1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "migration/blocker.h" 50 #include "mmu-hash64.h" 51 #include "mmu-book3s-v3.h" 52 #include "cpu-models.h" 53 #include "hw/core/cpu.h" 54 55 #include "hw/boards.h" 56 #include "hw/ppc/ppc.h" 57 #include "hw/loader.h" 58 59 #include "hw/ppc/fdt.h" 60 #include "hw/ppc/spapr.h" 61 #include "hw/ppc/spapr_vio.h" 62 #include "hw/qdev-properties.h" 63 #include "hw/pci-host/spapr.h" 64 #include "hw/pci/msi.h" 65 66 #include "hw/pci/pci.h" 67 #include "hw/scsi/scsi.h" 68 #include "hw/virtio/virtio-scsi.h" 69 #include "hw/virtio/vhost-scsi-common.h" 70 71 #include "exec/address-spaces.h" 72 #include "exec/ram_addr.h" 73 #include "hw/usb.h" 74 #include "qemu/config-file.h" 75 #include "qemu/error-report.h" 76 #include "trace.h" 77 #include "hw/nmi.h" 78 #include "hw/intc/intc.h" 79 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 #include "hw/ppc/spapr_tpm_proxy.h" 83 #include "hw/ppc/spapr_nvdimm.h" 84 #include "hw/ppc/spapr_numa.h" 85 86 #include "monitor/monitor.h" 87 88 #include <libfdt.h> 89 90 /* SLOF memory layout: 91 * 92 * SLOF raw image loaded at 0, copies its romfs right below the flat 93 * device-tree, then position SLOF itself 31M below that 94 * 95 * So we set FW_OVERHEAD to 40MB which should account for all of that 96 * and more 97 * 98 * We load our kernel at 4M, leaving space for SLOF initial image 99 */ 100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 101 #define FW_MAX_SIZE 0x400000 102 #define FW_FILE_NAME "slof.bin" 103 #define FW_OVERHEAD 0x2800000 104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 105 106 #define MIN_RMA_SLOF (128 * MiB) 107 108 #define PHANDLE_INTC 0x00001111 109 110 /* These two functions implement the VCPU id numbering: one to compute them 111 * all and one to identify thread 0 of a VCORE. Any change to the first one 112 * is likely to have an impact on the second one, so let's keep them close. 113 */ 114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 115 { 116 MachineState *ms = MACHINE(spapr); 117 unsigned int smp_threads = ms->smp.threads; 118 119 assert(spapr->vsmt); 120 return 121 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 122 } 123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 124 PowerPCCPU *cpu) 125 { 126 assert(spapr->vsmt); 127 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 128 } 129 130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 131 { 132 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 133 * and newer QEMUs don't even have them. In both cases, we don't want 134 * to send anything on the wire. 135 */ 136 return false; 137 } 138 139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 140 .name = "icp/server", 141 .version_id = 1, 142 .minimum_version_id = 1, 143 .needed = pre_2_10_vmstate_dummy_icp_needed, 144 .fields = (VMStateField[]) { 145 VMSTATE_UNUSED(4), /* uint32_t xirr */ 146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 147 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 148 VMSTATE_END_OF_LIST() 149 }, 150 }; 151 152 static void pre_2_10_vmstate_register_dummy_icp(int i) 153 { 154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 155 (void *)(uintptr_t) i); 156 } 157 158 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 159 { 160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 161 (void *)(uintptr_t) i); 162 } 163 164 int spapr_max_server_number(SpaprMachineState *spapr) 165 { 166 MachineState *ms = MACHINE(spapr); 167 168 assert(spapr->vsmt); 169 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 170 } 171 172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 173 int smt_threads) 174 { 175 int i, ret = 0; 176 uint32_t servers_prop[smt_threads]; 177 uint32_t gservers_prop[smt_threads * 2]; 178 int index = spapr_get_vcpu_id(cpu); 179 180 if (cpu->compat_pvr) { 181 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 182 if (ret < 0) { 183 return ret; 184 } 185 } 186 187 /* Build interrupt servers and gservers properties */ 188 for (i = 0; i < smt_threads; i++) { 189 servers_prop[i] = cpu_to_be32(index + i); 190 /* Hack, direct the group queues back to cpu 0 */ 191 gservers_prop[i*2] = cpu_to_be32(index + i); 192 gservers_prop[i*2 + 1] = 0; 193 } 194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 195 servers_prop, sizeof(servers_prop)); 196 if (ret < 0) { 197 return ret; 198 } 199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 200 gservers_prop, sizeof(gservers_prop)); 201 202 return ret; 203 } 204 205 static void spapr_dt_pa_features(SpaprMachineState *spapr, 206 PowerPCCPU *cpu, 207 void *fdt, int offset) 208 { 209 uint8_t pa_features_206[] = { 6, 0, 210 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 211 uint8_t pa_features_207[] = { 24, 0, 212 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 213 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 214 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 215 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 216 uint8_t pa_features_300[] = { 66, 0, 217 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 218 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 219 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 220 /* 6: DS207 */ 221 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 222 /* 16: Vector */ 223 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 224 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 225 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 226 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 227 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 228 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 229 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 230 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 232 /* 42: PM, 44: PC RA, 46: SC vec'd */ 233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 234 /* 48: SIMD, 50: QP BFP, 52: String */ 235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 236 /* 54: DecFP, 56: DecI, 58: SHA */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 238 /* 60: NM atomic, 62: RNG */ 239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 240 }; 241 uint8_t *pa_features = NULL; 242 size_t pa_size; 243 244 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 245 pa_features = pa_features_206; 246 pa_size = sizeof(pa_features_206); 247 } 248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 249 pa_features = pa_features_207; 250 pa_size = sizeof(pa_features_207); 251 } 252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 253 pa_features = pa_features_300; 254 pa_size = sizeof(pa_features_300); 255 } 256 if (!pa_features) { 257 return; 258 } 259 260 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 261 /* 262 * Note: we keep CI large pages off by default because a 64K capable 263 * guest provisioned with large pages might otherwise try to map a qemu 264 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 265 * even if that qemu runs on a 4k host. 266 * We dd this bit back here if we are confident this is not an issue 267 */ 268 pa_features[3] |= 0x20; 269 } 270 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 271 pa_features[24] |= 0x80; /* Transactional memory support */ 272 } 273 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 274 /* Workaround for broken kernels that attempt (guest) radix 275 * mode when they can't handle it, if they see the radix bit set 276 * in pa-features. So hide it from them. */ 277 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 278 } 279 280 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 281 } 282 283 static hwaddr spapr_node0_size(MachineState *machine) 284 { 285 if (machine->numa_state->num_nodes) { 286 int i; 287 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 288 if (machine->numa_state->nodes[i].node_mem) { 289 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 290 machine->ram_size); 291 } 292 } 293 } 294 return machine->ram_size; 295 } 296 297 static void add_str(GString *s, const gchar *s1) 298 { 299 g_string_append_len(s, s1, strlen(s1) + 1); 300 } 301 302 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 303 hwaddr start, hwaddr size) 304 { 305 char mem_name[32]; 306 uint64_t mem_reg_property[2]; 307 int off; 308 309 mem_reg_property[0] = cpu_to_be64(start); 310 mem_reg_property[1] = cpu_to_be64(size); 311 312 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 313 off = fdt_add_subnode(fdt, 0, mem_name); 314 _FDT(off); 315 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 316 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 317 sizeof(mem_reg_property)))); 318 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 319 return off; 320 } 321 322 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 323 { 324 MemoryDeviceInfoList *info; 325 326 for (info = list; info; info = info->next) { 327 MemoryDeviceInfo *value = info->value; 328 329 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 330 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 331 332 if (addr >= pcdimm_info->addr && 333 addr < (pcdimm_info->addr + pcdimm_info->size)) { 334 return pcdimm_info->node; 335 } 336 } 337 } 338 339 return -1; 340 } 341 342 struct sPAPRDrconfCellV2 { 343 uint32_t seq_lmbs; 344 uint64_t base_addr; 345 uint32_t drc_index; 346 uint32_t aa_index; 347 uint32_t flags; 348 } QEMU_PACKED; 349 350 typedef struct DrconfCellQueue { 351 struct sPAPRDrconfCellV2 cell; 352 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 353 } DrconfCellQueue; 354 355 static DrconfCellQueue * 356 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 357 uint32_t drc_index, uint32_t aa_index, 358 uint32_t flags) 359 { 360 DrconfCellQueue *elem; 361 362 elem = g_malloc0(sizeof(*elem)); 363 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 364 elem->cell.base_addr = cpu_to_be64(base_addr); 365 elem->cell.drc_index = cpu_to_be32(drc_index); 366 elem->cell.aa_index = cpu_to_be32(aa_index); 367 elem->cell.flags = cpu_to_be32(flags); 368 369 return elem; 370 } 371 372 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 373 int offset, MemoryDeviceInfoList *dimms) 374 { 375 MachineState *machine = MACHINE(spapr); 376 uint8_t *int_buf, *cur_index; 377 int ret; 378 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 379 uint64_t addr, cur_addr, size; 380 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 381 uint64_t mem_end = machine->device_memory->base + 382 memory_region_size(&machine->device_memory->mr); 383 uint32_t node, buf_len, nr_entries = 0; 384 SpaprDrc *drc; 385 DrconfCellQueue *elem, *next; 386 MemoryDeviceInfoList *info; 387 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 388 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 389 390 /* Entry to cover RAM and the gap area */ 391 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 392 SPAPR_LMB_FLAGS_RESERVED | 393 SPAPR_LMB_FLAGS_DRC_INVALID); 394 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 395 nr_entries++; 396 397 cur_addr = machine->device_memory->base; 398 for (info = dimms; info; info = info->next) { 399 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 400 401 addr = di->addr; 402 size = di->size; 403 node = di->node; 404 405 /* 406 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 407 * area is marked hotpluggable in the next iteration for the bigger 408 * chunk including the NVDIMM occupied area. 409 */ 410 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 411 continue; 412 413 /* Entry for hot-pluggable area */ 414 if (cur_addr < addr) { 415 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 416 g_assert(drc); 417 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 418 cur_addr, spapr_drc_index(drc), -1, 0); 419 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 420 nr_entries++; 421 } 422 423 /* Entry for DIMM */ 424 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 425 g_assert(drc); 426 elem = spapr_get_drconf_cell(size / lmb_size, addr, 427 spapr_drc_index(drc), node, 428 (SPAPR_LMB_FLAGS_ASSIGNED | 429 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 430 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 431 nr_entries++; 432 cur_addr = addr + size; 433 } 434 435 /* Entry for remaining hotpluggable area */ 436 if (cur_addr < mem_end) { 437 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 438 g_assert(drc); 439 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 440 cur_addr, spapr_drc_index(drc), -1, 0); 441 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 442 nr_entries++; 443 } 444 445 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 446 int_buf = cur_index = g_malloc0(buf_len); 447 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 448 cur_index += sizeof(nr_entries); 449 450 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 451 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 452 cur_index += sizeof(elem->cell); 453 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 454 g_free(elem); 455 } 456 457 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 458 g_free(int_buf); 459 if (ret < 0) { 460 return -1; 461 } 462 return 0; 463 } 464 465 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 466 int offset, MemoryDeviceInfoList *dimms) 467 { 468 MachineState *machine = MACHINE(spapr); 469 int i, ret; 470 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 471 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 472 uint32_t nr_lmbs = (machine->device_memory->base + 473 memory_region_size(&machine->device_memory->mr)) / 474 lmb_size; 475 uint32_t *int_buf, *cur_index, buf_len; 476 477 /* 478 * Allocate enough buffer size to fit in ibm,dynamic-memory 479 */ 480 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 481 cur_index = int_buf = g_malloc0(buf_len); 482 int_buf[0] = cpu_to_be32(nr_lmbs); 483 cur_index++; 484 for (i = 0; i < nr_lmbs; i++) { 485 uint64_t addr = i * lmb_size; 486 uint32_t *dynamic_memory = cur_index; 487 488 if (i >= device_lmb_start) { 489 SpaprDrc *drc; 490 491 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 492 g_assert(drc); 493 494 dynamic_memory[0] = cpu_to_be32(addr >> 32); 495 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 496 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 497 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 498 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 499 if (memory_region_present(get_system_memory(), addr)) { 500 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 501 } else { 502 dynamic_memory[5] = cpu_to_be32(0); 503 } 504 } else { 505 /* 506 * LMB information for RMA, boot time RAM and gap b/n RAM and 507 * device memory region -- all these are marked as reserved 508 * and as having no valid DRC. 509 */ 510 dynamic_memory[0] = cpu_to_be32(addr >> 32); 511 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 512 dynamic_memory[2] = cpu_to_be32(0); 513 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 514 dynamic_memory[4] = cpu_to_be32(-1); 515 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 516 SPAPR_LMB_FLAGS_DRC_INVALID); 517 } 518 519 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 520 } 521 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 522 g_free(int_buf); 523 if (ret < 0) { 524 return -1; 525 } 526 return 0; 527 } 528 529 /* 530 * Adds ibm,dynamic-reconfiguration-memory node. 531 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 532 * of this device tree node. 533 */ 534 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 535 void *fdt) 536 { 537 MachineState *machine = MACHINE(spapr); 538 int ret, offset; 539 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 540 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 541 cpu_to_be32(lmb_size & 0xffffffff)}; 542 MemoryDeviceInfoList *dimms = NULL; 543 544 /* 545 * Don't create the node if there is no device memory 546 */ 547 if (machine->ram_size == machine->maxram_size) { 548 return 0; 549 } 550 551 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 552 553 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 554 sizeof(prop_lmb_size)); 555 if (ret < 0) { 556 return ret; 557 } 558 559 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 560 if (ret < 0) { 561 return ret; 562 } 563 564 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 565 if (ret < 0) { 566 return ret; 567 } 568 569 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 570 dimms = qmp_memory_device_list(); 571 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 572 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 573 } else { 574 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 575 } 576 qapi_free_MemoryDeviceInfoList(dimms); 577 578 if (ret < 0) { 579 return ret; 580 } 581 582 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 583 584 return ret; 585 } 586 587 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 588 { 589 MachineState *machine = MACHINE(spapr); 590 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 591 hwaddr mem_start, node_size; 592 int i, nb_nodes = machine->numa_state->num_nodes; 593 NodeInfo *nodes = machine->numa_state->nodes; 594 595 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 596 if (!nodes[i].node_mem) { 597 continue; 598 } 599 if (mem_start >= machine->ram_size) { 600 node_size = 0; 601 } else { 602 node_size = nodes[i].node_mem; 603 if (node_size > machine->ram_size - mem_start) { 604 node_size = machine->ram_size - mem_start; 605 } 606 } 607 if (!mem_start) { 608 /* spapr_machine_init() checks for rma_size <= node0_size 609 * already */ 610 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 611 mem_start += spapr->rma_size; 612 node_size -= spapr->rma_size; 613 } 614 for ( ; node_size; ) { 615 hwaddr sizetmp = pow2floor(node_size); 616 617 /* mem_start != 0 here */ 618 if (ctzl(mem_start) < ctzl(sizetmp)) { 619 sizetmp = 1ULL << ctzl(mem_start); 620 } 621 622 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 623 node_size -= sizetmp; 624 mem_start += sizetmp; 625 } 626 } 627 628 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 629 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 630 int ret; 631 632 g_assert(smc->dr_lmb_enabled); 633 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 634 if (ret) { 635 return ret; 636 } 637 } 638 639 return 0; 640 } 641 642 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 643 SpaprMachineState *spapr) 644 { 645 MachineState *ms = MACHINE(spapr); 646 PowerPCCPU *cpu = POWERPC_CPU(cs); 647 CPUPPCState *env = &cpu->env; 648 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 649 int index = spapr_get_vcpu_id(cpu); 650 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 651 0xffffffff, 0xffffffff}; 652 