xref: /openbmc/qemu/hw/ppc/spapr.c (revision 7eecec7d)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
54 
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
58 
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
65 
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
70 
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79 
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 
85 #include "monitor/monitor.h"
86 
87 #include <libfdt.h>
88 
89 /* SLOF memory layout:
90  *
91  * SLOF raw image loaded at 0, copies its romfs right below the flat
92  * device-tree, then position SLOF itself 31M below that
93  *
94  * So we set FW_OVERHEAD to 40MB which should account for all of that
95  * and more
96  *
97  * We load our kernel at 4M, leaving space for SLOF initial image
98  */
99 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE             0x400000
101 #define FW_FILE_NAME            "slof.bin"
102 #define FW_OVERHEAD             0x2800000
103 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
104 
105 #define MIN_RMA_SLOF            (128 * MiB)
106 
107 #define PHANDLE_INTC            0x00001111
108 
109 /* These two functions implement the VCPU id numbering: one to compute them
110  * all and one to identify thread 0 of a VCORE. Any change to the first one
111  * is likely to have an impact on the second one, so let's keep them close.
112  */
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
114 {
115     MachineState *ms = MACHINE(spapr);
116     unsigned int smp_threads = ms->smp.threads;
117 
118     assert(spapr->vsmt);
119     return
120         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
121 }
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123                                       PowerPCCPU *cpu)
124 {
125     assert(spapr->vsmt);
126     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
127 }
128 
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 {
131     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132      * and newer QEMUs don't even have them. In both cases, we don't want
133      * to send anything on the wire.
134      */
135     return false;
136 }
137 
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139     .name = "icp/server",
140     .version_id = 1,
141     .minimum_version_id = 1,
142     .needed = pre_2_10_vmstate_dummy_icp_needed,
143     .fields = (VMStateField[]) {
144         VMSTATE_UNUSED(4), /* uint32_t xirr */
145         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146         VMSTATE_UNUSED(1), /* uint8_t mfrr */
147         VMSTATE_END_OF_LIST()
148     },
149 };
150 
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 {
153     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154                      (void *)(uintptr_t) i);
155 }
156 
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 {
159     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160                        (void *)(uintptr_t) i);
161 }
162 
163 int spapr_max_server_number(SpaprMachineState *spapr)
164 {
165     MachineState *ms = MACHINE(spapr);
166 
167     assert(spapr->vsmt);
168     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
169 }
170 
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172                                   int smt_threads)
173 {
174     int i, ret = 0;
175     uint32_t servers_prop[smt_threads];
176     uint32_t gservers_prop[smt_threads * 2];
177     int index = spapr_get_vcpu_id(cpu);
178 
179     if (cpu->compat_pvr) {
180         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181         if (ret < 0) {
182             return ret;
183         }
184     }
185 
186     /* Build interrupt servers and gservers properties */
187     for (i = 0; i < smt_threads; i++) {
188         servers_prop[i] = cpu_to_be32(index + i);
189         /* Hack, direct the group queues back to cpu 0 */
190         gservers_prop[i*2] = cpu_to_be32(index + i);
191         gservers_prop[i*2 + 1] = 0;
192     }
193     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194                       servers_prop, sizeof(servers_prop));
195     if (ret < 0) {
196         return ret;
197     }
198     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199                       gservers_prop, sizeof(gservers_prop));
200 
201     return ret;
202 }
203 
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
205 {
206     int index = spapr_get_vcpu_id(cpu);
207     uint32_t associativity[] = {cpu_to_be32(0x5),
208                                 cpu_to_be32(0x0),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(0x0),
211                                 cpu_to_be32(cpu->node_id),
212                                 cpu_to_be32(index)};
213 
214     /* Advertise NUMA via ibm,associativity */
215     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216                           sizeof(associativity));
217 }
218 
219 static void spapr_dt_pa_features(SpaprMachineState *spapr,
220                                  PowerPCCPU *cpu,
221                                  void *fdt, int offset)
222 {
223     uint8_t pa_features_206[] = { 6, 0,
224         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225     uint8_t pa_features_207[] = { 24, 0,
226         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230     uint8_t pa_features_300[] = { 66, 0,
231         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
234         /* 6: DS207 */
235         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
236         /* 16: Vector */
237         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246         /* 42: PM, 44: PC RA, 46: SC vec'd */
247         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248         /* 48: SIMD, 50: QP BFP, 52: String */
249         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250         /* 54: DecFP, 56: DecI, 58: SHA */
251         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252         /* 60: NM atomic, 62: RNG */
253         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
254     };
255     uint8_t *pa_features = NULL;
256     size_t pa_size;
257 
258     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
259         pa_features = pa_features_206;
260         pa_size = sizeof(pa_features_206);
261     }
262     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
263         pa_features = pa_features_207;
264         pa_size = sizeof(pa_features_207);
265     }
266     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
267         pa_features = pa_features_300;
268         pa_size = sizeof(pa_features_300);
269     }
270     if (!pa_features) {
271         return;
272     }
273 
274     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
275         /*
276          * Note: we keep CI large pages off by default because a 64K capable
277          * guest provisioned with large pages might otherwise try to map a qemu
278          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279          * even if that qemu runs on a 4k host.
280          * We dd this bit back here if we are confident this is not an issue
281          */
282         pa_features[3] |= 0x20;
283     }
284     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
285         pa_features[24] |= 0x80;    /* Transactional memory support */
286     }
287     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
288         /* Workaround for broken kernels that attempt (guest) radix
289          * mode when they can't handle it, if they see the radix bit set
290          * in pa-features. So hide it from them. */
291         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
292     }
293 
294     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
295 }
296 
297 static hwaddr spapr_node0_size(MachineState *machine)
298 {
299     if (machine->numa_state->num_nodes) {
300         int i;
301         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
302             if (machine->numa_state->nodes[i].node_mem) {
303                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
304                            machine->ram_size);
305             }
306         }
307     }
308     return machine->ram_size;
309 }
310 
311 static void add_str(GString *s, const gchar *s1)
312 {
313     g_string_append_len(s, s1, strlen(s1) + 1);
314 }
315 
316 static int spapr_dt_memory_node(void *fdt, int nodeid, hwaddr start,
317                                 hwaddr size)
318 {
319     uint32_t associativity[] = {
320         cpu_to_be32(0x4), /* length */
321         cpu_to_be32(0x0), cpu_to_be32(0x0),
322         cpu_to_be32(0x0), cpu_to_be32(nodeid)
323     };
324     char mem_name[32];
325     uint64_t mem_reg_property[2];
326     int off;
327 
328     mem_reg_property[0] = cpu_to_be64(start);
329     mem_reg_property[1] = cpu_to_be64(size);
330 
331     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
332     off = fdt_add_subnode(fdt, 0, mem_name);
333     _FDT(off);
334     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
335     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
336                       sizeof(mem_reg_property))));
337     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
338                       sizeof(associativity))));
339     return off;
340 }
341 
342 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
343 {
344     MemoryDeviceInfoList *info;
345 
346     for (info = list; info; info = info->next) {
347         MemoryDeviceInfo *value = info->value;
348 
349         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
350             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
351 
352             if (addr >= pcdimm_info->addr &&
353                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
354                 return pcdimm_info->node;
355             }
356         }
357     }
358 
359     return -1;
360 }
361 
362 struct sPAPRDrconfCellV2 {
363      uint32_t seq_lmbs;
364      uint64_t base_addr;
365      uint32_t drc_index;
366      uint32_t aa_index;
367      uint32_t flags;
368 } QEMU_PACKED;
369 
370 typedef struct DrconfCellQueue {
371     struct sPAPRDrconfCellV2 cell;
372     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
373 } DrconfCellQueue;
374 
375 static DrconfCellQueue *
376 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
377                       uint32_t drc_index, uint32_t aa_index,
378                       uint32_t flags)
379 {
380     DrconfCellQueue *elem;
381 
382     elem = g_malloc0(sizeof(*elem));
383     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
384     elem->cell.base_addr = cpu_to_be64(base_addr);
385     elem->cell.drc_index = cpu_to_be32(drc_index);
386     elem->cell.aa_index = cpu_to_be32(aa_index);
387     elem->cell.flags = cpu_to_be32(flags);
388 
389     return elem;
390 }
391 
392 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
393                                       int offset, MemoryDeviceInfoList *dimms)
394 {
395     MachineState *machine = MACHINE(spapr);
396     uint8_t *int_buf, *cur_index;
397     int ret;
398     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
399     uint64_t addr, cur_addr, size;
400     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
401     uint64_t mem_end = machine->device_memory->base +
402                        memory_region_size(&machine->device_memory->mr);
403     uint32_t node, buf_len, nr_entries = 0;
404     SpaprDrc *drc;
405     DrconfCellQueue *elem, *next;
406     MemoryDeviceInfoList *info;
407     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
408         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
409 
410     /* Entry to cover RAM and the gap area */
411     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
412                                  SPAPR_LMB_FLAGS_RESERVED |
413                                  SPAPR_LMB_FLAGS_DRC_INVALID);
414     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
415     nr_entries++;
416 
417     cur_addr = machine->device_memory->base;
418     for (info = dimms; info; info = info->next) {
419         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
420 
421         addr = di->addr;
422         size = di->size;
423         node = di->node;
424 
425         /*
426          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
427          * area is marked hotpluggable in the next iteration for the bigger
428          * chunk including the NVDIMM occupied area.
429          */
430         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
431             continue;
432 
433         /* Entry for hot-pluggable area */
434         if (cur_addr < addr) {
435             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
436             g_assert(drc);
437             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
438                                          cur_addr, spapr_drc_index(drc), -1, 0);
439             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
440             nr_entries++;
441         }
442 
443         /* Entry for DIMM */
444         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
445         g_assert(drc);
446         elem = spapr_get_drconf_cell(size / lmb_size, addr,
447                                      spapr_drc_index(drc), node,
448                                      SPAPR_LMB_FLAGS_ASSIGNED);
449         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
450         nr_entries++;
451         cur_addr = addr + size;
452     }
453 
454     /* Entry for remaining hotpluggable area */
455     if (cur_addr < mem_end) {
456         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
457         g_assert(drc);
458         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
459                                      cur_addr, spapr_drc_index(drc), -1, 0);
460         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
461         nr_entries++;
462     }
463 
464     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
465     int_buf = cur_index = g_malloc0(buf_len);
466     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
467     cur_index += sizeof(nr_entries);
468 
469     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
470         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
471         cur_index += sizeof(elem->cell);
472         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
473         g_free(elem);
474     }
475 
476     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
477     g_free(int_buf);
478     if (ret < 0) {
479         return -1;
480     }
481     return 0;
482 }
483 
484 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
485                                    int offset, MemoryDeviceInfoList *dimms)
486 {
487     MachineState *machine = MACHINE(spapr);
488     int i, ret;
489     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
490     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
491     uint32_t nr_lmbs = (machine->device_memory->base +
492                        memory_region_size(&machine->device_memory->mr)) /
493                        lmb_size;
494     uint32_t *int_buf, *cur_index, buf_len;
495 
496     /*
497      * Allocate enough buffer size to fit in ibm,dynamic-memory
498      */
499     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
500     cur_index = int_buf = g_malloc0(buf_len);
501     int_buf[0] = cpu_to_be32(nr_lmbs);
502     cur_index++;
503     for (i = 0; i < nr_lmbs; i++) {
504         uint64_t addr = i * lmb_size;
505         uint32_t *dynamic_memory = cur_index;
506 
507         if (i >= device_lmb_start) {
508             SpaprDrc *drc;
509 
510             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
511             g_assert(drc);
512 
513             dynamic_memory[0] = cpu_to_be32(addr >> 32);
514             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
515             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
516             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
517             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
518             if (memory_region_present(get_system_memory(), addr)) {
519                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
520             } else {
521                 dynamic_memory[5] = cpu_to_be32(0);
522             }
523         } else {
524             /*
525              * LMB information for RMA, boot time RAM and gap b/n RAM and
526              * device memory region -- all these are marked as reserved
527              * and as having no valid DRC.
528              */
529             dynamic_memory[0] = cpu_to_be32(addr >> 32);
530             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
531             dynamic_memory[2] = cpu_to_be32(0);
532             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
533             dynamic_memory[4] = cpu_to_be32(-1);
534             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
535                                             SPAPR_LMB_FLAGS_DRC_INVALID);
536         }
537 
538         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
539     }
540     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
541     g_free(int_buf);
542     if (ret < 0) {
543         return -1;
544     }
545     return 0;
546 }
547 
548 /*
549  * Adds ibm,dynamic-reconfiguration-memory node.
550  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
551  * of this device tree node.
552  */
553 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
554                                                    void *fdt)
555 {
556     MachineState *machine = MACHINE(spapr);
557     int nb_numa_nodes = machine->numa_state->num_nodes;
558     int ret, i, offset;
559     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
560     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
561     uint32_t *int_buf, *cur_index, buf_len;
562     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
563     MemoryDeviceInfoList *dimms = NULL;
564 
565     /*
566      * Don't create the node if there is no device memory
567      */
568     if (machine->ram_size == machine->maxram_size) {
569         return 0;
570     }
571 
572     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
573 
574     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
575                     sizeof(prop_lmb_size));
576     if (ret < 0) {
577         return ret;
578     }
579 
580     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
581     if (ret < 0) {
582         return ret;
583     }
584 
585     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
586     if (ret < 0) {
587         return ret;
588     }
589 
590     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
591     dimms = qmp_memory_device_list();
592     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
593         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
594     } else {
595         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
596     }
597     qapi_free_MemoryDeviceInfoList(dimms);
598 
599     if (ret < 0) {
600         return ret;
601     }
602 
603     /* ibm,associativity-lookup-arrays */
604     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
605     cur_index = int_buf = g_malloc0(buf_len);
606     int_buf[0] = cpu_to_be32(nr_nodes);
607     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
608     cur_index += 2;
609     for (i = 0; i < nr_nodes; i++) {
610         uint32_t associativity[] = {
611             cpu_to_be32(0x0),
612             cpu_to_be32(0x0),
613             cpu_to_be32(0x0),
614             cpu_to_be32(i)
615         };
616         memcpy(cur_index, associativity, sizeof(associativity));
617         cur_index += 4;
618     }
619     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
620             (cur_index - int_buf) * sizeof(uint32_t));
621     g_free(int_buf);
622 
623     return ret;
624 }
625 
626 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
627 {
628     MachineState *machine = MACHINE(spapr);
629     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
630     hwaddr mem_start, node_size;
631     int i, nb_nodes = machine->numa_state->num_nodes;
632     NodeInfo *nodes = machine->numa_state->nodes;
633 
634     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
635         if (!nodes[i].node_mem) {
636             continue;
637         }
638         if (mem_start >= machine->ram_size) {
639             node_size = 0;
640         } else {
641             node_size = nodes[i].node_mem;
642             if (node_size > machine->ram_size - mem_start) {
643                 node_size = machine->ram_size - mem_start;
644             }
645         }
646         if (!mem_start) {
647             /* spapr_machine_init() checks for rma_size <= node0_size
648              * already */
649             spapr_dt_memory_node(fdt, i, 0, spapr->rma_size);
650             mem_start += spapr->rma_size;
651             node_size -= spapr->rma_size;
652         }
653         for ( ; node_size; ) {
654             hwaddr sizetmp = pow2floor(node_size);
655 
656             /* mem_start != 0 here */
657             if (ctzl(mem_start) < ctzl(sizetmp)) {
658                 sizetmp = 1ULL << ctzl(mem_start);
659             }
660 
661             spapr_dt_memory_node(fdt, i, mem_start, sizetmp);
662             node_size -= sizetmp;
663             mem_start += sizetmp;
664         }
665     }
666 
667     /* Generate ibm,dynamic-reconfiguration-memory node if required */
668     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
669         int ret;
670 
671         g_assert(smc->dr_lmb_enabled);
672         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
673         if (ret) {
674             return ret;
675         }
676     }
677 
678     return 0;
679 }
680 
681 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
682                          SpaprMachineState *spapr)
683 {
684     MachineState *ms = MACHINE(spapr);
685     PowerPCCPU *cpu = POWERPC_CPU(cs);
686     CPUPPCState *env = &cpu->env;
687     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
688     int index = spapr_get_vcpu_id(cpu);
689     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
690                        0xffffffff, 0xffffffff};
691     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
692         : SPAPR_TIMEBASE_FREQ;
693     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
694     uint32_t page_sizes_prop[64];
695     size_t page_sizes_prop_size;
696     unsigned int smp_threads = ms->smp.threads;
697     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
698     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
699     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
700     SpaprDrc *drc;
701     int drc_index;
702     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
703     int i;
704 
705     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
706     if (drc) {
707         drc_index = spapr_drc_index(drc);
708         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
709     }
710 
711     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
712     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
713 
714     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
715     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
716                            env->dcache_line_size)));
717     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
718                            env->dcache_line_size)));
719     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
720                            env->icache_line_size)));
721     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
722                            env->icache_line_size)));
723 
724     if (pcc->l1_dcache_size) {
725         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
726                                pcc->l1_dcache_size)));
727     } else {
728         warn_report("Unknown L1 dcache size for cpu");
729     }
730     if (pcc->l1_icache_size) {
731         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
732                                pcc->l1_icache_size)));
733     } else {
734         warn_report("Unknown L1 icache size for cpu");
735     }
736 
737     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
738     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
739     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
740     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
741     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
742     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
743 
744     if (env->spr_cb[SPR_PURR].oea_read) {
745         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
746     }
747     if (env->spr_cb[SPR_SPURR].oea_read) {
748         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
749     }
750 
751     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
752         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
753                           segs, sizeof(segs))));
754     }
755 
756     /* Advertise VSX (vector extensions) if available
757      *   1               == VMX / Altivec available
758      *   2               == VSX available
759      *
760      * Only CPUs for which we create core types in spapr_cpu_core.c
761      * are possible, and all of those have VMX */
762     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
763         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
764     } else {
765         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
766     }
767 
768     /* Advertise DFP (Decimal Floating Point) if available
769      *   0 / no property == no DFP
770      *   1               == DFP available */
771     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
772         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
773     }
774 
775     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
776                                                       sizeof(page_sizes_prop));
777     if (page_sizes_prop_size) {
778         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
779                           page_sizes_prop, page_sizes_prop_size)));
780     }
781 
782     spapr_dt_pa_features(spapr, cpu, fdt, offset);
783 
784     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
785                            cs->cpu_index / vcpus_per_socket)));
786 
787     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
788                       pft_size_prop, sizeof(pft_size_prop))));
789 
790     if (ms->numa_state->num_nodes > 1) {
791         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
792     }
793 
794     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
795 
796     if (pcc->radix_page_info) {
797         for (i = 0; i < pcc->radix_page_info->count; i++) {
798             radix_AP_encodings[i] =
799                 cpu_to_be32(pcc->radix_page_info->entries[i]);
800         }
801         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
802                           radix_AP_encodings,
803                           pcc->radix_page_info->count *
804                           sizeof(radix_AP_encodings[0]))));
805     }
806 
807     /*
808      * We set this property to let the guest know that it can use the large
809      * decrementer and its width in bits.
