1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/tcg.h" 39 #include "sysemu/qtest.h" 40 #include "sysemu/reset.h" 41 #include "sysemu/runstate.h" 42 #include "qemu/log.h" 43 #include "hw/fw-path-provider.h" 44 #include "elf.h" 45 #include "net/net.h" 46 #include "sysemu/device_tree.h" 47 #include "sysemu/cpus.h" 48 #include "sysemu/hw_accel.h" 49 #include "kvm_ppc.h" 50 #include "migration/misc.h" 51 #include "migration/qemu-file-types.h" 52 #include "migration/global_state.h" 53 #include "migration/register.h" 54 #include "migration/blocker.h" 55 #include "mmu-hash64.h" 56 #include "mmu-book3s-v3.h" 57 #include "cpu-models.h" 58 #include "hw/core/cpu.h" 59 60 #include "hw/ppc/ppc.h" 61 #include "hw/loader.h" 62 63 #include "hw/ppc/fdt.h" 64 #include "hw/ppc/spapr.h" 65 #include "hw/ppc/spapr_nested.h" 66 #include "hw/ppc/spapr_vio.h" 67 #include "hw/ppc/vof.h" 68 #include "hw/qdev-properties.h" 69 #include "hw/pci-host/spapr.h" 70 #include "hw/pci/msi.h" 71 72 #include "hw/pci/pci.h" 73 #include "hw/scsi/scsi.h" 74 #include "hw/virtio/virtio-scsi.h" 75 #include "hw/virtio/vhost-scsi-common.h" 76 77 #include "exec/ram_addr.h" 78 #include "exec/confidential-guest-support.h" 79 #include "hw/usb.h" 80 #include "qemu/config-file.h" 81 #include "qemu/error-report.h" 82 #include "trace.h" 83 #include "hw/nmi.h" 84 #include "hw/intc/intc.h" 85 86 #include "hw/ppc/spapr_cpu_core.h" 87 #include "hw/mem/memory-device.h" 88 #include "hw/ppc/spapr_tpm_proxy.h" 89 #include "hw/ppc/spapr_nvdimm.h" 90 #include "hw/ppc/spapr_numa.h" 91 92 #include <libfdt.h> 93 94 /* SLOF memory layout: 95 * 96 * SLOF raw image loaded at 0, copies its romfs right below the flat 97 * device-tree, then position SLOF itself 31M below that 98 * 99 * So we set FW_OVERHEAD to 40MB which should account for all of that 100 * and more 101 * 102 * We load our kernel at 4M, leaving space for SLOF initial image 103 */ 104 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 105 #define FW_MAX_SIZE 0x400000 106 #define FW_FILE_NAME "slof.bin" 107 #define FW_FILE_NAME_VOF "vof.bin" 108 #define FW_OVERHEAD 0x2800000 109 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 110 111 #define MIN_RMA_SLOF (128 * MiB) 112 113 #define PHANDLE_INTC 0x00001111 114 115 /* These two functions implement the VCPU id numbering: one to compute them 116 * all and one to identify thread 0 of a VCORE. Any change to the first one 117 * is likely to have an impact on the second one, so let's keep them close. 118 */ 119 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 120 { 121 MachineState *ms = MACHINE(spapr); 122 unsigned int smp_threads = ms->smp.threads; 123 124 assert(spapr->vsmt); 125 return 126 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 127 } 128 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 129 PowerPCCPU *cpu) 130 { 131 assert(spapr->vsmt); 132 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 133 } 134 135 int spapr_max_server_number(SpaprMachineState *spapr) 136 { 137 MachineState *ms = MACHINE(spapr); 138 139 assert(spapr->vsmt); 140 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 141 } 142 143 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 144 int smt_threads) 145 { 146 int i, ret = 0; 147 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 148 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 149 int index = spapr_get_vcpu_id(cpu); 150 151 if (cpu->compat_pvr) { 152 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 153 if (ret < 0) { 154 return ret; 155 } 156 } 157 158 /* Build interrupt servers and gservers properties */ 159 for (i = 0; i < smt_threads; i++) { 160 servers_prop[i] = cpu_to_be32(index + i); 161 /* Hack, direct the group queues back to cpu 0 */ 162 gservers_prop[i*2] = cpu_to_be32(index + i); 163 gservers_prop[i*2 + 1] = 0; 164 } 165 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 166 servers_prop, sizeof(*servers_prop) * smt_threads); 167 if (ret < 0) { 168 return ret; 169 } 170 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 171 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 172 173 return ret; 174 } 175 176 static void spapr_dt_pa_features(SpaprMachineState *spapr, 177 PowerPCCPU *cpu, 178 void *fdt, int offset) 179 { 180 /* 181 * SSO (SAO) ordering is supported on KVM and thread=single hosts, 182 * but not MTTCG, so disable it. To advertise it, a cap would have 183 * to be added, or support implemented for MTTCG. 184 * 185 * Copy/paste is not supported by TCG, so it is not advertised. KVM 186 * can execute them but it has no accelerator drivers which are usable, 187 * so there isn't much need for it anyway. 