ 1104 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1105 if (kvmppc_has_cap_fixup_hcalls()) { 1106 /* 1107 * Older KVM versions with older guest kernels were broken 1108 * with the magic page, don't allow the guest to map it. 1109 */ 1110 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1111 sizeof(hypercall))) { 1112 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1113 hypercall, sizeof(hypercall))); 1114 } 1115 } 1116 } 1117 1118 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1119 { 1120 MachineState *machine = MACHINE(spapr); 1121 MachineClass *mc = MACHINE_GET_CLASS(machine); 1122 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1123 uint32_t root_drc_type_mask = 0; 1124 int ret; 1125 void *fdt; 1126 SpaprPhbState *phb; 1127 char *buf; 1128 1129 fdt = g_malloc0(space); 1130 _FDT((fdt_create_empty_tree(fdt, space))); 1131 1132 /* Root node */ 1133 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1134 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1135 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1136 1137 /* Guest UUID & Name*/ 1138 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1139 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1140 if (qemu_uuid_set) { 1141 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1142 } 1143 g_free(buf); 1144 1145 if (qemu_get_vm_name()) { 1146 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1147 qemu_get_vm_name())); 1148 } 1149 1150 /* Host Model & Serial Number */ 1151 if (spapr->host_model) { 1152 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1153 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1154 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1155 g_free(buf); 1156 } 1157 1158 if (spapr->host_serial) { 1159 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1160 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1161 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1162 g_free(buf); 1163 } 1164 1165 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1166 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1167 1168 /* /interrupt controller */ 1169 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1170 1171 ret = spapr_dt_memory(spapr, fdt); 1172 if (ret < 0) { 1173 error_report("couldn't setup memory nodes in fdt"); 1174 exit(1); 1175 } 1176 1177 /* /vdevice */ 1178 spapr_dt_vdevice(spapr->vio_bus, fdt); 1179 1180 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1181 ret = spapr_dt_rng(fdt); 1182 if (ret < 0) { 1183 error_report("could not set up rng device in the fdt"); 1184 exit(1); 1185 } 1186 } 1187 1188 QLIST_FOREACH(phb, &spapr->phbs, list) { 1189 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1190 if (ret < 0) { 1191 error_report("couldn't setup PCI devices in fdt"); 1192 exit(1); 1193 } 1194 } 1195 1196 spapr_dt_cpus(fdt, spapr); 1197 1198 /* ibm,drc-indexes and friends */ 1199 if (smc->dr_lmb_enabled) { 1200 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1201 } 1202 if (smc->dr_phb_enabled) { 1203 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1204 } 1205 if (mc->nvdimm_supported) { 1206 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1207 } 1208 if (root_drc_type_mask) { 1209 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1210 } 1211 1212 if (mc->has_hotpluggable_cpus) { 1213 int offset = fdt_path_offset(fdt, "/cpus"); 1214 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1215 if (ret < 0) { 1216 error_report("Couldn't set up CPU DR device tree properties"); 1217 exit(1); 1218 } 1219 } 1220 1221 /* /event-sources */ 1222 spapr_dt_events(spapr, fdt); 1223 1224 /* /rtas */ 1225 spapr_dt_rtas(spapr, fdt); 1226 1227 /* /chosen */ 1228 spapr_dt_chosen(spapr, fdt, reset); 1229 1230 /* /hypervisor */ 1231 if (kvm_enabled()) { 1232 spapr_dt_hypervisor(spapr, fdt); 1233 } 1234 1235 /* Build memory reserve map */ 1236 if (reset) { 1237 if (spapr->kernel_size) { 1238 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1239 spapr->kernel_size))); 1240 } 1241 if (spapr->initrd_size) { 1242 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1243 spapr->initrd_size))); 1244 } 1245 } 1246 1247 /* NVDIMM devices */ 1248 if (mc->nvdimm_supported) { 1249 spapr_dt_persistent_memory(spapr, fdt); 1250 } 1251 1252 return fdt; 1253 } 1254 1255 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1256 { 1257 SpaprMachineState *spapr = opaque; 1258 1259 return (addr & 0x0fffffff) + spapr->kernel_addr; 1260 } 1261 1262 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1263 PowerPCCPU *cpu) 1264 { 1265 CPUPPCState *env = &cpu->env; 1266 1267 /* The TCG path should also be holding the BQL at this point */ 1268 g_assert(qemu_mutex_iothread_locked()); 1269 1270 g_assert(!vhyp_cpu_in_nested(cpu)); 1271 1272 if (msr_pr) { 1273 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1274 env->gpr[3] = H_PRIVILEGE; 1275 } else { 1276 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1277 } 1278 } 1279 1280 struct LPCRSyncState { 1281 target_ulong value; 1282 target_ulong mask; 1283 }; 1284 1285 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1286 { 1287 struct LPCRSyncState *s = arg.host_ptr; 1288 PowerPCCPU *cpu = POWERPC_CPU(cs); 1289 CPUPPCState *env = &cpu->env; 1290 target_ulong lpcr; 1291 1292 cpu_synchronize_state(cs); 1293 lpcr = env->spr[SPR_LPCR]; 1294 lpcr &= ~s->mask; 1295 lpcr |= s->value; 1296 ppc_store_lpcr(cpu, lpcr); 1297 } 1298 1299 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1300 { 1301 CPUState *cs; 1302 struct LPCRSyncState s = { 1303 .value = value, 1304 .mask = mask 1305 }; 1306 CPU_FOREACH(cs) { 1307 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1308 } 1309 } 1310 1311 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1312 target_ulong lpid, ppc_v3_pate_t *entry) 1313 { 1314 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1315 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1316 1317 if (!spapr_cpu->in_nested) { 1318 assert(lpid == 0); 1319 1320 /* Copy PATE1:GR into PATE0:HR */ 1321 entry->dw0 = spapr->patb_entry & PATE0_HR; 1322 entry->dw1 = spapr->patb_entry; 1323 1324 } else { 1325 uint64_t patb, pats; 1326 1327 assert(lpid != 0); 1328 1329 patb = spapr->nested_ptcr & PTCR_PATB; 1330 pats = spapr->nested_ptcr & PTCR_PATS; 1331 1332 /* Calculate number of entries */ 1333 pats = 1ull << (pats + 12 - 4); 1334 if (pats <= lpid) { 1335 return false; 1336 } 1337 1338 /* Grab entry */ 1339 patb += 16 * lpid; 1340 entry->dw0 = ldq_phys(CPU(cpu)->as, patb); 1341 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8); 1342 } 1343 1344 return true; 1345 } 1346 1347 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1348 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1349 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1350 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1351 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1352 1353 /* 1354 * Get the fd to access the kernel htab, re-opening it if necessary 1355 */ 1356 static int get_htab_fd(SpaprMachineState *spapr) 1357 { 1358 Error *local_err = NULL; 1359 1360 if (spapr->htab_fd >= 0) { 1361 return spapr->htab_fd; 1362 } 1363 1364 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1365 if (spapr->htab_fd < 0) { 1366 error_report_err(local_err); 1367 } 1368 1369 return spapr->htab_fd; 1370 } 1371 1372 void close_htab_fd(SpaprMachineState *spapr) 1373 { 1374 if (spapr->htab_fd >= 0) { 1375 close(spapr->htab_fd); 1376 } 1377 spapr->htab_fd = -1; 1378 } 1379 1380 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1381 { 1382 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1383 1384 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1385 } 1386 1387 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1388 { 1389 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1390 1391 assert(kvm_enabled()); 1392 1393 if (!spapr->htab) { 1394 return 0; 1395 } 1396 1397 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1398 } 1399 1400 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1401 hwaddr ptex, int n) 1402 { 1403 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1404 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1405 1406 if (!spapr->htab) { 1407 /* 1408 * HTAB is controlled by KVM. Fetch into temporary buffer 1409 */ 1410 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1411 kvmppc_read_hptes(hptes, ptex, n); 1412 return hptes; 1413 } 1414 1415 /* 1416 * HTAB is controlled by QEMU. Just point to the internally 1417 * accessible PTEG. 1418 */ 1419 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1420 } 1421 1422 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1423 const ppc_hash_pte64_t *hptes, 1424 hwaddr ptex, int n) 1425 { 1426 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1427 1428 if (!spapr->htab) { 1429 g_free((void *)hptes); 1430 } 1431 1432 /* Nothing to do for qemu managed HPT */ 1433 } 1434 1435 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1436 uint64_t pte0, uint64_t pte1) 1437 { 1438 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1439 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1440 1441 if (!spapr->htab) { 1442 kvmppc_write_hpte(ptex, pte0, pte1); 1443 } else { 1444 if (pte0 & HPTE64_V_VALID) { 1445 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1446 /* 1447 * When setting valid, we write PTE1 first. This ensures 1448 * proper synchronization with the reading code in 1449 * ppc_hash64_pteg_search() 1450 */ 1451 smp_wmb(); 1452 stq_p(spapr->htab + offset, pte0); 1453 } else { 1454 stq_p(spapr->htab + offset, pte0); 1455 /* 1456 * When clearing it we set PTE0 first. This ensures proper 1457 * synchronization with the reading code in 1458 * ppc_hash64_pteg_search() 1459 */ 1460 smp_wmb(); 1461 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1462 } 1463 } 1464 } 1465 1466 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1467 uint64_t pte1) 1468 { 1469 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1470 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1471 1472 if (!spapr->htab) { 1473 /* There should always be a hash table when this is called */ 1474 error_report("spapr_hpte_set_c called with no hash table !"); 1475 return; 1476 } 1477 1478 /* The HW performs a non-atomic byte update */ 1479 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1480 } 1481 1482 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1483 uint64_t pte1) 1484 { 1485 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1486 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1487 1488 if (!spapr->htab) { 1489 /* There should always be a hash table when this is called */ 1490 error_report("spapr_hpte_set_r called with no hash table !"); 1491 return; 1492 } 1493 1494 /* The HW performs a non-atomic byte update */ 1495 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1496 } 1497 1498 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1499 { 1500 int shift; 1501 1502 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1503 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1504 * that's much more than is needed for Linux guests */ 1505 shift = ctz64(pow2ceil(ramsize)) - 7; 1506 shift = MAX(shift, 18); /* Minimum architected size */ 1507 shift = MIN(shift, 46); /* Maximum architected size */ 1508 return shift; 1509 } 1510 1511 void spapr_free_hpt(SpaprMachineState *spapr) 1512 { 1513 g_free(spapr->htab); 1514 spapr->htab = NULL; 1515 spapr->htab_shift = 0; 1516 close_htab_fd(spapr); 1517 } 1518 1519 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1520 { 1521 ERRP_GUARD(); 1522 long rc; 1523 1524 /* Clean up any HPT info from a previous boot */ 1525 spapr_free_hpt(spapr); 1526 1527 rc = kvmppc_reset_htab(shift); 1528 1529 if (rc == -EOPNOTSUPP) { 1530 error_setg(errp, "HPT not supported in nested guests"); 1531 return -EOPNOTSUPP; 1532 } 1533 1534 if (rc < 0) { 1535 /* kernel-side HPT needed, but couldn't allocate one */ 1536 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1537 shift); 1538 error_append_hint(errp, "Try smaller maxmem?\n"); 1539 return -errno; 1540 } else if (rc > 0) { 1541 /* kernel-side HPT allocated */ 1542 if (rc != shift) { 1543 error_setg(errp, 1544 "Requested order %d HPT, but kernel allocated order %ld", 1545 shift, rc); 1546 error_append_hint(errp, "Try smaller maxmem?\n"); 1547 return -ENOSPC; 1548 } 1549 1550 spapr->htab_shift = shift; 1551 spapr->htab = NULL; 1552 } else { 1553 /* kernel-side HPT not needed, allocate in userspace instead */ 1554 size_t size = 1ULL << shift; 1555 int i; 1556 1557 spapr->htab = qemu_memalign(size, size); 1558 memset(spapr->htab, 0, size); 1559 spapr->htab_shift = shift; 1560 1561 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1562 DIRTY_HPTE(HPTE(spapr->htab, i)); 1563 } 1564 } 1565 /* We're setting up a hash table, so that means we're not radix */ 1566 spapr->patb_entry = 0; 1567 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1568 return 0; 1569 } 1570 1571 void spapr_setup_hpt(SpaprMachineState *spapr) 1572 { 1573 int hpt_shift; 1574 1575 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1576 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1577 } else { 1578 uint64_t current_ram_size; 1579 1580 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1581 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1582 } 1583 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1584 1585 if (kvm_enabled()) { 1586 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1587 1588 /* Check our RMA fits in the possible VRMA */ 1589 if (vrma_limit < spapr->rma_size) { 1590 error_report("Unable to create %" HWADDR_PRIu 1591 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1592 spapr->rma_size / MiB, vrma_limit / MiB); 1593 exit(EXIT_FAILURE); 1594 } 1595 } 1596 } 1597 1598 void spapr_check_mmu_mode(bool guest_radix) 1599 { 1600 if (guest_radix) { 1601 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1602 error_report("Guest requested unavailable MMU mode (radix)."); 1603 exit(EXIT_FAILURE); 1604 } 1605 } else { 1606 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1607 && !kvmppc_has_cap_mmu_hash_v3()) { 1608 error_report("Guest requested unavailable MMU mode (hash)."); 1609 exit(EXIT_FAILURE); 1610 } 1611 } 1612 } 1613 1614 static void spapr_machine_reset(MachineState *machine) 1615 { 1616 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1617 PowerPCCPU *first_ppc_cpu; 1618 hwaddr fdt_addr; 1619 void *fdt; 1620 int rc; 1621 1622 pef_kvm_reset(machine->cgs, &error_fatal); 1623 spapr_caps_apply(spapr); 1624 1625 first_ppc_cpu = POWERPC_CPU(first_cpu); 1626 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1627 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1628 spapr->max_compat_pvr)) { 1629 /* 1630 * If using KVM with radix mode available, VCPUs can be started 1631 * without a HPT because KVM will start them in radix mode. 1632 * Set the GR bit in PATE so that we know there is no HPT. 1633 */ 1634 spapr->patb_entry = PATE1_GR; 1635 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1636 } else { 1637 spapr_setup_hpt(spapr); 1638 } 1639 1640 qemu_devices_reset(); 1641 1642 spapr_ovec_cleanup(spapr->ov5_cas); 1643 spapr->ov5_cas = spapr_ovec_new(); 1644 1645 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1646 1647 /* 1648 * This is fixing some of the default configuration of the XIVE 1649 * devices. To be called after the reset of the machine devices. 