810      */
811     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
812         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
813                               pcc->lrg_decr_bits)));
814 }
815 
816 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
817 {
818     CPUState **rev;
819     CPUState *cs;
820     int n_cpus;
821     int cpus_offset;
822     char *nodename;
823     int i;
824 
825     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
826     _FDT(cpus_offset);
827     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
828     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
829 
830     /*
831      * We walk the CPUs in reverse order to ensure that CPU DT nodes
832      * created by fdt_add_subnode() end up in the right order in FDT
833      * for the guest kernel the enumerate the CPUs correctly.
834      *
835      * The CPU list cannot be traversed in reverse order, so we need
836      * to do extra work.
837      */
838     n_cpus = 0;
839     rev = NULL;
840     CPU_FOREACH(cs) {
841         rev = g_renew(CPUState *, rev, n_cpus + 1);
842         rev[n_cpus++] = cs;
843     }
844 
845     for (i = n_cpus - 1; i >= 0; i--) {
846         CPUState *cs = rev[i];
847         PowerPCCPU *cpu = POWERPC_CPU(cs);
848         int index = spapr_get_vcpu_id(cpu);
849         DeviceClass *dc = DEVICE_GET_CLASS(cs);
850         int offset;
851 
852         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
853             continue;
854         }
855 
856         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
857         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
858         g_free(nodename);
859         _FDT(offset);
860         spapr_dt_cpu(cs, fdt, offset, spapr);
861     }
862 
863     g_free(rev);
864 }
865 
866 static int spapr_dt_rng(void *fdt)
867 {
868     int node;
869     int ret;
870 
871     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
872     if (node <= 0) {
873         return -1;
874     }
875     ret = fdt_setprop_string(fdt, node, "device_type",
876                              "ibm,platform-facilities");
877     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
878     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
879 
880     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
881     if (node <= 0) {
882         return -1;
883     }
884     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
885 
886     return ret ? -1 : 0;
887 }
888 
889 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
890 {
891     MachineState *ms = MACHINE(spapr);
892     int rtas;
893     GString *hypertas = g_string_sized_new(256);
894     GString *qemu_hypertas = g_string_sized_new(256);
895     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
896     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
897         memory_region_size(&MACHINE(spapr)->device_memory->mr);
898     uint32_t lrdr_capacity[] = {
899         cpu_to_be32(max_device_addr >> 32),
900         cpu_to_be32(max_device_addr & 0xffffffff),
901         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
902         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
903     };
904     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
905     uint32_t maxdomains[] = {
906         cpu_to_be32(4),
907         maxdomain,
908         maxdomain,
909         maxdomain,
910         cpu_to_be32(spapr->gpu_numa_id),
911     };
912 
913     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
914 
915     /* hypertas */
916     add_str(hypertas, "hcall-pft");
917     add_str(hypertas, "hcall-term");
918     add_str(hypertas, "hcall-dabr");
919     add_str(hypertas, "hcall-interrupt");
920     add_str(hypertas, "hcall-tce");
921     add_str(hypertas, "hcall-vio");
922     add_str(hypertas, "hcall-splpar");
923     add_str(hypertas, "hcall-join");
924     add_str(hypertas, "hcall-bulk");
925     add_str(hypertas, "hcall-set-mode");
926     add_str(hypertas, "hcall-sprg0");
927     add_str(hypertas, "hcall-copy");
928     add_str(hypertas, "hcall-debug");
929     add_str(hypertas, "hcall-vphn");
930     add_str(qemu_hypertas, "hcall-memop1");
931 
932     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
933         add_str(hypertas, "hcall-multi-tce");
934     }
935 
936     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
937         add_str(hypertas, "hcall-hpt-resize");
938     }
939 
940     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
941                      hypertas->str, hypertas->len));
942     g_string_free(hypertas, TRUE);
943     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
944                      qemu_hypertas->str, qemu_hypertas->len));
945     g_string_free(qemu_hypertas, TRUE);
946 
947     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
948                      refpoints, sizeof(refpoints)));
949 
950     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
951                      maxdomains, sizeof(maxdomains)));
952 
953     /*
954      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
955      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
956      *
957      * The system reset requirements are driven by existing Linux and PowerVM
958      * implementation which (contrary to PAPR) saves r3 in the error log
959      * structure like machine check, so Linux expects to find the saved r3
960      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
961      * does not look at the error value).
962      *
963      * System reset interrupts are not subject to interlock like machine
964      * check, so this memory area could be corrupted if the sreset is
965      * interrupted by a machine check (or vice versa) if it was shared. To
966      * prevent this, system reset uses per-CPU areas for the sreset save
967      * area. A system reset that interrupts a system reset handler could
968      * still overwrite this area, but Linux doesn't try to recover in that
969      * case anyway.
970      *
971      * The extra 8 bytes is required because Linux's FWNMI error log check
972      * is off-by-one.
973      */
974     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
975 			  ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
976     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
977                           RTAS_ERROR_LOG_MAX));
978     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
979                           RTAS_EVENT_SCAN_RATE));
980 
981     g_assert(msi_nonbroken);
982     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
983 
984     /*
985      * According to PAPR, rtas ibm,os-term does not guarantee a return
986      * back to the guest cpu.
987      *
988      * While an additional ibm,extended-os-term property indicates
989      * that rtas call return will always occur. Set this property.
990      */
991     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
992 
993     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
994                      lrdr_capacity, sizeof(lrdr_capacity)));
995 
996     spapr_dt_rtas_tokens(fdt, rtas);
997 }
998 
999 /*
1000  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1001  * and the XIVE features that the guest may request and thus the valid
1002  * values for bytes 23..26 of option vector 5:
1003  */
1004 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1005                                           int chosen)
1006 {
1007     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1008 
1009     char val[2 * 4] = {
1010         23, 0x00, /* XICS / XIVE mode */
1011         24, 0x00, /* Hash/Radix, filled in below. */
1012         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1013         26, 0x40, /* Radix options: GTSE == yes. */
1014     };
1015 
1016     if (spapr->irq->xics && spapr->irq->xive) {
1017         val[1] = SPAPR_OV5_XIVE_BOTH;
1018     } else if (spapr->irq->xive) {
1019         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1020     } else {
1021         assert(spapr->irq->xics);
1022         val[1] = SPAPR_OV5_XIVE_LEGACY;
1023     }
1024 
1025     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1026                           first_ppc_cpu->compat_pvr)) {
1027         /*
1028          * If we're in a pre POWER9 compat mode then the guest should
1029          * do hash and use the legacy interrupt mode
1030          */
1031         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1032         val[3] = 0x00; /* Hash */
1033     } else if (kvm_enabled()) {
1034         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1035             val[3] = 0x80; /* OV5_MMU_BOTH */
1036         } else if (kvmppc_has_cap_mmu_radix()) {
1037             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1038         } else {
1039             val[3] = 0x00; /* Hash */
1040         }
1041     } else {
1042         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1043         val[3] = 0xC0;
1044     }
1045     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1046                      val, sizeof(val)));
1047 }
1048 
1049 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1050 {
1051     MachineState *machine = MACHINE(spapr);
1052     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1053     int chosen;
1054 
1055     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1056 
1057     if (reset) {
1058         const char *boot_device = machine->boot_order;
1059         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1060         size_t cb = 0;
1061         char *bootlist = get_boot_devices_list(&cb);
1062 
1063         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1064             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1065                                     machine->kernel_cmdline));
1066         }
1067 
1068         if (spapr->initrd_size) {
1069             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1070                                   spapr->initrd_base));
1071             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1072                                   spapr->initrd_base + spapr->initrd_size));
1073         }
1074 
1075         if (spapr->kernel_size) {
1076             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1077                                   cpu_to_be64(spapr->kernel_size) };
1078 
1079             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1080                          &kprop, sizeof(kprop)));
1081             if (spapr->kernel_le) {
1082                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1083             }
1084         }
1085         if (boot_menu) {
1086             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1087         }
1088         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1089         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1090         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1091 
1092         if (cb && bootlist) {
1093             int i;
1094 
1095             for (i = 0; i < cb; i++) {
1096                 if (bootlist[i] == '\n') {
1097                     bootlist[i] = ' ';
1098                 }
1099             }
1100             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1101         }
1102 
1103         if (boot_device && strlen(boot_device)) {
1104             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1105         }
1106 
1107         if (!spapr->has_graphics && stdout_path) {
1108             /*
1109              * "linux,stdout-path" and "stdout" properties are
1110              * deprecated by linux kernel. New platforms should only
1111              * use the "stdout-path" property. Set the new property
1112              * and continue using older property to remain compatible
1113              * with the existing firmware.
1114              */
1115             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1116             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1117         }
1118 
1119         /*
1120          * We can deal with BAR reallocation just fine, advertise it
1121          * to the guest
1122          */
1123         if (smc->linux_pci_probe) {
1124             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1125         }
1126 
1127         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1128 
1129         g_free(stdout_path);
1130         g_free(bootlist);
1131     }
1132 
1133     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1134 }
1135 
1136 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1137 {
1138     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1139      * KVM to work under pHyp with some guest co-operation */
1140     int hypervisor;
1141     uint8_t hypercall[16];
1142 
1143     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1144     /* indicate KVM hypercall interface */
1145     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1146     if (kvmppc_has_cap_fixup_hcalls()) {
1147         /*
1148          * Older KVM versions with older guest kernels were broken
1149          * with the magic page, don't allow the guest to map it.
1150          */
1151         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1152                                   sizeof(hypercall))) {
1153             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1154                              hypercall, sizeof(hypercall)));
1155         }
1156     }
1157 }
1158 
1159 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1160 {
1161     MachineState *machine = MACHINE(spapr);
1162     MachineClass *mc = MACHINE_GET_CLASS(machine);
1163     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1164     int ret;
1165     void *fdt;
1166     SpaprPhbState *phb;
1167     char *buf;
1168 
1169     fdt = g_malloc0(space);
1170     _FDT((fdt_create_empty_tree(fdt, space)));
1171 
1172     /* Root node */
1173     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1174     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1175     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1176 
1177     /* Guest UUID & Name*/
1178     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1179     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1180     if (qemu_uuid_set) {
1181         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1182     }
1183     g_free(buf);
1184 
1185     if (qemu_get_vm_name()) {
1186         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1187                                 qemu_get_vm_name()));
1188     }
1189 
1190     /* Host Model & Serial Number */
1191     if (spapr->host_model) {
1192         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1193     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1194         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1195         g_free(buf);
1196     }
1197 
1198     if (spapr->host_serial) {
1199         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1200     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1201         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1202         g_free(buf);
1203     }
1204 
1205     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1206     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1207 
1208     /* /interrupt controller */
1209     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1210 
1211     ret = spapr_dt_memory(spapr, fdt);
1212     if (ret < 0) {
1213         error_report("couldn't setup memory nodes in fdt");
1214         exit(1);
1215     }
1216 
1217     /* /vdevice */
1218     spapr_dt_vdevice(spapr->vio_bus, fdt);
1219 
1220     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1221         ret = spapr_dt_rng(fdt);
1222         if (ret < 0) {
1223             error_report("could not set up rng device in the fdt");
1224             exit(1);
1225         }
1226     }
1227 
1228     QLIST_FOREACH(phb, &spapr->phbs, list) {
1229         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1230         if (ret < 0) {
1231             error_report("couldn't setup PCI devices in fdt");
1232             exit(1);
1233         }
1234     }
1235 
1236     spapr_dt_cpus(fdt, spapr);
1237 
1238     if (smc->dr_lmb_enabled) {
1239         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1240     }
1241 
1242     if (mc->has_hotpluggable_cpus) {
1243         int offset = fdt_path_offset(fdt, "/cpus");
1244         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1245         if (ret < 0) {
1246             error_report("Couldn't set up CPU DR device tree properties");
1247             exit(1);
1248         }
1249     }
1250 
1251     /* /event-sources */
1252     spapr_dt_events(spapr, fdt);
1253 
1254     /* /rtas */
1255     spapr_dt_rtas(spapr, fdt);
1256 
1257     /* /chosen */
1258     spapr_dt_chosen(spapr, fdt, reset);
1259 
1260     /* /hypervisor */
1261     if (kvm_enabled()) {
1262         spapr_dt_hypervisor(spapr, fdt);
1263     }
1264 
1265     /* Build memory reserve map */
1266     if (reset) {
1267         if (spapr->kernel_size) {
1268             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1269                                   spapr->kernel_size)));
1270         }
1271         if (spapr->initrd_size) {
1272             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1273                                   spapr->initrd_size)));
1274         }
1275     }
1276 
1277     if (smc->dr_phb_enabled) {
1278         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1279         if (ret < 0) {
1280             error_report("Couldn't set up PHB DR device tree properties");
1281             exit(1);
1282         }
1283     }
1284 
1285     /* NVDIMM devices */
1286     if (mc->nvdimm_supported) {
1287         spapr_dt_persistent_memory(fdt);
1288     }
1289 
1290     return fdt;
1291 }
1292 
1293 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1294 {
1295     SpaprMachineState *spapr = opaque;
1296 
1297     return (addr & 0x0fffffff) + spapr->kernel_addr;
1298 }
1299 
1300 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1301                                     PowerPCCPU *cpu)
1302 {
1303     CPUPPCState *env = &cpu->env;
1304 
1305     /* The TCG path should also be holding the BQL at this point */
1306     g_assert(qemu_mutex_iothread_locked());
1307 
1308     if (msr_pr) {
1309         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1310         env->gpr[3] = H_PRIVILEGE;
1311     } else {
1312         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1313     }
1314 }
1315 
1316 struct LPCRSyncState {
1317     target_ulong value;
1318     target_ulong mask;
1319 };
1320 
1321 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1322 {
1323     struct LPCRSyncState *s = arg.host_ptr;
1324     PowerPCCPU *cpu = POWERPC_CPU(cs);
1325     CPUPPCState *env = &cpu->env;
1326     target_ulong lpcr;
1327 
1328     cpu_synchronize_state(cs);
1329     lpcr = env->spr[SPR_LPCR];
1330     lpcr &= ~s->mask;
1331     lpcr |= s->value;
1332     ppc_store_lpcr(cpu, lpcr);
1333 }
1334 
1335 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1336 {
1337     CPUState *cs;
1338     struct LPCRSyncState s = {
1339         .value = value,
1340         .mask = mask
1341     };
1342     CPU_FOREACH(cs) {
1343         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1344     }
1345 }
1346 
1347 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1348 {
1349     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1350 
1351     /* Copy PATE1:GR into PATE0:HR */
1352     entry->dw0 = spapr->patb_entry & PATE0_HR;
1353     entry->dw1 = spapr->patb_entry;
1354 }
1355 
1356 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1357 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1358 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1359 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1360 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1361 
1362 /*
1363  * Get the fd to access the kernel htab, re-opening it if necessary
1364  */
1365 static int get_htab_fd(SpaprMachineState *spapr)
1366 {
1367     Error *local_err = NULL;
1368 
1369     if (spapr->htab_fd >= 0) {
1370         return spapr->htab_fd;
1371     }
1372 
1373     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1374     if (spapr->htab_fd < 0) {
1375         error_report_err(local_err);
1376     }
1377 
1378     return spapr->htab_fd;
1379 }
1380 
1381 void close_htab_fd(SpaprMachineState *spapr)
1382 {
1383     if (spapr->htab_fd >= 0) {
1384         close(spapr->htab_fd);
1385     }
1386     spapr->htab_fd = -1;
1387 }
1388 
1389 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1390 {
1391     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1392 
1393     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1394 }
1395 
1396 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1397 {
1398     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1399 
1400     assert(kvm_enabled());
1401 
1402     if (!spapr->htab) {
1403         return 0;
1404     }
1405 
1406     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1407 }
1408 
1409 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1410                                                 hwaddr ptex, int n)
1411 {
1412     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1413     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1414 
1415     if (!spapr->htab) {
1416         /*
1417          * HTAB is controlled by KVM. Fetch into temporary buffer
1418          */
1419         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1420         kvmppc_read_hptes(hptes, ptex, n);
1421         return hptes;
1422     }
1423 
1424     /*
1425      * HTAB is controlled by QEMU. Just point to the internally
1426      * accessible PTEG.