188 */ 189 190 /* These should be kept in sync with pnv */ 191 uint8_t pa_features_206[] = { 6, 0, 192 0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 }; 193 uint8_t pa_features_207[] = { 24, 0, 194 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, 195 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 196 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 197 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 198 uint8_t pa_features_300[] = { 66, 0, 199 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 200 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 201 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 202 /* 6: DS207 */ 203 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 204 /* 16: Vector */ 205 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 206 /* 18: Vec. Scalar, 20: Vec. XOR */ 207 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 208 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 209 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 210 /* 32: LE atomic, 34: EBB + ext EBB */ 211 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 212 /* 40: Radix MMU */ 213 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 214 /* 42: PM, 44: PC RA, 46: SC vec'd */ 215 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 216 /* 48: SIMD, 50: QP BFP, 52: String */ 217 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 218 /* 54: DecFP, 56: DecI, 58: SHA */ 219 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 220 /* 60: NM atomic, 62: RNG */ 221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 222 }; 223 /* 3.1 removes SAO, HTM support */ 224 uint8_t pa_features_31[] = { 74, 0, 225 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 226 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 227 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 228 /* 6: DS207 */ 229 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 230 /* 16: Vector */ 231 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 232 /* 18: Vec. Scalar, 20: Vec. XOR */ 233 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 234 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 236 /* 32: LE atomic, 34: EBB + ext EBB */ 237 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 238 /* 40: Radix MMU */ 239 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 240 /* 42: PM, 44: PC RA, 46: SC vec'd */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 242 /* 48: SIMD, 50: QP BFP, 52: String */ 243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 244 /* 54: DecFP, 56: DecI, 58: SHA */ 245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 246 /* 60: NM atomic, 62: RNG */ 247 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 248 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */ 249 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */ 250 /* 72: [P]HASHST/[P]HASHCHK */ 251 0x80, 0x00, /* 72 - 73 */ 252 }; 253 uint8_t *pa_features = NULL; 254 size_t pa_size; 255 256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 257 pa_features = pa_features_206; 258 pa_size = sizeof(pa_features_206); 259 } 260 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 261 pa_features = pa_features_207; 262 pa_size = sizeof(pa_features_207); 263 } 264 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 265 pa_features = pa_features_300; 266 pa_size = sizeof(pa_features_300); 267 } 268 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) { 269 pa_features = pa_features_31; 270 pa_size = sizeof(pa_features_31); 271 } 272 if (!pa_features) { 273 return; 274 } 275 276 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 277 /* 278 * Note: we keep CI large pages off by default because a 64K capable 279 * guest provisioned with large pages might otherwise try to map a qemu 280 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 281 * even if that qemu runs on a 4k host. 282 * We dd this bit back here if we are confident this is not an issue 283 */ 284 pa_features[3] |= 0x20; 285 } 286 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 287 pa_features[24] |= 0x80; /* Transactional memory support */ 288 } 289 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 290 /* Workaround for broken kernels that attempt (guest) radix 291 * mode when they can't handle it, if they see the radix bit set 292 * in pa-features. So hide it from them. */ 293 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 294 } 295 296 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 297 } 298 299 static void spapr_dt_pi_features(SpaprMachineState *spapr, 300 PowerPCCPU *cpu, 301 void *fdt, int offset) 302 { 303 uint8_t pi_features[] = { 1, 0, 304 0x00 }; 305 306 if (kvm_enabled() && ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 307 0, cpu->compat_pvr)) { 308 /* 309 * POWER9 and later CPUs with KVM run in LPAR-per-thread mode where 310 * all threads are essentially independent CPUs, and msgsndp does not 311 * work (because it is physically-addressed) and therefore is 312 * emulated by KVM, so disable it here to ensure XIVE will be used. 313 * This is both KVM and CPU implementation-specific behaviour so a KVM 314 * cap would be cleanest, but for now this works. If KVM ever permits 315 * native msgsndp execution by guests, a cap could be added at that 316 * time. 317 */ 318 pi_features[2] |= 0x08; /* 4: No msgsndp */ 319 } 320 321 _FDT((fdt_setprop(fdt, offset, "ibm,pi-features", pi_features, 322 sizeof(pi_features)))); 323 } 324 325 static hwaddr spapr_node0_size(MachineState *machine) 326 { 327 if (machine->numa_state->num_nodes) { 328 int i; 329 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 330 if (machine->numa_state->nodes[i].node_mem) { 331 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 332 machine->ram_size); 333 } 334 } 335 } 336 return machine->ram_size; 337 } 338 339 static void add_str(GString *s, const gchar *s1) 340 { 341 g_string_append_len(s, s1, strlen(s1) + 1); 342 } 343 344 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 345 hwaddr start, hwaddr size) 346 { 347 char mem_name[32]; 348 uint64_t mem_reg_property[2]; 349 int off; 350 351 mem_reg_property[0] = cpu_to_be64(start); 352 mem_reg_property[1] = cpu_to_be64(size); 353 354 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 355 off = fdt_add_subnode(fdt, 0, mem_name); 356 _FDT(off); 357 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 358 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 359 sizeof(mem_reg_property)))); 360 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 361 return off; 362 } 363 364 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 365 { 366 MemoryDeviceInfoList *info; 367 368 for (info = list; info; info = info->next) { 369 MemoryDeviceInfo *value = info->value; 370 371 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 372 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 373 374 if (addr >= pcdimm_info->addr && 375 addr < (pcdimm_info->addr + pcdimm_info->size)) { 376 return pcdimm_info->node; 377 } 378 } 379 } 380 381 return -1; 382 } 383 384 struct sPAPRDrconfCellV2 { 385 uint32_t seq_lmbs; 386 uint64_t base_addr; 387 uint32_t drc_index; 388 uint32_t aa_index; 389 uint32_t flags; 390 } QEMU_PACKED; 391 392 typedef struct DrconfCellQueue { 393 struct sPAPRDrconfCellV2 cell; 394 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 395 } DrconfCellQueue; 396 397 static DrconfCellQueue * 398 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 399 uint32_t drc_index, uint32_t aa_index, 400 uint32_t flags) 401 { 402 DrconfCellQueue *elem; 403 404 elem = g_malloc0(sizeof(*elem)); 405 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 406 elem->cell.base_addr = cpu_to_be64(base_addr); 407 elem->cell.drc_index = cpu_to_be32(drc_index); 408 elem->cell.aa_index = cpu_to_be32(aa_index); 409 elem->cell.flags = cpu_to_be32(flags); 410 411 return elem; 412 } 413 414 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 415 int offset, MemoryDeviceInfoList *dimms) 416 { 417 MachineState *machine = MACHINE(spapr); 418 uint8_t *int_buf, *cur_index; 419 int ret; 420 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 421 uint64_t addr, cur_addr, size; 422 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 423 uint64_t mem_end = machine->device_memory->base + 424 memory_region_size(&machine->device_memory->mr); 425 uint32_t node, buf_len, nr_entries = 0; 426 SpaprDrc *drc; 427 DrconfCellQueue *elem, *next; 428 MemoryDeviceInfoList *info; 429 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 430 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 431 432 /* Entry to cover RAM and the gap area */ 433 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 434 SPAPR_LMB_FLAGS_RESERVED | 435 SPAPR_LMB_FLAGS_DRC_INVALID); 436 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 437 nr_entries++; 438 439 cur_addr = machine->device_memory->base; 440 for (info = dimms; info; info = info->next) { 441 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 442 443 addr = di->addr; 444 size = di->size; 445 node = di->node; 446 447 /* 448 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 449 * area is marked hotpluggable in the next iteration for the bigger 450 * chunk including the NVDIMM occupied area. 451 */ 452 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 453 continue; 454 455 /* Entry for hot-pluggable area */ 456 if (cur_addr < addr) { 457 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 458 g_assert(drc); 459 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 460 cur_addr, spapr_drc_index(drc), -1, 0); 461 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 462 nr_entries++; 463 } 464 465 /* Entry for DIMM */ 466 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 467 g_assert(drc); 468 elem = spapr_get_drconf_cell(size / lmb_size, addr, 469 spapr_drc_index(drc), node, 470 (SPAPR_LMB_FLAGS_ASSIGNED | 471 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 472 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 473 nr_entries++; 474 cur_addr = addr + size; 475 } 476 477 /* Entry for remaining hotpluggable area */ 478 if (cur_addr < mem_end) { 479 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 480 g_assert(drc); 481 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 482 cur_addr, spapr_drc_index(drc), -1, 0); 483 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 484 nr_entries++; 485 } 486 487 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 488 int_buf = cur_index = g_malloc0(buf_len); 489 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 490 cur_index += sizeof(nr_entries); 491 492 