1650 */ 1651 spapr_irq_reset(spapr, &error_fatal); 1652 1653 /* 1654 * There is no CAS under qtest. Simulate one to please the code that 1655 * depends on spapr->ov5_cas. This is especially needed to test device 1656 * unplug, so we do that before resetting the DRCs. 1657 */ 1658 if (qtest_enabled()) { 1659 spapr_ovec_cleanup(spapr->ov5_cas); 1660 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1661 } 1662 1663 spapr_nvdimm_finish_flushes(); 1664 1665 /* DRC reset may cause a device to be unplugged. This will cause troubles 1666 * if this device is used by another device (eg, a running vhost backend 1667 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1668 * situations, we reset DRCs after all devices have been reset. 1669 */ 1670 spapr_drc_reset_all(spapr); 1671 1672 spapr_clear_pending_events(spapr); 1673 1674 /* 1675 * We place the device tree just below either the top of the RMA, 1676 * or just below 2GB, whichever is lower, so that it can be 1677 * processed with 32-bit real mode code if necessary 1678 */ 1679 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1680 1681 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1682 if (spapr->vof) { 1683 spapr_vof_reset(spapr, fdt, &error_fatal); 1684 /* 1685 * Do not pack the FDT as the client may change properties. 1686 * VOF client does not expect the FDT so we do not load it to the VM. 1687 */ 1688 } else { 1689 rc = fdt_pack(fdt); 1690 /* Should only fail if we've built a corrupted tree */ 1691 assert(rc == 0); 1692 1693 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1694 0, fdt_addr, 0); 1695 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1696 } 1697 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1698 1699 g_free(spapr->fdt_blob); 1700 spapr->fdt_size = fdt_totalsize(fdt); 1701 spapr->fdt_initial_size = spapr->fdt_size; 1702 spapr->fdt_blob = fdt; 1703 1704 /* Set up the entry state */ 1705 first_ppc_cpu->env.gpr[5] = 0; 1706 1707 spapr->fwnmi_system_reset_addr = -1; 1708 spapr->fwnmi_machine_check_addr = -1; 1709 spapr->fwnmi_machine_check_interlock = -1; 1710 1711 /* Signal all vCPUs waiting on this condition */ 1712 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1713 1714 migrate_del_blocker(spapr->fwnmi_migration_blocker); 1715 } 1716 1717 static void spapr_create_nvram(SpaprMachineState *spapr) 1718 { 1719 DeviceState *dev = qdev_new("spapr-nvram"); 1720 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1721 1722 if (dinfo) { 1723 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1724 &error_fatal); 1725 } 1726 1727 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1728 1729 spapr->nvram = (struct SpaprNvram *)dev; 1730 } 1731 1732 static void spapr_rtc_create(SpaprMachineState *spapr) 1733 { 1734 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1735 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1736 &error_fatal, NULL); 1737 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1738 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1739 "date"); 1740 } 1741 1742 /* Returns whether we want to use VGA or not */ 1743 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1744 { 1745 switch (vga_interface_type) { 1746 case VGA_NONE: 1747 return false; 1748 case VGA_DEVICE: 1749 return true; 1750 case VGA_STD: 1751 case VGA_VIRTIO: 1752 case VGA_CIRRUS: 1753 return pci_vga_init(pci_bus) != NULL; 1754 default: 1755 error_setg(errp, 1756 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1757 return false; 1758 } 1759 } 1760 1761 static int spapr_pre_load(void *opaque) 1762 { 1763 int rc; 1764 1765 rc = spapr_caps_pre_load(opaque); 1766 if (rc) { 1767 return rc; 1768 } 1769 1770 return 0; 1771 } 1772 1773 static int spapr_post_load(void *opaque, int version_id) 1774 { 1775 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1776 int err = 0; 1777 1778 err = spapr_caps_post_migration(spapr); 1779 if (err) { 1780 return err; 1781 } 1782 1783 /* 1784 * In earlier versions, there was no separate qdev for the PAPR 1785 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1786 * So when migrating from those versions, poke the incoming offset 1787 * value into the RTC device 1788 */ 1789 if (version_id < 3) { 1790 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1791 if (err) { 1792 return err; 1793 } 1794 } 1795 1796 if (kvm_enabled() && spapr->patb_entry) { 1797 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1798 bool radix = !!(spapr->patb_entry & PATE1_GR); 1799 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1800 1801 /* 1802 * Update LPCR:HR and UPRT as they may not be set properly in 1803 * the stream 1804 */ 1805 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1806 LPCR_HR | LPCR_UPRT); 1807 1808 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1809 if (err) { 1810 error_report("Process table config unsupported by the host"); 1811 return -EINVAL; 1812 } 1813 } 1814 1815 err = spapr_irq_post_load(spapr, version_id); 1816 if (err) { 1817 return err; 1818 } 1819 1820 return err; 1821 } 1822 1823 static int spapr_pre_save(void *opaque) 1824 { 1825 int rc; 1826 1827 rc = spapr_caps_pre_save(opaque); 1828 if (rc) { 1829 return rc; 1830 } 1831 1832 return 0; 1833 } 1834 1835 static bool version_before_3(void *opaque, int version_id) 1836 { 1837 return version_id < 3; 1838 } 1839 1840 static bool spapr_pending_events_needed(void *opaque) 1841 { 1842 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1843 return !QTAILQ_EMPTY(&spapr->pending_events); 1844 } 1845 1846 static const VMStateDescription vmstate_spapr_event_entry = { 1847 .name = "spapr_event_log_entry", 1848 .version_id = 1, 1849 .minimum_version_id = 1, 1850 .fields = (VMStateField[]) { 1851 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1852 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1853 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1854 NULL, extended_length), 1855 VMSTATE_END_OF_LIST() 1856 }, 1857 }; 1858 1859 static const VMStateDescription vmstate_spapr_pending_events = { 1860 .name = "spapr_pending_events", 1861 .version_id = 1, 1862 .minimum_version_id = 1, 1863 .needed = spapr_pending_events_needed, 1864 .fields = (VMStateField[]) { 1865 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1866 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1867 VMSTATE_END_OF_LIST() 1868 }, 1869 }; 1870 1871 static bool spapr_ov5_cas_needed(void *opaque) 1872 { 1873 SpaprMachineState *spapr = opaque; 1874 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1875 bool cas_needed; 1876 1877 /* Prior to the introduction of SpaprOptionVector, we had two option 1878 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1879 * Both of these options encode machine topology into the device-tree 1880 * in such a way that the now-booted OS should still be able to interact 1881 * appropriately with QEMU regardless of what options were actually 1882 * negotiatied on the source side. 1883 * 1884 * As such, we can avoid migrating the CAS-negotiated options if these 1885 * are the only options available on the current machine/platform. 1886 * Since these are the only options available for pseries-2.7 and 1887 * earlier, this allows us to maintain old->new/new->old migration 1888 * compatibility. 1889 * 1890 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1891 * via default pseries-2.8 machines and explicit command-line parameters. 1892 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1893 * of the actual CAS-negotiated values to continue working properly. For 1894 * example, availability of memory unplug depends on knowing whether 1895 * OV5_HP_EVT was negotiated via CAS. 1896 * 1897 * Thus, for any cases where the set of available CAS-negotiatable 1898 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1899 * include the CAS-negotiated options in the migration stream, unless 1900 * if they affect boot time behaviour only. 1901 */ 1902 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1903 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1904 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1905 1906 /* We need extra information if we have any bits outside the mask 1907 * defined above */ 1908 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1909 1910 spapr_ovec_cleanup(ov5_mask); 1911 1912 return cas_needed; 1913 } 1914 1915 static const VMStateDescription vmstate_spapr_ov5_cas = { 1916 .name = "spapr_option_vector_ov5_cas", 1917 .version_id = 1, 1918 .minimum_version_id = 1, 1919 .needed = spapr_ov5_cas_needed, 1920 .fields = (VMStateField[]) { 1921 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1922 vmstate_spapr_ovec, SpaprOptionVector), 1923 VMSTATE_END_OF_LIST() 1924 }, 1925 }; 1926 1927 static bool spapr_patb_entry_needed(void *opaque) 1928 { 1929 SpaprMachineState *spapr = opaque; 1930 1931 return !!spapr->patb_entry; 1932 } 1933 1934 static const VMStateDescription vmstate_spapr_patb_entry = { 1935 .name = "spapr_patb_entry", 1936 .version_id = 1, 1937 .minimum_version_id = 1, 1938 .needed = spapr_patb_entry_needed, 1939 .fields = (VMStateField[]) { 1940 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1941 VMSTATE_END_OF_LIST() 1942 }, 1943 }; 1944 1945 static bool spapr_irq_map_needed(void *opaque) 1946 { 1947 SpaprMachineState *spapr = opaque; 1948 1949 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1950 } 1951 1952 static const VMStateDescription vmstate_spapr_irq_map = { 1953 .name = "spapr_irq_map", 1954 .version_id = 1, 1955 .minimum_version_id = 1, 1956 .needed = spapr_irq_map_needed, 1957 .fields = (VMStateField[]) { 1958 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 1959 VMSTATE_END_OF_LIST() 1960 }, 1961 }; 1962 1963 static bool spapr_dtb_needed(void *opaque) 1964 { 1965 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1966 1967 return smc->update_dt_enabled; 1968 } 1969 1970 static int spapr_dtb_pre_load(void *opaque) 1971 { 1972 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1973 1974 g_free(spapr->fdt_blob); 1975 spapr->fdt_blob = NULL; 1976 spapr->fdt_size = 0; 1977 1978 return 0; 1979 } 1980 1981 static const VMStateDescription vmstate_spapr_dtb = { 1982 .name = "spapr_dtb", 1983 .version_id = 1, 1984 .minimum_version_id = 1, 1985 .needed = spapr_dtb_needed, 1986 .pre_load = spapr_dtb_pre_load, 1987 .fields = (VMStateField[]) { 1988 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 1989 VMSTATE_UINT32(fdt_size, SpaprMachineState), 1990 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 1991 fdt_size), 1992 VMSTATE_END_OF_LIST() 1993 }, 1994 }; 1995 1996 static bool spapr_fwnmi_needed(void *opaque) 1997 { 1998 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1999 2000 return spapr->fwnmi_machine_check_addr != -1; 2001 } 2002 2003 static int spapr_fwnmi_pre_save(void *opaque) 2004 { 2005 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2006 2007 /* 2008 * Check if machine check handling is in progress and print a 2009 * warning message. 2010 */ 2011 if (spapr->fwnmi_machine_check_interlock != -1) { 2012 warn_report("A machine check is being handled during migration. The" 2013 "handler may run and log hardware error on the destination"); 2014 } 2015 2016 return 0; 2017 } 2018 2019 static const VMStateDescription vmstate_spapr_fwnmi = { 2020 .name = "spapr_fwnmi", 2021 .version_id = 1, 2022 .minimum_version_id = 1, 2023 .needed = spapr_fwnmi_needed, 2024 .pre_save = spapr_fwnmi_pre_save, 2025 .fields = (VMStateField[]) { 2026 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2027 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2028 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2029 VMSTATE_END_OF_LIST() 2030 }, 2031 }; 2032 2033 static const VMStateDescription vmstate_spapr = { 2034 .name = "spapr", 2035 .version_id = 3, 2036 .minimum_version_id = 1, 2037 .pre_load = spapr_pre_load, 2038 .post_load = spapr_post_load, 2039 .pre_save = spapr_pre_save, 2040 .fields = (VMStateField[]) { 2041 /* used to be @next_irq */ 2042 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2043 2044 /* RTC offset */ 2045 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2046 2047 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2048 VMSTATE_END_OF_LIST() 2049 }, 2050 .subsections = (const VMStateDescription*[]) { 2051 &vmstate_spapr_ov5_cas, 2052 &vmstate_spapr_patb_entry, 2053 &vmstate_spapr_pending_events, 2054 &vmstate_spapr_cap_htm, 2055 &vmstate_spapr_cap_vsx, 2056 &vmstate_spapr_cap_dfp, 2057 &vmstate_spapr_cap_cfpc, 2058 &vmstate_spapr_cap_sbbc, 2059 &vmstate_spapr_cap_ibs, 2060 &vmstate_spapr_cap_hpt_maxpagesize, 2061 &vmstate_spapr_irq_map, 2062 &vmstate_spapr_cap_nested_kvm_hv, 2063 &vmstate_spapr_dtb, 2064 &vmstate_spapr_cap_large_decr, 2065 &vmstate_spapr_cap_ccf_assist, 2066 &vmstate_spapr_cap_fwnmi, 2067 &vmstate_spapr_fwnmi, 2068 &vmstate_spapr_cap_rpt_invalidate, 2069 NULL 2070 } 2071 }; 2072 2073 static int htab_save_setup(QEMUFile *f, void *opaque) 2074 { 2075 SpaprMachineState *spapr = opaque; 2076 2077 /* "Iteration" header */ 2078 if (!spapr->htab_shift) { 2079 qemu_put_be32(f, -1); 2080 } else { 2081 qemu_put_be32(f, spapr->htab_shift); 2082 } 2083 2084 if (spapr->htab) { 2085 spapr->htab_save_index = 0; 2086 spapr->htab_first_pass = true; 2087 } else { 2088 if (spapr->htab_shift) { 2089 assert(kvm_enabled()); 2090 } 2091 } 2092 2093 2094 return 0; 2095 } 2096 2097 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2098 int chunkstart, int n_valid, int n_invalid) 2099 { 2100 qemu_put_be32(f, chunkstart); 2101 qemu_put_be16(f, n_valid); 2102 qemu_put_be16(f, n_invalid); 2103 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2104 HASH_PTE_SIZE_64 * n_valid); 2105 } 2106 2107 static void htab_save_end_marker(QEMUFile *f) 2108 { 2109 qemu_put_be32(f, 0); 2110 qemu_put_be16(f, 0); 2111 qemu_put_be16(f, 0); 2112 } 2113 2114 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2115 int64_t max_ns) 2116 { 2117 bool has_timeout = max_ns != -1; 2118 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2119 int index = spapr->htab_save_index; 2120 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2121 2122 assert(spapr->htab_first_pass); 2123 2124 do { 2125 int chunkstart; 2126 2127 /* Consume invalid HPTEs */ 2128 while ((index < htabslots) 2129 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2130 CLEAN_HPTE(HPTE(spapr->htab, index)); 2131 index++; 2132 } 2133 2134 /* Consume valid HPTEs */ 2135 chunkstart = index; 2136 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2137 && HPTE_VALID(HPTE(spapr->htab, index))) { 2138 CLEAN_HPTE(HPTE(spapr->htab, index)); 2139 index++; 2140 } 2141 2142 if (index > chunkstart) { 2143 int n_valid = index - chunkstart; 2144 2145 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2146 2147 if (has_timeout && 2148 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2149 break; 2150 } 2151 } 2152 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2153 2154 if (index >= htabslots) { 2155 assert(index == htabslots); 2156 index = 0; 2157 spapr->htab_first_pass = false; 2158 } 2159 spapr->htab_save_index = index; 2160 } 2161 2162 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2163 int64_t max_ns) 2164 { 2165 bool final = max_ns < 0; 2166 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2167 int examined = 0, sent = 0; 2168 int index = spapr->htab_save_index; 2169 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2170 2171 assert(!spapr->htab_first_pass); 2172 2173 do { 2174 int chunkstart, invalidstart; 2175 2176 /* Consume non-dirty HPTEs */ 2177 while ((index < htabslots) 2178 