xref: /openbmc/qemu/hw/ppc/spapr.c (revision 80e5db30)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "qom/cpu.h"
44 
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
48 
49 #include "hw/ppc/fdt.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
55 
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
59 
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66 
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 #include "hw/ppc/spapr_cpu_core.h"
70 #include "qmp-commands.h"
71 
72 #include <libfdt.h>
73 
74 /* SLOF memory layout:
75  *
76  * SLOF raw image loaded at 0, copies its romfs right below the flat
77  * device-tree, then position SLOF itself 31M below that
78  *
79  * So we set FW_OVERHEAD to 40MB which should account for all of that
80  * and more
81  *
82  * We load our kernel at 4M, leaving space for SLOF initial image
83  */
84 #define FDT_MAX_SIZE            0x100000
85 #define RTAS_MAX_SIZE           0x10000
86 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
87 #define FW_MAX_SIZE             0x400000
88 #define FW_FILE_NAME            "slof.bin"
89 #define FW_OVERHEAD             0x2800000
90 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
91 
92 #define MIN_RMA_SLOF            128UL
93 
94 #define PHANDLE_XICP            0x00001111
95 
96 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
97 
98 static XICSState *try_create_xics(const char *type, int nr_servers,
99                                   int nr_irqs, Error **errp)
100 {
101     Error *err = NULL;
102     DeviceState *dev;
103 
104     dev = qdev_create(NULL, type);
105     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
106     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
107     object_property_set_bool(OBJECT(dev), true, "realized", &err);
108     if (err) {
109         error_propagate(errp, err);
110         object_unparent(OBJECT(dev));
111         return NULL;
112     }
113     return XICS_COMMON(dev);
114 }
115 
116 static XICSState *xics_system_init(MachineState *machine,
117                                    int nr_servers, int nr_irqs, Error **errp)
118 {
119     XICSState *xics = NULL;
120 
121     if (kvm_enabled()) {
122         Error *err = NULL;
123 
124         if (machine_kernel_irqchip_allowed(machine)) {
125             xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
126                                    &err);
127         }
128         if (machine_kernel_irqchip_required(machine) && !xics) {
129             error_reportf_err(err,
130                               "kernel_irqchip requested but unavailable: ");
131         } else {
132             error_free(err);
133         }
134     }
135 
136     if (!xics) {
137         xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
138     }
139 
140     return xics;
141 }
142 
143 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
144                                   int smt_threads)
145 {
146     int i, ret = 0;
147     uint32_t servers_prop[smt_threads];
148     uint32_t gservers_prop[smt_threads * 2];
149     int index = ppc_get_vcpu_dt_id(cpu);
150 
151     if (cpu->cpu_version) {
152         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
153         if (ret < 0) {
154             return ret;
155         }
156     }
157 
158     /* Build interrupt servers and gservers properties */
159     for (i = 0; i < smt_threads; i++) {
160         servers_prop[i] = cpu_to_be32(index + i);
161         /* Hack, direct the group queues back to cpu 0 */
162         gservers_prop[i*2] = cpu_to_be32(index + i);
163         gservers_prop[i*2 + 1] = 0;
164     }
165     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
166                       servers_prop, sizeof(servers_prop));
167     if (ret < 0) {
168         return ret;
169     }
170     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
171                       gservers_prop, sizeof(gservers_prop));
172 
173     return ret;
174 }
175 
176 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
177 {
178     int ret = 0;
179     PowerPCCPU *cpu = POWERPC_CPU(cs);
180     int index = ppc_get_vcpu_dt_id(cpu);
181     uint32_t associativity[] = {cpu_to_be32(0x5),
182                                 cpu_to_be32(0x0),
183                                 cpu_to_be32(0x0),
184                                 cpu_to_be32(0x0),
185                                 cpu_to_be32(cs->numa_node),
186                                 cpu_to_be32(index)};
187 
188     /* Advertise NUMA via ibm,associativity */
189     if (nb_numa_nodes > 1) {
190         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
191                           sizeof(associativity));
192     }
193 
194     return ret;
195 }
196 
197 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
198 {
199     int ret = 0, offset, cpus_offset;
200     CPUState *cs;
201     char cpu_model[32];
202     int smt = kvmppc_smt_threads();
203     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
204 
205     CPU_FOREACH(cs) {
206         PowerPCCPU *cpu = POWERPC_CPU(cs);
207         DeviceClass *dc = DEVICE_GET_CLASS(cs);
208         int index = ppc_get_vcpu_dt_id(cpu);
209 
210         if ((index % smt) != 0) {
211             continue;
212         }
213 
214         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
215 
216         cpus_offset = fdt_path_offset(fdt, "/cpus");
217         if (cpus_offset < 0) {
218             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
219                                           "cpus");
220             if (cpus_offset < 0) {
221                 return cpus_offset;
222             }
223         }
224         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
225         if (offset < 0) {
226             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
227             if (offset < 0) {
228                 return offset;
229             }
230         }
231 
232         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
233                           pft_size_prop, sizeof(pft_size_prop));
234         if (ret < 0) {
235             return ret;
236         }
237 
238         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
239         if (ret < 0) {
240             return ret;
241         }
242 
243         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
244                                      ppc_get_compat_smt_threads(cpu));
245         if (ret < 0) {
246             return ret;
247         }
248     }
249     return ret;
250 }
251 
252 static hwaddr spapr_node0_size(void)
253 {
254     MachineState *machine = MACHINE(qdev_get_machine());
255 
256     if (nb_numa_nodes) {
257         int i;
258         for (i = 0; i < nb_numa_nodes; ++i) {
259             if (numa_info[i].node_mem) {
260                 return MIN(pow2floor(numa_info[i].node_mem),
261                            machine->ram_size);
262             }
263         }
264     }
265     return machine->ram_size;
266 }
267 
268 static void add_str(GString *s, const gchar *s1)
269 {
270     g_string_append_len(s, s1, strlen(s1) + 1);
271 }
272 
273 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
274                                        hwaddr size)
275 {
276     uint32_t associativity[] = {
277         cpu_to_be32(0x4), /* length */
278         cpu_to_be32(0x0), cpu_to_be32(0x0),
279         cpu_to_be32(0x0), cpu_to_be32(nodeid)
280     };
281     char mem_name[32];
282     uint64_t mem_reg_property[2];
283     int off;
284 
285     mem_reg_property[0] = cpu_to_be64(start);
286     mem_reg_property[1] = cpu_to_be64(size);
287 
288     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
289     off = fdt_add_subnode(fdt, 0, mem_name);
290     _FDT(off);
291     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
292     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
293                       sizeof(mem_reg_property))));
294     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
295                       sizeof(associativity))));
296     return off;
297 }
298 
299 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
300 {
301     MachineState *machine = MACHINE(spapr);
302     hwaddr mem_start, node_size;
303     int i, nb_nodes = nb_numa_nodes;
304     NodeInfo *nodes = numa_info;
305     NodeInfo ramnode;
306 
307     /* No NUMA nodes, assume there is just one node with whole RAM */
308     if (!nb_numa_nodes) {
309         nb_nodes = 1;
310         ramnode.node_mem = machine->ram_size;
311         nodes = &ramnode;
312     }
313 
314     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
315         if (!nodes[i].node_mem) {
316             continue;
317         }
318         if (mem_start >= machine->ram_size) {
319             node_size = 0;
320         } else {
321             node_size = nodes[i].node_mem;
322             if (node_size > machine->ram_size - mem_start) {
323                 node_size = machine->ram_size - mem_start;
324             }
325         }
326         if (!mem_start) {
327             /* ppc_spapr_init() checks for rma_size <= node0_size already */
328             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
329             mem_start += spapr->rma_size;
330             node_size -= spapr->rma_size;
331         }
332         for ( ; node_size; ) {
333             hwaddr sizetmp = pow2floor(node_size);
334 
335             /* mem_start != 0 here */
336             if (ctzl(mem_start) < ctzl(sizetmp)) {
337                 sizetmp = 1ULL << ctzl(mem_start);
338             }
339 
340             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
341             node_size -= sizetmp;
342             mem_start += sizetmp;
343         }
344     }
345 
346     return 0;
347 }
348 
349 /* Populate the "ibm,pa-features" property */
350 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
351 {
352     uint8_t pa_features_206[] = { 6, 0,
353         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
354     uint8_t pa_features_207[] = { 24, 0,
355         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
356         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
357         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
358         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
359     uint8_t *pa_features;
360     size_t pa_size;
361 
362     switch (env->mmu_model) {
363     case POWERPC_MMU_2_06:
364     case POWERPC_MMU_2_06a:
365         pa_features = pa_features_206;
366         pa_size = sizeof(pa_features_206);
367         break;
368     case POWERPC_MMU_2_07:
369     case POWERPC_MMU_2_07a:
370         pa_features = pa_features_207;
371         pa_size = sizeof(pa_features_207);
372         break;
373     default:
374         return;
375     }
376 
377     if (env->ci_large_pages) {
378         /*
379          * Note: we keep CI large pages off by default because a 64K capable
380          * guest provisioned with large pages might otherwise try to map a qemu
381          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
382          * even if that qemu runs on a 4k host.