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 493 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 494 cur_index += sizeof(elem->cell); 495 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 496 g_free(elem); 497 } 498 499 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 500 g_free(int_buf); 501 if (ret < 0) { 502 return -1; 503 } 504 return 0; 505 } 506 507 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 508 int offset, MemoryDeviceInfoList *dimms) 509 { 510 MachineState *machine = MACHINE(spapr); 511 int i, ret; 512 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 513 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 514 uint32_t nr_lmbs = (machine->device_memory->base + 515 memory_region_size(&machine->device_memory->mr)) / 516 lmb_size; 517 uint32_t *int_buf, *cur_index, buf_len; 518 519 /* 520 * Allocate enough buffer size to fit in ibm,dynamic-memory 521 */ 522 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 523 cur_index = int_buf = g_malloc0(buf_len); 524 int_buf[0] = cpu_to_be32(nr_lmbs); 525 cur_index++; 526 for (i = 0; i < nr_lmbs; i++) { 527 uint64_t addr = i * lmb_size; 528 uint32_t *dynamic_memory = cur_index; 529 530 if (i >= device_lmb_start) { 531 SpaprDrc *drc; 532 533 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 534 g_assert(drc); 535 536 dynamic_memory[0] = cpu_to_be32(addr >> 32); 537 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 538 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 539 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 540 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 541 if (memory_region_present(get_system_memory(), addr)) { 542 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 543 } else { 544 dynamic_memory[5] = cpu_to_be32(0); 545 } 546 } else { 547 /* 548 * LMB information for RMA, boot time RAM and gap b/n RAM and 549 * device memory region -- all these are marked as reserved 550 * and as having no valid DRC. 551 */ 552 dynamic_memory[0] = cpu_to_be32(addr >> 32); 553 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 554 dynamic_memory[2] = cpu_to_be32(0); 555 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 556 dynamic_memory[4] = cpu_to_be32(-1); 557 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 558 SPAPR_LMB_FLAGS_DRC_INVALID); 559 } 560 561 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 562 } 563 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 564 g_free(int_buf); 565 if (ret < 0) { 566 return -1; 567 } 568 return 0; 569 } 570 571 /* 572 * Adds ibm,dynamic-reconfiguration-memory node. 573 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 574 * of this device tree node. 575 */ 576 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 577 void *fdt) 578 { 579 MachineState *machine = MACHINE(spapr); 580 int ret, offset; 581 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 582 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 583 cpu_to_be32(lmb_size & 0xffffffff)}; 584 MemoryDeviceInfoList *dimms = NULL; 585 586 /* Don't create the node if there is no device memory. */ 587 if (!machine->device_memory) { 588 return 0; 589 } 590 591 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 592 593 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 594 sizeof(prop_lmb_size)); 595 if (ret < 0) { 596 return ret; 597 } 598 599 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 600 if (ret < 0) { 601 return ret; 602 } 603 604 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 605 if (ret < 0) { 606 return ret; 607 } 608 609 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 610 dimms = qmp_memory_device_list(); 611 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 612 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 613 } else { 614 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 615 } 616 qapi_free_MemoryDeviceInfoList(dimms); 617 618 if (ret < 0) { 619 return ret; 620 } 621 622 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 623 624 return ret; 625 } 626 627 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 628 { 629 MachineState *machine = MACHINE(spapr); 630 hwaddr mem_start, node_size; 631 int i, nb_nodes = machine->numa_state->num_nodes; 632 NodeInfo *nodes = machine->numa_state->nodes; 633 634 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 635 if (!nodes[i].node_mem) { 636 continue; 637 } 638 if (mem_start >= machine->ram_size) { 639 node_size = 0; 640 } else { 641 node_size = nodes[i].node_mem; 642 if (node_size > machine->ram_size - mem_start) { 643 node_size = machine->ram_size - mem_start; 644 } 645 } 646 if (!mem_start) { 647 /* spapr_machine_init() checks for rma_size <= node0_size 648 * already */ 649 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 650 mem_start += spapr->rma_size; 651 node_size -= spapr->rma_size; 652 } 653 for ( ; node_size; ) { 654 hwaddr sizetmp = pow2floor(node_size); 655 656 /* mem_start != 0 here */ 657 if (ctzl(mem_start) < ctzl(sizetmp)) { 658 sizetmp = 1ULL << ctzl(mem_start); 659 } 660 661 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 662 node_size -= sizetmp; 663 