1427      */
1428     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1429 }
1430 
1431 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1432                               const ppc_hash_pte64_t *hptes,
1433                               hwaddr ptex, int n)
1434 {
1435     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1436 
1437     if (!spapr->htab) {
1438         g_free((void *)hptes);
1439     }
1440 
1441     /* Nothing to do for qemu managed HPT */
1442 }
1443 
1444 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1445                       uint64_t pte0, uint64_t pte1)
1446 {
1447     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1448     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1449 
1450     if (!spapr->htab) {
1451         kvmppc_write_hpte(ptex, pte0, pte1);
1452     } else {
1453         if (pte0 & HPTE64_V_VALID) {
1454             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1455             /*
1456              * When setting valid, we write PTE1 first. This ensures
1457              * proper synchronization with the reading code in
1458              * ppc_hash64_pteg_search()
1459              */
1460             smp_wmb();
1461             stq_p(spapr->htab + offset, pte0);
1462         } else {
1463             stq_p(spapr->htab + offset, pte0);
1464             /*
1465              * When clearing it we set PTE0 first. This ensures proper
1466              * synchronization with the reading code in
1467              * ppc_hash64_pteg_search()
1468              */
1469             smp_wmb();
1470             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1471         }
1472     }
1473 }
1474 
1475 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1476                              uint64_t pte1)
1477 {
1478     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1479     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1480 
1481     if (!spapr->htab) {
1482         /* There should always be a hash table when this is called */
1483         error_report("spapr_hpte_set_c called with no hash table !");
1484         return;
1485     }
1486 
1487     /* The HW performs a non-atomic byte update */
1488     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1489 }
1490 
1491 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1492                              uint64_t pte1)
1493 {
1494     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1495     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1496 
1497     if (!spapr->htab) {
1498         /* There should always be a hash table when this is called */
1499         error_report("spapr_hpte_set_r called with no hash table !");
1500         return;
1501     }
1502 
1503     /* The HW performs a non-atomic byte update */
1504     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1505 }
1506 
1507 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1508 {
1509     int shift;
1510 
1511     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1512      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1513      * that's much more than is needed for Linux guests */
1514     shift = ctz64(pow2ceil(ramsize)) - 7;
1515     shift = MAX(shift, 18); /* Minimum architected size */
1516     shift = MIN(shift, 46); /* Maximum architected size */
1517     return shift;
1518 }
1519 
1520 void spapr_free_hpt(SpaprMachineState *spapr)
1521 {
1522     g_free(spapr->htab);
1523     spapr->htab = NULL;
1524     spapr->htab_shift = 0;
1525     close_htab_fd(spapr);
1526 }
1527 
1528 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1529                           Error **errp)
1530 {
1531     long rc;
1532 
1533     /* Clean up any HPT info from a previous boot */
1534     spapr_free_hpt(spapr);
1535 
1536     rc = kvmppc_reset_htab(shift);
1537     if (rc < 0) {
1538         /* kernel-side HPT needed, but couldn't allocate one */
1539         error_setg_errno(errp, errno,
1540                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1541                          shift);
1542         /* This is almost certainly fatal, but if the caller really
1543          * wants to carry on with shift == 0, it's welcome to try */
1544     } else if (rc > 0) {
1545         /* kernel-side HPT allocated */
1546         if (rc != shift) {
1547             error_setg(errp,
1548                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1549                        shift, rc);
1550         }
1551 
1552         spapr->htab_shift = shift;
1553         spapr->htab = NULL;
1554     } else {
1555         /* kernel-side HPT not needed, allocate in userspace instead */
1556         size_t size = 1ULL << shift;
1557         int i;
1558 
1559         spapr->htab = qemu_memalign(size, size);
1560         if (!spapr->htab) {
1561             error_setg_errno(errp, errno,
1562                              "Could not allocate HPT of order %d", shift);
1563             return;
1564         }
1565 
1566         memset(spapr->htab, 0, size);
1567         spapr->htab_shift = shift;
1568 
1569         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1570             DIRTY_HPTE(HPTE(spapr->htab, i));
1571         }
1572     }
1573     /* We're setting up a hash table, so that means we're not radix */
1574     spapr->patb_entry = 0;
1575     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1576 }
1577 
1578 void spapr_setup_hpt(SpaprMachineState *spapr)
1579 {
1580     int hpt_shift;
1581 
1582     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1583         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1584     } else {
1585         uint64_t current_ram_size;
1586 
1587         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1588         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1589     }
1590     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1591 
1592     if (kvm_enabled()) {
1593         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1594 
1595         /* Check our RMA fits in the possible VRMA */
1596         if (vrma_limit < spapr->rma_size) {
1597             error_report("Unable to create %" HWADDR_PRIu
1598                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1599                          spapr->rma_size / MiB, vrma_limit / MiB);
1600             exit(EXIT_FAILURE);
1601         }
1602     }
1603 }
1604 
1605 static int spapr_reset_drcs(Object *child, void *opaque)
1606 {
1607     SpaprDrc *drc =
1608         (SpaprDrc *) object_dynamic_cast(child,
1609                                                  TYPE_SPAPR_DR_CONNECTOR);
1610 
1611     if (drc) {
1612         spapr_drc_reset(drc);
1613     }
1614 
1615     return 0;
1616 }
1617 
1618 static void spapr_machine_reset(MachineState *machine)
1619 {
1620     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1621     PowerPCCPU *first_ppc_cpu;
1622     hwaddr fdt_addr;
1623     void *fdt;
1624     int rc;
1625 
1626     kvmppc_svm_off(&error_fatal);
1627     spapr_caps_apply(spapr);
1628 
1629     first_ppc_cpu = POWERPC_CPU(first_cpu);
1630     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1631         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1632                               spapr->max_compat_pvr)) {
1633         /*
1634          * If using KVM with radix mode available, VCPUs can be started
1635          * without a HPT because KVM will start them in radix mode.
1636          * Set the GR bit in PATE so that we know there is no HPT.
1637          */
1638         spapr->patb_entry = PATE1_GR;
1639         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1640     } else {
1641         spapr_setup_hpt(spapr);
1642     }
1643 
1644     qemu_devices_reset();
1645 
1646     spapr_ovec_cleanup(spapr->ov5_cas);
1647     spapr->ov5_cas = spapr_ovec_new();
1648 
1649     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1650 
1651     /*
1652      * This is fixing some of the default configuration of the XIVE
1653      * devices. To be called after the reset of the machine devices.
1654      */
1655     spapr_irq_reset(spapr, &error_fatal);
1656 
1657     /*
1658      * There is no CAS under qtest. Simulate one to please the code that
1659      * depends on spapr->ov5_cas. This is especially needed to test device
1660      * unplug, so we do that before resetting the DRCs.
1661      */
1662     if (qtest_enabled()) {
1663         spapr_ovec_cleanup(spapr->ov5_cas);
1664         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1665     }
1666 
1667     /* DRC reset may cause a device to be unplugged. This will cause troubles
1668      * if this device is used by another device (eg, a running vhost backend
1669      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1670      * situations, we reset DRCs after all devices have been reset.
1671      */
1672     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1673 
1674     spapr_clear_pending_events(spapr);
1675 
1676     /*
1677      * We place the device tree and RTAS just below either the top of the RMA,
1678      * or just below 2GB, whichever is lower, so that it can be
1679      * processed with 32-bit real mode code if necessary
1680      */
1681     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1682 
1683     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1684 
1685     rc = fdt_pack(fdt);
1686 
1687     /* Should only fail if we've built a corrupted tree */
1688     assert(rc == 0);
1689 
1690     /* Load the fdt */
1691     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1692     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1693     g_free(spapr->fdt_blob);
1694     spapr->fdt_size = fdt_totalsize(fdt);
1695     spapr->fdt_initial_size = spapr->fdt_size;
1696     spapr->fdt_blob = fdt;
1697 
1698     /* Set up the entry state */
1699     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1700     first_ppc_cpu->env.gpr[5] = 0;
1701 
1702     spapr->fwnmi_system_reset_addr = -1;
1703     spapr->fwnmi_machine_check_addr = -1;
1704     spapr->fwnmi_machine_check_interlock = -1;
1705 
1706     /* Signal all vCPUs waiting on this condition */
1707     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1708 
1709     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1710 }
1711 
1712 static void spapr_create_nvram(SpaprMachineState *spapr)
1713 {
1714     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1715     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1716 
1717     if (dinfo) {
1718         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1719                             &error_fatal);
1720     }
1721 
1722     qdev_init_nofail(dev);
1723 
1724     spapr->nvram = (struct SpaprNvram *)dev;
1725 }
1726 
1727 static void spapr_rtc_create(SpaprMachineState *spapr)
1728 {
1729     object_initialize_child(OBJECT(spapr), "rtc",
1730                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1731                             &error_fatal, NULL);
1732     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1733                               &error_fatal);
1734     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1735                               "date", &error_fatal);
1736 }
1737 
1738 /* Returns whether we want to use VGA or not */
1739 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1740 {
1741     switch (vga_interface_type) {
1742     case VGA_NONE:
1743         return false;
1744     case VGA_DEVICE:
1745         return true;
1746     case VGA_STD:
1747     case VGA_VIRTIO:
1748     case VGA_CIRRUS:
1749         return pci_vga_init(pci_bus) != NULL;
1750     default:
1751         error_setg(errp,
1752                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1753         return false;
1754     }
1755 }
1756 
1757 static int spapr_pre_load(void *opaque)
1758 {
1759     int rc;
1760 
1761     rc = spapr_caps_pre_load(opaque);
1762     if (rc) {
1763         return rc;
1764     }
1765 
1766     return 0;
1767 }
1768 
1769 static int spapr_post_load(void *opaque, int version_id)
1770 {
1771     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1772     int err = 0;
1773 
1774     err = spapr_caps_post_migration(spapr);
1775     if (err) {
1776         return err;
1777     }
1778 
1779     /*
1780      * In earlier versions, there was no separate qdev for the PAPR
1781      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1782      * So when migrating from those versions, poke the incoming offset
1783      * value into the RTC device
1784      */
1785     if (version_id < 3) {
1786         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1787         if (err) {
1788             return err;
1789         }
1790     }
1791 
1792     if (kvm_enabled() && spapr->patb_entry) {
1793         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1794         bool radix = !!(spapr->patb_entry & PATE1_GR);
1795         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1796 
1797         /*
1798          * Update LPCR:HR and UPRT as they may not be set properly in
1799          * the stream
1800          */
1801         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1802                             LPCR_HR | LPCR_UPRT);
1803 
1804         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1805         if (err) {
1806             error_report("Process table config unsupported by the host");
1807             return -EINVAL;
1808         }
1809     }
1810 
1811     err = spapr_irq_post_load(spapr, version_id);
1812     if (err) {
1813         return err;
1814     }
1815 
1816     return err;
1817 }
1818 
1819 static int spapr_pre_save(void *opaque)
1820 {
1821     int rc;
1822 
1823     rc = spapr_caps_pre_save(opaque);
1824     if (rc) {
1825         return rc;
1826     }
1827 
1828     return 0;
1829 }
1830 
1831 static bool version_before_3(void *opaque, int version_id)
1832 {
1833     return version_id < 3;
1834 }
1835 
1836 static bool spapr_pending_events_needed(void *opaque)
1837 {
1838     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1839     return !QTAILQ_EMPTY(&spapr->pending_events);
1840 }
1841 
1842 static const VMStateDescription vmstate_spapr_event_entry = {
1843     .name = "spapr_event_log_entry",
1844     .version_id = 1,
1845     .minimum_version_id = 1,
1846     .fields = (VMStateField[]) {
1847         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1848         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1849         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1850                                      NULL, extended_length),
1851         VMSTATE_END_OF_LIST()
1852     },
1853 };
1854 
1855 static const VMStateDescription vmstate_spapr_pending_events = {
1856     .name = "spapr_pending_events",
1857     .version_id = 1,
1858     .minimum_version_id = 1,
1859     .needed = spapr_pending_events_needed,
1860     .fields = (VMStateField[]) {
1861         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1862                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1863         VMSTATE_END_OF_LIST()
1864     },
1865 };
1866 
1867 static bool spapr_ov5_cas_needed(void *opaque)
1868 {
1869     SpaprMachineState *spapr = opaque;
1870     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1871     bool cas_needed;
1872 
1873     /* Prior to the introduction of SpaprOptionVector, we had two option
1874      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1875      * Both of these options encode machine topology into the device-tree
1876      * in such a way that the now-booted OS should still be able to interact
1877      * appropriately with QEMU regardless of what options were actually
1878      * negotiatied on the source side.
1879      *
1880      * As such, we can avoid migrating the CAS-negotiated options if these
1881      * are the only options available on the current machine/platform.
1882      * Since these are the only options available for pseries-2.7 and
1883      * earlier, this allows us to maintain old->new/new->old migration
1884      * compatibility.
1885      *
1886      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1887      * via default pseries-2.8 machines and explicit command-line parameters.
1888      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1889      * of the actual CAS-negotiated values to continue working properly. For
1890      * example, availability of memory unplug depends on knowing whether
1891      * OV5_HP_EVT was negotiated via CAS.
1892      *
1893      * Thus, for any cases where the set of available CAS-negotiatable
1894      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1895      * include the CAS-negotiated options in the migration stream, unless
1896      * if they affect boot time behaviour only.
1897      */
1898     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1899     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1900     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1901 
1902     /* We need extra information if we have any bits outside the mask
1903      * defined above */
1904     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1905 
1906     spapr_ovec_cleanup(ov5_mask);
1907 
1908     return cas_needed;
1909 }
1910 
1911 static const VMStateDescription vmstate_spapr_ov5_cas = {
1912     .name = "spapr_option_vector_ov5_cas",
1913     .version_id = 1,
1914     .minimum_version_id = 1,
1915     .needed = spapr_ov5_cas_needed,
1916     .fields = (VMStateField[]) {
1917         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1918                                  vmstate_spapr_ovec, SpaprOptionVector),
1919         VMSTATE_END_OF_LIST()
1920     },
1921 };
1922 
1923 static bool spapr_patb_entry_needed(void *opaque)
1924 {
1925     SpaprMachineState *spapr = opaque;
1926 
1927     return !!spapr->patb_entry;
1928 }
1929 
1930 static const VMStateDescription vmstate_spapr_patb_entry = {
1931     .name = "spapr_patb_entry",
1932     .version_id = 1,
1933     .minimum_version_id = 1,
1934     .needed = spapr_patb_entry_needed,
1935     .fields = (VMStateField[]) {
1936         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1937         VMSTATE_END_OF_LIST()
1938     },
1939 };
1940 
1941 static bool spapr_irq_map_needed(void *opaque)
1942 {
1943     SpaprMachineState *spapr = opaque;
1944 
1945     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1946 }
1947 
1948 static const VMStateDescription vmstate_spapr_irq_map = {
1949     .name = "spapr_irq_map",
1950     .version_id = 1,
1951     .minimum_version_id = 1,
1952     .needed = spapr_irq_map_needed,
1953     .fields = (VMStateField[]) {
1954         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1955         VMSTATE_END_OF_LIST()
1956     },
1957 };
1958 
1959 static bool spapr_dtb_needed(void *opaque)
1960 {
1961     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1962 
1963     return smc->update_dt_enabled;
1964 }
1965 
1966 static int spapr_dtb_pre_load(void *opaque)
1967 {
1968     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1969 
1970     g_free(spapr->fdt_blob);
1971     spapr->fdt_blob = NULL;
1972     spapr->fdt_size = 0;
1973 
1974     return 0;
1975 }
1976 
1977 static const VMStateDescription vmstate_spapr_dtb = {
1978     .name = "spapr_dtb",
1979     .version_id = 1,
1980     .minimum_version_id = 1,
1981     .needed = spapr_dtb_needed,
1982     .pre_load = spapr_dtb_pre_load,
1983     .fields = (VMStateField[]) {
1984         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1985         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1986         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1987                                      fdt_size),
1988         VMSTATE_END_OF_LIST()
1989     },
1990 };
1991 
1992 static bool spapr_fwnmi_needed(void *opaque)
1993 {
1994     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1995 
1996     return spapr->fwnmi_machine_check_addr != -1;
1997 }
1998 
1999 static int spapr_fwnmi_pre_save(void *opaque)
2000 {
2001     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2002 
2003     /*
2004      * Check if machine check handling is in progress and print a
2005      * warning message.