383          * We dd this bit back here if we are confident this is not an issue
384          */
385         pa_features[3] |= 0x20;
386     }
387     if (kvmppc_has_cap_htm() && pa_size > 24) {
388         pa_features[24] |= 0x80;    /* Transactional memory support */
389     }
390 
391     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
392 }
393 
394 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
395                                   sPAPRMachineState *spapr)
396 {
397     PowerPCCPU *cpu = POWERPC_CPU(cs);
398     CPUPPCState *env = &cpu->env;
399     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
400     int index = ppc_get_vcpu_dt_id(cpu);
401     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
402                        0xffffffff, 0xffffffff};
403     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
404         : SPAPR_TIMEBASE_FREQ;
405     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
406     uint32_t page_sizes_prop[64];
407     size_t page_sizes_prop_size;
408     uint32_t vcpus_per_socket = smp_threads * smp_cores;
409     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
410     sPAPRDRConnector *drc;
411     sPAPRDRConnectorClass *drck;
412     int drc_index;
413 
414     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
415     if (drc) {
416         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
417         drc_index = drck->get_index(drc);
418         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
419     }
420 
421     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
422     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
423 
424     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
425     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
426                            env->dcache_line_size)));
427     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
428                            env->dcache_line_size)));
429     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
430                            env->icache_line_size)));
431     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
432                            env->icache_line_size)));
433 
434     if (pcc->l1_dcache_size) {
435         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
436                                pcc->l1_dcache_size)));
437     } else {
438         error_report("Warning: Unknown L1 dcache size for cpu");
439     }
440     if (pcc->l1_icache_size) {
441         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
442                                pcc->l1_icache_size)));
443     } else {
444         error_report("Warning: Unknown L1 icache size for cpu");
445     }
446 
447     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
448     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
449     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
450     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
451     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
452     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
453 
454     if (env->spr_cb[SPR_PURR].oea_read) {
455         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
456     }
457 
458     if (env->mmu_model & POWERPC_MMU_1TSEG) {
459         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
460                           segs, sizeof(segs))));
461     }
462 
463     /* Advertise VMX/VSX (vector extensions) if available
464      *   0 / no property == no vector extensions
465      *   1               == VMX / Altivec available
466      *   2               == VSX available */
467     if (env->insns_flags & PPC_ALTIVEC) {
468         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
469 
470         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
471     }
472 
473     /* Advertise DFP (Decimal Floating Point) if available
474      *   0 / no property == no DFP
475      *   1               == DFP available */
476     if (env->insns_flags2 & PPC2_DFP) {
477         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
478     }
479 
480     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
481                                                   sizeof(page_sizes_prop));
482     if (page_sizes_prop_size) {
483         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
484                           page_sizes_prop, page_sizes_prop_size)));
485     }
486 
487     spapr_populate_pa_features(env, fdt, offset);
488 
489     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
490                            cs->cpu_index / vcpus_per_socket)));
491 
492     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
493                       pft_size_prop, sizeof(pft_size_prop))));
494 
495     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
496 
497     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
498                                 ppc_get_compat_smt_threads(cpu)));
499 }
500 
501 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
502 {
503     CPUState *cs;
504     int cpus_offset;
505     char *nodename;
506     int smt = kvmppc_smt_threads();
507 
508     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
509     _FDT(cpus_offset);
510     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
511     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
512 
513     /*
514      * We walk the CPUs in reverse order to ensure that CPU DT nodes
515      * created by fdt_add_subnode() end up in the right order in FDT
516      * for the guest kernel the enumerate the CPUs correctly.
517      */
518     CPU_FOREACH_REVERSE(cs) {
519         PowerPCCPU *cpu = POWERPC_CPU(cs);
520         int index = ppc_get_vcpu_dt_id(cpu);
521         DeviceClass *dc = DEVICE_GET_CLASS(cs);
522         int offset;
523 
524         if ((index % smt) != 0) {
525             continue;
526         }
527 
528         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
529         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
530         g_free(nodename);
531         _FDT(offset);
532         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
533     }
534 
535 }
536 
537 /*
538  * Adds ibm,dynamic-reconfiguration-memory node.
539  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
540  * of this device tree node.
541  */
542 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
543 {
544     MachineState *machine = MACHINE(spapr);
545     int ret, i, offset;
546     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
547     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
548     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
549     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
550                        memory_region_size(&spapr->hotplug_memory.mr)) /
551                        lmb_size;
552     uint32_t *int_buf, *cur_index, buf_len;
553     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
554 
555     /*
556      * Don't create the node if there is no hotpluggable memory
557      */
558     if (machine->ram_size == machine->maxram_size) {
559         return 0;
560     }
561 
562     /*
563      * Allocate enough buffer size to fit in ibm,dynamic-memory
564      * or ibm,associativity-lookup-arrays
565      */
566     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
567               * sizeof(uint32_t);
568     cur_index = int_buf = g_malloc0(buf_len);
569 
570     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
571 
572     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
573                     sizeof(prop_lmb_size));
574     if (ret < 0) {
575         goto out;
576     }
577 
578     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
579     if (ret < 0) {
580         goto out;
581     }
582 
583     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
584     if (ret < 0) {
585         goto out;
586     }
587 
588     /* ibm,dynamic-memory */
589     int_buf[0] = cpu_to_be32(nr_lmbs);
590     cur_index++;
591     for (i = 0; i < nr_lmbs; i++) {
592         uint64_t addr = i * lmb_size;
593         uint32_t *dynamic_memory = cur_index;
594 
595         if (i >= hotplug_lmb_start) {
596             sPAPRDRConnector *drc;
597             sPAPRDRConnectorClass *drck;
598 
599             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
600             g_assert(drc);
601             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
602 
603             dynamic_memory[0] = cpu_to_be32(addr >> 32);
604             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
605             dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
606             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
607             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
608             if (memory_region_present(get_system_memory(), addr)) {
609                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
610             } else {
611                 dynamic_memory[5] = cpu_to_be32(0);
612             }
613         } else {
614             /*
615              * LMB information for RMA, boot time RAM and gap b/n RAM and
616              * hotplug memory region -- all these are marked as reserved
617              * and as having no valid DRC.
618              */
619             dynamic_memory[0] = cpu_to_be32(addr >> 32);
620             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
621             dynamic_memory[2] = cpu_to_be32(0);
622             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
623             dynamic_memory[4] = cpu_to_be32(-1);
624             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
625                                             SPAPR_LMB_FLAGS_DRC_INVALID);
626         }
627 
628         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
629     }
630     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
631     if (ret < 0) {
632         goto out;
633     }
634 
635     /* ibm,associativity-lookup-arrays */
636     cur_index = int_buf;
637     int_buf[0] = cpu_to_be32(nr_nodes);
638     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
639     cur_index += 2;
640     for (i = 0; i < nr_nodes; i++) {
641         uint32_t associativity[] = {
642             cpu_to_be32(0x0),
643             cpu_to_be32(0x0),
644             cpu_to_be32(0x0),
645             cpu_to_be32(i)
646         };
647         memcpy(cur_index, associativity, sizeof(associativity));
648         cur_index += 4;
649     }
650     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
651             (cur_index - int_buf) * sizeof(uint32_t));
652 out:
653     g_free(int_buf);
654     return ret;
655 }
656 
657 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
658                                 sPAPROptionVector *ov5_updates)
659 {
660     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
661     int ret = 0, offset;
662 
663     /* Generate ibm,dynamic-reconfiguration-memory node if required */
664     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
665         g_assert(smc->dr_lmb_enabled);
666         ret = spapr_populate_drconf_memory(spapr, fdt);
667         if (ret) {
668             goto out;
669         }
670     }
671 
672     offset = fdt_path_offset(fdt, "/chosen");
673     if (offset < 0) {
674         offset = fdt_add_subnode(fdt, 0, "chosen");
675         if (offset < 0) {
676             return offset;
677         }
678     }
679     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
680                                  "ibm,architecture-vec-5");
681 
682 out:
683     return ret;
684 }
685 
686 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
687                                  target_ulong addr, target_ulong size,
688                                  bool cpu_update,
689                                  sPAPROptionVector *ov5_updates)
690 {
691     void *fdt, *fdt_skel;
692     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
693 
694     size -= sizeof(hdr);
695 
696     /* Create sceleton */
697     fdt_skel = g_malloc0(size);
698     _FDT((fdt_create(fdt_skel, size)));
699     _FDT((fdt_begin_node(fdt_skel, "")));
700     _FDT((fdt_end_node(fdt_skel)));
701     _FDT((fdt_finish(fdt_skel)));
702     fdt = g_malloc0(size);
703     _FDT((fdt_open_into(fdt_skel, fdt, size)));
704     g_free(fdt_skel);
705 
706     /* Fixup cpu nodes */
707     if (cpu_update) {
708         _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
709     }
710 
711     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
712         return -1;
713     }
714 
715     /* Pack resulting tree */
716     _FDT((fdt_pack(fdt)));
717 
718     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
719         trace_spapr_cas_failed(size);
720         return -1;
721     }
722 
723     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
724     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
725     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
726     g_free(fdt);
727 
728     return 0;
729 }
730 
731 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
732 {
733     int rtas;
734     GString *hypertas = g_string_sized_new(256);
735     GString *qemu_hypertas = g_string_sized_new(256);
736     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
737     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
738         memory_region_size(&spapr->hotplug_memory.mr);
739     uint32_t lrdr_capacity[] = {
740         cpu_to_be32(max_hotplug_addr >> 32),
741         cpu_to_be32(max_hotplug_addr & 0xffffffff),
742         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
743         cpu_to_be32(max_cpus / smp_threads),
744     };
745 
746     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
747 
748     /* hypertas */
749     add_str(hypertas, "hcall-pft");
750     add_str(hypertas, "hcall-term");
751     add_str(hypertas, "hcall-dabr");
752     add_str(hypertas, "hcall-interrupt");
753     add_str(hypertas, "hcall-tce");
754     add_str(hypertas, "hcall-vio");
755     add_str(hypertas, "hcall-splpar");
756     add_str(hypertas, "hcall-bulk");
757     add_str(hypertas, "hcall-set-mode");
758     add_str(hypertas, "hcall-sprg0");
759     add_str(hypertas, "hcall-copy");
760     add_str(hypertas, "hcall-debug");
761     add_str(qemu_hypertas, "hcall-memop1");
762 
763     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
764         add_str(hypertas, "hcall-multi-tce");
765     }
766     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
767                      hypertas->str, hypertas->len));
768     g_string_free(hypertas, TRUE);
769     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
770                      qemu_hypertas->str, qemu_hypertas->len));
771     g_string_free(qemu_hypertas, TRUE);
772 
773     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
774                      refpoints, sizeof(refpoints)));
775 
776     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
777                           RTAS_ERROR_LOG_MAX));
778     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
779                           RTAS_EVENT_SCAN_RATE));
780 
781     if (msi_nonbroken) {
782         _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
783     }
784 
785     /*
786      * According to PAPR, rtas ibm,os-term does not guarantee a return
787      * back to the guest cpu.
788      *
789      * While an additional ibm,extended-os-term property indicates
790      * that rtas call return will always occur. Set this property.
