xref: /openbmc/qemu/hw/ppc/spapr.c (revision 8fa3b702)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
54 
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
58 
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
65 
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
70 
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79 
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
85 
86 #include "monitor/monitor.h"
87 
88 #include <libfdt.h>
89 
90 /* SLOF memory layout:
91  *
92  * SLOF raw image loaded at 0, copies its romfs right below the flat
93  * device-tree, then position SLOF itself 31M below that
94  *
95  * So we set FW_OVERHEAD to 40MB which should account for all of that
96  * and more
97  *
98  * We load our kernel at 4M, leaving space for SLOF initial image
99  */
100 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE             0x400000
102 #define FW_FILE_NAME            "slof.bin"
103 #define FW_OVERHEAD             0x2800000
104 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
105 
106 #define MIN_RMA_SLOF            (128 * MiB)
107 
108 #define PHANDLE_INTC            0x00001111
109 
110 /* These two functions implement the VCPU id numbering: one to compute them
111  * all and one to identify thread 0 of a VCORE. Any change to the first one
112  * is likely to have an impact on the second one, so let's keep them close.
113  */
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 {
116     MachineState *ms = MACHINE(spapr);
117     unsigned int smp_threads = ms->smp.threads;
118 
119     assert(spapr->vsmt);
120     return
121         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 }
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124                                       PowerPCCPU *cpu)
125 {
126     assert(spapr->vsmt);
127     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 }
129 
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133      * and newer QEMUs don't even have them. In both cases, we don't want
134      * to send anything on the wire.
135      */
136     return false;
137 }
138 
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140     .name = "icp/server",
141     .version_id = 1,
142     .minimum_version_id = 1,
143     .needed = pre_2_10_vmstate_dummy_icp_needed,
144     .fields = (VMStateField[]) {
145         VMSTATE_UNUSED(4), /* uint32_t xirr */
146         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147         VMSTATE_UNUSED(1), /* uint8_t mfrr */
148         VMSTATE_END_OF_LIST()
149     },
150 };
151 
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155                      (void *)(uintptr_t) i);
156 }
157 
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161                        (void *)(uintptr_t) i);
162 }
163 
164 int spapr_max_server_number(SpaprMachineState *spapr)
165 {
166     MachineState *ms = MACHINE(spapr);
167 
168     assert(spapr->vsmt);
169     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 }
171 
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173                                   int smt_threads)
174 {
175     int i, ret = 0;
176     uint32_t servers_prop[smt_threads];
177     uint32_t gservers_prop[smt_threads * 2];
178     int index = spapr_get_vcpu_id(cpu);
179 
180     if (cpu->compat_pvr) {
181         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182         if (ret < 0) {
183             return ret;
184         }
185     }
186 
187     /* Build interrupt servers and gservers properties */
188     for (i = 0; i < smt_threads; i++) {
189         servers_prop[i] = cpu_to_be32(index + i);
190         /* Hack, direct the group queues back to cpu 0 */
191         gservers_prop[i*2] = cpu_to_be32(index + i);
192         gservers_prop[i*2 + 1] = 0;
193     }
194     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195                       servers_prop, sizeof(servers_prop));
196     if (ret < 0) {
197         return ret;
198     }
199     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200                       gservers_prop, sizeof(gservers_prop));
201 
202     return ret;
203 }
204 
205 static void spapr_dt_pa_features(SpaprMachineState *spapr,
206                                  PowerPCCPU *cpu,
207                                  void *fdt, int offset)
208 {
209     uint8_t pa_features_206[] = { 6, 0,
210         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
211     uint8_t pa_features_207[] = { 24, 0,
212         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
213         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
214         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
215         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
216     uint8_t pa_features_300[] = { 66, 0,
217         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
218         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
219         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
220         /* 6: DS207 */
221         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
222         /* 16: Vector */
223         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
224         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
225         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
226         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
227         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
228         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
229         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
230         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
231         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
232         /* 42: PM, 44: PC RA, 46: SC vec'd */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
234         /* 48: SIMD, 50: QP BFP, 52: String */
235         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
236         /* 54: DecFP, 56: DecI, 58: SHA */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
238         /* 60: NM atomic, 62: RNG */
239         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
240     };
241     uint8_t *pa_features = NULL;
242     size_t pa_size;
243 
244     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
245         pa_features = pa_features_206;
246         pa_size = sizeof(pa_features_206);
247     }
248     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
249         pa_features = pa_features_207;
250         pa_size = sizeof(pa_features_207);
251     }
252     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
253         pa_features = pa_features_300;
254         pa_size = sizeof(pa_features_300);
255     }
256     if (!pa_features) {
257         return;
258     }
259 
260     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
261         /*
262          * Note: we keep CI large pages off by default because a 64K capable
263          * guest provisioned with large pages might otherwise try to map a qemu
264          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
265          * even if that qemu runs on a 4k host.
266          * We dd this bit back here if we are confident this is not an issue
267          */
268         pa_features[3] |= 0x20;
269     }
270     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
271         pa_features[24] |= 0x80;    /* Transactional memory support */
272     }
273     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
274         /* Workaround for broken kernels that attempt (guest) radix
275          * mode when they can't handle it, if they see the radix bit set
276          * in pa-features. So hide it from them. */
277         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
278     }
279 
280     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
281 }
282 
283 static hwaddr spapr_node0_size(MachineState *machine)
284 {
285     if (machine->numa_state->num_nodes) {
286         int i;
287         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
288             if (machine->numa_state->nodes[i].node_mem) {
289                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
290                            machine->ram_size);
291             }
292         }
293     }
294     return machine->ram_size;
295 }
296 
297 static void add_str(GString *s, const gchar *s1)
298 {
299     g_string_append_len(s, s1, strlen(s1) + 1);
300 }
301 
302 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
303                                 hwaddr start, hwaddr size)
304 {
305     char mem_name[32];
306     uint64_t mem_reg_property[2];
307     int off;
308 
309     mem_reg_property[0] = cpu_to_be64(start);
310     mem_reg_property[1] = cpu_to_be64(size);
311 
312     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
313     off = fdt_add_subnode(fdt, 0, mem_name);
314     _FDT(off);
315     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
316     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
317                       sizeof(mem_reg_property))));
318     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
319     return off;
320 }
321 
322 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
323 {
324     MemoryDeviceInfoList *info;
325 
326     for (info = list; info; info = info->next) {
327         MemoryDeviceInfo *value = info->value;
328 
329         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
330             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
331 
332             if (addr >= pcdimm_info->addr &&
333                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
334                 return pcdimm_info->node;
335             }
336         }
337     }
338 
339     return -1;
340 }
341 
342 struct sPAPRDrconfCellV2 {
343      uint32_t seq_lmbs;
344      uint64_t base_addr;
345      uint32_t drc_index;
346      uint32_t aa_index;
347      uint32_t flags;
348 } QEMU_PACKED;
349 
350 typedef struct DrconfCellQueue {
351     struct sPAPRDrconfCellV2 cell;
352     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
353 } DrconfCellQueue;
354 
355 static DrconfCellQueue *
356 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
357                       uint32_t drc_index, uint32_t aa_index,
358                       uint32_t flags)
359 {
360     DrconfCellQueue *elem;
361 
362     elem = g_malloc0(sizeof(*elem));
363     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
364     elem->cell.base_addr = cpu_to_be64(base_addr);
365     elem->cell.drc_index = cpu_to_be32(drc_index);
366     elem->cell.aa_index = cpu_to_be32(aa_index);
367     elem->cell.flags = cpu_to_be32(flags);
368 
369     return elem;
370 }
371 
372 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
373                                       int offset, MemoryDeviceInfoList *dimms)
374 {
375     MachineState *machine = MACHINE(spapr);
376     uint8_t *int_buf, *cur_index;
377     int ret;
378     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
379     uint64_t addr, cur_addr, size;
380     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
381     uint64_t mem_end = machine->device_memory->base +
382                        memory_region_size(&machine->device_memory->mr);
383     uint32_t node, buf_len, nr_entries = 0;
384     SpaprDrc *drc;
385     DrconfCellQueue *elem, *next;
386     MemoryDeviceInfoList *info;
387     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
388         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
389 
390     /* Entry to cover RAM and the gap area */
391     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
392                                  SPAPR_LMB_FLAGS_RESERVED |
393                                  SPAPR_LMB_FLAGS_DRC_INVALID);
394     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
395     nr_entries++;
396 
397     cur_addr = machine->device_memory->base;
398     for (info = dimms; info; info = info->next) {
399         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
400 
401         addr = di->addr;
402         size = di->size;
403         node = di->node;
404 
405         /*
406          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
407          * area is marked hotpluggable in the next iteration for the bigger
408          * chunk including the NVDIMM occupied area.
409          */
410         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
411             continue;
412 
413         /* Entry for hot-pluggable area */
414         if (cur_addr < addr) {
415             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
416             g_assert(drc);
417             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
418                                          cur_addr, spapr_drc_index(drc), -1, 0);
419             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
420             nr_entries++;
421         }
422 
423         /* Entry for DIMM */
424         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
425         g_assert(drc);
426         elem = spapr_get_drconf_cell(size / lmb_size, addr,
427                                      spapr_drc_index(drc), node,
428                                      (SPAPR_LMB_FLAGS_ASSIGNED |
429                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
430         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
431         nr_entries++;
432         cur_addr = addr + size;
433     }
434 
435     /* Entry for remaining hotpluggable area */
436     if (cur_addr < mem_end) {
437         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
438         g_assert(drc);
439         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
440                                      cur_addr, spapr_drc_index(drc), -1, 0);
441         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
442         nr_entries++;
443     }
444 
445     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
446     int_buf = cur_index = g_malloc0(buf_len);
447     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
448     cur_index += sizeof(nr_entries);
449 
450     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
451         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
452         cur_index += sizeof(elem->cell);
453         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
454         g_free(elem);
455     }
456 
457     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
458     g_free(int_buf);
459     if (ret < 0) {
460         return -1;
461     }
462     return 0;
463 }
464 
465 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
466                                    int offset, MemoryDeviceInfoList *dimms)
467 {
468     MachineState *machine = MACHINE(spapr);
469     int i, ret;
470     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
471     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
472     uint32_t nr_lmbs = (machine->device_memory->base +
473                        memory_region_size(&machine->device_memory->mr)) /
474                        lmb_size;
475     uint32_t *int_buf, *cur_index, buf_len;
476 
477     /*
478      * Allocate enough buffer size to fit in ibm,dynamic-memory
479      */
480     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
481     cur_index = int_buf = g_malloc0(buf_len);
482     int_buf[0] = cpu_to_be32(nr_lmbs);
483     cur_index++;
484     for (i = 0; i < nr_lmbs; i++) {
485         uint64_t addr = i * lmb_size;
486         uint32_t *dynamic_memory = cur_index;
487 
488         if (i >= device_lmb_start) {
489             SpaprDrc *drc;
490 
491             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
492             g_assert(drc);
493 
494             dynamic_memory[0] = cpu_to_be32(addr >> 32);
495             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
496             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
497             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
498             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
499             if (memory_region_present(get_system_memory(), addr)) {
500                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
501             } else {
502                 dynamic_memory[5] = cpu_to_be32(0);
503             }
504         } else {
505             /*
506              * LMB information for RMA, boot time RAM and gap b/n RAM and
507              * device memory region -- all these are marked as reserved
508              * and as having no valid DRC.
509              */
510             dynamic_memory[0] = cpu_to_be32(addr >> 32);
511             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
512             dynamic_memory[2] = cpu_to_be32(0);
513             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
514             dynamic_memory[4] = cpu_to_be32(-1);
515             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
516                                             SPAPR_LMB_FLAGS_DRC_INVALID);
517         }
518 
519         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
520     }
521     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
522     g_free(int_buf);
523     if (ret < 0) {
524         return -1;
525     }
526     return 0;
527 }
528 
529 /*
530  * Adds ibm,dynamic-reconfiguration-memory node.
531  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
532  * of this device tree node.
533  */
534 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
535                                                    void *fdt)
536 {
537     MachineState *machine = MACHINE(spapr);
538     int ret, offset;
539     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
540     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
541                                 cpu_to_be32(lmb_size & 0xffffffff)};
542     MemoryDeviceInfoList *dimms = NULL;
543 
544     /*
545      * Don't create the node if there is no device memory
546      */
547     if (machine->ram_size == machine->maxram_size) {
548         return 0;
549     }
550 
551     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
552 
553     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
554                     sizeof(prop_lmb_size));
555     if (ret < 0) {
556         return ret;
557     }
558 
559     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
560     if (ret < 0) {
561         return ret;
562     }
563 
564     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
565     if (ret < 0) {
566         return ret;
567     }
568 
569     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
570     dimms = qmp_memory_device_list();
571     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
572         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
573     } else {
574         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
575     }
576     qapi_free_MemoryDeviceInfoList(dimms);
577 
578     if (ret < 0) {
579         return ret;
580     }
581 
582     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
583 
584     return ret;
585 }
586 
587 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
588 {
589     MachineState *machine = MACHINE(spapr);
590     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
591     hwaddr mem_start, node_size;
592     int i, nb_nodes = machine->numa_state->num_nodes;
593     NodeInfo *nodes = machine->numa_state->nodes;
594 
595     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
596         if (!nodes[i].node_mem) {
597             continue;
598         }
599         if (mem_start >= machine->ram_size) {
600             node_size = 0;
601         } else {
602             node_size = nodes[i].node_mem;
603             if (node_size > machine->ram_size - mem_start) {
604                 node_size = machine->ram_size - mem_start;
605             }
606         }
607         if (!mem_start) {
608             /* spapr_machine_init() checks for rma_size <= node0_size
609              * already */
610             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
611             mem_start += spapr->rma_size;
612             node_size -= spapr->rma_size;
613         }
614         for ( ; node_size; ) {
615             hwaddr sizetmp = pow2floor(node_size);
616 
617             /* mem_start != 0 here */
618             if (ctzl(mem_start) < ctzl(sizetmp)) {
619                 sizetmp = 1ULL << ctzl(mem_start);
620             }
621 
622             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
623             node_size -= sizetmp;
624             mem_start += sizetmp;
625         }
626     }
627 
628     /* Generate ibm,dynamic-reconfiguration-memory node if required */
629     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
630         int ret;
631 
632         g_assert(smc->dr_lmb_enabled);
633         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
634         if (ret) {
635             return ret;
636         }
637     }
638 
639     return 0;
640 }
641 
642 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
643                          SpaprMachineState *spapr)
644 {
645     MachineState *ms = MACHINE(spapr);
646     PowerPCCPU *cpu = POWERPC_CPU(cs);
647     CPUPPCState *env = &cpu->env;
648     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
649     int index = spapr_get_vcpu_id(cpu);
650     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
651                        0xffffffff, 0xffffffff};
652     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
653         : SPAPR_TIMEBASE_FREQ;
654     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
655     uint32_t page_sizes_prop[64];
656     size_t page_sizes_prop_size;
657     unsigned int smp_threads = ms->smp.threads;
658     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
659     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
660     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
661     SpaprDrc *drc;
662     int drc_index;
663     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
664     int i;
665 
666     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
667     if (drc) {
668         drc_index = spapr_drc_index(drc);
669         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
670     }
671 
672     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
673     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
674 
675     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
676     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
677                            env->dcache_line_size)));
678     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
679                            env->dcache_line_size)));
680     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
681                            env->icache_line_size)));
682     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
683                            env->icache_line_size)));
684 
685     if (pcc->l1_dcache_size) {
686         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
687                                pcc->l1_dcache_size)));
688     } else {
689         warn_report("Unknown L1 dcache size for cpu");
690     }
691     if (pcc->l1_icache_size) {
692         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
693                                pcc->l1_icache_size)));
694     } else {
695         warn_report("Unknown L1 icache size for cpu");
696     }
697 
698     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
699     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
700     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
701     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
702     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
703     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
704 
705     if (env->spr_cb[SPR_PURR].oea_read) {
706         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
707     }
708     if (env->spr_cb[SPR_SPURR].oea_read) {
709         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
710     }
711 
712     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
713         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
714                           segs, sizeof(segs))));
715     }
716 
717     /* Advertise VSX (vector extensions) if available
718      *   1               == VMX / Altivec available
719      *   2               == VSX available
720      *
721      * Only CPUs for which we create core types in spapr_cpu_core.c
722      * are possible, and all of those have VMX */
723     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
724         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
725     } else {
726         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
727     }
728 
729     /* Advertise DFP (Decimal Floating Point) if available
730      *   0 / no property == no DFP
731      *   1               == DFP available */
732     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
733         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
734     }
735 
736     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
737                                                       sizeof(page_sizes_prop));
738     if (page_sizes_prop_size) {
739         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
740                           page_sizes_prop, page_sizes_prop_size)));
741     }
742 
743     spapr_dt_pa_features(spapr, cpu, fdt, offset);
744 
745     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
746                            cs->cpu_index / vcpus_per_socket)));
747 
748     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
749                       pft_size_prop, sizeof(pft_size_prop))));
750 
751     if (ms->numa_state->num_nodes > 1) {
752         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
753     }
754 
755     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
756 
757     if (pcc->radix_page_info) {
758         for (i = 0; i < pcc->radix_page_info->count; i++) {
759             radix_AP_encodings[i] =
760                 cpu_to_be32(pcc->radix_page_info->entries[i]);
761         }
762         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
763                           radix_AP_encodings,
764                           pcc->radix_page_info->count *
765                           sizeof(radix_AP_encodings[0]))));
766     }
767 
768     /*
769      * We set this property to let the guest know that it can use the large
770      * decrementer and its width in bits.