2006      */
2007     if (spapr->fwnmi_machine_check_interlock != -1) {
2008         warn_report("A machine check is being handled during migration. The"
2009                 "handler may run and log hardware error on the destination");
2010     }
2011 
2012     return 0;
2013 }
2014 
2015 static const VMStateDescription vmstate_spapr_fwnmi = {
2016     .name = "spapr_fwnmi",
2017     .version_id = 1,
2018     .minimum_version_id = 1,
2019     .needed = spapr_fwnmi_needed,
2020     .pre_save = spapr_fwnmi_pre_save,
2021     .fields = (VMStateField[]) {
2022         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2023         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2024         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2025         VMSTATE_END_OF_LIST()
2026     },
2027 };
2028 
2029 static const VMStateDescription vmstate_spapr = {
2030     .name = "spapr",
2031     .version_id = 3,
2032     .minimum_version_id = 1,
2033     .pre_load = spapr_pre_load,
2034     .post_load = spapr_post_load,
2035     .pre_save = spapr_pre_save,
2036     .fields = (VMStateField[]) {
2037         /* used to be @next_irq */
2038         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2039 
2040         /* RTC offset */
2041         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2042 
2043         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2044         VMSTATE_END_OF_LIST()
2045     },
2046     .subsections = (const VMStateDescription*[]) {
2047         &vmstate_spapr_ov5_cas,
2048         &vmstate_spapr_patb_entry,
2049         &vmstate_spapr_pending_events,
2050         &vmstate_spapr_cap_htm,
2051         &vmstate_spapr_cap_vsx,
2052         &vmstate_spapr_cap_dfp,
2053         &vmstate_spapr_cap_cfpc,
2054         &vmstate_spapr_cap_sbbc,
2055         &vmstate_spapr_cap_ibs,
2056         &vmstate_spapr_cap_hpt_maxpagesize,
2057         &vmstate_spapr_irq_map,
2058         &vmstate_spapr_cap_nested_kvm_hv,
2059         &vmstate_spapr_dtb,
2060         &vmstate_spapr_cap_large_decr,
2061         &vmstate_spapr_cap_ccf_assist,
2062         &vmstate_spapr_cap_fwnmi,
2063         &vmstate_spapr_fwnmi,
2064         NULL
2065     }
2066 };
2067 
2068 static int htab_save_setup(QEMUFile *f, void *opaque)
2069 {
2070     SpaprMachineState *spapr = opaque;
2071 
2072     /* "Iteration" header */
2073     if (!spapr->htab_shift) {
2074         qemu_put_be32(f, -1);
2075     } else {
2076         qemu_put_be32(f, spapr->htab_shift);
2077     }
2078 
2079     if (spapr->htab) {
2080         spapr->htab_save_index = 0;
2081         spapr->htab_first_pass = true;
2082     } else {
2083         if (spapr->htab_shift) {
2084             assert(kvm_enabled());
2085         }
2086     }
2087 
2088 
2089     return 0;
2090 }
2091 
2092 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2093                             int chunkstart, int n_valid, int n_invalid)
2094 {
2095     qemu_put_be32(f, chunkstart);
2096     qemu_put_be16(f, n_valid);
2097     qemu_put_be16(f, n_invalid);
2098     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2099                     HASH_PTE_SIZE_64 * n_valid);
2100 }
2101 
2102 static void htab_save_end_marker(QEMUFile *f)
2103 {
2104     qemu_put_be32(f, 0);
2105     qemu_put_be16(f, 0);
2106     qemu_put_be16(f, 0);
2107 }
2108 
2109 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2110                                  int64_t max_ns)
2111 {
2112     bool has_timeout = max_ns != -1;
2113     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2114     int index = spapr->htab_save_index;
2115     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2116 
2117     assert(spapr->htab_first_pass);
2118 
2119     do {
2120         int chunkstart;
2121 
2122         /* Consume invalid HPTEs */
2123         while ((index < htabslots)
2124                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2125             CLEAN_HPTE(HPTE(spapr->htab, index));
2126             index++;
2127         }
2128 
2129         /* Consume valid HPTEs */
2130         chunkstart = index;
2131         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2132                && HPTE_VALID(HPTE(spapr->htab, index))) {
2133             CLEAN_HPTE(HPTE(spapr->htab, index));
2134             index++;
2135         }
2136 
2137         if (index > chunkstart) {
2138             int n_valid = index - chunkstart;
2139 
2140             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2141 
2142             if (has_timeout &&
2143                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2144                 break;
2145             }
2146         }
2147     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2148 
2149     if (index >= htabslots) {
2150         assert(index == htabslots);
2151         index = 0;
2152         spapr->htab_first_pass = false;
2153     }
2154     spapr->htab_save_index = index;
2155 }
2156 
2157 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2158                                 int64_t max_ns)
2159 {
2160     bool final = max_ns < 0;
2161     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2162     int examined = 0, sent = 0;
2163     int index = spapr->htab_save_index;
2164     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2165 
2166     assert(!spapr->htab_first_pass);
2167 
2168     do {
2169         int chunkstart, invalidstart;
2170 
2171         /* Consume non-dirty HPTEs */
2172         while ((index < htabslots)
2173                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2174             index++;
2175             examined++;
2176         }
2177 
2178         chunkstart = index;
2179         /* Consume valid dirty HPTEs */
2180         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2181                && HPTE_DIRTY(HPTE(spapr->htab, index))
2182                && HPTE_VALID(HPTE(spapr->htab, index))) {
2183             CLEAN_HPTE(HPTE(spapr->htab, index));
2184             index++;
2185             examined++;
2186         }
2187 
2188         invalidstart = index;
2189         /* Consume invalid dirty HPTEs */
2190         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2191                && HPTE_DIRTY(HPTE(spapr->htab, index))
2192                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2193             CLEAN_HPTE(HPTE(spapr->htab, index));
2194             index++;
2195             examined++;
2196         }
2197 
2198         if (index > chunkstart) {
2199             int n_valid = invalidstart - chunkstart;
2200             int n_invalid = index - invalidstart;
2201 
2202             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2203             sent += index - chunkstart;
2204 
2205             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2206                 break;
2207             }
2208         }
2209 
2210         if (examined >= htabslots) {
2211             break;
2212         }
2213 
2214         if (index >= htabslots) {
2215             assert(index == htabslots);
2216             index = 0;
2217         }
2218     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2219 
2220     if (index >= htabslots) {
2221         assert(index == htabslots);
2222         index = 0;
2223     }
2224 
2225     spapr->htab_save_index = index;
2226 
2227     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2228 }
2229 
2230 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2231 #define MAX_KVM_BUF_SIZE    2048
2232 
2233 static int htab_save_iterate(QEMUFile *f, void *opaque)
2234 {
2235     SpaprMachineState *spapr = opaque;
2236     int fd;
2237     int rc = 0;
2238 
2239     /* Iteration header */
2240     if (!spapr->htab_shift) {
2241         qemu_put_be32(f, -1);
2242         return 1;
2243     } else {
2244         qemu_put_be32(f, 0);
2245     }
2246 
2247     if (!spapr->htab) {
2248         assert(kvm_enabled());
2249 
2250         fd = get_htab_fd(spapr);
2251         if (fd < 0) {
2252             return fd;
2253         }
2254 
2255         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2256         if (rc < 0) {
2257             return rc;
2258         }
2259     } else  if (spapr->htab_first_pass) {
2260         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2261     } else {
2262         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2263     }
2264 
2265     htab_save_end_marker(f);
2266 
2267     return rc;
2268 }
2269 
2270 static int htab_save_complete(QEMUFile *f, void *opaque)
2271 {
2272     SpaprMachineState *spapr = opaque;
2273     int fd;
2274 
2275     /* Iteration header */
2276     if (!spapr->htab_shift) {
2277         qemu_put_be32(f, -1);
2278         return 0;
2279     } else {
2280         qemu_put_be32(f, 0);
2281     }
2282 
2283     if (!spapr->htab) {
2284         int rc;
2285 
2286         assert(kvm_enabled());
2287 
2288         fd = get_htab_fd(spapr);
2289         if (fd < 0) {
2290             return fd;
2291         }
2292 
2293         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2294         if (rc < 0) {
2295             return rc;
2296         }
2297     } else {
2298         if (spapr->htab_first_pass) {
2299             htab_save_first_pass(f, spapr, -1);
2300         }
2301         htab_save_later_pass(f, spapr, -1);
2302     }
2303 
2304     /* End marker */
2305     htab_save_end_marker(f);
2306 
2307     return 0;
2308 }
2309 
2310 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2311 {
2312     SpaprMachineState *spapr = opaque;
2313     uint32_t section_hdr;
2314     int fd = -1;
2315     Error *local_err = NULL;
2316 
2317     if (version_id < 1 || version_id > 1) {
2318         error_report("htab_load() bad version");
2319         return -EINVAL;
2320     }
2321 
2322     section_hdr = qemu_get_be32(f);
2323 
2324     if (section_hdr == -1) {
2325         spapr_free_hpt(spapr);
2326         return 0;
2327     }
2328 
2329     if (section_hdr) {
2330         /* First section gives the htab size */
2331         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2332         if (local_err) {
2333             error_report_err(local_err);
2334             return -EINVAL;
2335         }
2336         return 0;
2337     }
2338 
2339     if (!spapr->htab) {
2340         assert(kvm_enabled());
2341 
2342         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2343         if (fd < 0) {
2344             error_report_err(local_err);
2345             return fd;
2346         }
2347     }
2348 
2349     while (true) {
2350         uint32_t index;
2351         uint16_t n_valid, n_invalid;
2352 
2353         index = qemu_get_be32(f);
2354         n_valid = qemu_get_be16(f);
2355         n_invalid = qemu_get_be16(f);
2356 
2357         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2358             /* End of Stream */
2359             break;
2360         }
2361 
2362         if ((index + n_valid + n_invalid) >
2363             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2364             /* Bad index in stream */
2365             error_report(
2366                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2367                 index, n_valid, n_invalid, spapr->htab_shift);
2368             return -EINVAL;
2369         }
2370 
2371         if (spapr->htab) {
2372             if (n_valid) {
2373                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2374                                 HASH_PTE_SIZE_64 * n_valid);
2375             }
2376             if (n_invalid) {
2377                 memset(HPTE(spapr->htab, index + n_valid), 0,
2378                        HASH_PTE_SIZE_64 * n_invalid);
2379             }
2380         } else {
2381             int rc;
2382 
2383             assert(fd >= 0);
2384 
2385             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2386             if (rc < 0) {
2387                 return rc;
2388             }
2389         }
2390     }
2391 
2392     if (!spapr->htab) {
2393         assert(fd >= 0);
2394         close(fd);
2395     }
2396 
2397     return 0;
2398 }
2399 
2400 static void htab_save_cleanup(void *opaque)
2401 {
2402     SpaprMachineState *spapr = opaque;
2403 
2404     close_htab_fd(spapr);
2405 }
2406 
2407 static SaveVMHandlers savevm_htab_handlers = {
2408     .save_setup = htab_save_setup,
2409     .save_live_iterate = htab_save_iterate,
2410     .save_live_complete_precopy = htab_save_complete,
2411     .save_cleanup = htab_save_cleanup,
2412     .load_state = htab_load,
2413 };
2414 
2415 static void spapr_boot_set(void *opaque, const char *boot_device,
2416                            Error **errp)
2417 {
2418     MachineState *machine = MACHINE(opaque);
2419     machine->boot_order = g_strdup(boot_device);
2420 }
2421 
2422 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2423 {
2424     MachineState *machine = MACHINE(spapr);
2425     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2426     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2427     int i;
2428 
2429     for (i = 0; i < nr_lmbs; i++) {
2430         uint64_t addr;
2431 
2432         addr = i * lmb_size + machine->device_memory->base;
2433         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2434                                addr / lmb_size);
2435     }
2436 }
2437 
2438 /*
2439  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2440  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2441  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2442  */
2443 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2444 {
2445     int i;
2446 
2447     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2448         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2449                    " is not aligned to %" PRIu64 " MiB",
2450                    machine->ram_size,
2451                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2452         return;
2453     }
2454 
2455     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2456         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2457                    " is not aligned to %" PRIu64 " MiB",
2458                    machine->ram_size,
2459                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2460         return;
2461     }
2462 
2463     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2464         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2465             error_setg(errp,
2466                        "Node %d memory size 0x%" PRIx64
2467                        " is not aligned to %" PRIu64 " MiB",
2468                        i, machine->numa_state->nodes[i].node_mem,
2469                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2470             return;
2471         }
2472     }
2473 }
2474 
2475 /* find cpu slot in machine->possible_cpus by core_id */
2476 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2477 {
2478     int index = id / ms->smp.threads;
2479 
2480     if (index >= ms->possible_cpus->len) {
2481         return NULL;
2482     }
2483     if (idx) {
2484         *idx = index;
2485     }
2486     return &ms->possible_cpus->cpus[index];
2487 }
2488 
2489 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2490 {
2491     MachineState *ms = MACHINE(spapr);
2492     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2493     Error *local_err = NULL;
2494     bool vsmt_user = !!spapr->vsmt;
2495     int kvm_smt = kvmppc_smt_threads();
2496     int ret;
2497     unsigned int smp_threads = ms->smp.threads;
2498 
2499     if (!kvm_enabled() && (smp_threads > 1)) {
2500         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2501                      "on a pseries machine");
2502         goto out;
2503     }
2504     if (!is_power_of_2(smp_threads)) {
2505         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2506                      "machine because it must be a power of 2", smp_threads);
2507         goto out;
2508     }
2509 
2510     /* Detemine the VSMT mode to use: */
2511     if (vsmt_user) {
2512         if (spapr->vsmt < smp_threads) {
2513             error_setg(&local_err, "Cannot support VSMT mode %d"
2514                          " because it must be >= threads/core (%d)",
2515                          spapr->vsmt, smp_threads);
2516             goto out;
2517         }
2518         /* In this case, spapr->vsmt has been set by the command line */
2519     } else if (!smc->smp_threads_vsmt) {
2520         /*
2521          * Default VSMT value is tricky, because we need it to be as
2522          * consistent as possible (for migration), but this requires
2523          * changing it for at least some existing cases.  We pick 8 as
2524          * the value that we'd get with KVM on POWER8, the
2525          * overwhelmingly common case in production systems.