791      */
792     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
793 
794     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
795                      lrdr_capacity, sizeof(lrdr_capacity)));
796 
797     spapr_dt_rtas_tokens(fdt, rtas);
798 }
799 
800 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
801 {
802     MachineState *machine = MACHINE(spapr);
803     int chosen;
804     const char *boot_device = machine->boot_order;
805     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
806     size_t cb = 0;
807     char *bootlist = get_boot_devices_list(&cb, true);
808 
809     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
810 
811     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
812     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
813                           spapr->initrd_base));
814     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
815                           spapr->initrd_base + spapr->initrd_size));
816 
817     if (spapr->kernel_size) {
818         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
819                               cpu_to_be64(spapr->kernel_size) };
820 
821         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
822                          &kprop, sizeof(kprop)));
823         if (spapr->kernel_le) {
824             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
825         }
826     }
827     if (boot_menu) {
828         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
829     }
830     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
831     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
832     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
833 
834     if (cb && bootlist) {
835         int i;
836 
837         for (i = 0; i < cb; i++) {
838             if (bootlist[i] == '\n') {
839                 bootlist[i] = ' ';
840             }
841         }
842         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
843     }
844 
845     if (boot_device && strlen(boot_device)) {
846         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
847     }
848 
849     if (!spapr->has_graphics && stdout_path) {
850         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
851     }
852 
853     g_free(stdout_path);
854     g_free(bootlist);
855 }
856 
857 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
858 {
859     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
860      * KVM to work under pHyp with some guest co-operation */
861     int hypervisor;
862     uint8_t hypercall[16];
863 
864     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
865     /* indicate KVM hypercall interface */
866     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
867     if (kvmppc_has_cap_fixup_hcalls()) {
868         /*
869          * Older KVM versions with older guest kernels were broken
870          * with the magic page, don't allow the guest to map it.
871          */
872         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
873                                   sizeof(hypercall))) {
874             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
875                              hypercall, sizeof(hypercall)));
876         }
877     }
878 }
879 
880 static void *spapr_build_fdt(sPAPRMachineState *spapr,
881                              hwaddr rtas_addr,
882                              hwaddr rtas_size)
883 {
884     MachineState *machine = MACHINE(qdev_get_machine());
885     MachineClass *mc = MACHINE_GET_CLASS(machine);
886     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
887     int ret;
888     void *fdt;
889     sPAPRPHBState *phb;
890     char *buf;
891 
892     fdt = g_malloc0(FDT_MAX_SIZE);
893     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
894 
895     /* Root node */
896     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
897     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
898     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
899 
900     /*
901      * Add info to guest to indentify which host is it being run on
902      * and what is the uuid of the guest
903      */
904     if (kvmppc_get_host_model(&buf)) {
905         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
906         g_free(buf);
907     }
908     if (kvmppc_get_host_serial(&buf)) {
909         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
910         g_free(buf);
911     }
912 
913     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
914 
915     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
916     if (qemu_uuid_set) {
917         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
918     }
919     g_free(buf);
920 
921     if (qemu_get_vm_name()) {
922         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
923                                 qemu_get_vm_name()));
924     }
925 
926     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
927     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
928 
929     /* /interrupt controller */
930     spapr_dt_xics(spapr->xics, fdt, PHANDLE_XICP);
931 
932     ret = spapr_populate_memory(spapr, fdt);
933     if (ret < 0) {
934         error_report("couldn't setup memory nodes in fdt");
935         exit(1);
936     }
937 
938     /* /vdevice */
939     spapr_dt_vdevice(spapr->vio_bus, fdt);
940 
941     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
942         ret = spapr_rng_populate_dt(fdt);
943         if (ret < 0) {
944             error_report("could not set up rng device in the fdt");
945             exit(1);
946         }
947     }
948 
949     QLIST_FOREACH(phb, &spapr->phbs, list) {
950         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
951         if (ret < 0) {
952             error_report("couldn't setup PCI devices in fdt");
953             exit(1);
954         }
955     }
956 
957     /* cpus */
958     spapr_populate_cpus_dt_node(fdt, spapr);
959 
960     if (smc->dr_lmb_enabled) {
961         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
962     }
963 
964     if (mc->query_hotpluggable_cpus) {
965         int offset = fdt_path_offset(fdt, "/cpus");
966         ret = spapr_drc_populate_dt(fdt, offset, NULL,
967                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
968         if (ret < 0) {
969             error_report("Couldn't set up CPU DR device tree properties");
970             exit(1);
971         }
972     }
973 
974     /* /event-sources */
975     spapr_dt_events(spapr, fdt);
976 
977     /* /rtas */
978     spapr_dt_rtas(spapr, fdt);
979 
980     /* /chosen */
981     spapr_dt_chosen(spapr, fdt);
982 
983     /* /hypervisor */
984     if (kvm_enabled()) {
985         spapr_dt_hypervisor(spapr, fdt);
986     }
987 
988     /* Build memory reserve map */
989     if (spapr->kernel_size) {
990         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
991     }
992     if (spapr->initrd_size) {
993         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
994     }
995 
996     /* ibm,client-architecture-support updates */
997     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
998     if (ret < 0) {
999         error_report("couldn't setup CAS properties fdt");
1000         exit(1);
1001     }
1002 
1003     return fdt;
1004 }
1005 
1006 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1007 {
1008     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1009 }
1010 
1011 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1012 {
1013     CPUPPCState *env = &cpu->env;
1014 
1015     if (msr_pr) {
1016         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1017         env->gpr[3] = H_PRIVILEGE;
1018     } else {
1019         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1020     }
1021 }
1022 
1023 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1024 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1025 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1026 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1027 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1028 
1029 /*
1030  * Get the fd to access the kernel htab, re-opening it if necessary
1031  */
1032 static int get_htab_fd(sPAPRMachineState *spapr)
1033 {
1034     if (spapr->htab_fd >= 0) {
1035         return spapr->htab_fd;
1036     }
1037 
1038     spapr->htab_fd = kvmppc_get_htab_fd(false);
1039     if (spapr->htab_fd < 0) {
1040         error_report("Unable to open fd for reading hash table from KVM: %s",
1041                      strerror(errno));
1042     }
1043 
1044     return spapr->htab_fd;
1045 }
1046 
1047 static void close_htab_fd(sPAPRMachineState *spapr)
1048 {
1049     if (spapr->htab_fd >= 0) {
1050         close(spapr->htab_fd);
1051     }
1052     spapr->htab_fd = -1;
1053 }
1054 
1055 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1056 {
1057     int shift;
1058 
1059     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1060      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1061      * that's much more than is needed for Linux guests */
1062     shift = ctz64(pow2ceil(ramsize)) - 7;
1063     shift = MAX(shift, 18); /* Minimum architected size */
1064     shift = MIN(shift, 46); /* Maximum architected size */
1065     return shift;
1066 }
1067 
1068 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1069                                  Error **errp)
1070 {
1071     long rc;
1072 
1073     /* Clean up any HPT info from a previous boot */
1074     g_free(spapr->htab);
1075     spapr->htab = NULL;
1076     spapr->htab_shift = 0;
1077     close_htab_fd(spapr);
1078 
1079     rc = kvmppc_reset_htab(shift);
1080     if (rc < 0) {
1081         /* kernel-side HPT needed, but couldn't allocate one */
1082         error_setg_errno(errp, errno,
1083                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1084                          shift);
1085         /* This is almost certainly fatal, but if the caller really
1086          * wants to carry on with shift == 0, it's welcome to try */
1087     } else if (rc > 0) {
1088         /* kernel-side HPT allocated */
1089         if (rc != shift) {
1090             error_setg(errp,
1091                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1092                        shift, rc);
1093         }
1094 
1095         spapr->htab_shift = shift;
1096         spapr->htab = NULL;
1097     } else {
1098         /* kernel-side HPT not needed, allocate in userspace instead */
1099         size_t size = 1ULL << shift;
1100         int i;
1101 
1102         spapr->htab = qemu_memalign(size, size);
1103         if (!spapr->htab) {
1104             error_setg_errno(errp, errno,
1105                              "Could not allocate HPT of order %d", shift);
1106             return;
1107         }
1108 
1109         memset(spapr->htab, 0, size);
1110         spapr->htab_shift = shift;
1111 
1112         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1113             DIRTY_HPTE(HPTE(spapr->htab, i));
1114         }
1115     }
1116 }
1117 
1118 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1119 {
1120     bool matched = false;
1121 
1122     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1123         matched = true;
1124     }
1125 
1126     if (!matched) {
1127         error_report("Device %s is not supported by this machine yet.",
1128                      qdev_fw_name(DEVICE(sbdev)));
1129         exit(1);
1130     }
1131 }
1132 
1133 static void ppc_spapr_reset(void)
1134 {
1135     MachineState *machine = MACHINE(qdev_get_machine());
1136     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1137     PowerPCCPU *first_ppc_cpu;
1138     uint32_t rtas_limit;
1139     hwaddr rtas_addr, fdt_addr;
1140     void *fdt;
1141     int rc;
1142 
1143     /* Check for unknown sysbus devices */
1144     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1145 
1146     /* Allocate and/or reset the hash page table */
1147     spapr_reallocate_hpt(spapr,
1148                          spapr_hpt_shift_for_ramsize(machine->maxram_size),
1149                          &error_fatal);
1150 
1151     /* Update the RMA size if necessary */
1152     if (spapr->vrma_adjust) {
1153         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1154                                           spapr->htab_shift);
1155     }
1156 
1157     qemu_devices_reset();
1158 
1159     /*
1160      * We place the device tree and RTAS just below either the top of the RMA,
1161      * or just below 2GB, whichever is lowere, so that it can be
1162      * processed with 32-bit real mode code if necessary
1163      */
1164     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1165     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1166     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1167 
1168     /* if this reset wasn't generated by CAS, we should reset our
1169      * negotiated options and start from scratch */
1170     if (!spapr->cas_reboot) {
1171         spapr_ovec_cleanup(spapr->ov5_cas);
1172         spapr->ov5_cas = spapr_ovec_new();
1173     }
1174 
1175     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1176 
1177     spapr_load_rtas(spapr, fdt, rtas_addr);
1178 
1179     rc = fdt_pack(fdt);
1180 
1181     /* Should only fail if we've built a corrupted tree */
1182     assert(rc == 0);
1183 
1184     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1185         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1186                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1187         exit(1);
1188     }
1189 
1190     /* Load the fdt */
1191     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1192     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1193     g_free(fdt);
1194 
1195     /* Set up the entry state */
1196     first_ppc_cpu = POWERPC_CPU(first_cpu);
1197     first_ppc_cpu->env.gpr[3] = fdt_addr;
1198     first_ppc_cpu->env.gpr[5] = 0;
1199     first_cpu->halted = 0;
1200     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1201 
1202     spapr->cas_reboot = false;
1203 }
1204 
1205 static void spapr_create_nvram(sPAPRMachineState *spapr)
1206 {
1207     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1208     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1209 
1210     if (dinfo) {
1211         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1212                             &error_fatal);
1213     }
1214 
1215     qdev_init_nofail(dev);
1216 
1217     spapr->nvram = (struct sPAPRNVRAM *)dev;
1218 }
1219 
1220 static void spapr_rtc_create(sPAPRMachineState *spapr)
1221 {
1222     DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1223 
1224     qdev_init_nofail(dev);
1225     spapr->rtc = dev;
1226 
1227     object_property_add_alias(qdev_get_machine(), "rtc-time",
1228                               OBJECT(spapr->rtc), "date", NULL);
1229 }
1230 
1231 /* Returns whether we want to use VGA or not */
1232 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1233 {
1234     switch (vga_interface_type) {
1235     case VGA_NONE:
1236         return false;
1237     case VGA_DEVICE:
1238         return true;
1239     case VGA_STD:
1240     case VGA_VIRTIO:
1241         return pci_vga_init(pci_bus) != NULL;
1242     default:
1243         error_setg(errp,
1244                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1245         return false;
1246     }
1247 }
1248 
1249 static int spapr_post_load(void *opaque, int version_id)
1250 {
1251     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1252     int err = 0;
1253 
1254     /* In earlier versions, there was no separate qdev for the PAPR
1255      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1256      * So when migrating from those versions, poke the incoming offset
1257      * value into the RTC device */
1258     if (version_id < 3) {
1259         err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1260     }
1261 
1262     return err;
1263 }
1264 
1265 static bool version_before_3(void *opaque, int version_id)
1266 {
1267     return version_id < 3;
1268 }
1269 
1270 static bool spapr_ov5_cas_needed(void *opaque)
1271 {
1272     sPAPRMachineState *spapr = opaque;
1273     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1274     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1275     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1276     bool cas_needed;
1277 
1278     /* Prior to the introduction of sPAPROptionVector, we had two option
1279      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1280      * Both of these options encode machine topology into the device-tree
1281      * in such a way that the now-booted OS should still be able to interact
1282      * appropriately with QEMU regardless of what options were actually
1283      * negotiatied on the source side.
