xref: /openbmc/qemu/hw/ppc/spapr.c (revision 8f0a3716)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
49 
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
53 
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
60 
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
65 
66 #include "exec/address-spaces.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
73 
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "qmp-commands.h"
78 
79 #include <libfdt.h>
80 
81 /* SLOF memory layout:
82  *
83  * SLOF raw image loaded at 0, copies its romfs right below the flat
84  * device-tree, then position SLOF itself 31M below that
85  *
86  * So we set FW_OVERHEAD to 40MB which should account for all of that
87  * and more
88  *
89  * We load our kernel at 4M, leaving space for SLOF initial image
90  */
91 #define FDT_MAX_SIZE            0x100000
92 #define RTAS_MAX_SIZE           0x10000
93 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE             0x400000
95 #define FW_FILE_NAME            "slof.bin"
96 #define FW_OVERHEAD             0x2800000
97 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
98 
99 #define MIN_RMA_SLOF            128UL
100 
101 #define PHANDLE_XICP            0x00001111
102 
103 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
104                                   const char *type_ics,
105                                   int nr_irqs, Error **errp)
106 {
107     Error *local_err = NULL;
108     Object *obj;
109 
110     obj = object_new(type_ics);
111     object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
112     object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
113                                    &error_abort);
114     object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
115     if (local_err) {
116         goto error;
117     }
118     object_property_set_bool(obj, true, "realized", &local_err);
119     if (local_err) {
120         goto error;
121     }
122 
123     return ICS_SIMPLE(obj);
124 
125 error:
126     error_propagate(errp, local_err);
127     return NULL;
128 }
129 
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133      * and newer QEMUs don't even have them. In both cases, we don't want
134      * to send anything on the wire.
135      */
136     return false;
137 }
138 
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140     .name = "icp/server",
141     .version_id = 1,
142     .minimum_version_id = 1,
143     .needed = pre_2_10_vmstate_dummy_icp_needed,
144     .fields = (VMStateField[]) {
145         VMSTATE_UNUSED(4), /* uint32_t xirr */
146         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147         VMSTATE_UNUSED(1), /* uint8_t mfrr */
148         VMSTATE_END_OF_LIST()
149     },
150 };
151 
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155                      (void *)(uintptr_t) i);
156 }
157 
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161                        (void *)(uintptr_t) i);
162 }
163 
164 static inline int xics_max_server_number(void)
165 {
166     return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
167 }
168 
169 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
170 {
171     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
172     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
173 
174     if (kvm_enabled()) {
175         if (machine_kernel_irqchip_allowed(machine) &&
176             !xics_kvm_init(spapr, errp)) {
177             spapr->icp_type = TYPE_KVM_ICP;
178             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
179         }
180         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
181             error_prepend(errp, "kernel_irqchip requested but unavailable: ");
182             return;
183         }
184     }
185 
186     if (!spapr->ics) {
187         xics_spapr_init(spapr);
188         spapr->icp_type = TYPE_ICP;
189         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
190         if (!spapr->ics) {
191             return;
192         }
193     }
194 
195     if (smc->pre_2_10_has_unused_icps) {
196         int i;
197 
198         for (i = 0; i < xics_max_server_number(); i++) {
199             /* Dummy entries get deregistered when real ICPState objects
200              * are registered during CPU core hotplug.
201              */
202             pre_2_10_vmstate_register_dummy_icp(i);
203         }
204     }
205 }
206 
207 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
208                                   int smt_threads)
209 {
210     int i, ret = 0;
211     uint32_t servers_prop[smt_threads];
212     uint32_t gservers_prop[smt_threads * 2];
213     int index = spapr_vcpu_id(cpu);
214 
215     if (cpu->compat_pvr) {
216         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
217         if (ret < 0) {
218             return ret;
219         }
220     }
221 
222     /* Build interrupt servers and gservers properties */
223     for (i = 0; i < smt_threads; i++) {
224         servers_prop[i] = cpu_to_be32(index + i);
225         /* Hack, direct the group queues back to cpu 0 */
226         gservers_prop[i*2] = cpu_to_be32(index + i);
227         gservers_prop[i*2 + 1] = 0;
228     }
229     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
230                       servers_prop, sizeof(servers_prop));
231     if (ret < 0) {
232         return ret;
233     }
234     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
235                       gservers_prop, sizeof(gservers_prop));
236 
237     return ret;
238 }
239 
240 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
241 {
242     int index = spapr_vcpu_id(cpu);
243     uint32_t associativity[] = {cpu_to_be32(0x5),
244                                 cpu_to_be32(0x0),
245                                 cpu_to_be32(0x0),
246                                 cpu_to_be32(0x0),
247                                 cpu_to_be32(cpu->node_id),
248                                 cpu_to_be32(index)};
249 
250     /* Advertise NUMA via ibm,associativity */
251     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
252                           sizeof(associativity));
253 }
254 
255 /* Populate the "ibm,pa-features" property */
256 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
257                                        PowerPCCPU *cpu,
258                                        void *fdt, int offset,
259                                        bool legacy_guest)
260 {
261     CPUPPCState *env = &cpu->env;
262     uint8_t pa_features_206[] = { 6, 0,
263         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
264     uint8_t pa_features_207[] = { 24, 0,
265         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
266         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
267         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
268         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
269     uint8_t pa_features_300[] = { 66, 0,
270         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
271         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
272         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
273         /* 6: DS207 */
274         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
275         /* 16: Vector */
276         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
277         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
278         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
279         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
280         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
281         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
282         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
283         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
284         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
285         /* 42: PM, 44: PC RA, 46: SC vec'd */
286         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
287         /* 48: SIMD, 50: QP BFP, 52: String */
288         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
289         /* 54: DecFP, 56: DecI, 58: SHA */
290         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
291         /* 60: NM atomic, 62: RNG */
292         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
293     };
294     uint8_t *pa_features = NULL;
295     size_t pa_size;
296 
297     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
298         pa_features = pa_features_206;
299         pa_size = sizeof(pa_features_206);
300     }
301     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
302         pa_features = pa_features_207;
303         pa_size = sizeof(pa_features_207);
304     }
305     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
306         pa_features = pa_features_300;
307         pa_size = sizeof(pa_features_300);
308     }
309     if (!pa_features) {
310         return;
311     }
312 
313     if (env->ci_large_pages) {
314         /*
315          * Note: we keep CI large pages off by default because a 64K capable
316          * guest provisioned with large pages might otherwise try to map a qemu
317          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
318          * even if that qemu runs on a 4k host.
319          * We dd this bit back here if we are confident this is not an issue
320          */
321         pa_features[3] |= 0x20;
322     }
323     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
324         pa_features[24] |= 0x80;    /* Transactional memory support */
325     }
326     if (legacy_guest && pa_size > 40) {
327         /* Workaround for broken kernels that attempt (guest) radix
328          * mode when they can't handle it, if they see the radix bit set
329          * in pa-features. So hide it from them. */
330         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
331     }
332 
333     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
334 }
335 
336 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
337 {
338     int ret = 0, offset, cpus_offset;
339     CPUState *cs;
340     char cpu_model[32];
341     int smt = kvmppc_smt_threads();
342     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
343 
344     CPU_FOREACH(cs) {
345         PowerPCCPU *cpu = POWERPC_CPU(cs);
346         DeviceClass *dc = DEVICE_GET_CLASS(cs);
347         int index = spapr_vcpu_id(cpu);
348         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
349 
350         if ((index % smt) != 0) {
351             continue;
352         }
353 
354         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
355 
356         cpus_offset = fdt_path_offset(fdt, "/cpus");
357         if (cpus_offset < 0) {
358             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
359             if (cpus_offset < 0) {
360                 return cpus_offset;
361             }
362         }
363         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
364         if (offset < 0) {
365             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
366             if (offset < 0) {
367                 return offset;
368             }
369         }
370 
371         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
372                           pft_size_prop, sizeof(pft_size_prop));
373         if (ret < 0) {
374             return ret;
375         }
376 
377         if (nb_numa_nodes > 1) {
378             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
379             if (ret < 0) {
380                 return ret;
381             }
382         }
383 
384         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
385         if (ret < 0) {
386             return ret;
387         }
388 
389         spapr_populate_pa_features(spapr, cpu, fdt, offset,
390                                    spapr->cas_legacy_guest_workaround);
391     }
392     return ret;
393 }
394 
395 static hwaddr spapr_node0_size(MachineState *machine)
396 {
397     if (nb_numa_nodes) {
398         int i;
399         for (i = 0; i < nb_numa_nodes; ++i) {
400             if (numa_info[i].node_mem) {
401                 return MIN(pow2floor(numa_info[i].node_mem),
402                            machine->ram_size);
403             }
404         }
405     }
406     return machine->ram_size;
407 }
408 
409 static void add_str(GString *s, const gchar *s1)
410 {
411     g_string_append_len(s, s1, strlen(s1) + 1);
412 }
413 
414 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
415                                        hwaddr size)
416 {
417     uint32_t associativity[] = {
418         cpu_to_be32(0x4), /* length */
419         cpu_to_be32(0x0), cpu_to_be32(0x0),
420         cpu_to_be32(0x0), cpu_to_be32(nodeid)
421     };
422     char mem_name[32];
423     uint64_t mem_reg_property[2];
424     int off;
425 
426     mem_reg_property[0] = cpu_to_be64(start);
427     mem_reg_property[1] = cpu_to_be64(size);
428 
429     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
430     off = fdt_add_subnode(fdt, 0, mem_name);
431     _FDT(off);
432     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
433     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
434                       sizeof(mem_reg_property))));
435     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
436                       sizeof(associativity))));
437     return off;
438 }
439 
440 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
441 {
442     MachineState *machine = MACHINE(spapr);
443     hwaddr mem_start, node_size;
444     int i, nb_nodes = nb_numa_nodes;
445     NodeInfo *nodes = numa_info;
446     NodeInfo ramnode;
447 
448     /* No NUMA nodes, assume there is just one node with whole RAM */
449     if (!nb_numa_nodes) {
450         nb_nodes = 1;
451         ramnode.node_mem = machine->ram_size;
452         nodes = &ramnode;
453     }
454 
455     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
456         if (!nodes[i].node_mem) {
457             continue;
458         }
459         if (mem_start >= machine->ram_size) {
460             node_size = 0;
461         } else {
462             node_size = nodes[i].node_mem;
463             if (node_size > machine->ram_size - mem_start) {
464                 node_size = machine->ram_size - mem_start;
465             }
466         }
467         if (!mem_start) {
468             /* ppc_spapr_init() checks for rma_size <= node0_size already */
469             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
470             mem_start += spapr->rma_size;
471             node_size -= spapr->rma_size;
472         }
473         for ( ; node_size; ) {
474             hwaddr sizetmp = pow2floor(node_size);
475 
476             /* mem_start != 0 here */
477             if (ctzl(mem_start) < ctzl(sizetmp)) {
478                 sizetmp = 1ULL << ctzl(mem_start);
479             }
480 
481             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
482             node_size -= sizetmp;
483             mem_start += sizetmp;
484         }
485     }
486 
487     return 0;
488 }
489 
490 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
491                                   sPAPRMachineState *spapr)
492 {
493     PowerPCCPU *cpu = POWERPC_CPU(cs);
494     CPUPPCState *env = &cpu->env;
495     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
496     int index = spapr_vcpu_id(cpu);
497     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
498                        0xffffffff, 0xffffffff};
499     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
500         : SPAPR_TIMEBASE_FREQ;
501     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
502     uint32_t page_sizes_prop[64];
503     size_t page_sizes_prop_size;
504     uint32_t vcpus_per_socket = smp_threads * smp_cores;
505     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
506     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
507     sPAPRDRConnector *drc;
508     int drc_index;
509     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
510     int i;
511 
512     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
513     if (drc) {
514         drc_index = spapr_drc_index(drc);
515         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
516     }
517 
518     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
519     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
520 
521     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
522     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
523                            env->dcache_line_size)));
524     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
525                            env->dcache_line_size)));
526     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
527                            env->icache_line_size)));
528     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
529                            env->icache_line_size)));
530 
531     if (pcc->l1_dcache_size) {
532         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
533                                pcc->l1_dcache_size)));
534     } else {
535         warn_report("Unknown L1 dcache size for cpu");
536     }
537     if (pcc->l1_icache_size) {
538         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
539                                pcc->l1_icache_size)));
540     } else {
541         warn_report("Unknown L1 icache size for cpu");
542     }
543 
544     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
545     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
546     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
547     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
548     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
549     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
550 
551     if (env->spr_cb[SPR_PURR].oea_read) {
552         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
553     }
554 
555     if (env->mmu_model & POWERPC_MMU_1TSEG) {
556         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
557                           segs, sizeof(segs))));
558     }
559 
560     /* Advertise VSX (vector extensions) if available
561      *   1               == VMX / Altivec available
562      *   2               == VSX available
563      *
564      * Only CPUs for which we create core types in spapr_cpu_core.c
565      * are possible, and all of those have VMX */
566     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
567         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
568     } else {
569         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
570     }
571 
572     /* Advertise DFP (Decimal Floating Point) if available
573      *   0 / no property == no DFP
574      *   1               == DFP available */
575     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
576         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
577     }
578 
579     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
580                                                   sizeof(page_sizes_prop));
581     if (page_sizes_prop_size) {
582         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
583                           page_sizes_prop, page_sizes_prop_size)));
584     }
585 
586     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
587 
588     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
589                            cs->cpu_index / vcpus_per_socket)));
590 
591     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
592                       pft_size_prop, sizeof(pft_size_prop))));
593 
594     if (nb_numa_nodes > 1) {
595         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
596     }
597 
598     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
599 
600     if (pcc->radix_page_info) {
601         for (i = 0; i < pcc->radix_page_info->count; i++) {
602             radix_AP_encodings[i] =
603                 cpu_to_be32(pcc->radix_page_info->entries[i]);
604         }
605         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
606                           radix_AP_encodings,
607                           pcc->radix_page_info->count *
608                           sizeof(radix_AP_encodings[0]))));
609     }
610 }
611 
612 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
613 {
614     CPUState *cs;
615     int cpus_offset;
616     char *nodename;
617     int smt = kvmppc_smt_threads();
618 
619     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
620     _FDT(cpus_offset);
621     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
622     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
623 
624     /*
625      * We walk the CPUs in reverse order to ensure that CPU DT nodes
626      * created by fdt_add_subnode() end up in the right order in FDT
627      * for the guest kernel the enumerate the CPUs correctly.