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2179 index++; 2180 examined++; 2181 } 2182 2183 chunkstart = index; 2184 /* Consume valid dirty HPTEs */ 2185 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2186 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2187 && HPTE_VALID(HPTE(spapr->htab, index))) { 2188 CLEAN_HPTE(HPTE(spapr->htab, index)); 2189 index++; 2190 examined++; 2191 } 2192 2193 invalidstart = index; 2194 /* Consume invalid dirty HPTEs */ 2195 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2196 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2197 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2198 CLEAN_HPTE(HPTE(spapr->htab, index)); 2199 index++; 2200 examined++; 2201 } 2202 2203 if (index > chunkstart) { 2204 int n_valid = invalidstart - chunkstart; 2205 int n_invalid = index - invalidstart; 2206 2207 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2208 sent += index - chunkstart; 2209 2210 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2211 break; 2212 } 2213 } 2214 2215 if (examined >= htabslots) { 2216 break; 2217 } 2218 2219 if (index >= htabslots) { 2220 assert(index == htabslots); 2221 index = 0; 2222 } 2223 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2224 2225 if (index >= htabslots) { 2226 assert(index == htabslots); 2227 index = 0; 2228 } 2229 2230 spapr->htab_save_index = index; 2231 2232 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2233 } 2234 2235 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2236 #define MAX_KVM_BUF_SIZE 2048 2237 2238 static int htab_save_iterate(QEMUFile *f, void *opaque) 2239 { 2240 SpaprMachineState *spapr = opaque; 2241 int fd; 2242 int rc = 0; 2243 2244 /* Iteration header */ 2245 if (!spapr->htab_shift) { 2246 qemu_put_be32(f, -1); 2247 return 1; 2248 } else { 2249 qemu_put_be32(f, 0); 2250 } 2251 2252 if (!spapr->htab) { 2253 assert(kvm_enabled()); 2254 2255 fd = get_htab_fd(spapr); 2256 if (fd < 0) { 2257 return fd; 2258 } 2259 2260 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2261 if (rc < 0) { 2262 return rc; 2263 } 2264 } else if (spapr->htab_first_pass) { 2265 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2266 } else { 2267 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2268 } 2269 2270 htab_save_end_marker(f); 2271 2272 return rc; 2273 } 2274 2275 static int htab_save_complete(QEMUFile *f, void *opaque) 2276 { 2277 SpaprMachineState *spapr = opaque; 2278 int fd; 2279 2280 /* Iteration header */ 2281 if (!spapr->htab_shift) { 2282 qemu_put_be32(f, -1); 2283 return 0; 2284 } else { 2285 qemu_put_be32(f, 0); 2286 } 2287 2288 if (!spapr->htab) { 2289 int rc; 2290 2291 assert(kvm_enabled()); 2292 2293 fd = get_htab_fd(spapr); 2294 if (fd < 0) { 2295 return fd; 2296 } 2297 2298 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2299 if (rc < 0) { 2300 return rc; 2301 } 2302 } else { 2303 if (spapr->htab_first_pass) { 2304 htab_save_first_pass(f, spapr, -1); 2305 } 2306 htab_save_later_pass(f, spapr, -1); 2307 } 2308 2309 /* End marker */ 2310 htab_save_end_marker(f); 2311 2312 return 0; 2313 } 2314 2315 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2316 { 2317 SpaprMachineState *spapr = opaque; 2318 uint32_t section_hdr; 2319 int fd = -1; 2320 Error *local_err = NULL; 2321 2322 if (version_id < 1 || version_id > 1) { 2323 error_report("htab_load() bad version"); 2324 return -EINVAL; 2325 } 2326 2327 section_hdr = qemu_get_be32(f); 2328 2329 if (section_hdr == -1) { 2330 spapr_free_hpt(spapr); 2331 return 0; 2332 } 2333 2334 if (section_hdr) { 2335 int ret; 2336 2337 /* First section gives the htab size */ 2338 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2339 if (ret < 0) { 2340 error_report_err(local_err); 2341 return ret; 2342 } 2343 return 0; 2344 } 2345 2346 if (!spapr->htab) { 2347 assert(kvm_enabled()); 2348 2349 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2350 if (fd < 0) { 2351 error_report_err(local_err); 2352 return fd; 2353 } 2354 } 2355 2356 while (true) { 2357 uint32_t index; 2358 uint16_t n_valid, n_invalid; 2359 2360 index = qemu_get_be32(f); 2361 n_valid = qemu_get_be16(f); 2362 n_invalid = qemu_get_be16(f); 2363 2364 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2365 /* End of Stream */ 2366 break; 2367 } 2368 2369 if ((index + n_valid + n_invalid) > 2370 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2371 /* Bad index in stream */ 2372 error_report( 2373 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2374 index, n_valid, n_invalid, spapr->htab_shift); 2375 return -EINVAL; 2376 } 2377 2378 if (spapr->htab) { 2379 if (n_valid) { 2380 qemu_get_buffer(f, HPTE(spapr->htab, index), 2381 HASH_PTE_SIZE_64 * n_valid); 2382 } 2383 if (n_invalid) { 2384 memset(HPTE(spapr->htab, index + n_valid), 0, 2385 HASH_PTE_SIZE_64 * n_invalid); 2386 } 2387 } else { 2388 int rc; 2389 2390 assert(fd >= 0); 2391 2392 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2393 &local_err); 2394 if (rc < 0) { 2395 error_report_err(local_err); 2396 return rc; 2397 } 2398 } 2399 } 2400 2401 if (!spapr->htab) { 2402 assert(fd >= 0); 2403 close(fd); 2404 } 2405 2406 return 0; 2407 } 2408 2409 static void htab_save_cleanup(void *opaque) 2410 { 2411 SpaprMachineState *spapr = opaque; 2412 2413 close_htab_fd(spapr); 2414 } 2415 2416 static SaveVMHandlers savevm_htab_handlers = { 2417 .save_setup = htab_save_setup, 2418 .save_live_iterate = htab_save_iterate, 2419 .save_live_complete_precopy = htab_save_complete, 2420 .save_cleanup = htab_save_cleanup, 2421 .load_state = htab_load, 2422 }; 2423 2424 static void spapr_boot_set(void *opaque, const char *boot_device, 2425 Error **errp) 2426 { 2427 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2428 2429 g_free(spapr->boot_device); 2430 spapr->boot_device = g_strdup(boot_device); 2431 } 2432 2433 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2434 { 2435 MachineState *machine = MACHINE(spapr); 2436 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2437 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2438 int i; 2439 2440 for (i = 0; i < nr_lmbs; i++) { 2441 uint64_t addr; 2442 2443 addr = i * lmb_size + machine->device_memory->base; 2444 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2445 addr / lmb_size); 2446 } 2447 } 2448 2449 /* 2450 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2451 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2452 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2453 */ 2454 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2455 { 2456 int i; 2457 2458 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2459 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2460 " is not aligned to %" PRIu64 " MiB", 2461 machine->ram_size, 2462 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2463 return; 2464 } 2465 2466 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2467 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2468 " is not aligned to %" PRIu64 " MiB", 2469 machine->ram_size, 2470 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2471 return; 2472 } 2473 2474 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2475 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2476 error_setg(errp, 2477 "Node %d memory size 0x%" PRIx64 2478 " is not aligned to %" PRIu64 " MiB", 2479 i, machine->numa_state->nodes[i].node_mem, 2480 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2481 return; 2482 } 2483 } 2484 } 2485 2486 /* find cpu slot in machine->possible_cpus by core_id */ 2487 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2488 { 2489 int index = id / ms->smp.threads; 2490 2491 if (index >= ms->possible_cpus->len) { 2492 return NULL; 2493 } 2494 if (idx) { 2495 *idx = index; 2496 } 2497 return &ms->possible_cpus->cpus[index]; 2498 } 2499 2500 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2501 { 2502 MachineState *ms = MACHINE(spapr); 2503 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2504 Error *local_err = NULL; 2505 bool vsmt_user = !!spapr->vsmt; 2506 int kvm_smt = kvmppc_smt_threads(); 2507 int ret; 2508 unsigned int smp_threads = ms->smp.threads; 2509 2510 if (!kvm_enabled() && (smp_threads > 1)) { 2511 error_setg(errp, "TCG cannot support more than 1 thread/core " 2512 "on a pseries machine"); 2513 return; 2514 } 2515 if (!is_power_of_2(smp_threads)) { 2516 error_setg(errp, "Cannot support %d threads/core on a pseries " 2517 "machine because it must be a power of 2", smp_threads); 2518 return; 2519 } 2520 2521 /* Detemine the VSMT mode to use: */ 2522 if (vsmt_user) { 2523 if (spapr->vsmt < smp_threads) { 2524 error_setg(errp, "Cannot support VSMT mode %d" 2525 " because it must be >= threads/core (%d)", 2526 spapr->vsmt, smp_threads); 2527 return; 2528 } 2529 /* In this case, spapr->vsmt has been set by the command line */ 2530 } else if (!smc->smp_threads_vsmt) { 2531 /* 2532 * Default VSMT value is tricky, because we need it to be as 2533 * consistent as possible (for migration), but this requires 2534 * changing it for at least some existing cases. We pick 8 as 2535 * the value that we'd get with KVM on POWER8, the 2536 * overwhelmingly common case in production systems. 2537 */ 2538 spapr->vsmt = MAX(8, smp_threads); 2539 } else { 2540 spapr->vsmt = smp_threads; 2541 } 2542 2543 /* KVM: If necessary, set the SMT mode: */ 2544 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2545 ret = kvmppc_set_smt_threads(spapr->vsmt); 2546 if (ret) { 2547 /* Looks like KVM isn't able to change VSMT mode */ 2548 error_setg(&local_err, 2549 "Failed to set KVM's VSMT mode to %d (errno %d)", 2550 spapr->vsmt, ret); 2551 /* We can live with that if the default one is big enough 2552 * for the number of threads, and a submultiple of the one 2553 * we want. In this case we'll waste some vcpu ids, but 2554 * behaviour will be correct */ 2555 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2556 warn_report_err(local_err); 2557 } else { 2558 if (!vsmt_user) { 2559 error_append_hint(&local_err, 2560 "On PPC, a VM with %d threads/core" 2561 " on a host with %d threads/core" 2562 " requires the use of VSMT mode %d.\n", 2563 smp_threads, kvm_smt, spapr->vsmt); 2564 } 2565 kvmppc_error_append_smt_possible_hint(&local_err); 2566 error_propagate(errp, local_err); 2567 } 2568 } 2569 } 2570 /* else TCG: nothing to do currently */ 2571 } 2572 2573 static void spapr_init_cpus(SpaprMachineState *spapr) 2574 { 2575 MachineState *machine = MACHINE(spapr); 2576 MachineClass *mc = MACHINE_GET_CLASS(machine); 2577 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2578 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2579 const CPUArchIdList *possible_cpus; 2580 unsigned int smp_cpus = machine->smp.cpus; 2581 unsigned int smp_threads = machine->smp.threads; 2582 unsigned int max_cpus = machine->smp.max_cpus; 2583 int boot_cores_nr = smp_cpus / smp_threads; 2584 int i; 2585 2586 possible_cpus = mc->possible_cpu_arch_ids(machine); 2587 if (mc->has_hotpluggable_cpus) { 2588 if (smp_cpus % smp_threads) { 2589 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2590 smp_cpus, smp_threads); 2591 exit(1); 2592 } 2593 if (max_cpus % smp_threads) { 2594 error_report("max_cpus (%u) must be multiple of threads (%u)", 2595 max_cpus, smp_threads); 2596 exit(1); 2597 } 2598 } else { 2599 if (max_cpus != smp_cpus) { 2600 error_report("This machine version does not support CPU hotplug"); 2601 exit(1); 2602 } 2603 boot_cores_nr = possible_cpus->len; 2604 } 2605 2606 if (smc->pre_2_10_has_unused_icps) { 2607 int i; 2608 2609 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2610 /* Dummy entries get deregistered when real ICPState objects 2611 * are registered during CPU core hotplug. 2612 */ 2613 pre_2_10_vmstate_register_dummy_icp(i); 2614 } 2615 } 2616 2617 for (i = 0; i < possible_cpus->len; i++) { 2618 int core_id = i * smp_threads; 2619 2620 if (mc->has_hotpluggable_cpus) { 2621 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2622 spapr_vcpu_id(spapr, core_id)); 2623 } 2624 2625 if (i < boot_cores_nr) { 2626 Object *core = object_new(type); 2627 int nr_threads = smp_threads; 2628 2629 /* Handle the partially filled core for older machine types */ 2630 if ((i + 1) * smp_threads >= smp_cpus) { 2631 nr_threads = smp_cpus - i * smp_threads; 2632 } 2633 2634 object_property_set_int(core, "nr-threads", nr_threads, 2635 &error_fatal); 2636 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2637 &error_fatal); 2638 qdev_realize(DEVICE(core), NULL, &error_fatal); 2639 2640 object_unref(core); 2641 } 2642 } 2643 } 2644 2645 static PCIHostState *spapr_create_default_phb(void) 2646 { 2647 DeviceState *dev; 2648 2649 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2650 qdev_prop_set_uint32(dev, "index", 0); 2651 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2652 2653 return PCI_HOST_BRIDGE(dev); 2654 } 2655 2656 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2657 { 2658 MachineState *machine = MACHINE(spapr); 2659 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2660 hwaddr rma_size = machine->ram_size; 2661 hwaddr node0_size = spapr_node0_size(machine); 2662 2663 /* RMA has to fit in the first NUMA node */ 2664 rma_size = MIN(rma_size, node0_size); 2665 2666 /* 2667 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2668 * never exceed that 2669 */ 2670 rma_size = MIN(rma_size, 1 * TiB); 2671 2672 /* 2673 * Clamp the RMA size based on machine type. This is for 2674 * migration compatibility with older qemu versions, which limited 2675 * the RMA size for complicated and mostly bad reasons. 2676 */ 2677 if (smc->rma_limit) { 2678 rma_size = MIN(rma_size, smc->rma_limit); 2679 } 2680 2681 if (rma_size < MIN_RMA_SLOF) { 2682 error_setg(errp, 2683 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2684 "ldMiB guest RMA (Real Mode Area memory)", 2685 MIN_RMA_SLOF / MiB); 2686 return 0; 2687 } 2688 2689 return rma_size; 2690 } 2691 2692 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2693 { 2694 MachineState *machine = MACHINE(spapr); 2695 int i; 2696 2697 for (i = 0; i < machine->ram_slots; i++) { 2698 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2699 } 2700 } 2701 2702 /* pSeries LPAR / sPAPR hardware init */ 2703 static void spapr_machine_init(MachineState *machine) 2704 { 2705 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2706 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2707 MachineClass *mc = MACHINE_GET_CLASS(machine); 2708 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2709 const char *bios_name = machine->firmware ?: bios_default; 2710 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2711 const char *kernel_filename = machine->kernel_filename; 2712 const char *initrd_filename = machine->initrd_filename; 2713 PCIHostState *phb; 2714 int i; 2715 MemoryRegion *sysmem = get_system_memory(); 2716 long load_limit, fw_size; 2717 Error *resize_hpt_err = NULL; 2718 2719 if (!filename) { 2720 error_report("Could not find LPAR firmware '%s'", bios_name); 2721 exit(1); 2722 } 2723 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2724 if (fw_size <= 0) { 2725 error_report("Could not load LPAR firmware '%s'", filename); 2726 exit(1); 2727 } 2728 2729 /* 2730 * if Secure VM (PEF) support is configured, then initialize it 2731 */ 2732 pef_kvm_init(machine->cgs, &error_fatal); 2733 2734 msi_nonbroken = true; 2735 2736 QLIST_INIT(&spapr->phbs); 2737 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2738 2739 /* Determine capabilities to run with */ 2740 spapr_caps_init(spapr); 2741 2742 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2743 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2744 /* 2745 * If the user explicitly requested a mode we should either 2746 * supply it, or fail completely (which we do below). But if 2747 * it's not set explicitly, we reset our mode to something 2748 * that works 2749 */ 2750 if (resize_hpt_err) { 2751 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2752 error_free(resize_hpt_err); 2753 resize_hpt_err = NULL; 2754 } else { 2755 spapr->resize_hpt = smc->resize_hpt_default; 2756 } 2757 } 2758 2759 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2760 2761 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2762 /* 2763 * User requested HPT resize, but this host can't supply it. Bail out 2764 */ 2765 error_report_err(resize_hpt_err); 2766 exit(1); 2767 } 2768 error_free(resize_hpt_err); 2769 2770 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2771 2772 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2773 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2774 2775 /* 2776 * VSMT must be set in order to be able to compute VCPU ids, ie to 2777 * call spapr_max_server_number() or spapr_vcpu_id(). 