1284      *
1285      * As such, we can avoid migrating the CAS-negotiated options if these
1286      * are the only options available on the current machine/platform.
1287      * Since these are the only options available for pseries-2.7 and
1288      * earlier, this allows us to maintain old->new/new->old migration
1289      * compatibility.
1290      *
1291      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1292      * via default pseries-2.8 machines and explicit command-line parameters.
1293      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1294      * of the actual CAS-negotiated values to continue working properly. For
1295      * example, availability of memory unplug depends on knowing whether
1296      * OV5_HP_EVT was negotiated via CAS.
1297      *
1298      * Thus, for any cases where the set of available CAS-negotiatable
1299      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1300      * include the CAS-negotiated options in the migration stream.
1301      */
1302     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1303     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1304 
1305     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1306      * the mask itself since in the future it's possible "legacy" bits may be
1307      * removed via machine options, which could generate a false positive
1308      * that breaks migration.
1309      */
1310     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1311     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1312 
1313     spapr_ovec_cleanup(ov5_mask);
1314     spapr_ovec_cleanup(ov5_legacy);
1315     spapr_ovec_cleanup(ov5_removed);
1316 
1317     return cas_needed;
1318 }
1319 
1320 static const VMStateDescription vmstate_spapr_ov5_cas = {
1321     .name = "spapr_option_vector_ov5_cas",
1322     .version_id = 1,
1323     .minimum_version_id = 1,
1324     .needed = spapr_ov5_cas_needed,
1325     .fields = (VMStateField[]) {
1326         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1327                                  vmstate_spapr_ovec, sPAPROptionVector),
1328         VMSTATE_END_OF_LIST()
1329     },
1330 };
1331 
1332 static const VMStateDescription vmstate_spapr = {
1333     .name = "spapr",
1334     .version_id = 3,
1335     .minimum_version_id = 1,
1336     .post_load = spapr_post_load,
1337     .fields = (VMStateField[]) {
1338         /* used to be @next_irq */
1339         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1340 
1341         /* RTC offset */
1342         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1343 
1344         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1345         VMSTATE_END_OF_LIST()
1346     },
1347     .subsections = (const VMStateDescription*[]) {
1348         &vmstate_spapr_ov5_cas,
1349         NULL
1350     }
1351 };
1352 
1353 static int htab_save_setup(QEMUFile *f, void *opaque)
1354 {
1355     sPAPRMachineState *spapr = opaque;
1356 
1357     /* "Iteration" header */
1358     qemu_put_be32(f, spapr->htab_shift);
1359 
1360     if (spapr->htab) {
1361         spapr->htab_save_index = 0;
1362         spapr->htab_first_pass = true;
1363     } else {
1364         assert(kvm_enabled());
1365     }
1366 
1367 
1368     return 0;
1369 }
1370 
1371 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1372                                  int64_t max_ns)
1373 {
1374     bool has_timeout = max_ns != -1;
1375     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1376     int index = spapr->htab_save_index;
1377     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1378 
1379     assert(spapr->htab_first_pass);
1380 
1381     do {
1382         int chunkstart;
1383 
1384         /* Consume invalid HPTEs */
1385         while ((index < htabslots)
1386                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1387             index++;
1388             CLEAN_HPTE(HPTE(spapr->htab, index));
1389         }
1390 
1391         /* Consume valid HPTEs */
1392         chunkstart = index;
1393         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1394                && HPTE_VALID(HPTE(spapr->htab, index))) {
1395             index++;
1396             CLEAN_HPTE(HPTE(spapr->htab, index));
1397         }
1398 
1399         if (index > chunkstart) {
1400             int n_valid = index - chunkstart;
1401 
1402             qemu_put_be32(f, chunkstart);
1403             qemu_put_be16(f, n_valid);
1404             qemu_put_be16(f, 0);
1405             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1406                             HASH_PTE_SIZE_64 * n_valid);
1407 
1408             if (has_timeout &&
1409                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1410                 break;
1411             }
1412         }
1413     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1414 
1415     if (index >= htabslots) {
1416         assert(index == htabslots);
1417         index = 0;
1418         spapr->htab_first_pass = false;
1419     }
1420     spapr->htab_save_index = index;
1421 }
1422 
1423 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1424                                 int64_t max_ns)
1425 {
1426     bool final = max_ns < 0;
1427     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1428     int examined = 0, sent = 0;
1429     int index = spapr->htab_save_index;
1430     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1431 
1432     assert(!spapr->htab_first_pass);
1433 
1434     do {
1435         int chunkstart, invalidstart;
1436 
1437         /* Consume non-dirty HPTEs */
1438         while ((index < htabslots)
1439                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1440             index++;
1441             examined++;
1442         }
1443 
1444         chunkstart = index;
1445         /* Consume valid dirty HPTEs */
1446         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1447                && HPTE_DIRTY(HPTE(spapr->htab, index))
1448                && HPTE_VALID(HPTE(spapr->htab, index))) {
1449             CLEAN_HPTE(HPTE(spapr->htab, index));
1450             index++;
1451             examined++;
1452         }
1453 
1454         invalidstart = index;
1455         /* Consume invalid dirty HPTEs */
1456         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1457                && HPTE_DIRTY(HPTE(spapr->htab, index))
1458                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1459             CLEAN_HPTE(HPTE(spapr->htab, index));
1460             index++;
1461             examined++;
1462         }
1463 
1464         if (index > chunkstart) {
1465             int n_valid = invalidstart - chunkstart;
1466             int n_invalid = index - invalidstart;
1467 
1468             qemu_put_be32(f, chunkstart);
1469             qemu_put_be16(f, n_valid);
1470             qemu_put_be16(f, n_invalid);
1471             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1472                             HASH_PTE_SIZE_64 * n_valid);
1473             sent += index - chunkstart;
1474 
1475             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1476                 break;
1477             }
1478         }
1479 
1480         if (examined >= htabslots) {
1481             break;
1482         }
1483 
1484         if (index >= htabslots) {
1485             assert(index == htabslots);
1486             index = 0;
1487         }
1488     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1489 
1490     if (index >= htabslots) {
1491         assert(index == htabslots);
1492         index = 0;
1493     }
1494 
1495     spapr->htab_save_index = index;
1496 
1497     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1498 }
1499 
1500 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1501 #define MAX_KVM_BUF_SIZE    2048
1502 
1503 static int htab_save_iterate(QEMUFile *f, void *opaque)
1504 {
1505     sPAPRMachineState *spapr = opaque;
1506     int fd;
1507     int rc = 0;
1508 
1509     /* Iteration header */
1510     qemu_put_be32(f, 0);
1511 
1512     if (!spapr->htab) {
1513         assert(kvm_enabled());
1514 
1515         fd = get_htab_fd(spapr);
1516         if (fd < 0) {
1517             return fd;
1518         }
1519 
1520         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1521         if (rc < 0) {
1522             return rc;
1523         }
1524     } else  if (spapr->htab_first_pass) {
1525         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1526     } else {
1527         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1528     }
1529 
1530     /* End marker */
1531     qemu_put_be32(f, 0);
1532     qemu_put_be16(f, 0);
1533     qemu_put_be16(f, 0);
1534 
1535     return rc;
1536 }
1537 
1538 static int htab_save_complete(QEMUFile *f, void *opaque)
1539 {
1540     sPAPRMachineState *spapr = opaque;
1541     int fd;
1542 
1543     /* Iteration header */
1544     qemu_put_be32(f, 0);
1545 
1546     if (!spapr->htab) {
1547         int rc;
1548 
1549         assert(kvm_enabled());
1550 
1551         fd = get_htab_fd(spapr);
1552         if (fd < 0) {
1553             return fd;
1554         }
1555 
1556         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1557         if (rc < 0) {
1558             return rc;
1559         }
1560     } else {
1561         if (spapr->htab_first_pass) {
1562             htab_save_first_pass(f, spapr, -1);
1563         }
1564         htab_save_later_pass(f, spapr, -1);
1565     }
1566 
1567     /* End marker */
1568     qemu_put_be32(f, 0);
1569     qemu_put_be16(f, 0);
1570     qemu_put_be16(f, 0);
1571 
1572     return 0;
1573 }
1574 
1575 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1576 {
1577     sPAPRMachineState *spapr = opaque;
1578     uint32_t section_hdr;
1579     int fd = -1;
1580 
1581     if (version_id < 1 || version_id > 1) {
1582         error_report("htab_load() bad version");
1583         return -EINVAL;
1584     }
1585 
1586     section_hdr = qemu_get_be32(f);
1587 
1588     if (section_hdr) {
1589         Error *local_err = NULL;
1590 
1591         /* First section gives the htab size */
1592         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1593         if (local_err) {
1594             error_report_err(local_err);
1595             return -EINVAL;
1596         }
1597         return 0;
1598     }
1599 
1600     if (!spapr->htab) {
1601         assert(kvm_enabled());
1602 
1603         fd = kvmppc_get_htab_fd(true);
1604         if (fd < 0) {
1605             error_report("Unable to open fd to restore KVM hash table: %s",
1606                          strerror(errno));
1607         }
1608     }
1609 
1610     while (true) {
1611         uint32_t index;
1612         uint16_t n_valid, n_invalid;
1613 
1614         index = qemu_get_be32(f);
1615         n_valid = qemu_get_be16(f);
1616         n_invalid = qemu_get_be16(f);
1617 
1618         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1619             /* End of Stream */
1620             break;
1621         }
1622 
1623         if ((index + n_valid + n_invalid) >
1624             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1625             /* Bad index in stream */
1626             error_report(
1627                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1628                 index, n_valid, n_invalid, spapr->htab_shift);
1629             return -EINVAL;
1630         }
1631 
1632         if (spapr->htab) {
1633             if (n_valid) {
1634                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1635                                 HASH_PTE_SIZE_64 * n_valid);
1636             }
1637             if (n_invalid) {
1638                 memset(HPTE(spapr->htab, index + n_valid), 0,
1639                        HASH_PTE_SIZE_64 * n_invalid);
1640             }
1641         } else {
1642             int rc;
1643 
1644             assert(fd >= 0);
1645 
1646             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1647             if (rc < 0) {
1648                 return rc;
1649             }
1650         }
1651     }
1652 
1653     if (!spapr->htab) {
1654         assert(fd >= 0);
1655         close(fd);
1656     }
1657 
1658     return 0;
1659 }
1660 
1661 static void htab_cleanup(void *opaque)
1662 {
1663     sPAPRMachineState *spapr = opaque;
1664 
1665     close_htab_fd(spapr);
1666 }
1667 
1668 static SaveVMHandlers savevm_htab_handlers = {
1669     .save_live_setup = htab_save_setup,
1670     .save_live_iterate = htab_save_iterate,
1671     .save_live_complete_precopy = htab_save_complete,
1672     .cleanup = htab_cleanup,
1673     .load_state = htab_load,
1674 };
1675 
1676 static void spapr_boot_set(void *opaque, const char *boot_device,
1677                            Error **errp)
1678 {
1679     MachineState *machine = MACHINE(qdev_get_machine());
1680     machine->boot_order = g_strdup(boot_device);
1681 }
1682 
1683 /*
1684  * Reset routine for LMB DR devices.