628      */
629     CPU_FOREACH_REVERSE(cs) {
630         PowerPCCPU *cpu = POWERPC_CPU(cs);
631         int index = spapr_vcpu_id(cpu);
632         DeviceClass *dc = DEVICE_GET_CLASS(cs);
633         int offset;
634 
635         if ((index % smt) != 0) {
636             continue;
637         }
638 
639         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
640         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
641         g_free(nodename);
642         _FDT(offset);
643         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
644     }
645 
646 }
647 
648 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
649 {
650     MemoryDeviceInfoList *info;
651 
652     for (info = list; info; info = info->next) {
653         MemoryDeviceInfo *value = info->value;
654 
655         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
656             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
657 
658             if (pcdimm_info->addr >= addr &&
659                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
660                 return pcdimm_info->node;
661             }
662         }
663     }
664 
665     return -1;
666 }
667 
668 /*
669  * Adds ibm,dynamic-reconfiguration-memory node.
670  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
671  * of this device tree node.
672  */
673 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
674 {
675     MachineState *machine = MACHINE(spapr);
676     int ret, i, offset;
677     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
678     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
679     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
680     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
681                        memory_region_size(&spapr->hotplug_memory.mr)) /
682                        lmb_size;
683     uint32_t *int_buf, *cur_index, buf_len;
684     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
685     MemoryDeviceInfoList *dimms = NULL;
686 
687     /*
688      * Don't create the node if there is no hotpluggable memory
689      */
690     if (machine->ram_size == machine->maxram_size) {
691         return 0;
692     }
693 
694     /*
695      * Allocate enough buffer size to fit in ibm,dynamic-memory
696      * or ibm,associativity-lookup-arrays
697      */
698     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
699               * sizeof(uint32_t);
700     cur_index = int_buf = g_malloc0(buf_len);
701 
702     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
703 
704     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
705                     sizeof(prop_lmb_size));
706     if (ret < 0) {
707         goto out;
708     }
709 
710     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
711     if (ret < 0) {
712         goto out;
713     }
714 
715     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
716     if (ret < 0) {
717         goto out;
718     }
719 
720     if (hotplug_lmb_start) {
721         MemoryDeviceInfoList **prev = &dimms;
722         qmp_pc_dimm_device_list(qdev_get_machine(), &prev);
723     }
724 
725     /* ibm,dynamic-memory */
726     int_buf[0] = cpu_to_be32(nr_lmbs);
727     cur_index++;
728     for (i = 0; i < nr_lmbs; i++) {
729         uint64_t addr = i * lmb_size;
730         uint32_t *dynamic_memory = cur_index;
731 
732         if (i >= hotplug_lmb_start) {
733             sPAPRDRConnector *drc;
734 
735             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
736             g_assert(drc);
737 
738             dynamic_memory[0] = cpu_to_be32(addr >> 32);
739             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
740             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
741             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
742             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
743             if (memory_region_present(get_system_memory(), addr)) {
744                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
745             } else {
746                 dynamic_memory[5] = cpu_to_be32(0);
747             }
748         } else {
749             /*
750              * LMB information for RMA, boot time RAM and gap b/n RAM and
751              * hotplug memory region -- all these are marked as reserved
752              * and as having no valid DRC.
753              */
754             dynamic_memory[0] = cpu_to_be32(addr >> 32);
755             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
756             dynamic_memory[2] = cpu_to_be32(0);
757             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
758             dynamic_memory[4] = cpu_to_be32(-1);
759             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
760                                             SPAPR_LMB_FLAGS_DRC_INVALID);
761         }
762 
763         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
764     }
765     qapi_free_MemoryDeviceInfoList(dimms);
766     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
767     if (ret < 0) {
768         goto out;
769     }
770 
771     /* ibm,associativity-lookup-arrays */
772     cur_index = int_buf;
773     int_buf[0] = cpu_to_be32(nr_nodes);
774     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
775     cur_index += 2;
776     for (i = 0; i < nr_nodes; i++) {
777         uint32_t associativity[] = {
778             cpu_to_be32(0x0),
779             cpu_to_be32(0x0),
780             cpu_to_be32(0x0),
781             cpu_to_be32(i)
782         };
783         memcpy(cur_index, associativity, sizeof(associativity));
784         cur_index += 4;
785     }
786     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
787             (cur_index - int_buf) * sizeof(uint32_t));
788 out:
789     g_free(int_buf);
790     return ret;
791 }
792 
793 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
794                                 sPAPROptionVector *ov5_updates)
795 {
796     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
797     int ret = 0, offset;
798 
799     /* Generate ibm,dynamic-reconfiguration-memory node if required */
800     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
801         g_assert(smc->dr_lmb_enabled);
802         ret = spapr_populate_drconf_memory(spapr, fdt);
803         if (ret) {
804             goto out;
805         }
806     }
807 
808     offset = fdt_path_offset(fdt, "/chosen");
809     if (offset < 0) {
810         offset = fdt_add_subnode(fdt, 0, "chosen");
811         if (offset < 0) {
812             return offset;
813         }
814     }
815     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
816                                  "ibm,architecture-vec-5");
817 
818 out:
819     return ret;
820 }
821 
822 static bool spapr_hotplugged_dev_before_cas(void)
823 {
824     Object *drc_container, *obj;
825     ObjectProperty *prop;
826     ObjectPropertyIterator iter;
827 
828     drc_container = container_get(object_get_root(), "/dr-connector");
829     object_property_iter_init(&iter, drc_container);
830     while ((prop = object_property_iter_next(&iter))) {
831         if (!strstart(prop->type, "link<", NULL)) {
832             continue;
833         }
834         obj = object_property_get_link(drc_container, prop->name, NULL);
835         if (spapr_drc_needed(obj)) {
836             return true;
837         }
838     }
839     return false;
840 }
841 
842 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
843                                  target_ulong addr, target_ulong size,
844                                  sPAPROptionVector *ov5_updates)
845 {
846     void *fdt, *fdt_skel;
847     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
848 
849     if (spapr_hotplugged_dev_before_cas()) {
850         return 1;
851     }
852 
853     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
854         error_report("SLOF provided an unexpected CAS buffer size "
855                      TARGET_FMT_lu " (min: %zu, max: %u)",
856                      size, sizeof(hdr), FW_MAX_SIZE);
857         exit(EXIT_FAILURE);
858     }
859 
860     size -= sizeof(hdr);
861 
862     /* Create skeleton */
863     fdt_skel = g_malloc0(size);
864     _FDT((fdt_create(fdt_skel, size)));
865     _FDT((fdt_begin_node(fdt_skel, "")));
866     _FDT((fdt_end_node(fdt_skel)));
867     _FDT((fdt_finish(fdt_skel)));
868     fdt = g_malloc0(size);
869     _FDT((fdt_open_into(fdt_skel, fdt, size)));
870     g_free(fdt_skel);
871 
872     /* Fixup cpu nodes */
873     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
874 
875     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
876         return -1;
877     }
878 
879     /* Pack resulting tree */
880     _FDT((fdt_pack(fdt)));
881 
882     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
883         trace_spapr_cas_failed(size);
884         return -1;
885     }
886 
887     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
888     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
889     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
890     g_free(fdt);
891 
892     return 0;
893 }
894 
895 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
896 {
897     int rtas;
898     GString *hypertas = g_string_sized_new(256);
899     GString *qemu_hypertas = g_string_sized_new(256);
900     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
901     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
902         memory_region_size(&spapr->hotplug_memory.mr);
903     uint32_t lrdr_capacity[] = {
904         cpu_to_be32(max_hotplug_addr >> 32),
905         cpu_to_be32(max_hotplug_addr & 0xffffffff),
906         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
907         cpu_to_be32(max_cpus / smp_threads),
908     };
909 
910     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
911 
912     /* hypertas */
913     add_str(hypertas, "hcall-pft");
914     add_str(hypertas, "hcall-term");
915     add_str(hypertas, "hcall-dabr");
916     add_str(hypertas, "hcall-interrupt");
917     add_str(hypertas, "hcall-tce");
918     add_str(hypertas, "hcall-vio");
919     add_str(hypertas, "hcall-splpar");
920     add_str(hypertas, "hcall-bulk");
921     add_str(hypertas, "hcall-set-mode");
922     add_str(hypertas, "hcall-sprg0");
923     add_str(hypertas, "hcall-copy");
924     add_str(hypertas, "hcall-debug");
925     add_str(qemu_hypertas, "hcall-memop1");
926 
927     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
928         add_str(hypertas, "hcall-multi-tce");
929     }
930 
931     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
932         add_str(hypertas, "hcall-hpt-resize");
933     }
934 
935     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
936                      hypertas->str, hypertas->len));
937     g_string_free(hypertas, TRUE);
938     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
939                      qemu_hypertas->str, qemu_hypertas->len));
940     g_string_free(qemu_hypertas, TRUE);
941 
942     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
943                      refpoints, sizeof(refpoints)));
944 
945     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
946                           RTAS_ERROR_LOG_MAX));
947     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
948                           RTAS_EVENT_SCAN_RATE));
949 
950     g_assert(msi_nonbroken);
951     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
952 
953     /*
954      * According to PAPR, rtas ibm,os-term does not guarantee a return
955      * back to the guest cpu.
956      *
957      * While an additional ibm,extended-os-term property indicates
958      * that rtas call return will always occur. Set this property.
959      */
960     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
961 
962     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
963                      lrdr_capacity, sizeof(lrdr_capacity)));
964 
965     spapr_dt_rtas_tokens(fdt, rtas);
966 }
967 
968 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
969  * that the guest may request and thus the valid values for bytes 24..26 of
970  * option vector 5: */
971 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
972 {
973     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
974 
975     char val[2 * 4] = {
976         23, 0x00, /* Xive mode, filled in below. */
977         24, 0x00, /* Hash/Radix, filled in below. */
978         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
979         26, 0x40, /* Radix options: GTSE == yes. */
980     };
981 
982     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
983                           first_ppc_cpu->compat_pvr)) {
984         /* If we're in a pre POWER9 compat mode then the guest should do hash */
985         val[3] = 0x00; /* Hash */
986     } else if (kvm_enabled()) {
987         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
988             val[3] = 0x80; /* OV5_MMU_BOTH */
989         } else if (kvmppc_has_cap_mmu_radix()) {
990             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
991         } else {
992             val[3] = 0x00; /* Hash */
993         }
994     } else {
995         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
996         val[3] = 0xC0;
997     }
998     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
999                      val, sizeof(val)));
1000 }
1001 
1002 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1003 {
1004     MachineState *machine = MACHINE(spapr);
1005     int chosen;
1006     const char *boot_device = machine->boot_order;
1007     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1008     size_t cb = 0;
1009     char *bootlist = get_boot_devices_list(&cb, true);
1010 
1011     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1012 
1013     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1014     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1015                           spapr->initrd_base));
1016     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1017                           spapr->initrd_base + spapr->initrd_size));
1018 
1019     if (spapr->kernel_size) {
1020         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1021                               cpu_to_be64(spapr->kernel_size) };
1022 
1023         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1024                          &kprop, sizeof(kprop)));
1025         if (spapr->kernel_le) {
1026             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1027         }
1028     }
1029     if (boot_menu) {
1030         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1031     }
1032     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1033     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1034     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1035 
1036     if (cb && bootlist) {
1037         int i;
1038 
1039         for (i = 0; i < cb; i++) {
1040             if (bootlist[i] == '\n') {
1041                 bootlist[i] = ' ';
1042             }
1043         }
1044         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1045     }
1046 
1047     if (boot_device && strlen(boot_device)) {
1048         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1049     }
1050 
1051     if (!spapr->has_graphics && stdout_path) {
1052         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1053     }
1054 
1055     spapr_dt_ov5_platform_support(fdt, chosen);
1056 
1057     g_free(stdout_path);
1058     g_free(bootlist);
1059 }
1060 
1061 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1062 {
1063     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1064      * KVM to work under pHyp with some guest co-operation */
1065     int hypervisor;
1066     uint8_t hypercall[16];
1067 
1068     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1069     /* indicate KVM hypercall interface */
1070     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1071     if (kvmppc_has_cap_fixup_hcalls()) {
1072         /*
1073          * Older KVM versions with older guest kernels were broken
1074          * with the magic page, don't allow the guest to map it.