mem_start += sizetmp; 664 } 665 } 666 667 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 668 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 669 int ret; 670 671 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 672 if (ret) { 673 return ret; 674 } 675 } 676 677 return 0; 678 } 679 680 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 681 SpaprMachineState *spapr) 682 { 683 MachineState *ms = MACHINE(spapr); 684 PowerPCCPU *cpu = POWERPC_CPU(cs); 685 CPUPPCState *env = &cpu->env; 686 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 687 int index = spapr_get_vcpu_id(cpu); 688 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 689 0xffffffff, 0xffffffff}; 690 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 691 : SPAPR_TIMEBASE_FREQ; 692 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 693 uint32_t page_sizes_prop[64]; 694 size_t page_sizes_prop_size; 695 unsigned int smp_threads = ms->smp.threads; 696 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 697 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 698 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 699 SpaprDrc *drc; 700 int drc_index; 701 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 702 int i; 703 704 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, env->core_index); 705 if (drc) { 706 drc_index = spapr_drc_index(drc); 707 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 708 } 709 710 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 711 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 712 713 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 714 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 715 env->dcache_line_size))); 716 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 717 env->dcache_line_size))); 718 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 719 env->icache_line_size))); 720 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 721 env->icache_line_size))); 722 723 if (pcc->l1_dcache_size) { 724 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 725 pcc->l1_dcache_size))); 726 } else { 727 warn_report("Unknown L1 dcache size for cpu"); 728 } 729 if (pcc->l1_icache_size) { 730 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 731 pcc->l1_icache_size))); 732 } else { 733 warn_report("Unknown L1 icache size for cpu"); 734 } 735 736 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 737 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 738 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 740 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 741 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 742 743 if (ppc_has_spr(cpu, SPR_PURR)) { 744 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 745 } 746 if (ppc_has_spr(cpu, SPR_PURR)) { 747 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 748 } 749 750 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 751 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 752 segs, sizeof(segs)))); 753 } 754 755 /* Advertise VSX (vector extensions) if available 756 * 1 == VMX / Altivec available 757 * 2 == VSX available 758 * 759 * Only CPUs for which we create core types in spapr_cpu_core.c 760 * are possible, and all of those have VMX */ 761 if (env->insns_flags & PPC_ALTIVEC) { 762 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 763 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 764 } else { 765 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 766 } 767 } 768 769 /* Advertise DFP (Decimal Floating Point) if available 770 * 0 / no property == no DFP 771 * 1 == DFP available */ 772 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 773 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 774 } 775 776 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 777 sizeof(page_sizes_prop)); 778 if (page_sizes_prop_size) { 779 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 780 page_sizes_prop, page_sizes_prop_size))); 781 } 782 783 spapr_dt_pa_features(spapr, cpu, fdt, offset); 784 785 spapr_dt_pi_features(spapr, cpu, fdt, offset); 786 787 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 788 cs->cpu_index / vcpus_per_socket))); 789 790 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 791 pft_size_prop, sizeof(pft_size_prop)))); 792 793 if (ms->numa_state->num_nodes > 1) { 794 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 795 } 796 797 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 798 799 if (pcc->radix_page_info) { 800 for (i = 0; i < pcc->radix_page_info->count; i++) { 801 radix_AP_encodings[i] = 802 cpu_to_be32(pcc->radix_page_info->entries[i]); 803 } 804 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 805 radix_AP_encodings, 806 pcc->radix_page_info->count * 807 sizeof(radix_AP_encodings[0])))); 808 } 809 810 /* 811 * We set this property to let the guest know that it can use the large 812 * decrementer and its width in bits. 813 */ 814 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 815 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 816 pcc->lrg_decr_bits))); 817 } 818 819 