2526          */
2527         spapr->vsmt = MAX(8, smp_threads);
2528     } else {
2529         spapr->vsmt = smp_threads;
2530     }
2531 
2532     /* KVM: If necessary, set the SMT mode: */
2533     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2534         ret = kvmppc_set_smt_threads(spapr->vsmt);
2535         if (ret) {
2536             /* Looks like KVM isn't able to change VSMT mode */
2537             error_setg(&local_err,
2538                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2539                        spapr->vsmt, ret);
2540             /* We can live with that if the default one is big enough
2541              * for the number of threads, and a submultiple of the one
2542              * we want.  In this case we'll waste some vcpu ids, but
2543              * behaviour will be correct */
2544             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2545                 warn_report_err(local_err);
2546                 local_err = NULL;
2547                 goto out;
2548             } else {
2549                 if (!vsmt_user) {
2550                     error_append_hint(&local_err,
2551                                       "On PPC, a VM with %d threads/core"
2552                                       " on a host with %d threads/core"
2553                                       " requires the use of VSMT mode %d.\n",
2554                                       smp_threads, kvm_smt, spapr->vsmt);
2555                 }
2556                 kvmppc_error_append_smt_possible_hint(&local_err);
2557                 goto out;
2558             }
2559         }
2560     }
2561     /* else TCG: nothing to do currently */
2562 out:
2563     error_propagate(errp, local_err);
2564 }
2565 
2566 static void spapr_init_cpus(SpaprMachineState *spapr)
2567 {
2568     MachineState *machine = MACHINE(spapr);
2569     MachineClass *mc = MACHINE_GET_CLASS(machine);
2570     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2571     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2572     const CPUArchIdList *possible_cpus;
2573     unsigned int smp_cpus = machine->smp.cpus;
2574     unsigned int smp_threads = machine->smp.threads;
2575     unsigned int max_cpus = machine->smp.max_cpus;
2576     int boot_cores_nr = smp_cpus / smp_threads;
2577     int i;
2578 
2579     possible_cpus = mc->possible_cpu_arch_ids(machine);
2580     if (mc->has_hotpluggable_cpus) {
2581         if (smp_cpus % smp_threads) {
2582             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2583                          smp_cpus, smp_threads);
2584             exit(1);
2585         }
2586         if (max_cpus % smp_threads) {
2587             error_report("max_cpus (%u) must be multiple of threads (%u)",
2588                          max_cpus, smp_threads);
2589             exit(1);
2590         }
2591     } else {
2592         if (max_cpus != smp_cpus) {
2593             error_report("This machine version does not support CPU hotplug");
2594             exit(1);
2595         }
2596         boot_cores_nr = possible_cpus->len;
2597     }
2598 
2599     if (smc->pre_2_10_has_unused_icps) {
2600         int i;
2601 
2602         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2603             /* Dummy entries get deregistered when real ICPState objects
2604              * are registered during CPU core hotplug.
2605              */
2606             pre_2_10_vmstate_register_dummy_icp(i);
2607         }
2608     }
2609 
2610     for (i = 0; i < possible_cpus->len; i++) {
2611         int core_id = i * smp_threads;
2612 
2613         if (mc->has_hotpluggable_cpus) {
2614             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2615                                    spapr_vcpu_id(spapr, core_id));
2616         }
2617 
2618         if (i < boot_cores_nr) {
2619             Object *core  = object_new(type);
2620             int nr_threads = smp_threads;
2621 
2622             /* Handle the partially filled core for older machine types */
2623             if ((i + 1) * smp_threads >= smp_cpus) {
2624                 nr_threads = smp_cpus - i * smp_threads;
2625             }
2626 
2627             object_property_set_int(core, nr_threads, "nr-threads",
2628                                     &error_fatal);
2629             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2630                                     &error_fatal);
2631             object_property_set_bool(core, true, "realized", &error_fatal);
2632 
2633             object_unref(core);
2634         }
2635     }
2636 }
2637 
2638 static PCIHostState *spapr_create_default_phb(void)
2639 {
2640     DeviceState *dev;
2641 
2642     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2643     qdev_prop_set_uint32(dev, "index", 0);
2644     qdev_init_nofail(dev);
2645 
2646     return PCI_HOST_BRIDGE(dev);
2647 }
2648 
2649 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2650 {
2651     MachineState *machine = MACHINE(spapr);
2652     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2653     hwaddr rma_size = machine->ram_size;
2654     hwaddr node0_size = spapr_node0_size(machine);
2655 
2656     /* RMA has to fit in the first NUMA node */
2657     rma_size = MIN(rma_size, node0_size);
2658 
2659     /*
2660      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2661      * never exceed that
2662      */
2663     rma_size = MIN(rma_size, 1 * TiB);
2664 
2665     /*
2666      * Clamp the RMA size based on machine type.  This is for
2667      * migration compatibility with older qemu versions, which limited
2668      * the RMA size for complicated and mostly bad reasons.
2669      */
2670     if (smc->rma_limit) {
2671         rma_size = MIN(rma_size, smc->rma_limit);
2672     }
2673 
2674     if (rma_size < MIN_RMA_SLOF) {
2675         error_setg(errp,
2676                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2677                    "ldMiB guest RMA (Real Mode Area memory)",
2678                    MIN_RMA_SLOF / MiB);
2679         return 0;
2680     }
2681 
2682     return rma_size;
2683 }
2684 
2685 /* pSeries LPAR / sPAPR hardware init */
2686 static void spapr_machine_init(MachineState *machine)
2687 {
2688     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2689     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2690     MachineClass *mc = MACHINE_GET_CLASS(machine);
2691     const char *kernel_filename = machine->kernel_filename;
2692     const char *initrd_filename = machine->initrd_filename;
2693     PCIHostState *phb;
2694     int i;
2695     MemoryRegion *sysmem = get_system_memory();
2696     long load_limit, fw_size;
2697     char *filename;
2698     Error *resize_hpt_err = NULL;
2699 
2700     msi_nonbroken = true;
2701 
2702     QLIST_INIT(&spapr->phbs);
2703     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2704 
2705     /* Determine capabilities to run with */
2706     spapr_caps_init(spapr);
2707 
2708     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2709     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2710         /*
2711          * If the user explicitly requested a mode we should either
2712          * supply it, or fail completely (which we do below).  But if
2713          * it's not set explicitly, we reset our mode to something
2714          * that works
2715          */
2716         if (resize_hpt_err) {
2717             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2718             error_free(resize_hpt_err);
2719             resize_hpt_err = NULL;
2720         } else {
2721             spapr->resize_hpt = smc->resize_hpt_default;
2722         }
2723     }
2724 
2725     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2726 
2727     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2728         /*
2729          * User requested HPT resize, but this host can't supply it.  Bail out
2730          */
2731         error_report_err(resize_hpt_err);
2732         exit(1);
2733     }
2734 
2735     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2736 
2737     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2738     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2739 
2740     /*
2741      * VSMT must be set in order to be able to compute VCPU ids, ie to
2742      * call spapr_max_server_number() or spapr_vcpu_id().
2743      */
2744     spapr_set_vsmt_mode(spapr, &error_fatal);
2745 
2746     /* Set up Interrupt Controller before we create the VCPUs */
2747     spapr_irq_init(spapr, &error_fatal);
2748 
2749     /* Set up containers for ibm,client-architecture-support negotiated options
2750      */
2751     spapr->ov5 = spapr_ovec_new();
2752     spapr->ov5_cas = spapr_ovec_new();
2753 
2754     if (smc->dr_lmb_enabled) {
2755         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2756         spapr_validate_node_memory(machine, &error_fatal);
2757     }
2758 
2759     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2760 
2761     /* advertise support for dedicated HP event source to guests */
2762     if (spapr->use_hotplug_event_source) {
2763         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2764     }
2765 
2766     /* advertise support for HPT resizing */
2767     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2768         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2769     }
2770 
2771     /* advertise support for ibm,dyamic-memory-v2 */
2772     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2773 
2774     /* advertise XIVE on POWER9 machines */
2775     if (spapr->irq->xive) {
2776         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2777     }
2778 
2779     /* init CPUs */
2780     spapr_init_cpus(spapr);
2781 
2782     /*
2783      * check we don't have a memory-less/cpu-less NUMA node
2784      * Firmware relies on the existing memory/cpu topology to provide the
2785      * NUMA topology to the kernel.
2786      * And the linux kernel needs to know the NUMA topology at start
2787      * to be able to hotplug CPUs later.
2788      */
2789     if (machine->numa_state->num_nodes) {
2790         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2791             /* check for memory-less node */
2792             if (machine->numa_state->nodes[i].node_mem == 0) {
2793                 CPUState *cs;
2794                 int found = 0;
2795                 /* check for cpu-less node */
2796                 CPU_FOREACH(cs) {
2797                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2798                     if (cpu->node_id == i) {
2799                         found = 1;
2800                         break;
2801                     }
2802                 }
2803                 /* memory-less and cpu-less node */
2804                 if (!found) {
2805                     error_report(
2806                        "Memory-less/cpu-less nodes are not supported (node %d)",
2807                                  i);
2808                     exit(1);
2809                 }
2810             }
2811         }
2812 
2813     }
2814 
2815     /*
2816      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2817      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2818      * called from vPHB reset handler so we initialize the counter here.
2819      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2820      * must be equally distant from any other node.
2821      * The final value of spapr->gpu_numa_id is going to be written to
2822      * max-associativity-domains in spapr_build_fdt().
2823      */
2824     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2825 
2826     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2827         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2828                               spapr->max_compat_pvr)) {
2829         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2830         /* KVM and TCG always allow GTSE with radix... */
2831         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2832     }
2833     /* ... but not with hash (currently). */
2834 
2835     if (kvm_enabled()) {
2836         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2837         kvmppc_enable_logical_ci_hcalls();
2838         kvmppc_enable_set_mode_hcall();
2839 
2840         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2841         kvmppc_enable_clear_ref_mod_hcalls();
2842 
2843         /* Enable H_PAGE_INIT */
2844         kvmppc_enable_h_page_init();
2845     }
2846 
2847     /* map RAM */
2848     memory_region_add_subregion(sysmem, 0, machine->ram);
2849 
2850     /* always allocate the device memory information */
2851     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2852 
2853     /* initialize hotplug memory address space */
2854     if (machine->ram_size < machine->maxram_size) {
2855         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2856         /*
2857          * Limit the number of hotpluggable memory slots to half the number
2858          * slots that KVM supports, leaving the other half for PCI and other
2859          * devices. However ensure that number of slots doesn't drop below 32.
2860          */
2861         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2862                            SPAPR_MAX_RAM_SLOTS;
2863 
2864         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2865             max_memslots = SPAPR_MAX_RAM_SLOTS;
2866         }
2867         if (machine->ram_slots > max_memslots) {
2868             error_report("Specified number of memory slots %"
2869                          PRIu64" exceeds max supported %d",
2870                          machine->ram_slots, max_memslots);
2871             exit(1);
2872         }
2873 
2874         machine->device_memory->base = ROUND_UP(machine->ram_size,
2875                                                 SPAPR_DEVICE_MEM_ALIGN);
2876         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2877                            "device-memory", device_mem_size);
2878         memory_region_add_subregion(sysmem, machine->device_memory->base,
2879                                     &machine->device_memory->mr);
2880     }
2881 
2882     if (smc->dr_lmb_enabled) {
2883         spapr_create_lmb_dr_connectors(spapr);
2884     }
2885 
2886     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2887         /* Create the error string for live migration blocker */
2888         error_setg(&spapr->fwnmi_migration_blocker,
2889             "A machine check is being handled during migration. The handler"
2890             "may run and log hardware error on the destination");
2891     }
2892 
2893     if (mc->nvdimm_supported) {
2894         spapr_create_nvdimm_dr_connectors(spapr);
2895     }
2896 
2897     /* Set up RTAS event infrastructure */
2898     spapr_events_init(spapr);
2899 
2900     /* Set up the RTC RTAS interfaces */
2901     spapr_rtc_create(spapr);
2902 
2903     /* Set up VIO bus */
2904     spapr->vio_bus = spapr_vio_bus_init();
2905 
2906     for (i = 0; i < serial_max_hds(); i++) {
2907         if (serial_hd(i)) {
2908             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2909         }
2910     }
2911 
2912     /* We always have at least the nvram device on VIO */
2913     spapr_create_nvram(spapr);
2914 
2915     /*
2916      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2917      * connectors (described in root DT node's "ibm,drc-types" property)
2918      * are pre-initialized here. additional child connectors (such as
2919      * connectors for a PHBs PCI slots) are added as needed during their
2920      * parent's realization.
2921      */
2922     if (smc->dr_phb_enabled) {
2923         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2924             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2925         }
2926     }
2927 
2928     /* Set up PCI */
2929     spapr_pci_rtas_init();
2930 
2931     phb = spapr_create_default_phb();
2932 
2933     for (i = 0; i < nb_nics; i++) {
2934         NICInfo *nd = &nd_table[i];
2935 
2936         if (!nd->model) {
2937             nd->model = g_strdup("spapr-vlan");
2938         }
2939 
2940         if (g_str_equal(nd->model, "spapr-vlan") ||
2941             g_str_equal(nd->model, "ibmveth")) {
2942             spapr_vlan_create(spapr->vio_bus, nd);
2943         } else {
2944             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2945         }
2946     }
2947 
2948     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2949         spapr_vscsi_create(spapr->vio_bus);
2950     }
2951 
2952     /* Graphics */
2953     if (spapr_vga_init(phb->bus, &error_fatal)) {
2954         spapr->has_graphics = true;
2955         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2956     }
2957 
2958     if (machine->usb) {
2959         if (smc->use_ohci_by_default) {
2960             pci_create_simple(phb->bus, -1, "pci-ohci");
2961         } else {
2962             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2963         }
2964 
2965         if (spapr->has_graphics) {
2966             USBBus *usb_bus = usb_bus_find(-1);
2967 
2968             usb_create_simple(usb_bus, "usb-kbd");
2969             usb_create_simple(usb_bus, "usb-mouse");
2970         }
2971     }
2972 
2973     if (kernel_filename) {
2974         uint64_t lowaddr = 0;
2975 
2976         spapr->kernel_size = load_elf(kernel_filename, NULL,
2977                                       translate_kernel_address, spapr,
2978                                       NULL, &lowaddr, NULL, NULL, 1,
2979                                       PPC_ELF_MACHINE, 0, 0);
2980         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2981             spapr->kernel_size = load_elf(kernel_filename, NULL,
2982                                           translate_kernel_address, spapr, NULL,
2983                                           &lowaddr, NULL, NULL, 0,
2984                                           PPC_ELF_MACHINE,
2985                                           0, 0);
2986             spapr->kernel_le = spapr->kernel_size > 0;
2987         }
2988         if (spapr->kernel_size < 0) {
2989             error_report("error loading %s: %s", kernel_filename,
2990                          load_elf_strerror(spapr->kernel_size));
2991             exit(1);
2992         }
2993 
2994         /* load initrd */
2995         if (initrd_filename) {
2996             /* Try to locate the initrd in the gap between the kernel
2997              * and the firmware. Add a bit of space just in case
2998              */
2999             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3000                                   + 0x1ffff) & ~0xffff;
3001             spapr->initrd_size = load_image_targphys(initrd_filename,
3002                                                      spapr->initrd_base,
3003                                                      load_limit
3004                                                      - spapr->initrd_base);
3005             if (spapr->initrd_size < 0) {
3006                 error_report("could not load initial ram disk '%s'",
3007                              initrd_filename);
3008                 exit(1);
3009             }
3010         }
3011     }
3012 
3013     if (bios_name == NULL) {
3014         bios_name = FW_FILE_NAME;
3015     }
3016     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3017     if (!filename) {
3018         error_report("Could not find LPAR firmware '%s'", bios_name);
3019         exit(1);
3020     }
3021     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3022     if (fw_size <= 0) {
3023         error_report("Could not load LPAR firmware '%s'", filename);
3024         exit(1);
3025     }
3026     g_free(filename);
3027 
3028     /* FIXME: Should register things through the MachineState's qdev
3029      * interface, this is a legacy from the sPAPREnvironment structure
3030      * which predated MachineState but had a similar function */
3031     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3032     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3033                          &savevm_htab_handlers, spapr);
3034 
3035     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3036                              &error_fatal);
3037 
3038     qemu_register_boot_set(spapr_boot_set, spapr);
3039 
3040     /*
3041      * Nothing needs to be done to resume a suspended guest because
3042      * suspending does not change the machine state, so no need for
3043      * a ->wakeup method.
3044      */
3045     qemu_register_wakeup_support();
3046 
3047     if (kvm_enabled()) {
3048         /* to stop and start vmclock */
3049         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3050                                          &spapr->tb);
3051 
3052         kvmppc_spapr_enable_inkernel_multitce();
3053     }
3054 
3055     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3056 }
3057 
3058 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3059 {
3060     if (!vm_type) {
3061         return 0;
3062     }
3063 
3064     if (!strcmp(vm_type, "HV")) {
3065         return 1;
3066     }
3067 
3068     if (!strcmp(vm_type, "PR")) {
3069         return 2;
3070     }
3071 
3072     error_report("Unknown kvm-type specified '%s'", vm_type);
3073     exit(1);
3074 }
3075 
3076 /*
3077  * Implementation of an interface to adjust firmware path
3078  * for the bootindex property handling.