771      */
772     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
773         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
774                               pcc->lrg_decr_bits)));
775 }
776 
777 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
778 {
779     CPUState **rev;
780     CPUState *cs;
781     int n_cpus;
782     int cpus_offset;
783     char *nodename;
784     int i;
785 
786     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
787     _FDT(cpus_offset);
788     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
789     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
790 
791     /*
792      * We walk the CPUs in reverse order to ensure that CPU DT nodes
793      * created by fdt_add_subnode() end up in the right order in FDT
794      * for the guest kernel the enumerate the CPUs correctly.
795      *
796      * The CPU list cannot be traversed in reverse order, so we need
797      * to do extra work.
798      */
799     n_cpus = 0;
800     rev = NULL;
801     CPU_FOREACH(cs) {
802         rev = g_renew(CPUState *, rev, n_cpus + 1);
803         rev[n_cpus++] = cs;
804     }
805 
806     for (i = n_cpus - 1; i >= 0; i--) {
807         CPUState *cs = rev[i];
808         PowerPCCPU *cpu = POWERPC_CPU(cs);
809         int index = spapr_get_vcpu_id(cpu);
810         DeviceClass *dc = DEVICE_GET_CLASS(cs);
811         int offset;
812 
813         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
814             continue;
815         }
816 
817         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
818         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
819         g_free(nodename);
820         _FDT(offset);
821         spapr_dt_cpu(cs, fdt, offset, spapr);
822     }
823 
824     g_free(rev);
825 }
826 
827 static int spapr_dt_rng(void *fdt)
828 {
829     int node;
830     int ret;
831 
832     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
833     if (node <= 0) {
834         return -1;
835     }
836     ret = fdt_setprop_string(fdt, node, "device_type",
837                              "ibm,platform-facilities");
838     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
839     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
840 
841     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
842     if (node <= 0) {
843         return -1;
844     }
845     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
846 
847     return ret ? -1 : 0;
848 }
849 
850 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
851 {
852     MachineState *ms = MACHINE(spapr);
853     int rtas;
854     GString *hypertas = g_string_sized_new(256);
855     GString *qemu_hypertas = g_string_sized_new(256);
856     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
857         memory_region_size(&MACHINE(spapr)->device_memory->mr);
858     uint32_t lrdr_capacity[] = {
859         cpu_to_be32(max_device_addr >> 32),
860         cpu_to_be32(max_device_addr & 0xffffffff),
861         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
862         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
863         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
864     };
865 
866     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
867 
868     /* hypertas */
869     add_str(hypertas, "hcall-pft");
870     add_str(hypertas, "hcall-term");
871     add_str(hypertas, "hcall-dabr");
872     add_str(hypertas, "hcall-interrupt");
873     add_str(hypertas, "hcall-tce");
874     add_str(hypertas, "hcall-vio");
875     add_str(hypertas, "hcall-splpar");
876     add_str(hypertas, "hcall-join");
877     add_str(hypertas, "hcall-bulk");
878     add_str(hypertas, "hcall-set-mode");
879     add_str(hypertas, "hcall-sprg0");
880     add_str(hypertas, "hcall-copy");
881     add_str(hypertas, "hcall-debug");
882     add_str(hypertas, "hcall-vphn");
883     add_str(qemu_hypertas, "hcall-memop1");
884 
885     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
886         add_str(hypertas, "hcall-multi-tce");
887     }
888 
889     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
890         add_str(hypertas, "hcall-hpt-resize");
891     }
892 
893     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
894                      hypertas->str, hypertas->len));
895     g_string_free(hypertas, TRUE);
896     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
897                      qemu_hypertas->str, qemu_hypertas->len));
898     g_string_free(qemu_hypertas, TRUE);
899 
900     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
901 
902     /*
903      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
904      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
905      *
906      * The system reset requirements are driven by existing Linux and PowerVM
907      * implementation which (contrary to PAPR) saves r3 in the error log
908      * structure like machine check, so Linux expects to find the saved r3
909      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
910      * does not look at the error value).
911      *
912      * System reset interrupts are not subject to interlock like machine
913      * check, so this memory area could be corrupted if the sreset is
914      * interrupted by a machine check (or vice versa) if it was shared. To
915      * prevent this, system reset uses per-CPU areas for the sreset save
916      * area. A system reset that interrupts a system reset handler could
917      * still overwrite this area, but Linux doesn't try to recover in that
918      * case anyway.
919      *
920      * The extra 8 bytes is required because Linux's FWNMI error log check
921      * is off-by-one.
922      */
923     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
924 			  ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
925     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
926                           RTAS_ERROR_LOG_MAX));
927     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
928                           RTAS_EVENT_SCAN_RATE));
929 
930     g_assert(msi_nonbroken);
931     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
932 
933     /*
934      * According to PAPR, rtas ibm,os-term does not guarantee a return
935      * back to the guest cpu.
936      *
937      * While an additional ibm,extended-os-term property indicates
938      * that rtas call return will always occur. Set this property.
939      */
940     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
941 
942     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
943                      lrdr_capacity, sizeof(lrdr_capacity)));
944 
945     spapr_dt_rtas_tokens(fdt, rtas);
946 }
947 
948 /*
949  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
950  * and the XIVE features that the guest may request and thus the valid
951  * values for bytes 23..26 of option vector 5:
952  */
953 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
954                                           int chosen)
955 {
956     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
957 
958     char val[2 * 4] = {
959         23, 0x00, /* XICS / XIVE mode */
960         24, 0x00, /* Hash/Radix, filled in below. */
961         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
962         26, 0x40, /* Radix options: GTSE == yes. */
963     };
964 
965     if (spapr->irq->xics && spapr->irq->xive) {
966         val[1] = SPAPR_OV5_XIVE_BOTH;
967     } else if (spapr->irq->xive) {
968         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
969     } else {
970         assert(spapr->irq->xics);
971         val[1] = SPAPR_OV5_XIVE_LEGACY;
972     }
973 
974     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
975                           first_ppc_cpu->compat_pvr)) {
976         /*
977          * If we're in a pre POWER9 compat mode then the guest should
978          * do hash and use the legacy interrupt mode
979          */
980         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
981         val[3] = 0x00; /* Hash */
982     } else if (kvm_enabled()) {
983         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
984             val[3] = 0x80; /* OV5_MMU_BOTH */
985         } else if (kvmppc_has_cap_mmu_radix()) {
986             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
987         } else {
988             val[3] = 0x00; /* Hash */
989         }
990     } else {
991         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
992         val[3] = 0xC0;
993     }
994     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
995                      val, sizeof(val)));
996 }
997 
998 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
999 {
1000     MachineState *machine = MACHINE(spapr);
1001     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1002     int chosen;
1003 
1004     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1005 
1006     if (reset) {
1007         const char *boot_device = machine->boot_order;
1008         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1009         size_t cb = 0;
1010         char *bootlist = get_boot_devices_list(&cb);
1011 
1012         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1013             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1014                                     machine->kernel_cmdline));
1015         }
1016 
1017         if (spapr->initrd_size) {
1018             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1019                                   spapr->initrd_base));
1020             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1021                                   spapr->initrd_base + spapr->initrd_size));
1022         }
1023 
1024         if (spapr->kernel_size) {
1025             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1026                                   cpu_to_be64(spapr->kernel_size) };
1027 
1028             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1029                          &kprop, sizeof(kprop)));
1030             if (spapr->kernel_le) {
1031                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1032             }
1033         }
1034         if (boot_menu) {
1035             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1036         }
1037         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1038         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1039         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1040 
1041         if (cb && bootlist) {
1042             int i;
1043 
1044             for (i = 0; i < cb; i++) {
1045                 if (bootlist[i] == '\n') {
1046                     bootlist[i] = ' ';
1047                 }
1048             }
1049             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1050         }
1051 
1052         if (boot_device && strlen(boot_device)) {
1053             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1054         }
1055 
1056         if (!spapr->has_graphics && stdout_path) {
1057             /*
1058              * "linux,stdout-path" and "stdout" properties are
1059              * deprecated by linux kernel. New platforms should only
1060              * use the "stdout-path" property. Set the new property
1061              * and continue using older property to remain compatible
1062              * with the existing firmware.
1063              */
1064             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1065             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1066         }
1067 
1068         /*
1069          * We can deal with BAR reallocation just fine, advertise it
1070          * to the guest
1071          */
1072         if (smc->linux_pci_probe) {
1073             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1074         }
1075 
1076         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1077 
1078         g_free(stdout_path);
1079         g_free(bootlist);
1080     }
1081 
1082     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1083 }
1084 
1085 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1086 {
1087     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1088      * KVM to work under pHyp with some guest co-operation */
1089     int hypervisor;
1090     uint8_t hypercall[16];
1091 
1092     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1093     /* indicate KVM hypercall interface */
1094     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1095     if (kvmppc_has_cap_fixup_hcalls()) {
1096         /*
1097          * Older KVM versions with older guest kernels were broken
1098          * with the magic page, don't allow the guest to map it.
1099          */
1100         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1101                                   sizeof(hypercall))) {
1102             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1103                              hypercall, sizeof(hypercall)));
1104         }
1105     }
1106 }
1107 
1108 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1109 {
1110     MachineState *machine = MACHINE(spapr);
1111     MachineClass *mc = MACHINE_GET_CLASS(machine);
1112     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1113     int ret;
1114     void *fdt;
1115     SpaprPhbState *phb;
1116     char *buf;
1117 
1118     fdt = g_malloc0(space);
1119     _FDT((fdt_create_empty_tree(fdt, space)));
1120 
1121     /* Root node */
1122     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1123     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1124     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1125 
1126     /* Guest UUID & Name*/
1127     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1128     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1129     if (qemu_uuid_set) {
1130         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1131     }
1132     g_free(buf);
1133 
1134     if (qemu_get_vm_name()) {
1135         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1136                                 qemu_get_vm_name()));
1137     }
1138 
1139     /* Host Model & Serial Number */
1140     if (spapr->host_model) {
1141         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1142     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1143         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1144         g_free(buf);
1145     }
1146 
1147     if (spapr->host_serial) {
1148         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1149     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1150         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1151         g_free(buf);
1152     }
1153 
1154     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1155     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1156 
1157     /* /interrupt controller */
1158     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1159 
1160     ret = spapr_dt_memory(spapr, fdt);
1161     if (ret < 0) {
1162         error_report("couldn't setup memory nodes in fdt");
1163         exit(1);
1164     }
1165 
1166     /* /vdevice */
1167     spapr_dt_vdevice(spapr->vio_bus, fdt);
1168 
1169     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1170         ret = spapr_dt_rng(fdt);
1171         if (ret < 0) {
1172             error_report("could not set up rng device in the fdt");
1173             exit(1);
1174         }
1175     }
1176 
1177     QLIST_FOREACH(phb, &spapr->phbs, list) {
1178         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1179         if (ret < 0) {
1180             error_report("couldn't setup PCI devices in fdt");
1181             exit(1);
1182         }
1183     }
1184 
1185     spapr_dt_cpus(fdt, spapr);
1186 
1187     if (smc->dr_lmb_enabled) {
1188         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1189     }
1190 
1191     if (mc->has_hotpluggable_cpus) {
1192         int offset = fdt_path_offset(fdt, "/cpus");
1193         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1194         if (ret < 0) {
1195             error_report("Couldn't set up CPU DR device tree properties");
1196             exit(1);
1197         }
1198     }
1199 
1200     /* /event-sources */
1201     spapr_dt_events(spapr, fdt);
1202 
1203     /* /rtas */
1204     spapr_dt_rtas(spapr, fdt);
1205 
1206     /* /chosen */
1207     spapr_dt_chosen(spapr, fdt, reset);
1208 
1209     /* /hypervisor */
1210     if (kvm_enabled()) {
1211         spapr_dt_hypervisor(spapr, fdt);
1212     }
1213 
1214     /* Build memory reserve map */
1215     if (reset) {
1216         if (spapr->kernel_size) {
1217             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1218                                   spapr->kernel_size)));
1219         }
1220         if (spapr->initrd_size) {
1221             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1222                                   spapr->initrd_size)));
1223         }
1224     }
1225 
1226     if (smc->dr_phb_enabled) {
1227         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1228         if (ret < 0) {
1229             error_report("Couldn't set up PHB DR device tree properties");
1230             exit(1);
1231         }
1232     }
1233 
1234     /* NVDIMM devices */
1235     if (mc->nvdimm_supported) {
1236         spapr_dt_persistent_memory(spapr, fdt);
1237     }
1238 
1239     return fdt;
1240 }
1241 
1242 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1243 {
1244     SpaprMachineState *spapr = opaque;
1245 
1246     return (addr & 0x0fffffff) + spapr->kernel_addr;
1247 }
1248 
1249 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1250                                     PowerPCCPU *cpu)
1251 {
1252     CPUPPCState *env = &cpu->env;
1253 
1254     /* The TCG path should also be holding the BQL at this point */
1255     g_assert(qemu_mutex_iothread_locked());
1256 
1257     if (msr_pr) {
1258         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1259         env->gpr[3] = H_PRIVILEGE;
1260     } else {
1261         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1262     }
1263 }
1264 
1265 struct LPCRSyncState {
1266     target_ulong value;
1267     target_ulong mask;
1268 };
1269 
1270 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1271 {
1272     struct LPCRSyncState *s = arg.host_ptr;
1273     PowerPCCPU *cpu = POWERPC_CPU(cs);
1274     CPUPPCState *env = &cpu->env;
1275     target_ulong lpcr;
1276 
1277     cpu_synchronize_state(cs);
1278     lpcr = env->spr[SPR_LPCR];
1279     lpcr &= ~s->mask;
1280     lpcr |= s->value;
1281     ppc_store_lpcr(cpu, lpcr);
1282 }
1283 
1284 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1285 {
1286     CPUState *cs;
1287     struct LPCRSyncState s = {
1288         .value = value,
1289         .mask = mask
1290     };
1291     CPU_FOREACH(cs) {
1292         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1293     }
1294 }
1295 
1296 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1297 {
1298     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1299 
1300     /* Copy PATE1:GR into PATE0:HR */
1301     entry->dw0 = spapr->patb_entry & PATE0_HR;
1302     entry->dw1 = spapr->patb_entry;
1303 }
1304 
1305 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1306 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1307 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1308 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1309 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1310 
1311 /*
1312  * Get the fd to access the kernel htab, re-opening it if necessary
1313  */
1314 static int get_htab_fd(SpaprMachineState *spapr)
1315 {
1316     Error *local_err = NULL;
1317 
1318     if (spapr->htab_fd >= 0) {
1319         return spapr->htab_fd;
1320     }
1321 
1322     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1323     if (spapr->htab_fd < 0) {
1324         error_report_err(local_err);
1325     }
1326 
1327     return spapr->htab_fd;
1328 }
1329 
1330 void close_htab_fd(SpaprMachineState *spapr)
1331 {
1332     if (spapr->htab_fd >= 0) {
1333         close(spapr->htab_fd);
1334     }
1335     spapr->htab_fd = -1;
1336 }
1337 
1338 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1339 {
1340     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1341 
1342     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1343 }
1344 
1345 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1346 {
1347     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1348 
1349     assert(kvm_enabled());
1350 
1351     if (!spapr->htab) {
1352         return 0;
1353     }
1354 
1355     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1356 }
1357 
1358 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1359                                                 hwaddr ptex, int n)
1360 {
1361     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1362     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1363 
1364     if (!spapr->htab) {
1365         /*
1366          * HTAB is controlled by KVM. Fetch into temporary buffer
1367          */
1368         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1369         kvmppc_read_hptes(hptes, ptex, n);
1370         return hptes;
1371     }
1372 
1373     /*
1374      * HTAB is controlled by QEMU. Just point to the internally
1375      * accessible PTEG.