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 653 : SPAPR_TIMEBASE_FREQ; 654 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 655 uint32_t page_sizes_prop[64]; 656 size_t page_sizes_prop_size; 657 unsigned int smp_threads = ms->smp.threads; 658 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 659 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 660 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 661 SpaprDrc *drc; 662 int drc_index; 663 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 664 int i; 665 666 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 667 if (drc) { 668 drc_index = spapr_drc_index(drc); 669 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 670 } 671 672 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 673 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 674 675 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 676 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 677 env->dcache_line_size))); 678 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 679 env->dcache_line_size))); 680 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 681 env->icache_line_size))); 682 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 683 env->icache_line_size))); 684 685 if (pcc->l1_dcache_size) { 686 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 687 pcc->l1_dcache_size))); 688 } else { 689 warn_report("Unknown L1 dcache size for cpu"); 690 } 691 if (pcc->l1_icache_size) { 692 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 693 pcc->l1_icache_size))); 694 } else { 695 warn_report("Unknown L1 icache size for cpu"); 696 } 697 698 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 699 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 700 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 701 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 702 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 703 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 704 705 if (env->spr_cb[SPR_PURR].oea_read) { 706 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 707 } 708 if (env->spr_cb[SPR_SPURR].oea_read) { 709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 710 } 711 712 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 713 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 714 segs, sizeof(segs)))); 715 } 716 717 /* Advertise VSX (vector extensions) if available 718 * 1 == VMX / Altivec available 719 * 2 == VSX available 720 * 721 * Only CPUs for which we create core types in spapr_cpu_core.c 722 * are possible, and all of those have VMX */ 723 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 724 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 725 } else { 726 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 727 } 728 729 /* Advertise DFP (Decimal Floating Point) if available 730 * 0 / no property == no DFP 731 * 1 == DFP available */ 732 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 733 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 734 } 735 736 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 737 sizeof(page_sizes_prop)); 738 if (page_sizes_prop_size) { 739 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 740 page_sizes_prop, page_sizes_prop_size))); 741 } 742 743 spapr_dt_pa_features(spapr, cpu, fdt, offset); 744 745 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 746 cs->cpu_index / vcpus_per_socket))); 747 748 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 749 pft_size_prop, sizeof(pft_size_prop)))); 750 751 if (ms->numa_state->num_nodes > 1) { 752 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 753 } 754 755 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 756 757 if (pcc->radix_page_info) { 758 for (i = 0; i < pcc->radix_page_info->count; i++) { 759 radix_AP_encodings[i] = 760 cpu_to_be32(pcc->radix_page_info->entries[i]); 761 } 762 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 763 radix_AP_encodings, 764 pcc->radix_page_info->count * 765 sizeof(radix_AP_encodings[0])))); 766 } 767 768 /* 769 * We set this property to let the guest know that it can use the large 770 * decrementer and its width in bits. 771 */ 772 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 773 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 774 pcc->lrg_decr_bits))); 775 } 776 777 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 778 { 779 CPUState **rev; 780 CPUState *cs; 781 int n_cpus; 782 int cpus_offset; 783 char *nodename; 784 int i; 785 786 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 787 _FDT(cpus_offset); 788 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 789 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 790 791 /* 792 * We walk the CPUs in reverse order to ensure that CPU DT nodes 793 * created by fdt_add_subnode() end up in the right order in FDT 794 * for the guest kernel the enumerate the CPUs correctly. 795 * 796 * The CPU list cannot be traversed in reverse order, so we need 797 * to do extra work. 798 */ 799 n_cpus = 0; 800 rev = NULL; 801 CPU_FOREACH(cs) { 802 rev = g_renew(CPUState *, rev, n_cpus + 1); 803 rev[n_cpus++] = cs; 804 } 805 806 for (i = n_cpus - 1; i >= 0; i--) { 807 CPUState *cs = rev[i]; 808 PowerPCCPU *cpu = POWERPC_CPU(cs); 809 int index = spapr_get_vcpu_id(cpu); 810 DeviceClass *dc = DEVICE_GET_CLASS(cs); 811 int offset; 812 813 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 814 continue; 815 } 816 817 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 818 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 819 g_free(nodename); 820 _FDT(offset); 821 spapr_dt_cpu(cs, fdt, offset, spapr); 822 } 823 824 g_free(rev); 825 } 826 827 static int spapr_dt_rng(void *fdt) 828 { 829 int node; 830 int ret; 831 832 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 833 if (node <= 0) { 834 return -1; 835 } 836 ret = fdt_setprop_string(fdt, node, "device_type", 837 "ibm,platform-facilities"); 838 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 839 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 840 841 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 842 if (node <= 0) { 843 return -1; 844 } 845 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 846 847 return ret ? -1 : 0; 848 } 849 850 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 851 { 852 MachineState *ms = MACHINE(spapr); 853 int rtas; 854 GString *hypertas = g_string_sized_new(256); 855 GString *qemu_hypertas = g_string_sized_new(256); 856 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 857 memory_region_size(&MACHINE(spapr)->device_memory->mr); 858 uint32_t lrdr_capacity[] = { 859 cpu_to_be32(max_device_addr >> 32), 860 cpu_to_be32(max_device_addr & 0xffffffff), 861 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 862 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 863 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 864 }; 865 866 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 867 868 /* hypertas */ 869 add_str(hypertas, "hcall-pft"); 870 add_str(hypertas, "hcall-term"); 871 add_str(hypertas, "hcall-dabr"); 872 add_str(hypertas, "hcall-interrupt"); 873 add_str(hypertas, "hcall-tce"); 874 add_str(hypertas, "hcall-vio"); 875 add_str(hypertas, "hcall-splpar"); 876 add_str(hypertas, "hcall-join"); 877 add_str(hypertas, "hcall-bulk"); 878 add_str(hypertas, "hcall-set-mode"); 879 add_str(hypertas, "hcall-sprg0"); 880 add_str(hypertas, "hcall-copy"); 881 add_str(hypertas, "hcall-debug"); 882 add_str(hypertas, "hcall-vphn"); 883 add_str(qemu_hypertas, "hcall-memop1"); 884 885 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 886 add_str(hypertas, "hcall-multi-tce"); 887 } 888 889 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 890 add_str(hypertas, "hcall-hpt-resize"); 891 } 892 893 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 894 hypertas->str, hypertas->len)); 895 g_string_free(hypertas, TRUE); 896 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 897 qemu_hypertas->str, qemu_hypertas->len)); 898 g_string_free(qemu_hypertas, TRUE); 899 900 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 901 902 /* 903 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 904 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 905 * 906 * The system reset requirements are driven by existing Linux and PowerVM 907 * implementation which (contrary to PAPR) saves r3 in the error log 908 * structure like machine check, so Linux expects to find the saved r3 909 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 910 * does not look at the error value). 911 * 912 * System reset interrupts are not subject to interlock like machine 913 * check, so this memory area could be corrupted if the sreset is 914 * interrupted by a machine check (or vice versa) if it was shared. To 915 * prevent this, system reset uses per-CPU areas for the sreset save 916 * area. A system reset that interrupts a system reset handler could 917 * still overwrite this area, but Linux doesn't try to recover in that 918 * case anyway. 919 * 920 * The extra 8 bytes is required because Linux's FWNMI error log check 921 * is off-by-one. 922 */ 923 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX + 924 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t))); 925 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 926 RTAS_ERROR_LOG_MAX)); 927 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 928 RTAS_EVENT_SCAN_RATE)); 929 930 g_assert(msi_nonbroken); 931 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 932 933 /* 934 * According to PAPR, rtas ibm,os-term does not guarantee a return 935 * back to the guest cpu. 936 * 937 * While an additional ibm,extended-os-term property indicates 938 * that rtas call return will always occur. Set this property. 939 */ 940 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 941 942 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 943 lrdr_capacity, sizeof(lrdr_capacity))); 944 945 spapr_dt_rtas_tokens(fdt, rtas); 946 } 947 948 /* 949 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 950 * and the XIVE features that the guest may request and thus the valid 951 * values for bytes 23..26 of option vector 5: 952 */ 953 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 954 int chosen) 955 { 956 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 957 958 char val[2 * 4] = { 959 23, 0x00, /* XICS / XIVE mode */ 960 24, 0x00, /* Hash/Radix, filled in below. */ 961 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 962 26, 0x40, /* Radix options: GTSE == yes. */ 963 }; 964 965 if (spapr->irq->xics && spapr->irq->xive) { 966 val[1] = SPAPR_OV5_XIVE_BOTH; 967 } else if (spapr->irq->xive) { 968 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 969 } else { 970 assert(spapr->irq->xics); 971 val[1] = SPAPR_OV5_XIVE_LEGACY; 972 } 973 974 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 975 first_ppc_cpu->compat_pvr)) { 976 /* 977 * If we're in a pre POWER9 compat mode then the guest should 978 * do hash and use the legacy interrupt mode 979 */ 980 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 981 val[3] = 0x00; /* Hash */ 982 } else if (kvm_enabled()) { 983 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 984 val[3] = 0x80; /* OV5_MMU_BOTH */ 985 } else if (kvmppc_has_cap_mmu_radix()) { 986 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 987 } else { 988 val[3] = 0x00; /* Hash */ 989 } 990 } else { 991 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 992 val[3] = 0xC0; 993 } 994 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 995 val, sizeof(val))); 996 } 997 998 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 999 { 1000 MachineState *machine = MACHINE(spapr); 1001 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1002 int chosen; 1003 1004 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1005 1006 if (reset) { 1007 const char *boot_device = machine->boot_order; 1008 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1009 size_t cb = 0; 1010 char *bootlist = get_boot_devices_list(&cb); 1011 1012 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1013 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1014 machine->kernel_cmdline)); 1015 } 1016 1017 if (spapr->initrd_size) { 1018 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1019 spapr->initrd_base)); 1020 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1021 spapr->initrd_base + spapr->initrd_size)); 1022 } 1023 1024 if (spapr->kernel_size) { 1025 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1026 cpu_to_be64(spapr->kernel_size) }; 1027 1028 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1029 &kprop, sizeof(kprop))); 1030 if (spapr->kernel_le) { 1031 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1032 } 1033 } 1034 if (boot_menu) { 1035 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1036 } 1037 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1038 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1039 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1040 1041 if (cb && bootlist) { 1042 int i; 1043 1044 for (i = 0; i < cb; i++) { 1045 if (bootlist[i] == '\n') { 1046 bootlist[i] = ' '; 1047 } 1048 } 1049 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1050 } 1051 1052 if (boot_device && strlen(boot_device)) { 1053 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1054 } 1055 1056 if (!spapr->has_graphics && stdout_path) { 1057 /* 1058 * "linux,stdout-path" and "stdout" properties are 1059 * deprecated by linux kernel. New platforms should only 1060 * use the "stdout-path" property. Set the new property 1061 * and continue using older property to remain compatible 1062 * with the existing firmware. 1063 */ 1064 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1065 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1066 } 1067 1068 /* 1069 * We can deal with BAR reallocation just fine, advertise it 1070 * to the guest 1071 */ 1072 if (smc->linux_pci_probe) { 1073 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1074 } 1075 1076 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1077 1078 g_free(stdout_path); 1079 g_free(bootlist); 1080 } 1081 1082 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1083 } 1084 1085 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1086 { 1087 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1088 * KVM to work under pHyp with some guest co-operation */ 1089 int hypervisor; 1090 uint8_t hypercall[16]; 1091 1092 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1093 /* indicate KVM hypercall interface */ 1094 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1095 if (kvmppc_has_cap_fixup_hcalls()) { 1096 /* 1097 * Older KVM versions with older guest kernels were broken 1098 * with the magic page, don't allow the guest to map it. 1099 */ 1100 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1101 sizeof(hypercall))) { 1102 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1103 hypercall, sizeof(hypercall))); 1104 } 1105 } 1106 } 1107 1108 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1109 { 1110 MachineState *machine = MACHINE(spapr); 1111 MachineClass *mc = MACHINE_GET_CLASS(machine); 1112 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1113 int ret; 1114 void *fdt; 1115 SpaprPhbState *phb; 1116 char *buf; 1117 1118 fdt = g_malloc0(space); 1119 _FDT((fdt_create_empty_tree(fdt, space))); 1120 1121 /* Root node */ 1122 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1123 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1124 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1125 1126 /* Guest UUID & Name*/ 1127 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1128 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1129 if (qemu_uuid_set) { 1130 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1131 } 1132 g_free(buf); 1133 1134 if (qemu_get_vm_name()) { 1135 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1136 qemu_get_vm_name())); 1137 } 1138 1139 /* Host Model & Serial Number */ 1140 if (spapr->host_model) { 1141 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1142 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1143 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1144 g_free(buf); 1145 } 1146 1147 if (spapr->host_serial) { 1148 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1149 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1150 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1151 g_free(buf); 1152 } 1153 1154 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1155 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1156 1157 /* /interrupt controller */ 1158 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1159 1160 ret = spapr_dt_memory(spapr, fdt); 1161 if (ret < 0) { 1162 error_report("couldn't setup memory nodes in fdt"); 1163 exit(1); 1164 } 1165 1166 /* /vdevice */ 1167 spapr_dt_vdevice(spapr->vio_bus, fdt); 1168 1169 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1170 ret = spapr_dt_rng(fdt); 1171 if (ret < 0) { 1172 error_report("could not set up rng device in the fdt"); 1173 exit(1); 1174 } 1175 } 1176 1177 QLIST_FOREACH(phb, &spapr->phbs, list) { 1178 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1179 if (ret < 0) { 1180 error_report("couldn't setup PCI devices in fdt"); 1181 exit(1); 1182 } 1183 } 1184 1185 spapr_dt_cpus(fdt, spapr); 1186 1187 if (smc->dr_lmb_enabled) { 1188 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1189 } 1190 1191 if (mc->has_hotpluggable_cpus) { 1192 int offset = fdt_path_offset(fdt, "/cpus"); 1193 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1194 if (ret < 0) { 1195 error_report("Couldn't set up CPU DR device tree properties"); 1196 exit(1); 1197 } 1198 } 1199 1200 /* /event-sources */ 1201 spapr_dt_events(spapr, fdt); 1202 1203 /* /rtas */ 1204 spapr_dt_rtas(spapr, fdt); 1205 1206 /* /chosen */ 1207 spapr_dt_chosen(spapr, fdt, reset); 1208 1209 /* /hypervisor */ 1210 if (kvm_enabled()) { 1211 spapr_dt_hypervisor(spapr, fdt); 1212 } 1213 1214 /* Build memory reserve map */ 1215 if (reset) { 1216 if (spapr->kernel_size) { 1217 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1218 spapr->kernel_size))); 1219 } 1220 if (spapr->initrd_size) { 1221 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1222 spapr->initrd_size))); 1223 } 1224 } 1225 1226 if (smc->dr_phb_enabled) { 1227 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1228 if (ret < 0) { 1229 error_report("Couldn't set up PHB DR device tree properties"); 1230 exit(1); 1231 } 1232 } 1233 1234 /* NVDIMM devices */ 1235 if (mc->nvdimm_supported) { 1236 spapr_dt_persistent_memory(spapr, fdt); 1237 } 1238 1239 return fdt; 1240 } 1241 