1075          */
1076         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1077                                   sizeof(hypercall))) {
1078             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1079                              hypercall, sizeof(hypercall)));
1080         }
1081     }
1082 }
1083 
1084 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1085                              hwaddr rtas_addr,
1086                              hwaddr rtas_size)
1087 {
1088     MachineState *machine = MACHINE(spapr);
1089     MachineClass *mc = MACHINE_GET_CLASS(machine);
1090     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1091     int ret;
1092     void *fdt;
1093     sPAPRPHBState *phb;
1094     char *buf;
1095 
1096     fdt = g_malloc0(FDT_MAX_SIZE);
1097     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1098 
1099     /* Root node */
1100     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1101     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1102     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1103 
1104     /*
1105      * Add info to guest to indentify which host is it being run on
1106      * and what is the uuid of the guest
1107      */
1108     if (kvmppc_get_host_model(&buf)) {
1109         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1110         g_free(buf);
1111     }
1112     if (kvmppc_get_host_serial(&buf)) {
1113         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1114         g_free(buf);
1115     }
1116 
1117     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1118 
1119     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1120     if (qemu_uuid_set) {
1121         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1122     }
1123     g_free(buf);
1124 
1125     if (qemu_get_vm_name()) {
1126         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1127                                 qemu_get_vm_name()));
1128     }
1129 
1130     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1131     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1132 
1133     /* /interrupt controller */
1134     spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1135 
1136     ret = spapr_populate_memory(spapr, fdt);
1137     if (ret < 0) {
1138         error_report("couldn't setup memory nodes in fdt");
1139         exit(1);
1140     }
1141 
1142     /* /vdevice */
1143     spapr_dt_vdevice(spapr->vio_bus, fdt);
1144 
1145     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1146         ret = spapr_rng_populate_dt(fdt);
1147         if (ret < 0) {
1148             error_report("could not set up rng device in the fdt");
1149             exit(1);
1150         }
1151     }
1152 
1153     QLIST_FOREACH(phb, &spapr->phbs, list) {
1154         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1155         if (ret < 0) {
1156             error_report("couldn't setup PCI devices in fdt");
1157             exit(1);
1158         }
1159     }
1160 
1161     /* cpus */
1162     spapr_populate_cpus_dt_node(fdt, spapr);
1163 
1164     if (smc->dr_lmb_enabled) {
1165         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1166     }
1167 
1168     if (mc->has_hotpluggable_cpus) {
1169         int offset = fdt_path_offset(fdt, "/cpus");
1170         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1171                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1172         if (ret < 0) {
1173             error_report("Couldn't set up CPU DR device tree properties");
1174             exit(1);
1175         }
1176     }
1177 
1178     /* /event-sources */
1179     spapr_dt_events(spapr, fdt);
1180 
1181     /* /rtas */
1182     spapr_dt_rtas(spapr, fdt);
1183 
1184     /* /chosen */
1185     spapr_dt_chosen(spapr, fdt);
1186 
1187     /* /hypervisor */
1188     if (kvm_enabled()) {
1189         spapr_dt_hypervisor(spapr, fdt);
1190     }
1191 
1192     /* Build memory reserve map */
1193     if (spapr->kernel_size) {
1194         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1195     }
1196     if (spapr->initrd_size) {
1197         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1198     }
1199 
1200     /* ibm,client-architecture-support updates */
1201     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1202     if (ret < 0) {
1203         error_report("couldn't setup CAS properties fdt");
1204         exit(1);
1205     }
1206 
1207     return fdt;
1208 }
1209 
1210 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1211 {
1212     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1213 }
1214 
1215 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1216                                     PowerPCCPU *cpu)
1217 {
1218     CPUPPCState *env = &cpu->env;
1219 
1220     /* The TCG path should also be holding the BQL at this point */
1221     g_assert(qemu_mutex_iothread_locked());
1222 
1223     if (msr_pr) {
1224         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1225         env->gpr[3] = H_PRIVILEGE;
1226     } else {
1227         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1228     }
1229 }
1230 
1231 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1232 {
1233     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1234 
1235     return spapr->patb_entry;
1236 }
1237 
1238 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1239 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1240 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1241 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1242 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1243 
1244 /*
1245  * Get the fd to access the kernel htab, re-opening it if necessary
1246  */
1247 static int get_htab_fd(sPAPRMachineState *spapr)
1248 {
1249     Error *local_err = NULL;
1250 
1251     if (spapr->htab_fd >= 0) {
1252         return spapr->htab_fd;
1253     }
1254 
1255     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1256     if (spapr->htab_fd < 0) {
1257         error_report_err(local_err);
1258     }
1259 
1260     return spapr->htab_fd;
1261 }
1262 
1263 void close_htab_fd(sPAPRMachineState *spapr)
1264 {
1265     if (spapr->htab_fd >= 0) {
1266         close(spapr->htab_fd);
1267     }
1268     spapr->htab_fd = -1;
1269 }
1270 
1271 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1272 {
1273     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1274 
1275     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1276 }
1277 
1278 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1279 {
1280     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1281 
1282     assert(kvm_enabled());
1283 
1284     if (!spapr->htab) {
1285         return 0;
1286     }
1287 
1288     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1289 }
1290 
1291 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1292                                                 hwaddr ptex, int n)
1293 {
1294     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1295     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1296 
1297     if (!spapr->htab) {
1298         /*
1299          * HTAB is controlled by KVM. Fetch into temporary buffer
1300          */
1301         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1302         kvmppc_read_hptes(hptes, ptex, n);
1303         return hptes;
1304     }
1305 
1306     /*
1307      * HTAB is controlled by QEMU. Just point to the internally
1308      * accessible PTEG.
1309      */
1310     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1311 }
1312 
1313 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1314                               const ppc_hash_pte64_t *hptes,
1315                               hwaddr ptex, int n)
1316 {
1317     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1318 
1319     if (!spapr->htab) {
1320         g_free((void *)hptes);
1321     }
1322 
1323     /* Nothing to do for qemu managed HPT */
1324 }
1325 
1326 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1327                              uint64_t pte0, uint64_t pte1)
1328 {
1329     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1330     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1331 
1332     if (!spapr->htab) {
1333         kvmppc_write_hpte(ptex, pte0, pte1);
1334     } else {
1335         stq_p(spapr->htab + offset, pte0);
1336         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1337     }
1338 }
1339 
1340 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1341 {
1342     int shift;
1343 
1344     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1345      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1346      * that's much more than is needed for Linux guests */
1347     shift = ctz64(pow2ceil(ramsize)) - 7;
1348     shift = MAX(shift, 18); /* Minimum architected size */
1349     shift = MIN(shift, 46); /* Maximum architected size */
1350     return shift;
1351 }
1352 
1353 void spapr_free_hpt(sPAPRMachineState *spapr)
1354 {
1355     g_free(spapr->htab);
1356     spapr->htab = NULL;
1357     spapr->htab_shift = 0;
1358     close_htab_fd(spapr);
1359 }
1360 
1361 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1362                           Error **errp)
1363 {
1364     long rc;
1365 
1366     /* Clean up any HPT info from a previous boot */
1367     spapr_free_hpt(spapr);
1368 
1369     rc = kvmppc_reset_htab(shift);
1370     if (rc < 0) {
1371         /* kernel-side HPT needed, but couldn't allocate one */
1372         error_setg_errno(errp, errno,
1373                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1374                          shift);
1375         /* This is almost certainly fatal, but if the caller really
1376          * wants to carry on with shift == 0, it's welcome to try */
1377     } else if (rc > 0) {
1378         /* kernel-side HPT allocated */
1379         if (rc != shift) {
1380             error_setg(errp,
1381                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1382                        shift, rc);
1383         }
1384 
1385         spapr->htab_shift = shift;
1386         spapr->htab = NULL;
1387     } else {
1388         /* kernel-side HPT not needed, allocate in userspace instead */
1389         size_t size = 1ULL << shift;
1390         int i;
1391 
1392         spapr->htab = qemu_memalign(size, size);
1393         if (!spapr->htab) {
1394             error_setg_errno(errp, errno,
1395                              "Could not allocate HPT of order %d", shift);
1396             return;
1397         }
1398 
1399         memset(spapr->htab, 0, size);
1400         spapr->htab_shift = shift;
1401 
1402         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1403             DIRTY_HPTE(HPTE(spapr->htab, i));
1404         }
1405     }
1406     /* We're setting up a hash table, so that means we're not radix */
1407     spapr->patb_entry = 0;
1408 }
1409 
1410 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1411 {
1412     int hpt_shift;
1413 
1414     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1415         || (spapr->cas_reboot
1416             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1417         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1418     } else {
1419         uint64_t current_ram_size;
1420 
1421         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1422         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1423     }
1424     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1425 
1426     if (spapr->vrma_adjust) {
1427         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1428                                           spapr->htab_shift);
1429     }
1430 }
1431 
1432 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1433 {
1434     bool matched = false;
1435 
1436     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1437         matched = true;
1438     }
1439 
1440     if (!matched) {
1441         error_report("Device %s is not supported by this machine yet.",
1442                      qdev_fw_name(DEVICE(sbdev)));
1443         exit(1);
1444     }
1445 }
1446 
1447 static int spapr_reset_drcs(Object *child, void *opaque)
1448 {
1449     sPAPRDRConnector *drc =
1450         (sPAPRDRConnector *) object_dynamic_cast(child,
1451                                                  TYPE_SPAPR_DR_CONNECTOR);
1452 
1453     if (drc) {
1454         spapr_drc_reset(drc);
1455     }
1456 
1457     return 0;
1458 }
1459 
1460 static void spapr_machine_reset(void)
1461 {
1462     MachineState *machine = MACHINE(qdev_get_machine());
1463     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1464     PowerPCCPU *first_ppc_cpu;
1465     uint32_t rtas_limit;
1466     hwaddr rtas_addr, fdt_addr;
1467     void *fdt;
1468     int rc;
1469 
1470     /* Check for unknown sysbus devices */
1471     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1472 
1473     spapr_caps_reset(spapr);
1474 
1475     first_ppc_cpu = POWERPC_CPU(first_cpu);
1476     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1477         ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1478                          spapr->max_compat_pvr)) {
1479         /* If using KVM with radix mode available, VCPUs can be started
1480          * without a HPT because KVM will start them in radix mode.
1481          * Set the GR bit in PATB so that we know there is no HPT. */
1482         spapr->patb_entry = PATBE1_GR;
1483     } else {
1484         spapr_setup_hpt_and_vrma(spapr);
1485     }
1486 
1487     /* if this reset wasn't generated by CAS, we should reset our
1488      * negotiated options and start from scratch */
1489     if (!spapr->cas_reboot) {
1490         spapr_ovec_cleanup(spapr->ov5_cas);
1491         spapr->ov5_cas = spapr_ovec_new();
1492 
1493         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1494     }
1495 
1496     qemu_devices_reset();
1497 
1498     /* DRC reset may cause a device to be unplugged. This will cause troubles
1499      * if this device is used by another device (eg, a running vhost backend
1500      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1501      * situations, we reset DRCs after all devices have been reset.
1502      */
1503     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1504 
1505     spapr_clear_pending_events(spapr);
1506 
1507     /*
1508      * We place the device tree and RTAS just below either the top of the RMA,
1509      * or just below 2GB, whichever is lowere, so that it can be
1510      * processed with 32-bit real mode code if necessary
1511      */
1512     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1513     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1514     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1515 
1516     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1517 
1518     spapr_load_rtas(spapr, fdt, rtas_addr);
1519 
1520     rc = fdt_pack(fdt);
1521 
1522     /* Should only fail if we've built a corrupted tree */
1523     assert(rc == 0);
1524 
1525     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1526         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1527                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1528         exit(1);
1529     }
1530 
1531     /* Load the fdt */
1532     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1533     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1534     g_free(fdt);
1535 
1536     /* Set up the entry state */
1537     first_ppc_cpu->env.gpr[3] = fdt_addr;
1538     first_ppc_cpu->env.gpr[5] = 0;
1539     first_cpu->halted = 0;
1540     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1541 
1542     spapr->cas_reboot = false;
1543 }
1544 
1545 static void spapr_create_nvram(sPAPRMachineState *spapr)
1546 {
1547     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1548     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1549 
1550     if (dinfo) {
1551         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1552                             &error_fatal);
1553     }
1554 
1555     qdev_init_nofail(dev);
1556 
1557     spapr->nvram = (struct sPAPRNVRAM *)dev;
1558 }
1559 
1560 static void spapr_rtc_create(sPAPRMachineState *spapr)
1561 {
1562     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1563     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1564                               &error_fatal);
1565     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1566                               &error_fatal);
1567     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1568                               "date", &error_fatal);
1569 }
1570 
1571 /* Returns whether we want to use VGA or not */
1572 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1573 {
1574     switch (vga_interface_type) {
1575     case VGA_NONE:
1576         return false;
1577     case VGA_DEVICE:
1578         return true;
1579     case VGA_STD:
1580     case VGA_VIRTIO:
1581         return pci_vga_init(pci_bus) != NULL;
1582     default:
1583         error_setg(errp,
1584                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1585         return false;
1586     }
1587 }
1588 
1589 static int spapr_pre_load(void *opaque)
1590 {
1591     int rc;
1592 
1593     rc = spapr_caps_pre_load(opaque);
1594     if (rc) {
1595         return rc;
1596     }
1597 
1598     return 0;
1599 }
1600 
1601 static int spapr_post_load(void *opaque, int version_id)
1602 {
1603     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1604     int err = 0;
1605 
1606     err = spapr_caps_post_migration(spapr);
1607     if (err) {
1608         return err;
1609     }
1610 
1611     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1612         CPUState *cs;
1613         CPU_FOREACH(cs) {
1614             PowerPCCPU *cpu = POWERPC_CPU(cs);
1615             icp_resend(ICP(cpu->intc));
1616         }
1617     }
1618 
1619     /* In earlier versions, there was no separate qdev for the PAPR
1620      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1621      * So when migrating from those versions, poke the incoming offset
1622      * value into the RTC device */
1623     if (version_id < 3) {
1624         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1625     }
1626 
1627     if (kvm_enabled() && spapr->patb_entry) {
1628         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1629         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1630         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1631 
1632         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1633         if (err) {
1634             error_report("Process table config unsupported by the host");
1635             return -EINVAL;
1636         }
1637     }
1638 
1639     return err;
1640 }
1641 
1642 static int spapr_pre_save(void *opaque)
1643 {
1644     int rc;
1645 
1646     rc = spapr_caps_pre_save(opaque);
1647     if (rc) {
1648         return rc;
1649     }
1650 
1651     return 0;
1652 }
1653 
1654 static bool version_before_3(void *opaque, int version_id)
1655 {
1656     return version_id < 3;
1657 }
1658 
1659 static bool spapr_pending_events_needed(void *opaque)
1660 {
1661     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1662     return !QTAILQ_EMPTY(&spapr->pending_events);
1663 }
1664 
1665 static const VMStateDescription vmstate_spapr_event_entry = {
1666     .name = "spapr_event_log_entry",
1667     .version_id = 1,
1668     .minimum_version_id = 1,
1669     .fields = (VMStateField[]) {
1670         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1671         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1672         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1673                                      NULL, extended_length),
1674         VMSTATE_END_OF_LIST()
1675     },
1676 };
1677 
1678 static const VMStateDescription vmstate_spapr_pending_events = {
1679     .name = "spapr_pending_events",
1680     .version_id = 1,
1681     .minimum_version_id = 1,
1682     .needed = spapr_pending_events_needed,
1683     .fields = (VMStateField[]) {
1684         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1685                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1686         VMSTATE_END_OF_LIST()
1687     },
1688 };
1689 
1690 static bool spapr_ov5_cas_needed(void *opaque)
1691 {
1692     sPAPRMachineState *spapr = opaque;
1693     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1694     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1695     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1696     bool cas_needed;
1697 
1698     /* Prior to the introduction of sPAPROptionVector, we had two option
1699      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1700      * Both of these options encode machine topology into the device-tree
1701      * in such a way that the now-booted OS should still be able to interact
1702      * appropriately with QEMU regardless of what options were actually
1703      * negotiatied on the source side.
1704      *
1705      * As such, we can avoid migrating the CAS-negotiated options if these
1706      * are the only options available on the current machine/platform.
1707      * Since these are the only options available for pseries-2.7 and
1708      * earlier, this allows us to maintain old->new/new->old migration
1709      * compatibility.
1710      *
1711      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1712      * via default pseries-2.8 machines and explicit command-line parameters.
1713      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1714      * of the actual CAS-negotiated values to continue working properly. For
1715      * example, availability of memory unplug depends on knowing whether
1716      * OV5_HP_EVT was negotiated via CAS.
1717      *
1718      * Thus, for any cases where the set of available CAS-negotiatable
1719      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1720      * include the CAS-negotiated options in the migration stream.