1376      */
1377     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1378 }
1379 
1380 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1381                               const ppc_hash_pte64_t *hptes,
1382                               hwaddr ptex, int n)
1383 {
1384     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1385 
1386     if (!spapr->htab) {
1387         g_free((void *)hptes);
1388     }
1389 
1390     /* Nothing to do for qemu managed HPT */
1391 }
1392 
1393 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1394                       uint64_t pte0, uint64_t pte1)
1395 {
1396     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1397     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1398 
1399     if (!spapr->htab) {
1400         kvmppc_write_hpte(ptex, pte0, pte1);
1401     } else {
1402         if (pte0 & HPTE64_V_VALID) {
1403             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1404             /*
1405              * When setting valid, we write PTE1 first. This ensures
1406              * proper synchronization with the reading code in
1407              * ppc_hash64_pteg_search()
1408              */
1409             smp_wmb();
1410             stq_p(spapr->htab + offset, pte0);
1411         } else {
1412             stq_p(spapr->htab + offset, pte0);
1413             /*
1414              * When clearing it we set PTE0 first. This ensures proper
1415              * synchronization with the reading code in
1416              * ppc_hash64_pteg_search()
1417              */
1418             smp_wmb();
1419             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1420         }
1421     }
1422 }
1423 
1424 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1425                              uint64_t pte1)
1426 {
1427     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1428     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1429 
1430     if (!spapr->htab) {
1431         /* There should always be a hash table when this is called */
1432         error_report("spapr_hpte_set_c called with no hash table !");
1433         return;
1434     }
1435 
1436     /* The HW performs a non-atomic byte update */
1437     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1438 }
1439 
1440 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1441                              uint64_t pte1)
1442 {
1443     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1444     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1445 
1446     if (!spapr->htab) {
1447         /* There should always be a hash table when this is called */
1448         error_report("spapr_hpte_set_r called with no hash table !");
1449         return;
1450     }
1451 
1452     /* The HW performs a non-atomic byte update */
1453     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1454 }
1455 
1456 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1457 {
1458     int shift;
1459 
1460     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1461      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1462      * that's much more than is needed for Linux guests */
1463     shift = ctz64(pow2ceil(ramsize)) - 7;
1464     shift = MAX(shift, 18); /* Minimum architected size */
1465     shift = MIN(shift, 46); /* Maximum architected size */
1466     return shift;
1467 }
1468 
1469 void spapr_free_hpt(SpaprMachineState *spapr)
1470 {
1471     g_free(spapr->htab);
1472     spapr->htab = NULL;
1473     spapr->htab_shift = 0;
1474     close_htab_fd(spapr);
1475 }
1476 
1477 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1478                           Error **errp)
1479 {
1480     long rc;
1481 
1482     /* Clean up any HPT info from a previous boot */
1483     spapr_free_hpt(spapr);
1484 
1485     rc = kvmppc_reset_htab(shift);
1486     if (rc < 0) {
1487         /* kernel-side HPT needed, but couldn't allocate one */
1488         error_setg_errno(errp, errno,
1489                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1490                          shift);
1491         /* This is almost certainly fatal, but if the caller really
1492          * wants to carry on with shift == 0, it's welcome to try */
1493     } else if (rc > 0) {
1494         /* kernel-side HPT allocated */
1495         if (rc != shift) {
1496             error_setg(errp,
1497                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1498                        shift, rc);
1499         }
1500 
1501         spapr->htab_shift = shift;
1502         spapr->htab = NULL;
1503     } else {
1504         /* kernel-side HPT not needed, allocate in userspace instead */
1505         size_t size = 1ULL << shift;
1506         int i;
1507 
1508         spapr->htab = qemu_memalign(size, size);
1509         if (!spapr->htab) {
1510             error_setg_errno(errp, errno,
1511                              "Could not allocate HPT of order %d", shift);
1512             return;
1513         }
1514 
1515         memset(spapr->htab, 0, size);
1516         spapr->htab_shift = shift;
1517 
1518         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1519             DIRTY_HPTE(HPTE(spapr->htab, i));
1520         }
1521     }
1522     /* We're setting up a hash table, so that means we're not radix */
1523     spapr->patb_entry = 0;
1524     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1525 }
1526 
1527 void spapr_setup_hpt(SpaprMachineState *spapr)
1528 {
1529     int hpt_shift;
1530 
1531     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1532         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1533     } else {
1534         uint64_t current_ram_size;
1535 
1536         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1537         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1538     }
1539     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1540 
1541     if (kvm_enabled()) {
1542         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1543 
1544         /* Check our RMA fits in the possible VRMA */
1545         if (vrma_limit < spapr->rma_size) {
1546             error_report("Unable to create %" HWADDR_PRIu
1547                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1548                          spapr->rma_size / MiB, vrma_limit / MiB);
1549             exit(EXIT_FAILURE);
1550         }
1551     }
1552 }
1553 
1554 static int spapr_reset_drcs(Object *child, void *opaque)
1555 {
1556     SpaprDrc *drc =
1557         (SpaprDrc *) object_dynamic_cast(child,
1558                                                  TYPE_SPAPR_DR_CONNECTOR);
1559 
1560     if (drc) {
1561         spapr_drc_reset(drc);
1562     }
1563 
1564     return 0;
1565 }
1566 
1567 static void spapr_machine_reset(MachineState *machine)
1568 {
1569     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1570     PowerPCCPU *first_ppc_cpu;
1571     hwaddr fdt_addr;
1572     void *fdt;
1573     int rc;
1574 
1575     kvmppc_svm_off(&error_fatal);
1576     spapr_caps_apply(spapr);
1577 
1578     first_ppc_cpu = POWERPC_CPU(first_cpu);
1579     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1580         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1581                               spapr->max_compat_pvr)) {
1582         /*
1583          * If using KVM with radix mode available, VCPUs can be started
1584          * without a HPT because KVM will start them in radix mode.
1585          * Set the GR bit in PATE so that we know there is no HPT.
1586          */
1587         spapr->patb_entry = PATE1_GR;
1588         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1589     } else {
1590         spapr_setup_hpt(spapr);
1591     }
1592 
1593     qemu_devices_reset();
1594 
1595     spapr_ovec_cleanup(spapr->ov5_cas);
1596     spapr->ov5_cas = spapr_ovec_new();
1597 
1598     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1599 
1600     /*
1601      * This is fixing some of the default configuration of the XIVE
1602      * devices. To be called after the reset of the machine devices.
1603      */
1604     spapr_irq_reset(spapr, &error_fatal);
1605 
1606     /*
1607      * There is no CAS under qtest. Simulate one to please the code that
1608      * depends on spapr->ov5_cas. This is especially needed to test device
1609      * unplug, so we do that before resetting the DRCs.
1610      */
1611     if (qtest_enabled()) {
1612         spapr_ovec_cleanup(spapr->ov5_cas);
1613         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1614     }
1615 
1616     /* DRC reset may cause a device to be unplugged. This will cause troubles
1617      * if this device is used by another device (eg, a running vhost backend
1618      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1619      * situations, we reset DRCs after all devices have been reset.
1620      */
1621     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1622 
1623     spapr_clear_pending_events(spapr);
1624 
1625     /*
1626      * We place the device tree and RTAS just below either the top of the RMA,
1627      * or just below 2GB, whichever is lower, so that it can be
1628      * processed with 32-bit real mode code if necessary
1629      */
1630     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1631 
1632     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1633 
1634     rc = fdt_pack(fdt);
1635 
1636     /* Should only fail if we've built a corrupted tree */
1637     assert(rc == 0);
1638 
1639     /* Load the fdt */
1640     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1641     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1642     g_free(spapr->fdt_blob);
1643     spapr->fdt_size = fdt_totalsize(fdt);
1644     spapr->fdt_initial_size = spapr->fdt_size;
1645     spapr->fdt_blob = fdt;
1646 
1647     /* Set up the entry state */
1648     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1649     first_ppc_cpu->env.gpr[5] = 0;
1650 
1651     spapr->fwnmi_system_reset_addr = -1;
1652     spapr->fwnmi_machine_check_addr = -1;
1653     spapr->fwnmi_machine_check_interlock = -1;
1654 
1655     /* Signal all vCPUs waiting on this condition */
1656     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1657 
1658     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1659 }
1660 
1661 static void spapr_create_nvram(SpaprMachineState *spapr)
1662 {
1663     DeviceState *dev = qdev_new("spapr-nvram");
1664     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1665 
1666     if (dinfo) {
1667         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1668                                 &error_fatal);
1669     }
1670 
1671     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1672 
1673     spapr->nvram = (struct SpaprNvram *)dev;
1674 }
1675 
1676 static void spapr_rtc_create(SpaprMachineState *spapr)
1677 {
1678     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1679                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1680                                        &error_fatal, NULL);
1681     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1682     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1683                               "date");
1684 }
1685 
1686 /* Returns whether we want to use VGA or not */
1687 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1688 {
1689     switch (vga_interface_type) {
1690     case VGA_NONE:
1691         return false;
1692     case VGA_DEVICE:
1693         return true;
1694     case VGA_STD:
1695     case VGA_VIRTIO:
1696     case VGA_CIRRUS:
1697         return pci_vga_init(pci_bus) != NULL;
1698     default:
1699         error_setg(errp,
1700                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1701         return false;
1702     }
1703 }
1704 
1705 static int spapr_pre_load(void *opaque)
1706 {
1707     int rc;
1708 
1709     rc = spapr_caps_pre_load(opaque);
1710     if (rc) {
1711         return rc;
1712     }
1713 
1714     return 0;
1715 }
1716 
1717 static int spapr_post_load(void *opaque, int version_id)
1718 {
1719     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1720     int err = 0;
1721 
1722     err = spapr_caps_post_migration(spapr);
1723     if (err) {
1724         return err;
1725     }
1726 
1727     /*
1728      * In earlier versions, there was no separate qdev for the PAPR
1729      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1730      * So when migrating from those versions, poke the incoming offset
1731      * value into the RTC device
1732      */
1733     if (version_id < 3) {
1734         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1735         if (err) {
1736             return err;
1737         }
1738     }
1739 
1740     if (kvm_enabled() && spapr->patb_entry) {
1741         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1742         bool radix = !!(spapr->patb_entry & PATE1_GR);
1743         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1744 
1745         /*
1746          * Update LPCR:HR and UPRT as they may not be set properly in
1747          * the stream
1748          */
1749         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1750                             LPCR_HR | LPCR_UPRT);
1751 
1752         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1753         if (err) {
1754             error_report("Process table config unsupported by the host");
1755             return -EINVAL;
1756         }
1757     }
1758 
1759     err = spapr_irq_post_load(spapr, version_id);
1760     if (err) {
1761         return err;
1762     }
1763 
1764     return err;
1765 }
1766 
1767 static int spapr_pre_save(void *opaque)
1768 {
1769     int rc;
1770 
1771     rc = spapr_caps_pre_save(opaque);
1772     if (rc) {
1773         return rc;
1774     }
1775 
1776     return 0;
1777 }
1778 
1779 static bool version_before_3(void *opaque, int version_id)
1780 {
1781     return version_id < 3;
1782 }
1783 
1784 static bool spapr_pending_events_needed(void *opaque)
1785 {
1786     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1787     return !QTAILQ_EMPTY(&spapr->pending_events);
1788 }
1789 
1790 static const VMStateDescription vmstate_spapr_event_entry = {
1791     .name = "spapr_event_log_entry",
1792     .version_id = 1,
1793     .minimum_version_id = 1,
1794     .fields = (VMStateField[]) {
1795         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1796         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1797         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1798                                      NULL, extended_length),
1799         VMSTATE_END_OF_LIST()
1800     },
1801 };
1802 
1803 static const VMStateDescription vmstate_spapr_pending_events = {
1804     .name = "spapr_pending_events",
1805     .version_id = 1,
1806     .minimum_version_id = 1,
1807     .needed = spapr_pending_events_needed,
1808     .fields = (VMStateField[]) {
1809         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1810                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1811         VMSTATE_END_OF_LIST()
1812     },
1813 };
1814 
1815 static bool spapr_ov5_cas_needed(void *opaque)
1816 {
1817     SpaprMachineState *spapr = opaque;
1818     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1819     bool cas_needed;
1820 
1821     /* Prior to the introduction of SpaprOptionVector, we had two option
1822      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1823      * Both of these options encode machine topology into the device-tree
1824      * in such a way that the now-booted OS should still be able to interact
1825      * appropriately with QEMU regardless of what options were actually
1826      * negotiatied on the source side.
1827      *
1828      * As such, we can avoid migrating the CAS-negotiated options if these
1829      * are the only options available on the current machine/platform.
1830      * Since these are the only options available for pseries-2.7 and
1831      * earlier, this allows us to maintain old->new/new->old migration
1832      * compatibility.
1833      *
1834      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1835      * via default pseries-2.8 machines and explicit command-line parameters.
1836      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1837      * of the actual CAS-negotiated values to continue working properly. For
1838      * example, availability of memory unplug depends on knowing whether
1839      * OV5_HP_EVT was negotiated via CAS.
1840      *
1841      * Thus, for any cases where the set of available CAS-negotiatable
1842      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1843      * include the CAS-negotiated options in the migration stream, unless
1844      * if they affect boot time behaviour only.
1845      */
1846     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1847     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1848     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1849 
1850     /* We need extra information if we have any bits outside the mask
1851      * defined above */
1852     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1853 
1854     spapr_ovec_cleanup(ov5_mask);
1855 
1856     return cas_needed;
1857 }
1858 
1859 static const VMStateDescription vmstate_spapr_ov5_cas = {
1860     .name = "spapr_option_vector_ov5_cas",
1861     .version_id = 1,
1862     .minimum_version_id = 1,
1863     .needed = spapr_ov5_cas_needed,
1864     .fields = (VMStateField[]) {
1865         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1866                                  vmstate_spapr_ovec, SpaprOptionVector),
1867         VMSTATE_END_OF_LIST()
1868     },
1869 };
1870 
1871 static bool spapr_patb_entry_needed(void *opaque)
1872 {
1873     SpaprMachineState *spapr = opaque;
1874 
1875     return !!spapr->patb_entry;
1876 }
1877 
1878 static const VMStateDescription vmstate_spapr_patb_entry = {
1879     .name = "spapr_patb_entry",
1880     .version_id = 1,
1881     .minimum_version_id = 1,
1882     .needed = spapr_patb_entry_needed,
1883     .fields = (VMStateField[]) {
1884         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1885         VMSTATE_END_OF_LIST()
1886     },
1887 };
1888 
1889 static bool spapr_irq_map_needed(void *opaque)
1890 {
1891     SpaprMachineState *spapr = opaque;
1892 
1893     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1894 }
1895 
1896 static const VMStateDescription vmstate_spapr_irq_map = {
1897     .name = "spapr_irq_map",
1898     .version_id = 1,
1899     .minimum_version_id = 1,
1900     .needed = spapr_irq_map_needed,
1901     .fields = (VMStateField[]) {
1902         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1903         VMSTATE_END_OF_LIST()
1904     },
1905 };
1906 
1907 static bool spapr_dtb_needed(void *opaque)
1908 {
1909     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1910 
1911     return smc->update_dt_enabled;
1912 }
1913 
1914 static int spapr_dtb_pre_load(void *opaque)
1915 {
1916     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1917 
1918     g_free(spapr->fdt_blob);
1919     spapr->fdt_blob = NULL;
1920     spapr->fdt_size = 0;
1921 
1922     return 0;
1923 }
1924 
1925 static const VMStateDescription vmstate_spapr_dtb = {
1926     .name = "spapr_dtb",
1927     .version_id = 1,
1928     .minimum_version_id = 1,
1929     .needed = spapr_dtb_needed,
1930     .pre_load = spapr_dtb_pre_load,
1931     .fields = (VMStateField[]) {
1932         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1933         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1934         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1935                                      fdt_size),
1936         VMSTATE_END_OF_LIST()
1937     },
1938 };
1939 
1940 static bool spapr_fwnmi_needed(void *opaque)
1941 {
1942     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1943 
1944     return spapr->fwnmi_machine_check_addr != -1;
1945 }
1946 
1947 static int spapr_fwnmi_pre_save(void *opaque)
1948 {
1949     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1950 
1951     /*
1952      * Check if machine check handling is in progress and print a
1953      * warning message.