1685  *
1686  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1687  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1688  * when it walks all its children devices. LMB devices reset occurs
1689  * as part of spapr_ppc_reset().
1690  */
1691 static void spapr_drc_reset(void *opaque)
1692 {
1693     sPAPRDRConnector *drc = opaque;
1694     DeviceState *d = DEVICE(drc);
1695 
1696     if (d) {
1697         device_reset(d);
1698     }
1699 }
1700 
1701 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1702 {
1703     MachineState *machine = MACHINE(spapr);
1704     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1705     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1706     int i;
1707 
1708     for (i = 0; i < nr_lmbs; i++) {
1709         sPAPRDRConnector *drc;
1710         uint64_t addr;
1711 
1712         addr = i * lmb_size + spapr->hotplug_memory.base;
1713         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1714                                      addr/lmb_size);
1715         qemu_register_reset(spapr_drc_reset, drc);
1716     }
1717 }
1718 
1719 /*
1720  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1721  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1722  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1723  */
1724 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1725 {
1726     int i;
1727 
1728     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1729         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1730                    " is not aligned to %llu MiB",
1731                    machine->ram_size,
1732                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1733         return;
1734     }
1735 
1736     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1737         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1738                    " is not aligned to %llu MiB",
1739                    machine->ram_size,
1740                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1741         return;
1742     }
1743 
1744     for (i = 0; i < nb_numa_nodes; i++) {
1745         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1746             error_setg(errp,
1747                        "Node %d memory size 0x%" PRIx64
1748                        " is not aligned to %llu MiB",
1749                        i, numa_info[i].node_mem,
1750                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1751             return;
1752         }
1753     }
1754 }
1755 
1756 /* pSeries LPAR / sPAPR hardware init */
1757 static void ppc_spapr_init(MachineState *machine)
1758 {
1759     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1760     MachineClass *mc = MACHINE_GET_CLASS(machine);
1761     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1762     const char *kernel_filename = machine->kernel_filename;
1763     const char *initrd_filename = machine->initrd_filename;
1764     PCIHostState *phb;
1765     int i;
1766     MemoryRegion *sysmem = get_system_memory();
1767     MemoryRegion *ram = g_new(MemoryRegion, 1);
1768     MemoryRegion *rma_region;
1769     void *rma = NULL;
1770     hwaddr rma_alloc_size;
1771     hwaddr node0_size = spapr_node0_size();
1772     long load_limit, fw_size;
1773     char *filename;
1774     int smt = kvmppc_smt_threads();
1775     int spapr_cores = smp_cpus / smp_threads;
1776     int spapr_max_cores = max_cpus / smp_threads;
1777 
1778     if (mc->query_hotpluggable_cpus) {
1779         if (smp_cpus % smp_threads) {
1780             error_report("smp_cpus (%u) must be multiple of threads (%u)",
1781                          smp_cpus, smp_threads);
1782             exit(1);
1783         }
1784         if (max_cpus % smp_threads) {
1785             error_report("max_cpus (%u) must be multiple of threads (%u)",
1786                          max_cpus, smp_threads);
1787             exit(1);
1788         }
1789     }
1790 
1791     msi_nonbroken = true;
1792 
1793     QLIST_INIT(&spapr->phbs);
1794 
1795     cpu_ppc_hypercall = emulate_spapr_hypercall;
1796 
1797     /* Allocate RMA if necessary */
1798     rma_alloc_size = kvmppc_alloc_rma(&rma);
1799 
1800     if (rma_alloc_size == -1) {
1801         error_report("Unable to create RMA");
1802         exit(1);
1803     }
1804 
1805     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1806         spapr->rma_size = rma_alloc_size;
1807     } else {
1808         spapr->rma_size = node0_size;
1809 
1810         /* With KVM, we don't actually know whether KVM supports an
1811          * unbounded RMA (PR KVM) or is limited by the hash table size
1812          * (HV KVM using VRMA), so we always assume the latter
1813          *
1814          * In that case, we also limit the initial allocations for RTAS
1815          * etc... to 256M since we have no way to know what the VRMA size
1816          * is going to be as it depends on the size of the hash table
1817          * isn't determined yet.
1818          */
1819         if (kvm_enabled()) {
1820             spapr->vrma_adjust = 1;
1821             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1822         }
1823 
1824         /* Actually we don't support unbounded RMA anymore since we
1825          * added proper emulation of HV mode. The max we can get is
1826          * 16G which also happens to be what we configure for PAPR
1827          * mode so make sure we don't do anything bigger than that
1828          */
1829         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1830     }
1831 
1832     if (spapr->rma_size > node0_size) {
1833         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1834                      spapr->rma_size);
1835         exit(1);
1836     }
1837 
1838     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1839     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1840 
1841     /* Set up Interrupt Controller before we create the VCPUs */
1842     spapr->xics = xics_system_init(machine,
1843                                    DIV_ROUND_UP(max_cpus * smt, smp_threads),
1844                                    XICS_IRQS_SPAPR, &error_fatal);
1845 
1846     /* Set up containers for ibm,client-set-architecture negotiated options */
1847     spapr->ov5 = spapr_ovec_new();
1848     spapr->ov5_cas = spapr_ovec_new();
1849 
1850     if (smc->dr_lmb_enabled) {
1851         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
1852         spapr_validate_node_memory(machine, &error_fatal);
1853     }
1854 
1855     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
1856 
1857     /* advertise support for dedicated HP event source to guests */
1858     if (spapr->use_hotplug_event_source) {
1859         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
1860     }
1861 
1862     /* init CPUs */
1863     if (machine->cpu_model == NULL) {
1864         machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
1865     }
1866 
1867     ppc_cpu_parse_features(machine->cpu_model);
1868 
1869     if (mc->query_hotpluggable_cpus) {
1870         char *type = spapr_get_cpu_core_type(machine->cpu_model);
1871 
1872         if (type == NULL) {
1873             error_report("Unable to find sPAPR CPU Core definition");
1874             exit(1);
1875         }
1876 
1877         spapr->cores = g_new0(Object *, spapr_max_cores);
1878         for (i = 0; i < spapr_max_cores; i++) {
1879             int core_id = i * smp_threads;
1880             sPAPRDRConnector *drc =
1881                 spapr_dr_connector_new(OBJECT(spapr),
1882                                        SPAPR_DR_CONNECTOR_TYPE_CPU,
1883                                        (core_id / smp_threads) * smt);
1884 
1885             qemu_register_reset(spapr_drc_reset, drc);
1886 
1887             if (i < spapr_cores) {
1888                 Object *core  = object_new(type);
1889                 object_property_set_int(core, smp_threads, "nr-threads",
1890                                         &error_fatal);
1891                 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1892                                         &error_fatal);
1893                 object_property_set_bool(core, true, "realized", &error_fatal);
1894             }
1895         }
1896         g_free(type);
1897     } else {
1898         for (i = 0; i < smp_cpus; i++) {
1899             PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1900             if (cpu == NULL) {
1901                 error_report("Unable to find PowerPC CPU definition");
1902                 exit(1);
1903             }
1904             spapr_cpu_init(spapr, cpu, &error_fatal);
1905        }
1906     }
1907 
1908     if (kvm_enabled()) {
1909         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1910         kvmppc_enable_logical_ci_hcalls();
1911         kvmppc_enable_set_mode_hcall();
1912 
1913         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
1914         kvmppc_enable_clear_ref_mod_hcalls();
1915     }
1916 
1917     /* allocate RAM */
1918     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1919                                          machine->ram_size);
1920     memory_region_add_subregion(sysmem, 0, ram);
1921 
1922     if (rma_alloc_size && rma) {
1923         rma_region = g_new(MemoryRegion, 1);
1924         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1925                                    rma_alloc_size, rma);
1926         vmstate_register_ram_global(rma_region);
1927         memory_region_add_subregion(sysmem, 0, rma_region);
1928     }
1929 
1930     /* initialize hotplug memory address space */
1931     if (machine->ram_size < machine->maxram_size) {
1932         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1933         /*
1934          * Limit the number of hotpluggable memory slots to half the number
1935          * slots that KVM supports, leaving the other half for PCI and other
1936          * devices. However ensure that number of slots doesn't drop below 32.