1242 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1243 { 1244 SpaprMachineState *spapr = opaque; 1245 1246 return (addr & 0x0fffffff) + spapr->kernel_addr; 1247 } 1248 1249 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1250 PowerPCCPU *cpu) 1251 { 1252 CPUPPCState *env = &cpu->env; 1253 1254 /* The TCG path should also be holding the BQL at this point */ 1255 g_assert(qemu_mutex_iothread_locked()); 1256 1257 if (msr_pr) { 1258 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1259 env->gpr[3] = H_PRIVILEGE; 1260 } else { 1261 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1262 } 1263 } 1264 1265 struct LPCRSyncState { 1266 target_ulong value; 1267 target_ulong mask; 1268 }; 1269 1270 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1271 { 1272 struct LPCRSyncState *s = arg.host_ptr; 1273 PowerPCCPU *cpu = POWERPC_CPU(cs); 1274 CPUPPCState *env = &cpu->env; 1275 target_ulong lpcr; 1276 1277 cpu_synchronize_state(cs); 1278 lpcr = env->spr[SPR_LPCR]; 1279 lpcr &= ~s->mask; 1280 lpcr |= s->value; 1281 ppc_store_lpcr(cpu, lpcr); 1282 } 1283 1284 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1285 { 1286 CPUState *cs; 1287 struct LPCRSyncState s = { 1288 .value = value, 1289 .mask = mask 1290 }; 1291 CPU_FOREACH(cs) { 1292 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1293 } 1294 } 1295 1296 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1297 { 1298 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1299 1300 /* Copy PATE1:GR into PATE0:HR */ 1301 entry->dw0 = spapr->patb_entry & PATE0_HR; 1302 entry->dw1 = spapr->patb_entry; 1303 } 1304 1305 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1306 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1307 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1308 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1309 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1310 1311 /* 1312 * Get the fd to access the kernel htab, re-opening it if necessary 1313 */ 1314 static int get_htab_fd(SpaprMachineState *spapr) 1315 { 1316 Error *local_err = NULL; 1317 1318 if (spapr->htab_fd >= 0) { 1319 return spapr->htab_fd; 1320 } 1321 1322 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1323 if (spapr->htab_fd < 0) { 1324 error_report_err(local_err); 1325 } 1326 1327 return spapr->htab_fd; 1328 } 1329 1330 void close_htab_fd(SpaprMachineState *spapr) 1331 { 1332 if (spapr->htab_fd >= 0) { 1333 close(spapr->htab_fd); 1334 } 1335 spapr->htab_fd = -1; 1336 } 1337 1338 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1339 { 1340 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1341 1342 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1343 } 1344 1345 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1346 { 1347 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1348 1349 assert(kvm_enabled()); 1350 1351 if (!spapr->htab) { 1352 return 0; 1353 } 1354 1355 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1356 } 1357 1358 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1359 hwaddr ptex, int n) 1360 { 1361 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1362 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1363 1364 if (!spapr->htab) { 1365 /* 1366 * HTAB is controlled by KVM. Fetch into temporary buffer 1367 */ 1368 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1369 kvmppc_read_hptes(hptes, ptex, n); 1370 return hptes; 1371 } 1372 1373 /* 1374 * HTAB is controlled by QEMU. Just point to the internally 1375 * accessible PTEG. 1376 */ 1377 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1378 } 1379 1380 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1381 const ppc_hash_pte64_t *hptes, 1382 hwaddr ptex, int n) 1383 { 1384 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1385 1386 if (!spapr->htab) { 1387 g_free((void *)hptes); 1388 } 1389 1390 /* Nothing to do for qemu managed HPT */ 1391 } 1392 1393 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1394 uint64_t pte0, uint64_t pte1) 1395 { 1396 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1397 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1398 1399 if (!spapr->htab) { 1400 kvmppc_write_hpte(ptex, pte0, pte1); 1401 } else { 1402 if (pte0 & HPTE64_V_VALID) { 1403 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1404 /* 1405 * When setting valid, we write PTE1 first. This ensures 1406 * proper synchronization with the reading code in 1407 * ppc_hash64_pteg_search() 1408 */ 1409 smp_wmb(); 1410 stq_p(spapr->htab + offset, pte0); 1411 } else { 1412 stq_p(spapr->htab + offset, pte0); 1413 /* 1414 * When clearing it we set PTE0 first. This ensures proper 1415 * synchronization with the reading code in 1416 * ppc_hash64_pteg_search() 1417 */ 1418 smp_wmb(); 1419 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1420 } 1421 } 1422 } 1423 1424 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1425 uint64_t pte1) 1426 { 1427 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1428 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1429 1430 if (!spapr->htab) { 1431 /* There should always be a hash table when this is called */ 1432 error_report("spapr_hpte_set_c called with no hash table !"); 1433 return; 1434 } 1435 1436 /* The HW performs a non-atomic byte update */ 1437 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1438 } 1439 1440 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1441 uint64_t pte1) 1442 { 1443 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1444 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1445 1446 if (!spapr->htab) { 1447 /* There should always be a hash table when this is called */ 1448 error_report("spapr_hpte_set_r called with no hash table !"); 1449 return; 1450 } 1451 1452 /* The HW performs a non-atomic byte update */ 1453 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1454 } 1455 1456 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1457 { 1458 int shift; 1459 1460 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1461 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1462 * that's much more than is needed for Linux guests */ 1463 shift = ctz64(pow2ceil(ramsize)) - 7; 1464 shift = MAX(shift, 18); /* Minimum architected size */ 1465 shift = MIN(shift, 46); /* Maximum architected size */ 1466 return shift; 1467 } 1468 1469 void spapr_free_hpt(SpaprMachineState *spapr) 1470 { 1471 g_free(spapr->htab); 1472 spapr->htab = NULL; 1473 spapr->htab_shift = 0; 1474 close_htab_fd(spapr); 1475 } 1476 1477 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1478 Error **errp) 1479 { 1480 long rc; 1481 1482 /* Clean up any HPT info from a previous boot */ 1483 spapr_free_hpt(spapr); 1484 1485 rc = kvmppc_reset_htab(shift); 1486 if (rc < 0) { 1487 /* kernel-side HPT needed, but couldn't allocate one */ 1488 error_setg_errno(errp, errno, 1489 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1490 shift); 1491 /* This is almost certainly fatal, but if the caller really 1492 * wants to carry on with shift == 0, it's welcome to try */ 1493 } else if (rc > 0) { 1494 /* kernel-side HPT allocated */ 1495 if (rc != shift) { 1496 error_setg(errp, 1497 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1498 shift, rc); 1499 } 1500 1501 spapr->htab_shift = shift; 1502 spapr->htab = NULL; 1503 } else { 1504 /* kernel-side HPT not needed, allocate in userspace instead */ 1505 size_t size = 1ULL << shift; 1506 int i; 1507 1508 spapr->htab = qemu_memalign(size, size); 1509 if (!spapr->htab) { 1510 error_setg_errno(errp, errno, 1511 "Could not allocate HPT of order %d", shift); 1512 return; 1513 } 1514 1515 memset(spapr->htab, 0, size); 1516 spapr->htab_shift = shift; 1517 1518 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1519 DIRTY_HPTE(HPTE(spapr->htab, i)); 1520 } 1521 } 1522 /* We're setting up a hash table, so that means we're not radix */ 1523 spapr->patb_entry = 0; 1524 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1525 } 1526 1527 void spapr_setup_hpt(SpaprMachineState *spapr) 1528 { 1529 int hpt_shift; 1530 1531 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1532 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1533 } else { 1534 uint64_t current_ram_size; 1535 1536 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1537 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1538 } 1539 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1540 1541 if (kvm_enabled()) { 1542 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1543 1544 /* Check our RMA fits in the possible VRMA */ 1545 if (vrma_limit < spapr->rma_size) { 1546 error_report("Unable to create %" HWADDR_PRIu 1547 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1548 spapr->rma_size / MiB, vrma_limit / MiB); 1549 exit(EXIT_FAILURE); 1550 } 1551 } 1552 } 1553 1554 static int spapr_reset_drcs(Object *child, void *opaque) 1555 { 1556 SpaprDrc *drc = 1557 (SpaprDrc *) object_dynamic_cast(child, 1558 TYPE_SPAPR_DR_CONNECTOR); 1559 1560 if (drc) { 1561 spapr_drc_reset(drc); 1562 } 1563 1564 return 0; 1565 } 1566 1567 static void spapr_machine_reset(MachineState *machine) 1568 { 1569 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1570 PowerPCCPU *first_ppc_cpu; 1571 hwaddr fdt_addr; 1572 void *fdt; 1573 int rc; 1574 1575 kvmppc_svm_off(&error_fatal); 1576 spapr_caps_apply(spapr); 1577 1578 first_ppc_cpu = POWERPC_CPU(first_cpu); 1579 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1580 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1581 spapr->max_compat_pvr)) { 1582 /* 1583 * If using KVM with radix mode available, VCPUs can be started 1584 * without a HPT because KVM will start them in radix mode. 1585 * Set the GR bit in PATE so that we know there is no HPT. 1586 */ 1587 spapr->patb_entry = PATE1_GR; 1588 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1589 } else { 1590 spapr_setup_hpt(spapr); 1591 } 1592 1593 qemu_devices_reset(); 1594 1595 spapr_ovec_cleanup(spapr->ov5_cas); 1596 spapr->ov5_cas = spapr_ovec_new(); 1597 1598 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1599 1600 /* 1601 * This is fixing some of the default configuration of the XIVE 1602 * devices. To be called after the reset of the machine devices. 1603 */ 1604 spapr_irq_reset(spapr, &error_fatal); 1605 1606 /* 1607 * There is no CAS under qtest. Simulate one to please the code that 1608 * depends on spapr->ov5_cas. This is especially needed to test device 1609 * unplug, so we do that before resetting the DRCs. 1610 */ 1611 if (qtest_enabled()) { 1612 spapr_ovec_cleanup(spapr->ov5_cas); 1613 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1614 } 1615 1616 /* DRC reset may cause a device to be unplugged. This will cause troubles 1617 * if this device is used by another device (eg, a running vhost backend 1618 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1619 * situations, we reset DRCs after all devices have been reset. 1620 */ 1621 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1622 1623 spapr_clear_pending_events(spapr); 1624 1625 /* 1626 * We place the device tree and RTAS just below either the top of the RMA, 1627 * or just below 2GB, whichever is lower, so that it can be 1628 * processed with 32-bit real mode code if necessary 1629 */ 1630 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE; 1631 1632 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1633 1634 rc = fdt_pack(fdt); 1635 1636 /* Should only fail if we've built a corrupted tree */ 1637 assert(rc == 0); 1638 1639 /* Load the fdt */ 1640 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1641 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1642 g_free(spapr->fdt_blob); 1643 spapr->fdt_size = fdt_totalsize(fdt); 1644 spapr->fdt_initial_size = spapr->fdt_size; 1645 spapr->fdt_blob = fdt; 1646 1647 /* Set up the entry state */ 1648 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0); 1649 first_ppc_cpu->env.gpr[5] = 0; 1650 1651 spapr->fwnmi_system_reset_addr = -1; 1652 spapr->fwnmi_machine_check_addr = -1; 1653 spapr->fwnmi_machine_check_interlock = -1; 1654 1655 /* Signal all vCPUs waiting on this condition */ 1656 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1657 1658 migrate_del_blocker(spapr->fwnmi_migration_blocker); 1659 } 1660 1661 static void spapr_create_nvram(SpaprMachineState *spapr) 1662 { 1663 DeviceState *dev = qdev_new("spapr-nvram"); 1664 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1665 1666 if (dinfo) { 1667 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1668 &error_fatal); 1669 } 1670 1671 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1672 1673 spapr->nvram = (struct SpaprNvram *)dev; 1674 } 1675 1676 static void spapr_rtc_create(SpaprMachineState *spapr) 1677 { 1678 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1679 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1680 &error_fatal, NULL); 1681 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1682 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1683 "date"); 1684 } 1685 1686 /* Returns whether we want to use VGA or not */ 1687 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1688 { 1689 switch (vga_interface_type) { 1690 case VGA_NONE: 1691 return false; 1692 case VGA_DEVICE: 1693 return true; 1694 case VGA_STD: 1695 case VGA_VIRTIO: 1696 case VGA_CIRRUS: 1697 return pci_vga_init(pci_bus) != NULL; 1698 default: 1699 error_setg(errp, 1700 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1701 return false; 1702 } 1703 } 1704 1705 static int spapr_pre_load(void *opaque) 1706 { 1707 int rc; 1708 1709 rc = spapr_caps_pre_load(opaque); 1710 if (rc) { 1711 return rc; 1712 } 1713 1714 return 0; 1715 } 1716 1717 static int spapr_post_load(void *opaque, int version_id) 1718 { 1719 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1720 int err = 0; 1721 1722 err = spapr_caps_post_migration(spapr); 1723 if (err) { 1724 return err; 1725 } 1726 1727 /* 1728 * In earlier versions, there was no separate qdev for the PAPR 1729 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1730 * So when migrating from those versions, poke the incoming offset 1731 * value into the RTC device 1732 */ 1733 if (version_id < 3) { 1734 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1735 if (err) { 1736 return err; 1737 } 1738 } 1739 1740 if (kvm_enabled() && spapr->patb_entry) { 1741 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1742 bool radix = !!(spapr->patb_entry & PATE1_GR); 1743 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1744 1745 /* 1746 * Update LPCR:HR and UPRT as they may not be set properly in 1747 * the stream 1748 */ 1749 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1750 LPCR_HR | LPCR_UPRT); 1751 1752 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1753 if (err) { 1754 error_report("Process table config unsupported by the host"); 1755 return -EINVAL; 1756 } 1757 } 1758 1759 err = spapr_irq_post_load(spapr, version_id); 1760 if (err) { 1761 return err; 1762 } 1763 1764 return err; 1765 } 1766 1767 static int spapr_pre_save(void *opaque) 1768 { 1769 int rc; 1770 1771 rc = spapr_caps_pre_save(opaque); 1772 if (rc) { 1773 return rc; 1774 } 1775 1776 return 0; 1777 } 1778 1779 static bool version_before_3(void *opaque, int version_id) 1780 { 1781 return version_id < 3; 1782 } 1783 1784 static bool spapr_pending_events_needed(void *opaque) 1785 { 1786 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1787 return !QTAILQ_EMPTY(&spapr->pending_events); 1788 } 1789 1790 static const VMStateDescription vmstate_spapr_event_entry = { 1791 .name = "spapr_event_log_entry", 1792 .version_id = 1, 1793 .minimum_version_id = 1, 1794 .fields = (VMStateField[]) { 1795 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1796 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1797 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1798 NULL, extended_length), 1799 VMSTATE_END_OF_LIST() 1800 }, 1801 }; 1802 1803 static const VMStateDescription vmstate_spapr_pending_events = { 1804 .name = "spapr_pending_events", 1805 .version_id = 1, 1806 .minimum_version_id = 1, 1807 .needed = spapr_pending_events_needed, 1808 .fields = (VMStateField[]) { 1809 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1810 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1811 VMSTATE_END_OF_LIST() 1812 }, 1813 }; 1814 1815 static bool spapr_ov5_cas_needed(void *opaque) 1816 { 1817 SpaprMachineState *spapr = opaque; 1818 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1819 bool cas_needed; 1820 1821 /* Prior to the introduction of SpaprOptionVector, we had two option 1822 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1823 * Both of these options encode machine topology into the device-tree 1824 * in such a way that the now-booted OS should still be able to interact 1825 * appropriately with QEMU regardless of what options were actually 1826 * negotiatied on the source side. 1827 * 1828 * As such, we can avoid migrating the CAS-negotiated options if these 1829 * are the only options available on the current machine/platform. 1830 * Since these are the only options available for pseries-2.7 and 1831 * earlier, this allows us to maintain old->new/new->old migration 1832 * compatibility. 1833 * 1834 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1835 * via default pseries-2.8 machines and explicit command-line parameters. 