3079  */
3080 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3081                                    DeviceState *dev)
3082 {
3083 #define CAST(type, obj, name) \
3084     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3085     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3086     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3087     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3088 
3089     if (d) {
3090         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3091         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3092         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3093 
3094         if (spapr) {
3095             /*
3096              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3097              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3098              * 0x8000 | (target << 8) | (bus << 5) | lun
3099              * (see the "Logical unit addressing format" table in SAM5)
3100              */
3101             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3102             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3103                                    (uint64_t)id << 48);
3104         } else if (virtio) {
3105             /*
3106              * We use SRP luns of the form 01000000 | (target << 8) | lun
3107              * in the top 32 bits of the 64-bit LUN
3108              * Note: the quote above is from SLOF and it is wrong,
3109              * the actual binding is:
3110              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3111              */
3112             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3113             if (d->lun >= 256) {
3114                 /* Use the LUN "flat space addressing method" */
3115                 id |= 0x4000;
3116             }
3117             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3118                                    (uint64_t)id << 32);
3119         } else if (usb) {
3120             /*
3121              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3122              * in the top 32 bits of the 64-bit LUN
3123              */
3124             unsigned usb_port = atoi(usb->port->path);
3125             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3126             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3127                                    (uint64_t)id << 32);
3128         }
3129     }
3130 
3131     /*
3132      * SLOF probes the USB devices, and if it recognizes that the device is a
3133      * storage device, it changes its name to "storage" instead of "usb-host",
3134      * and additionally adds a child node for the SCSI LUN, so the correct
3135      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3136      */
3137     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3138         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3139         if (usb_host_dev_is_scsi_storage(usbdev)) {
3140             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3141         }
3142     }
3143 
3144     if (phb) {
3145         /* Replace "pci" with "pci@800000020000000" */
3146         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3147     }
3148 
3149     if (vsc) {
3150         /* Same logic as virtio above */
3151         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3152         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3153     }
3154 
3155     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3156         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3157         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3158         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3159     }
3160 
3161     return NULL;
3162 }
3163 
3164 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3165 {
3166     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3167 
3168     return g_strdup(spapr->kvm_type);
3169 }
3170 
3171 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3172 {
3173     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3174 
3175     g_free(spapr->kvm_type);
3176     spapr->kvm_type = g_strdup(value);
3177 }
3178 
3179 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3180 {
3181     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3182 
3183     return spapr->use_hotplug_event_source;
3184 }
3185 
3186 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3187                                             Error **errp)
3188 {
3189     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3190 
3191     spapr->use_hotplug_event_source = value;
3192 }
3193 
3194 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3195 {
3196     return true;
3197 }
3198 
3199 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3200 {
3201     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3202 
3203     switch (spapr->resize_hpt) {
3204     case SPAPR_RESIZE_HPT_DEFAULT:
3205         return g_strdup("default");
3206     case SPAPR_RESIZE_HPT_DISABLED:
3207         return g_strdup("disabled");
3208     case SPAPR_RESIZE_HPT_ENABLED:
3209         return g_strdup("enabled");
3210     case SPAPR_RESIZE_HPT_REQUIRED:
3211         return g_strdup("required");
3212     }
3213     g_assert_not_reached();
3214 }
3215 
3216 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3217 {
3218     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219 
3220     if (strcmp(value, "default") == 0) {
3221         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3222     } else if (strcmp(value, "disabled") == 0) {
3223         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3224     } else if (strcmp(value, "enabled") == 0) {
3225         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3226     } else if (strcmp(value, "required") == 0) {
3227         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3228     } else {
3229         error_setg(errp, "Bad value for \"resize-hpt\" property");
3230     }
3231 }
3232 
3233 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3234 {
3235     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3236 
3237     if (spapr->irq == &spapr_irq_xics_legacy) {
3238         return g_strdup("legacy");
3239     } else if (spapr->irq == &spapr_irq_xics) {
3240         return g_strdup("xics");
3241     } else if (spapr->irq == &spapr_irq_xive) {
3242         return g_strdup("xive");
3243     } else if (spapr->irq == &spapr_irq_dual) {
3244         return g_strdup("dual");
3245     }
3246     g_assert_not_reached();
3247 }
3248 
3249 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3250 {
3251     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3252 
3253     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3254         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3255         return;
3256     }
3257 
3258     /* The legacy IRQ backend can not be set */
3259     if (strcmp(value, "xics") == 0) {
3260         spapr->irq = &spapr_irq_xics;
3261     } else if (strcmp(value, "xive") == 0) {
3262         spapr->irq = &spapr_irq_xive;
3263     } else if (strcmp(value, "dual") == 0) {
3264         spapr->irq = &spapr_irq_dual;
3265     } else {
3266         error_setg(errp, "Bad value for \"ic-mode\" property");
3267     }
3268 }
3269 
3270 static char *spapr_get_host_model(Object *obj, Error **errp)
3271 {
3272     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3273 
3274     return g_strdup(spapr->host_model);
3275 }
3276 
3277 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3278 {
3279     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3280 
3281     g_free(spapr->host_model);
3282     spapr->host_model = g_strdup(value);
3283 }
3284 
3285 static char *spapr_get_host_serial(Object *obj, Error **errp)
3286 {
3287     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3288 
3289     return g_strdup(spapr->host_serial);
3290 }
3291 
3292 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3293 {
3294     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3295 
3296     g_free(spapr->host_serial);
3297     spapr->host_serial = g_strdup(value);
3298 }
3299 
3300 static void spapr_instance_init(Object *obj)
3301 {
3302     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3303     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3304 
3305     spapr->htab_fd = -1;
3306     spapr->use_hotplug_event_source = true;
3307     object_property_add_str(obj, "kvm-type",
3308                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3309     object_property_set_description(obj, "kvm-type",
3310                                     "Specifies the KVM virtualization mode (HV, PR)");
3311     object_property_add_bool(obj, "modern-hotplug-events",
3312                             spapr_get_modern_hotplug_events,
3313                             spapr_set_modern_hotplug_events,
3314                             NULL);
3315     object_property_set_description(obj, "modern-hotplug-events",
3316                                     "Use dedicated hotplug event mechanism in"
3317                                     " place of standard EPOW events when possible"
3318                                     " (required for memory hot-unplug support)");
3319     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3320                             "Maximum permitted CPU compatibility mode",
3321                             &error_fatal);
3322 
3323     object_property_add_str(obj, "resize-hpt",
3324                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3325     object_property_set_description(obj, "resize-hpt",
3326                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3327     object_property_add_uint32_ptr(obj, "vsmt",
3328                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE,
3329                                    &error_abort);
3330     object_property_set_description(obj, "vsmt",
3331                                     "Virtual SMT: KVM behaves as if this were"
3332                                     " the host's SMT mode");
3333 
3334     object_property_add_bool(obj, "vfio-no-msix-emulation",
3335                              spapr_get_msix_emulation, NULL, NULL);
3336 
3337     object_property_add_uint64_ptr(obj, "kernel-addr",
3338                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE,
3339                                    &error_abort);
3340     object_property_set_description(obj, "kernel-addr",
3341                                     stringify(KERNEL_LOAD_ADDR)
3342                                     " for -kernel is the default");
3343     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3344     /* The machine class defines the default interrupt controller mode */
3345     spapr->irq = smc->irq;
3346     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3347                             spapr_set_ic_mode, NULL);
3348     object_property_set_description(obj, "ic-mode",
3349                  "Specifies the interrupt controller mode (xics, xive, dual)");
3350 
3351     object_property_add_str(obj, "host-model",
3352         spapr_get_host_model, spapr_set_host_model,
3353         &error_abort);
3354     object_property_set_description(obj, "host-model",
3355         "Host model to advertise in guest device tree");
3356     object_property_add_str(obj, "host-serial",
3357         spapr_get_host_serial, spapr_set_host_serial,
3358         &error_abort);
3359     object_property_set_description(obj, "host-serial",
3360         "Host serial number to advertise in guest device tree");
3361 }
3362 
3363 static void spapr_machine_finalizefn(Object *obj)
3364 {
3365     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3366 
3367     g_free(spapr->kvm_type);
3368 }
3369 
3370 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3371 {
3372     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3373     PowerPCCPU *cpu = POWERPC_CPU(cs);
3374     CPUPPCState *env = &cpu->env;
3375 
3376     cpu_synchronize_state(cs);
3377     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3378     if (spapr->fwnmi_system_reset_addr != -1) {
3379         uint64_t rtas_addr, addr;
3380 
3381         /* get rtas addr from fdt */
3382         rtas_addr = spapr_get_rtas_addr();
3383         if (!rtas_addr) {
3384             qemu_system_guest_panicked(NULL);
3385             return;
3386         }
3387 
3388         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3389         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3390         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3391         env->gpr[3] = addr;
3392     }
3393     ppc_cpu_do_system_reset(cs);
3394     if (spapr->fwnmi_system_reset_addr != -1) {
3395         env->nip = spapr->fwnmi_system_reset_addr;
3396     }
3397 }
3398 
3399 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3400 {
3401     CPUState *cs;
3402 
3403     CPU_FOREACH(cs) {
3404         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3405     }
3406 }
3407 
3408 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3409                           void *fdt, int *fdt_start_offset, Error **errp)
3410 {
3411     uint64_t addr;
3412     uint32_t node;
3413 
3414     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3415     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3416                                     &error_abort);
3417     *fdt_start_offset = spapr_dt_memory_node(fdt, node, addr,
3418                                              SPAPR_MEMORY_BLOCK_SIZE);
3419     return 0;
3420 }
3421 
3422 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3423                            bool dedicated_hp_event_source, Error **errp)
3424 {
3425     SpaprDrc *drc;
3426     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3427     int i;
3428     uint64_t addr = addr_start;
3429     bool hotplugged = spapr_drc_hotplugged(dev);
3430     Error *local_err = NULL;
3431 
3432     for (i = 0; i < nr_lmbs; i++) {
3433         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3434                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3435         g_assert(drc);
3436 
3437         spapr_drc_attach(drc, dev, &local_err);
3438         if (local_err) {
3439             while (addr > addr_start) {
3440                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3441                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3442                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3443                 spapr_drc_detach(drc);
3444             }
3445             error_propagate(errp, local_err);
3446             return;
3447         }
3448         if (!hotplugged) {
3449             spapr_drc_reset(drc);
3450         }
3451         addr += SPAPR_MEMORY_BLOCK_SIZE;
3452     }
3453     /* send hotplug notification to the
3454      * guest only in case of hotplugged memory
3455      */
3456     if (hotplugged) {
3457         if (dedicated_hp_event_source) {
3458             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3459                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3460             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3461                                                    nr_lmbs,
3462                                                    spapr_drc_index(drc));
3463         } else {
3464             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3465                                            nr_lmbs);
3466         }
3467     }
3468 }
3469 
3470 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3471                               Error **errp)
3472 {
3473     Error *local_err = NULL;
3474     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3475     PCDIMMDevice *dimm = PC_DIMM(dev);
3476     uint64_t size, addr, slot;
3477     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3478 
3479     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3480 
3481     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3482     if (local_err) {
3483         goto out;
3484     }
3485 
3486     if (!is_nvdimm) {
3487         addr = object_property_get_uint(OBJECT(dimm),
3488                                         PC_DIMM_ADDR_PROP, &local_err);
3489         if (local_err) {
3490             goto out_unplug;
3491         }
3492         spapr_add_lmbs(dev, addr, size,
3493                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3494                        &local_err);
3495     } else {
3496         slot = object_property_get_uint(OBJECT(dimm),
3497                                         PC_DIMM_SLOT_PROP, &local_err);
3498         if (local_err) {
3499             goto out_unplug;
3500         }
3501         spapr_add_nvdimm(dev, slot, &local_err);
3502     }
3503 
3504     if (local_err) {
3505         goto out_unplug;
3506     }
3507 
3508     return;
3509 
3510 out_unplug:
3511     pc_dimm_unplug(dimm, MACHINE(ms));
3512 out:
3513     error_propagate(errp, local_err);
3514 }
3515 
3516 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3517                                   Error **errp)
3518 {
3519     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3520     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3521     const MachineClass *mc = MACHINE_CLASS(smc);
3522     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3523     PCDIMMDevice *dimm = PC_DIMM(dev);
3524     Error *local_err = NULL;
3525     uint64_t size;
3526     Object *memdev;
3527     hwaddr pagesize;
3528 
3529     if (!smc->dr_lmb_enabled) {
3530         error_setg(errp, "Memory hotplug not supported for this machine");
3531         return;
3532     }
3533 
3534     if (is_nvdimm && !mc->nvdimm_supported) {
3535         error_setg(errp, "NVDIMM hotplug not supported for this machine");
3536         return;
3537     }
3538 
3539     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3540     if (local_err) {
3541         error_propagate(errp, local_err);
3542         return;
3543     }
3544 
3545     if (!is_nvdimm && size % SPAPR_MEMORY_BLOCK_SIZE) {
3546         error_setg(errp, "Hotplugged memory size must be a multiple of "
3547                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3548         return;
3549     } else if (is_nvdimm) {
3550         spapr_nvdimm_validate_opts(NVDIMM(dev), size, &local_err);
3551         if (local_err) {
3552             error_propagate(errp, local_err);
3553             return;
3554         }
3555     }
3556 
3557     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3558                                       &error_abort);
3559     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3560     spapr_check_pagesize(spapr, pagesize, &local_err);
3561     if (local_err) {
3562         error_propagate(errp, local_err);
3563         return;
3564     }
3565 
3566     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3567 }
3568 
3569 struct SpaprDimmState {
3570     PCDIMMDevice *dimm;
3571     uint32_t nr_lmbs;
3572     QTAILQ_ENTRY(SpaprDimmState) next;
3573 };
3574 
3575 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3576                                                        PCDIMMDevice *dimm)
3577 {
3578     SpaprDimmState *dimm_state = NULL;
3579 
3580     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3581         if (dimm_state->dimm == dimm) {
3582             break;
3583         }
3584     }
3585     return dimm_state;
3586 }
3587 
3588 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3589                                                       uint32_t nr_lmbs,
3590                                                       PCDIMMDevice *dimm)
3591 {
3592     SpaprDimmState *ds = NULL;
3593 
3594     /*
3595      * If this request is for a DIMM whose removal had failed earlier
3596      * (due to guest's refusal to remove the LMBs), we would have this
3597      * dimm already in the pending_dimm_unplugs list. In that
3598      * case don't add again.
3599      */
3600     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3601     if (!ds) {
3602         ds = g_malloc0(sizeof(SpaprDimmState));
3603         ds->nr_lmbs = nr_lmbs;
3604         ds->dimm = dimm;
3605         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3606     }
3607     return ds;
3608 }
3609 
3610 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3611                                               SpaprDimmState *dimm_state)
3612 {
3613     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3614     g_free(dimm_state);
3615 }
3616 
3617 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3618                                                         PCDIMMDevice *dimm)
3619 {
3620     SpaprDrc *drc;
3621     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3622                                                   &error_abort);
3623     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3624     uint32_t avail_lmbs = 0;
3625     uint64_t addr_start, addr;
3626     int i;
3627 
3628     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3629                                          &error_abort);
3630 
3631     addr = addr_start;
3632     for (i = 0; i < nr_lmbs; i++) {
3633         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3634                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3635         g_assert(drc);
3636         if (drc->dev) {
3637             avail_lmbs++;
3638         }
3639         addr += SPAPR_MEMORY_BLOCK_SIZE;
3640     }
3641 
3642     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3643 }
3644 
3645 /* Callback to be called during DRC release. */
3646 void spapr_lmb_release(DeviceState *dev)
3647 {
3648     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3649     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3650     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3651 
3652     /* This information will get lost if a migration occurs
3653      * during the unplug process. In this case recover it. */
3654     if (ds == NULL) {
3655         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3656         g_assert(ds);
3657         /* The DRC being examined by the caller at least must be counted */
3658         g_assert(ds->nr_lmbs);
3659     }
3660 
3661     if (--ds->nr_lmbs) {
3662         return;
3663     }
3664 
3665     /*
3666      * Now that all the LMBs have been removed by the guest, call the
3667      * unplug handler chain. This can never fail.
3668      */
3669     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3670     object_unparent(OBJECT(dev));
3671 }
3672 
3673 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3674 {
3675     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3676     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3677 
3678     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3679     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3680     spapr_pending_dimm_unplugs_remove(spapr, ds);
3681 }
3682 
3683 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3684                                         DeviceState *dev, Error **errp)
3685 {
3686     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3687     Error *local_err = NULL;
3688     PCDIMMDevice *dimm = PC_DIMM(dev);
3689     uint32_t nr_lmbs;
3690     uint64_t size, addr_start, addr;
3691     int i;
3692     SpaprDrc *drc;
3693 
3694     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3695         error_setg(&local_err,
3696                    "nvdimm device hot unplug is not supported yet.");
3697         goto out;
3698     }
3699 
3700     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3701     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3702 
3703     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3704                                          &local_err);
3705     if (local_err) {
3706         goto out;
3707     }
3708 
3709     /*
3710      * An existing pending dimm state for this DIMM means that there is an
3711      * unplug operation in progress, waiting for the spapr_lmb_release
3712      * callback to complete the job (BQL can't cover that far). In this case,
3713      * bail out to avoid detaching DRCs that were already released.