1721      */
1722     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1723     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1724 
1725     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1726      * the mask itself since in the future it's possible "legacy" bits may be
1727      * removed via machine options, which could generate a false positive
1728      * that breaks migration.
1729      */
1730     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1731     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1732 
1733     spapr_ovec_cleanup(ov5_mask);
1734     spapr_ovec_cleanup(ov5_legacy);
1735     spapr_ovec_cleanup(ov5_removed);
1736 
1737     return cas_needed;
1738 }
1739 
1740 static const VMStateDescription vmstate_spapr_ov5_cas = {
1741     .name = "spapr_option_vector_ov5_cas",
1742     .version_id = 1,
1743     .minimum_version_id = 1,
1744     .needed = spapr_ov5_cas_needed,
1745     .fields = (VMStateField[]) {
1746         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1747                                  vmstate_spapr_ovec, sPAPROptionVector),
1748         VMSTATE_END_OF_LIST()
1749     },
1750 };
1751 
1752 static bool spapr_patb_entry_needed(void *opaque)
1753 {
1754     sPAPRMachineState *spapr = opaque;
1755 
1756     return !!spapr->patb_entry;
1757 }
1758 
1759 static const VMStateDescription vmstate_spapr_patb_entry = {
1760     .name = "spapr_patb_entry",
1761     .version_id = 1,
1762     .minimum_version_id = 1,
1763     .needed = spapr_patb_entry_needed,
1764     .fields = (VMStateField[]) {
1765         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1766         VMSTATE_END_OF_LIST()
1767     },
1768 };
1769 
1770 static const VMStateDescription vmstate_spapr = {
1771     .name = "spapr",
1772     .version_id = 3,
1773     .minimum_version_id = 1,
1774     .pre_load = spapr_pre_load,
1775     .post_load = spapr_post_load,
1776     .pre_save = spapr_pre_save,
1777     .fields = (VMStateField[]) {
1778         /* used to be @next_irq */
1779         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1780 
1781         /* RTC offset */
1782         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1783 
1784         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1785         VMSTATE_END_OF_LIST()
1786     },
1787     .subsections = (const VMStateDescription*[]) {
1788         &vmstate_spapr_ov5_cas,
1789         &vmstate_spapr_patb_entry,
1790         &vmstate_spapr_pending_events,
1791         &vmstate_spapr_cap_htm,
1792         &vmstate_spapr_cap_vsx,
1793         &vmstate_spapr_cap_dfp,
1794         &vmstate_spapr_cap_cfpc,
1795         &vmstate_spapr_cap_sbbc,
1796         &vmstate_spapr_cap_ibs,
1797         NULL
1798     }
1799 };
1800 
1801 static int htab_save_setup(QEMUFile *f, void *opaque)
1802 {
1803     sPAPRMachineState *spapr = opaque;
1804 
1805     /* "Iteration" header */
1806     if (!spapr->htab_shift) {
1807         qemu_put_be32(f, -1);
1808     } else {
1809         qemu_put_be32(f, spapr->htab_shift);
1810     }
1811 
1812     if (spapr->htab) {
1813         spapr->htab_save_index = 0;
1814         spapr->htab_first_pass = true;
1815     } else {
1816         if (spapr->htab_shift) {
1817             assert(kvm_enabled());
1818         }
1819     }
1820 
1821 
1822     return 0;
1823 }
1824 
1825 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1826                             int chunkstart, int n_valid, int n_invalid)
1827 {
1828     qemu_put_be32(f, chunkstart);
1829     qemu_put_be16(f, n_valid);
1830     qemu_put_be16(f, n_invalid);
1831     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1832                     HASH_PTE_SIZE_64 * n_valid);
1833 }
1834 
1835 static void htab_save_end_marker(QEMUFile *f)
1836 {
1837     qemu_put_be32(f, 0);
1838     qemu_put_be16(f, 0);
1839     qemu_put_be16(f, 0);
1840 }
1841 
1842 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1843                                  int64_t max_ns)
1844 {
1845     bool has_timeout = max_ns != -1;
1846     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1847     int index = spapr->htab_save_index;
1848     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1849 
1850     assert(spapr->htab_first_pass);
1851 
1852     do {
1853         int chunkstart;
1854 
1855         /* Consume invalid HPTEs */
1856         while ((index < htabslots)
1857                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1858             CLEAN_HPTE(HPTE(spapr->htab, index));
1859             index++;
1860         }
1861 
1862         /* Consume valid HPTEs */
1863         chunkstart = index;
1864         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1865                && HPTE_VALID(HPTE(spapr->htab, index))) {
1866             CLEAN_HPTE(HPTE(spapr->htab, index));
1867             index++;
1868         }
1869 
1870         if (index > chunkstart) {
1871             int n_valid = index - chunkstart;
1872 
1873             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1874 
1875             if (has_timeout &&
1876                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1877                 break;
1878             }
1879         }
1880     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1881 
1882     if (index >= htabslots) {
1883         assert(index == htabslots);
1884         index = 0;
1885         spapr->htab_first_pass = false;
1886     }
1887     spapr->htab_save_index = index;
1888 }
1889 
1890 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1891                                 int64_t max_ns)
1892 {
1893     bool final = max_ns < 0;
1894     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1895     int examined = 0, sent = 0;
1896     int index = spapr->htab_save_index;
1897     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1898 
1899     assert(!spapr->htab_first_pass);
1900 
1901     do {
1902         int chunkstart, invalidstart;
1903 
1904         /* Consume non-dirty HPTEs */
1905         while ((index < htabslots)
1906                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1907             index++;
1908             examined++;
1909         }
1910 
1911         chunkstart = index;
1912         /* Consume valid dirty HPTEs */
1913         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1914                && HPTE_DIRTY(HPTE(spapr->htab, index))
1915                && HPTE_VALID(HPTE(spapr->htab, index))) {
1916             CLEAN_HPTE(HPTE(spapr->htab, index));
1917             index++;
1918             examined++;
1919         }
1920 
1921         invalidstart = index;
1922         /* Consume invalid dirty HPTEs */
1923         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1924                && HPTE_DIRTY(HPTE(spapr->htab, index))
1925                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1926             CLEAN_HPTE(HPTE(spapr->htab, index));
1927             index++;
1928             examined++;
1929         }
1930 
1931         if (index > chunkstart) {
1932             int n_valid = invalidstart - chunkstart;
1933             int n_invalid = index - invalidstart;
1934 
1935             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1936             sent += index - chunkstart;
1937 
1938             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1939                 break;
1940             }
1941         }
1942 
1943         if (examined >= htabslots) {
1944             break;
1945         }
1946 
1947         if (index >= htabslots) {
1948             assert(index == htabslots);
1949             index = 0;
1950         }
1951     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1952 
1953     if (index >= htabslots) {
1954         assert(index == htabslots);
1955         index = 0;
1956     }
1957 
1958     spapr->htab_save_index = index;
1959 
1960     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1961 }
1962 
1963 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1964 #define MAX_KVM_BUF_SIZE    2048
1965 
1966 static int htab_save_iterate(QEMUFile *f, void *opaque)
1967 {
1968     sPAPRMachineState *spapr = opaque;
1969     int fd;
1970     int rc = 0;
1971 
1972     /* Iteration header */
1973     if (!spapr->htab_shift) {
1974         qemu_put_be32(f, -1);
1975         return 1;
1976     } else {
1977         qemu_put_be32(f, 0);
1978     }
1979 
1980     if (!spapr->htab) {
1981         assert(kvm_enabled());
1982 
1983         fd = get_htab_fd(spapr);
1984         if (fd < 0) {
1985             return fd;
1986         }
1987 
1988         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1989         if (rc < 0) {
1990             return rc;
1991         }
1992     } else  if (spapr->htab_first_pass) {
1993         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1994     } else {
1995         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1996     }
1997 
1998     htab_save_end_marker(f);
1999 
2000     return rc;
2001 }
2002 
2003 static int htab_save_complete(QEMUFile *f, void *opaque)
2004 {
2005     sPAPRMachineState *spapr = opaque;
2006     int fd;
2007 
2008     /* Iteration header */
2009     if (!spapr->htab_shift) {
2010         qemu_put_be32(f, -1);
2011         return 0;
2012     } else {
2013         qemu_put_be32(f, 0);
2014     }
2015 
2016     if (!spapr->htab) {
2017         int rc;
2018 
2019         assert(kvm_enabled());
2020 
2021         fd = get_htab_fd(spapr);
2022         if (fd < 0) {
2023             return fd;
2024         }
2025 
2026         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2027         if (rc < 0) {
2028             return rc;
2029         }
2030     } else {
2031         if (spapr->htab_first_pass) {
2032             htab_save_first_pass(f, spapr, -1);
2033         }
2034         htab_save_later_pass(f, spapr, -1);
2035     }
2036 
2037     /* End marker */
2038     htab_save_end_marker(f);
2039 
2040     return 0;
2041 }
2042 
2043 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2044 {
2045     sPAPRMachineState *spapr = opaque;
2046     uint32_t section_hdr;
2047     int fd = -1;
2048     Error *local_err = NULL;
2049 
2050     if (version_id < 1 || version_id > 1) {
2051         error_report("htab_load() bad version");
2052         return -EINVAL;
2053     }
2054 
2055     section_hdr = qemu_get_be32(f);
2056 
2057     if (section_hdr == -1) {
2058         spapr_free_hpt(spapr);
2059         return 0;
2060     }
2061 
2062     if (section_hdr) {
2063         /* First section gives the htab size */
2064         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2065         if (local_err) {
2066             error_report_err(local_err);
2067             return -EINVAL;
2068         }
2069         return 0;
2070     }
2071 
2072     if (!spapr->htab) {
2073         assert(kvm_enabled());
2074 
2075         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2076         if (fd < 0) {
2077             error_report_err(local_err);
2078             return fd;
2079         }
2080     }
2081 
2082     while (true) {
2083         uint32_t index;
2084         uint16_t n_valid, n_invalid;
2085 
2086         index = qemu_get_be32(f);
2087         n_valid = qemu_get_be16(f);
2088         n_invalid = qemu_get_be16(f);
2089 
2090         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2091             /* End of Stream */
2092             break;
2093         }
2094 
2095         if ((index + n_valid + n_invalid) >
2096             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2097             /* Bad index in stream */
2098             error_report(
2099                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2100                 index, n_valid, n_invalid, spapr->htab_shift);
2101             return -EINVAL;
2102         }
2103 
2104         if (spapr->htab) {
2105             if (n_valid) {
2106                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2107                                 HASH_PTE_SIZE_64 * n_valid);
2108             }
2109             if (n_invalid) {
2110                 memset(HPTE(spapr->htab, index + n_valid), 0,
2111                        HASH_PTE_SIZE_64 * n_invalid);
2112             }
2113         } else {
2114             int rc;
2115 
2116             assert(fd >= 0);
2117 
2118             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2119             if (rc < 0) {
2120                 return rc;
2121             }
2122         }
2123     }
2124 
2125     if (!spapr->htab) {
2126         assert(fd >= 0);
2127         close(fd);
2128     }
2129 
2130     return 0;
2131 }
2132 
2133 static void htab_save_cleanup(void *opaque)
2134 {
2135     sPAPRMachineState *spapr = opaque;
2136 
2137     close_htab_fd(spapr);
2138 }
2139 
2140 static SaveVMHandlers savevm_htab_handlers = {
2141     .save_setup = htab_save_setup,
2142     .save_live_iterate = htab_save_iterate,
2143     .save_live_complete_precopy = htab_save_complete,
2144     .save_cleanup = htab_save_cleanup,
2145     .load_state = htab_load,
2146 };
2147 
2148 static void spapr_boot_set(void *opaque, const char *boot_device,
2149                            Error **errp)
2150 {
2151     MachineState *machine = MACHINE(opaque);
2152     machine->boot_order = g_strdup(boot_device);
2153 }
2154 
2155 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2156 {
2157     MachineState *machine = MACHINE(spapr);
2158     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2159     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2160     int i;
2161 
2162     for (i = 0; i < nr_lmbs; i++) {
2163         uint64_t addr;
2164 
2165         addr = i * lmb_size + spapr->hotplug_memory.base;
2166         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2167                                addr / lmb_size);
2168     }
2169 }
2170 
2171 /*
2172  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2173  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2174  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2175  */
2176 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2177 {
2178     int i;
2179 
2180     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2181         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2182                    " is not aligned to %llu MiB",
2183                    machine->ram_size,
2184                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2185         return;
2186     }
2187 
2188     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2189         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2190                    " is not aligned to %llu MiB",
2191                    machine->ram_size,
2192                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2193         return;
2194     }
2195 
2196     for (i = 0; i < nb_numa_nodes; i++) {
2197         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2198             error_setg(errp,
2199                        "Node %d memory size 0x%" PRIx64
2200                        " is not aligned to %llu MiB",
2201                        i, numa_info[i].node_mem,
2202                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2203             return;
2204         }
2205     }
2206 }
2207 
2208 /* find cpu slot in machine->possible_cpus by core_id */
2209 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2210 {
2211     int index = id / smp_threads;
2212 
2213     if (index >= ms->possible_cpus->len) {
2214         return NULL;
2215     }
2216     if (idx) {
2217         *idx = index;
2218     }
2219     return &ms->possible_cpus->cpus[index];
2220 }
2221 
2222 static void spapr_init_cpus(sPAPRMachineState *spapr)
2223 {
2224     MachineState *machine = MACHINE(spapr);
2225     MachineClass *mc = MACHINE_GET_CLASS(machine);
2226     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2227     int smt = kvmppc_smt_threads();
2228     const CPUArchIdList *possible_cpus;
2229     int boot_cores_nr = smp_cpus / smp_threads;
2230     int i;
2231 
2232     possible_cpus = mc->possible_cpu_arch_ids(machine);
2233     if (mc->has_hotpluggable_cpus) {
2234         if (smp_cpus % smp_threads) {
2235             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2236                          smp_cpus, smp_threads);
2237             exit(1);
2238         }
2239         if (max_cpus % smp_threads) {
2240             error_report("max_cpus (%u) must be multiple of threads (%u)",
2241                          max_cpus, smp_threads);
2242             exit(1);
2243         }
2244     } else {
2245         if (max_cpus != smp_cpus) {
2246             error_report("This machine version does not support CPU hotplug");
2247             exit(1);
2248         }
2249         boot_cores_nr = possible_cpus->len;
2250     }
2251 
2252     for (i = 0; i < possible_cpus->len; i++) {
2253         int core_id = i * smp_threads;
2254 
2255         if (mc->has_hotpluggable_cpus) {
2256             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2257                                    (core_id / smp_threads) * smt);
2258         }
2259 
2260         if (i < boot_cores_nr) {
2261             Object *core  = object_new(type);
2262             int nr_threads = smp_threads;
2263 
2264             /* Handle the partially filled core for older machine types */
2265             if ((i + 1) * smp_threads >= smp_cpus) {
2266                 nr_threads = smp_cpus - i * smp_threads;
2267             }
2268 
2269             object_property_set_int(core, nr_threads, "nr-threads",
2270                                     &error_fatal);
2271             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2272                                     &error_fatal);
2273             object_property_set_bool(core, true, "realized", &error_fatal);
2274         }
2275     }
2276 }
2277 
2278 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2279 {
2280     Error *local_err = NULL;
2281     bool vsmt_user = !!spapr->vsmt;
2282     int kvm_smt = kvmppc_smt_threads();
2283     int ret;
2284 
2285     if (!kvm_enabled() && (smp_threads > 1)) {
2286         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2287                      "on a pseries machine");
2288         goto out;
2289     }
2290     if (!is_power_of_2(smp_threads)) {
2291         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2292                      "machine because it must be a power of 2", smp_threads);
2293         goto out;
2294     }
2295 
2296     /* Detemine the VSMT mode to use: */
2297     if (vsmt_user) {
2298         if (spapr->vsmt < smp_threads) {
2299             error_setg(&local_err, "Cannot support VSMT mode %d"
2300                          " because it must be >= threads/core (%d)",
2301                          spapr->vsmt, smp_threads);
2302             goto out;
2303         }
2304         /* In this case, spapr->vsmt has been set by the command line */
2305     } else {
2306         /*
2307          * Default VSMT value is tricky, because we need it to be as
2308          * consistent as possible (for migration), but this requires
2309          * changing it for at least some existing cases.  We pick 8 as
2310          * the value that we'd get with KVM on POWER8, the
2311          * overwhelmingly common case in production systems.