1836 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1837 * of the actual CAS-negotiated values to continue working properly. For 1838 * example, availability of memory unplug depends on knowing whether 1839 * OV5_HP_EVT was negotiated via CAS. 1840 * 1841 * Thus, for any cases where the set of available CAS-negotiatable 1842 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1843 * include the CAS-negotiated options in the migration stream, unless 1844 * if they affect boot time behaviour only. 1845 */ 1846 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1847 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1848 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1849 1850 /* We need extra information if we have any bits outside the mask 1851 * defined above */ 1852 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1853 1854 spapr_ovec_cleanup(ov5_mask); 1855 1856 return cas_needed; 1857 } 1858 1859 static const VMStateDescription vmstate_spapr_ov5_cas = { 1860 .name = "spapr_option_vector_ov5_cas", 1861 .version_id = 1, 1862 .minimum_version_id = 1, 1863 .needed = spapr_ov5_cas_needed, 1864 .fields = (VMStateField[]) { 1865 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1866 vmstate_spapr_ovec, SpaprOptionVector), 1867 VMSTATE_END_OF_LIST() 1868 }, 1869 }; 1870 1871 static bool spapr_patb_entry_needed(void *opaque) 1872 { 1873 SpaprMachineState *spapr = opaque; 1874 1875 return !!spapr->patb_entry; 1876 } 1877 1878 static const VMStateDescription vmstate_spapr_patb_entry = { 1879 .name = "spapr_patb_entry", 1880 .version_id = 1, 1881 .minimum_version_id = 1, 1882 .needed = spapr_patb_entry_needed, 1883 .fields = (VMStateField[]) { 1884 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1885 VMSTATE_END_OF_LIST() 1886 }, 1887 }; 1888 1889 static bool spapr_irq_map_needed(void *opaque) 1890 { 1891 SpaprMachineState *spapr = opaque; 1892 1893 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1894 } 1895 1896 static const VMStateDescription vmstate_spapr_irq_map = { 1897 .name = "spapr_irq_map", 1898 .version_id = 1, 1899 .minimum_version_id = 1, 1900 .needed = spapr_irq_map_needed, 1901 .fields = (VMStateField[]) { 1902 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 1903 VMSTATE_END_OF_LIST() 1904 }, 1905 }; 1906 1907 static bool spapr_dtb_needed(void *opaque) 1908 { 1909 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1910 1911 return smc->update_dt_enabled; 1912 } 1913 1914 static int spapr_dtb_pre_load(void *opaque) 1915 { 1916 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1917 1918 g_free(spapr->fdt_blob); 1919 spapr->fdt_blob = NULL; 1920 spapr->fdt_size = 0; 1921 1922 return 0; 1923 } 1924 1925 static const VMStateDescription vmstate_spapr_dtb = { 1926 .name = "spapr_dtb", 1927 .version_id = 1, 1928 .minimum_version_id = 1, 1929 .needed = spapr_dtb_needed, 1930 .pre_load = spapr_dtb_pre_load, 1931 .fields = (VMStateField[]) { 1932 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 1933 VMSTATE_UINT32(fdt_size, SpaprMachineState), 1934 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 1935 fdt_size), 1936 VMSTATE_END_OF_LIST() 1937 }, 1938 }; 1939 1940 static bool spapr_fwnmi_needed(void *opaque) 1941 { 1942 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1943 1944 return spapr->fwnmi_machine_check_addr != -1; 1945 } 1946 1947 static int spapr_fwnmi_pre_save(void *opaque) 1948 { 1949 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1950 1951 /* 1952 * Check if machine check handling is in progress and print a 1953 * warning message. 1954 */ 1955 if (spapr->fwnmi_machine_check_interlock != -1) { 1956 warn_report("A machine check is being handled during migration. The" 1957 "handler may run and log hardware error on the destination"); 1958 } 1959 1960 return 0; 1961 } 1962 1963 static const VMStateDescription vmstate_spapr_fwnmi = { 1964 .name = "spapr_fwnmi", 1965 .version_id = 1, 1966 .minimum_version_id = 1, 1967 .needed = spapr_fwnmi_needed, 1968 .pre_save = spapr_fwnmi_pre_save, 1969 .fields = (VMStateField[]) { 1970 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 1971 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 1972 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 1973 VMSTATE_END_OF_LIST() 1974 }, 1975 }; 1976 1977 static const VMStateDescription vmstate_spapr = { 1978 .name = "spapr", 1979 .version_id = 3, 1980 .minimum_version_id = 1, 1981 .pre_load = spapr_pre_load, 1982 .post_load = spapr_post_load, 1983 .pre_save = spapr_pre_save, 1984 .fields = (VMStateField[]) { 1985 /* used to be @next_irq */ 1986 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1987 1988 /* RTC offset */ 1989 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 1990 1991 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 1992 VMSTATE_END_OF_LIST() 1993 }, 1994 .subsections = (const VMStateDescription*[]) { 1995 &vmstate_spapr_ov5_cas, 1996 &vmstate_spapr_patb_entry, 1997 &vmstate_spapr_pending_events, 1998 &vmstate_spapr_cap_htm, 1999 &vmstate_spapr_cap_vsx, 2000 &vmstate_spapr_cap_dfp, 2001 &vmstate_spapr_cap_cfpc, 2002 &vmstate_spapr_cap_sbbc, 2003 &vmstate_spapr_cap_ibs, 2004 &vmstate_spapr_cap_hpt_maxpagesize, 2005 &vmstate_spapr_irq_map, 2006 &vmstate_spapr_cap_nested_kvm_hv, 2007 &vmstate_spapr_dtb, 2008 &vmstate_spapr_cap_large_decr, 2009 &vmstate_spapr_cap_ccf_assist, 2010 &vmstate_spapr_cap_fwnmi, 2011 &vmstate_spapr_fwnmi, 2012 NULL 2013 } 2014 }; 2015 2016 static int htab_save_setup(QEMUFile *f, void *opaque) 2017 { 2018 SpaprMachineState *spapr = opaque; 2019 2020 /* "Iteration" header */ 2021 if (!spapr->htab_shift) { 2022 qemu_put_be32(f, -1); 2023 } else { 2024 qemu_put_be32(f, spapr->htab_shift); 2025 } 2026 2027 if (spapr->htab) { 2028 spapr->htab_save_index = 0; 2029 spapr->htab_first_pass = true; 2030 } else { 2031 if (spapr->htab_shift) { 2032 assert(kvm_enabled()); 2033 } 2034 } 2035 2036 2037 return 0; 2038 } 2039 2040 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2041 int chunkstart, int n_valid, int n_invalid) 2042 { 2043 qemu_put_be32(f, chunkstart); 2044 qemu_put_be16(f, n_valid); 2045 qemu_put_be16(f, n_invalid); 2046 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2047 HASH_PTE_SIZE_64 * n_valid); 2048 } 2049 2050 static void htab_save_end_marker(QEMUFile *f) 2051 { 2052 qemu_put_be32(f, 0); 2053 qemu_put_be16(f, 0); 2054 qemu_put_be16(f, 0); 2055 } 2056 2057 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2058 int64_t max_ns) 2059 { 2060 bool has_timeout = max_ns != -1; 2061 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2062 int index = spapr->htab_save_index; 2063 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2064 2065 assert(spapr->htab_first_pass); 2066 2067 do { 2068 int chunkstart; 2069 2070 /* Consume invalid HPTEs */ 2071 while ((index < htabslots) 2072 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2073 CLEAN_HPTE(HPTE(spapr->htab, index)); 2074 index++; 2075 } 2076 2077 /* Consume valid HPTEs */ 2078 chunkstart = index; 2079 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2080 && HPTE_VALID(HPTE(spapr->htab, index))) { 2081 CLEAN_HPTE(HPTE(spapr->htab, index)); 2082 index++; 2083 } 2084 2085 if (index > chunkstart) { 2086 int n_valid = index - chunkstart; 2087 2088 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2089 2090 if (has_timeout && 2091 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2092 break; 2093 } 2094 } 2095 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2096 2097 if (index >= htabslots) { 2098 assert(index == htabslots); 2099 index = 0; 2100 spapr->htab_first_pass = false; 2101 } 2102 spapr->htab_save_index = index; 2103 } 2104 2105 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2106 int64_t max_ns) 2107 { 2108 bool final = max_ns < 0; 2109 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2110 int examined = 0, sent = 0; 2111 int index = spapr->htab_save_index; 2112 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2113 2114 assert(!spapr->htab_first_pass); 2115 2116 do { 2117 int chunkstart, invalidstart; 2118 2119 /* Consume non-dirty HPTEs */ 2120 while ((index < htabslots) 2121 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2122 index++; 2123 examined++; 2124 } 2125 2126 chunkstart = index; 2127 /* Consume valid dirty HPTEs */ 2128 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2129 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2130 && HPTE_VALID(HPTE(spapr->htab, index))) { 2131 CLEAN_HPTE(HPTE(spapr->htab, index)); 2132 index++; 2133 examined++; 2134 } 2135 2136 invalidstart = index; 2137 /* Consume invalid dirty HPTEs */ 2138 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2139 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2140 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2141 CLEAN_HPTE(HPTE(spapr->htab, index)); 2142 index++; 2143 examined++; 2144 } 2145 2146 if (index > chunkstart) { 2147 int n_valid = invalidstart - chunkstart; 2148 int n_invalid = index - invalidstart; 2149 2150 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2151 sent += index - chunkstart; 2152 2153 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2154 break; 2155 } 2156 } 2157 2158 if (examined >= htabslots) { 2159 break; 2160 } 2161 2162 if (index >= htabslots) { 2163 assert(index == htabslots); 2164 index = 0; 2165 } 2166 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2167 2168 if (index >= htabslots) { 2169 assert(index == htabslots); 2170 index = 0; 2171 } 2172 2173 spapr->htab_save_index = index; 2174 2175 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2176 } 2177 2178 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2179 #define MAX_KVM_BUF_SIZE 2048 2180 2181 static int htab_save_iterate(QEMUFile *f, void *opaque) 2182 { 2183 SpaprMachineState *spapr = opaque; 2184 int fd; 2185 int rc = 0; 2186 2187 /* Iteration header */ 2188 if (!spapr->htab_shift) { 2189 qemu_put_be32(f, -1); 2190 return 1; 2191 } else { 2192 qemu_put_be32(f, 0); 2193 } 2194 2195 if (!spapr->htab) { 2196 assert(kvm_enabled()); 2197 2198 fd = get_htab_fd(spapr); 2199 if (fd < 0) { 2200 return fd; 2201 } 2202 2203 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2204 if (rc < 0) { 2205 return rc; 2206 } 2207 } else if (spapr->htab_first_pass) { 2208 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2209 } else { 2210 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2211 } 2212 2213 htab_save_end_marker(f); 2214 2215 return rc; 2216 } 2217 2218 static int htab_save_complete(QEMUFile *f, void *opaque) 2219 { 2220 SpaprMachineState *spapr = opaque; 2221 int fd; 2222 2223 /* Iteration header */ 2224 if (!spapr->htab_shift) { 2225 qemu_put_be32(f, -1); 2226 return 0; 2227 } else { 2228 qemu_put_be32(f, 0); 2229 } 2230 2231 if (!spapr->htab) { 2232 int rc; 2233 2234 assert(kvm_enabled()); 2235 2236 fd = get_htab_fd(spapr); 2237 if (fd < 0) { 2238 return fd; 2239 } 2240 2241 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2242 if (rc < 0) { 2243 return rc; 2244 } 2245 } else { 2246 if (spapr->htab_first_pass) { 2247 htab_save_first_pass(f, spapr, -1); 2248 } 2249 htab_save_later_pass(f, spapr, -1); 2250 } 2251 2252 /* End marker */ 2253 htab_save_end_marker(f); 2254 2255 return 0; 2256 } 2257 2258 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2259 { 2260 SpaprMachineState *spapr = opaque; 2261 uint32_t section_hdr; 2262 int fd = -1; 2263 Error *local_err = NULL; 2264 2265 if (version_id < 1 || version_id > 1) { 2266 error_report("htab_load() bad version"); 2267 return -EINVAL; 2268 } 2269 2270 section_hdr = qemu_get_be32(f); 2271 2272 if (section_hdr == -1) { 2273 spapr_free_hpt(spapr); 2274 return 0; 2275 } 2276 2277 if (section_hdr) { 2278 /* First section gives the htab size */ 2279 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2280 if (local_err) { 2281 error_report_err(local_err); 2282 return -EINVAL; 2283 } 2284 return 0; 2285 } 2286 2287 if (!spapr->htab) { 2288 assert(kvm_enabled()); 2289 2290 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2291 if (fd < 0) { 2292 error_report_err(local_err); 2293 return fd; 2294 } 2295 } 2296 2297 while (true) { 2298 uint32_t index; 2299 uint16_t n_valid, n_invalid; 2300 2301 index = qemu_get_be32(f); 2302 n_valid = qemu_get_be16(f); 2303 n_invalid = qemu_get_be16(f); 2304 2305 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2306 /* End of Stream */ 2307 break; 2308 } 2309 2310 if ((index + n_valid + n_invalid) > 2311 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2312 /* Bad index in stream */ 2313 error_report( 2314 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2315 index, n_valid, n_invalid, spapr->htab_shift); 2316 return -EINVAL; 2317 } 2318 2319 if (spapr->htab) { 2320 if (n_valid) { 2321 qemu_get_buffer(f, HPTE(spapr->htab, index), 2322 HASH_PTE_SIZE_64 * n_valid); 2323 } 2324 if (n_invalid) { 2325 memset(HPTE(spapr->htab, index + n_valid), 0, 2326 HASH_PTE_SIZE_64 * n_invalid); 2327 } 2328 } else { 2329 int rc; 2330 2331 assert(fd >= 0); 2332 2333 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2334 if (rc < 0) { 2335 return rc; 2336 } 2337 } 2338 } 2339 2340 if (!spapr->htab) { 2341 assert(fd >= 0); 2342 close(fd); 2343 } 2344 2345 return 0; 2346 } 2347 2348 static void htab_save_cleanup(void *opaque) 2349 { 2350 SpaprMachineState *spapr = opaque; 2351 2352 close_htab_fd(spapr); 2353 } 2354 2355 static SaveVMHandlers savevm_htab_handlers = { 2356 .save_setup = htab_save_setup, 2357 .save_live_iterate = htab_save_iterate, 2358 .save_live_complete_precopy = htab_save_complete, 2359 .save_cleanup = htab_save_cleanup, 2360 .load_state = htab_load, 2361 }; 2362 2363 static void spapr_boot_set(void *opaque, const char *boot_device, 2364 Error **errp) 2365 { 2366 MachineState *machine = MACHINE(opaque); 2367 machine->boot_order = g_strdup(boot_device); 2368 } 2369 2370 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2371 { 2372 MachineState *machine = MACHINE(spapr); 2373 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2374 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2375 int i; 2376 2377 for (i = 0; i < nr_lmbs; i++) { 2378 uint64_t addr; 2379 2380 addr = i * lmb_size + machine->device_memory->base; 2381 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2382 addr / lmb_size); 2383 } 2384 } 2385 2386 /* 2387 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2388 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2389 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2390 */ 2391 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2392 { 2393 int i; 2394 2395 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2396 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2397 " is not aligned to %" PRIu64 " MiB", 2398 machine->ram_size, 2399 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2400 return; 2401 } 2402 2403 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2404 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2405 " is not aligned to %" PRIu64 " MiB", 2406 machine->ram_size, 2407 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2408 return; 2409 } 2410 2411 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2412 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2413 error_setg(errp, 2414 "Node %d memory size 0x%" PRIx64 2415 " is not aligned to %" PRIu64 " MiB", 2416 i, machine->numa_state->nodes[i].node_mem, 2417 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2418 return; 2419 } 2420 } 2421 } 2422 2423 /* find cpu slot in machine->possible_cpus by core_id */ 2424 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2425 { 2426 int index = id / ms->smp.threads; 2427 2428 if (index >= ms->possible_cpus->len) { 2429 return NULL; 2430 } 2431 if (idx) { 2432 *idx = index; 2433 } 2434 return &ms->possible_cpus->cpus[index]; 2435 } 2436 2437 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2438 { 2439 MachineState *ms = MACHINE(spapr); 2440 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2441 Error *local_err = NULL; 2442 bool vsmt_user = !!spapr->vsmt; 2443 int kvm_smt = kvmppc_smt_threads(); 2444 int ret; 2445 unsigned int smp_threads = ms->smp.threads; 2446 2447 if (!kvm_enabled() && (smp_threads > 1)) { 2448 error_setg(errp, "TCG cannot support more than 1 thread/core " 2449 "on a pseries machine"); 2450 return; 2451 } 2452 if (!is_power_of_2(smp_threads)) { 2453 error_setg(errp, "Cannot support %d threads/core on a pseries " 2454 "machine because it must be a power of 2", smp_threads); 2455 return; 2456 } 2457 2458 /* Detemine the VSMT mode to use: */ 2459 if (vsmt_user) { 2460 if (spapr->vsmt < smp_threads) { 2461 error_setg(errp, "Cannot support VSMT mode %d" 2462 " because it must be >= threads/core (%d)", 2463 spapr->vsmt, smp_threads); 2464 return; 2465 } 2466 /* In this case, spapr->vsmt has been set by the command line */ 2467 } else if (!smc->smp_threads_vsmt) { 2468 /* 2469 * Default VSMT value is tricky, because we need it to be as 2470 * consistent as possible (for migration), but this requires 2471 * changing it for at least some existing cases. We pick 8 as 2472 * the value that we'd get with KVM on POWER8, the 2473 * overwhelmingly common case in production systems. 2474 */ 2475 spapr->vsmt = MAX(8, smp_threads); 2476 } else { 2477 spapr->vsmt = smp_threads; 2478 } 2479 2480 /* KVM: If necessary, set the SMT mode: */ 2481 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2482 ret = kvmppc_set_smt_threads(spapr->vsmt); 2483 if (ret) { 2484 /* Looks like KVM isn't able to change VSMT mode */ 2485 error_setg(&local_err, 2486 "Failed to set KVM's VSMT mode to %d (errno %d)", 2487 spapr->vsmt, ret); 2488 /* We can live with that if the default one is big enough 2489 * for the number of threads, and a submultiple of the one 2490 * we want. In this case we'll waste some vcpu ids, but 2491 * behaviour will be correct */ 2492 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2493 warn_report_err(local_err); 2494 } else { 2495 if (!vsmt_user) { 2496 error_append_hint(&local_err, 2497 "On PPC, a VM with %d threads/core" 2498 " on a host with %d threads/core" 2499 " requires the use of VSMT mode %d.\n", 2500 smp_threads, kvm_smt, spapr->vsmt); 2501 } 2502 kvmppc_error_append_smt_possible_hint(&local_err); 2503 error_propagate(errp, local_err); 2504 } 2505 } 2506 } 2507 /* else TCG: nothing to do currently */ 2508 } 2509 2510 static void spapr_init_cpus(SpaprMachineState *spapr) 2511 { 2512 MachineState *machine = MACHINE(spapr); 2513 MachineClass *mc = MACHINE_GET_CLASS(machine); 2514 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2515 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2516 const CPUArchIdList *possible_cpus; 2517 unsigned int smp_cpus = machine->smp.cpus; 2518 unsigned int smp_threads = machine->smp.threads; 2519 unsigned int max_cpus = machine->smp.max_cpus; 2520 int boot_cores_nr = smp_cpus / smp_threads; 2521 int i; 2522 2523 possible_cpus = mc->possible_cpu_arch_ids(machine); 2524 if (mc->has_hotpluggable_cpus) { 2525 if (smp_cpus % smp_threads) { 2526 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2527 smp_cpus, smp_threads); 2528 exit(1); 2529 } 2530 if (max_cpus % smp_threads) { 2531 error_report("max_cpus (%u) must be multiple of threads (%u)", 2532 max_cpus, smp_threads); 2533 exit(1); 2534 } 2535 } else { 2536 if (max_cpus != smp_cpus) { 2537 error_report("This machine version does not support CPU hotplug"); 2538 exit(1); 2539 } 2540 boot_cores_nr = possible_cpus->len; 2541 } 2542 2543 if (smc->pre_2_10_has_unused_icps) { 2544 int i; 2545 2546 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2547 /* Dummy entries get deregistered when real ICPState objects 2548 * are registered during CPU core hotplug. 