3714      */
3715     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3716         error_setg(&local_err,
3717                    "Memory unplug already in progress for device %s",
3718                    dev->id);
3719         goto out;
3720     }
3721 
3722     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3723 
3724     addr = addr_start;
3725     for (i = 0; i < nr_lmbs; i++) {
3726         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3727                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3728         g_assert(drc);
3729 
3730         spapr_drc_detach(drc);
3731         addr += SPAPR_MEMORY_BLOCK_SIZE;
3732     }
3733 
3734     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3735                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3736     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3737                                               nr_lmbs, spapr_drc_index(drc));
3738 out:
3739     error_propagate(errp, local_err);
3740 }
3741 
3742 /* Callback to be called during DRC release. */
3743 void spapr_core_release(DeviceState *dev)
3744 {
3745     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3746 
3747     /* Call the unplug handler chain. This can never fail. */
3748     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3749     object_unparent(OBJECT(dev));
3750 }
3751 
3752 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3753 {
3754     MachineState *ms = MACHINE(hotplug_dev);
3755     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3756     CPUCore *cc = CPU_CORE(dev);
3757     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3758 
3759     if (smc->pre_2_10_has_unused_icps) {
3760         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3761         int i;
3762 
3763         for (i = 0; i < cc->nr_threads; i++) {
3764             CPUState *cs = CPU(sc->threads[i]);
3765 
3766             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3767         }
3768     }
3769 
3770     assert(core_slot);
3771     core_slot->cpu = NULL;
3772     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3773 }
3774 
3775 static
3776 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3777                                Error **errp)
3778 {
3779     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3780     int index;
3781     SpaprDrc *drc;
3782     CPUCore *cc = CPU_CORE(dev);
3783 
3784     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3785         error_setg(errp, "Unable to find CPU core with core-id: %d",
3786                    cc->core_id);
3787         return;
3788     }
3789     if (index == 0) {
3790         error_setg(errp, "Boot CPU core may not be unplugged");
3791         return;
3792     }
3793 
3794     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3795                           spapr_vcpu_id(spapr, cc->core_id));
3796     g_assert(drc);
3797 
3798     if (!spapr_drc_unplug_requested(drc)) {
3799         spapr_drc_detach(drc);
3800         spapr_hotplug_req_remove_by_index(drc);
3801     }
3802 }
3803 
3804 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3805                            void *fdt, int *fdt_start_offset, Error **errp)
3806 {
3807     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3808     CPUState *cs = CPU(core->threads[0]);
3809     PowerPCCPU *cpu = POWERPC_CPU(cs);
3810     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3811     int id = spapr_get_vcpu_id(cpu);
3812     char *nodename;
3813     int offset;
3814 
3815     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3816     offset = fdt_add_subnode(fdt, 0, nodename);
3817     g_free(nodename);
3818 
3819     spapr_dt_cpu(cs, fdt, offset, spapr);
3820 
3821     *fdt_start_offset = offset;
3822     return 0;
3823 }
3824 
3825 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3826                             Error **errp)
3827 {
3828     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3829     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3830     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3831     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3832     CPUCore *cc = CPU_CORE(dev);
3833     CPUState *cs;
3834     SpaprDrc *drc;
3835     Error *local_err = NULL;
3836     CPUArchId *core_slot;
3837     int index;
3838     bool hotplugged = spapr_drc_hotplugged(dev);
3839     int i;
3840 
3841     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3842     if (!core_slot) {
3843         error_setg(errp, "Unable to find CPU core with core-id: %d",
3844                    cc->core_id);
3845         return;
3846     }
3847     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3848                           spapr_vcpu_id(spapr, cc->core_id));
3849 
3850     g_assert(drc || !mc->has_hotpluggable_cpus);
3851 
3852     if (drc) {
3853         spapr_drc_attach(drc, dev, &local_err);
3854         if (local_err) {
3855             error_propagate(errp, local_err);
3856             return;
3857         }
3858 
3859         if (hotplugged) {
3860             /*
3861              * Send hotplug notification interrupt to the guest only
3862              * in case of hotplugged CPUs.
3863              */
3864             spapr_hotplug_req_add_by_index(drc);
3865         } else {
3866             spapr_drc_reset(drc);
3867         }
3868     }
3869 
3870     core_slot->cpu = OBJECT(dev);
3871 
3872     if (smc->pre_2_10_has_unused_icps) {
3873         for (i = 0; i < cc->nr_threads; i++) {
3874             cs = CPU(core->threads[i]);
3875             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3876         }
3877     }
3878 
3879     /*
3880      * Set compatibility mode to match the boot CPU, which was either set
3881      * by the machine reset code or by CAS.
3882      */
3883     if (hotplugged) {
3884         for (i = 0; i < cc->nr_threads; i++) {
3885             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3886                            &local_err);
3887             if (local_err) {
3888                 error_propagate(errp, local_err);
3889                 return;
3890             }
3891         }
3892     }
3893 }
3894 
3895 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3896                                 Error **errp)
3897 {
3898     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3899     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3900     Error *local_err = NULL;
3901     CPUCore *cc = CPU_CORE(dev);
3902     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3903     const char *type = object_get_typename(OBJECT(dev));
3904     CPUArchId *core_slot;
3905     int index;
3906     unsigned int smp_threads = machine->smp.threads;
3907 
3908     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3909         error_setg(&local_err, "CPU hotplug not supported for this machine");
3910         goto out;
3911     }
3912 
3913     if (strcmp(base_core_type, type)) {
3914         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3915         goto out;
3916     }
3917 
3918     if (cc->core_id % smp_threads) {
3919         error_setg(&local_err, "invalid core id %d", cc->core_id);
3920         goto out;
3921     }
3922 
3923     /*
3924      * In general we should have homogeneous threads-per-core, but old
3925      * (pre hotplug support) machine types allow the last core to have
3926      * reduced threads as a compatibility hack for when we allowed
3927      * total vcpus not a multiple of threads-per-core.
3928      */
3929     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3930         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3931                    cc->nr_threads, smp_threads);
3932         goto out;
3933     }
3934 
3935     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3936     if (!core_slot) {
3937         error_setg(&local_err, "core id %d out of range", cc->core_id);
3938         goto out;
3939     }
3940 
3941     if (core_slot->cpu) {
3942         error_setg(&local_err, "core %d already populated", cc->core_id);
3943         goto out;
3944     }
3945 
3946     numa_cpu_pre_plug(core_slot, dev, &local_err);
3947 
3948 out:
3949     error_propagate(errp, local_err);
3950 }
3951 
3952 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3953                           void *fdt, int *fdt_start_offset, Error **errp)
3954 {
3955     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3956     int intc_phandle;
3957 
3958     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3959     if (intc_phandle <= 0) {
3960         return -1;
3961     }
3962 
3963     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3964         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3965         return -1;
3966     }
3967 
3968     /* generally SLOF creates these, for hotplug it's up to QEMU */
3969     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3970 
3971     return 0;
3972 }
3973 
3974 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3975                                Error **errp)
3976 {
3977     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3978     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3979     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3980     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3981 
3982     if (dev->hotplugged && !smc->dr_phb_enabled) {
3983         error_setg(errp, "PHB hotplug not supported for this machine");
3984         return;
3985     }
3986 
3987     if (sphb->index == (uint32_t)-1) {
3988         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3989         return;
3990     }
3991 
3992     /*
3993      * This will check that sphb->index doesn't exceed the maximum number of
3994      * PHBs for the current machine type.
3995      */
3996     smc->phb_placement(spapr, sphb->index,
3997                        &sphb->buid, &sphb->io_win_addr,
3998                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3999                        windows_supported, sphb->dma_liobn,
4000                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4001                        errp);
4002 }
4003 
4004 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4005                            Error **errp)
4006 {
4007     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4008     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4009     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4010     SpaprDrc *drc;
4011     bool hotplugged = spapr_drc_hotplugged(dev);
4012     Error *local_err = NULL;
4013 
4014     if (!smc->dr_phb_enabled) {
4015         return;
4016     }
4017 
4018     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4019     /* hotplug hooks should check it's enabled before getting this far */
4020     assert(drc);
4021 
4022     spapr_drc_attach(drc, DEVICE(dev), &local_err);
4023     if (local_err) {
4024         error_propagate(errp, local_err);
4025         return;
4026     }
4027 
4028     if (hotplugged) {
4029         spapr_hotplug_req_add_by_index(drc);
4030     } else {
4031         spapr_drc_reset(drc);
4032     }
4033 }
4034 
4035 void spapr_phb_release(DeviceState *dev)
4036 {
4037     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4038 
4039     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4040     object_unparent(OBJECT(dev));
4041 }
4042 
4043 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4044 {
4045     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4046 }
4047 
4048 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4049                                      DeviceState *dev, Error **errp)
4050 {
4051     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4052     SpaprDrc *drc;
4053 
4054     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4055     assert(drc);
4056 
4057     if (!spapr_drc_unplug_requested(drc)) {
4058         spapr_drc_detach(drc);
4059         spapr_hotplug_req_remove_by_index(drc);
4060     }
4061 }
4062 
4063 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4064                                  Error **errp)
4065 {
4066     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4067     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4068 
4069     if (spapr->tpm_proxy != NULL) {
4070         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4071         return;
4072     }
4073 
4074     spapr->tpm_proxy = tpm_proxy;
4075 }
4076 
4077 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4078 {
4079     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4080 
4081     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4082     object_unparent(OBJECT(dev));
4083     spapr->tpm_proxy = NULL;
4084 }
4085 
4086 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4087                                       DeviceState *dev, Error **errp)
4088 {
4089     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4090         spapr_memory_plug(hotplug_dev, dev, errp);
4091     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4092         spapr_core_plug(hotplug_dev, dev, errp);
4093     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4094         spapr_phb_plug(hotplug_dev, dev, errp);
4095     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4096         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4097     }
4098 }
4099 
4100 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4101                                         DeviceState *dev, Error **errp)
4102 {
4103     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4104         spapr_memory_unplug(hotplug_dev, dev);
4105     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4106         spapr_core_unplug(hotplug_dev, dev);
4107     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4108         spapr_phb_unplug(hotplug_dev, dev);
4109     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4110         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4111     }
4112 }
4113 
4114 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4115                                                 DeviceState *dev, Error **errp)
4116 {
4117     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4118     MachineClass *mc = MACHINE_GET_CLASS(sms);
4119     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4120 
4121     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4122         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4123             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4124         } else {
4125             /* NOTE: this means there is a window after guest reset, prior to
4126              * CAS negotiation, where unplug requests will fail due to the
4127              * capability not being detected yet. This is a bit different than
4128              * the case with PCI unplug, where the events will be queued and
4129              * eventually handled by the guest after boot
4130              */
4131             error_setg(errp, "Memory hot unplug not supported for this guest");
4132         }
4133     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4134         if (!mc->has_hotpluggable_cpus) {
4135             error_setg(errp, "CPU hot unplug not supported on this machine");
4136             return;
4137         }
4138         spapr_core_unplug_request(hotplug_dev, dev, errp);
4139     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4140         if (!smc->dr_phb_enabled) {
4141             error_setg(errp, "PHB hot unplug not supported on this machine");
4142             return;
4143         }
4144         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4145     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4146         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4147     }
4148 }
4149 
4150 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4151                                           DeviceState *dev, Error **errp)
4152 {
4153     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4154         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4155     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4156         spapr_core_pre_plug(hotplug_dev, dev, errp);
4157     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4158         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4159     }
4160 }
4161 
4162 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4163                                                  DeviceState *dev)
4164 {
4165     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4166         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4167         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4168         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4169         return HOTPLUG_HANDLER(machine);
4170     }
4171     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4172         PCIDevice *pcidev = PCI_DEVICE(dev);
4173         PCIBus *root = pci_device_root_bus(pcidev);
4174         SpaprPhbState *phb =
4175             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4176                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4177 
4178         if (phb) {
4179             return HOTPLUG_HANDLER(phb);
4180         }
4181     }
4182     return NULL;
4183 }
4184 
4185 static CpuInstanceProperties
4186 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4187 {
4188     CPUArchId *core_slot;
4189     MachineClass *mc = MACHINE_GET_CLASS(machine);
4190 
4191     /* make sure possible_cpu are intialized */
4192     mc->possible_cpu_arch_ids(machine);
4193     /* get CPU core slot containing thread that matches cpu_index */
4194     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4195     assert(core_slot);
4196     return core_slot->props;
4197 }
4198 
4199 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4200 {
4201     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4202 }
4203 
4204 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4205 {
4206     int i;
4207     unsigned int smp_threads = machine->smp.threads;
4208     unsigned int smp_cpus = machine->smp.cpus;
4209     const char *core_type;
4210     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4211     MachineClass *mc = MACHINE_GET_CLASS(machine);
4212 
4213     if (!mc->has_hotpluggable_cpus) {
4214         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4215     }
4216     if (machine->possible_cpus) {
4217         assert(machine->possible_cpus->len == spapr_max_cores);
4218         return machine->possible_cpus;
4219     }
4220 
4221     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4222     if (!core_type) {
4223         error_report("Unable to find sPAPR CPU Core definition");
4224         exit(1);
4225     }
4226 
4227     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4228                              sizeof(CPUArchId) * spapr_max_cores);
4229     machine->possible_cpus->len = spapr_max_cores;
4230     for (i = 0; i < machine->possible_cpus->len; i++) {
4231         int core_id = i * smp_threads;
4232 
4233         machine->possible_cpus->cpus[i].type = core_type;
4234         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4235         machine->possible_cpus->cpus[i].arch_id = core_id;
4236         machine->possible_cpus->cpus[i].props.has_core_id = true;
4237         machine->possible_cpus->cpus[i].props.core_id = core_id;
4238     }
4239     return machine->possible_cpus;
4240 }
4241 
4242 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4243                                 uint64_t *buid, hwaddr *pio,
4244                                 hwaddr *mmio32, hwaddr *mmio64,
4245                                 unsigned n_dma, uint32_t *liobns,
4246                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4247 {
4248     /*
4249      * New-style PHB window placement.
4250      *
4251      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4252      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4253      * windows.
4254      *
4255      * Some guest kernels can't work with MMIO windows above 1<<46
4256      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4257      *
4258      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4259      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4260      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4261      * 1TiB 64-bit MMIO windows for each PHB.
4262      */
4263     const uint64_t base_buid = 0x800000020000000ULL;
4264     int i;
4265 
4266     /* Sanity check natural alignments */
4267     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4268     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4269     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4270     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4271     /* Sanity check bounds */
4272     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4273                       SPAPR_PCI_MEM32_WIN_SIZE);
4274     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4275                       SPAPR_PCI_MEM64_WIN_SIZE);
4276 
4277     if (index >= SPAPR_MAX_PHBS) {
4278         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4279                    SPAPR_MAX_PHBS - 1);
4280         return;
4281     }
4282 
4283     *buid = base_buid + index;
4284     for (i = 0; i < n_dma; ++i) {
4285         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4286     }
4287 
4288     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4289     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4290     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4291 
4292     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4293     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4294 }
4295 
4296 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4297 {
4298     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4299 
4300     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4301 }
4302 
4303 static void spapr_ics_resend(XICSFabric *dev)
4304 {
4305     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4306 
4307     ics_resend(spapr->ics);
4308 }
4309 
4310 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4311 {
4312     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4313 
4314     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4315 }
4316 
4317 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4318                                  Monitor *mon)
4319 {
4320     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4321 
4322     spapr_irq_print_info(spapr, mon);
4323     monitor_printf(mon, "irqchip: %s\n",
4324                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4325 }
4326 
4327 /*
4328  * This is a XIVE only operation
4329  */
4330 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4331                            uint8_t nvt_blk, uint32_t nvt_idx,
4332                            bool cam_ignore, uint8_t priority,
4333                            uint32_t logic_serv, XiveTCTXMatch *match)
4334 {
4335     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4336     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4337     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4338     int count;
4339 
4340     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4341                            priority, logic_serv, match);
4342     if (count < 0) {
4343         return count;
4344     }
4345 
4346     /*
4347      * When we implement the save and restore of the thread interrupt
4348      * contexts in the enter/exit CPU handlers of the machine and the
4349      * escalations in QEMU, we should be able to handle non dispatched
4350      * vCPUs.
4351      *
4352      * Until this is done, the sPAPR machine should find at least one
4353      * matching context always.