1954      */
1955     if (spapr->fwnmi_machine_check_interlock != -1) {
1956         warn_report("A machine check is being handled during migration. The"
1957                 "handler may run and log hardware error on the destination");
1958     }
1959 
1960     return 0;
1961 }
1962 
1963 static const VMStateDescription vmstate_spapr_fwnmi = {
1964     .name = "spapr_fwnmi",
1965     .version_id = 1,
1966     .minimum_version_id = 1,
1967     .needed = spapr_fwnmi_needed,
1968     .pre_save = spapr_fwnmi_pre_save,
1969     .fields = (VMStateField[]) {
1970         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1971         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1972         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1973         VMSTATE_END_OF_LIST()
1974     },
1975 };
1976 
1977 static const VMStateDescription vmstate_spapr = {
1978     .name = "spapr",
1979     .version_id = 3,
1980     .minimum_version_id = 1,
1981     .pre_load = spapr_pre_load,
1982     .post_load = spapr_post_load,
1983     .pre_save = spapr_pre_save,
1984     .fields = (VMStateField[]) {
1985         /* used to be @next_irq */
1986         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1987 
1988         /* RTC offset */
1989         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1990 
1991         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1992         VMSTATE_END_OF_LIST()
1993     },
1994     .subsections = (const VMStateDescription*[]) {
1995         &vmstate_spapr_ov5_cas,
1996         &vmstate_spapr_patb_entry,
1997         &vmstate_spapr_pending_events,
1998         &vmstate_spapr_cap_htm,
1999         &vmstate_spapr_cap_vsx,
2000         &vmstate_spapr_cap_dfp,
2001         &vmstate_spapr_cap_cfpc,
2002         &vmstate_spapr_cap_sbbc,
2003         &vmstate_spapr_cap_ibs,
2004         &vmstate_spapr_cap_hpt_maxpagesize,
2005         &vmstate_spapr_irq_map,
2006         &vmstate_spapr_cap_nested_kvm_hv,
2007         &vmstate_spapr_dtb,
2008         &vmstate_spapr_cap_large_decr,
2009         &vmstate_spapr_cap_ccf_assist,
2010         &vmstate_spapr_cap_fwnmi,
2011         &vmstate_spapr_fwnmi,
2012         NULL
2013     }
2014 };
2015 
2016 static int htab_save_setup(QEMUFile *f, void *opaque)
2017 {
2018     SpaprMachineState *spapr = opaque;
2019 
2020     /* "Iteration" header */
2021     if (!spapr->htab_shift) {
2022         qemu_put_be32(f, -1);
2023     } else {
2024         qemu_put_be32(f, spapr->htab_shift);
2025     }
2026 
2027     if (spapr->htab) {
2028         spapr->htab_save_index = 0;
2029         spapr->htab_first_pass = true;
2030     } else {
2031         if (spapr->htab_shift) {
2032             assert(kvm_enabled());
2033         }
2034     }
2035 
2036 
2037     return 0;
2038 }
2039 
2040 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2041                             int chunkstart, int n_valid, int n_invalid)
2042 {
2043     qemu_put_be32(f, chunkstart);
2044     qemu_put_be16(f, n_valid);
2045     qemu_put_be16(f, n_invalid);
2046     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2047                     HASH_PTE_SIZE_64 * n_valid);
2048 }
2049 
2050 static void htab_save_end_marker(QEMUFile *f)
2051 {
2052     qemu_put_be32(f, 0);
2053     qemu_put_be16(f, 0);
2054     qemu_put_be16(f, 0);
2055 }
2056 
2057 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2058                                  int64_t max_ns)
2059 {
2060     bool has_timeout = max_ns != -1;
2061     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2062     int index = spapr->htab_save_index;
2063     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2064 
2065     assert(spapr->htab_first_pass);
2066 
2067     do {
2068         int chunkstart;
2069 
2070         /* Consume invalid HPTEs */
2071         while ((index < htabslots)
2072                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2073             CLEAN_HPTE(HPTE(spapr->htab, index));
2074             index++;
2075         }
2076 
2077         /* Consume valid HPTEs */
2078         chunkstart = index;
2079         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2080                && HPTE_VALID(HPTE(spapr->htab, index))) {
2081             CLEAN_HPTE(HPTE(spapr->htab, index));
2082             index++;
2083         }
2084 
2085         if (index > chunkstart) {
2086             int n_valid = index - chunkstart;
2087 
2088             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2089 
2090             if (has_timeout &&
2091                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2092                 break;
2093             }
2094         }
2095     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2096 
2097     if (index >= htabslots) {
2098         assert(index == htabslots);
2099         index = 0;
2100         spapr->htab_first_pass = false;
2101     }
2102     spapr->htab_save_index = index;
2103 }
2104 
2105 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2106                                 int64_t max_ns)
2107 {
2108     bool final = max_ns < 0;
2109     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2110     int examined = 0, sent = 0;
2111     int index = spapr->htab_save_index;
2112     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2113 
2114     assert(!spapr->htab_first_pass);
2115 
2116     do {
2117         int chunkstart, invalidstart;
2118 
2119         /* Consume non-dirty HPTEs */
2120         while ((index < htabslots)
2121                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2122             index++;
2123             examined++;
2124         }
2125 
2126         chunkstart = index;
2127         /* Consume valid dirty HPTEs */
2128         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2129                && HPTE_DIRTY(HPTE(spapr->htab, index))
2130                && HPTE_VALID(HPTE(spapr->htab, index))) {
2131             CLEAN_HPTE(HPTE(spapr->htab, index));
2132             index++;
2133             examined++;
2134         }
2135 
2136         invalidstart = index;
2137         /* Consume invalid dirty HPTEs */
2138         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2139                && HPTE_DIRTY(HPTE(spapr->htab, index))
2140                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2141             CLEAN_HPTE(HPTE(spapr->htab, index));
2142             index++;
2143             examined++;
2144         }
2145 
2146         if (index > chunkstart) {
2147             int n_valid = invalidstart - chunkstart;
2148             int n_invalid = index - invalidstart;
2149 
2150             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2151             sent += index - chunkstart;
2152 
2153             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2154                 break;
2155             }
2156         }
2157 
2158         if (examined >= htabslots) {
2159             break;
2160         }
2161 
2162         if (index >= htabslots) {
2163             assert(index == htabslots);
2164             index = 0;
2165         }
2166     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2167 
2168     if (index >= htabslots) {
2169         assert(index == htabslots);
2170         index = 0;
2171     }
2172 
2173     spapr->htab_save_index = index;
2174 
2175     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2176 }
2177 
2178 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2179 #define MAX_KVM_BUF_SIZE    2048
2180 
2181 static int htab_save_iterate(QEMUFile *f, void *opaque)
2182 {
2183     SpaprMachineState *spapr = opaque;
2184     int fd;
2185     int rc = 0;
2186 
2187     /* Iteration header */
2188     if (!spapr->htab_shift) {
2189         qemu_put_be32(f, -1);
2190         return 1;
2191     } else {
2192         qemu_put_be32(f, 0);
2193     }
2194 
2195     if (!spapr->htab) {
2196         assert(kvm_enabled());
2197 
2198         fd = get_htab_fd(spapr);
2199         if (fd < 0) {
2200             return fd;
2201         }
2202 
2203         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2204         if (rc < 0) {
2205             return rc;
2206         }
2207     } else  if (spapr->htab_first_pass) {
2208         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2209     } else {
2210         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2211     }
2212 
2213     htab_save_end_marker(f);
2214 
2215     return rc;
2216 }
2217 
2218 static int htab_save_complete(QEMUFile *f, void *opaque)
2219 {
2220     SpaprMachineState *spapr = opaque;
2221     int fd;
2222 
2223     /* Iteration header */
2224     if (!spapr->htab_shift) {
2225         qemu_put_be32(f, -1);
2226         return 0;
2227     } else {
2228         qemu_put_be32(f, 0);
2229     }
2230 
2231     if (!spapr->htab) {
2232         int rc;
2233 
2234         assert(kvm_enabled());
2235 
2236         fd = get_htab_fd(spapr);
2237         if (fd < 0) {
2238             return fd;
2239         }
2240 
2241         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2242         if (rc < 0) {
2243             return rc;
2244         }
2245     } else {
2246         if (spapr->htab_first_pass) {
2247             htab_save_first_pass(f, spapr, -1);
2248         }
2249         htab_save_later_pass(f, spapr, -1);
2250     }
2251 
2252     /* End marker */
2253     htab_save_end_marker(f);
2254 
2255     return 0;
2256 }
2257 
2258 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2259 {
2260     SpaprMachineState *spapr = opaque;
2261     uint32_t section_hdr;
2262     int fd = -1;
2263     Error *local_err = NULL;
2264 
2265     if (version_id < 1 || version_id > 1) {
2266         error_report("htab_load() bad version");
2267         return -EINVAL;
2268     }
2269 
2270     section_hdr = qemu_get_be32(f);
2271 
2272     if (section_hdr == -1) {
2273         spapr_free_hpt(spapr);
2274         return 0;
2275     }
2276 
2277     if (section_hdr) {
2278         /* First section gives the htab size */
2279         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2280         if (local_err) {
2281             error_report_err(local_err);
2282             return -EINVAL;
2283         }
2284         return 0;
2285     }
2286 
2287     if (!spapr->htab) {
2288         assert(kvm_enabled());
2289 
2290         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2291         if (fd < 0) {
2292             error_report_err(local_err);
2293             return fd;
2294         }
2295     }
2296 
2297     while (true) {
2298         uint32_t index;
2299         uint16_t n_valid, n_invalid;
2300 
2301         index = qemu_get_be32(f);
2302         n_valid = qemu_get_be16(f);
2303         n_invalid = qemu_get_be16(f);
2304 
2305         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2306             /* End of Stream */
2307             break;
2308         }
2309 
2310         if ((index + n_valid + n_invalid) >
2311             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2312             /* Bad index in stream */
2313             error_report(
2314                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2315                 index, n_valid, n_invalid, spapr->htab_shift);
2316             return -EINVAL;
2317         }
2318 
2319         if (spapr->htab) {
2320             if (n_valid) {
2321                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2322                                 HASH_PTE_SIZE_64 * n_valid);
2323             }
2324             if (n_invalid) {
2325                 memset(HPTE(spapr->htab, index + n_valid), 0,
2326                        HASH_PTE_SIZE_64 * n_invalid);
2327             }
2328         } else {
2329             int rc;
2330 
2331             assert(fd >= 0);
2332 
2333             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2334             if (rc < 0) {
2335                 return rc;
2336             }
2337         }
2338     }
2339 
2340     if (!spapr->htab) {
2341         assert(fd >= 0);
2342         close(fd);
2343     }
2344 
2345     return 0;
2346 }
2347 
2348 static void htab_save_cleanup(void *opaque)
2349 {
2350     SpaprMachineState *spapr = opaque;
2351 
2352     close_htab_fd(spapr);
2353 }
2354 
2355 static SaveVMHandlers savevm_htab_handlers = {
2356     .save_setup = htab_save_setup,
2357     .save_live_iterate = htab_save_iterate,
2358     .save_live_complete_precopy = htab_save_complete,
2359     .save_cleanup = htab_save_cleanup,
2360     .load_state = htab_load,
2361 };
2362 
2363 static void spapr_boot_set(void *opaque, const char *boot_device,
2364                            Error **errp)
2365 {
2366     MachineState *machine = MACHINE(opaque);
2367     machine->boot_order = g_strdup(boot_device);
2368 }
2369 
2370 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2371 {
2372     MachineState *machine = MACHINE(spapr);
2373     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2374     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2375     int i;
2376 
2377     for (i = 0; i < nr_lmbs; i++) {
2378         uint64_t addr;
2379 
2380         addr = i * lmb_size + machine->device_memory->base;
2381         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2382                                addr / lmb_size);
2383     }
2384 }
2385 
2386 /*
2387  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2388  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2389  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2390  */
2391 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2392 {
2393     int i;
2394 
2395     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2396         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2397                    " is not aligned to %" PRIu64 " MiB",
2398                    machine->ram_size,
2399                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2400         return;
2401     }
2402 
2403     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2404         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2405                    " is not aligned to %" PRIu64 " MiB",
2406                    machine->ram_size,
2407                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2408         return;
2409     }
2410 
2411     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2412         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2413             error_setg(errp,
2414                        "Node %d memory size 0x%" PRIx64
2415                        " is not aligned to %" PRIu64 " MiB",
2416                        i, machine->numa_state->nodes[i].node_mem,
2417                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2418             return;
2419         }
2420     }
2421 }
2422 
2423 /* find cpu slot in machine->possible_cpus by core_id */
2424 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2425 {
2426     int index = id / ms->smp.threads;
2427 
2428     if (index >= ms->possible_cpus->len) {
2429         return NULL;
2430     }
2431     if (idx) {
2432         *idx = index;
2433     }
2434     return &ms->possible_cpus->cpus[index];
2435 }
2436 
2437 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2438 {
2439     MachineState *ms = MACHINE(spapr);
2440     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2441     Error *local_err = NULL;
2442     bool vsmt_user = !!spapr->vsmt;
2443     int kvm_smt = kvmppc_smt_threads();
2444     int ret;
2445     unsigned int smp_threads = ms->smp.threads;
2446 
2447     if (!kvm_enabled() && (smp_threads > 1)) {
2448         error_setg(errp, "TCG cannot support more than 1 thread/core "
2449                    "on a pseries machine");
2450         return;
2451     }
2452     if (!is_power_of_2(smp_threads)) {
2453         error_setg(errp, "Cannot support %d threads/core on a pseries "
2454                    "machine because it must be a power of 2", smp_threads);
2455         return;
2456     }
2457 
2458     /* Detemine the VSMT mode to use: */
2459     if (vsmt_user) {
2460         if (spapr->vsmt < smp_threads) {
2461             error_setg(errp, "Cannot support VSMT mode %d"
2462                        " because it must be >= threads/core (%d)",
2463                        spapr->vsmt, smp_threads);
2464             return;
2465         }
2466         /* In this case, spapr->vsmt has been set by the command line */
2467     } else if (!smc->smp_threads_vsmt) {
2468         /*
2469          * Default VSMT value is tricky, because we need it to be as
2470          * consistent as possible (for migration), but this requires
2471          * changing it for at least some existing cases.  We pick 8 as
2472          * the value that we'd get with KVM on POWER8, the
2473          * overwhelmingly common case in production systems.
2474          */
2475         spapr->vsmt = MAX(8, smp_threads);
2476     } else {
2477         spapr->vsmt = smp_threads;
2478     }
2479 
2480     /* KVM: If necessary, set the SMT mode: */
2481     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2482         ret = kvmppc_set_smt_threads(spapr->vsmt);
2483         if (ret) {
2484             /* Looks like KVM isn't able to change VSMT mode */
2485             error_setg(&local_err,
2486                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2487                        spapr->vsmt, ret);
2488             /* We can live with that if the default one is big enough
2489              * for the number of threads, and a submultiple of the one
2490              * we want.  In this case we'll waste some vcpu ids, but
2491              * behaviour will be correct */
2492             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2493                 warn_report_err(local_err);
2494             } else {
2495                 if (!vsmt_user) {
2496                     error_append_hint(&local_err,
2497                                       "On PPC, a VM with %d threads/core"
2498                                       " on a host with %d threads/core"
2499                                       " requires the use of VSMT mode %d.\n",
2500                                       smp_threads, kvm_smt, spapr->vsmt);
2501                 }
2502                 kvmppc_error_append_smt_possible_hint(&local_err);
2503                 error_propagate(errp, local_err);
2504             }
2505         }
2506     }
2507     /* else TCG: nothing to do currently */
2508 }
2509 
2510 static void spapr_init_cpus(SpaprMachineState *spapr)
2511 {
2512     MachineState *machine = MACHINE(spapr);
2513     MachineClass *mc = MACHINE_GET_CLASS(machine);
2514     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2515     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2516     const CPUArchIdList *possible_cpus;
2517     unsigned int smp_cpus = machine->smp.cpus;
2518     unsigned int smp_threads = machine->smp.threads;
2519     unsigned int max_cpus = machine->smp.max_cpus;
2520     int boot_cores_nr = smp_cpus / smp_threads;
2521     int i;
2522 
2523     possible_cpus = mc->possible_cpu_arch_ids(machine);
2524     if (mc->has_hotpluggable_cpus) {
2525         if (smp_cpus % smp_threads) {
2526             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2527                          smp_cpus, smp_threads);
2528             exit(1);
2529         }
2530         if (max_cpus % smp_threads) {
2531             error_report("max_cpus (%u) must be multiple of threads (%u)",
2532                          max_cpus, smp_threads);
2533             exit(1);
2534         }
2535     } else {
2536         if (max_cpus != smp_cpus) {
2537             error_report("This machine version does not support CPU hotplug");
2538             exit(1);
2539         }
2540         boot_cores_nr = possible_cpus->len;
2541     }
2542 
2543     if (smc->pre_2_10_has_unused_icps) {
2544         int i;
2545 
2546         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2547             /* Dummy entries get deregistered when real ICPState objects
2548              * are registered during CPU core hotplug.