2549 */ 2550 pre_2_10_vmstate_register_dummy_icp(i); 2551 } 2552 } 2553 2554 for (i = 0; i < possible_cpus->len; i++) { 2555 int core_id = i * smp_threads; 2556 2557 if (mc->has_hotpluggable_cpus) { 2558 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2559 spapr_vcpu_id(spapr, core_id)); 2560 } 2561 2562 if (i < boot_cores_nr) { 2563 Object *core = object_new(type); 2564 int nr_threads = smp_threads; 2565 2566 /* Handle the partially filled core for older machine types */ 2567 if ((i + 1) * smp_threads >= smp_cpus) { 2568 nr_threads = smp_cpus - i * smp_threads; 2569 } 2570 2571 object_property_set_int(core, "nr-threads", nr_threads, 2572 &error_fatal); 2573 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2574 &error_fatal); 2575 qdev_realize(DEVICE(core), NULL, &error_fatal); 2576 2577 object_unref(core); 2578 } 2579 } 2580 } 2581 2582 static PCIHostState *spapr_create_default_phb(void) 2583 { 2584 DeviceState *dev; 2585 2586 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2587 qdev_prop_set_uint32(dev, "index", 0); 2588 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2589 2590 return PCI_HOST_BRIDGE(dev); 2591 } 2592 2593 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2594 { 2595 MachineState *machine = MACHINE(spapr); 2596 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2597 hwaddr rma_size = machine->ram_size; 2598 hwaddr node0_size = spapr_node0_size(machine); 2599 2600 /* RMA has to fit in the first NUMA node */ 2601 rma_size = MIN(rma_size, node0_size); 2602 2603 /* 2604 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2605 * never exceed that 2606 */ 2607 rma_size = MIN(rma_size, 1 * TiB); 2608 2609 /* 2610 * Clamp the RMA size based on machine type. This is for 2611 * migration compatibility with older qemu versions, which limited 2612 * the RMA size for complicated and mostly bad reasons. 2613 */ 2614 if (smc->rma_limit) { 2615 rma_size = MIN(rma_size, smc->rma_limit); 2616 } 2617 2618 if (rma_size < MIN_RMA_SLOF) { 2619 error_setg(errp, 2620 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2621 "ldMiB guest RMA (Real Mode Area memory)", 2622 MIN_RMA_SLOF / MiB); 2623 return 0; 2624 } 2625 2626 return rma_size; 2627 } 2628 2629 /* pSeries LPAR / sPAPR hardware init */ 2630 static void spapr_machine_init(MachineState *machine) 2631 { 2632 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2633 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2634 MachineClass *mc = MACHINE_GET_CLASS(machine); 2635 const char *kernel_filename = machine->kernel_filename; 2636 const char *initrd_filename = machine->initrd_filename; 2637 PCIHostState *phb; 2638 int i; 2639 MemoryRegion *sysmem = get_system_memory(); 2640 long load_limit, fw_size; 2641 char *filename; 2642 Error *resize_hpt_err = NULL; 2643 2644 msi_nonbroken = true; 2645 2646 QLIST_INIT(&spapr->phbs); 2647 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2648 2649 /* Determine capabilities to run with */ 2650 spapr_caps_init(spapr); 2651 2652 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2653 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2654 /* 2655 * If the user explicitly requested a mode we should either 2656 * supply it, or fail completely (which we do below). But if 2657 * it's not set explicitly, we reset our mode to something 2658 * that works 2659 */ 2660 if (resize_hpt_err) { 2661 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2662 error_free(resize_hpt_err); 2663 resize_hpt_err = NULL; 2664 } else { 2665 spapr->resize_hpt = smc->resize_hpt_default; 2666 } 2667 } 2668 2669 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2670 2671 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2672 /* 2673 * User requested HPT resize, but this host can't supply it. Bail out 2674 */ 2675 error_report_err(resize_hpt_err); 2676 exit(1); 2677 } 2678 error_free(resize_hpt_err); 2679 2680 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2681 2682 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2683 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2684 2685 /* 2686 * VSMT must be set in order to be able to compute VCPU ids, ie to 2687 * call spapr_max_server_number() or spapr_vcpu_id(). 2688 */ 2689 spapr_set_vsmt_mode(spapr, &error_fatal); 2690 2691 /* Set up Interrupt Controller before we create the VCPUs */ 2692 spapr_irq_init(spapr, &error_fatal); 2693 2694 /* Set up containers for ibm,client-architecture-support negotiated options 2695 */ 2696 spapr->ov5 = spapr_ovec_new(); 2697 spapr->ov5_cas = spapr_ovec_new(); 2698 2699 if (smc->dr_lmb_enabled) { 2700 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2701 spapr_validate_node_memory(machine, &error_fatal); 2702 } 2703 2704 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2705 2706 /* advertise support for dedicated HP event source to guests */ 2707 if (spapr->use_hotplug_event_source) { 2708 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2709 } 2710 2711 /* advertise support for HPT resizing */ 2712 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2713 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2714 } 2715 2716 /* advertise support for ibm,dyamic-memory-v2 */ 2717 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2718 2719 /* advertise XIVE on POWER9 machines */ 2720 if (spapr->irq->xive) { 2721 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2722 } 2723 2724 /* init CPUs */ 2725 spapr_init_cpus(spapr); 2726 2727 /* 2728 * check we don't have a memory-less/cpu-less NUMA node 2729 * Firmware relies on the existing memory/cpu topology to provide the 2730 * NUMA topology to the kernel. 2731 * And the linux kernel needs to know the NUMA topology at start 2732 * to be able to hotplug CPUs later. 2733 */ 2734 if (machine->numa_state->num_nodes) { 2735 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 2736 /* check for memory-less node */ 2737 if (machine->numa_state->nodes[i].node_mem == 0) { 2738 CPUState *cs; 2739 int found = 0; 2740 /* check for cpu-less node */ 2741 CPU_FOREACH(cs) { 2742 PowerPCCPU *cpu = POWERPC_CPU(cs); 2743 if (cpu->node_id == i) { 2744 found = 1; 2745 break; 2746 } 2747 } 2748 /* memory-less and cpu-less node */ 2749 if (!found) { 2750 error_report( 2751 "Memory-less/cpu-less nodes are not supported (node %d)", 2752 i); 2753 exit(1); 2754 } 2755 } 2756 } 2757 2758 } 2759 2760 /* 2761 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 2762 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 2763 * called from vPHB reset handler so we initialize the counter here. 2764 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 2765 * must be equally distant from any other node. 2766 * The final value of spapr->gpu_numa_id is going to be written to 2767 * max-associativity-domains in spapr_build_fdt(). 2768 */ 2769 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes); 2770 2771 /* Init numa_assoc_array */ 2772 spapr_numa_associativity_init(spapr, machine); 2773 2774 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2775 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2776 spapr->max_compat_pvr)) { 2777 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2778 /* KVM and TCG always allow GTSE with radix... */ 2779 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2780 } 2781 /* ... but not with hash (currently). */ 2782 2783 if (kvm_enabled()) { 2784 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2785 kvmppc_enable_logical_ci_hcalls(); 2786 kvmppc_enable_set_mode_hcall(); 2787 2788 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2789 kvmppc_enable_clear_ref_mod_hcalls(); 2790 2791 /* Enable H_PAGE_INIT */ 2792 kvmppc_enable_h_page_init(); 2793 } 2794 2795 /* map RAM */ 2796 memory_region_add_subregion(sysmem, 0, machine->ram); 2797 2798 /* always allocate the device memory information */ 2799 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2800 2801 /* initialize hotplug memory address space */ 2802 if (machine->ram_size < machine->maxram_size) { 2803 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2804 /* 2805 * Limit the number of hotpluggable memory slots to half the number 2806 * slots that KVM supports, leaving the other half for PCI and other 2807 * devices. However ensure that number of slots doesn't drop below 32. 2808 */ 2809 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2810 SPAPR_MAX_RAM_SLOTS; 2811 2812 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2813 max_memslots = SPAPR_MAX_RAM_SLOTS; 2814 } 2815 if (machine->ram_slots > max_memslots) { 2816 error_report("Specified number of memory slots %" 2817 PRIu64" exceeds max supported %d", 2818 machine->ram_slots, max_memslots); 2819 exit(1); 2820 } 2821 2822 machine->device_memory->base = ROUND_UP(machine->ram_size, 2823 SPAPR_DEVICE_MEM_ALIGN); 2824 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2825 "device-memory", device_mem_size); 2826 memory_region_add_subregion(sysmem, machine->device_memory->base, 2827 &machine->device_memory->mr); 2828 } 2829 2830 if (smc->dr_lmb_enabled) { 2831 spapr_create_lmb_dr_connectors(spapr); 2832 } 2833 2834 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) { 2835 /* Create the error string for live migration blocker */ 2836 error_setg(&spapr->fwnmi_migration_blocker, 2837 "A machine check is being handled during migration. The handler" 2838 "may run and log hardware error on the destination"); 2839 } 2840 2841 if (mc->nvdimm_supported) { 2842 spapr_create_nvdimm_dr_connectors(spapr); 2843 } 2844 2845 /* Set up RTAS event infrastructure */ 2846 spapr_events_init(spapr); 2847 2848 /* Set up the RTC RTAS interfaces */ 2849 spapr_rtc_create(spapr); 2850 2851 /* Set up VIO bus */ 2852 spapr->vio_bus = spapr_vio_bus_init(); 2853 2854 for (i = 0; i < serial_max_hds(); i++) { 2855 if (serial_hd(i)) { 2856 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2857 } 2858 } 2859 2860 /* We always have at least the nvram device on VIO */ 2861 spapr_create_nvram(spapr); 2862 2863 /* 2864 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2865 * connectors (described in root DT node's "ibm,drc-types" property) 2866 * are pre-initialized here. additional child connectors (such as 2867 * connectors for a PHBs PCI slots) are added as needed during their 2868 * parent's realization. 2869 */ 2870 if (smc->dr_phb_enabled) { 2871 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2872 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2873 } 2874 } 2875 2876 /* Set up PCI */ 2877 spapr_pci_rtas_init(); 2878 2879 phb = spapr_create_default_phb(); 2880 2881 for (i = 0; i < nb_nics; i++) { 2882 NICInfo *nd = &nd_table[i]; 2883 2884 if (!nd->model) { 2885 nd->model = g_strdup("spapr-vlan"); 2886 } 2887 2888 if (g_str_equal(nd->model, "spapr-vlan") || 2889 g_str_equal(nd->model, "ibmveth")) { 2890 spapr_vlan_create(spapr->vio_bus, nd); 2891 } else { 2892 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2893 } 2894 } 2895 2896 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2897 spapr_vscsi_create(spapr->vio_bus); 2898 } 2899 2900 /* Graphics */ 2901 if (spapr_vga_init(phb->bus, &error_fatal)) { 2902 spapr->has_graphics = true; 2903 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2904 } 2905 2906 if (machine->usb) { 2907 if (smc->use_ohci_by_default) { 2908 pci_create_simple(phb->bus, -1, "pci-ohci"); 2909 } else { 2910 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2911 } 2912 2913 if (spapr->has_graphics) { 2914 USBBus *usb_bus = usb_bus_find(-1); 2915 2916 usb_create_simple(usb_bus, "usb-kbd"); 2917 usb_create_simple(usb_bus, "usb-mouse"); 2918 } 2919 } 2920 2921 if (kernel_filename) { 2922 spapr->kernel_size = load_elf(kernel_filename, NULL, 2923 translate_kernel_address, spapr, 2924 NULL, NULL, NULL, NULL, 1, 2925 PPC_ELF_MACHINE, 0, 0); 2926 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2927 spapr->kernel_size = load_elf(kernel_filename, NULL, 2928 translate_kernel_address, spapr, 2929 NULL, NULL, NULL, NULL, 0, 2930 PPC_ELF_MACHINE, 0, 0); 2931 spapr->kernel_le = spapr->kernel_size > 0; 2932 } 2933 if (spapr->kernel_size < 0) { 2934 error_report("error loading %s: %s", kernel_filename, 2935 load_elf_strerror(spapr->kernel_size)); 2936 exit(1); 2937 } 2938 2939 /* load initrd */ 2940 if (initrd_filename) { 2941 /* Try to locate the initrd in the gap between the kernel 2942 * and the firmware. Add a bit of space just in case 2943 */ 2944 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 2945 + 0x1ffff) & ~0xffff; 2946 spapr->initrd_size = load_image_targphys(initrd_filename, 2947 spapr->initrd_base, 2948 load_limit 2949 - spapr->initrd_base); 2950 if (spapr->initrd_size < 0) { 2951 error_report("could not load initial ram disk '%s'", 2952 initrd_filename); 2953 exit(1); 2954 } 2955 } 2956 } 2957 2958 if (bios_name == NULL) { 2959 bios_name = FW_FILE_NAME; 2960 } 2961 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2962 if (!filename) { 2963 error_report("Could not find LPAR firmware '%s'", bios_name); 2964 exit(1); 2965 } 2966 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2967 if (fw_size <= 0) { 2968 error_report("Could not load LPAR firmware '%s'", filename); 2969 exit(1); 2970 } 2971 g_free(filename); 2972 2973 /* FIXME: Should register things through the MachineState's qdev 2974 * interface, this is a legacy from the sPAPREnvironment structure 2975 * which predated MachineState but had a similar function */ 2976 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2977 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 2978 &savevm_htab_handlers, spapr); 2979 2980 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 2981 2982 qemu_register_boot_set(spapr_boot_set, spapr); 2983 2984 /* 2985 * Nothing needs to be done to resume a suspended guest because 2986 * suspending does not change the machine state, so no need for 2987 * a ->wakeup method. 2988 */ 2989 qemu_register_wakeup_support(); 2990 2991 if (kvm_enabled()) { 2992 /* to stop and start vmclock */ 2993 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2994 &spapr->tb); 2995 2996 kvmppc_spapr_enable_inkernel_multitce(); 2997 } 2998 2999 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3000 } 3001 3002 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3003 { 3004 if (!vm_type) { 3005 return 0; 3006 } 3007 3008 if (!strcmp(vm_type, "HV")) { 3009 return 1; 3010 } 3011 3012 if (!strcmp(vm_type, "PR")) { 3013 return 2; 3014 } 3015 3016 error_report("Unknown kvm-type specified '%s'", vm_type); 3017 exit(1); 3018 } 3019 3020 /* 3021 * Implementation of an interface to adjust firmware path 3022 * for the bootindex property handling. 3023 */ 3024 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3025 DeviceState *dev) 3026 { 3027 #define CAST(type, obj, name) \ 3028 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3029 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3030 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3031 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3032 3033 if (d) { 3034 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3035 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3036 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3037 3038 if (spapr) { 3039 /* 3040 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3041 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3042 * 0x8000 | (target << 8) | (bus << 5) | lun 3043 * (see the "Logical unit addressing format" table in SAM5) 3044 */ 3045 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3046 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3047 (uint64_t)id << 48); 3048 } else if (virtio) { 3049 /* 3050 * We use SRP luns of the form 01000000 | (target << 8) | lun 3051 * in the top 32 bits of the 64-bit LUN 3052 * Note: the quote above is from SLOF and it is wrong, 3053 * the actual binding is: 3054 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3055 */ 3056 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3057 if (d->lun >= 256) { 3058 /* Use the LUN "flat space addressing method" */ 3059 id |= 0x4000; 3060 } 3061 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3062 (uint64_t)id << 32); 3063 } else if (usb) { 3064 /* 3065 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3066 * in the top 32 bits of the 64-bit LUN 3067 */ 3068 unsigned usb_port = atoi(usb->port->path); 3069 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3070 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3071 (uint64_t)id << 32); 3072 } 3073 } 3074 3075 /* 3076 * SLOF probes the USB devices, and if it recognizes that the device is a 3077 * storage device, it changes its name to "storage" instead of "usb-host", 3078 * and additionally adds a child node for the SCSI LUN, so the correct 3079 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3080 */ 3081 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3082 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3083 if (usb_host_dev_is_scsi_storage(usbdev)) { 3084 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3085 } 3086 } 3087 3088 if (phb) { 3089 /* Replace "pci" with "pci@800000020000000" */ 3090 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3091 } 3092 3093 if (vsc) { 3094 /* Same logic as virtio above */ 3095 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3096 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3097 } 3098 3099 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3100 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3101 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3102 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3103 } 3104 3105 return NULL; 3106 } 3107 3108 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3109 { 3110 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3111 3112 return g_strdup(spapr->kvm_type); 3113 } 3114 3115 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3116 { 3117 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3118 3119 g_free(spapr->kvm_type); 3120 spapr->kvm_type = g_strdup(value); 3121 } 3122 3123 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3124 { 3125 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3126 3127 return spapr->use_hotplug_event_source; 3128 } 3129 3130 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3131 Error **errp) 3132 { 3133 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3134 3135 spapr->use_hotplug_event_source = value; 3136 } 3137 3138 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3139 { 3140 return true; 3141 } 3142 3143 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3144 { 3145 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3146 3147 switch (spapr->resize_hpt) { 3148 case SPAPR_RESIZE_HPT_DEFAULT: 3149 return g_strdup("default"); 3150 case SPAPR_RESIZE_HPT_DISABLED: 3151 return g_strdup("disabled"); 3152 case SPAPR_RESIZE_HPT_ENABLED: 3153 return g_strdup("enabled"); 3154 case SPAPR_RESIZE_HPT_REQUIRED: 3155 return g_strdup("required"); 3156 } 3157 