2312          */
2313         spapr->vsmt = 8;
2314     }
2315 
2316     /* KVM: If necessary, set the SMT mode: */
2317     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2318         ret = kvmppc_set_smt_threads(spapr->vsmt);
2319         if (ret) {
2320             /* Looks like KVM isn't able to change VSMT mode */
2321             error_setg(&local_err,
2322                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2323                        spapr->vsmt, ret);
2324             /* We can live with that if the default one is big enough
2325              * for the number of threads, and a submultiple of the one
2326              * we want.  In this case we'll waste some vcpu ids, but
2327              * behaviour will be correct */
2328             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2329                 warn_report_err(local_err);
2330                 local_err = NULL;
2331                 goto out;
2332             } else {
2333                 if (!vsmt_user) {
2334                     error_append_hint(&local_err,
2335                                       "On PPC, a VM with %d threads/core"
2336                                       " on a host with %d threads/core"
2337                                       " requires the use of VSMT mode %d.\n",
2338                                       smp_threads, kvm_smt, spapr->vsmt);
2339                 }
2340                 kvmppc_hint_smt_possible(&local_err);
2341                 goto out;
2342             }
2343         }
2344     }
2345     /* else TCG: nothing to do currently */
2346 out:
2347     error_propagate(errp, local_err);
2348 }
2349 
2350 /* pSeries LPAR / sPAPR hardware init */
2351 static void spapr_machine_init(MachineState *machine)
2352 {
2353     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2354     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2355     const char *kernel_filename = machine->kernel_filename;
2356     const char *initrd_filename = machine->initrd_filename;
2357     PCIHostState *phb;
2358     int i;
2359     MemoryRegion *sysmem = get_system_memory();
2360     MemoryRegion *ram = g_new(MemoryRegion, 1);
2361     MemoryRegion *rma_region;
2362     void *rma = NULL;
2363     hwaddr rma_alloc_size;
2364     hwaddr node0_size = spapr_node0_size(machine);
2365     long load_limit, fw_size;
2366     char *filename;
2367     Error *resize_hpt_err = NULL;
2368 
2369     msi_nonbroken = true;
2370 
2371     QLIST_INIT(&spapr->phbs);
2372     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2373 
2374     /* Check HPT resizing availability */
2375     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2376     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2377         /*
2378          * If the user explicitly requested a mode we should either
2379          * supply it, or fail completely (which we do below).  But if
2380          * it's not set explicitly, we reset our mode to something
2381          * that works
2382          */
2383         if (resize_hpt_err) {
2384             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2385             error_free(resize_hpt_err);
2386             resize_hpt_err = NULL;
2387         } else {
2388             spapr->resize_hpt = smc->resize_hpt_default;
2389         }
2390     }
2391 
2392     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2393 
2394     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2395         /*
2396          * User requested HPT resize, but this host can't supply it.  Bail out
2397          */
2398         error_report_err(resize_hpt_err);
2399         exit(1);
2400     }
2401 
2402     /* Allocate RMA if necessary */
2403     rma_alloc_size = kvmppc_alloc_rma(&rma);
2404 
2405     if (rma_alloc_size == -1) {
2406         error_report("Unable to create RMA");
2407         exit(1);
2408     }
2409 
2410     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2411         spapr->rma_size = rma_alloc_size;
2412     } else {
2413         spapr->rma_size = node0_size;
2414 
2415         /* With KVM, we don't actually know whether KVM supports an
2416          * unbounded RMA (PR KVM) or is limited by the hash table size
2417          * (HV KVM using VRMA), so we always assume the latter
2418          *
2419          * In that case, we also limit the initial allocations for RTAS
2420          * etc... to 256M since we have no way to know what the VRMA size
2421          * is going to be as it depends on the size of the hash table
2422          * isn't determined yet.
2423          */
2424         if (kvm_enabled()) {
2425             spapr->vrma_adjust = 1;
2426             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2427         }
2428 
2429         /* Actually we don't support unbounded RMA anymore since we
2430          * added proper emulation of HV mode. The max we can get is
2431          * 16G which also happens to be what we configure for PAPR
2432          * mode so make sure we don't do anything bigger than that
2433          */
2434         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2435     }
2436 
2437     if (spapr->rma_size > node0_size) {
2438         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2439                      spapr->rma_size);
2440         exit(1);
2441     }
2442 
2443     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2444     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2445 
2446     /* Set up Interrupt Controller before we create the VCPUs */
2447     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2448 
2449     /* Set up containers for ibm,client-architecture-support negotiated options
2450      */
2451     spapr->ov5 = spapr_ovec_new();
2452     spapr->ov5_cas = spapr_ovec_new();
2453 
2454     if (smc->dr_lmb_enabled) {
2455         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2456         spapr_validate_node_memory(machine, &error_fatal);
2457     }
2458 
2459     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2460     if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2461         /* KVM and TCG always allow GTSE with radix... */
2462         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2463     }
2464     /* ... but not with hash (currently). */
2465 
2466     /* advertise support for dedicated HP event source to guests */
2467     if (spapr->use_hotplug_event_source) {
2468         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2469     }
2470 
2471     /* advertise support for HPT resizing */
2472     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2473         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2474     }
2475 
2476     /* init CPUs */
2477     spapr_set_vsmt_mode(spapr, &error_fatal);
2478 
2479     spapr_init_cpus(spapr);
2480 
2481     if (kvm_enabled()) {
2482         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2483         kvmppc_enable_logical_ci_hcalls();
2484         kvmppc_enable_set_mode_hcall();
2485 
2486         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2487         kvmppc_enable_clear_ref_mod_hcalls();
2488     }
2489 
2490     /* allocate RAM */
2491     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2492                                          machine->ram_size);
2493     memory_region_add_subregion(sysmem, 0, ram);
2494 
2495     if (rma_alloc_size && rma) {
2496         rma_region = g_new(MemoryRegion, 1);
2497         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2498                                    rma_alloc_size, rma);
2499         vmstate_register_ram_global(rma_region);
2500         memory_region_add_subregion(sysmem, 0, rma_region);
2501     }
2502 
2503     /* initialize hotplug memory address space */
2504     if (machine->ram_size < machine->maxram_size) {
2505         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2506         /*
2507          * Limit the number of hotpluggable memory slots to half the number
2508          * slots that KVM supports, leaving the other half for PCI and other
2509          * devices. However ensure that number of slots doesn't drop below 32.
2510          */
2511         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2512                            SPAPR_MAX_RAM_SLOTS;
2513 
2514         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2515             max_memslots = SPAPR_MAX_RAM_SLOTS;
2516         }
2517         if (machine->ram_slots > max_memslots) {
2518             error_report("Specified number of memory slots %"
2519                          PRIu64" exceeds max supported %d",
2520                          machine->ram_slots, max_memslots);
2521             exit(1);
2522         }
2523 
2524         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2525                                               SPAPR_HOTPLUG_MEM_ALIGN);
2526         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2527                            "hotplug-memory", hotplug_mem_size);
2528         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2529                                     &spapr->hotplug_memory.mr);
2530     }
2531 
2532     if (smc->dr_lmb_enabled) {
2533         spapr_create_lmb_dr_connectors(spapr);
2534     }
2535 
2536     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2537     if (!filename) {
2538         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2539         exit(1);
2540     }
2541     spapr->rtas_size = get_image_size(filename);
2542     if (spapr->rtas_size < 0) {
2543         error_report("Could not get size of LPAR rtas '%s'", filename);
2544         exit(1);
2545     }
2546     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2547     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2548         error_report("Could not load LPAR rtas '%s'", filename);
2549         exit(1);
2550     }
2551     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2552         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2553                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2554         exit(1);
2555     }
2556     g_free(filename);
2557 
2558     /* Set up RTAS event infrastructure */
2559     spapr_events_init(spapr);
2560 
2561     /* Set up the RTC RTAS interfaces */
2562     spapr_rtc_create(spapr);
2563 
2564     /* Set up VIO bus */
2565     spapr->vio_bus = spapr_vio_bus_init();
2566 
2567     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2568         if (serial_hds[i]) {
2569             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2570         }
2571     }
2572 
2573     /* We always have at least the nvram device on VIO */
2574     spapr_create_nvram(spapr);
2575 
2576     /* Set up PCI */
2577     spapr_pci_rtas_init();
2578 
2579     phb = spapr_create_phb(spapr, 0);
2580 
2581     for (i = 0; i < nb_nics; i++) {
2582         NICInfo *nd = &nd_table[i];
2583 
2584         if (!nd->model) {
2585             nd->model = g_strdup("ibmveth");
2586         }
2587 
2588         if (strcmp(nd->model, "ibmveth") == 0) {
2589             spapr_vlan_create(spapr->vio_bus, nd);
2590         } else {
2591             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2592         }
2593     }
2594 
2595     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2596         spapr_vscsi_create(spapr->vio_bus);
2597     }
2598 
2599     /* Graphics */
2600     if (spapr_vga_init(phb->bus, &error_fatal)) {
2601         spapr->has_graphics = true;
2602         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2603     }
2604 
2605     if (machine->usb) {
2606         if (smc->use_ohci_by_default) {
2607             pci_create_simple(phb->bus, -1, "pci-ohci");
2608         } else {
2609             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2610         }
2611 
2612         if (spapr->has_graphics) {
2613             USBBus *usb_bus = usb_bus_find(-1);
2614 
2615             usb_create_simple(usb_bus, "usb-kbd");
2616             usb_create_simple(usb_bus, "usb-mouse");
2617         }
2618     }
2619 
2620     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2621         error_report(
2622             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2623             MIN_RMA_SLOF);
2624         exit(1);
2625     }
2626 
2627     if (kernel_filename) {
2628         uint64_t lowaddr = 0;
2629 
2630         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2631                                       NULL, NULL, &lowaddr, NULL, 1,
2632                                       PPC_ELF_MACHINE, 0, 0);
2633         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2634             spapr->kernel_size = load_elf(kernel_filename,
2635                                           translate_kernel_address, NULL, NULL,
2636                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2637                                           0, 0);
2638             spapr->kernel_le = spapr->kernel_size > 0;
2639         }
2640         if (spapr->kernel_size < 0) {
2641             error_report("error loading %s: %s", kernel_filename,
2642                          load_elf_strerror(spapr->kernel_size));
2643             exit(1);
2644         }
2645 
2646         /* load initrd */
2647         if (initrd_filename) {
2648             /* Try to locate the initrd in the gap between the kernel
2649              * and the firmware. Add a bit of space just in case
2650              */
2651             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2652                                   + 0x1ffff) & ~0xffff;
2653             spapr->initrd_size = load_image_targphys(initrd_filename,
2654                                                      spapr->initrd_base,
2655                                                      load_limit
2656                                                      - spapr->initrd_base);
2657             if (spapr->initrd_size < 0) {
2658                 error_report("could not load initial ram disk '%s'",
2659                              initrd_filename);
2660                 exit(1);
2661             }
2662         }
2663     }
2664 
2665     if (bios_name == NULL) {
2666         bios_name = FW_FILE_NAME;
2667     }
2668     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2669     if (!filename) {
2670         error_report("Could not find LPAR firmware '%s'", bios_name);
2671         exit(1);
2672     }
2673     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2674     if (fw_size <= 0) {
2675         error_report("Could not load LPAR firmware '%s'", filename);
2676         exit(1);
2677     }
2678     g_free(filename);
2679 
2680     /* FIXME: Should register things through the MachineState's qdev
2681      * interface, this is a legacy from the sPAPREnvironment structure
2682      * which predated MachineState but had a similar function */
2683     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2684     register_savevm_live(NULL, "spapr/htab", -1, 1,
2685                          &savevm_htab_handlers, spapr);
2686 
2687     qemu_register_boot_set(spapr_boot_set, spapr);
2688 
2689     if (kvm_enabled()) {
2690         /* to stop and start vmclock */
2691         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2692                                          &spapr->tb);
2693 
2694         kvmppc_spapr_enable_inkernel_multitce();
2695     }
2696 }
2697 
2698 static int spapr_kvm_type(const char *vm_type)
2699 {
2700     if (!vm_type) {
2701         return 0;
2702     }
2703 
2704     if (!strcmp(vm_type, "HV")) {
2705         return 1;
2706     }
2707 
2708     if (!strcmp(vm_type, "PR")) {
2709         return 2;
2710     }
2711 
2712     error_report("Unknown kvm-type specified '%s'", vm_type);
2713     exit(1);
2714 }
2715 
2716 /*
2717  * Implementation of an interface to adjust firmware path
2718  * for the bootindex property handling.