2549              */
2550             pre_2_10_vmstate_register_dummy_icp(i);
2551         }
2552     }
2553 
2554     for (i = 0; i < possible_cpus->len; i++) {
2555         int core_id = i * smp_threads;
2556 
2557         if (mc->has_hotpluggable_cpus) {
2558             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2559                                    spapr_vcpu_id(spapr, core_id));
2560         }
2561 
2562         if (i < boot_cores_nr) {
2563             Object *core  = object_new(type);
2564             int nr_threads = smp_threads;
2565 
2566             /* Handle the partially filled core for older machine types */
2567             if ((i + 1) * smp_threads >= smp_cpus) {
2568                 nr_threads = smp_cpus - i * smp_threads;
2569             }
2570 
2571             object_property_set_int(core, "nr-threads", nr_threads,
2572                                     &error_fatal);
2573             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2574                                     &error_fatal);
2575             qdev_realize(DEVICE(core), NULL, &error_fatal);
2576 
2577             object_unref(core);
2578         }
2579     }
2580 }
2581 
2582 static PCIHostState *spapr_create_default_phb(void)
2583 {
2584     DeviceState *dev;
2585 
2586     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2587     qdev_prop_set_uint32(dev, "index", 0);
2588     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2589 
2590     return PCI_HOST_BRIDGE(dev);
2591 }
2592 
2593 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2594 {
2595     MachineState *machine = MACHINE(spapr);
2596     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2597     hwaddr rma_size = machine->ram_size;
2598     hwaddr node0_size = spapr_node0_size(machine);
2599 
2600     /* RMA has to fit in the first NUMA node */
2601     rma_size = MIN(rma_size, node0_size);
2602 
2603     /*
2604      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2605      * never exceed that
2606      */
2607     rma_size = MIN(rma_size, 1 * TiB);
2608 
2609     /*
2610      * Clamp the RMA size based on machine type.  This is for
2611      * migration compatibility with older qemu versions, which limited
2612      * the RMA size for complicated and mostly bad reasons.
2613      */
2614     if (smc->rma_limit) {
2615         rma_size = MIN(rma_size, smc->rma_limit);
2616     }
2617 
2618     if (rma_size < MIN_RMA_SLOF) {
2619         error_setg(errp,
2620                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2621                    "ldMiB guest RMA (Real Mode Area memory)",
2622                    MIN_RMA_SLOF / MiB);
2623         return 0;
2624     }
2625 
2626     return rma_size;
2627 }
2628 
2629 /* pSeries LPAR / sPAPR hardware init */
2630 static void spapr_machine_init(MachineState *machine)
2631 {
2632     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2633     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2634     MachineClass *mc = MACHINE_GET_CLASS(machine);
2635     const char *kernel_filename = machine->kernel_filename;
2636     const char *initrd_filename = machine->initrd_filename;
2637     PCIHostState *phb;
2638     int i;
2639     MemoryRegion *sysmem = get_system_memory();
2640     long load_limit, fw_size;
2641     char *filename;
2642     Error *resize_hpt_err = NULL;
2643 
2644     msi_nonbroken = true;
2645 
2646     QLIST_INIT(&spapr->phbs);
2647     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2648 
2649     /* Determine capabilities to run with */
2650     spapr_caps_init(spapr);
2651 
2652     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2653     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2654         /*
2655          * If the user explicitly requested a mode we should either
2656          * supply it, or fail completely (which we do below).  But if
2657          * it's not set explicitly, we reset our mode to something
2658          * that works
2659          */
2660         if (resize_hpt_err) {
2661             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2662             error_free(resize_hpt_err);
2663             resize_hpt_err = NULL;
2664         } else {
2665             spapr->resize_hpt = smc->resize_hpt_default;
2666         }
2667     }
2668 
2669     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2670 
2671     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2672         /*
2673          * User requested HPT resize, but this host can't supply it.  Bail out
2674          */
2675         error_report_err(resize_hpt_err);
2676         exit(1);
2677     }
2678     error_free(resize_hpt_err);
2679 
2680     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2681 
2682     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2683     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2684 
2685     /*
2686      * VSMT must be set in order to be able to compute VCPU ids, ie to
2687      * call spapr_max_server_number() or spapr_vcpu_id().
2688      */
2689     spapr_set_vsmt_mode(spapr, &error_fatal);
2690 
2691     /* Set up Interrupt Controller before we create the VCPUs */
2692     spapr_irq_init(spapr, &error_fatal);
2693 
2694     /* Set up containers for ibm,client-architecture-support negotiated options
2695      */
2696     spapr->ov5 = spapr_ovec_new();
2697     spapr->ov5_cas = spapr_ovec_new();
2698 
2699     if (smc->dr_lmb_enabled) {
2700         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2701         spapr_validate_node_memory(machine, &error_fatal);
2702     }
2703 
2704     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2705 
2706     /* advertise support for dedicated HP event source to guests */
2707     if (spapr->use_hotplug_event_source) {
2708         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2709     }
2710 
2711     /* advertise support for HPT resizing */
2712     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2713         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2714     }
2715 
2716     /* advertise support for ibm,dyamic-memory-v2 */
2717     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2718 
2719     /* advertise XIVE on POWER9 machines */
2720     if (spapr->irq->xive) {
2721         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2722     }
2723 
2724     /* init CPUs */
2725     spapr_init_cpus(spapr);
2726 
2727     /*
2728      * check we don't have a memory-less/cpu-less NUMA node
2729      * Firmware relies on the existing memory/cpu topology to provide the
2730      * NUMA topology to the kernel.
2731      * And the linux kernel needs to know the NUMA topology at start
2732      * to be able to hotplug CPUs later.
2733      */
2734     if (machine->numa_state->num_nodes) {
2735         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2736             /* check for memory-less node */
2737             if (machine->numa_state->nodes[i].node_mem == 0) {
2738                 CPUState *cs;
2739                 int found = 0;
2740                 /* check for cpu-less node */
2741                 CPU_FOREACH(cs) {
2742                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2743                     if (cpu->node_id == i) {
2744                         found = 1;
2745                         break;
2746                     }
2747                 }
2748                 /* memory-less and cpu-less node */
2749                 if (!found) {
2750                     error_report(
2751                        "Memory-less/cpu-less nodes are not supported (node %d)",
2752                                  i);
2753                     exit(1);
2754                 }
2755             }
2756         }
2757 
2758     }
2759 
2760     /*
2761      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2762      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2763      * called from vPHB reset handler so we initialize the counter here.
2764      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2765      * must be equally distant from any other node.
2766      * The final value of spapr->gpu_numa_id is going to be written to
2767      * max-associativity-domains in spapr_build_fdt().
2768      */
2769     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2770 
2771     /* Init numa_assoc_array */
2772     spapr_numa_associativity_init(spapr, machine);
2773 
2774     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2775         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2776                               spapr->max_compat_pvr)) {
2777         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2778         /* KVM and TCG always allow GTSE with radix... */
2779         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2780     }
2781     /* ... but not with hash (currently). */
2782 
2783     if (kvm_enabled()) {
2784         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2785         kvmppc_enable_logical_ci_hcalls();
2786         kvmppc_enable_set_mode_hcall();
2787 
2788         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2789         kvmppc_enable_clear_ref_mod_hcalls();
2790 
2791         /* Enable H_PAGE_INIT */
2792         kvmppc_enable_h_page_init();
2793     }
2794 
2795     /* map RAM */
2796     memory_region_add_subregion(sysmem, 0, machine->ram);
2797 
2798     /* always allocate the device memory information */
2799     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2800 
2801     /* initialize hotplug memory address space */
2802     if (machine->ram_size < machine->maxram_size) {
2803         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2804         /*
2805          * Limit the number of hotpluggable memory slots to half the number
2806          * slots that KVM supports, leaving the other half for PCI and other
2807          * devices. However ensure that number of slots doesn't drop below 32.
2808          */
2809         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2810                            SPAPR_MAX_RAM_SLOTS;
2811 
2812         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2813             max_memslots = SPAPR_MAX_RAM_SLOTS;
2814         }
2815         if (machine->ram_slots > max_memslots) {
2816             error_report("Specified number of memory slots %"
2817                          PRIu64" exceeds max supported %d",
2818                          machine->ram_slots, max_memslots);
2819             exit(1);
2820         }
2821 
2822         machine->device_memory->base = ROUND_UP(machine->ram_size,
2823                                                 SPAPR_DEVICE_MEM_ALIGN);
2824         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2825                            "device-memory", device_mem_size);
2826         memory_region_add_subregion(sysmem, machine->device_memory->base,
2827                                     &machine->device_memory->mr);
2828     }
2829 
2830     if (smc->dr_lmb_enabled) {
2831         spapr_create_lmb_dr_connectors(spapr);
2832     }
2833 
2834     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2835         /* Create the error string for live migration blocker */
2836         error_setg(&spapr->fwnmi_migration_blocker,
2837             "A machine check is being handled during migration. The handler"
2838             "may run and log hardware error on the destination");
2839     }
2840 
2841     if (mc->nvdimm_supported) {
2842         spapr_create_nvdimm_dr_connectors(spapr);
2843     }
2844 
2845     /* Set up RTAS event infrastructure */
2846     spapr_events_init(spapr);
2847 
2848     /* Set up the RTC RTAS interfaces */
2849     spapr_rtc_create(spapr);
2850 
2851     /* Set up VIO bus */
2852     spapr->vio_bus = spapr_vio_bus_init();
2853 
2854     for (i = 0; i < serial_max_hds(); i++) {
2855         if (serial_hd(i)) {
2856             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2857         }
2858     }
2859 
2860     /* We always have at least the nvram device on VIO */
2861     spapr_create_nvram(spapr);
2862 
2863     /*
2864      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2865      * connectors (described in root DT node's "ibm,drc-types" property)
2866      * are pre-initialized here. additional child connectors (such as
2867      * connectors for a PHBs PCI slots) are added as needed during their
2868      * parent's realization.
2869      */
2870     if (smc->dr_phb_enabled) {
2871         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2872             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2873         }
2874     }
2875 
2876     /* Set up PCI */
2877     spapr_pci_rtas_init();
2878 
2879     phb = spapr_create_default_phb();
2880 
2881     for (i = 0; i < nb_nics; i++) {
2882         NICInfo *nd = &nd_table[i];
2883 
2884         if (!nd->model) {
2885             nd->model = g_strdup("spapr-vlan");
2886         }
2887 
2888         if (g_str_equal(nd->model, "spapr-vlan") ||
2889             g_str_equal(nd->model, "ibmveth")) {
2890             spapr_vlan_create(spapr->vio_bus, nd);
2891         } else {
2892             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2893         }
2894     }
2895 
2896     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2897         spapr_vscsi_create(spapr->vio_bus);
2898     }
2899 
2900     /* Graphics */
2901     if (spapr_vga_init(phb->bus, &error_fatal)) {
2902         spapr->has_graphics = true;
2903         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2904     }
2905 
2906     if (machine->usb) {
2907         if (smc->use_ohci_by_default) {
2908             pci_create_simple(phb->bus, -1, "pci-ohci");
2909         } else {
2910             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2911         }
2912 
2913         if (spapr->has_graphics) {
2914             USBBus *usb_bus = usb_bus_find(-1);
2915 
2916             usb_create_simple(usb_bus, "usb-kbd");
2917             usb_create_simple(usb_bus, "usb-mouse");
2918         }
2919     }
2920 
2921     if (kernel_filename) {
2922         uint64_t lowaddr = 0;
2923 
2924         spapr->kernel_size = load_elf(kernel_filename, NULL,
2925                                       translate_kernel_address, spapr,
2926                                       NULL, &lowaddr, NULL, NULL, 1,
2927                                       PPC_ELF_MACHINE, 0, 0);
2928         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2929             spapr->kernel_size = load_elf(kernel_filename, NULL,
2930                                           translate_kernel_address, spapr, NULL,
2931                                           &lowaddr, NULL, NULL, 0,
2932                                           PPC_ELF_MACHINE,
2933                                           0, 0);
2934             spapr->kernel_le = spapr->kernel_size > 0;
2935         }
2936         if (spapr->kernel_size < 0) {
2937             error_report("error loading %s: %s", kernel_filename,
2938                          load_elf_strerror(spapr->kernel_size));
2939             exit(1);
2940         }
2941 
2942         /* load initrd */
2943         if (initrd_filename) {
2944             /* Try to locate the initrd in the gap between the kernel
2945              * and the firmware. Add a bit of space just in case
2946              */
2947             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2948                                   + 0x1ffff) & ~0xffff;
2949             spapr->initrd_size = load_image_targphys(initrd_filename,
2950                                                      spapr->initrd_base,
2951                                                      load_limit
2952                                                      - spapr->initrd_base);
2953             if (spapr->initrd_size < 0) {
2954                 error_report("could not load initial ram disk '%s'",
2955                              initrd_filename);
2956                 exit(1);
2957             }
2958         }
2959     }
2960 
2961     if (bios_name == NULL) {
2962         bios_name = FW_FILE_NAME;
2963     }
2964     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2965     if (!filename) {
2966         error_report("Could not find LPAR firmware '%s'", bios_name);
2967         exit(1);
2968     }
2969     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2970     if (fw_size <= 0) {
2971         error_report("Could not load LPAR firmware '%s'", filename);
2972         exit(1);
2973     }
2974     g_free(filename);
2975 
2976     /* FIXME: Should register things through the MachineState's qdev
2977      * interface, this is a legacy from the sPAPREnvironment structure
2978      * which predated MachineState but had a similar function */
2979     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2980     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2981                          &savevm_htab_handlers, spapr);
2982 
2983     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2984 
2985     qemu_register_boot_set(spapr_boot_set, spapr);
2986 
2987     /*
2988      * Nothing needs to be done to resume a suspended guest because
2989      * suspending does not change the machine state, so no need for
2990      * a ->wakeup method.
2991      */
2992     qemu_register_wakeup_support();
2993 
2994     if (kvm_enabled()) {
2995         /* to stop and start vmclock */
2996         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2997                                          &spapr->tb);
2998 
2999         kvmppc_spapr_enable_inkernel_multitce();
3000     }
3001 
3002     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3003 }
3004 
3005 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3006 {
3007     if (!vm_type) {
3008         return 0;
3009     }
3010 
3011     if (!strcmp(vm_type, "HV")) {
3012         return 1;
3013     }
3014 
3015     if (!strcmp(vm_type, "PR")) {
3016         return 2;
3017     }
3018 
3019     error_report("Unknown kvm-type specified '%s'", vm_type);
3020     exit(1);
3021 }
3022 
3023 /*
3024  * Implementation of an interface to adjust firmware path
3025  * for the bootindex property handling.