g_assert_not_reached(); 3158 } 3159 3160 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3161 { 3162 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3163 3164 if (strcmp(value, "default") == 0) { 3165 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3166 } else if (strcmp(value, "disabled") == 0) { 3167 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3168 } else if (strcmp(value, "enabled") == 0) { 3169 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3170 } else if (strcmp(value, "required") == 0) { 3171 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3172 } else { 3173 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3174 } 3175 } 3176 3177 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3178 { 3179 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3180 3181 if (spapr->irq == &spapr_irq_xics_legacy) { 3182 return g_strdup("legacy"); 3183 } else if (spapr->irq == &spapr_irq_xics) { 3184 return g_strdup("xics"); 3185 } else if (spapr->irq == &spapr_irq_xive) { 3186 return g_strdup("xive"); 3187 } else if (spapr->irq == &spapr_irq_dual) { 3188 return g_strdup("dual"); 3189 } 3190 g_assert_not_reached(); 3191 } 3192 3193 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3194 { 3195 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3196 3197 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3198 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3199 return; 3200 } 3201 3202 /* The legacy IRQ backend can not be set */ 3203 if (strcmp(value, "xics") == 0) { 3204 spapr->irq = &spapr_irq_xics; 3205 } else if (strcmp(value, "xive") == 0) { 3206 spapr->irq = &spapr_irq_xive; 3207 } else if (strcmp(value, "dual") == 0) { 3208 spapr->irq = &spapr_irq_dual; 3209 } else { 3210 error_setg(errp, "Bad value for \"ic-mode\" property"); 3211 } 3212 } 3213 3214 static char *spapr_get_host_model(Object *obj, Error **errp) 3215 { 3216 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3217 3218 return g_strdup(spapr->host_model); 3219 } 3220 3221 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3222 { 3223 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3224 3225 g_free(spapr->host_model); 3226 spapr->host_model = g_strdup(value); 3227 } 3228 3229 static char *spapr_get_host_serial(Object *obj, Error **errp) 3230 { 3231 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3232 3233 return g_strdup(spapr->host_serial); 3234 } 3235 3236 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3237 { 3238 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3239 3240 g_free(spapr->host_serial); 3241 spapr->host_serial = g_strdup(value); 3242 } 3243 3244 static void spapr_instance_init(Object *obj) 3245 { 3246 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3247 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3248 3249 spapr->htab_fd = -1; 3250 spapr->use_hotplug_event_source = true; 3251 object_property_add_str(obj, "kvm-type", 3252 spapr_get_kvm_type, spapr_set_kvm_type); 3253 object_property_set_description(obj, "kvm-type", 3254 "Specifies the KVM virtualization mode (HV, PR)"); 3255 object_property_add_bool(obj, "modern-hotplug-events", 3256 spapr_get_modern_hotplug_events, 3257 spapr_set_modern_hotplug_events); 3258 object_property_set_description(obj, "modern-hotplug-events", 3259 "Use dedicated hotplug event mechanism in" 3260 " place of standard EPOW events when possible" 3261 " (required for memory hot-unplug support)"); 3262 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3263 "Maximum permitted CPU compatibility mode"); 3264 3265 object_property_add_str(obj, "resize-hpt", 3266 spapr_get_resize_hpt, spapr_set_resize_hpt); 3267 object_property_set_description(obj, "resize-hpt", 3268 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3269 object_property_add_uint32_ptr(obj, "vsmt", 3270 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3271 object_property_set_description(obj, "vsmt", 3272 "Virtual SMT: KVM behaves as if this were" 3273 " the host's SMT mode"); 3274 3275 object_property_add_bool(obj, "vfio-no-msix-emulation", 3276 spapr_get_msix_emulation, NULL); 3277 3278 object_property_add_uint64_ptr(obj, "kernel-addr", 3279 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3280 object_property_set_description(obj, "kernel-addr", 3281 stringify(KERNEL_LOAD_ADDR) 3282 " for -kernel is the default"); 3283 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3284 /* The machine class defines the default interrupt controller mode */ 3285 spapr->irq = smc->irq; 3286 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3287 spapr_set_ic_mode); 3288 object_property_set_description(obj, "ic-mode", 3289 "Specifies the interrupt controller mode (xics, xive, dual)"); 3290 3291 object_property_add_str(obj, "host-model", 3292 spapr_get_host_model, spapr_set_host_model); 3293 object_property_set_description(obj, "host-model", 3294 "Host model to advertise in guest device tree"); 3295 object_property_add_str(obj, "host-serial", 3296 spapr_get_host_serial, spapr_set_host_serial); 3297 object_property_set_description(obj, "host-serial", 3298 "Host serial number to advertise in guest device tree"); 3299 } 3300 3301 static void spapr_machine_finalizefn(Object *obj) 3302 { 3303 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3304 3305 g_free(spapr->kvm_type); 3306 } 3307 3308 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3309 { 3310 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3311 PowerPCCPU *cpu = POWERPC_CPU(cs); 3312 CPUPPCState *env = &cpu->env; 3313 3314 cpu_synchronize_state(cs); 3315 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3316 if (spapr->fwnmi_system_reset_addr != -1) { 3317 uint64_t rtas_addr, addr; 3318 3319 /* get rtas addr from fdt */ 3320 rtas_addr = spapr_get_rtas_addr(); 3321 if (!rtas_addr) { 3322 qemu_system_guest_panicked(NULL); 3323 return; 3324 } 3325 3326 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3327 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3328 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3329 env->gpr[3] = addr; 3330 } 3331 ppc_cpu_do_system_reset(cs); 3332 if (spapr->fwnmi_system_reset_addr != -1) { 3333 env->nip = spapr->fwnmi_system_reset_addr; 3334 } 3335 } 3336 3337 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3338 { 3339 CPUState *cs; 3340 3341 CPU_FOREACH(cs) { 3342 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3343 } 3344 } 3345 3346 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3347 void *fdt, int *fdt_start_offset, Error **errp) 3348 { 3349 uint64_t addr; 3350 uint32_t node; 3351 3352 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3353 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3354 &error_abort); 3355 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3356 SPAPR_MEMORY_BLOCK_SIZE); 3357 return 0; 3358 } 3359 3360 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3361 bool dedicated_hp_event_source, Error **errp) 3362 { 3363 SpaprDrc *drc; 3364 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3365 int i; 3366 uint64_t addr = addr_start; 3367 bool hotplugged = spapr_drc_hotplugged(dev); 3368 Error *local_err = NULL; 3369 3370 for (i = 0; i < nr_lmbs; i++) { 3371 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3372 addr / SPAPR_MEMORY_BLOCK_SIZE); 3373 g_assert(drc); 3374 3375 spapr_drc_attach(drc, dev, &local_err); 3376 if (local_err) { 3377 while (addr > addr_start) { 3378 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3379 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3380 addr / SPAPR_MEMORY_BLOCK_SIZE); 3381 spapr_drc_detach(drc); 3382 } 3383 error_propagate(errp, local_err); 3384 return; 3385 } 3386 if (!hotplugged) { 3387 spapr_drc_reset(drc); 3388 } 3389 addr += SPAPR_MEMORY_BLOCK_SIZE; 3390 } 3391 /* send hotplug notification to the 3392 * guest only in case of hotplugged memory 3393 */ 3394 if (hotplugged) { 3395 if (dedicated_hp_event_source) { 3396 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3397 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3398 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3399 nr_lmbs, 3400 spapr_drc_index(drc)); 3401 } else { 3402 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3403 nr_lmbs); 3404 } 3405 } 3406 } 3407 3408 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3409 Error **errp) 3410 { 3411 Error *local_err = NULL; 3412 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3413 PCDIMMDevice *dimm = PC_DIMM(dev); 3414 uint64_t size, addr, slot; 3415 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3416 3417 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3418 3419 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3420 if (local_err) { 3421 goto out; 3422 } 3423 3424 if (!is_nvdimm) { 3425 addr = object_property_get_uint(OBJECT(dimm), 3426 PC_DIMM_ADDR_PROP, &local_err); 3427 if (local_err) { 3428 goto out_unplug; 3429 } 3430 spapr_add_lmbs(dev, addr, size, 3431 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3432 &local_err); 3433 } else { 3434 slot = object_property_get_uint(OBJECT(dimm), 3435 PC_DIMM_SLOT_PROP, &local_err); 3436 if (local_err) { 3437 goto out_unplug; 3438 } 3439 spapr_add_nvdimm(dev, slot, &local_err); 3440 } 3441 3442 if (local_err) { 3443 goto out_unplug; 3444 } 3445 3446 return; 3447 3448 out_unplug: 3449 pc_dimm_unplug(dimm, MACHINE(ms)); 3450 out: 3451 error_propagate(errp, local_err); 3452 } 3453 3454 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3455 Error **errp) 3456 { 3457 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3458 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3459 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3460 PCDIMMDevice *dimm = PC_DIMM(dev); 3461 Error *local_err = NULL; 3462 uint64_t size; 3463 Object *memdev; 3464 hwaddr pagesize; 3465 3466 if (!smc->dr_lmb_enabled) { 3467 error_setg(errp, "Memory hotplug not supported for this machine"); 3468 return; 3469 } 3470 3471 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3472 if (local_err) { 3473 error_propagate(errp, local_err); 3474 return; 3475 } 3476 3477 if (is_nvdimm) { 3478 spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, &local_err); 3479 if (local_err) { 3480 error_propagate(errp, local_err); 3481 return; 3482 } 3483 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3484 error_setg(errp, "Hotplugged memory size must be a multiple of " 3485 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3486 return; 3487 } 3488 3489 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3490 &error_abort); 3491 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3492 spapr_check_pagesize(spapr, pagesize, &local_err); 3493 if (local_err) { 3494 error_propagate(errp, local_err); 3495 return; 3496 } 3497 3498 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3499 } 3500 3501 struct SpaprDimmState { 3502 PCDIMMDevice *dimm; 3503 uint32_t nr_lmbs; 3504 QTAILQ_ENTRY(SpaprDimmState) next; 3505 }; 3506 3507 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3508 PCDIMMDevice *dimm) 3509 { 3510 SpaprDimmState *dimm_state = NULL; 3511 3512 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3513 if (dimm_state->dimm == dimm) { 3514 break; 3515 } 3516 } 3517 return dimm_state; 3518 } 3519 3520 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3521 uint32_t nr_lmbs, 3522 PCDIMMDevice *dimm) 3523 { 3524 SpaprDimmState *ds = NULL; 3525 3526 /* 3527 * If this request is for a DIMM whose removal had failed earlier 3528 * (due to guest's refusal to remove the LMBs), we would have this 3529 * dimm already in the pending_dimm_unplugs list. In that 3530 * case don't add again. 3531 */ 3532 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3533 if (!ds) { 3534 ds = g_malloc0(sizeof(SpaprDimmState)); 3535 ds->nr_lmbs = nr_lmbs; 3536 ds->dimm = dimm; 3537 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3538 } 3539 return ds; 3540 } 3541 3542 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3543 SpaprDimmState *dimm_state) 3544 { 3545 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3546 g_free(dimm_state); 3547 } 3548 3549 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3550 PCDIMMDevice *dimm) 3551 { 3552 SpaprDrc *drc; 3553 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3554 &error_abort); 3555 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3556 uint32_t avail_lmbs = 0; 3557 uint64_t addr_start, addr; 3558 int i; 3559 3560 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3561 &error_abort); 3562 3563 addr = addr_start; 3564 for (i = 0; i < nr_lmbs; i++) { 3565 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3566 addr / SPAPR_MEMORY_BLOCK_SIZE); 3567 g_assert(drc); 3568 if (drc->dev) { 3569 avail_lmbs++; 3570 } 3571 addr += SPAPR_MEMORY_BLOCK_SIZE; 3572 } 3573 3574 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3575 } 3576 3577 /* Callback to be called during DRC release. */ 3578 void spapr_lmb_release(DeviceState *dev) 3579 { 3580 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3581 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3582 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3583 3584 /* This information will get lost if a migration occurs 3585 * during the unplug process. In this case recover it. */ 3586 if (ds == NULL) { 3587 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3588 g_assert(ds); 3589 /* The DRC being examined by the caller at least must be counted */ 3590 g_assert(ds->nr_lmbs); 3591 } 3592 3593 if (--ds->nr_lmbs) { 3594 return; 3595 } 3596 3597 /* 3598 * Now that all the LMBs have been removed by the guest, call the 3599 * unplug handler chain. This can never fail. 3600 */ 3601 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3602 object_unparent(OBJECT(dev)); 3603 } 3604 3605 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3606 { 3607 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3608 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3609 3610 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3611 qdev_unrealize(dev); 3612 spapr_pending_dimm_unplugs_remove(spapr, ds); 3613 } 3614 3615 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3616 DeviceState *dev, Error **errp) 3617 { 3618 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3619 Error *local_err = NULL; 3620 PCDIMMDevice *dimm = PC_DIMM(dev); 3621 uint32_t nr_lmbs; 3622 uint64_t size, addr_start, addr; 3623 int i; 3624 SpaprDrc *drc; 3625 3626 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3627 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3628 return; 3629 } 3630 3631 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3632 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3633 3634 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3635 &local_err); 3636 if (local_err) { 3637 error_propagate(errp, local_err); 3638 return; 3639 } 3640 3641 /* 3642 * An existing pending dimm state for this DIMM means that there is an 3643 * unplug operation in progress, waiting for the spapr_lmb_release 3644 * callback to complete the job (BQL can't cover that far). In this case, 3645 * bail out to avoid detaching DRCs that were already released. 3646 */ 3647 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3648 error_setg(errp, "Memory unplug already in progress for device %s", 3649 dev->id); 3650 return; 3651 } 3652 3653 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3654 3655 addr = addr_start; 3656 for (i = 0; i < nr_lmbs; i++) { 3657 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3658 addr / SPAPR_MEMORY_BLOCK_SIZE); 3659 g_assert(drc); 3660 3661 spapr_drc_detach(drc); 3662 addr += SPAPR_MEMORY_BLOCK_SIZE; 3663 } 3664 3665 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3666 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3667 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3668 nr_lmbs, spapr_drc_index(drc)); 3669 } 3670 3671 /* Callback to be called during DRC release. */ 3672 void spapr_core_release(DeviceState *dev) 3673 { 3674 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3675 3676 /* Call the unplug handler chain. This can never fail. */ 3677 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3678 object_unparent(OBJECT(dev)); 3679 } 3680 3681 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3682 { 3683 MachineState *ms = MACHINE(hotplug_dev); 3684 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3685 CPUCore *cc = CPU_CORE(dev); 3686 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3687 3688 if (smc->pre_2_10_has_unused_icps) { 3689 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3690 int i; 3691 3692 for (i = 0; i < cc->nr_threads; i++) { 3693 CPUState *cs = CPU(sc->threads[i]); 3694 3695 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3696 } 3697 } 3698 3699 assert(core_slot); 3700 core_slot->cpu = NULL; 3701 qdev_unrealize(dev); 3702 } 3703 3704 static 3705 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3706 Error **errp) 3707 { 3708 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3709 int index; 3710 SpaprDrc *drc; 3711 CPUCore *cc = CPU_CORE(dev); 3712 3713 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3714 error_setg(errp, "Unable to find CPU core with core-id: %d", 3715 cc->core_id); 3716 return; 3717 } 3718 if (index == 0) { 3719 error_setg(errp, "Boot CPU core may not be unplugged"); 3720 return; 3721 } 3722 3723 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3724 spapr_vcpu_id(spapr, cc->core_id)); 3725 g_assert(drc); 3726 3727 if (!spapr_drc_unplug_requested(drc)) { 3728 spapr_drc_detach(drc); 3729 spapr_hotplug_req_remove_by_index(drc); 3730 } 3731 } 3732 3733 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3734 void *fdt, int *fdt_start_offset, Error **errp) 3735 { 3736 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3737 CPUState *cs = CPU(core->threads[0]); 3738 PowerPCCPU *cpu = POWERPC_CPU(cs); 3739 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3740 int id = spapr_get_vcpu_id(cpu); 3741 char *nodename; 3742 int offset; 3743 3744 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3745 offset = fdt_add_subnode(fdt, 0, nodename); 3746 g_free(nodename); 3747 3748 spapr_dt_cpu(cs, fdt, offset, spapr); 3749 3750 *fdt_start_offset = offset; 3751 return 0; 3752 } 3753 3754 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3755 Error **errp) 3756 { 3757 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3758 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3759 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3760 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3761 CPUCore *cc = CPU_CORE(dev); 3762 CPUState *cs; 3763 SpaprDrc *drc; 3764 Error *local_err = NULL; 3765 CPUArchId *core_slot; 3766 int index; 3767 bool hotplugged = spapr_drc_hotplugged(dev); 3768 int i; 3769 3770 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3771 if (!core_slot) { 3772 error_setg(errp, "Unable to find CPU core with core-id: %d", 3773 cc->core_id); 3774 return; 3775 } 3776 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3777 spapr_vcpu_id(spapr, cc->core_id)); 3778 3779 g_assert(drc || !mc->has_hotpluggable_cpus); 3780 3781 if (drc) { 3782 spapr_drc_attach(drc, dev, &local_err); 3783 if (local_err) { 3784 error_propagate(errp, local_err); 3785 return; 3786 } 3787 3788 if (hotplugged) { 3789 /* 3790 * Send hotplug notification interrupt to the guest only 3791 * in case of hotplugged CPUs. 3792 */ 3793 spapr_hotplug_req_add_by_index(drc); 3794 } else { 3795 spapr_drc_reset(drc); 3796 } 3797 } 3798 3799 core_slot->cpu = OBJECT(dev); 3800 3801 if (smc->pre_2_10_has_unused_icps) { 3802 for (i = 0; i < cc->nr_threads; i++) { 3803 cs = CPU(core->threads[i]); 3804 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3805 } 3806 } 3807 3808 /* 3809 * Set compatibility mode to match the boot CPU, which was either set 3810 * by the machine reset code or by CAS. 3811 */ 3812 if (hotplugged) { 3813 for (i = 0; i < cc->nr_threads; i++) { 3814 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3815 &local_err); 3816 if (local_err) { 3817 error_propagate(errp, local_err); 3818 return; 3819 } 3820 } 3821 } 3822 } 3823 3824 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3825 Error **errp) 3826 { 3827 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3828 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3829 CPUCore *cc = CPU_CORE(dev); 3830 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3831 const char *type = object_get_typename(OBJECT(dev)); 3832 CPUArchId *core_slot; 3833 int index; 3834 unsigned int smp_threads = machine->smp.threads; 3835 3836 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3837 error_setg(errp, "CPU hotplug not supported for this machine"); 3838 return; 3839 } 3840 3841 if (strcmp(base_core_type, type)) { 3842 error_setg(errp, "CPU core type should be %s", base_core_type); 3843 return; 3844 } 3845 3846 if (cc->core_id % smp_threads) { 3847 error_setg(errp, "invalid core id %d", cc->core_id); 3848 return; 3849 } 3850 3851 /* 3852 * In general we should have homogeneous threads-per-core, but old 3853 * (pre hotplug support) machine types allow the last core to have 3854 * reduced threads as a compatibility hack for when we allowed 3855 * total vcpus not a multiple of threads-per-core. 3856 */ 3857 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3858 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 3859 smp_threads); 3860 return; 3861 } 3862 3863 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3864 if (!core_slot) { 3865 error_setg(errp, "core id %d out of range", cc->core_id); 3866 return; 3867 } 3868 3869 if (core_slot->cpu) { 3870 error_setg(errp, "core %d already populated", cc->core_id); 3871 return; 3872 } 3873 3874 numa_cpu_pre_plug(core_slot, dev, errp); 3875 } 3876 3877 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3878 void *fdt, int *fdt_start_offset, Error **errp) 3879 { 3880 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3881 int intc_phandle; 3882 3883 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3884 if (intc_phandle <= 0) { 3885 return -1; 3886 } 3887 3888 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 3889 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3890 return -1; 3891 } 3892 3893 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3894 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3895 3896 return 0; 3897 } 3898 3899 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3900 Error **errp) 3901 { 3902 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3903 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3904 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3905 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3906 3907 if (dev->hotplugged && !smc->dr_phb_enabled) { 3908 error_setg(errp, "PHB hotplug not supported for this machine"); 3909 return; 3910 } 3911 3912 if (sphb->index == (uint32_t)-1) { 3913 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3914 return; 3915 } 3916 3917 /* 3918 * This will check that sphb->index doesn't exceed the maximum number of 3919 * PHBs for the current machine type. 3920 */ 3921 smc->phb_placement(spapr, sphb->index, 3922 &sphb->buid, &sphb->io_win_addr, 3923 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3924 windows_supported, sphb->dma_liobn, 3925 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3926 errp); 3927 } 3928 3929 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3930 Error **errp) 3931 { 3932 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3933 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3934 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3935 SpaprDrc *drc; 3936 bool hotplugged = spapr_drc_hotplugged(dev); 3937 Error *local_err = NULL; 3938 3939 if (!smc->dr_phb_enabled) { 3940 return; 3941 } 3942 3943 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3944 /* hotplug hooks should check it's enabled before getting this far */ 3945 assert(drc); 3946 3947 spapr_drc_attach(drc, dev, &local_err); 3948 if (local_err) { 3949 error_propagate(errp, local_err); 3950 return; 3951 } 3952 3953 if (hotplugged) { 3954 spapr_hotplug_req_add_by_index(drc); 3955 } else { 3956 spapr_drc_reset(drc); 3957 } 3958 } 3959 3960 void spapr_phb_release(DeviceState *dev) 3961 { 3962 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3963 3964 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3965 object_unparent(OBJECT(dev)); 3966 } 3967 3968 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3969 { 3970 qdev_unrealize(dev); 3971 } 3972 3973 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 3974 DeviceState *dev, Error **errp) 3975 { 3976 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3977 SpaprDrc *drc; 3978 3979 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3980 assert(drc); 3981 3982 if (!spapr_drc_unplug_requested(drc)) { 3983 spapr_drc_detach(drc); 3984 spapr_hotplug_req_remove_by_index(drc); 3985 } 3986 } 3987 3988 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3989 Error **errp) 3990 { 3991 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3992 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 3993 3994 if (spapr->tpm_proxy != NULL) { 3995 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 3996 return; 3997 } 3998 3999 spapr->tpm_proxy = tpm_proxy; 4000 } 4001 4002 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4003 { 4004 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4005 4006 qdev_unrealize(dev); 4007 object_unparent(OBJECT(dev)); 4008 spapr->tpm_proxy = NULL; 4009 } 4010 4011 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4012 DeviceState *dev, Error **errp) 4013 { 4014 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4015 spapr_memory_plug(hotplug_dev, dev, errp); 4016 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4017 spapr_core_plug(hotplug_dev, dev, errp); 4018 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4019 spapr_phb_plug(hotplug_dev, dev, errp); 4020 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4021 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 4022 } 4023 } 4024 4025 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4026 DeviceState *dev, Error **errp) 4027 { 4028 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4029 spapr_memory_unplug(hotplug_dev, dev); 4030 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4031 spapr_core_unplug(hotplug_dev, dev); 4032 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4033 spapr_phb_unplug(hotplug_dev, dev); 4034 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4035 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4036 } 4037 } 4038 4039 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4040 DeviceState *dev, Error **errp) 4041 { 4042 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4043 MachineClass *mc = MACHINE_GET_CLASS(sms); 4044 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4045 4046 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4047 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4048 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4049 } else { 4050 /* NOTE: this means there is a window after guest reset, prior to 4051 * CAS negotiation, where unplug requests will fail due to the 4052 * capability not being detected yet. This is a bit different than 4053 * the case with PCI unplug, where the events will be queued and 4054 * eventually handled by the guest after boot 4055 */ 4056 error_setg(errp, "Memory hot unplug not supported for this guest"); 4057 } 4058 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4059 if (!mc->has_hotpluggable_cpus) { 4060 error_setg(errp, "CPU hot unplug not supported on this machine"); 4061 return; 4062 } 4063 spapr_core_unplug_request(hotplug_dev, dev, errp); 4064 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4065 if (!smc->dr_phb_enabled) { 4066 error_setg(errp, "PHB hot unplug not supported on this machine"); 4067 return; 4068 } 4069 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4070 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4071 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4072 } 4073 } 4074 4075 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4076 DeviceState *dev, Error **errp) 4077 { 4078 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4079 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4080 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4081 spapr_core_pre_plug(hotplug_dev, dev, errp); 4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4083 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4084 } 4085 } 4086 4087 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4088 DeviceState *dev) 4089 { 4090 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4091 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4092 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4093 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4094 return HOTPLUG_HANDLER(machine); 4095 } 4096 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4097 PCIDevice *pcidev = PCI_DEVICE(dev); 4098 PCIBus *root = pci_device_root_bus(pcidev); 4099 SpaprPhbState *phb = 4100 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4101 TYPE_SPAPR_PCI_HOST_BRIDGE); 4102 4103 if (phb) { 4104 return HOTPLUG_HANDLER(phb); 4105 } 4106 } 4107 return NULL; 4108 } 4109 4110 static CpuInstanceProperties 4111 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4112 { 4113 CPUArchId *core_slot; 4114 MachineClass *mc = MACHINE_GET_CLASS(machine); 4115 4116 /* make sure possible_cpu are intialized */ 4117 mc->possible_cpu_arch_ids(machine); 4118 /* get CPU core slot containing thread that matches cpu_index */ 4119 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4120 assert(core_slot); 4121 return core_slot->props; 4122 } 4123 4124 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4125 { 4126 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4127 } 4128 4129 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4130 { 4131 int i; 4132 unsigned int smp_threads = machine->smp.threads; 4133 unsigned int smp_cpus = machine->smp.cpus; 4134 const char *core_type; 4135 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4136 MachineClass *mc = MACHINE_GET_CLASS(machine); 4137 4138 if (!mc->has_hotpluggable_cpus) { 4139 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4140 } 4141 if (machine->possible_cpus) { 4142 assert(machine->possible_cpus->len == spapr_max_cores); 4143 return machine->possible_cpus; 4144 } 4145 4146 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4147 if (!core_type) { 4148 error_report("Unable to find sPAPR CPU Core definition"); 4149 exit(1); 4150 } 4151 4152 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4153 sizeof(CPUArchId) * spapr_max_cores); 4154 machine->possible_cpus->len = spapr_max_cores; 4155 for (i = 0; i < machine->possible_cpus->len; i++) { 4156 int core_id = i * smp_threads; 4157 4158 machine->possible_cpus->cpus[i].type = core_type; 4159 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4160 machine->possible_cpus->cpus[i].arch_id = core_id; 4161 machine->possible_cpus->cpus[i].props.has_core_id = true; 4162 machine->possible_cpus->cpus[i].props.core_id = core_id; 4163 } 4164 return machine->possible_cpus; 4165 } 4166 4167 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4168 uint64_t *buid, hwaddr *pio, 4169 hwaddr *mmio32, hwaddr *mmio64, 4170 unsigned n_dma, uint32_t *liobns, 4171 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4172 { 4173 /* 4174 * New-style PHB window placement. 4175 * 4176 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4177 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4178 * windows. 4179 * 4180 * Some guest kernels can't work with MMIO windows above 1<<46 4181 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4182 * 4183 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4184 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4185 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4186 * 1TiB 64-bit MMIO windows for each PHB. 4187 */ 4188 const uint64_t base_buid = 0x800000020000000ULL; 4189 int i; 4190 4191 /* Sanity check natural alignments */ 4192 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4193 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4194 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4195 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4196 /* Sanity check bounds */ 4197 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4198 SPAPR_PCI_MEM32_WIN_SIZE); 4199 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4200 SPAPR_PCI_MEM64_WIN_SIZE); 4201 4202 if (index >= SPAPR_MAX_PHBS) { 4203 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4204 SPAPR_MAX_PHBS - 1); 4205 return; 4206 } 4207 4208 *buid = base_buid + index; 4209 for (i = 0; i < n_dma; ++i) { 4210 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4211 } 4212 4213 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4214 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4215 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4216 4217 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4218 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4219 } 4220 4221 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4222 { 4223 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4224 4225 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4226 } 4227 4228 static void spapr_ics_resend(XICSFabric *dev) 4229 { 4230 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4231 4232 ics_resend(spapr->ics); 4233 } 4234 4235 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4236 { 4237 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4238 4239 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4240 } 4241 4242 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4243 Monitor *mon) 4244 { 4245 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4246 4247 spapr_irq_print_info(spapr, mon); 4248 monitor_printf(mon, "irqchip: %s\n", 4249 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4250 } 4251 4252 /* 4253 * This is a XIVE only operation 4254 */ 4255 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4256 uint8_t nvt_blk, uint32_t nvt_idx, 4257 bool cam_ignore, uint8_t priority, 4258 uint32_t logic_serv, XiveTCTXMatch *match) 4259 { 4260 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4261 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4262 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4263 int count; 4264 4265 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4266 priority, logic_serv, match); 4267 if (count < 0) { 4268 return count; 4269 } 4270 4271 /* 4272 * When we implement the save and restore of the thread interrupt 4273 * contexts in the enter/exit CPU handlers of the machine and the 4274 * escalations in QEMU, we should be able to handle non dispatched 4275 * vCPUs. 4276 * 4277 * Until this is done, the sPAPR machine should find at least one 4278 * matching context always. 4279 */ 4280 if (count == 0) { 4281 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4282 nvt_blk, nvt_idx); 4283 } 4284 4285 return count; 4286 } 4287 4288 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4289 { 4290 return cpu->vcpu_id; 4291 } 4292 4293 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4294 { 4295 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4296 MachineState *ms = MACHINE(spapr); 4297 int vcpu_id; 4298 4299 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4300 4301 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4302 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4303 error_append_hint(errp, "Adjust the number of cpus to %d " 4304 "or try to raise the number of threads per core\n", 4305 vcpu_id * ms->smp.threads / spapr->vsmt); 4306 return; 4307 } 4308 4309 cpu->vcpu_id = vcpu_id; 4310 } 4311 4312 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4313 { 4314 CPUState *cs; 4315 4316 CPU_FOREACH(cs) { 4317 PowerPCCPU *cpu = POWERPC_CPU(cs); 4318 4319 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4320 return cpu; 4321 } 4322 } 4323 4324 return NULL; 4325 } 4326 4327 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4328 { 4329 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4330 4331 /* These are only called by TCG, KVM maintains dispatch state */ 4332 4333 spapr_cpu->prod = false; 4334 if (spapr_cpu->vpa_addr) { 4335 CPUState *cs = CPU(cpu); 4336 uint32_t dispatch; 4337 4338 dispatch = ldl_be_phys(cs->as, 4339 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4340 dispatch++; 4341 if ((dispatch & 1) != 0) { 4342 qemu_log_mask(LOG_GUEST_ERROR, 4343 "VPA: incorrect dispatch counter value for " 4344 "dispatched partition %u, correcting.\n", dispatch); 4345 dispatch++; 4346 } 4347 stl_be_phys(cs->as, 4348 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4349 } 4350 } 4351 4352 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4353 { 4354 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4355 4356 if (spapr_cpu->vpa_addr) { 4357 CPUState *cs = CPU(cpu); 4358 uint32_t dispatch; 4359 4360 dispatch = ldl_be_phys(cs->as, 4361 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4362 dispatch++; 4363 if ((dispatch & 1) != 1) { 4364 qemu_log_mask(LOG_GUEST_ERROR, 4365 "VPA: incorrect dispatch counter value for " 4366 "preempted partition %u, correcting.