4354      */
4355     if (count == 0) {
4356         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4357                       nvt_blk, nvt_idx);
4358     }
4359 
4360     return count;
4361 }
4362 
4363 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4364 {
4365     return cpu->vcpu_id;
4366 }
4367 
4368 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4369 {
4370     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4371     MachineState *ms = MACHINE(spapr);
4372     int vcpu_id;
4373 
4374     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4375 
4376     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4377         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4378         error_append_hint(errp, "Adjust the number of cpus to %d "
4379                           "or try to raise the number of threads per core\n",
4380                           vcpu_id * ms->smp.threads / spapr->vsmt);
4381         return;
4382     }
4383 
4384     cpu->vcpu_id = vcpu_id;
4385 }
4386 
4387 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4388 {
4389     CPUState *cs;
4390 
4391     CPU_FOREACH(cs) {
4392         PowerPCCPU *cpu = POWERPC_CPU(cs);
4393 
4394         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4395             return cpu;
4396         }
4397     }
4398 
4399     return NULL;
4400 }
4401 
4402 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4403 {
4404     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4405 
4406     /* These are only called by TCG, KVM maintains dispatch state */
4407 
4408     spapr_cpu->prod = false;
4409     if (spapr_cpu->vpa_addr) {
4410         CPUState *cs = CPU(cpu);
4411         uint32_t dispatch;
4412 
4413         dispatch = ldl_be_phys(cs->as,
4414                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4415         dispatch++;
4416         if ((dispatch & 1) != 0) {
4417             qemu_log_mask(LOG_GUEST_ERROR,
4418                           "VPA: incorrect dispatch counter value for "
4419                           "dispatched partition %u, correcting.\n", dispatch);
4420             dispatch++;
4421         }
4422         stl_be_phys(cs->as,
4423                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4424     }
4425 }
4426 
4427 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4428 {
4429     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4430 
4431     if (spapr_cpu->vpa_addr) {
4432         CPUState *cs = CPU(cpu);
4433         uint32_t dispatch;
4434 
4435         dispatch = ldl_be_phys(cs->as,
4436                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4437         dispatch++;
4438         if ((dispatch & 1) != 1) {
4439             qemu_log_mask(LOG_GUEST_ERROR,
4440                           "VPA: incorrect dispatch counter value for "
4441                           "preempted partition %u, correcting.\n", dispatch);
4442             dispatch++;
4443         }
4444         stl_be_phys(cs->as,
4445                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4446     }
4447 }
4448 
4449 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4450 {
4451     MachineClass *mc = MACHINE_CLASS(oc);
4452     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4453     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4454     NMIClass *nc = NMI_CLASS(oc);
4455     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4456     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4457     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4458     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4459     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4460 
4461     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4462     mc->ignore_boot_device_suffixes = true;
4463 
4464     /*
4465      * We set up the default / latest behaviour here.  The class_init
4466      * functions for the specific versioned machine types can override
4467      * these details for backwards compatibility
4468      */
4469     mc->init = spapr_machine_init;
4470     mc->reset = spapr_machine_reset;
4471     mc->block_default_type = IF_SCSI;
4472     mc->max_cpus = 1024;
4473     mc->no_parallel = 1;
4474     mc->default_boot_order = "";
4475     mc->default_ram_size = 512 * MiB;
4476     mc->default_ram_id = "ppc_spapr.ram";
4477     mc->default_display = "std";
4478     mc->kvm_type = spapr_kvm_type;
4479     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4480     mc->pci_allow_0_address = true;
4481     assert(!mc->get_hotplug_handler);
4482     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4483     hc->pre_plug = spapr_machine_device_pre_plug;
4484     hc->plug = spapr_machine_device_plug;
4485     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4486     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4487     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4488     hc->unplug_request = spapr_machine_device_unplug_request;
4489     hc->unplug = spapr_machine_device_unplug;
4490 
4491     smc->dr_lmb_enabled = true;
4492     smc->update_dt_enabled = true;
4493     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4494     mc->has_hotpluggable_cpus = true;
4495     mc->nvdimm_supported = true;
4496     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4497     fwc->get_dev_path = spapr_get_fw_dev_path;
4498     nc->nmi_monitor_handler = spapr_nmi;
4499     smc->phb_placement = spapr_phb_placement;
4500     vhc->hypercall = emulate_spapr_hypercall;
4501     vhc->hpt_mask = spapr_hpt_mask;
4502     vhc->map_hptes = spapr_map_hptes;
4503     vhc->unmap_hptes = spapr_unmap_hptes;
4504     vhc->hpte_set_c = spapr_hpte_set_c;
4505     vhc->hpte_set_r = spapr_hpte_set_r;
4506     vhc->get_pate = spapr_get_pate;
4507     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4508     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4509     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4510     xic->ics_get = spapr_ics_get;
4511     xic->ics_resend = spapr_ics_resend;
4512     xic->icp_get = spapr_icp_get;
4513     ispc->print_info = spapr_pic_print_info;
4514     /* Force NUMA node memory size to be a multiple of
4515      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4516      * in which LMBs are represented and hot-added
4517      */
4518     mc->numa_mem_align_shift = 28;
4519     mc->numa_mem_supported = true;
4520     mc->auto_enable_numa = true;
4521 
4522     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4523     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4524     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4525     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4526     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4527     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4528     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4529     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4530     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4531     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4532     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4533     spapr_caps_add_properties(smc, &error_abort);
4534     smc->irq = &spapr_irq_dual;
4535     smc->dr_phb_enabled = true;
4536     smc->linux_pci_probe = true;
4537     smc->smp_threads_vsmt = true;
4538     smc->nr_xirqs = SPAPR_NR_XIRQS;
4539     xfc->match_nvt = spapr_match_nvt;
4540 }
4541 
4542 static const TypeInfo spapr_machine_info = {
4543     .name          = TYPE_SPAPR_MACHINE,
4544     .parent        = TYPE_MACHINE,
4545     .abstract      = true,
4546     .instance_size = sizeof(SpaprMachineState),
4547     .instance_init = spapr_instance_init,
4548     .instance_finalize = spapr_machine_finalizefn,
4549     .class_size    = sizeof(SpaprMachineClass),
4550     .class_init    = spapr_machine_class_init,
4551     .interfaces = (InterfaceInfo[]) {
4552         { TYPE_FW_PATH_PROVIDER },
4553         { TYPE_NMI },
4554         { TYPE_HOTPLUG_HANDLER },
4555         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4556         { TYPE_XICS_FABRIC },
4557         { TYPE_INTERRUPT_STATS_PROVIDER },
4558         { TYPE_XIVE_FABRIC },
4559         { }
4560     },
4561 };
4562 
4563 static void spapr_machine_latest_class_options(MachineClass *mc)
4564 {
4565     mc->alias = "pseries";
4566     mc->is_default = true;
4567 }
4568 
4569 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4570     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4571                                                     void *data)      \
4572     {                                                                \
4573         MachineClass *mc = MACHINE_CLASS(oc);                        \
4574         spapr_machine_##suffix##_class_options(mc);                  \
4575         if (latest) {                                                \
4576             spapr_machine_latest_class_options(mc);                  \
4577         }                                                            \
4578     }                                                                \
4579     static const TypeInfo spapr_machine_##suffix##_info = {          \
4580         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4581         .parent = TYPE_SPAPR_MACHINE,                                \
4582         .class_init = spapr_machine_##suffix##_class_init,           \
4583     };                                                               \
4584     static void spapr_machine_register_##suffix(void)                \
4585     {                                                                \
4586         type_register(&spapr_machine_##suffix##_info);               \
4587     }                                                                \
4588     type_init(spapr_machine_register_##suffix)
4589 
4590 /*
4591  * pseries-5.1
4592  */
4593 static void spapr_machine_5_1_class_options(MachineClass *mc)
4594 {
4595     /* Defaults for the latest behaviour inherited from the base class */
4596 }
4597 
4598 DEFINE_SPAPR_MACHINE(5_1, "5.1", true);
4599 
4600 /*
4601  * pseries-5.0
4602  */
4603 static void spapr_machine_5_0_class_options(MachineClass *mc)
4604 {
4605     spapr_machine_5_1_class_options(mc);
4606     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4607 }
4608 
4609 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4610 
4611 /*
4612  * pseries-4.2
4613  */
4614 static void spapr_machine_4_2_class_options(MachineClass *mc)
4615 {
4616     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4617 
4618     spapr_machine_5_0_class_options(mc);
4619     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4620     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4621     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4622     smc->rma_limit = 16 * GiB;
4623     mc->nvdimm_supported = false;
4624 }
4625 
4626 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4627 
4628 /*
4629  * pseries-4.1
4630  */
4631 static void spapr_machine_4_1_class_options(MachineClass *mc)
4632 {
4633     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4634     static GlobalProperty compat[] = {
4635         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4636         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4637     };
4638 
4639     spapr_machine_4_2_class_options(mc);
4640     smc->linux_pci_probe = false;
4641     smc->smp_threads_vsmt = false;
4642     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4643     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4644 }
4645 
4646 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4647 
4648 /*
4649  * pseries-4.0
4650  */
4651 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4652                               uint64_t *buid, hwaddr *pio,
4653                               hwaddr *mmio32, hwaddr *mmio64,
4654                               unsigned n_dma, uint32_t *liobns,
4655                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4656 {
4657     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4658                         nv2gpa, nv2atsd, errp);
4659     *nv2gpa = 0;
4660     *nv2atsd = 0;
4661 }
4662 
4663 static void spapr_machine_4_0_class_options(MachineClass *mc)
4664 {
4665     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4666 
4667     spapr_machine_4_1_class_options(mc);
4668     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4669     smc->phb_placement = phb_placement_4_0;
4670     smc->irq = &spapr_irq_xics;
4671     smc->pre_4_1_migration = true;
4672 }
4673 
4674 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4675 
4676 /*
4677  * pseries-3.1
4678  */
4679 static void spapr_machine_3_1_class_options(MachineClass *mc)
4680 {
4681     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4682 
4683     spapr_machine_4_0_class_options(mc);
4684     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4685 
4686     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4687     smc->update_dt_enabled = false;
4688     smc->dr_phb_enabled = false;
4689     smc->broken_host_serial_model = true;
4690     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4691     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4692     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4693     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4694 }
4695 
4696 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4697 
4698 /*
4699  * pseries-3.0
4700  */
4701 
4702 static void spapr_machine_3_0_class_options(MachineClass *mc)
4703 {
4704     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4705 
4706     spapr_machine_3_1_class_options(mc);
4707     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4708 
4709     smc->legacy_irq_allocation = true;
4710     smc->nr_xirqs = 0x400;
4711     smc->irq = &spapr_irq_xics_legacy;
4712 }
4713 
4714 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4715 
4716 /*
4717  * pseries-2.12
4718  */
4719 static void spapr_machine_2_12_class_options(MachineClass *mc)
4720 {
4721     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4722     static GlobalProperty compat[] = {
4723         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4724         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4725     };
4726 
4727     spapr_machine_3_0_class_options(mc);
4728     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4729     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4730 
4731     /* We depend on kvm_enabled() to choose a default value for the
4732      * hpt-max-page-size capability. Of course we can't do it here
4733      * because this is too early and the HW accelerator isn't initialzed
4734      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4735      */
4736     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4737 }
4738 
4739 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4740 
4741 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4742 {
4743     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4744 
4745     spapr_machine_2_12_class_options(mc);
4746     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4747     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4748     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4749 }
4750 
4751 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4752 
4753 /*
4754  * pseries-2.11
4755  */
4756 
4757 static void spapr_machine_2_11_class_options(MachineClass *mc)
4758 {
4759     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4760 
4761     spapr_machine_2_12_class_options(mc);
4762     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4763     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4764 }
4765 
4766 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4767 
4768 /*
4769  * pseries-2.10
4770  */
4771 
4772 static void spapr_machine_2_10_class_options(MachineClass *mc)
4773 {
4774     spapr_machine_2_11_class_options(mc);
4775     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4776 }
4777 
4778 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4779 
4780 /*
4781  * pseries-2.9
4782  */
4783 
4784 static void spapr_machine_2_9_class_options(MachineClass *mc)
4785 {
4786     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4787     static GlobalProperty compat[] = {
4788         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4789     };
4790 
4791     spapr_machine_2_10_class_options(mc);
4792     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4793     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4794     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4795     smc->pre_2_10_has_unused_icps = true;
4796     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4797 }
4798 
4799 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4800 
4801 /*
4802  * pseries-2.8
4803  */
4804 
4805 static void spapr_machine_2_8_class_options(MachineClass *mc)
4806 {
4807     static GlobalProperty compat[] = {
4808         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4809     };
4810 
4811     spapr_machine_2_9_class_options(mc);
4812     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4813     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4814     mc->numa_mem_align_shift = 23;
4815 }
4816 
4817 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4818 
4819 /*
4820  * pseries-2.7
4821  */
4822 
4823 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4824                               uint64_t *buid, hwaddr *pio,
4825                               hwaddr *mmio32, hwaddr *mmio64,
4826                               unsigned n_dma, uint32_t *liobns,
4827                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4828 {
4829     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4830     const uint64_t base_buid = 0x800000020000000ULL;
4831     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4832     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4833     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4834     const uint32_t max_index = 255;
4835     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4836 
4837     uint64_t ram_top = MACHINE(spapr)->ram_size;
4838     hwaddr phb0_base, phb_base;
4839     int i;
4840 
4841     /* Do we have device memory? */
4842     if (MACHINE(spapr)->maxram_size > ram_top) {
4843         /* Can't just use maxram_size, because there may be an
4844          * alignment gap between normal and device memory regions
4845          */
4846         ram_top = MACHINE(spapr)->device_memory->base +
4847             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4848     }
4849 
4850     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4851 
4852     if (index > max_index) {
4853         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4854                    max_index);
4855         return;
4856     }
4857 
4858     *buid = base_buid + index;
4859     for (i = 0; i < n_dma; ++i) {
4860         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4861     }
4862 
4863     phb_base = phb0_base + index * phb_spacing;
4864     *pio = phb_base + pio_offset;
4865     *mmio32 = phb_base + mmio_offset;
4866     /*
4867      * We don't set the 64-bit MMIO window, relying on the PHB's
4868      * fallback behaviour of automatically splitting a large "32-bit"
4869      * window into contiguous 32-bit and 64-bit windows
4870      */
4871 
4872     *nv2gpa = 0;
4873     *nv2atsd = 0;
4874 }
4875 
4876 static void spapr_machine_2_7_class_options(MachineClass *mc)
4877 {
4878     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4879     static GlobalProperty compat[] = {
4880         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4881         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4882         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4883         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4884     };
4885 
4886     spapr_machine_2_8_class_options(mc);
4887     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4888     mc->default_machine_opts = "modern-hotplug-events=off";
4889     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4890     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4891     smc->phb_placement = phb_placement_2_7;
4892 }
4893 
4894 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4895 
4896 /*
4897  * pseries-2.6
4898  */
4899 
4900 static void spapr_machine_2_6_class_options(MachineClass *mc)
4901 {
4902     static GlobalProperty compat[] = {
4903         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4904     };
4905 
4906     spapr_machine_2_7_class_options(mc);
4907     mc->has_hotpluggable_cpus = false;
4908     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4909     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4910 }
4911 
4912 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4913 
4914 /*
4915  * pseries-2.5
4916  */
4917 
4918 static void spapr_machine_2_5_class_options(MachineClass *mc)
4919 {
4920     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4921     static GlobalProperty compat[] = {
4922         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4923     };
4924 
4925     spapr_machine_2_6_class_options(mc);
4926     smc->use_ohci_by_default = true;
4927     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4928     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4929 }
4930 
4931 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4932 
4933 /*
4934  * pseries-2.4
4935  */
4936 
4937 static void spapr_machine_2_4_class_options(MachineClass *mc)
4938 {
4939     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4940 
4941     spapr_machine_2_5_class_options(mc);
4942     smc->dr_lmb_enabled = false;
4943     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4944 }
4945 
4946 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4947 
4948 /*
4949  * pseries-2.3
4950  */
4951 
4952 static void spapr_machine_2_3_class_options(MachineClass *mc)
4953 {
4954     static GlobalProperty compat[] = {
4955         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4956     };
4957     spapr_machine_2_4_class_options(mc);
4958     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4959     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4960 }
4961 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4962 
4963 /*
4964  * pseries-2.2
4965  */
4966 
4967 static void spapr_machine_2_2_class_options(MachineClass *mc)
4968 {
4969     static GlobalProperty compat[] = {
4970         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4971     };
4972 
4973     spapr_machine_2_3_class_options(mc);
4974     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4975     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4976     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4977 }
4978 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4979 
4980 /*
4981  * pseries-2.1
4982  */
4983 
4984 static void spapr_machine_2_1_class_options(MachineClass *mc)
4985 {
4986     spapr_machine_2_2_class_options(mc);
4987     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4988 }
4989 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4990 
4991 static void spapr_machine_register_types(void)
4992 {
4993     type_register_static(&spapr_machine_info);
4994 }
4995 
4996 type_init(spapr_machine_register_types)
4997