3026  */
3027 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3028                                    DeviceState *dev)
3029 {
3030 #define CAST(type, obj, name) \
3031     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3032     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3033     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3034     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3035 
3036     if (d) {
3037         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3038         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3039         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3040 
3041         if (spapr) {
3042             /*
3043              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3044              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3045              * 0x8000 | (target << 8) | (bus << 5) | lun
3046              * (see the "Logical unit addressing format" table in SAM5)
3047              */
3048             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3049             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3050                                    (uint64_t)id << 48);
3051         } else if (virtio) {
3052             /*
3053              * We use SRP luns of the form 01000000 | (target << 8) | lun
3054              * in the top 32 bits of the 64-bit LUN
3055              * Note: the quote above is from SLOF and it is wrong,
3056              * the actual binding is:
3057              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3058              */
3059             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3060             if (d->lun >= 256) {
3061                 /* Use the LUN "flat space addressing method" */
3062                 id |= 0x4000;
3063             }
3064             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3065                                    (uint64_t)id << 32);
3066         } else if (usb) {
3067             /*
3068              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3069              * in the top 32 bits of the 64-bit LUN
3070              */
3071             unsigned usb_port = atoi(usb->port->path);
3072             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3073             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3074                                    (uint64_t)id << 32);
3075         }
3076     }
3077 
3078     /*
3079      * SLOF probes the USB devices, and if it recognizes that the device is a
3080      * storage device, it changes its name to "storage" instead of "usb-host",
3081      * and additionally adds a child node for the SCSI LUN, so the correct
3082      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3083      */
3084     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3085         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3086         if (usb_host_dev_is_scsi_storage(usbdev)) {
3087             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3088         }
3089     }
3090 
3091     if (phb) {
3092         /* Replace "pci" with "pci@800000020000000" */
3093         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3094     }
3095 
3096     if (vsc) {
3097         /* Same logic as virtio above */
3098         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3099         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3100     }
3101 
3102     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3103         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3104         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3105         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3106     }
3107 
3108     return NULL;
3109 }
3110 
3111 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3112 {
3113     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3114 
3115     return g_strdup(spapr->kvm_type);
3116 }
3117 
3118 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3119 {
3120     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3121 
3122     g_free(spapr->kvm_type);
3123     spapr->kvm_type = g_strdup(value);
3124 }
3125 
3126 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3127 {
3128     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3129 
3130     return spapr->use_hotplug_event_source;
3131 }
3132 
3133 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3134                                             Error **errp)
3135 {
3136     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3137 
3138     spapr->use_hotplug_event_source = value;
3139 }
3140 
3141 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3142 {
3143     return true;
3144 }
3145 
3146 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3147 {
3148     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3149 
3150     switch (spapr->resize_hpt) {
3151     case SPAPR_RESIZE_HPT_DEFAULT:
3152         return g_strdup("default");
3153     case SPAPR_RESIZE_HPT_DISABLED:
3154         return g_strdup("disabled");
3155     case SPAPR_RESIZE_HPT_ENABLED:
3156         return g_strdup("enabled");
3157     case SPAPR_RESIZE_HPT_REQUIRED:
3158         return g_strdup("required");
3159     }
3160     g_assert_not_reached();
3161 }
3162 
3163 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3164 {
3165     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3166 
3167     if (strcmp(value, "default") == 0) {
3168         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3169     } else if (strcmp(value, "disabled") == 0) {
3170         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3171     } else if (strcmp(value, "enabled") == 0) {
3172         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3173     } else if (strcmp(value, "required") == 0) {
3174         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3175     } else {
3176         error_setg(errp, "Bad value for \"resize-hpt\" property");
3177     }
3178 }
3179 
3180 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3181 {
3182     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3183 
3184     if (spapr->irq == &spapr_irq_xics_legacy) {
3185         return g_strdup("legacy");
3186     } else if (spapr->irq == &spapr_irq_xics) {
3187         return g_strdup("xics");
3188     } else if (spapr->irq == &spapr_irq_xive) {
3189         return g_strdup("xive");
3190     } else if (spapr->irq == &spapr_irq_dual) {
3191         return g_strdup("dual");
3192     }
3193     g_assert_not_reached();
3194 }
3195 
3196 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3197 {
3198     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3199 
3200     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3201         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3202         return;
3203     }
3204 
3205     /* The legacy IRQ backend can not be set */
3206     if (strcmp(value, "xics") == 0) {
3207         spapr->irq = &spapr_irq_xics;
3208     } else if (strcmp(value, "xive") == 0) {
3209         spapr->irq = &spapr_irq_xive;
3210     } else if (strcmp(value, "dual") == 0) {
3211         spapr->irq = &spapr_irq_dual;
3212     } else {
3213         error_setg(errp, "Bad value for \"ic-mode\" property");
3214     }
3215 }
3216 
3217 static char *spapr_get_host_model(Object *obj, Error **errp)
3218 {
3219     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3220 
3221     return g_strdup(spapr->host_model);
3222 }
3223 
3224 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3225 {
3226     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3227 
3228     g_free(spapr->host_model);
3229     spapr->host_model = g_strdup(value);
3230 }
3231 
3232 static char *spapr_get_host_serial(Object *obj, Error **errp)
3233 {
3234     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3235 
3236     return g_strdup(spapr->host_serial);
3237 }
3238 
3239 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3240 {
3241     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3242 
3243     g_free(spapr->host_serial);
3244     spapr->host_serial = g_strdup(value);
3245 }
3246 
3247 static void spapr_instance_init(Object *obj)
3248 {
3249     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3250     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3251 
3252     spapr->htab_fd = -1;
3253     spapr->use_hotplug_event_source = true;
3254     object_property_add_str(obj, "kvm-type",
3255                             spapr_get_kvm_type, spapr_set_kvm_type);
3256     object_property_set_description(obj, "kvm-type",
3257                                     "Specifies the KVM virtualization mode (HV, PR)");
3258     object_property_add_bool(obj, "modern-hotplug-events",
3259                             spapr_get_modern_hotplug_events,
3260                             spapr_set_modern_hotplug_events);
3261     object_property_set_description(obj, "modern-hotplug-events",
3262                                     "Use dedicated hotplug event mechanism in"
3263                                     " place of standard EPOW events when possible"
3264                                     " (required for memory hot-unplug support)");
3265     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3266                             "Maximum permitted CPU compatibility mode");
3267 
3268     object_property_add_str(obj, "resize-hpt",
3269                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3270     object_property_set_description(obj, "resize-hpt",
3271                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3272     object_property_add_uint32_ptr(obj, "vsmt",
3273                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3274     object_property_set_description(obj, "vsmt",
3275                                     "Virtual SMT: KVM behaves as if this were"
3276                                     " the host's SMT mode");
3277 
3278     object_property_add_bool(obj, "vfio-no-msix-emulation",
3279                              spapr_get_msix_emulation, NULL);
3280 
3281     object_property_add_uint64_ptr(obj, "kernel-addr",
3282                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3283     object_property_set_description(obj, "kernel-addr",
3284                                     stringify(KERNEL_LOAD_ADDR)
3285                                     " for -kernel is the default");
3286     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3287     /* The machine class defines the default interrupt controller mode */
3288     spapr->irq = smc->irq;
3289     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3290                             spapr_set_ic_mode);
3291     object_property_set_description(obj, "ic-mode",
3292                  "Specifies the interrupt controller mode (xics, xive, dual)");
3293 
3294     object_property_add_str(obj, "host-model",
3295         spapr_get_host_model, spapr_set_host_model);
3296     object_property_set_description(obj, "host-model",
3297         "Host model to advertise in guest device tree");
3298     object_property_add_str(obj, "host-serial",
3299         spapr_get_host_serial, spapr_set_host_serial);
3300     object_property_set_description(obj, "host-serial",
3301         "Host serial number to advertise in guest device tree");
3302 }
3303 
3304 static void spapr_machine_finalizefn(Object *obj)
3305 {
3306     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3307 
3308     g_free(spapr->kvm_type);
3309 }
3310 
3311 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3312 {
3313     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3314     PowerPCCPU *cpu = POWERPC_CPU(cs);
3315     CPUPPCState *env = &cpu->env;
3316 
3317     cpu_synchronize_state(cs);
3318     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3319     if (spapr->fwnmi_system_reset_addr != -1) {
3320         uint64_t rtas_addr, addr;
3321 
3322         /* get rtas addr from fdt */
3323         rtas_addr = spapr_get_rtas_addr();
3324         if (!rtas_addr) {
3325             qemu_system_guest_panicked(NULL);
3326             return;
3327         }
3328 
3329         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3330         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3331         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3332         env->gpr[3] = addr;
3333     }
3334     ppc_cpu_do_system_reset(cs);
3335     if (spapr->fwnmi_system_reset_addr != -1) {
3336         env->nip = spapr->fwnmi_system_reset_addr;
3337     }
3338 }
3339 
3340 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3341 {
3342     CPUState *cs;
3343 
3344     CPU_FOREACH(cs) {
3345         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3346     }
3347 }
3348 
3349 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3350                           void *fdt, int *fdt_start_offset, Error **errp)
3351 {
3352     uint64_t addr;
3353     uint32_t node;
3354 
3355     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3356     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3357                                     &error_abort);
3358     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3359                                              SPAPR_MEMORY_BLOCK_SIZE);
3360     return 0;
3361 }
3362 
3363 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3364                            bool dedicated_hp_event_source, Error **errp)
3365 {
3366     SpaprDrc *drc;
3367     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3368     int i;
3369     uint64_t addr = addr_start;
3370     bool hotplugged = spapr_drc_hotplugged(dev);
3371     Error *local_err = NULL;
3372 
3373     for (i = 0; i < nr_lmbs; i++) {
3374         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3375                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3376         g_assert(drc);
3377 
3378         spapr_drc_attach(drc, dev, &local_err);
3379         if (local_err) {
3380             while (addr > addr_start) {
3381                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3382                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3383                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3384                 spapr_drc_detach(drc);
3385             }
3386             error_propagate(errp, local_err);
3387             return;
3388         }
3389         if (!hotplugged) {
3390             spapr_drc_reset(drc);
3391         }
3392         addr += SPAPR_MEMORY_BLOCK_SIZE;
3393     }
3394     /* send hotplug notification to the
3395      * guest only in case of hotplugged memory
3396      */
3397     if (hotplugged) {
3398         if (dedicated_hp_event_source) {
3399             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3400                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3401             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3402                                                    nr_lmbs,
3403                                                    spapr_drc_index(drc));
3404         } else {
3405             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3406                                            nr_lmbs);
3407         }
3408     }
3409 }
3410 
3411 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3412                               Error **errp)
3413 {
3414     Error *local_err = NULL;
3415     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3416     PCDIMMDevice *dimm = PC_DIMM(dev);
3417     uint64_t size, addr, slot;
3418     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3419 
3420     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3421 
3422     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3423     if (local_err) {
3424         goto out;
3425     }
3426 
3427     if (!is_nvdimm) {
3428         addr = object_property_get_uint(OBJECT(dimm),
3429                                         PC_DIMM_ADDR_PROP, &local_err);
3430         if (local_err) {
3431             goto out_unplug;
3432         }
3433         spapr_add_lmbs(dev, addr, size,
3434                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3435                        &local_err);
3436     } else {
3437         slot = object_property_get_uint(OBJECT(dimm),
3438                                         PC_DIMM_SLOT_PROP, &local_err);
3439         if (local_err) {
3440             goto out_unplug;
3441         }
3442         spapr_add_nvdimm(dev, slot, &local_err);
3443     }
3444 
3445     if (local_err) {
3446         goto out_unplug;
3447     }
3448 
3449     return;
3450 
3451 out_unplug:
3452     pc_dimm_unplug(dimm, MACHINE(ms));
3453 out:
3454     error_propagate(errp, local_err);
3455 }
3456 
3457 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3458                                   Error **errp)
3459 {
3460     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3461     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3462     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3463     PCDIMMDevice *dimm = PC_DIMM(dev);
3464     Error *local_err = NULL;
3465     uint64_t size;
3466     Object *memdev;
3467     hwaddr pagesize;
3468 
3469     if (!smc->dr_lmb_enabled) {
3470         error_setg(errp, "Memory hotplug not supported for this machine");
3471         return;
3472     }
3473 
3474     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3475     if (local_err) {
3476         error_propagate(errp, local_err);
3477         return;
3478     }
3479 
3480     if (is_nvdimm) {
3481         spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, &local_err);
3482         if (local_err) {
3483             error_propagate(errp, local_err);
3484             return;
3485         }
3486     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3487         error_setg(errp, "Hotplugged memory size must be a multiple of "
3488                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3489         return;
3490     }
3491 
3492     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3493                                       &error_abort);
3494     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3495     spapr_check_pagesize(spapr, pagesize, &local_err);
3496     if (local_err) {
3497         error_propagate(errp, local_err);
3498         return;
3499     }
3500 
3501     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3502 }
3503 
3504 struct SpaprDimmState {
3505     PCDIMMDevice *dimm;
3506     uint32_t nr_lmbs;
3507     QTAILQ_ENTRY(SpaprDimmState) next;
3508 };
3509 
3510 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3511                                                        PCDIMMDevice *dimm)
3512 {
3513     SpaprDimmState *dimm_state = NULL;
3514 
3515     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3516         if (dimm_state->dimm == dimm) {
3517             break;
3518         }
3519     }
3520     return dimm_state;
3521 }
3522 
3523 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3524                                                       uint32_t nr_lmbs,
3525                                                       PCDIMMDevice *dimm)
3526 {
3527     SpaprDimmState *ds = NULL;
3528 
3529     /*
3530      * If this request is for a DIMM whose removal had failed earlier
3531      * (due to guest's refusal to remove the LMBs), we would have this
3532      * dimm already in the pending_dimm_unplugs list. In that
3533      * case don't add again.
3534      */
3535     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3536     if (!ds) {
3537         ds = g_malloc0(sizeof(SpaprDimmState));
3538         ds->nr_lmbs = nr_lmbs;
3539         ds->dimm = dimm;
3540         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3541     }
3542     return ds;
3543 }
3544 
3545 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3546                                               SpaprDimmState *dimm_state)
3547 {
3548     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3549     g_free(dimm_state);
3550 }
3551 
3552 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3553                                                         PCDIMMDevice *dimm)
3554 {
3555     SpaprDrc *drc;
3556     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3557                                                   &error_abort);
3558     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3559     uint32_t avail_lmbs = 0;
3560     uint64_t addr_start, addr;
3561     int i;
3562 
3563     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3564                                          &error_abort);
3565 
3566     addr = addr_start;
3567     for (i = 0; i < nr_lmbs; i++) {
3568         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3569                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3570         g_assert(drc);
3571         if (drc->dev) {
3572             avail_lmbs++;
3573         }
3574         addr += SPAPR_MEMORY_BLOCK_SIZE;
3575     }
3576 
3577     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3578 }
3579 
3580 /* Callback to be called during DRC release. */
3581 void spapr_lmb_release(DeviceState *dev)
3582 {
3583     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3584     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3585     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3586 
3587     /* This information will get lost if a migration occurs
3588      * during the unplug process. In this case recover it. */
3589     if (ds == NULL) {
3590         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3591         g_assert(ds);
3592         /* The DRC being examined by the caller at least must be counted */
3593         g_assert(ds->nr_lmbs);
3594     }
3595 
3596     if (--ds->nr_lmbs) {
3597         return;
3598     }
3599 
3600     /*
3601      * Now that all the LMBs have been removed by the guest, call the
3602      * unplug handler chain. This can never fail.
3603      */
3604     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3605     object_unparent(OBJECT(dev));
3606 }
3607 
3608 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3609 {
3610     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3611     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3612 
3613     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3614     qdev_unrealize(dev);
3615     spapr_pending_dimm_unplugs_remove(spapr, ds);
3616 }
3617 
3618 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3619                                         DeviceState *dev, Error **errp)
3620 {
3621     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3622     Error *local_err = NULL;
3623     PCDIMMDevice *dimm = PC_DIMM(dev);
3624     uint32_t nr_lmbs;
3625     uint64_t size, addr_start, addr;
3626     int i;
3627     SpaprDrc *drc;
3628 
3629     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3630         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3631         return;
3632     }
3633 
3634     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3635     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3636 
3637     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3638                                          &local_err);
3639     if (local_err) {
3640         error_propagate(errp, local_err);
3641         return;
3642     }
3643 
3644     /*
3645      * An existing pending dimm state for this DIMM means that there is an
3646      * unplug operation in progress, waiting for the spapr_lmb_release
3647      * callback to complete the job (BQL can't cover that far). In this case,
3648      * bail out to avoid detaching DRCs that were already released.