2719  */
2720 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2721                                    DeviceState *dev)
2722 {
2723 #define CAST(type, obj, name) \
2724     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2725     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2726     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2727     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2728 
2729     if (d) {
2730         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2731         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2732         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2733 
2734         if (spapr) {
2735             /*
2736              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2737              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2738              * in the top 16 bits of the 64-bit LUN
2739              */
2740             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2741             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2742                                    (uint64_t)id << 48);
2743         } else if (virtio) {
2744             /*
2745              * We use SRP luns of the form 01000000 | (target << 8) | lun
2746              * in the top 32 bits of the 64-bit LUN
2747              * Note: the quote above is from SLOF and it is wrong,
2748              * the actual binding is:
2749              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2750              */
2751             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2752             if (d->lun >= 256) {
2753                 /* Use the LUN "flat space addressing method" */
2754                 id |= 0x4000;
2755             }
2756             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2757                                    (uint64_t)id << 32);
2758         } else if (usb) {
2759             /*
2760              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2761              * in the top 32 bits of the 64-bit LUN
2762              */
2763             unsigned usb_port = atoi(usb->port->path);
2764             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2765             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2766                                    (uint64_t)id << 32);
2767         }
2768     }
2769 
2770     /*
2771      * SLOF probes the USB devices, and if it recognizes that the device is a
2772      * storage device, it changes its name to "storage" instead of "usb-host",
2773      * and additionally adds a child node for the SCSI LUN, so the correct
2774      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2775      */
2776     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2777         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2778         if (usb_host_dev_is_scsi_storage(usbdev)) {
2779             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2780         }
2781     }
2782 
2783     if (phb) {
2784         /* Replace "pci" with "pci@800000020000000" */
2785         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2786     }
2787 
2788     if (vsc) {
2789         /* Same logic as virtio above */
2790         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2791         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2792     }
2793 
2794     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2795         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2796         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2797         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2798     }
2799 
2800     return NULL;
2801 }
2802 
2803 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2804 {
2805     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2806 
2807     return g_strdup(spapr->kvm_type);
2808 }
2809 
2810 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2811 {
2812     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2813 
2814     g_free(spapr->kvm_type);
2815     spapr->kvm_type = g_strdup(value);
2816 }
2817 
2818 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2819 {
2820     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2821 
2822     return spapr->use_hotplug_event_source;
2823 }
2824 
2825 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2826                                             Error **errp)
2827 {
2828     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2829 
2830     spapr->use_hotplug_event_source = value;
2831 }
2832 
2833 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2834 {
2835     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2836 
2837     switch (spapr->resize_hpt) {
2838     case SPAPR_RESIZE_HPT_DEFAULT:
2839         return g_strdup("default");
2840     case SPAPR_RESIZE_HPT_DISABLED:
2841         return g_strdup("disabled");
2842     case SPAPR_RESIZE_HPT_ENABLED:
2843         return g_strdup("enabled");
2844     case SPAPR_RESIZE_HPT_REQUIRED:
2845         return g_strdup("required");
2846     }
2847     g_assert_not_reached();
2848 }
2849 
2850 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2851 {
2852     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2853 
2854     if (strcmp(value, "default") == 0) {
2855         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2856     } else if (strcmp(value, "disabled") == 0) {
2857         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2858     } else if (strcmp(value, "enabled") == 0) {
2859         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2860     } else if (strcmp(value, "required") == 0) {
2861         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2862     } else {
2863         error_setg(errp, "Bad value for \"resize-hpt\" property");
2864     }
2865 }
2866 
2867 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2868                                    void *opaque, Error **errp)
2869 {
2870     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2871 }
2872 
2873 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2874                                    void *opaque, Error **errp)
2875 {
2876     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2877 }
2878 
2879 static void spapr_instance_init(Object *obj)
2880 {
2881     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2882 
2883     spapr->htab_fd = -1;
2884     spapr->use_hotplug_event_source = true;
2885     object_property_add_str(obj, "kvm-type",
2886                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2887     object_property_set_description(obj, "kvm-type",
2888                                     "Specifies the KVM virtualization mode (HV, PR)",
2889                                     NULL);
2890     object_property_add_bool(obj, "modern-hotplug-events",
2891                             spapr_get_modern_hotplug_events,
2892                             spapr_set_modern_hotplug_events,
2893                             NULL);
2894     object_property_set_description(obj, "modern-hotplug-events",
2895                                     "Use dedicated hotplug event mechanism in"
2896                                     " place of standard EPOW events when possible"
2897                                     " (required for memory hot-unplug support)",
2898                                     NULL);
2899 
2900     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2901                             "Maximum permitted CPU compatibility mode",
2902                             &error_fatal);
2903 
2904     object_property_add_str(obj, "resize-hpt",
2905                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2906     object_property_set_description(obj, "resize-hpt",
2907                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
2908                                     NULL);
2909     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2910                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2911     object_property_set_description(obj, "vsmt",
2912                                     "Virtual SMT: KVM behaves as if this were"
2913                                     " the host's SMT mode", &error_abort);
2914 }
2915 
2916 static void spapr_machine_finalizefn(Object *obj)
2917 {
2918     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2919 
2920     g_free(spapr->kvm_type);
2921 }
2922 
2923 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2924 {
2925     cpu_synchronize_state(cs);
2926     ppc_cpu_do_system_reset(cs);
2927 }
2928 
2929 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2930 {
2931     CPUState *cs;
2932 
2933     CPU_FOREACH(cs) {
2934         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2935     }
2936 }
2937 
2938 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2939                            uint32_t node, bool dedicated_hp_event_source,
2940                            Error **errp)
2941 {
2942     sPAPRDRConnector *drc;
2943     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2944     int i, fdt_offset, fdt_size;
2945     void *fdt;
2946     uint64_t addr = addr_start;
2947     bool hotplugged = spapr_drc_hotplugged(dev);
2948     Error *local_err = NULL;
2949 
2950     for (i = 0; i < nr_lmbs; i++) {
2951         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2952                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2953         g_assert(drc);
2954 
2955         fdt = create_device_tree(&fdt_size);
2956         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2957                                                 SPAPR_MEMORY_BLOCK_SIZE);
2958 
2959         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2960         if (local_err) {
2961             while (addr > addr_start) {
2962                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2963                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2964                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
2965                 spapr_drc_detach(drc);
2966             }
2967             g_free(fdt);
2968             error_propagate(errp, local_err);
2969             return;
2970         }
2971         if (!hotplugged) {
2972             spapr_drc_reset(drc);
2973         }
2974         addr += SPAPR_MEMORY_BLOCK_SIZE;
2975     }
2976     /* send hotplug notification to the
2977      * guest only in case of hotplugged memory
2978      */
2979     if (hotplugged) {
2980         if (dedicated_hp_event_source) {
2981             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2982                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2983             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2984                                                    nr_lmbs,
2985                                                    spapr_drc_index(drc));
2986         } else {
2987             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2988                                            nr_lmbs);
2989         }
2990     }
2991 }
2992 
2993 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2994                               uint32_t node, Error **errp)
2995 {
2996     Error *local_err = NULL;
2997     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2998     PCDIMMDevice *dimm = PC_DIMM(dev);
2999     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3000     MemoryRegion *mr;
3001     uint64_t align, size, addr;
3002 
3003     mr = ddc->get_memory_region(dimm, &local_err);
3004     if (local_err) {
3005         goto out;
3006     }
3007     align = memory_region_get_alignment(mr);
3008     size = memory_region_size(mr);
3009 
3010     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
3011     if (local_err) {
3012         goto out;
3013     }
3014 
3015     addr = object_property_get_uint(OBJECT(dimm),
3016                                     PC_DIMM_ADDR_PROP, &local_err);
3017     if (local_err) {
3018         goto out_unplug;
3019     }
3020 
3021     spapr_add_lmbs(dev, addr, size, node,
3022                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3023                    &local_err);
3024     if (local_err) {
3025         goto out_unplug;
3026     }
3027 
3028     return;
3029 
3030 out_unplug:
3031     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
3032 out:
3033     error_propagate(errp, local_err);
3034 }
3035 
3036 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3037                                   Error **errp)
3038 {
3039     PCDIMMDevice *dimm = PC_DIMM(dev);
3040     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3041     MemoryRegion *mr;
3042     uint64_t size;
3043     char *mem_dev;
3044 
3045     mr = ddc->get_memory_region(dimm, errp);
3046     if (!mr) {
3047         return;
3048     }
3049     size = memory_region_size(mr);
3050 
3051     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3052         error_setg(errp, "Hotplugged memory size must be a multiple of "
3053                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3054         return;
3055     }
3056 
3057     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3058     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3059         error_setg(errp, "Memory backend has bad page size. "
3060                    "Use 'memory-backend-file' with correct mem-path.");
3061         goto out;
3062     }
3063 
3064 out:
3065     g_free(mem_dev);
3066 }
3067 
3068 struct sPAPRDIMMState {
3069     PCDIMMDevice *dimm;
3070     uint32_t nr_lmbs;
3071     QTAILQ_ENTRY(sPAPRDIMMState) next;
3072 };
3073 
3074 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3075                                                        PCDIMMDevice *dimm)
3076 {
3077     sPAPRDIMMState *dimm_state = NULL;
3078 
3079     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3080         if (dimm_state->dimm == dimm) {
3081             break;
3082         }
3083     }
3084     return dimm_state;
3085 }
3086 
3087 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3088                                                       uint32_t nr_lmbs,
3089                                                       PCDIMMDevice *dimm)
3090 {
3091     sPAPRDIMMState *ds = NULL;
3092 
3093     /*
3094      * If this request is for a DIMM whose removal had failed earlier
3095      * (due to guest's refusal to remove the LMBs), we would have this
3096      * dimm already in the pending_dimm_unplugs list. In that
3097      * case don't add again.
3098      */
3099     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3100     if (!ds) {
3101         ds = g_malloc0(sizeof(sPAPRDIMMState));
3102         ds->nr_lmbs = nr_lmbs;
3103         ds->dimm = dimm;
3104         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3105     }
3106     return ds;
3107 }
3108 
3109 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3110                                               sPAPRDIMMState *dimm_state)
3111 {
3112     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3113     g_free(dimm_state);
3114 }
3115 
3116 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3117                                                         PCDIMMDevice *dimm)
3118 {
3119     sPAPRDRConnector *drc;
3120     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3121     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3122     uint64_t size = memory_region_size(mr);
3123     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3124     uint32_t avail_lmbs = 0;
3125     uint64_t addr_start, addr;
3126     int i;
3127 
3128     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3129                                          &error_abort);
3130 
3131     addr = addr_start;
3132     for (i = 0; i < nr_lmbs; i++) {
3133         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3134                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3135         g_assert(drc);
3136         if (drc->dev) {
3137             avail_lmbs++;
3138         }
3139         addr += SPAPR_MEMORY_BLOCK_SIZE;
3140     }
3141 
3142     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3143 }
3144 
3145 /* Callback to be called during DRC release. */
3146 void spapr_lmb_release(DeviceState *dev)
3147 {
3148     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3149     PCDIMMDevice *dimm = PC_DIMM(dev);
3150     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3151     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3152     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3153 
3154     /* This information will get lost if a migration occurs
3155      * during the unplug process. In this case recover it. */
3156     if (ds == NULL) {
3157         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3158         g_assert(ds);
3159         /* The DRC being examined by the caller at least must be counted */
3160         g_assert(ds->nr_lmbs);
3161     }
3162 
3163     if (--ds->nr_lmbs) {
3164         return;
3165     }
3166 
3167     /*
3168      * Now that all the LMBs have been removed by the guest, call the
3169      * pc-dimm unplug handler to cleanup up the pc-dimm device.
3170      */
3171     pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3172     object_unparent(OBJECT(dev));
3173     spapr_pending_dimm_unplugs_remove(spapr, ds);
3174 }
3175 
3176 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3177                                         DeviceState *dev, Error **errp)
3178 {
3179     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3180     Error *local_err = NULL;
3181     PCDIMMDevice *dimm = PC_DIMM(dev);
3182     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3183     MemoryRegion *mr;
3184     uint32_t nr_lmbs;
3185     uint64_t size, addr_start, addr;
3186     int i;
3187     sPAPRDRConnector *drc;
3188 
3189     mr = ddc->get_memory_region(dimm, &local_err);
3190     if (local_err) {
3191         goto out;
3192     }
3193     size = memory_region_size(mr);
3194     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3195 
3196     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3197                                          &local_err);
3198     if (local_err) {
3199         goto out;
3200     }
3201 
3202     /*
3203      * An existing pending dimm state for this DIMM means that there is an
3204      * unplug operation in progress, waiting for the spapr_lmb_release
3205      * callback to complete the job (BQL can't cover that far). In this case,
3206      * bail out to avoid detaching DRCs that were already released.
3207      */
3208     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3209         error_setg(&local_err,
3210                    "Memory unplug already in progress for device %s",
3211                    dev->id);
3212         goto out;
3213     }
3214 
3215     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3216 
3217     addr = addr_start;
3218     for (i = 0; i < nr_lmbs; i++) {
3219         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3220                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3221         g_assert(drc);
3222 
3223         spapr_drc_detach(drc);
3224         addr += SPAPR_MEMORY_BLOCK_SIZE;
3225     }
3226 
3227     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3228                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3229     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3230                                               nr_lmbs, spapr_drc_index(drc));
3231 out:
3232     error_propagate(errp, local_err);
3233 }
3234 
3235 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3236                                            sPAPRMachineState *spapr)
3237 {
3238     PowerPCCPU *cpu = POWERPC_CPU(cs);
3239     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3240     int id = spapr_vcpu_id(cpu);
3241     void *fdt;
3242     int offset, fdt_size;
3243     char *nodename;
3244 
3245     fdt = create_device_tree(&fdt_size);
3246     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3247     offset = fdt_add_subnode(fdt, 0, nodename);
3248 
3249     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3250     g_free(nodename);
3251 
3252     *fdt_offset = offset;
3253     return fdt;
3254 }
3255 
3256 /* Callback to be called during DRC release. */
3257 void spapr_core_release(DeviceState *dev)
3258 {
3259     MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3260     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3261     CPUCore *cc = CPU_CORE(dev);
3262     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3263 
3264     if (smc->pre_2_10_has_unused_icps) {
3265         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3266         int i;
3267 
3268         for (i = 0; i < cc->nr_threads; i++) {
3269             CPUState *cs = CPU(sc->threads[i]);
3270 
3271             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3272         }
3273     }
3274 
3275     assert(core_slot);
3276     core_slot->cpu = NULL;
3277     object_unparent(OBJECT(dev));
3278 }
3279 
3280 static
3281 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3282                                Error **errp)
3283 {
3284     int index;
3285     sPAPRDRConnector *drc;
3286     CPUCore *cc = CPU_CORE(dev);
3287     int smt = kvmppc_smt_threads();
3288 
3289     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3290         error_setg(errp, "Unable to find CPU core with core-id: %d",
3291                    cc->core_id);
3292         return;
3293     }
3294     if (index == 0) {
3295         error_setg(errp, "Boot CPU core may not be unplugged");
3296         return;
3297     }
3298 
3299     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3300     g_assert(drc);
3301 
3302     spapr_drc_detach(drc);
3303 
3304     spapr_hotplug_req_remove_by_index(drc);
3305 }
3306 
3307 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3308                             Error **errp)
3309 {
3310     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3311     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3312     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3313     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3314     CPUCore *cc = CPU_CORE(dev);
3315     CPUState *cs = CPU(core->threads[0]);
3316     sPAPRDRConnector *drc;
3317     Error *local_err = NULL;
3318     int smt = kvmppc_smt_threads();
3319     CPUArchId *core_slot;
3320     int index;
3321     bool hotplugged = spapr_drc_hotplugged(dev);
3322 
3323     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3324     if (!core_slot) {
3325         error_setg(errp, "Unable to find CPU core with core-id: %d",
3326                    cc->core_id);
3327         return;
3328     }
3329     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3330 
3331     g_assert(drc || !mc->has_hotpluggable_cpus);
3332 
3333     if (drc) {
3334         void *fdt;
3335         int fdt_offset;
3336 
3337         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3338 
3339         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3340         if (local_err) {
3341             g_free(fdt);
3342             error_propagate(errp, local_err);
3343             return;
3344         }
3345 
3346         if (hotplugged) {
3347             /*
3348              * Send hotplug notification interrupt to the guest only
3349              * in case of hotplugged CPUs.