2778 */ 2779 spapr_set_vsmt_mode(spapr, &error_fatal); 2780 2781 /* Set up Interrupt Controller before we create the VCPUs */ 2782 spapr_irq_init(spapr, &error_fatal); 2783 2784 /* Set up containers for ibm,client-architecture-support negotiated options 2785 */ 2786 spapr->ov5 = spapr_ovec_new(); 2787 spapr->ov5_cas = spapr_ovec_new(); 2788 2789 if (smc->dr_lmb_enabled) { 2790 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2791 spapr_validate_node_memory(machine, &error_fatal); 2792 } 2793 2794 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2795 2796 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2797 if (!smc->pre_6_2_numa_affinity) { 2798 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2799 } 2800 2801 /* advertise support for dedicated HP event source to guests */ 2802 if (spapr->use_hotplug_event_source) { 2803 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2804 } 2805 2806 /* advertise support for HPT resizing */ 2807 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2808 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2809 } 2810 2811 /* advertise support for ibm,dyamic-memory-v2 */ 2812 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2813 2814 /* advertise XIVE on POWER9 machines */ 2815 if (spapr->irq->xive) { 2816 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2817 } 2818 2819 /* init CPUs */ 2820 spapr_init_cpus(spapr); 2821 2822 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine); 2823 2824 /* Init numa_assoc_array */ 2825 spapr_numa_associativity_init(spapr, machine); 2826 2827 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2828 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2829 spapr->max_compat_pvr)) { 2830 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2831 /* KVM and TCG always allow GTSE with radix... */ 2832 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2833 } 2834 /* ... but not with hash (currently). */ 2835 2836 if (kvm_enabled()) { 2837 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2838 kvmppc_enable_logical_ci_hcalls(); 2839 kvmppc_enable_set_mode_hcall(); 2840 2841 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2842 kvmppc_enable_clear_ref_mod_hcalls(); 2843 2844 /* Enable H_PAGE_INIT */ 2845 kvmppc_enable_h_page_init(); 2846 } 2847 2848 /* map RAM */ 2849 memory_region_add_subregion(sysmem, 0, machine->ram); 2850 2851 /* always allocate the device memory information */ 2852 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2853 2854 /* initialize hotplug memory address space */ 2855 if (machine->ram_size < machine->maxram_size) { 2856 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2857 /* 2858 * Limit the number of hotpluggable memory slots to half the number 2859 * slots that KVM supports, leaving the other half for PCI and other 2860 * devices. However ensure that number of slots doesn't drop below 32. 2861 */ 2862 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2863 SPAPR_MAX_RAM_SLOTS; 2864 2865 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2866 max_memslots = SPAPR_MAX_RAM_SLOTS; 2867 } 2868 if (machine->ram_slots > max_memslots) { 2869 error_report("Specified number of memory slots %" 2870 PRIu64" exceeds max supported %d", 2871 machine->ram_slots, max_memslots); 2872 exit(1); 2873 } 2874 2875 machine->device_memory->base = ROUND_UP(machine->ram_size, 2876 SPAPR_DEVICE_MEM_ALIGN); 2877 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2878 "device-memory", device_mem_size); 2879 memory_region_add_subregion(sysmem, machine->device_memory->base, 2880 &machine->device_memory->mr); 2881 } 2882 2883 if (smc->dr_lmb_enabled) { 2884 spapr_create_lmb_dr_connectors(spapr); 2885 } 2886 2887 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) { 2888 /* Create the error string for live migration blocker */ 2889 error_setg(&spapr->fwnmi_migration_blocker, 2890 "A machine check is being handled during migration. The handler" 2891 "may run and log hardware error on the destination"); 2892 } 2893 2894 if (mc->nvdimm_supported) { 2895 spapr_create_nvdimm_dr_connectors(spapr); 2896 } 2897 2898 /* Set up RTAS event infrastructure */ 2899 spapr_events_init(spapr); 2900 2901 /* Set up the RTC RTAS interfaces */ 2902 spapr_rtc_create(spapr); 2903 2904 /* Set up VIO bus */ 2905 spapr->vio_bus = spapr_vio_bus_init(); 2906 2907 for (i = 0; serial_hd(i); i++) { 2908 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2909 } 2910 2911 /* We always have at least the nvram device on VIO */ 2912 spapr_create_nvram(spapr); 2913 2914 /* 2915 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2916 * connectors (described in root DT node's "ibm,drc-types" property) 2917 * are pre-initialized here. additional child connectors (such as 2918 * connectors for a PHBs PCI slots) are added as needed during their 2919 * parent's realization. 2920 */ 2921 if (smc->dr_phb_enabled) { 2922 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2923 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2924 } 2925 } 2926 2927 /* Set up PCI */ 2928 spapr_pci_rtas_init(); 2929 2930 phb = spapr_create_default_phb(); 2931 2932 for (i = 0; i < nb_nics; i++) { 2933 NICInfo *nd = &nd_table[i]; 2934 2935 if (!nd->model) { 2936 nd->model = g_strdup("spapr-vlan"); 2937 } 2938 2939 if (g_str_equal(nd->model, "spapr-vlan") || 2940 g_str_equal(nd->model, "ibmveth")) { 2941 spapr_vlan_create(spapr->vio_bus, nd); 2942 } else { 2943 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2944 } 2945 } 2946 2947 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2948 spapr_vscsi_create(spapr->vio_bus); 2949 } 2950 2951 /* Graphics */ 2952 if (spapr_vga_init(phb->bus, &error_fatal)) { 2953 spapr->has_graphics = true; 2954 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2955 } 2956 2957 if (machine->usb) { 2958 if (smc->use_ohci_by_default) { 2959 pci_create_simple(phb->bus, -1, "pci-ohci"); 2960 } else { 2961 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2962 } 2963 2964 if (spapr->has_graphics) { 2965 USBBus *usb_bus = usb_bus_find(-1); 2966 2967 usb_create_simple(usb_bus, "usb-kbd"); 2968 usb_create_simple(usb_bus, "usb-mouse"); 2969 } 2970 } 2971 2972 if (kernel_filename) { 2973 spapr->kernel_size = load_elf(kernel_filename, NULL, 2974 translate_kernel_address, spapr, 2975 NULL, NULL, NULL, NULL, 1, 2976 PPC_ELF_MACHINE, 0, 0); 2977 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2978 spapr->kernel_size = load_elf(kernel_filename, NULL, 2979 translate_kernel_address, spapr, 2980 NULL, NULL, NULL, NULL, 0, 2981 PPC_ELF_MACHINE, 0, 0); 2982 spapr->kernel_le = spapr->kernel_size > 0; 2983 } 2984 if (spapr->kernel_size < 0) { 2985 error_report("error loading %s: %s", kernel_filename, 2986 load_elf_strerror(spapr->kernel_size)); 2987 exit(1); 2988 } 2989 2990 /* load initrd */ 2991 if (initrd_filename) { 2992 /* Try to locate the initrd in the gap between the kernel 2993 * and the firmware. Add a bit of space just in case 2994 */ 2995 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 2996 + 0x1ffff) & ~0xffff; 2997 spapr->initrd_size = load_image_targphys(initrd_filename, 2998 spapr->initrd_base, 2999 load_limit 3000 - spapr->initrd_base); 3001 if (spapr->initrd_size < 0) { 3002 error_report("could not load initial ram disk '%s'", 3003 initrd_filename); 3004 exit(1); 3005 } 3006 } 3007 } 3008 3009 /* FIXME: Should register things through the MachineState's qdev 3010 * interface, this is a legacy from the sPAPREnvironment structure 3011 * which predated MachineState but had a similar function */ 3012 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3013 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3014 &savevm_htab_handlers, spapr); 3015 3016 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3017 3018 qemu_register_boot_set(spapr_boot_set, spapr); 3019 3020 /* 3021 * Nothing needs to be done to resume a suspended guest because 3022 * suspending does not change the machine state, so no need for 3023 * a ->wakeup method. 3024 */ 3025 qemu_register_wakeup_support(); 3026 3027 if (kvm_enabled()) { 3028 /* to stop and start vmclock */ 3029 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3030 &spapr->tb); 3031 3032 kvmppc_spapr_enable_inkernel_multitce(); 3033 } 3034 3035 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3036 if (spapr->vof) { 3037 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3038 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3039 } 3040 } 3041 3042 #define DEFAULT_KVM_TYPE "auto" 3043 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3044 { 3045 /* 3046 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3047 * accomodate the 'HV' and 'PV' formats that exists in the 3048 * wild. The 'auto' mode is being introduced already as 3049 * lower-case, thus we don't need to bother checking for 3050 * "AUTO". 3051 */ 3052 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3053 return 0; 3054 } 3055 3056 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3057 return 1; 3058 } 3059 3060 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3061 return 2; 3062 } 3063 3064 error_report("Unknown kvm-type specified '%s'", vm_type); 3065 exit(1); 3066 } 3067 3068 /* 3069 * Implementation of an interface to adjust firmware path 3070 * for the bootindex property handling. 3071 */ 3072 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3073 DeviceState *dev) 3074 { 3075 #define CAST(type, obj, name) \ 3076 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3077 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3078 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3079 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3080 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3081 3082 if (d && bus) { 3083 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3084 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3085 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3086 3087 if (spapr) { 3088 /* 3089 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3090 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3091 * 0x8000 | (target << 8) | (bus << 5) | lun 3092 * (see the "Logical unit addressing format" table in SAM5) 3093 */ 3094 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3095 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3096 (uint64_t)id << 48); 3097 } else if (virtio) { 3098 /* 3099 * We use SRP luns of the form 01000000 | (target << 8) | lun 3100 * in the top 32 bits of the 64-bit LUN 3101 * Note: the quote above is from SLOF and it is wrong, 3102 * the actual binding is: 3103 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3104 */ 3105 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3106 if (d->lun >= 256) { 3107 /* Use the LUN "flat space addressing method" */ 3108 id |= 0x4000; 3109 } 3110 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3111 (uint64_t)id << 32); 3112 } else if (usb) { 3113 /* 3114 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3115 * in the top 32 bits of the 64-bit LUN 3116 */ 3117 unsigned usb_port = atoi(usb->port->path); 3118 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3119 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3120 (uint64_t)id << 32); 3121 } 3122 } 3123 3124 /* 3125 * SLOF probes the USB devices, and if it recognizes that the device is a 3126 * storage device, it changes its name to "storage" instead of "usb-host", 3127 * and additionally adds a child node for the SCSI LUN, so the correct 3128 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3129 */ 3130 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3131 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3132 if (usb_device_is_scsi_storage(usbdev)) { 3133 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3134 } 3135 } 3136 3137 if (phb) { 3138 /* Replace "pci" with "pci@800000020000000" */ 3139 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3140 } 3141 3142 if (vsc) { 3143 /* Same logic as virtio above */ 3144 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3145 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3146 } 3147 3148 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3149 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3150 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3151 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3152 } 3153 3154 if (pcidev) { 3155 return spapr_pci_fw_dev_name(pcidev); 3156 } 3157 3158 return NULL; 3159 } 3160 3161 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3162 { 3163 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3164 3165 return g_strdup(spapr->kvm_type); 3166 } 3167 3168 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3169 { 3170 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3171 3172 g_free(spapr->kvm_type); 3173 spapr->kvm_type = g_strdup(value); 3174 } 3175 3176 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3177 { 3178 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3179 3180 return spapr->use_hotplug_event_source; 3181 } 3182 3183 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3184 Error **errp) 3185 { 3186 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3187 3188 spapr->use_hotplug_event_source = value; 3189 } 3190 3191 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3192 { 3193 return true; 3194 } 3195 3196 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3197 { 3198 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3199 3200 switch (spapr->resize_hpt) { 3201 case SPAPR_RESIZE_HPT_DEFAULT: 3202 return g_strdup("default"); 3203 case SPAPR_RESIZE_HPT_DISABLED: 3204 return g_strdup("disabled"); 3205 case SPAPR_RESIZE_HPT_ENABLED: 3206 return g_strdup("enabled"); 3207 case SPAPR_RESIZE_HPT_REQUIRED: 3208 return g_strdup("required"); 3209 } 3210 g_assert_not_reached(); 3211 } 3212 3213 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3214 { 3215 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3216 3217 if (strcmp(value, "default") == 0) { 3218 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3219 } else if (strcmp(value, "disabled") == 0) { 3220 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3221 } else if (strcmp(value, "enabled") == 0) { 3222 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3223 } else if (strcmp(value, "required") == 0) { 3224 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3225 } else { 3226 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3227 } 3228 } 3229 3230 static bool spapr_get_vof(Object *obj, Error **errp) 3231 { 3232 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3233 3234 return spapr->vof != NULL; 3235 } 3236 3237 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3238 { 3239 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3240 3241 if (spapr->vof) { 3242 vof_cleanup(spapr->vof); 3243 g_free(spapr->vof); 3244 spapr->vof = NULL; 3245 } 3246 if (!value) { 3247 return; 3248 } 3249 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3250 } 3251 3252 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3253 { 3254 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3255 3256 if (spapr->irq == &spapr_irq_xics_legacy) { 3257 return g_strdup("legacy"); 3258 } else if (spapr->irq == &spapr_irq_xics) { 3259 return g_strdup("xics"); 3260 } else if (spapr->irq == &spapr_irq_xive) { 3261 return g_strdup("xive"); 3262 } else if (spapr->irq == &spapr_irq_dual) { 3263 return g_strdup("dual"); 3264 } 3265 g_assert_not_reached(); 3266 } 3267 3268 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3269 { 3270 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3271 3272 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3273 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3274 return; 3275 } 3276 3277 /* The legacy IRQ backend can not be set */ 3278 if (strcmp(value, "xics") == 0) { 3279 spapr->irq = &spapr_irq_xics; 3280 } else if (strcmp(value, "xive") == 0) { 3281 spapr->irq = &spapr_irq_xive; 3282 } else if (strcmp(value, "dual") == 0) { 3283 spapr->irq = &spapr_irq_dual; 3284 } else { 3285 error_setg(errp, "Bad value for \"ic-mode\" property"); 3286 } 3287 } 3288 3289 static char *spapr_get_host_model(Object *obj, Error **errp) 3290 { 3291 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3292 3293 return g_strdup(spapr->host_model); 3294 } 3295 3296 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3297 { 3298 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3299 3300 g_free(spapr->host_model); 3301 spapr->host_model = g_strdup(value); 3302 } 3303 3304 static char *spapr_get_host_serial(Object *obj, Error **errp) 3305 { 3306 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3307 3308 return g_strdup(spapr->host_serial); 3309 } 3310 3311 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3312 { 3313 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3314 3315 g_free(spapr->host_serial); 3316 spapr->host_serial = g_strdup(value); 3317 } 3318 3319 static void spapr_instance_init(Object *obj) 3320 { 3321 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3322 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3323 MachineState *ms = MACHINE(spapr); 3324 MachineClass *mc = MACHINE_GET_CLASS(ms); 3325 3326 /* 3327 * NVDIMM support went live in 5.1 without considering that, in 3328 * other archs, the user needs to enable NVDIMM support with the 3329 * 'nvdimm' machine option and the default behavior is NVDIMM 3330 * support disabled. It is too late to roll back to the standard 3331 * behavior without breaking 5.1 guests. 3332 */ 3333 if (mc->nvdimm_supported) { 3334 ms->nvdimms_state->is_enabled = true; 3335 } 3336 3337 spapr->htab_fd = -1; 3338 spapr->use_hotplug_event_source = true; 3339 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3340 object_property_add_str(obj, "kvm-type", 3341 spapr_get_kvm_type, spapr_set_kvm_type); 3342 object_property_set_description(obj, "kvm-type", 3343 "Specifies the KVM virtualization mode (auto," 3344 " hv, pr). Defaults to 'auto'. This mode will use" 3345 " any available KVM module loaded in the host," 3346 " where kvm_hv takes precedence if both kvm_hv and" 3347 " kvm_pr are loaded."); 3348 object_property_add_bool(obj, "modern-hotplug-events", 3349 spapr_get_modern_hotplug_events, 3350 spapr_set_modern_hotplug_events); 3351 object_property_set_description(obj, "modern-hotplug-events", 3352 "Use dedicated hotplug event mechanism in" 3353 " place of standard EPOW events when possible" 3354 " (required for memory hot-unplug support)"); 3355 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3356 "Maximum permitted CPU compatibility mode"); 3357 3358 object_property_add_str(obj, "resize-hpt", 3359 spapr_get_resize_hpt, spapr_set_resize_hpt); 3360 object_property_set_description(obj, "resize-hpt", 3361 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3362 object_property_add_uint32_ptr(obj, "vsmt", 3363 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3364 object_property_set_description(obj, "vsmt", 3365 "Virtual SMT: KVM behaves as if this were" 3366 " the host's SMT mode"); 3367 3368 object_property_add_bool(obj, "vfio-no-msix-emulation", 3369 spapr_get_msix_emulation, NULL); 3370 3371 object_property_add_uint64_ptr(obj, "kernel-addr", 3372 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3373 object_property_set_description(obj, "kernel-addr", 3374 stringify(KERNEL_LOAD_ADDR) 3375 " for -kernel is the default"); 3376 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3377 3378 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3379 object_property_set_description(obj, "x-vof", 3380 "Enable Virtual Open Firmware (experimental)"); 3381 3382 /* The machine class defines the default interrupt controller mode */ 3383 spapr->irq = smc->irq; 3384 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3385 spapr_set_ic_mode); 3386 object_property_set_description(obj, "ic-mode", 3387 "Specifies the interrupt controller mode (xics, xive, dual)"); 3388 3389 object_property_add_str(obj, "host-model", 3390 spapr_get_host_model, spapr_set_host_model); 3391 object_property_set_description(obj, "host-model", 3392 "Host model to advertise in guest device tree"); 3393 object_property_add_str(obj, "host-serial", 3394 spapr_get_host_serial, spapr_set_host_serial); 3395 object_property_set_description(obj, "host-serial", 3396 "Host serial number to advertise in guest device tree"); 3397 } 3398 3399 static void spapr_machine_finalizefn(Object *obj) 3400 { 3401 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3402 3403 g_free(spapr->kvm_type); 3404 } 3405 3406 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3407 { 3408 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3409 PowerPCCPU *cpu = POWERPC_CPU(cs); 3410 CPUPPCState *env = &cpu->env; 3411 3412 cpu_synchronize_state(cs); 3413 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3414 if (spapr->fwnmi_system_reset_addr != -1) { 3415 uint64_t rtas_addr, addr; 3416 3417 /* get rtas addr from fdt */ 3418 rtas_addr = spapr_get_rtas_addr(); 3419 if (!rtas_addr) { 3420 qemu_system_guest_panicked(NULL); 3421 return; 3422 } 3423 3424 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3425 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3426 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3427 env->gpr[3] = addr; 3428 } 3429 ppc_cpu_do_system_reset(cs); 3430 if (spapr->fwnmi_system_reset_addr != -1) { 3431 env->nip = spapr->fwnmi_system_reset_addr; 3432 } 3433 } 3434 3435 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3436 { 3437 CPUState *cs; 3438 3439 CPU_FOREACH(cs) { 3440 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3441 } 3442 } 3443 3444 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3445 void *fdt, int *fdt_start_offset, Error **errp) 3446 { 3447 uint64_t addr; 3448 uint32_t node; 3449 3450 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3451 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3452 &error_abort); 3453 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3454 SPAPR_MEMORY_BLOCK_SIZE); 3455 return 0; 3456 } 3457 3458 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3459 bool dedicated_hp_event_source) 3460 { 3461 SpaprDrc *drc; 3462 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3463 int i; 3464 uint64_t addr = addr_start; 3465 bool hotplugged = spapr_drc_hotplugged(dev); 3466 3467 for (i = 0; i < nr_lmbs; i++) { 3468 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3469 addr / SPAPR_MEMORY_BLOCK_SIZE); 3470 g_assert(drc); 3471 3472 /* 3473 * memory_device_get_free_addr() provided a range of free addresses 3474 * that doesn't overlap with any existing mapping at pre-plug. The 3475 * corresponding LMB DRCs are thus assumed to be all attachable. 3476 */ 3477 spapr_drc_attach(drc, dev); 3478 if (!hotplugged) { 3479 spapr_drc_reset(drc); 3480 } 3481 addr += SPAPR_MEMORY_BLOCK_SIZE; 3482 } 3483 /* send hotplug notification to the 3484 * guest only in case of hotplugged memory 3485 */ 3486 if (hotplugged) { 3487 if (dedicated_hp_event_source) { 3488 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3489 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3490 g_assert(drc); 3491 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3492 nr_lmbs, 3493 spapr_drc_index(drc)); 3494 } else { 3495 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3496 nr_lmbs); 3497 } 3498 } 3499 } 3500 3501 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3502 { 3503 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3504 PCDIMMDevice *dimm = PC_DIMM(dev); 3505 uint64_t size, addr; 3506 int64_t slot; 3507 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3508 3509 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3510 3511 pc_dimm_plug(dimm, MACHINE(ms)); 3512 3513 if (!is_nvdimm) { 3514 addr = object_property_get_uint(OBJECT(dimm), 3515 PC_DIMM_ADDR_PROP, &error_abort); 3516 spapr_add_lmbs(dev, addr, size, 3517 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3518 } else { 3519 slot = object_property_get_int(OBJECT(dimm), 3520 PC_DIMM_SLOT_PROP, &error_abort); 3521 /* We should have valid slot number at this point */ 3522 g_assert(slot >= 0); 3523 spapr_add_nvdimm(dev, slot); 3524 } 3525 } 3526 3527 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3528 Error **errp) 3529 { 3530 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3531 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3532 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3533 PCDIMMDevice *dimm = PC_DIMM(dev); 3534 Error *local_err = NULL; 3535 uint64_t size; 3536 Object *memdev; 3537 hwaddr pagesize; 3538 3539 if (!smc->dr_lmb_enabled) { 3540 error_setg(errp, "Memory hotplug not supported for this machine"); 3541 return; 3542 } 3543 3544 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3545 if (local_err) { 3546 error_propagate(errp, local_err); 3547 return; 3548 } 3549 3550 if (is_nvdimm) { 3551 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3552 return; 3553 } 3554 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3555 error_setg(errp, "Hotplugged memory size must be a multiple of " 3556 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3557 return; 3558 } 3559 3560 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3561 &error_abort); 3562 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3563 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3564 return; 3565 } 3566 3567 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3568 } 3569 3570 struct SpaprDimmState { 3571 PCDIMMDevice *dimm; 3572 uint32_t nr_lmbs; 3573 QTAILQ_ENTRY(SpaprDimmState) next; 3574 }; 3575 3576 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3577 PCDIMMDevice *dimm) 3578 { 3579 SpaprDimmState *dimm_state = NULL; 3580 3581 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3582 if (dimm_state->dimm == dimm) { 3583 break; 3584 } 3585 } 3586 return dimm_state; 3587 } 3588 3589 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3590 uint32_t nr_lmbs, 3591 PCDIMMDevice *dimm) 3592 { 3593 SpaprDimmState *ds = NULL; 3594 3595 /* 3596 * If this request is for a DIMM whose removal had failed earlier 3597 * (due to guest's refusal to remove the LMBs), we would have this 3598 * dimm already in the pending_dimm_unplugs list. In that 3599 * case don't add again. 3600 */ 3601 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3602 if (!ds) { 3603 ds = g_malloc0(sizeof(SpaprDimmState)); 3604 ds->nr_lmbs = nr_lmbs; 3605 ds->dimm = dimm; 3606 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3607 } 3608 return ds; 3609 } 3610 3611 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3612 SpaprDimmState *dimm_state) 3613 { 3614 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3615 g_free(dimm_state); 3616 } 3617 3618 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3619 PCDIMMDevice *dimm) 3620 { 3621 SpaprDrc *drc; 3622 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3623 &error_abort); 3624 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3625 uint32_t avail_lmbs = 0; 3626 uint64_t addr_start, addr; 3627 int i; 3628 3629 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3630 &error_abort); 3631 3632 addr = addr_start; 3633 for (i = 0; i < nr_lmbs; i++) { 3634 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3635 addr / SPAPR_MEMORY_BLOCK_SIZE); 3636 g_assert(drc); 3637 if (drc->dev) { 3638 avail_lmbs++; 3639 } 3640 addr += SPAPR_MEMORY_BLOCK_SIZE; 3641 } 3642 3643 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3644 } 3645 3646 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3647 { 3648 SpaprDimmState *ds; 3649 PCDIMMDevice *dimm; 3650 SpaprDrc *drc; 3651 uint32_t nr_lmbs; 3652 uint64_t size, addr_start, addr; 3653 g_autofree char *qapi_error = NULL; 3654 int i; 3655 3656 if (!dev) { 3657 return; 3658 } 3659 3660 dimm = PC_DIMM(dev); 3661 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3662 3663 /* 3664 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3665 * unplug state, but one of its DRC is marked as unplug_requested. 3666 * This is bad and weird enough to g_assert() out. 3667 */ 3668 g_assert(ds); 3669 3670 spapr_pending_dimm_unplugs_remove(spapr, ds); 3671 3672 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3673 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3674 3675 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3676 &error_abort); 3677 3678 addr = addr_start; 3679 for (i = 0; i < nr_lmbs; i++) { 3680 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3681 addr / SPAPR_MEMORY_BLOCK_SIZE); 3682 g_assert(drc); 3683 3684 drc->unplug_requested = false; 3685 addr += SPAPR_MEMORY_BLOCK_SIZE; 3686 } 3687 3688 /* 3689 * Tell QAPI that something happened and the memory 3690 * hotunplug wasn't successful. Keep sending 3691 * MEM_UNPLUG_ERROR even while sending 3692 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3693 * MEM_UNPLUG_ERROR is due. 3694 */ 3695 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3696 "for device %s", dev->id); 3697 3698 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3699 3700 qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id, 3701 dev->canonical_path); 3702 } 3703 3704 /* Callback to be called during DRC release. */ 3705 void spapr_lmb_release(DeviceState *dev) 3706 { 3707 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3708 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3709 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3710 3711 /* This information will get lost if a migration occurs 3712 * during the unplug process. In this case recover it. */ 3713 if (ds == NULL) { 3714 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3715 g_assert(ds); 3716 /* The DRC being examined by the caller at least must be counted */ 3717 g_assert(ds->nr_lmbs); 3718 } 3719 3720 if (--ds->nr_lmbs) { 3721 return; 3722 } 3723 3724 /* 3725 * Now that all the LMBs have been removed by the guest, call the 3726 * unplug handler chain. This can never fail. 3727 */ 3728 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3729 object_unparent(OBJECT(dev)); 3730 } 3731 3732 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3733 { 3734 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3735 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3736 3737 /* We really shouldn't get this far without anything to unplug */ 3738 g_assert(ds); 3739 3740 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3741 qdev_unrealize(dev); 3742 spapr_pending_dimm_unplugs_remove(spapr, ds); 3743 } 3744 3745 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3746 DeviceState *dev, Error **errp) 3747 { 3748 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3749 PCDIMMDevice *dimm = PC_DIMM(dev); 3750 uint32_t nr_lmbs; 3751 uint64_t size, addr_start, addr; 3752 int i; 3753 SpaprDrc *drc; 3754 3755 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3756 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3757 return; 3758 } 3759 3760 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3761 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3762 3763 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3764 &error_abort); 3765 3766 /* 3767 * An existing pending dimm state for this DIMM means that there is an 3768 * unplug operation in progress, waiting for the spapr_lmb_release 3769 * callback to complete the job (BQL can't cover that far). In this case, 3770 * bail out to avoid detaching DRCs that were already released. 