3649      */
3650     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3651         error_setg(errp, "Memory unplug already in progress for device %s",
3652                    dev->id);
3653         return;
3654     }
3655 
3656     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3657 
3658     addr = addr_start;
3659     for (i = 0; i < nr_lmbs; i++) {
3660         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3661                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3662         g_assert(drc);
3663 
3664         spapr_drc_detach(drc);
3665         addr += SPAPR_MEMORY_BLOCK_SIZE;
3666     }
3667 
3668     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3669                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3670     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3671                                               nr_lmbs, spapr_drc_index(drc));
3672 }
3673 
3674 /* Callback to be called during DRC release. */
3675 void spapr_core_release(DeviceState *dev)
3676 {
3677     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3678 
3679     /* Call the unplug handler chain. This can never fail. */
3680     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3681     object_unparent(OBJECT(dev));
3682 }
3683 
3684 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3685 {
3686     MachineState *ms = MACHINE(hotplug_dev);
3687     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3688     CPUCore *cc = CPU_CORE(dev);
3689     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3690 
3691     if (smc->pre_2_10_has_unused_icps) {
3692         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3693         int i;
3694 
3695         for (i = 0; i < cc->nr_threads; i++) {
3696             CPUState *cs = CPU(sc->threads[i]);
3697 
3698             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3699         }
3700     }
3701 
3702     assert(core_slot);
3703     core_slot->cpu = NULL;
3704     qdev_unrealize(dev);
3705 }
3706 
3707 static
3708 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3709                                Error **errp)
3710 {
3711     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3712     int index;
3713     SpaprDrc *drc;
3714     CPUCore *cc = CPU_CORE(dev);
3715 
3716     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3717         error_setg(errp, "Unable to find CPU core with core-id: %d",
3718                    cc->core_id);
3719         return;
3720     }
3721     if (index == 0) {
3722         error_setg(errp, "Boot CPU core may not be unplugged");
3723         return;
3724     }
3725 
3726     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3727                           spapr_vcpu_id(spapr, cc->core_id));
3728     g_assert(drc);
3729 
3730     if (!spapr_drc_unplug_requested(drc)) {
3731         spapr_drc_detach(drc);
3732         spapr_hotplug_req_remove_by_index(drc);
3733     }
3734 }
3735 
3736 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3737                            void *fdt, int *fdt_start_offset, Error **errp)
3738 {
3739     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3740     CPUState *cs = CPU(core->threads[0]);
3741     PowerPCCPU *cpu = POWERPC_CPU(cs);
3742     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3743     int id = spapr_get_vcpu_id(cpu);
3744     char *nodename;
3745     int offset;
3746 
3747     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3748     offset = fdt_add_subnode(fdt, 0, nodename);
3749     g_free(nodename);
3750 
3751     spapr_dt_cpu(cs, fdt, offset, spapr);
3752 
3753     *fdt_start_offset = offset;
3754     return 0;
3755 }
3756 
3757 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3758                             Error **errp)
3759 {
3760     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3761     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3762     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3763     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3764     CPUCore *cc = CPU_CORE(dev);
3765     CPUState *cs;
3766     SpaprDrc *drc;
3767     Error *local_err = NULL;
3768     CPUArchId *core_slot;
3769     int index;
3770     bool hotplugged = spapr_drc_hotplugged(dev);
3771     int i;
3772 
3773     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3774     if (!core_slot) {
3775         error_setg(errp, "Unable to find CPU core with core-id: %d",
3776                    cc->core_id);
3777         return;
3778     }
3779     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3780                           spapr_vcpu_id(spapr, cc->core_id));
3781 
3782     g_assert(drc || !mc->has_hotpluggable_cpus);
3783 
3784     if (drc) {
3785         spapr_drc_attach(drc, dev, &local_err);
3786         if (local_err) {
3787             error_propagate(errp, local_err);
3788             return;
3789         }
3790 
3791         if (hotplugged) {
3792             /*
3793              * Send hotplug notification interrupt to the guest only
3794              * in case of hotplugged CPUs.
3795              */
3796             spapr_hotplug_req_add_by_index(drc);
3797         } else {
3798             spapr_drc_reset(drc);
3799         }
3800     }
3801 
3802     core_slot->cpu = OBJECT(dev);
3803 
3804     if (smc->pre_2_10_has_unused_icps) {
3805         for (i = 0; i < cc->nr_threads; i++) {
3806             cs = CPU(core->threads[i]);
3807             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3808         }
3809     }
3810 
3811     /*
3812      * Set compatibility mode to match the boot CPU, which was either set
3813      * by the machine reset code or by CAS.
3814      */
3815     if (hotplugged) {
3816         for (i = 0; i < cc->nr_threads; i++) {
3817             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3818                            &local_err);
3819             if (local_err) {
3820                 error_propagate(errp, local_err);
3821                 return;
3822             }
3823         }
3824     }
3825 }
3826 
3827 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3828                                 Error **errp)
3829 {
3830     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3831     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3832     CPUCore *cc = CPU_CORE(dev);
3833     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3834     const char *type = object_get_typename(OBJECT(dev));
3835     CPUArchId *core_slot;
3836     int index;
3837     unsigned int smp_threads = machine->smp.threads;
3838 
3839     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3840         error_setg(errp, "CPU hotplug not supported for this machine");
3841         return;
3842     }
3843 
3844     if (strcmp(base_core_type, type)) {
3845         error_setg(errp, "CPU core type should be %s", base_core_type);
3846         return;
3847     }
3848 
3849     if (cc->core_id % smp_threads) {
3850         error_setg(errp, "invalid core id %d", cc->core_id);
3851         return;
3852     }
3853 
3854     /*
3855      * In general we should have homogeneous threads-per-core, but old
3856      * (pre hotplug support) machine types allow the last core to have
3857      * reduced threads as a compatibility hack for when we allowed
3858      * total vcpus not a multiple of threads-per-core.
3859      */
3860     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3861         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3862                    smp_threads);
3863         return;
3864     }
3865 
3866     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3867     if (!core_slot) {
3868         error_setg(errp, "core id %d out of range", cc->core_id);
3869         return;
3870     }
3871 
3872     if (core_slot->cpu) {
3873         error_setg(errp, "core %d already populated", cc->core_id);
3874         return;
3875     }
3876 
3877     numa_cpu_pre_plug(core_slot, dev, errp);
3878 }
3879 
3880 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3881                           void *fdt, int *fdt_start_offset, Error **errp)
3882 {
3883     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3884     int intc_phandle;
3885 
3886     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3887     if (intc_phandle <= 0) {
3888         return -1;
3889     }
3890 
3891     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3892         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3893         return -1;
3894     }
3895 
3896     /* generally SLOF creates these, for hotplug it's up to QEMU */
3897     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3898 
3899     return 0;
3900 }
3901 
3902 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3903                                Error **errp)
3904 {
3905     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3906     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3907     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3908     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3909 
3910     if (dev->hotplugged && !smc->dr_phb_enabled) {
3911         error_setg(errp, "PHB hotplug not supported for this machine");
3912         return;
3913     }
3914 
3915     if (sphb->index == (uint32_t)-1) {
3916         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3917         return;
3918     }
3919 
3920     /*
3921      * This will check that sphb->index doesn't exceed the maximum number of
3922      * PHBs for the current machine type.
3923      */
3924     smc->phb_placement(spapr, sphb->index,
3925                        &sphb->buid, &sphb->io_win_addr,
3926                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3927                        windows_supported, sphb->dma_liobn,
3928                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3929                        errp);
3930 }
3931 
3932 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3933                            Error **errp)
3934 {
3935     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3936     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3937     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3938     SpaprDrc *drc;
3939     bool hotplugged = spapr_drc_hotplugged(dev);
3940     Error *local_err = NULL;
3941 
3942     if (!smc->dr_phb_enabled) {
3943         return;
3944     }
3945 
3946     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3947     /* hotplug hooks should check it's enabled before getting this far */
3948     assert(drc);
3949 
3950     spapr_drc_attach(drc, dev, &local_err);
3951     if (local_err) {
3952         error_propagate(errp, local_err);
3953         return;
3954     }
3955 
3956     if (hotplugged) {
3957         spapr_hotplug_req_add_by_index(drc);
3958     } else {
3959         spapr_drc_reset(drc);
3960     }
3961 }
3962 
3963 void spapr_phb_release(DeviceState *dev)
3964 {
3965     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3966 
3967     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3968     object_unparent(OBJECT(dev));
3969 }
3970 
3971 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3972 {
3973     qdev_unrealize(dev);
3974 }
3975 
3976 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3977                                      DeviceState *dev, Error **errp)
3978 {
3979     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3980     SpaprDrc *drc;
3981 
3982     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3983     assert(drc);
3984 
3985     if (!spapr_drc_unplug_requested(drc)) {
3986         spapr_drc_detach(drc);
3987         spapr_hotplug_req_remove_by_index(drc);
3988     }
3989 }
3990 
3991 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3992                                  Error **errp)
3993 {
3994     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3995     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
3996 
3997     if (spapr->tpm_proxy != NULL) {
3998         error_setg(errp, "Only one TPM proxy can be specified for this machine");
3999         return;
4000     }
4001 
4002     spapr->tpm_proxy = tpm_proxy;
4003 }
4004 
4005 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4006 {
4007     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4008 
4009     qdev_unrealize(dev);
4010     object_unparent(OBJECT(dev));
4011     spapr->tpm_proxy = NULL;
4012 }
4013 
4014 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4015                                       DeviceState *dev, Error **errp)
4016 {
4017     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4018         spapr_memory_plug(hotplug_dev, dev, errp);
4019     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4020         spapr_core_plug(hotplug_dev, dev, errp);
4021     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4022         spapr_phb_plug(hotplug_dev, dev, errp);
4023     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4024         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4025     }
4026 }
4027 
4028 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4029                                         DeviceState *dev, Error **errp)
4030 {
4031     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4032         spapr_memory_unplug(hotplug_dev, dev);
4033     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4034         spapr_core_unplug(hotplug_dev, dev);
4035     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4036         spapr_phb_unplug(hotplug_dev, dev);
4037     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4038         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4039     }
4040 }
4041 
4042 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4043                                                 DeviceState *dev, Error **errp)
4044 {
4045     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4046     MachineClass *mc = MACHINE_GET_CLASS(sms);
4047     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4048 
4049     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4050         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4051             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4052         } else {
4053             /* NOTE: this means there is a window after guest reset, prior to
4054              * CAS negotiation, where unplug requests will fail due to the
4055              * capability not being detected yet. This is a bit different than
4056              * the case with PCI unplug, where the events will be queued and
4057              * eventually handled by the guest after boot
4058              */
4059             error_setg(errp, "Memory hot unplug not supported for this guest");
4060         }
4061     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4062         if (!mc->has_hotpluggable_cpus) {
4063             error_setg(errp, "CPU hot unplug not supported on this machine");
4064             return;
4065         }
4066         spapr_core_unplug_request(hotplug_dev, dev, errp);
4067     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4068         if (!smc->dr_phb_enabled) {
4069             error_setg(errp, "PHB hot unplug not supported on this machine");
4070             return;
4071         }
4072         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4073     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4074         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4075     }
4076 }
4077 
4078 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4079                                           DeviceState *dev, Error **errp)
4080 {
4081     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4082         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4083     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4084         spapr_core_pre_plug(hotplug_dev, dev, errp);
4085     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4086         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4087     }
4088 }
4089 
4090 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4091                                                  DeviceState *dev)
4092 {
4093     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4094         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4095         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4096         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4097         return HOTPLUG_HANDLER(machine);
4098     }
4099     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4100         PCIDevice *pcidev = PCI_DEVICE(dev);
4101         PCIBus *root = pci_device_root_bus(pcidev);
4102         SpaprPhbState *phb =
4103             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4104                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4105 
4106         if (phb) {
4107             return HOTPLUG_HANDLER(phb);
4108         }
4109     }
4110     return NULL;
4111 }
4112 
4113 static CpuInstanceProperties
4114 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4115 {
4116     CPUArchId *core_slot;
4117     MachineClass *mc = MACHINE_GET_CLASS(machine);
4118 
4119     /* make sure possible_cpu are intialized */
4120     mc->possible_cpu_arch_ids(machine);
4121     /* get CPU core slot containing thread that matches cpu_index */
4122     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4123     assert(core_slot);
4124     return core_slot->props;
4125 }
4126 
4127 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4128 {
4129     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4130 }
4131 
4132 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4133 {
4134     int i;
4135     unsigned int smp_threads = machine->smp.threads;
4136     unsigned int smp_cpus = machine->smp.cpus;
4137     const char *core_type;
4138     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4139     MachineClass *mc = MACHINE_GET_CLASS(machine);
4140 
4141     if (!mc->has_hotpluggable_cpus) {
4142         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4143     }
4144     if (machine->possible_cpus) {
4145         assert(machine->possible_cpus->len == spapr_max_cores);
4146         return machine->possible_cpus;
4147     }
4148 
4149     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4150     if (!core_type) {
4151         error_report("Unable to find sPAPR CPU Core definition");
4152         exit(1);
4153     }
4154 
4155     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4156                              sizeof(CPUArchId) * spapr_max_cores);
4157     machine->possible_cpus->len = spapr_max_cores;
4158     for (i = 0; i < machine->possible_cpus->len; i++) {
4159         int core_id = i * smp_threads;
4160 
4161         machine->possible_cpus->cpus[i].type = core_type;
4162         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4163         machine->possible_cpus->cpus[i].arch_id = core_id;
4164         machine->possible_cpus->cpus[i].props.has_core_id = true;
4165         machine->possible_cpus->cpus[i].props.core_id = core_id;
4166     }
4167     return machine->possible_cpus;
4168 }
4169 
4170 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4171                                 uint64_t *buid, hwaddr *pio,
4172                                 hwaddr *mmio32, hwaddr *mmio64,
4173                                 unsigned n_dma, uint32_t *liobns,
4174                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4175 {
4176     /*
4177      * New-style PHB window placement.
4178      *
4179      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4180      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4181      * windows.
4182      *
4183      * Some guest kernels can't work with MMIO windows above 1<<46
4184      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4185      *
4186      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4187      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4188      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4189      * 1TiB 64-bit MMIO windows for each PHB.
4190      */
4191     const uint64_t base_buid = 0x800000020000000ULL;
4192     int i;
4193 
4194     /* Sanity check natural alignments */
4195     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4196     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4197     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4198     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4199     /* Sanity check bounds */
4200     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4201                       SPAPR_PCI_MEM32_WIN_SIZE);
4202     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4203                       SPAPR_PCI_MEM64_WIN_SIZE);
4204 
4205     if (index >= SPAPR_MAX_PHBS) {
4206         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4207                    SPAPR_MAX_PHBS - 1);
4208         return;
4209     }
4210 
4211     *buid = base_buid + index;
4212     for (i = 0; i < n_dma; ++i) {
4213         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4214     }
4215 
4216     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4217     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4218     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4219 
4220     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4221     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4222 }
4223 
4224 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4225 {
4226     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4227 
4228     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4229 }
4230 
4231 static void spapr_ics_resend(XICSFabric *dev)
4232 {
4233     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4234 
4235     ics_resend(spapr->ics);
4236 }
4237 
4238 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4239 {
4240     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4241 
4242     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4243 }
4244 
4245 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4246                                  Monitor *mon)
4247 {
4248     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4249 
4250     spapr_irq_print_info(spapr, mon);
4251     monitor_printf(mon, "irqchip: %s\n",
4252                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4253 }
4254 
4255 /*
4256  * This is a XIVE only operation
4257  */
4258 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4259                            uint8_t nvt_blk, uint32_t nvt_idx,
4260                            bool cam_ignore, uint8_t priority,
4261                            uint32_t logic_serv, XiveTCTXMatch *match)
4262 {
4263     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4264     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4265     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4266     int count;
4267 
4268     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4269                            priority, logic_serv, match);
4270     if (count < 0) {
4271         return count;
4272     }
4273 
4274     /*
4275      * When we implement the save and restore of the thread interrupt
4276      * contexts in the enter/exit CPU handlers of the machine and the
4277      * escalations in QEMU, we should be able to handle non dispatched
4278      * vCPUs.
4279      *
4280      * Until this is done, the sPAPR machine should find at least one
4281      * matching context always.