3350              */
3351             spapr_hotplug_req_add_by_index(drc);
3352         } else {
3353             spapr_drc_reset(drc);
3354         }
3355     }
3356 
3357     core_slot->cpu = OBJECT(dev);
3358 
3359     if (smc->pre_2_10_has_unused_icps) {
3360         int i;
3361 
3362         for (i = 0; i < cc->nr_threads; i++) {
3363             cs = CPU(core->threads[i]);
3364             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3365         }
3366     }
3367 }
3368 
3369 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3370                                 Error **errp)
3371 {
3372     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3373     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3374     Error *local_err = NULL;
3375     CPUCore *cc = CPU_CORE(dev);
3376     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3377     const char *type = object_get_typename(OBJECT(dev));
3378     CPUArchId *core_slot;
3379     int index;
3380 
3381     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3382         error_setg(&local_err, "CPU hotplug not supported for this machine");
3383         goto out;
3384     }
3385 
3386     if (strcmp(base_core_type, type)) {
3387         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3388         goto out;
3389     }
3390 
3391     if (cc->core_id % smp_threads) {
3392         error_setg(&local_err, "invalid core id %d", cc->core_id);
3393         goto out;
3394     }
3395 
3396     /*
3397      * In general we should have homogeneous threads-per-core, but old
3398      * (pre hotplug support) machine types allow the last core to have
3399      * reduced threads as a compatibility hack for when we allowed
3400      * total vcpus not a multiple of threads-per-core.
3401      */
3402     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3403         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3404                    cc->nr_threads, smp_threads);
3405         goto out;
3406     }
3407 
3408     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3409     if (!core_slot) {
3410         error_setg(&local_err, "core id %d out of range", cc->core_id);
3411         goto out;
3412     }
3413 
3414     if (core_slot->cpu) {
3415         error_setg(&local_err, "core %d already populated", cc->core_id);
3416         goto out;
3417     }
3418 
3419     numa_cpu_pre_plug(core_slot, dev, &local_err);
3420 
3421 out:
3422     error_propagate(errp, local_err);
3423 }
3424 
3425 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3426                                       DeviceState *dev, Error **errp)
3427 {
3428     MachineState *ms = MACHINE(hotplug_dev);
3429     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3430 
3431     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3432         int node;
3433 
3434         if (!smc->dr_lmb_enabled) {
3435             error_setg(errp, "Memory hotplug not supported for this machine");
3436             return;
3437         }
3438         node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3439         if (*errp) {
3440             return;
3441         }
3442         if (node < 0 || node >= MAX_NODES) {
3443             error_setg(errp, "Invaild node %d", node);
3444             return;
3445         }
3446 
3447         /*
3448          * Currently PowerPC kernel doesn't allow hot-adding memory to
3449          * memory-less node, but instead will silently add the memory
3450          * to the first node that has some memory. This causes two
3451          * unexpected behaviours for the user.
3452          *
3453          * - Memory gets hotplugged to a different node than what the user
3454          *   specified.
3455          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3456          *   to memory-less node, a reboot will set things accordingly
3457          *   and the previously hotplugged memory now ends in the right node.
3458          *   This appears as if some memory moved from one node to another.
3459          *
3460          * So until kernel starts supporting memory hotplug to memory-less
3461          * nodes, just prevent such attempts upfront in QEMU.
3462          */
3463         if (nb_numa_nodes && !numa_info[node].node_mem) {
3464             error_setg(errp, "Can't hotplug memory to memory-less node %d",
3465                        node);
3466             return;
3467         }
3468 
3469         spapr_memory_plug(hotplug_dev, dev, node, errp);
3470     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3471         spapr_core_plug(hotplug_dev, dev, errp);
3472     }
3473 }
3474 
3475 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3476                                                 DeviceState *dev, Error **errp)
3477 {
3478     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3479     MachineClass *mc = MACHINE_GET_CLASS(sms);
3480 
3481     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3482         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3483             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3484         } else {
3485             /* NOTE: this means there is a window after guest reset, prior to
3486              * CAS negotiation, where unplug requests will fail due to the
3487              * capability not being detected yet. This is a bit different than
3488              * the case with PCI unplug, where the events will be queued and
3489              * eventually handled by the guest after boot
3490              */
3491             error_setg(errp, "Memory hot unplug not supported for this guest");
3492         }
3493     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3494         if (!mc->has_hotpluggable_cpus) {
3495             error_setg(errp, "CPU hot unplug not supported on this machine");
3496             return;
3497         }
3498         spapr_core_unplug_request(hotplug_dev, dev, errp);
3499     }
3500 }
3501 
3502 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3503                                           DeviceState *dev, Error **errp)
3504 {
3505     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3506         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3507     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3508         spapr_core_pre_plug(hotplug_dev, dev, errp);
3509     }
3510 }
3511 
3512 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3513                                                  DeviceState *dev)
3514 {
3515     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3516         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3517         return HOTPLUG_HANDLER(machine);
3518     }
3519     return NULL;
3520 }
3521 
3522 static CpuInstanceProperties
3523 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3524 {
3525     CPUArchId *core_slot;
3526     MachineClass *mc = MACHINE_GET_CLASS(machine);
3527 
3528     /* make sure possible_cpu are intialized */
3529     mc->possible_cpu_arch_ids(machine);
3530     /* get CPU core slot containing thread that matches cpu_index */
3531     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3532     assert(core_slot);
3533     return core_slot->props;
3534 }
3535 
3536 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3537 {
3538     return idx / smp_cores % nb_numa_nodes;
3539 }
3540 
3541 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3542 {
3543     int i;
3544     const char *core_type;
3545     int spapr_max_cores = max_cpus / smp_threads;
3546     MachineClass *mc = MACHINE_GET_CLASS(machine);
3547 
3548     if (!mc->has_hotpluggable_cpus) {
3549         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3550     }
3551     if (machine->possible_cpus) {
3552         assert(machine->possible_cpus->len == spapr_max_cores);
3553         return machine->possible_cpus;
3554     }
3555 
3556     core_type = spapr_get_cpu_core_type(machine->cpu_type);
3557     if (!core_type) {
3558         error_report("Unable to find sPAPR CPU Core definition");
3559         exit(1);
3560     }
3561 
3562     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3563                              sizeof(CPUArchId) * spapr_max_cores);
3564     machine->possible_cpus->len = spapr_max_cores;
3565     for (i = 0; i < machine->possible_cpus->len; i++) {
3566         int core_id = i * smp_threads;
3567 
3568         machine->possible_cpus->cpus[i].type = core_type;
3569         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3570         machine->possible_cpus->cpus[i].arch_id = core_id;
3571         machine->possible_cpus->cpus[i].props.has_core_id = true;
3572         machine->possible_cpus->cpus[i].props.core_id = core_id;
3573     }
3574     return machine->possible_cpus;
3575 }
3576 
3577 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3578                                 uint64_t *buid, hwaddr *pio,
3579                                 hwaddr *mmio32, hwaddr *mmio64,
3580                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3581 {
3582     /*
3583      * New-style PHB window placement.
3584      *
3585      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3586      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3587      * windows.
3588      *
3589      * Some guest kernels can't work with MMIO windows above 1<<46
3590      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3591      *
3592      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3593      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3594      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3595      * 1TiB 64-bit MMIO windows for each PHB.
3596      */
3597     const uint64_t base_buid = 0x800000020000000ULL;
3598 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3599                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3600     int i;
3601 
3602     /* Sanity check natural alignments */
3603     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3604     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3605     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3606     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3607     /* Sanity check bounds */
3608     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3609                       SPAPR_PCI_MEM32_WIN_SIZE);
3610     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3611                       SPAPR_PCI_MEM64_WIN_SIZE);
3612 
3613     if (index >= SPAPR_MAX_PHBS) {
3614         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3615                    SPAPR_MAX_PHBS - 1);
3616         return;
3617     }
3618 
3619     *buid = base_buid + index;
3620     for (i = 0; i < n_dma; ++i) {
3621         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3622     }
3623 
3624     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3625     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3626     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3627 }
3628 
3629 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3630 {
3631     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3632 
3633     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3634 }
3635 
3636 static void spapr_ics_resend(XICSFabric *dev)
3637 {
3638     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3639 
3640     ics_resend(spapr->ics);
3641 }
3642 
3643 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3644 {
3645     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3646 
3647     return cpu ? ICP(cpu->intc) : NULL;
3648 }
3649 
3650 #define ICS_IRQ_FREE(ics, srcno)   \
3651     (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3652 
3653 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3654 {
3655     int first, i;
3656 
3657     for (first = 0; first < ics->nr_irqs; first += alignnum) {
3658         if (num > (ics->nr_irqs - first)) {
3659             return -1;
3660         }
3661         for (i = first; i < first + num; ++i) {
3662             if (!ICS_IRQ_FREE(ics, i)) {
3663                 break;
3664             }
3665         }
3666         if (i == (first + num)) {
3667             return first;
3668         }
3669     }
3670 
3671     return -1;
3672 }
3673 
3674 /*
3675  * Allocate the IRQ number and set the IRQ type, LSI or MSI
3676  */
3677 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3678 {
3679     ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3680 }
3681 
3682 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3683                     Error **errp)
3684 {
3685     ICSState *ics = spapr->ics;
3686     int irq;
3687 
3688     if (!ics) {
3689         return -1;
3690     }
3691     if (irq_hint) {
3692         if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3693             error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3694             return -1;
3695         }
3696         irq = irq_hint;
3697     } else {
3698         irq = ics_find_free_block(ics, 1, 1);
3699         if (irq < 0) {
3700             error_setg(errp, "can't allocate IRQ: no IRQ left");
3701             return -1;
3702         }
3703         irq += ics->offset;
3704     }
3705 
3706     spapr_irq_set_lsi(spapr, irq, lsi);
3707     trace_spapr_irq_alloc(irq);
3708 
3709     return irq;
3710 }
3711 
3712 /*
3713  * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3714  * the block. If align==true, aligns the first IRQ number to num.
3715  */
3716 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3717                           bool align, Error **errp)
3718 {
3719     ICSState *ics = spapr->ics;
3720     int i, first = -1;
3721 
3722     if (!ics) {
3723         return -1;
3724     }
3725 
3726     /*
3727      * MSIMesage::data is used for storing VIRQ so
3728      * it has to be aligned to num to support multiple
3729      * MSI vectors. MSI-X is not affected by this.
3730      * The hint is used for the first IRQ, the rest should
3731      * be allocated continuously.