1937          */
1938         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1939                            SPAPR_MAX_RAM_SLOTS;
1940 
1941         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1942             max_memslots = SPAPR_MAX_RAM_SLOTS;
1943         }
1944         if (machine->ram_slots > max_memslots) {
1945             error_report("Specified number of memory slots %"
1946                          PRIu64" exceeds max supported %d",
1947                          machine->ram_slots, max_memslots);
1948             exit(1);
1949         }
1950 
1951         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1952                                               SPAPR_HOTPLUG_MEM_ALIGN);
1953         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1954                            "hotplug-memory", hotplug_mem_size);
1955         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1956                                     &spapr->hotplug_memory.mr);
1957     }
1958 
1959     if (smc->dr_lmb_enabled) {
1960         spapr_create_lmb_dr_connectors(spapr);
1961     }
1962 
1963     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1964     if (!filename) {
1965         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1966         exit(1);
1967     }
1968     spapr->rtas_size = get_image_size(filename);
1969     if (spapr->rtas_size < 0) {
1970         error_report("Could not get size of LPAR rtas '%s'", filename);
1971         exit(1);
1972     }
1973     spapr->rtas_blob = g_malloc(spapr->rtas_size);
1974     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1975         error_report("Could not load LPAR rtas '%s'", filename);
1976         exit(1);
1977     }
1978     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1979         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1980                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1981         exit(1);
1982     }
1983     g_free(filename);
1984 
1985     /* Set up RTAS event infrastructure */
1986     spapr_events_init(spapr);
1987 
1988     /* Set up the RTC RTAS interfaces */
1989     spapr_rtc_create(spapr);
1990 
1991     /* Set up VIO bus */
1992     spapr->vio_bus = spapr_vio_bus_init();
1993 
1994     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1995         if (serial_hds[i]) {
1996             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1997         }
1998     }
1999 
2000     /* We always have at least the nvram device on VIO */
2001     spapr_create_nvram(spapr);
2002 
2003     /* Set up PCI */
2004     spapr_pci_rtas_init();
2005 
2006     phb = spapr_create_phb(spapr, 0);
2007 
2008     for (i = 0; i < nb_nics; i++) {
2009         NICInfo *nd = &nd_table[i];
2010 
2011         if (!nd->model) {
2012             nd->model = g_strdup("ibmveth");
2013         }
2014 
2015         if (strcmp(nd->model, "ibmveth") == 0) {
2016             spapr_vlan_create(spapr->vio_bus, nd);
2017         } else {
2018             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2019         }
2020     }
2021 
2022     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2023         spapr_vscsi_create(spapr->vio_bus);
2024     }
2025 
2026     /* Graphics */
2027     if (spapr_vga_init(phb->bus, &error_fatal)) {
2028         spapr->has_graphics = true;
2029         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2030     }
2031 
2032     if (machine->usb) {
2033         if (smc->use_ohci_by_default) {
2034             pci_create_simple(phb->bus, -1, "pci-ohci");
2035         } else {
2036             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2037         }
2038 
2039         if (spapr->has_graphics) {
2040             USBBus *usb_bus = usb_bus_find(-1);
2041 
2042             usb_create_simple(usb_bus, "usb-kbd");
2043             usb_create_simple(usb_bus, "usb-mouse");
2044         }
2045     }
2046 
2047     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2048         error_report(
2049             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2050             MIN_RMA_SLOF);
2051         exit(1);
2052     }
2053 
2054     if (kernel_filename) {
2055         uint64_t lowaddr = 0;
2056 
2057         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2058                                       NULL, NULL, &lowaddr, NULL, 1,
2059                                       PPC_ELF_MACHINE, 0, 0);
2060         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2061             spapr->kernel_size = load_elf(kernel_filename,
2062                                           translate_kernel_address, NULL, NULL,
2063                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2064                                           0, 0);
2065             spapr->kernel_le = spapr->kernel_size > 0;
2066         }
2067         if (spapr->kernel_size < 0) {
2068             error_report("error loading %s: %s", kernel_filename,
2069                          load_elf_strerror(spapr->kernel_size));
2070             exit(1);
2071         }
2072 
2073         /* load initrd */
2074         if (initrd_filename) {
2075             /* Try to locate the initrd in the gap between the kernel
2076              * and the firmware. Add a bit of space just in case
2077              */
2078             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2079                                   + 0x1ffff) & ~0xffff;
2080             spapr->initrd_size = load_image_targphys(initrd_filename,
2081                                                      spapr->initrd_base,
2082                                                      load_limit
2083                                                      - spapr->initrd_base);
2084             if (spapr->initrd_size < 0) {
2085                 error_report("could not load initial ram disk '%s'",
2086                              initrd_filename);
2087                 exit(1);
2088             }
2089         }
2090     }
2091 
2092     if (bios_name == NULL) {
2093         bios_name = FW_FILE_NAME;
2094     }
2095     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2096     if (!filename) {
2097         error_report("Could not find LPAR firmware '%s'", bios_name);
2098         exit(1);
2099     }
2100     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2101     if (fw_size <= 0) {
2102         error_report("Could not load LPAR firmware '%s'", filename);
2103         exit(1);
2104     }
2105     g_free(filename);
2106 
2107     /* FIXME: Should register things through the MachineState's qdev
2108      * interface, this is a legacy from the sPAPREnvironment structure
2109      * which predated MachineState but had a similar function */
2110     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2111     register_savevm_live(NULL, "spapr/htab", -1, 1,
2112                          &savevm_htab_handlers, spapr);
2113 
2114     /* used by RTAS */
2115     QTAILQ_INIT(&spapr->ccs_list);
2116     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2117 
2118     qemu_register_boot_set(spapr_boot_set, spapr);
2119 }
2120 
2121 static int spapr_kvm_type(const char *vm_type)
2122 {
2123     if (!vm_type) {
2124         return 0;
2125     }
2126 
2127     if (!strcmp(vm_type, "HV")) {
2128         return 1;
2129     }
2130 
2131     if (!strcmp(vm_type, "PR")) {
2132         return 2;
2133     }
2134 
2135     error_report("Unknown kvm-type specified '%s'", vm_type);
2136     exit(1);
2137 }
2138 
2139 /*
2140  * Implementation of an interface to adjust firmware path
2141  * for the bootindex property handling.
2142  */
2143 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2144                                    DeviceState *dev)
2145 {
2146 #define CAST(type, obj, name) \
2147     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2148     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2149     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2150 
2151     if (d) {
2152         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2153         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2154         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2155 
2156         if (spapr) {
2157             /*
2158              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2159              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2160              * in the top 16 bits of the 64-bit LUN
2161              */
2162             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2163             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2164                                    (uint64_t)id << 48);
2165         } else if (virtio) {
2166             /*
2167              * We use SRP luns of the form 01000000 | (target << 8) | lun
2168              * in the top 32 bits of the 64-bit LUN
2169              * Note: the quote above is from SLOF and it is wrong,
2170              * the actual binding is:
2171              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2172              */
2173             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2174             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2175                                    (uint64_t)id << 32);
2176         } else if (usb) {
2177             /*
2178              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2179              * in the top 32 bits of the 64-bit LUN
2180              */
2181             unsigned usb_port = atoi(usb->port->path);
2182             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2183             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2184                                    (uint64_t)id << 32);
2185         }
2186     }
2187 
2188     if (phb) {
2189         /* Replace "pci" with "pci@800000020000000" */
2190         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2191     }
2192 
2193     return NULL;
2194 }
2195 
2196 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2197 {
2198     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2199 
2200     return g_strdup(spapr->kvm_type);
2201 }
2202 
2203 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2204 {
2205     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2206 
2207     g_free(spapr->kvm_type);
2208     spapr->kvm_type = g_strdup(value);
2209 }
2210 
2211 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2212 {
2213     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2214 
2215     return spapr->use_hotplug_event_source;
2216 }
2217 
2218 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2219                                             Error **errp)
2220 {
2221     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2222 
2223     spapr->use_hotplug_event_source = value;
2224 }
2225 
2226 static void spapr_machine_initfn(Object *obj)
2227 {
2228     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2229 
2230     spapr->htab_fd = -1;
2231     spapr->use_hotplug_event_source = true;
2232     object_property_add_str(obj, "kvm-type",
2233                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2234     object_property_set_description(obj, "kvm-type",
2235                                     "Specifies the KVM virtualization mode (HV, PR)",
2236                                     NULL);
2237     object_property_add_bool(obj, "modern-hotplug-events",
2238                             spapr_get_modern_hotplug_events,
2239                             spapr_set_modern_hotplug_events,
2240                             NULL);
2241     object_property_set_description(obj, "modern-hotplug-events",
2242                                     "Use dedicated hotplug event mechanism in"
2243                                     " place of standard EPOW events when possible"
2244                                     " (required for memory hot-unplug support)",
2245                                     NULL);
2246 }
2247 
2248 static void spapr_machine_finalizefn(Object *obj)
2249 {
2250     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2251 
2252     g_free(spapr->kvm_type);
2253 }
2254 
2255 static void ppc_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2256 {
2257     cpu_synchronize_state(cs);
2258     ppc_cpu_do_system_reset(cs);
2259 }
2260 
2261 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2262 {
2263     CPUState *cs;
2264 
2265     CPU_FOREACH(cs) {
2266         async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2267     }
2268 }
2269 
2270 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2271                            uint32_t node, bool dedicated_hp_event_source,
2272                            Error **errp)
2273 {
2274     sPAPRDRConnector *drc;
2275     sPAPRDRConnectorClass *drck;
2276     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2277     int i, fdt_offset, fdt_size;
2278     void *fdt;
2279     uint64_t addr = addr_start;
2280 
2281     for (i = 0; i < nr_lmbs; i++) {
2282         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2283                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2284         g_assert(drc);
2285 
2286         fdt = create_device_tree(&fdt_size);
2287         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2288                                                 SPAPR_MEMORY_BLOCK_SIZE);
2289 
2290         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2291         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2292         addr += SPAPR_MEMORY_BLOCK_SIZE;
2293         if (!dev->hotplugged) {
2294             /* guests expect coldplugged LMBs to be pre-allocated */
2295             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2296             drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2297         }
2298     }
2299     /* send hotplug notification to the
2300      * guest only in case of hotplugged memory
2301      */
2302     if (dev->hotplugged) {
2303         if (dedicated_hp_event_source) {
2304             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2305                     addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2306             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2307             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2308                                                    nr_lmbs,
2309                                                    drck->get_index(drc));
2310         } else {
2311             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2312                                            nr_lmbs);
2313         }
2314     }
2315 }
2316 
2317 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2318                               uint32_t node, Error **errp)
2319 {
2320     Error *local_err = NULL;
2321     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2322     PCDIMMDevice *dimm = PC_DIMM(dev);
2323     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2324     MemoryRegion *mr = ddc->get_memory_region(dimm);
2325     uint64_t align = memory_region_get_alignment(mr);
2326     uint64_t size = memory_region_size(mr);
2327     uint64_t addr;
2328 
2329     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2330         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2331                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2332         goto out;
2333     }
2334 
2335     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2336     if (local_err) {
2337         goto out;
2338     }
2339 
2340     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2341     if (local_err) {
2342         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2343         goto out;
2344     }
2345 
2346     spapr_add_lmbs(dev, addr, size, node,
2347                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2348                    &error_abort);
2349 
2350 out:
2351     error_propagate(errp, local_err);
2352 }
2353 
2354 typedef struct sPAPRDIMMState {
2355     uint32_t nr_lmbs;
2356 } sPAPRDIMMState;
2357 
2358 static void spapr_lmb_release(DeviceState *dev, void *opaque)
2359 {
2360     sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2361     HotplugHandler *hotplug_ctrl;
2362 
2363     if (--ds->nr_lmbs) {
2364         return;
2365     }
2366 
2367     g_free(ds);
2368 
2369     /*
2370      * Now that all the LMBs have been removed by the guest, call the
2371      * pc-dimm unplug handler to cleanup up the pc-dimm device.