4282      */
4283     if (count == 0) {
4284         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4285                       nvt_blk, nvt_idx);
4286     }
4287 
4288     return count;
4289 }
4290 
4291 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4292 {
4293     return cpu->vcpu_id;
4294 }
4295 
4296 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4297 {
4298     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4299     MachineState *ms = MACHINE(spapr);
4300     int vcpu_id;
4301 
4302     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4303 
4304     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4305         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4306         error_append_hint(errp, "Adjust the number of cpus to %d "
4307                           "or try to raise the number of threads per core\n",
4308                           vcpu_id * ms->smp.threads / spapr->vsmt);
4309         return;
4310     }
4311 
4312     cpu->vcpu_id = vcpu_id;
4313 }
4314 
4315 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4316 {
4317     CPUState *cs;
4318 
4319     CPU_FOREACH(cs) {
4320         PowerPCCPU *cpu = POWERPC_CPU(cs);
4321 
4322         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4323             return cpu;
4324         }
4325     }
4326 
4327     return NULL;
4328 }
4329 
4330 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4331 {
4332     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4333 
4334     /* These are only called by TCG, KVM maintains dispatch state */
4335 
4336     spapr_cpu->prod = false;
4337     if (spapr_cpu->vpa_addr) {
4338         CPUState *cs = CPU(cpu);
4339         uint32_t dispatch;
4340 
4341         dispatch = ldl_be_phys(cs->as,
4342                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4343         dispatch++;
4344         if ((dispatch & 1) != 0) {
4345             qemu_log_mask(LOG_GUEST_ERROR,
4346                           "VPA: incorrect dispatch counter value for "
4347                           "dispatched partition %u, correcting.\n", dispatch);
4348             dispatch++;
4349         }
4350         stl_be_phys(cs->as,
4351                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4352     }
4353 }
4354 
4355 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4356 {
4357     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4358 
4359     if (spapr_cpu->vpa_addr) {
4360         CPUState *cs = CPU(cpu);
4361         uint32_t dispatch;
4362 
4363         dispatch = ldl_be_phys(cs->as,
4364                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4365         dispatch++;
4366         if ((dispatch & 1) != 1) {
4367             qemu_log_mask(LOG_GUEST_ERROR,
4368                           "VPA: incorrect dispatch counter value for "
4369                           "preempted partition %u, correcting.\n", dispatch);
4370             dispatch++;
4371         }
4372         stl_be_phys(cs->as,
4373                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4374     }
4375 }
4376 
4377 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4378 {
4379     MachineClass *mc = MACHINE_CLASS(oc);
4380     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4381     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4382     NMIClass *nc = NMI_CLASS(oc);
4383     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4384     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4385     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4386     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4387     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4388 
4389     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4390     mc->ignore_boot_device_suffixes = true;
4391 
4392     /*
4393      * We set up the default / latest behaviour here.  The class_init
4394      * functions for the specific versioned machine types can override
4395      * these details for backwards compatibility
4396      */
4397     mc->init = spapr_machine_init;
4398     mc->reset = spapr_machine_reset;
4399     mc->block_default_type = IF_SCSI;
4400     mc->max_cpus = 1024;
4401     mc->no_parallel = 1;
4402     mc->default_boot_order = "";
4403     mc->default_ram_size = 512 * MiB;
4404     mc->default_ram_id = "ppc_spapr.ram";
4405     mc->default_display = "std";
4406     mc->kvm_type = spapr_kvm_type;
4407     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4408     mc->pci_allow_0_address = true;
4409     assert(!mc->get_hotplug_handler);
4410     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4411     hc->pre_plug = spapr_machine_device_pre_plug;
4412     hc->plug = spapr_machine_device_plug;
4413     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4414     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4415     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4416     hc->unplug_request = spapr_machine_device_unplug_request;
4417     hc->unplug = spapr_machine_device_unplug;
4418 
4419     smc->dr_lmb_enabled = true;
4420     smc->update_dt_enabled = true;
4421     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4422     mc->has_hotpluggable_cpus = true;
4423     mc->nvdimm_supported = true;
4424     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4425     fwc->get_dev_path = spapr_get_fw_dev_path;
4426     nc->nmi_monitor_handler = spapr_nmi;
4427     smc->phb_placement = spapr_phb_placement;
4428     vhc->hypercall = emulate_spapr_hypercall;
4429     vhc->hpt_mask = spapr_hpt_mask;
4430     vhc->map_hptes = spapr_map_hptes;
4431     vhc->unmap_hptes = spapr_unmap_hptes;
4432     vhc->hpte_set_c = spapr_hpte_set_c;
4433     vhc->hpte_set_r = spapr_hpte_set_r;
4434     vhc->get_pate = spapr_get_pate;
4435     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4436     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4437     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4438     xic->ics_get = spapr_ics_get;
4439     xic->ics_resend = spapr_ics_resend;
4440     xic->icp_get = spapr_icp_get;
4441     ispc->print_info = spapr_pic_print_info;
4442     /* Force NUMA node memory size to be a multiple of
4443      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4444      * in which LMBs are represented and hot-added
4445      */
4446     mc->numa_mem_align_shift = 28;
4447     mc->auto_enable_numa = true;
4448 
4449     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4450     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4451     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4452     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4453     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4454     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4455     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4456     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4457     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4458     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4459     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4460     spapr_caps_add_properties(smc);
4461     smc->irq = &spapr_irq_dual;
4462     smc->dr_phb_enabled = true;
4463     smc->linux_pci_probe = true;
4464     smc->smp_threads_vsmt = true;
4465     smc->nr_xirqs = SPAPR_NR_XIRQS;
4466     xfc->match_nvt = spapr_match_nvt;
4467 }
4468 
4469 static const TypeInfo spapr_machine_info = {
4470     .name          = TYPE_SPAPR_MACHINE,
4471     .parent        = TYPE_MACHINE,
4472     .abstract      = true,
4473     .instance_size = sizeof(SpaprMachineState),
4474     .instance_init = spapr_instance_init,
4475     .instance_finalize = spapr_machine_finalizefn,
4476     .class_size    = sizeof(SpaprMachineClass),
4477     .class_init    = spapr_machine_class_init,
4478     .interfaces = (InterfaceInfo[]) {
4479         { TYPE_FW_PATH_PROVIDER },
4480         { TYPE_NMI },
4481         { TYPE_HOTPLUG_HANDLER },
4482         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4483         { TYPE_XICS_FABRIC },
4484         { TYPE_INTERRUPT_STATS_PROVIDER },
4485         { TYPE_XIVE_FABRIC },
4486         { }
4487     },
4488 };
4489 
4490 static void spapr_machine_latest_class_options(MachineClass *mc)
4491 {
4492     mc->alias = "pseries";
4493     mc->is_default = true;
4494 }
4495 
4496 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4497     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4498                                                     void *data)      \
4499     {                                                                \
4500         MachineClass *mc = MACHINE_CLASS(oc);                        \
4501         spapr_machine_##suffix##_class_options(mc);                  \
4502         if (latest) {                                                \
4503             spapr_machine_latest_class_options(mc);                  \
4504         }                                                            \
4505     }                                                                \
4506     static const TypeInfo spapr_machine_##suffix##_info = {          \
4507         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4508         .parent = TYPE_SPAPR_MACHINE,                                \
4509         .class_init = spapr_machine_##suffix##_class_init,           \
4510     };                                                               \
4511     static void spapr_machine_register_##suffix(void)                \
4512     {                                                                \
4513         type_register(&spapr_machine_##suffix##_info);               \
4514     }                                                                \
4515     type_init(spapr_machine_register_##suffix)
4516 
4517 /*
4518  * pseries-5.2
4519  */
4520 static void spapr_machine_5_2_class_options(MachineClass *mc)
4521 {
4522     /* Defaults for the latest behaviour inherited from the base class */
4523 }
4524 
4525 DEFINE_SPAPR_MACHINE(5_2, "5.2", true);
4526 
4527 /*
4528  * pseries-5.1
4529  */
4530 static void spapr_machine_5_1_class_options(MachineClass *mc)
4531 {
4532     spapr_machine_5_2_class_options(mc);
4533     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4534 }
4535 
4536 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4537 
4538 /*
4539  * pseries-5.0
4540  */
4541 static void spapr_machine_5_0_class_options(MachineClass *mc)
4542 {
4543     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4544     static GlobalProperty compat[] = {
4545         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4546     };
4547 
4548     spapr_machine_5_1_class_options(mc);
4549     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4550     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4551     mc->numa_mem_supported = true;
4552     smc->pre_5_1_assoc_refpoints = true;
4553 }
4554 
4555 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4556 
4557 /*
4558  * pseries-4.2
4559  */
4560 static void spapr_machine_4_2_class_options(MachineClass *mc)
4561 {
4562     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4563 
4564     spapr_machine_5_0_class_options(mc);
4565     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4566     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4567     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4568     smc->rma_limit = 16 * GiB;
4569     mc->nvdimm_supported = false;
4570 }
4571 
4572 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4573 
4574 /*
4575  * pseries-4.1
4576  */
4577 static void spapr_machine_4_1_class_options(MachineClass *mc)
4578 {
4579     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4580     static GlobalProperty compat[] = {
4581         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4582         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4583     };
4584 
4585     spapr_machine_4_2_class_options(mc);
4586     smc->linux_pci_probe = false;
4587     smc->smp_threads_vsmt = false;
4588     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4589     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4590 }
4591 
4592 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4593 
4594 /*
4595  * pseries-4.0
4596  */
4597 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4598                               uint64_t *buid, hwaddr *pio,
4599                               hwaddr *mmio32, hwaddr *mmio64,
4600                               unsigned n_dma, uint32_t *liobns,
4601                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4602 {
4603     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4604                         nv2gpa, nv2atsd, errp);
4605     *nv2gpa = 0;
4606     *nv2atsd = 0;
4607 }
4608 
4609 static void spapr_machine_4_0_class_options(MachineClass *mc)
4610 {
4611     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4612 
4613     spapr_machine_4_1_class_options(mc);
4614     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4615     smc->phb_placement = phb_placement_4_0;
4616     smc->irq = &spapr_irq_xics;
4617     smc->pre_4_1_migration = true;
4618 }
4619 
4620 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4621 
4622 /*
4623  * pseries-3.1
4624  */
4625 static void spapr_machine_3_1_class_options(MachineClass *mc)
4626 {
4627     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4628 
4629     spapr_machine_4_0_class_options(mc);
4630     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4631 
4632     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4633     smc->update_dt_enabled = false;
4634     smc->dr_phb_enabled = false;
4635     smc->broken_host_serial_model = true;
4636     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4637     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4638     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4639     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4640 }
4641 
4642 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4643 
4644 /*
4645  * pseries-3.0
4646  */
4647 
4648 static void spapr_machine_3_0_class_options(MachineClass *mc)
4649 {
4650     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4651 
4652     spapr_machine_3_1_class_options(mc);
4653     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4654 
4655     smc->legacy_irq_allocation = true;
4656     smc->nr_xirqs = 0x400;
4657     smc->irq = &spapr_irq_xics_legacy;
4658 }
4659 
4660 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4661 
4662 /*
4663  * pseries-2.12
4664  */
4665 static void spapr_machine_2_12_class_options(MachineClass *mc)
4666 {
4667     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4668     static GlobalProperty compat[] = {
4669         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4670         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4671     };
4672 
4673     spapr_machine_3_0_class_options(mc);
4674     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4675     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4676 
4677     /* We depend on kvm_enabled() to choose a default value for the
4678      * hpt-max-page-size capability. Of course we can't do it here
4679      * because this is too early and the HW accelerator isn't initialzed
4680      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4681      */
4682     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4683 }
4684 
4685 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4686 
4687 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4688 {
4689     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4690 
4691     spapr_machine_2_12_class_options(mc);
4692     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4693     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4694     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4695 }
4696 
4697 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4698 
4699 /*
4700  * pseries-2.11
4701  */
4702 
4703 static void spapr_machine_2_11_class_options(MachineClass *mc)
4704 {
4705     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4706 
4707     spapr_machine_2_12_class_options(mc);
4708     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4709     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4710 }
4711 
4712 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4713 
4714 /*
4715  * pseries-2.10
4716  */
4717 
4718 static void spapr_machine_2_10_class_options(MachineClass *mc)
4719 {
4720     spapr_machine_2_11_class_options(mc);
4721     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4722 }
4723 
4724 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4725 
4726 /*
4727  * pseries-2.9
4728  */
4729 
4730 static void spapr_machine_2_9_class_options(MachineClass *mc)
4731 {
4732     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4733     static GlobalProperty compat[] = {
4734         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4735     };
4736 
4737     spapr_machine_2_10_class_options(mc);
4738     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4739     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4740     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4741     smc->pre_2_10_has_unused_icps = true;
4742     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4743 }
4744 
4745 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4746 
4747 /*
4748  * pseries-2.8
4749  */
4750 
4751 static void spapr_machine_2_8_class_options(MachineClass *mc)
4752 {
4753     static GlobalProperty compat[] = {
4754         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4755     };
4756 
4757     spapr_machine_2_9_class_options(mc);
4758     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4759     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4760     mc->numa_mem_align_shift = 23;
4761 }
4762 
4763 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4764 
4765 /*
4766  * pseries-2.7
4767  */
4768 
4769 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4770                               uint64_t *buid, hwaddr *pio,
4771                               hwaddr *mmio32, hwaddr *mmio64,
4772                               unsigned n_dma, uint32_t *liobns,
4773                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4774 {
4775     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4776     const uint64_t base_buid = 0x800000020000000ULL;
4777     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4778     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4779     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4780     const uint32_t max_index = 255;
4781     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4782 
4783     uint64_t ram_top = MACHINE(spapr)->ram_size;
4784     hwaddr phb0_base, phb_base;
4785     int i;
4786 
4787     /* Do we have device memory? */
4788     if (MACHINE(spapr)->maxram_size > ram_top) {
4789         /* Can't just use maxram_size, because there may be an
4790          * alignment gap between normal and device memory regions
4791          */
4792         ram_top = MACHINE(spapr)->device_memory->base +
4793             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4794     }
4795 
4796     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4797 
4798     if (index > max_index) {
4799         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4800                    max_index);
4801         return;
4802     }
4803 
4804     *buid = base_buid + index;
4805     for (i = 0; i < n_dma; ++i) {
4806         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4807     }
4808 
4809     phb_base = phb0_base + index * phb_spacing;
4810     *pio = phb_base + pio_offset;
4811     *mmio32 = phb_base + mmio_offset;
4812     /*
4813      * We don't set the 64-bit MMIO window, relying on the PHB's
4814      * fallback behaviour of automatically splitting a large "32-bit"
4815      * window into contiguous 32-bit and 64-bit windows
4816      */
4817 
4818     *nv2gpa = 0;
4819     *nv2atsd = 0;
4820 }
4821 
4822 static void spapr_machine_2_7_class_options(MachineClass *mc)
4823 {
4824     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4825     static GlobalProperty compat[] = {
4826         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4827         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4828         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4829         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4830     };
4831 
4832     spapr_machine_2_8_class_options(mc);
4833     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4834     mc->default_machine_opts = "modern-hotplug-events=off";
4835     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4836     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4837     smc->phb_placement = phb_placement_2_7;
4838 }
4839 
4840 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4841 
4842 /*
4843  * pseries-2.6
4844  */
4845 
4846 static void spapr_machine_2_6_class_options(MachineClass *mc)
4847 {
4848     static GlobalProperty compat[] = {
4849         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4850     };
4851 
4852     spapr_machine_2_7_class_options(mc);
4853     mc->has_hotpluggable_cpus = false;
4854     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4855     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4856 }
4857 
4858 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4859 
4860 /*
4861  * pseries-2.5
4862  */
4863 
4864 static void spapr_machine_2_5_class_options(MachineClass *mc)
4865 {
4866     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4867     static GlobalProperty compat[] = {
4868         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4869     };
4870 
4871     spapr_machine_2_6_class_options(mc);
4872     smc->use_ohci_by_default = true;
4873     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4874     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4875 }
4876 
4877 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4878 
4879 /*
4880  * pseries-2.4
4881  */
4882 
4883 static void spapr_machine_2_4_class_options(MachineClass *mc)
4884 {
4885     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4886 
4887     spapr_machine_2_5_class_options(mc);
4888     smc->dr_lmb_enabled = false;
4889     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4890 }
4891 
4892 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4893 
4894 /*
4895  * pseries-2.3
4896  */
4897 
4898 static void spapr_machine_2_3_class_options(MachineClass *mc)
4899 {
4900     static GlobalProperty compat[] = {
4901         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4902     };
4903     spapr_machine_2_4_class_options(mc);
4904     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4905     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4906 }
4907 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4908 
4909 /*
4910  * pseries-2.2
4911  */
4912 
4913 static void spapr_machine_2_2_class_options(MachineClass *mc)
4914 {
4915     static GlobalProperty compat[] = {
4916         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4917     };
4918 
4919     spapr_machine_2_3_class_options(mc);
4920     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4921     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4922     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4923 }
4924 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4925 
4926 /*
4927  * pseries-2.1
4928  */
4929 
4930 static void spapr_machine_2_1_class_options(MachineClass *mc)
4931 {
4932     spapr_machine_2_2_class_options(mc);
4933     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4934 }
4935 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4936 
4937 static void spapr_machine_register_types(void)
4938 {
4939     type_register_static(&spapr_machine_info);
4940 }
4941 
4942 type_init(spapr_machine_register_types)
4943