3732      */
3733     if (align) {
3734         assert((num == 1) || (num == 2) || (num == 4) ||
3735                (num == 8) || (num == 16) || (num == 32));
3736         first = ics_find_free_block(ics, num, num);
3737     } else {
3738         first = ics_find_free_block(ics, num, 1);
3739     }
3740     if (first < 0) {
3741         error_setg(errp, "can't find a free %d-IRQ block", num);
3742         return -1;
3743     }
3744 
3745     first += ics->offset;
3746     for (i = first; i < first + num; ++i) {
3747         spapr_irq_set_lsi(spapr, i, lsi);
3748     }
3749 
3750     trace_spapr_irq_alloc_block(first, num, lsi, align);
3751 
3752     return first;
3753 }
3754 
3755 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3756 {
3757     ICSState *ics = spapr->ics;
3758     int srcno = irq - ics->offset;
3759     int i;
3760 
3761     if (ics_valid_irq(ics, irq)) {
3762         trace_spapr_irq_free(0, irq, num);
3763         for (i = srcno; i < srcno + num; ++i) {
3764             if (ICS_IRQ_FREE(ics, i)) {
3765                 trace_spapr_irq_free_warn(0, i + ics->offset);
3766             }
3767             memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3768         }
3769     }
3770 }
3771 
3772 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3773 {
3774     ICSState *ics = spapr->ics;
3775 
3776     if (ics_valid_irq(ics, irq)) {
3777         return ics->qirqs[irq - ics->offset];
3778     }
3779 
3780     return NULL;
3781 }
3782 
3783 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3784                                  Monitor *mon)
3785 {
3786     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3787     CPUState *cs;
3788 
3789     CPU_FOREACH(cs) {
3790         PowerPCCPU *cpu = POWERPC_CPU(cs);
3791 
3792         icp_pic_print_info(ICP(cpu->intc), mon);
3793     }
3794 
3795     ics_pic_print_info(spapr->ics, mon);
3796 }
3797 
3798 int spapr_vcpu_id(PowerPCCPU *cpu)
3799 {
3800     CPUState *cs = CPU(cpu);
3801 
3802     if (kvm_enabled()) {
3803         return kvm_arch_vcpu_id(cs);
3804     } else {
3805         return cs->cpu_index;
3806     }
3807 }
3808 
3809 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3810 {
3811     CPUState *cs;
3812 
3813     CPU_FOREACH(cs) {
3814         PowerPCCPU *cpu = POWERPC_CPU(cs);
3815 
3816         if (spapr_vcpu_id(cpu) == vcpu_id) {
3817             return cpu;
3818         }
3819     }
3820 
3821     return NULL;
3822 }
3823 
3824 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3825 {
3826     MachineClass *mc = MACHINE_CLASS(oc);
3827     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3828     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3829     NMIClass *nc = NMI_CLASS(oc);
3830     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3831     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3832     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3833     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3834 
3835     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3836 
3837     /*
3838      * We set up the default / latest behaviour here.  The class_init
3839      * functions for the specific versioned machine types can override
3840      * these details for backwards compatibility
3841      */
3842     mc->init = spapr_machine_init;
3843     mc->reset = spapr_machine_reset;
3844     mc->block_default_type = IF_SCSI;
3845     mc->max_cpus = 1024;
3846     mc->no_parallel = 1;
3847     mc->default_boot_order = "";
3848     mc->default_ram_size = 512 * M_BYTE;
3849     mc->kvm_type = spapr_kvm_type;
3850     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3851     mc->pci_allow_0_address = true;
3852     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3853     hc->pre_plug = spapr_machine_device_pre_plug;
3854     hc->plug = spapr_machine_device_plug;
3855     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3856     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3857     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3858     hc->unplug_request = spapr_machine_device_unplug_request;
3859 
3860     smc->dr_lmb_enabled = true;
3861     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3862     mc->has_hotpluggable_cpus = true;
3863     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3864     fwc->get_dev_path = spapr_get_fw_dev_path;
3865     nc->nmi_monitor_handler = spapr_nmi;
3866     smc->phb_placement = spapr_phb_placement;
3867     vhc->hypercall = emulate_spapr_hypercall;
3868     vhc->hpt_mask = spapr_hpt_mask;
3869     vhc->map_hptes = spapr_map_hptes;
3870     vhc->unmap_hptes = spapr_unmap_hptes;
3871     vhc->store_hpte = spapr_store_hpte;
3872     vhc->get_patbe = spapr_get_patbe;
3873     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3874     xic->ics_get = spapr_ics_get;
3875     xic->ics_resend = spapr_ics_resend;
3876     xic->icp_get = spapr_icp_get;
3877     ispc->print_info = spapr_pic_print_info;
3878     /* Force NUMA node memory size to be a multiple of
3879      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3880      * in which LMBs are represented and hot-added
3881      */
3882     mc->numa_mem_align_shift = 28;
3883 
3884     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3885     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3886     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3887     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3888     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3889     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3890     spapr_caps_add_properties(smc, &error_abort);
3891 }
3892 
3893 static const TypeInfo spapr_machine_info = {
3894     .name          = TYPE_SPAPR_MACHINE,
3895     .parent        = TYPE_MACHINE,
3896     .abstract      = true,
3897     .instance_size = sizeof(sPAPRMachineState),
3898     .instance_init = spapr_instance_init,
3899     .instance_finalize = spapr_machine_finalizefn,
3900     .class_size    = sizeof(sPAPRMachineClass),
3901     .class_init    = spapr_machine_class_init,
3902     .interfaces = (InterfaceInfo[]) {
3903         { TYPE_FW_PATH_PROVIDER },
3904         { TYPE_NMI },
3905         { TYPE_HOTPLUG_HANDLER },
3906         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3907         { TYPE_XICS_FABRIC },
3908         { TYPE_INTERRUPT_STATS_PROVIDER },
3909         { }
3910     },
3911 };
3912 
3913 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3914     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3915                                                     void *data)      \
3916     {                                                                \
3917         MachineClass *mc = MACHINE_CLASS(oc);                        \
3918         spapr_machine_##suffix##_class_options(mc);                  \
3919         if (latest) {                                                \
3920             mc->alias = "pseries";                                   \
3921             mc->is_default = 1;                                      \
3922         }                                                            \
3923     }                                                                \
3924     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3925     {                                                                \
3926         MachineState *machine = MACHINE(obj);                        \
3927         spapr_machine_##suffix##_instance_options(machine);          \
3928     }                                                                \
3929     static const TypeInfo spapr_machine_##suffix##_info = {          \
3930         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3931         .parent = TYPE_SPAPR_MACHINE,                                \
3932         .class_init = spapr_machine_##suffix##_class_init,           \
3933         .instance_init = spapr_machine_##suffix##_instance_init,     \
3934     };                                                               \
3935     static void spapr_machine_register_##suffix(void)                \
3936     {                                                                \
3937         type_register(&spapr_machine_##suffix##_info);               \
3938     }                                                                \
3939     type_init(spapr_machine_register_##suffix)
3940 
3941 /*
3942  * pseries-2.12
3943  */
3944 static void spapr_machine_2_12_instance_options(MachineState *machine)
3945 {
3946 }
3947 
3948 static void spapr_machine_2_12_class_options(MachineClass *mc)
3949 {
3950     /* Defaults for the latest behaviour inherited from the base class */
3951 }
3952 
3953 DEFINE_SPAPR_MACHINE(2_12, "2.12", true);
3954 
3955 /*
3956  * pseries-2.11
3957  */
3958 #define SPAPR_COMPAT_2_11                                              \
3959     HW_COMPAT_2_11
3960 
3961 static void spapr_machine_2_11_instance_options(MachineState *machine)
3962 {
3963     spapr_machine_2_12_instance_options(machine);
3964 }
3965 
3966 static void spapr_machine_2_11_class_options(MachineClass *mc)
3967 {
3968     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3969 
3970     spapr_machine_2_12_class_options(mc);
3971     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
3972     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
3973 }
3974 
3975 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
3976 
3977 /*
3978  * pseries-2.10
3979  */
3980 #define SPAPR_COMPAT_2_10                                              \
3981     HW_COMPAT_2_10
3982 
3983 static void spapr_machine_2_10_instance_options(MachineState *machine)
3984 {
3985     spapr_machine_2_11_instance_options(machine);
3986 }
3987 
3988 static void spapr_machine_2_10_class_options(MachineClass *mc)
3989 {
3990     spapr_machine_2_11_class_options(mc);
3991     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3992 }
3993 
3994 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3995 
3996 /*
3997  * pseries-2.9
3998  */
3999 #define SPAPR_COMPAT_2_9                                               \
4000     HW_COMPAT_2_9                                                      \
4001     {                                                                  \
4002         .driver = TYPE_POWERPC_CPU,                                    \
4003         .property = "pre-2.10-migration",                              \
4004         .value    = "on",                                              \
4005     },                                                                 \
4006 
4007 static void spapr_machine_2_9_instance_options(MachineState *machine)
4008 {
4009     spapr_machine_2_10_instance_options(machine);
4010 }
4011 
4012 static void spapr_machine_2_9_class_options(MachineClass *mc)
4013 {
4014     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4015 
4016     spapr_machine_2_10_class_options(mc);
4017     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4018     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4019     smc->pre_2_10_has_unused_icps = true;
4020     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4021 }
4022 
4023 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4024 
4025 /*
4026  * pseries-2.8
4027  */
4028 #define SPAPR_COMPAT_2_8                                        \
4029     HW_COMPAT_2_8                                               \
4030     {                                                           \
4031         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
4032         .property = "pcie-extended-configuration-space",        \
4033         .value    = "off",                                      \
4034     },
4035 
4036 static void spapr_machine_2_8_instance_options(MachineState *machine)
4037 {
4038     spapr_machine_2_9_instance_options(machine);
4039 }
4040 
4041 static void spapr_machine_2_8_class_options(MachineClass *mc)
4042 {
4043     spapr_machine_2_9_class_options(mc);
4044     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4045     mc->numa_mem_align_shift = 23;
4046 }
4047 
4048 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4049 
4050 /*
4051  * pseries-2.7
4052  */
4053 #define SPAPR_COMPAT_2_7                            \
4054     HW_COMPAT_2_7                                   \
4055     {                                               \
4056         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4057         .property = "mem_win_size",                 \
4058         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4059     },                                              \
4060     {                                               \
4061         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4062         .property = "mem64_win_size",               \
4063         .value    = "0",                            \
4064     },                                              \
4065     {                                               \
4066         .driver = TYPE_POWERPC_CPU,                 \
4067         .property = "pre-2.8-migration",            \
4068         .value    = "on",                           \
4069     },                                              \
4070     {                                               \
4071         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
4072         .property = "pre-2.8-migration",            \
4073         .value    = "on",                           \
4074     },
4075 
4076 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4077                               uint64_t *buid, hwaddr *pio,
4078                               hwaddr *mmio32, hwaddr *mmio64,
4079                               unsigned n_dma, uint32_t *liobns, Error **errp)
4080 {
4081     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4082     const uint64_t base_buid = 0x800000020000000ULL;
4083     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4084     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4085     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4086     const uint32_t max_index = 255;
4087     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4088 
4089     uint64_t ram_top = MACHINE(spapr)->ram_size;
4090     hwaddr phb0_base, phb_base;
4091     int i;
4092 
4093     /* Do we have hotpluggable memory? */
4094     if (MACHINE(spapr)->maxram_size > ram_top) {
4095         /* Can't just use maxram_size, because there may be an
4096          * alignment gap between normal and hotpluggable memory
4097          * regions */
4098         ram_top = spapr->hotplug_memory.base +
4099             memory_region_size(&spapr->hotplug_memory.mr);
4100     }
4101 
4102     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4103 
4104     if (index > max_index) {
4105         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4106                    max_index);
4107         return;
4108     }
4109 
4110     *buid = base_buid + index;
4111     for (i = 0; i < n_dma; ++i) {
4112         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4113     }
4114 
4115     phb_base = phb0_base + index * phb_spacing;
4116     *pio = phb_base + pio_offset;
4117     *mmio32 = phb_base + mmio_offset;
4118     /*
4119      * We don't set the 64-bit MMIO window, relying on the PHB's
4120      * fallback behaviour of automatically splitting a large "32-bit"
4121      * window into contiguous 32-bit and 64-bit windows
4122      */
4123 }
4124 
4125 static void spapr_machine_2_7_instance_options(MachineState *machine)
4126 {
4127     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4128 
4129     spapr_machine_2_8_instance_options(machine);
4130     spapr->use_hotplug_event_source = false;
4131 }
4132 
4133 static void spapr_machine_2_7_class_options(MachineClass *mc)
4134 {
4135     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4136 
4137     spapr_machine_2_8_class_options(mc);
4138     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4139     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4140     smc->phb_placement = phb_placement_2_7;
4141 }
4142 
4143 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4144 
4145 /*
4146  * pseries-2.6
4147  */
4148 #define SPAPR_COMPAT_2_6 \
4149     HW_COMPAT_2_6 \
4150     { \
4151         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4152         .property = "ddw",\
4153         .value    = stringify(off),\
4154     },
4155 
4156 static void spapr_machine_2_6_instance_options(MachineState *machine)
4157 {
4158     spapr_machine_2_7_instance_options(machine);
4159 }
4160 
4161 static void spapr_machine_2_6_class_options(MachineClass *mc)
4162 {
4163     spapr_machine_2_7_class_options(mc);
4164     mc->has_hotpluggable_cpus = false;
4165     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4166 }
4167 
4168 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4169 
4170 /*
4171  * pseries-2.5
4172  */
4173 #define SPAPR_COMPAT_2_5 \
4174     HW_COMPAT_2_5 \
4175     { \
4176         .driver   = "spapr-vlan", \
4177         .property = "use-rx-buffer-pools", \
4178         .value    = "off", \
4179     },
4180 
4181 static void spapr_machine_2_5_instance_options(MachineState *machine)
4182 {
4183     spapr_machine_2_6_instance_options(machine);
4184 }
4185 
4186 static void spapr_machine_2_5_class_options(MachineClass *mc)
4187 {
4188     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4189 
4190     spapr_machine_2_6_class_options(mc);
4191     smc->use_ohci_by_default = true;
4192     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4193 }
4194 
4195 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4196 
4197 /*
4198  * pseries-2.4
4199  */
4200 #define SPAPR_COMPAT_2_4 \
4201         HW_COMPAT_2_4
4202 
4203 static void spapr_machine_2_4_instance_options(MachineState *machine)
4204 {
4205     spapr_machine_2_5_instance_options(machine);
4206 }
4207 
4208 static void spapr_machine_2_4_class_options(MachineClass *mc)
4209 {
4210     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4211 
4212     spapr_machine_2_5_class_options(mc);
4213     smc->dr_lmb_enabled = false;
4214     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4215 }
4216 
4217 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4218 
4219 /*
4220  * pseries-2.3
4221  */
4222 #define SPAPR_COMPAT_2_3 \
4223         HW_COMPAT_2_3 \
4224         {\
4225             .driver   = "spapr-pci-host-bridge",\
4226             .property = "dynamic-reconfiguration",\
4227             .value    = "off",\
4228         },
4229 
4230 static void spapr_machine_2_3_instance_options(MachineState *machine)
4231 {
4232     spapr_machine_2_4_instance_options(machine);
4233 }
4234 
4235 static void spapr_machine_2_3_class_options(MachineClass *mc)
4236 {
4237     spapr_machine_2_4_class_options(mc);
4238     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4239 }
4240 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4241 
4242 /*
4243  * pseries-2.2
4244  */
4245 
4246 #define SPAPR_COMPAT_2_2 \
4247         HW_COMPAT_2_2 \
4248         {\
4249             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4250             .property = "mem_win_size",\
4251             .value    = "0x20000000",\
4252         },
4253 
4254 static void spapr_machine_2_2_instance_options(MachineState *machine)
4255 {
4256     spapr_machine_2_3_instance_options(machine);
4257     machine->suppress_vmdesc = true;
4258 }
4259 
4260 static void spapr_machine_2_2_class_options(MachineClass *mc)
4261 {
4262     spapr_machine_2_3_class_options(mc);
4263     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4264 }
4265 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4266 
4267 /*
4268  * pseries-2.1
4269  */
4270 #define SPAPR_COMPAT_2_1 \
4271         HW_COMPAT_2_1
4272 
4273 static void spapr_machine_2_1_instance_options(MachineState *machine)
4274 {
4275     spapr_machine_2_2_instance_options(machine);
4276 }
4277 
4278 static void spapr_machine_2_1_class_options(MachineClass *mc)
4279 {
4280     spapr_machine_2_2_class_options(mc);
4281     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4282 }
4283 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4284 
4285 static void spapr_machine_register_types(void)
4286 {
4287     type_register_static(&spapr_machine_info);
4288 }
4289 
4290 type_init(spapr_machine_register_types)
4291