3771 */ 3772 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3773 error_setg(errp, "Memory unplug already in progress for device %s", 3774 dev->id); 3775 return; 3776 } 3777 3778 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3779 3780 addr = addr_start; 3781 for (i = 0; i < nr_lmbs; i++) { 3782 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3783 addr / SPAPR_MEMORY_BLOCK_SIZE); 3784 g_assert(drc); 3785 3786 spapr_drc_unplug_request(drc); 3787 addr += SPAPR_MEMORY_BLOCK_SIZE; 3788 } 3789 3790 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3791 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3792 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3793 nr_lmbs, spapr_drc_index(drc)); 3794 } 3795 3796 /* Callback to be called during DRC release. */ 3797 void spapr_core_release(DeviceState *dev) 3798 { 3799 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3800 3801 /* Call the unplug handler chain. This can never fail. */ 3802 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3803 object_unparent(OBJECT(dev)); 3804 } 3805 3806 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3807 { 3808 MachineState *ms = MACHINE(hotplug_dev); 3809 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3810 CPUCore *cc = CPU_CORE(dev); 3811 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3812 3813 if (smc->pre_2_10_has_unused_icps) { 3814 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3815 int i; 3816 3817 for (i = 0; i < cc->nr_threads; i++) { 3818 CPUState *cs = CPU(sc->threads[i]); 3819 3820 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3821 } 3822 } 3823 3824 assert(core_slot); 3825 core_slot->cpu = NULL; 3826 qdev_unrealize(dev); 3827 } 3828 3829 static 3830 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3831 Error **errp) 3832 { 3833 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3834 int index; 3835 SpaprDrc *drc; 3836 CPUCore *cc = CPU_CORE(dev); 3837 3838 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3839 error_setg(errp, "Unable to find CPU core with core-id: %d", 3840 cc->core_id); 3841 return; 3842 } 3843 if (index == 0) { 3844 error_setg(errp, "Boot CPU core may not be unplugged"); 3845 return; 3846 } 3847 3848 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3849 spapr_vcpu_id(spapr, cc->core_id)); 3850 g_assert(drc); 3851 3852 if (!spapr_drc_unplug_requested(drc)) { 3853 spapr_drc_unplug_request(drc); 3854 } 3855 3856 /* 3857 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3858 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3859 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3860 * attempt (e.g. the kernel will refuse to remove the last online 3861 * CPU), we will never attempt it again because unplug_requested 3862 * will still be 'true' in that case. 3863 */ 3864 spapr_hotplug_req_remove_by_index(drc); 3865 } 3866 3867 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3868 void *fdt, int *fdt_start_offset, Error **errp) 3869 { 3870 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3871 CPUState *cs = CPU(core->threads[0]); 3872 PowerPCCPU *cpu = POWERPC_CPU(cs); 3873 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3874 int id = spapr_get_vcpu_id(cpu); 3875 g_autofree char *nodename = NULL; 3876 int offset; 3877 3878 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3879 offset = fdt_add_subnode(fdt, 0, nodename); 3880 3881 spapr_dt_cpu(cs, fdt, offset, spapr); 3882 3883 /* 3884 * spapr_dt_cpu() does not fill the 'name' property in the 3885 * CPU node. The function is called during boot process, before 3886 * and after CAS, and overwriting the 'name' property written 3887 * by SLOF is not allowed. 3888 * 3889 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3890 * CPUs more compatible with the coldplugged ones, which have 3891 * the 'name' property. Linux Kernel also relies on this 3892 * property to identify CPU nodes. 3893 */ 3894 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3895 3896 *fdt_start_offset = offset; 3897 return 0; 3898 } 3899 3900 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3901 { 3902 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3903 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3904 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3905 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3906 CPUCore *cc = CPU_CORE(dev); 3907 CPUState *cs; 3908 SpaprDrc *drc; 3909 CPUArchId *core_slot; 3910 int index; 3911 bool hotplugged = spapr_drc_hotplugged(dev); 3912 int i; 3913 3914 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3915 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3916 3917 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3918 spapr_vcpu_id(spapr, cc->core_id)); 3919 3920 g_assert(drc || !mc->has_hotpluggable_cpus); 3921 3922 if (drc) { 3923 /* 3924 * spapr_core_pre_plug() already buys us this is a brand new 3925 * core being plugged into a free slot. Nothing should already 3926 * be attached to the corresponding DRC. 3927 */ 3928 spapr_drc_attach(drc, dev); 3929 3930 if (hotplugged) { 3931 /* 3932 * Send hotplug notification interrupt to the guest only 3933 * in case of hotplugged CPUs. 3934 */ 3935 spapr_hotplug_req_add_by_index(drc); 3936 } else { 3937 spapr_drc_reset(drc); 3938 } 3939 } 3940 3941 core_slot->cpu = OBJECT(dev); 3942 3943 /* 3944 * Set compatibility mode to match the boot CPU, which was either set 3945 * by the machine reset code or by CAS. This really shouldn't fail at 3946 * this point. 3947 */ 3948 if (hotplugged) { 3949 for (i = 0; i < cc->nr_threads; i++) { 3950 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3951 &error_abort); 3952 } 3953 } 3954 3955 if (smc->pre_2_10_has_unused_icps) { 3956 for (i = 0; i < cc->nr_threads; i++) { 3957 cs = CPU(core->threads[i]); 3958 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3959 } 3960 } 3961 } 3962 3963 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3964 Error **errp) 3965 { 3966 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3967 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3968 CPUCore *cc = CPU_CORE(dev); 3969 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3970 const char *type = object_get_typename(OBJECT(dev)); 3971 CPUArchId *core_slot; 3972 int index; 3973 unsigned int smp_threads = machine->smp.threads; 3974 3975 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3976 error_setg(errp, "CPU hotplug not supported for this machine"); 3977 return; 3978 } 3979 3980 if (strcmp(base_core_type, type)) { 3981 error_setg(errp, "CPU core type should be %s", base_core_type); 3982 return; 3983 } 3984 3985 if (cc->core_id % smp_threads) { 3986 error_setg(errp, "invalid core id %d", cc->core_id); 3987 return; 3988 } 3989 3990 /* 3991 * In general we should have homogeneous threads-per-core, but old 3992 * (pre hotplug support) machine types allow the last core to have 3993 * reduced threads as a compatibility hack for when we allowed 3994 * total vcpus not a multiple of threads-per-core. 3995 */ 3996 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3997 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 3998 smp_threads); 3999 return; 4000 } 4001 4002 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4003 if (!core_slot) { 4004 error_setg(errp, "core id %d out of range", cc->core_id); 4005 return; 4006 } 4007 4008 if (core_slot->cpu) { 4009 error_setg(errp, "core %d already populated", cc->core_id); 4010 return; 4011 } 4012 4013 numa_cpu_pre_plug(core_slot, dev, errp); 4014 } 4015 4016 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4017 void *fdt, int *fdt_start_offset, Error **errp) 4018 { 4019 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4020 int intc_phandle; 4021 4022 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4023 if (intc_phandle <= 0) { 4024 return -1; 4025 } 4026 4027 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4028 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4029 return -1; 4030 } 4031 4032 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4033 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4034 4035 return 0; 4036 } 4037 4038 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4039 Error **errp) 4040 { 4041 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4042 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4043 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4044 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4045 SpaprDrc *drc; 4046 4047 if (dev->hotplugged && !smc->dr_phb_enabled) { 4048 error_setg(errp, "PHB hotplug not supported for this machine"); 4049 return false; 4050 } 4051 4052 if (sphb->index == (uint32_t)-1) { 4053 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4054 return false; 4055 } 4056 4057 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4058 if (drc && drc->dev) { 4059 error_setg(errp, "PHB %d already attached", sphb->index); 4060 return false; 4061 } 4062 4063 /* 4064 * This will check that sphb->index doesn't exceed the maximum number of 4065 * PHBs for the current machine type. 4066 */ 4067 return 4068 smc->phb_placement(spapr, sphb->index, 4069 &sphb->buid, &sphb->io_win_addr, 4070 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4071 windows_supported, sphb->dma_liobn, 4072 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 4073 errp); 4074 } 4075 4076 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4077 { 4078 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4079 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4080 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4081 SpaprDrc *drc; 4082 bool hotplugged = spapr_drc_hotplugged(dev); 4083 4084 if (!smc->dr_phb_enabled) { 4085 return; 4086 } 4087 4088 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4089 /* hotplug hooks should check it's enabled before getting this far */ 4090 assert(drc); 4091 4092 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4093 spapr_drc_attach(drc, dev); 4094 4095 if (hotplugged) { 4096 spapr_hotplug_req_add_by_index(drc); 4097 } else { 4098 spapr_drc_reset(drc); 4099 } 4100 } 4101 4102 void spapr_phb_release(DeviceState *dev) 4103 { 4104 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4105 4106 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4107 object_unparent(OBJECT(dev)); 4108 } 4109 4110 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4111 { 4112 qdev_unrealize(dev); 4113 } 4114 4115 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4116 DeviceState *dev, Error **errp) 4117 { 4118 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4119 SpaprDrc *drc; 4120 4121 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4122 assert(drc); 4123 4124 if (!spapr_drc_unplug_requested(drc)) { 4125 spapr_drc_unplug_request(drc); 4126 spapr_hotplug_req_remove_by_index(drc); 4127 } else { 4128 error_setg(errp, 4129 "PCI Host Bridge unplug already in progress for device %s", 4130 dev->id); 4131 } 4132 } 4133 4134 static 4135 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4136 Error **errp) 4137 { 4138 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4139 4140 if (spapr->tpm_proxy != NULL) { 4141 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4142 return false; 4143 } 4144 4145 return true; 4146 } 4147 4148 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4149 { 4150 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4151 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4152 4153 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4154 g_assert(spapr->tpm_proxy == NULL); 4155 4156 spapr->tpm_proxy = tpm_proxy; 4157 } 4158 4159 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4160 { 4161 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4162 4163 qdev_unrealize(dev); 4164 object_unparent(OBJECT(dev)); 4165 spapr->tpm_proxy = NULL; 4166 } 4167 4168 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4169 DeviceState *dev, Error **errp) 4170 { 4171 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4172 spapr_memory_plug(hotplug_dev, dev); 4173 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4174 spapr_core_plug(hotplug_dev, dev); 4175 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4176 spapr_phb_plug(hotplug_dev, dev); 4177 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4178 spapr_tpm_proxy_plug(hotplug_dev, dev); 4179 } 4180 } 4181 4182 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4183 DeviceState *dev, Error **errp) 4184 { 4185 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4186 spapr_memory_unplug(hotplug_dev, dev); 4187 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4188 spapr_core_unplug(hotplug_dev, dev); 4189 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4190 spapr_phb_unplug(hotplug_dev, dev); 4191 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4192 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4193 } 4194 } 4195 4196 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4197 { 4198 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4199 /* 4200 * CAS will process all pending unplug requests. 