2372      */
2373     hotplug_ctrl = qdev_get_hotplug_handler(dev);
2374     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2375 }
2376 
2377 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2378                            Error **errp)
2379 {
2380     sPAPRDRConnector *drc;
2381     sPAPRDRConnectorClass *drck;
2382     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2383     int i;
2384     sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2385     uint64_t addr = addr_start;
2386 
2387     ds->nr_lmbs = nr_lmbs;
2388     for (i = 0; i < nr_lmbs; i++) {
2389         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2390                 addr / SPAPR_MEMORY_BLOCK_SIZE);
2391         g_assert(drc);
2392 
2393         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2394         drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2395         addr += SPAPR_MEMORY_BLOCK_SIZE;
2396     }
2397 
2398     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2399                                    addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2400     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2401     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2402                                               nr_lmbs,
2403                                               drck->get_index(drc));
2404 }
2405 
2406 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2407                                 Error **errp)
2408 {
2409     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2410     PCDIMMDevice *dimm = PC_DIMM(dev);
2411     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2412     MemoryRegion *mr = ddc->get_memory_region(dimm);
2413 
2414     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2415     object_unparent(OBJECT(dev));
2416 }
2417 
2418 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2419                                         DeviceState *dev, Error **errp)
2420 {
2421     Error *local_err = NULL;
2422     PCDIMMDevice *dimm = PC_DIMM(dev);
2423     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2424     MemoryRegion *mr = ddc->get_memory_region(dimm);
2425     uint64_t size = memory_region_size(mr);
2426     uint64_t addr;
2427 
2428     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2429     if (local_err) {
2430         goto out;
2431     }
2432 
2433     spapr_del_lmbs(dev, addr, size, &error_abort);
2434 out:
2435     error_propagate(errp, local_err);
2436 }
2437 
2438 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2439                                     sPAPRMachineState *spapr)
2440 {
2441     PowerPCCPU *cpu = POWERPC_CPU(cs);
2442     DeviceClass *dc = DEVICE_GET_CLASS(cs);
2443     int id = ppc_get_vcpu_dt_id(cpu);
2444     void *fdt;
2445     int offset, fdt_size;
2446     char *nodename;
2447 
2448     fdt = create_device_tree(&fdt_size);
2449     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2450     offset = fdt_add_subnode(fdt, 0, nodename);
2451 
2452     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2453     g_free(nodename);
2454 
2455     *fdt_offset = offset;
2456     return fdt;
2457 }
2458 
2459 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2460                                       DeviceState *dev, Error **errp)
2461 {
2462     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2463 
2464     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2465         int node;
2466 
2467         if (!smc->dr_lmb_enabled) {
2468             error_setg(errp, "Memory hotplug not supported for this machine");
2469             return;
2470         }
2471         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2472         if (*errp) {
2473             return;
2474         }
2475         if (node < 0 || node >= MAX_NODES) {
2476             error_setg(errp, "Invaild node %d", node);
2477             return;
2478         }
2479 
2480         /*
2481          * Currently PowerPC kernel doesn't allow hot-adding memory to
2482          * memory-less node, but instead will silently add the memory
2483          * to the first node that has some memory. This causes two
2484          * unexpected behaviours for the user.
2485          *
2486          * - Memory gets hotplugged to a different node than what the user
2487          *   specified.
2488          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2489          *   to memory-less node, a reboot will set things accordingly
2490          *   and the previously hotplugged memory now ends in the right node.
2491          *   This appears as if some memory moved from one node to another.
2492          *
2493          * So until kernel starts supporting memory hotplug to memory-less
2494          * nodes, just prevent such attempts upfront in QEMU.
2495          */
2496         if (nb_numa_nodes && !numa_info[node].node_mem) {
2497             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2498                        node);
2499             return;
2500         }
2501 
2502         spapr_memory_plug(hotplug_dev, dev, node, errp);
2503     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2504         spapr_core_plug(hotplug_dev, dev, errp);
2505     }
2506 }
2507 
2508 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2509                                       DeviceState *dev, Error **errp)
2510 {
2511     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2512     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2513 
2514     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2515         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2516             spapr_memory_unplug(hotplug_dev, dev, errp);
2517         } else {
2518             error_setg(errp, "Memory hot unplug not supported for this guest");
2519         }
2520     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2521         if (!mc->query_hotpluggable_cpus) {
2522             error_setg(errp, "CPU hot unplug not supported on this machine");
2523             return;
2524         }
2525         spapr_core_unplug(hotplug_dev, dev, errp);
2526     }
2527 }
2528 
2529 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2530                                                 DeviceState *dev, Error **errp)
2531 {
2532     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2533     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2534 
2535     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2536         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2537             spapr_memory_unplug_request(hotplug_dev, dev, errp);
2538         } else {
2539             /* NOTE: this means there is a window after guest reset, prior to
2540              * CAS negotiation, where unplug requests will fail due to the
2541              * capability not being detected yet. This is a bit different than
2542              * the case with PCI unplug, where the events will be queued and
2543              * eventually handled by the guest after boot
2544              */
2545             error_setg(errp, "Memory hot unplug not supported for this guest");
2546         }
2547     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2548         if (!mc->query_hotpluggable_cpus) {
2549             error_setg(errp, "CPU hot unplug not supported on this machine");
2550             return;
2551         }
2552         spapr_core_unplug(hotplug_dev, dev, errp);
2553     }
2554 }
2555 
2556 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2557                                           DeviceState *dev, Error **errp)
2558 {
2559     if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2560         spapr_core_pre_plug(hotplug_dev, dev, errp);
2561     }
2562 }
2563 
2564 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2565                                                  DeviceState *dev)
2566 {
2567     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2568         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2569         return HOTPLUG_HANDLER(machine);
2570     }
2571     return NULL;
2572 }
2573 
2574 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2575 {
2576     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2577      * socket means much for the paravirtualized PAPR platform) */
2578     return cpu_index / smp_threads / smp_cores;
2579 }
2580 
2581 static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2582 {
2583     int i;
2584     HotpluggableCPUList *head = NULL;
2585     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2586     int spapr_max_cores = max_cpus / smp_threads;
2587 
2588     for (i = 0; i < spapr_max_cores; i++) {
2589         HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2590         HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2591         CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2592 
2593         cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2594         cpu_item->vcpus_count = smp_threads;
2595         cpu_props->has_core_id = true;
2596         cpu_props->core_id = i * smp_threads;
2597         /* TODO: add 'has_node/node' here to describe
2598            to which node core belongs */
2599 
2600         cpu_item->props = cpu_props;
2601         if (spapr->cores[i]) {
2602             cpu_item->has_qom_path = true;
2603             cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2604         }
2605         list_item->value = cpu_item;
2606         list_item->next = head;
2607         head = list_item;
2608     }
2609     return head;
2610 }
2611 
2612 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2613                                 uint64_t *buid, hwaddr *pio,
2614                                 hwaddr *mmio32, hwaddr *mmio64,
2615                                 unsigned n_dma, uint32_t *liobns, Error **errp)
2616 {
2617     /*
2618      * New-style PHB window placement.
2619      *
2620      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2621      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2622      * windows.
2623      *
2624      * Some guest kernels can't work with MMIO windows above 1<<46
2625      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2626      *
2627      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2628      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
2629      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
2630      * 1TiB 64-bit MMIO windows for each PHB.