\n", dispatch); 4367 dispatch++; 4368 } 4369 stl_be_phys(cs->as, 4370 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4371 } 4372 } 4373 4374 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4375 { 4376 MachineClass *mc = MACHINE_CLASS(oc); 4377 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4378 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4379 NMIClass *nc = NMI_CLASS(oc); 4380 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4381 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4382 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4383 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4384 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4385 4386 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4387 mc->ignore_boot_device_suffixes = true; 4388 4389 /* 4390 * We set up the default / latest behaviour here. The class_init 4391 * functions for the specific versioned machine types can override 4392 * these details for backwards compatibility 4393 */ 4394 mc->init = spapr_machine_init; 4395 mc->reset = spapr_machine_reset; 4396 mc->block_default_type = IF_SCSI; 4397 mc->max_cpus = 1024; 4398 mc->no_parallel = 1; 4399 mc->default_boot_order = ""; 4400 mc->default_ram_size = 512 * MiB; 4401 mc->default_ram_id = "ppc_spapr.ram"; 4402 mc->default_display = "std"; 4403 mc->kvm_type = spapr_kvm_type; 4404 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4405 mc->pci_allow_0_address = true; 4406 assert(!mc->get_hotplug_handler); 4407 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4408 hc->pre_plug = spapr_machine_device_pre_plug; 4409 hc->plug = spapr_machine_device_plug; 4410 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4411 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4412 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4413 hc->unplug_request = spapr_machine_device_unplug_request; 4414 hc->unplug = spapr_machine_device_unplug; 4415 4416 smc->dr_lmb_enabled = true; 4417 smc->update_dt_enabled = true; 4418 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4419 mc->has_hotpluggable_cpus = true; 4420 mc->nvdimm_supported = true; 4421 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4422 fwc->get_dev_path = spapr_get_fw_dev_path; 4423 nc->nmi_monitor_handler = spapr_nmi; 4424 smc->phb_placement = spapr_phb_placement; 4425 vhc->hypercall = emulate_spapr_hypercall; 4426 vhc->hpt_mask = spapr_hpt_mask; 4427 vhc->map_hptes = spapr_map_hptes; 4428 vhc->unmap_hptes = spapr_unmap_hptes; 4429 vhc->hpte_set_c = spapr_hpte_set_c; 4430 vhc->hpte_set_r = spapr_hpte_set_r; 4431 vhc->get_pate = spapr_get_pate; 4432 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4433 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4434 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4435 xic->ics_get = spapr_ics_get; 4436 xic->ics_resend = spapr_ics_resend; 4437 xic->icp_get = spapr_icp_get; 4438 ispc->print_info = spapr_pic_print_info; 4439 /* Force NUMA node memory size to be a multiple of 4440 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4441 * in which LMBs are represented and hot-added 4442 */ 4443 mc->numa_mem_align_shift = 28; 4444 mc->auto_enable_numa = true; 4445 4446 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4447 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4448 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4449 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4450 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4451 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4452 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4453 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4454 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4455 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4456 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4457 spapr_caps_add_properties(smc); 4458 smc->irq = &spapr_irq_dual; 4459 smc->dr_phb_enabled = true; 4460 smc->linux_pci_probe = true; 4461 smc->smp_threads_vsmt = true; 4462 smc->nr_xirqs = SPAPR_NR_XIRQS; 4463 xfc->match_nvt = spapr_match_nvt; 4464 } 4465 4466 static const TypeInfo spapr_machine_info = { 4467 .name = TYPE_SPAPR_MACHINE, 4468 .parent = TYPE_MACHINE, 4469 .abstract = true, 4470 .instance_size = sizeof(SpaprMachineState), 4471 .instance_init = spapr_instance_init, 4472 .instance_finalize = spapr_machine_finalizefn, 4473 .class_size = sizeof(SpaprMachineClass), 4474 .class_init = spapr_machine_class_init, 4475 .interfaces = (InterfaceInfo[]) { 4476 { TYPE_FW_PATH_PROVIDER }, 4477 { TYPE_NMI }, 4478 { TYPE_HOTPLUG_HANDLER }, 4479 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4480 { TYPE_XICS_FABRIC }, 4481 { TYPE_INTERRUPT_STATS_PROVIDER }, 4482 { TYPE_XIVE_FABRIC }, 4483 { } 4484 }, 4485 }; 4486 4487 static void spapr_machine_latest_class_options(MachineClass *mc) 4488 { 4489 mc->alias = "pseries"; 4490 mc->is_default = true; 4491 } 4492 4493 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4494 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4495 void *data) \ 4496 { \ 4497 MachineClass *mc = MACHINE_CLASS(oc); \ 4498 spapr_machine_##suffix##_class_options(mc); \ 4499 if (latest) { \ 4500 spapr_machine_latest_class_options(mc); \ 4501 } \ 4502 } \ 4503 static const TypeInfo spapr_machine_##suffix##_info = { \ 4504 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4505 .parent = TYPE_SPAPR_MACHINE, \ 4506 .class_init = spapr_machine_##suffix##_class_init, \ 4507 }; \ 4508 static void spapr_machine_register_##suffix(void) \ 4509 { \ 4510 type_register(&spapr_machine_##suffix##_info); \ 4511 } \ 4512 type_init(spapr_machine_register_##suffix) 4513 4514 /* 4515 * pseries-5.2 4516 */ 4517 static void spapr_machine_5_2_class_options(MachineClass *mc) 4518 { 4519 /* Defaults for the latest behaviour inherited from the base class */ 4520 } 4521 4522 DEFINE_SPAPR_MACHINE(5_2, "5.2", true); 4523 4524 /* 4525 * pseries-5.1 4526 */ 4527 static void spapr_machine_5_1_class_options(MachineClass *mc) 4528 { 4529 spapr_machine_5_2_class_options(mc); 4530 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4531 } 4532 4533 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4534 4535 /* 4536 * pseries-5.0 4537 */ 4538 static void spapr_machine_5_0_class_options(MachineClass *mc) 4539 { 4540 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4541 static GlobalProperty compat[] = { 4542 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4543 }; 4544 4545 spapr_machine_5_1_class_options(mc); 4546 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4547 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4548 mc->numa_mem_supported = true; 4549 smc->pre_5_1_assoc_refpoints = true; 4550 } 4551 4552 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4553 4554 /* 4555 * pseries-4.2 4556 */ 4557 static void spapr_machine_4_2_class_options(MachineClass *mc) 4558 { 4559 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4560 4561 spapr_machine_5_0_class_options(mc); 4562 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4563 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4564 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4565 smc->rma_limit = 16 * GiB; 4566 mc->nvdimm_supported = false; 4567 } 4568 4569 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4570 4571 /* 4572 * pseries-4.1 4573 */ 4574 static void spapr_machine_4_1_class_options(MachineClass *mc) 4575 { 4576 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4577 static GlobalProperty compat[] = { 4578 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4579 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4580 }; 4581 4582 spapr_machine_4_2_class_options(mc); 4583 smc->linux_pci_probe = false; 4584 smc->smp_threads_vsmt = false; 4585 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4586 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4587 } 4588 4589 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4590 4591 /* 4592 * pseries-4.0 4593 */ 4594 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4595 uint64_t *buid, hwaddr *pio, 4596 hwaddr *mmio32, hwaddr *mmio64, 4597 unsigned n_dma, uint32_t *liobns, 4598 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4599 { 4600 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4601 nv2gpa, nv2atsd, errp); 4602 *nv2gpa = 0; 4603 *nv2atsd = 0; 4604 } 4605 4606 static void spapr_machine_4_0_class_options(MachineClass *mc) 4607 { 4608 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4609 4610 spapr_machine_4_1_class_options(mc); 4611 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4612 smc->phb_placement = phb_placement_4_0; 4613 smc->irq = &spapr_irq_xics; 4614 smc->pre_4_1_migration = true; 4615 } 4616 4617 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4618 4619 /* 4620 * pseries-3.1 4621 */ 4622 static void spapr_machine_3_1_class_options(MachineClass *mc) 4623 { 4624 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4625 4626 spapr_machine_4_0_class_options(mc); 4627 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4628 4629 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4630 smc->update_dt_enabled = false; 4631 smc->dr_phb_enabled = false; 4632 smc->broken_host_serial_model = true; 4633 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4634 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4635 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4636 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4637 } 4638 4639 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4640 4641 /* 4642 * pseries-3.0 4643 */ 4644 4645 static void spapr_machine_3_0_class_options(MachineClass *mc) 4646 { 4647 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4648 4649 spapr_machine_3_1_class_options(mc); 4650 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4651 4652 smc->legacy_irq_allocation = true; 4653 smc->nr_xirqs = 0x400; 4654 smc->irq = &spapr_irq_xics_legacy; 4655 } 4656 4657 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4658 4659 /* 4660 * pseries-2.12 4661 */ 4662 static void spapr_machine_2_12_class_options(MachineClass *mc) 4663 { 4664 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4665 static GlobalProperty compat[] = { 4666 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4667 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4668 }; 4669 4670 spapr_machine_3_0_class_options(mc); 4671 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4672 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4673 4674 /* We depend on kvm_enabled() to choose a default value for the 4675 * hpt-max-page-size capability. Of course we can't do it here 4676 * because this is too early and the HW accelerator isn't initialzed 4677 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4678 */ 4679 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4680 } 4681 4682 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4683 4684 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4685 { 4686 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4687 4688 spapr_machine_2_12_class_options(mc); 4689 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4690 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4691 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4692 } 4693 4694 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4695 4696 /* 4697 * pseries-2.11 4698 */ 4699 4700 static void spapr_machine_2_11_class_options(MachineClass *mc) 4701 { 4702 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4703 4704 spapr_machine_2_12_class_options(mc); 4705 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4706 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4707 } 4708 4709 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4710 4711 /* 4712 * pseries-2.10 4713 */ 4714 4715 static void spapr_machine_2_10_class_options(MachineClass *mc) 4716 { 4717 spapr_machine_2_11_class_options(mc); 4718 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4719 } 4720 4721 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4722 4723 /* 4724 * pseries-2.9 4725 */ 4726 4727 static void spapr_machine_2_9_class_options(MachineClass *mc) 4728 { 4729 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4730 static GlobalProperty compat[] = { 4731 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4732 }; 4733 4734 spapr_machine_2_10_class_options(mc); 4735 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4736 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4737 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4738 smc->pre_2_10_has_unused_icps = true; 4739 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4740 } 4741 4742 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4743 4744 /* 4745 * pseries-2.8 4746 */ 4747 4748 static void spapr_machine_2_8_class_options(MachineClass *mc) 4749 { 4750 static GlobalProperty compat[] = { 4751 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4752 }; 4753 4754 spapr_machine_2_9_class_options(mc); 4755 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4756 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4757 mc->numa_mem_align_shift = 23; 4758 } 4759 4760 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4761 4762 /* 4763 * pseries-2.7 4764 */ 4765 4766 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4767 uint64_t *buid, hwaddr *pio, 4768 hwaddr *mmio32, hwaddr *mmio64, 4769 unsigned n_dma, uint32_t *liobns, 4770 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4771 { 4772 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4773 const uint64_t base_buid = 0x800000020000000ULL; 4774 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4775 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4776 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4777 const uint32_t max_index = 255; 4778 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4779 4780 uint64_t ram_top = MACHINE(spapr)->ram_size; 4781 hwaddr phb0_base, phb_base; 4782 int i; 4783 4784 /* Do we have device memory? */ 4785 if (MACHINE(spapr)->maxram_size > ram_top) { 4786 /* Can't just use maxram_size, because there may be an 4787 * alignment gap between normal and device memory regions 4788 */ 4789 ram_top = MACHINE(spapr)->device_memory->base + 4790 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4791 } 4792 4793 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4794 4795 if (index > max_index) { 4796 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4797 max_index); 4798 return; 4799 } 4800 4801 *buid = base_buid + index; 4802 for (i = 0; i < n_dma; ++i) { 4803 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4804 } 4805 4806 phb_base = phb0_base + index * phb_spacing; 4807 *pio = phb_base + pio_offset; 4808 *mmio32 = phb_base + mmio_offset; 4809 /* 4810 * We don't set the 64-bit MMIO window, relying on the PHB's 4811 * fallback behaviour of automatically splitting a large "32-bit" 4812 * window into contiguous 32-bit and 64-bit windows 4813 */ 4814 4815 *nv2gpa = 0; 4816 *nv2atsd = 0; 4817 } 4818 4819 static void spapr_machine_2_7_class_options(MachineClass *mc) 4820 { 4821 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4822 static GlobalProperty compat[] = { 4823 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4824 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4825 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4826 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4827 }; 4828 4829 spapr_machine_2_8_class_options(mc); 4830 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4831 mc->default_machine_opts = "modern-hotplug-events=off"; 4832 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4833 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4834 smc->phb_placement = phb_placement_2_7; 4835 } 4836 4837 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4838 4839 /* 4840 * pseries-2.6 4841 */ 4842 4843 static void spapr_machine_2_6_class_options(MachineClass *mc) 4844 { 4845 static GlobalProperty compat[] = { 4846 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4847 }; 4848 4849 spapr_machine_2_7_class_options(mc); 4850 mc->has_hotpluggable_cpus = false; 4851 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4852 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4853 } 4854 4855 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4856 4857 /* 4858 * pseries-2.5 4859 */ 4860 4861 static void spapr_machine_2_5_class_options(MachineClass *mc) 4862 { 4863 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4864 static GlobalProperty compat[] = { 4865 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4866 }; 4867 4868 spapr_machine_2_6_class_options(mc); 4869 smc->use_ohci_by_default = true; 4870 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4871 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4872 } 4873 4874 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4875 4876 /* 4877 * pseries-2.4 4878 */ 4879 4880 static void spapr_machine_2_4_class_options(MachineClass *mc) 4881 { 4882 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4883 4884 spapr_machine_2_5_class_options(mc); 4885 smc->dr_lmb_enabled = false; 4886 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4887 } 4888 4889 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4890 4891 /* 4892 * pseries-2.3 4893 */ 4894 4895 static void spapr_machine_2_3_class_options(MachineClass *mc) 4896 { 4897 static GlobalProperty compat[] = { 4898 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4899 }; 4900 spapr_machine_2_4_class_options(mc); 4901 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4902 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4903 } 4904 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4905 4906 /* 4907 * pseries-2.2 4908 */ 4909 4910 static void spapr_machine_2_2_class_options(MachineClass *mc) 4911 { 4912 static GlobalProperty compat[] = { 4913 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4914 }; 4915 4916 spapr_machine_2_3_class_options(mc); 4917 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4918 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4919 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4920 } 4921 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4922 4923 /* 4924 * pseries-2.1 4925 */ 4926 4927 static void spapr_machine_2_1_class_options(MachineClass *mc) 4928 { 4929 spapr_machine_2_2_class_options(mc); 4930 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4931 } 4932 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4933 4934 static void spapr_machine_register_types(void) 4935 { 4936 type_register_static(&spapr_machine_info); 4937 } 4938 4939 type_init(spapr_machine_register_types) 4940