4201 * 4202 * HACK: a guest could theoretically have cleared all bits in OV5, 4203 * but none of the guests we care for do. 4204 */ 4205 spapr_ovec_empty(spapr->ov5_cas); 4206 } 4207 4208 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4209 DeviceState *dev, Error **errp) 4210 { 4211 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4212 MachineClass *mc = MACHINE_GET_CLASS(sms); 4213 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4214 4215 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4216 if (spapr_memory_hot_unplug_supported(sms)) { 4217 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4218 } else { 4219 error_setg(errp, "Memory hot unplug not supported for this guest"); 4220 } 4221 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4222 if (!mc->has_hotpluggable_cpus) { 4223 error_setg(errp, "CPU hot unplug not supported on this machine"); 4224 return; 4225 } 4226 spapr_core_unplug_request(hotplug_dev, dev, errp); 4227 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4228 if (!smc->dr_phb_enabled) { 4229 error_setg(errp, "PHB hot unplug not supported on this machine"); 4230 return; 4231 } 4232 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4233 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4234 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4235 } 4236 } 4237 4238 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4239 DeviceState *dev, Error **errp) 4240 { 4241 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4242 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4243 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4244 spapr_core_pre_plug(hotplug_dev, dev, errp); 4245 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4246 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4247 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4248 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4249 } 4250 } 4251 4252 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4253 DeviceState *dev) 4254 { 4255 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4256 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4257 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4258 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4259 return HOTPLUG_HANDLER(machine); 4260 } 4261 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4262 PCIDevice *pcidev = PCI_DEVICE(dev); 4263 PCIBus *root = pci_device_root_bus(pcidev); 4264 SpaprPhbState *phb = 4265 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4266 TYPE_SPAPR_PCI_HOST_BRIDGE); 4267 4268 if (phb) { 4269 return HOTPLUG_HANDLER(phb); 4270 } 4271 } 4272 return NULL; 4273 } 4274 4275 static CpuInstanceProperties 4276 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4277 { 4278 CPUArchId *core_slot; 4279 MachineClass *mc = MACHINE_GET_CLASS(machine); 4280 4281 /* make sure possible_cpu are intialized */ 4282 mc->possible_cpu_arch_ids(machine); 4283 /* get CPU core slot containing thread that matches cpu_index */ 4284 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4285 assert(core_slot); 4286 return core_slot->props; 4287 } 4288 4289 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4290 { 4291 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4292 } 4293 4294 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4295 { 4296 int i; 4297 unsigned int smp_threads = machine->smp.threads; 4298 unsigned int smp_cpus = machine->smp.cpus; 4299 const char *core_type; 4300 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4301 MachineClass *mc = MACHINE_GET_CLASS(machine); 4302 4303 if (!mc->has_hotpluggable_cpus) { 4304 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4305 } 4306 if (machine->possible_cpus) { 4307 assert(machine->possible_cpus->len == spapr_max_cores); 4308 return machine->possible_cpus; 4309 } 4310 4311 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4312 if (!core_type) { 4313 error_report("Unable to find sPAPR CPU Core definition"); 4314 exit(1); 4315 } 4316 4317 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4318 sizeof(CPUArchId) * spapr_max_cores); 4319 machine->possible_cpus->len = spapr_max_cores; 4320 for (i = 0; i < machine->possible_cpus->len; i++) { 4321 int core_id = i * smp_threads; 4322 4323 machine->possible_cpus->cpus[i].type = core_type; 4324 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4325 machine->possible_cpus->cpus[i].arch_id = core_id; 4326 machine->possible_cpus->cpus[i].props.has_core_id = true; 4327 machine->possible_cpus->cpus[i].props.core_id = core_id; 4328 } 4329 return machine->possible_cpus; 4330 } 4331 4332 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4333 uint64_t *buid, hwaddr *pio, 4334 hwaddr *mmio32, hwaddr *mmio64, 4335 unsigned n_dma, uint32_t *liobns, 4336 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4337 { 4338 /* 4339 * New-style PHB window placement. 4340 * 4341 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4342 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4343 * windows. 4344 * 4345 * Some guest kernels can't work with MMIO windows above 1<<46 4346 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4347 * 4348 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4349 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4350 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4351 * 1TiB 64-bit MMIO windows for each PHB. 4352 */ 4353 const uint64_t base_buid = 0x800000020000000ULL; 4354 int i; 4355 4356 /* Sanity check natural alignments */ 4357 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4358 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4359 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4360 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4361 /* Sanity check bounds */ 4362 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4363 SPAPR_PCI_MEM32_WIN_SIZE); 4364 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4365 SPAPR_PCI_MEM64_WIN_SIZE); 4366 4367 if (index >= SPAPR_MAX_PHBS) { 4368 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4369 SPAPR_MAX_PHBS - 1); 4370 return false; 4371 } 4372 4373 *buid = base_buid + index; 4374 for (i = 0; i < n_dma; ++i) { 4375 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4376 } 4377 4378 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4379 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4380 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4381 4382 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4383 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4384 return true; 4385 } 4386 4387 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4388 { 4389 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4390 4391 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4392 } 4393 4394 static void spapr_ics_resend(XICSFabric *dev) 4395 { 4396 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4397 4398 ics_resend(spapr->ics); 4399 } 4400 4401 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4402 { 4403 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4404 4405 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4406 } 4407 4408 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4409 Monitor *mon) 4410 { 4411 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4412 4413 spapr_irq_print_info(spapr, mon); 4414 monitor_printf(mon, "irqchip: %s\n", 4415 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4416 } 4417 4418 /* 4419 * This is a XIVE only operation 4420 */ 4421 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4422 uint8_t nvt_blk, uint32_t nvt_idx, 4423 bool cam_ignore, uint8_t priority, 4424 uint32_t logic_serv, XiveTCTXMatch *match) 4425 { 4426 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4427 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4428 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4429 int count; 4430 4431 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4432 priority, logic_serv, match); 4433 if (count < 0) { 4434 return count; 4435 } 4436 4437 /* 4438 * When we implement the save and restore of the thread interrupt 4439 * contexts in the enter/exit CPU handlers of the machine and the 4440 * escalations in QEMU, we should be able to handle non dispatched 4441 * vCPUs. 4442 * 4443 * Until this is done, the sPAPR machine should find at least one 4444 * matching context always. 4445 */ 4446 if (count == 0) { 4447 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4448 nvt_blk, nvt_idx); 4449 } 4450 4451 return count; 4452 } 4453 4454 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4455 { 4456 return cpu->vcpu_id; 4457 } 4458 4459 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4460 { 4461 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4462 MachineState *ms = MACHINE(spapr); 4463 int vcpu_id; 4464 4465 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4466 4467 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4468 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4469 error_append_hint(errp, "Adjust the number of cpus to %d " 4470 "or try to raise the number of threads per core\n", 4471 vcpu_id * ms->smp.threads / spapr->vsmt); 4472 return false; 4473 } 4474 4475 cpu->vcpu_id = vcpu_id; 4476 return true; 4477 } 4478 4479 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4480 { 4481 CPUState *cs; 4482 4483 CPU_FOREACH(cs) { 4484 PowerPCCPU *cpu = POWERPC_CPU(cs); 4485 4486 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4487 return cpu; 4488 } 4489 } 4490 4491 return NULL; 4492 } 4493 4494 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4495 { 4496 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4497 4498 return spapr_cpu->in_nested; 4499 } 4500 4501 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4502 { 4503 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4504 4505 /* These are only called by TCG, KVM maintains dispatch state */ 4506 4507 spapr_cpu->prod = false; 4508 if (spapr_cpu->vpa_addr) { 4509 CPUState *cs = CPU(cpu); 4510 uint32_t dispatch; 4511 4512 dispatch = ldl_be_phys(cs->as, 4513 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4514 dispatch++; 4515 if ((dispatch & 1) != 0) { 4516 qemu_log_mask(LOG_GUEST_ERROR, 4517 "VPA: incorrect dispatch counter value for " 4518 "dispatched partition %u, correcting.\n", dispatch); 4519 dispatch++; 4520 } 4521 stl_be_phys(cs->as, 4522 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4523 } 4524 } 4525 4526 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4527 { 4528 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4529 4530 if (spapr_cpu->vpa_addr) { 4531 CPUState *cs = CPU(cpu); 4532 uint32_t dispatch; 4533 4534 dispatch = ldl_be_phys(cs->as, 4535 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4536 dispatch++; 4537 if ((dispatch & 1) != 1) { 4538 qemu_log_mask(LOG_GUEST_ERROR, 4539 "VPA: incorrect dispatch counter value for " 4540 "preempted partition %u, correcting.\n", dispatch); 4541 dispatch++; 4542 } 4543 stl_be_phys(cs->as, 4544 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4545 } 4546 } 4547 4548 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4549 { 4550 MachineClass *mc = MACHINE_CLASS(oc); 4551 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4552 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4553 NMIClass *nc = NMI_CLASS(oc); 4554 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4555 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4556 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4557 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4558 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4559 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4560 4561 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4562 mc->ignore_boot_device_suffixes = true; 4563 4564 /* 4565 * We set up the default / latest behaviour here. The class_init 4566 * functions for the specific versioned machine types can override 4567 * these details for backwards compatibility 4568 */ 4569 mc->init = spapr_machine_init; 4570 mc->reset = spapr_machine_reset; 4571 mc->block_default_type = IF_SCSI; 4572 4573 /* 4574 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values 4575 * should be limited by the host capability instead of hardcoded. 4576 * max_cpus for KVM guests will be checked in kvm_init(), and TCG 4577 * guests are welcome to have as many CPUs as the host are capable 4578 * of emulate. 4579 */ 4580 mc->max_cpus = INT32_MAX; 4581 4582 mc->no_parallel = 1; 4583 mc->default_boot_order = ""; 4584 mc->default_ram_size = 512 * MiB; 4585 mc->default_ram_id = "ppc_spapr.ram"; 4586 mc->default_display = "std"; 4587 mc->kvm_type = spapr_kvm_type; 4588 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4589 mc->pci_allow_0_address = true; 4590 assert(!mc->get_hotplug_handler); 4591 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4592 hc->pre_plug = spapr_machine_device_pre_plug; 4593 hc->plug = spapr_machine_device_plug; 4594 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4595 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4596 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4597 hc->unplug_request = spapr_machine_device_unplug_request; 4598 hc->unplug = spapr_machine_device_unplug; 4599 4600 smc->dr_lmb_enabled = true; 4601 smc->update_dt_enabled = true; 4602 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4603 mc->has_hotpluggable_cpus = true; 4604 mc->nvdimm_supported = true; 4605 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4606 fwc->get_dev_path = spapr_get_fw_dev_path; 4607 nc->nmi_monitor_handler = spapr_nmi; 4608 smc->phb_placement = spapr_phb_placement; 4609 vhc->cpu_in_nested = spapr_cpu_in_nested; 4610 vhc->deliver_hv_excp = spapr_exit_nested; 4611 vhc->hypercall = emulate_spapr_hypercall; 4612 vhc->hpt_mask = spapr_hpt_mask; 4613 vhc->map_hptes = spapr_map_hptes; 4614 vhc->unmap_hptes = spapr_unmap_hptes; 4615 vhc->hpte_set_c = spapr_hpte_set_c; 4616 vhc->hpte_set_r = spapr_hpte_set_r; 4617 vhc->get_pate = spapr_get_pate; 4618 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4619 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4620 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4621 xic->ics_get = spapr_ics_get; 4622 xic->ics_resend = spapr_ics_resend; 4623 xic->icp_get = spapr_icp_get; 4624 ispc->print_info = spapr_pic_print_info; 4625 /* Force NUMA node memory size to be a multiple of 4626 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4627 * in which LMBs are represented and hot-added 4628 */ 4629 mc->numa_mem_align_shift = 28; 4630 mc->auto_enable_numa = true; 4631 4632 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4633 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4634 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4635 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4636 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4637 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4638 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4639 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4640 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4641 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4642 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4643 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4644 spapr_caps_add_properties(smc); 4645 smc->irq = &spapr_irq_dual; 4646 smc->dr_phb_enabled = true; 4647 smc->linux_pci_probe = true; 4648 smc->smp_threads_vsmt = true; 4649 smc->nr_xirqs = SPAPR_NR_XIRQS; 4650 xfc->match_nvt = spapr_match_nvt; 4651 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4652 vmc->quiesce = spapr_vof_quiesce; 4653 vmc->setprop = spapr_vof_setprop; 4654 } 4655 4656 static const TypeInfo spapr_machine_info = { 4657 .name = TYPE_SPAPR_MACHINE, 4658 .parent = TYPE_MACHINE, 4659 .abstract = true, 4660 .instance_size = sizeof(SpaprMachineState), 4661 .instance_init = spapr_instance_init, 4662 .instance_finalize = spapr_machine_finalizefn, 4663 .class_size = sizeof(SpaprMachineClass), 4664 .class_init = spapr_machine_class_init, 4665 .interfaces = (InterfaceInfo[]) { 4666 { TYPE_FW_PATH_PROVIDER }, 4667 { TYPE_NMI }, 4668 { TYPE_HOTPLUG_HANDLER }, 4669 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4670 { TYPE_XICS_FABRIC }, 4671 { TYPE_INTERRUPT_STATS_PROVIDER }, 4672 { TYPE_XIVE_FABRIC }, 4673 { TYPE_VOF_MACHINE_IF }, 4674 { } 4675 }, 4676 }; 4677 4678 static void spapr_machine_latest_class_options(MachineClass *mc) 4679 { 4680 mc->alias = "pseries"; 4681 mc->is_default = true; 4682 } 4683 4684 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4685 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4686 void *data) \ 4687 { \ 4688 MachineClass *mc = MACHINE_CLASS(oc); \ 4689 spapr_machine_##suffix##_class_options(mc); \ 4690 if (latest) { \ 4691 spapr_machine_latest_class_options(mc); \ 4692 } \ 4693 } \ 4694 static const TypeInfo spapr_machine_##suffix##_info = { \ 4695 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4696 .parent = TYPE_SPAPR_MACHINE, \ 4697 .class_init = spapr_machine_##suffix##_class_init, \ 4698 }; \ 4699 static void spapr_machine_register_##suffix(void) \ 4700 { \ 4701 type_register(&spapr_machine_##suffix##_info); \ 4702 } \ 4703 type_init(spapr_machine_register_##suffix) 4704 4705 /* 4706 * pseries-7.0 4707 */ 4708 static void spapr_machine_7_0_class_options(MachineClass *mc) 4709 { 4710 /* Defaults for the latest behaviour inherited from the base class */ 4711 } 4712 4713 DEFINE_SPAPR_MACHINE(7_0, "7.0", true); 4714 4715 /* 4716 * pseries-6.2 4717 */ 4718 static void spapr_machine_6_2_class_options(MachineClass *mc) 4719 { 4720 spapr_machine_7_0_class_options(mc); 4721 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4722 } 4723 4724 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4725 4726 /* 4727 * pseries-6.1 4728 */ 4729 static void spapr_machine_6_1_class_options(MachineClass *mc) 4730 { 4731 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4732 4733 spapr_machine_6_2_class_options(mc); 4734 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4735 smc->pre_6_2_numa_affinity = true; 4736 mc->smp_props.prefer_sockets = true; 4737 } 4738 4739 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4740 4741 /* 4742 * pseries-6.0 4743 */ 4744 static void spapr_machine_6_0_class_options(MachineClass *mc) 4745 { 4746 spapr_machine_6_1_class_options(mc); 4747 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4748 } 4749 4750 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4751 4752 /* 4753 * pseries-5.2 4754 */ 4755 static void spapr_machine_5_2_class_options(MachineClass *mc) 4756 { 4757 spapr_machine_6_0_class_options(mc); 4758 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4759 } 4760 4761 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4762 4763 /* 4764 * pseries-5.1 4765 */ 4766 static void spapr_machine_5_1_class_options(MachineClass *mc) 4767 { 4768 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4769 4770 spapr_machine_5_2_class_options(mc); 4771 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4772 smc->pre_5_2_numa_associativity = true; 4773 } 4774 4775 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4776 4777 /* 4778 * pseries-5.0 4779 */ 4780 static void spapr_machine_5_0_class_options(MachineClass *mc) 4781 { 4782 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4783 static GlobalProperty compat[] = { 4784 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4785 }; 4786 4787 spapr_machine_5_1_class_options(mc); 4788 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4789 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4790 mc->numa_mem_supported = true; 4791 smc->pre_5_1_assoc_refpoints = true; 4792 } 4793 4794 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4795 4796 /* 4797 * pseries-4.2 4798 */ 4799 static void spapr_machine_4_2_class_options(MachineClass *mc) 4800 { 4801 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4802 4803 spapr_machine_5_0_class_options(mc); 4804 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4805 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4806 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4807 smc->rma_limit = 16 * GiB; 4808 mc->nvdimm_supported = false; 4809 } 4810 4811 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4812 4813 /* 4814 * pseries-4.1 4815 */ 4816 static void spapr_machine_4_1_class_options(MachineClass *mc) 4817 { 4818 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4819 static GlobalProperty compat[] = { 4820 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4821 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4822 }; 4823 4824 spapr_machine_4_2_class_options(mc); 4825 smc->linux_pci_probe = false; 4826 smc->smp_threads_vsmt = false; 4827 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4828 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4829 } 4830 4831 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4832 4833 /* 4834 * pseries-4.0 4835 */ 4836 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4837 uint64_t *buid, hwaddr *pio, 4838 hwaddr *mmio32, hwaddr *mmio64, 4839 unsigned n_dma, uint32_t *liobns, 4840 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4841 { 4842 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4843 liobns, nv2gpa, nv2atsd, errp)) { 4844 return false; 4845 } 4846 4847 *nv2gpa = 0; 4848 *nv2atsd = 0; 4849 return true; 4850 } 4851 static void spapr_machine_4_0_class_options(MachineClass *mc) 4852 { 4853 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4854 4855 spapr_machine_4_1_class_options(mc); 4856 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4857 smc->phb_placement = phb_placement_4_0; 4858 smc->irq = &spapr_irq_xics; 4859 smc->pre_4_1_migration = true; 4860 } 4861 4862 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4863 4864 /* 4865 * pseries-3.1 4866 */ 4867 static void spapr_machine_3_1_class_options(MachineClass *mc) 4868 { 4869 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4870 4871 spapr_machine_4_0_class_options(mc); 4872 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4873 4874 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4875 smc->update_dt_enabled = false; 4876 smc->dr_phb_enabled = false; 4877 smc->broken_host_serial_model = true; 4878 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4879 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4880 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4881 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4882 } 4883 4884 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4885 4886 /* 4887 * pseries-3.0 4888 */ 4889 4890 static void spapr_machine_3_0_class_options(MachineClass *mc) 4891 { 4892 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4893 4894 spapr_machine_3_1_class_options(mc); 4895 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4896 4897 smc->legacy_irq_allocation = true; 4898 smc->nr_xirqs = 0x400; 4899 smc->irq = &spapr_irq_xics_legacy; 4900 } 4901 4902 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4903 4904 /* 4905 * pseries-2.12 4906 */ 4907 static void spapr_machine_2_12_class_options(MachineClass *mc) 4908 { 4909 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4910 static GlobalProperty compat[] = { 4911 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4912 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4913 }; 4914 4915 spapr_machine_3_0_class_options(mc); 4916 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4917 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4918 4919 /* We depend on kvm_enabled() to choose a default value for the 4920 * hpt-max-page-size capability. Of course we can't do it here 4921 * because this is too early and the HW accelerator isn't initialzed 4922 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4923 */ 4924 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4925 } 4926 4927 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4928 4929 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4930 { 4931 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4932 4933 spapr_machine_2_12_class_options(mc); 4934 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4935 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4936 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4937 } 4938 4939 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4940 4941 /* 4942 * pseries-2.11 4943 */ 4944 4945 static void spapr_machine_2_11_class_options(MachineClass *mc) 4946 { 4947 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4948 4949 spapr_machine_2_12_class_options(mc); 4950 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4951 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4952 } 4953 4954 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4955 4956 /* 4957 * pseries-2.10 4958 */ 4959 4960 static void spapr_machine_2_10_class_options(MachineClass *mc) 4961 { 4962 spapr_machine_2_11_class_options(mc); 4963 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4964 } 4965 4966 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4967 4968 /* 4969 * pseries-2.9 4970 */ 4971 4972 static void spapr_machine_2_9_class_options(MachineClass *mc) 4973 { 4974 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4975 static GlobalProperty compat[] = { 4976 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4977 }; 4978 4979 spapr_machine_2_10_class_options(mc); 4980 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4981 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4982 smc->pre_2_10_has_unused_icps = true; 4983 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4984 } 4985 4986 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4987 4988 /* 4989 * pseries-2.8 4990 */ 4991 4992 static void spapr_machine_2_8_class_options(MachineClass *mc) 4993 { 4994 static GlobalProperty compat[] = { 4995 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4996 }; 4997 4998 spapr_machine_2_9_class_options(mc); 4999 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5000 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5001 mc->numa_mem_align_shift = 23; 5002 } 5003 5004 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5005 5006 /* 5007 * pseries-2.7 5008 */ 5009 5010 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5011 uint64_t *buid, hwaddr *pio, 5012 hwaddr *mmio32, hwaddr *mmio64, 5013 unsigned n_dma, uint32_t *liobns, 5014 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 5015 { 5016 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5017 const uint64_t base_buid = 0x800000020000000ULL; 5018 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5019 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5020 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5021 const uint32_t max_index = 255; 5022 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5023 5024 uint64_t ram_top = MACHINE(spapr)->ram_size; 5025 hwaddr phb0_base, phb_base; 5026 int i; 5027 5028 /* Do we have device memory? */ 5029 if (MACHINE(spapr)->maxram_size > ram_top) { 5030 /* Can't just use maxram_size, because there may be an 5031 * alignment gap between normal and device memory regions 5032 */ 5033 ram_top = MACHINE(spapr)->device_memory->base + 5034 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5035 } 5036 5037 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5038 5039 if (index > max_index) { 5040 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5041 max_index); 5042 return false; 5043 } 5044 5045 *buid = base_buid + index; 5046 for (i = 0; i < n_dma; ++i) { 5047 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5048 } 5049 5050 phb_base = phb0_base + index * phb_spacing; 5051 *pio = phb_base + pio_offset; 5052 *mmio32 = phb_base + mmio_offset; 5053 /* 5054 * We don't set the 64-bit MMIO window, relying on the PHB's 5055 * fallback behaviour of automatically splitting a large "32-bit" 5056 * window into contiguous 32-bit and 64-bit windows 5057 */ 5058 5059 *nv2gpa = 0; 5060 *nv2atsd = 0; 5061 return true; 5062 } 5063 5064 static void spapr_machine_2_7_class_options(MachineClass *mc) 5065 { 5066 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5067 static GlobalProperty compat[] = { 5068 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5069 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5070 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5071 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5072 }; 5073 5074 spapr_machine_2_8_class_options(mc); 5075 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5076 mc->default_machine_opts = "modern-hotplug-events=off"; 5077 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5078 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5079 smc->phb_placement = phb_placement_2_7; 5080 } 5081 5082 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5083 5084 /* 5085 * pseries-2.6 5086 */ 5087 5088 static void spapr_machine_2_6_class_options(MachineClass *mc) 5089 { 5090 static GlobalProperty compat[] = { 5091 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5092 }; 5093 5094 spapr_machine_2_7_class_options(mc); 5095 mc->has_hotpluggable_cpus = false; 5096 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5097 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5098 } 5099 5100 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5101 5102 /* 5103 * pseries-2.5 5104 */ 5105 5106 static void spapr_machine_2_5_class_options(MachineClass *mc) 5107 { 5108 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5109 static GlobalProperty compat[] = { 5110 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5111 }; 5112 5113 spapr_machine_2_6_class_options(mc); 5114 smc->use_ohci_by_default = true; 5115 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5116 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5117 } 5118 5119 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5120 5121 /* 5122 * pseries-2.4 5123 */ 5124 5125 static void spapr_machine_2_4_class_options(MachineClass *mc) 5126 { 5127 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5128 5129 spapr_machine_2_5_class_options(mc); 5130 smc->dr_lmb_enabled = false; 5131 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5132 } 5133 5134 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5135 5136 /* 5137 * pseries-2.3 5138 */ 5139 5140 static void spapr_machine_2_3_class_options(MachineClass *mc) 5141 { 5142 static GlobalProperty compat[] = { 5143 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5144 }; 5145 spapr_machine_2_4_class_options(mc); 5146 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5147 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5148 } 5149 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5150 5151 /* 5152 * pseries-2.2 5153 */ 5154 5155 static void spapr_machine_2_2_class_options(MachineClass *mc) 5156 { 5157 static GlobalProperty compat[] = { 5158 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5159 }; 5160 5161 spapr_machine_2_3_class_options(mc); 5162 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5163 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5164 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5165 } 5166 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5167 5168 /* 5169 * pseries-2.1 5170 */ 5171 5172 static void spapr_machine_2_1_class_options(MachineClass *mc) 5173 { 5174 spapr_machine_2_2_class_options(mc); 5175 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5176 } 5177 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5178 5179 static void spapr_machine_register_types(void) 5180 { 5181 type_register_static(&spapr_machine_info); 5182 } 5183 5184 type_init(spapr_machine_register_types) 5185