2631      */
2632     const uint64_t base_buid = 0x800000020000000ULL;
2633     const int max_phbs =
2634         (SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / SPAPR_PCI_MEM64_WIN_SIZE - 1;
2635     int i;
2636 
2637     /* Sanity check natural alignments */
2638     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2639     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2640     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2641     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2642     /* Sanity check bounds */
2643     QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_IO_WIN_SIZE) > SPAPR_PCI_MEM32_WIN_SIZE);
2644     QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_MEM32_WIN_SIZE) > SPAPR_PCI_MEM64_WIN_SIZE);
2645 
2646     if (index >= max_phbs) {
2647         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2648                    max_phbs - 1);
2649         return;
2650     }
2651 
2652     *buid = base_buid + index;
2653     for (i = 0; i < n_dma; ++i) {
2654         liobns[i] = SPAPR_PCI_LIOBN(index, i);
2655     }
2656 
2657     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
2658     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
2659     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
2660 }
2661 
2662 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2663 {
2664     MachineClass *mc = MACHINE_CLASS(oc);
2665     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2666     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2667     NMIClass *nc = NMI_CLASS(oc);
2668     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2669 
2670     mc->desc = "pSeries Logical Partition (PAPR compliant)";
2671 
2672     /*
2673      * We set up the default / latest behaviour here.  The class_init
2674      * functions for the specific versioned machine types can override
2675      * these details for backwards compatibility
2676      */
2677     mc->init = ppc_spapr_init;
2678     mc->reset = ppc_spapr_reset;
2679     mc->block_default_type = IF_SCSI;
2680     mc->max_cpus = 255;
2681     mc->no_parallel = 1;
2682     mc->default_boot_order = "";
2683     mc->default_ram_size = 512 * M_BYTE;
2684     mc->kvm_type = spapr_kvm_type;
2685     mc->has_dynamic_sysbus = true;
2686     mc->pci_allow_0_address = true;
2687     mc->get_hotplug_handler = spapr_get_hotplug_handler;
2688     hc->pre_plug = spapr_machine_device_pre_plug;
2689     hc->plug = spapr_machine_device_plug;
2690     hc->unplug = spapr_machine_device_unplug;
2691     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2692     hc->unplug_request = spapr_machine_device_unplug_request;
2693 
2694     smc->dr_lmb_enabled = true;
2695     smc->tcg_default_cpu = "POWER8";
2696     mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2697     fwc->get_dev_path = spapr_get_fw_dev_path;
2698     nc->nmi_monitor_handler = spapr_nmi;
2699     smc->phb_placement = spapr_phb_placement;
2700 }
2701 
2702 static const TypeInfo spapr_machine_info = {
2703     .name          = TYPE_SPAPR_MACHINE,
2704     .parent        = TYPE_MACHINE,
2705     .abstract      = true,
2706     .instance_size = sizeof(sPAPRMachineState),
2707     .instance_init = spapr_machine_initfn,
2708     .instance_finalize = spapr_machine_finalizefn,
2709     .class_size    = sizeof(sPAPRMachineClass),
2710     .class_init    = spapr_machine_class_init,
2711     .interfaces = (InterfaceInfo[]) {
2712         { TYPE_FW_PATH_PROVIDER },
2713         { TYPE_NMI },
2714         { TYPE_HOTPLUG_HANDLER },
2715         { }
2716     },
2717 };
2718 
2719 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2720     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2721                                                     void *data)      \
2722     {                                                                \
2723         MachineClass *mc = MACHINE_CLASS(oc);                        \
2724         spapr_machine_##suffix##_class_options(mc);                  \
2725         if (latest) {                                                \
2726             mc->alias = "pseries";                                   \
2727             mc->is_default = 1;                                      \
2728         }                                                            \
2729     }                                                                \
2730     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2731     {                                                                \
2732         MachineState *machine = MACHINE(obj);                        \
2733         spapr_machine_##suffix##_instance_options(machine);          \
2734     }                                                                \
2735     static const TypeInfo spapr_machine_##suffix##_info = {          \
2736         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2737         .parent = TYPE_SPAPR_MACHINE,                                \
2738         .class_init = spapr_machine_##suffix##_class_init,           \
2739         .instance_init = spapr_machine_##suffix##_instance_init,     \
2740     };                                                               \
2741     static void spapr_machine_register_##suffix(void)                \
2742     {                                                                \
2743         type_register(&spapr_machine_##suffix##_info);               \
2744     }                                                                \
2745     type_init(spapr_machine_register_##suffix)
2746 
2747 /*
2748  * pseries-2.8
2749  */
2750 static void spapr_machine_2_8_instance_options(MachineState *machine)
2751 {
2752 }
2753 
2754 static void spapr_machine_2_8_class_options(MachineClass *mc)
2755 {
2756     /* Defaults for the latest behaviour inherited from the base class */
2757 }
2758 
2759 DEFINE_SPAPR_MACHINE(2_8, "2.8", true);
2760 
2761 /*
2762  * pseries-2.7
2763  */
2764 #define SPAPR_COMPAT_2_7                            \
2765     HW_COMPAT_2_7                                   \
2766     {                                               \
2767         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
2768         .property = "mem_win_size",                 \
2769         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
2770     },                                              \
2771     {                                               \
2772         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
2773         .property = "mem64_win_size",               \
2774         .value    = "0",                            \
2775     },                                              \
2776     {                                               \
2777         .driver = TYPE_POWERPC_CPU,                 \
2778         .property = "pre-2.8-migration",            \
2779         .value    = "on",                           \
2780     },                                              \
2781     {                                               \
2782         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
2783         .property = "pre-2.8-migration",            \
2784         .value    = "on",                           \
2785     },
2786 
2787 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
2788                               uint64_t *buid, hwaddr *pio,
2789                               hwaddr *mmio32, hwaddr *mmio64,
2790                               unsigned n_dma, uint32_t *liobns, Error **errp)
2791 {
2792     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
2793     const uint64_t base_buid = 0x800000020000000ULL;
2794     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
2795     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
2796     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
2797     const uint32_t max_index = 255;
2798     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
2799 
2800     uint64_t ram_top = MACHINE(spapr)->ram_size;
2801     hwaddr phb0_base, phb_base;
2802     int i;
2803 
2804     /* Do we have hotpluggable memory? */
2805     if (MACHINE(spapr)->maxram_size > ram_top) {
2806         /* Can't just use maxram_size, because there may be an
2807          * alignment gap between normal and hotpluggable memory
2808          * regions */
2809         ram_top = spapr->hotplug_memory.base +
2810             memory_region_size(&spapr->hotplug_memory.mr);
2811     }
2812 
2813     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
2814 
2815     if (index > max_index) {
2816         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2817                    max_index);
2818         return;
2819     }
2820 
2821     *buid = base_buid + index;
2822     for (i = 0; i < n_dma; ++i) {
2823         liobns[i] = SPAPR_PCI_LIOBN(index, i);
2824     }
2825 
2826     phb_base = phb0_base + index * phb_spacing;
2827     *pio = phb_base + pio_offset;
2828     *mmio32 = phb_base + mmio_offset;
2829     /*
2830      * We don't set the 64-bit MMIO window, relying on the PHB's
2831      * fallback behaviour of automatically splitting a large "32-bit"
2832      * window into contiguous 32-bit and 64-bit windows
2833      */
2834 }
2835 
2836 static void spapr_machine_2_7_instance_options(MachineState *machine)
2837 {
2838     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2839 
2840     spapr_machine_2_8_instance_options(machine);
2841     spapr->use_hotplug_event_source = false;
2842 }
2843 
2844 static void spapr_machine_2_7_class_options(MachineClass *mc)
2845 {
2846     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2847 
2848     spapr_machine_2_8_class_options(mc);
2849     smc->tcg_default_cpu = "POWER7";
2850     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
2851     smc->phb_placement = phb_placement_2_7;
2852 }
2853 
2854 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
2855 
2856 /*
2857  * pseries-2.6
2858  */
2859 #define SPAPR_COMPAT_2_6 \
2860     HW_COMPAT_2_6 \
2861     { \
2862         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2863         .property = "ddw",\
2864         .value    = stringify(off),\
2865     },
2866 
2867 static void spapr_machine_2_6_instance_options(MachineState *machine)
2868 {
2869     spapr_machine_2_7_instance_options(machine);
2870 }
2871 
2872 static void spapr_machine_2_6_class_options(MachineClass *mc)
2873 {
2874     spapr_machine_2_7_class_options(mc);
2875     mc->query_hotpluggable_cpus = NULL;
2876     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2877 }
2878 
2879 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2880 
2881 /*
2882  * pseries-2.5
2883  */
2884 #define SPAPR_COMPAT_2_5 \
2885     HW_COMPAT_2_5 \
2886     { \
2887         .driver   = "spapr-vlan", \
2888         .property = "use-rx-buffer-pools", \
2889         .value    = "off", \
2890     },
2891 
2892 static void spapr_machine_2_5_instance_options(MachineState *machine)
2893 {
2894     spapr_machine_2_6_instance_options(machine);
2895 }
2896 
2897 static void spapr_machine_2_5_class_options(MachineClass *mc)
2898 {
2899     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2900 
2901     spapr_machine_2_6_class_options(mc);
2902     smc->use_ohci_by_default = true;
2903     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2904 }
2905 
2906 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2907 
2908 /*
2909  * pseries-2.4
2910  */
2911 #define SPAPR_COMPAT_2_4 \
2912         HW_COMPAT_2_4
2913 
2914 static void spapr_machine_2_4_instance_options(MachineState *machine)
2915 {
2916     spapr_machine_2_5_instance_options(machine);
2917 }
2918 
2919 static void spapr_machine_2_4_class_options(MachineClass *mc)
2920 {
2921     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2922 
2923     spapr_machine_2_5_class_options(mc);
2924     smc->dr_lmb_enabled = false;
2925     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2926 }
2927 
2928 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2929 
2930 /*
2931  * pseries-2.3
2932  */
2933 #define SPAPR_COMPAT_2_3 \
2934         HW_COMPAT_2_3 \
2935         {\
2936             .driver   = "spapr-pci-host-bridge",\
2937             .property = "dynamic-reconfiguration",\
2938             .value    = "off",\
2939         },
2940 
2941 static void spapr_machine_2_3_instance_options(MachineState *machine)
2942 {
2943     spapr_machine_2_4_instance_options(machine);
2944     savevm_skip_section_footers();
2945     global_state_set_optional();
2946     savevm_skip_configuration();
2947 }
2948 
2949 static void spapr_machine_2_3_class_options(MachineClass *mc)
2950 {
2951     spapr_machine_2_4_class_options(mc);
2952     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2953 }
2954 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2955 
2956 /*
2957  * pseries-2.2
2958  */
2959 
2960 #define SPAPR_COMPAT_2_2 \
2961         HW_COMPAT_2_2 \
2962         {\
2963             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2964             .property = "mem_win_size",\
2965             .value    = "0x20000000",\
2966         },
2967 
2968 static void spapr_machine_2_2_instance_options(MachineState *machine)
2969 {
2970     spapr_machine_2_3_instance_options(machine);
2971     machine->suppress_vmdesc = true;
2972 }
2973 
2974 static void spapr_machine_2_2_class_options(MachineClass *mc)
2975 {
2976     spapr_machine_2_3_class_options(mc);
2977     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2978 }
2979 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2980 
2981 /*
2982  * pseries-2.1
2983  */
2984 #define SPAPR_COMPAT_2_1 \
2985         HW_COMPAT_2_1
2986 
2987 static void spapr_machine_2_1_instance_options(MachineState *machine)
2988 {
2989     spapr_machine_2_2_instance_options(machine);
2990 }
2991 
2992 static void spapr_machine_2_1_class_options(MachineClass *mc)
2993 {
2994     spapr_machine_2_2_class_options(mc);
2995     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2996 }
2997 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2998 
2999 static void spapr_machine_register_types(void)
3000 {
3001     type_register_static(&spapr_machine_info);
3002 }
3003 
3004 type_init(spapr_machine_register_types)
3005