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs, 820 int cpus_offset) 821 { 822 PowerPCCPU *cpu = POWERPC_CPU(cs); 823 int index = spapr_get_vcpu_id(cpu); 824 DeviceClass *dc = DEVICE_GET_CLASS(cs); 825 g_autofree char *nodename = NULL; 826 int offset; 827 828 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 829 return; 830 } 831 832 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 833 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 834 _FDT(offset); 835 spapr_dt_cpu(cs, fdt, offset, spapr); 836 } 837 838 839 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 840 { 841 CPUState **rev; 842 CPUState *cs; 843 int n_cpus; 844 int cpus_offset; 845 int i; 846 847 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 848 _FDT(cpus_offset); 849 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 850 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 851 852 /* 853 * We walk the CPUs in reverse order to ensure that CPU DT nodes 854 * created by fdt_add_subnode() end up in the right order in FDT 855 * for the guest kernel the enumerate the CPUs correctly. 856 * 857 * The CPU list cannot be traversed in reverse order, so we need 858 * to do extra work. 859 */ 860 n_cpus = 0; 861 rev = NULL; 862 CPU_FOREACH(cs) { 863 rev = g_renew(CPUState *, rev, n_cpus + 1); 864 rev[n_cpus++] = cs; 865 } 866 867 for (i = n_cpus - 1; i >= 0; i--) { 868 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset); 869 } 870 871 g_free(rev); 872 } 873 874 static int spapr_dt_rng(void *fdt) 875 { 876 int node; 877 int ret; 878 879 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 880 if (node <= 0) { 881 return -1; 882 } 883 ret = fdt_setprop_string(fdt, node, "device_type", 884 "ibm,platform-facilities"); 885 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 886 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 887 888 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 889 if (node <= 0) { 890 return -1; 891 } 892 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 893 894 return ret ? -1 : 0; 895 } 896 897 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 898 { 899 MachineState *ms = MACHINE(spapr); 900 int rtas; 901 GString *hypertas = g_string_sized_new(256); 902 GString *qemu_hypertas = g_string_sized_new(256); 903 uint32_t lrdr_capacity[] = { 904 0, 905 0, 906 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 907 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 908 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 909 }; 910 911 /* Do we have device memory? */ 912 if (MACHINE(spapr)->device_memory) { 913 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 914 memory_region_size(&MACHINE(spapr)->device_memory->mr); 915 916 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 917 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 918 } 919 920 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 921 922 /* hypertas */ 923 add_str(hypertas, "hcall-pft"); 924 add_str(hypertas, "hcall-term"); 925 add_str(hypertas, "hcall-dabr"); 926 add_str(hypertas, "hcall-interrupt"); 927 add_str(hypertas, "hcall-tce"); 928 add_str(hypertas, "hcall-vio"); 929 add_str(hypertas, "hcall-splpar"); 930 add_str(hypertas, "hcall-join"); 931 add_str(hypertas, "hcall-bulk"); 932 add_str(hypertas, "hcall-set-mode"); 933 add_str(hypertas, "hcall-sprg0"); 934 add_str(hypertas, "hcall-copy"); 935 add_str(hypertas, "hcall-debug"); 936 add_str(hypertas, "hcall-vphn"); 937 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 938 add_str(hypertas, "hcall-rpt-invalidate"); 939 } 940 941 add_str(qemu_hypertas, "hcall-memop1"); 942 943 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 944 add_str(hypertas, "hcall-multi-tce"); 945 } 946 947 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 948 add_str(hypertas, "hcall-hpt-resize"); 949 } 950 951 add_str(hypertas, "hcall-watchdog"); 952 953 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 954 hypertas->str, hypertas->len)); 955 g_string_free(hypertas, TRUE); 956 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 957 qemu_hypertas->str, qemu_hypertas->len)); 958 g_string_free(qemu_hypertas, TRUE); 959 960 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 961 962 /* 963 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 964 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 965 * 966 * The system reset requirements are driven by existing Linux and PowerVM 967 * implementation which (contrary to PAPR) saves r3 in the error log 968 * structure like machine check, so Linux expects to find the saved r3 969 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 970 * does not look at the error value). 971 * 972 * System reset interrupts are not subject to interlock like machine 973 * check, so this memory area could be corrupted if the sreset is 974 * interrupted by a machine check (or vice versa) if it was shared. To 975 * prevent this, system reset uses per-CPU areas for the sreset save 976 * area. A system reset that interrupts a system reset handler could 977 * still overwrite this area, but Linux doesn't try to recover in that 978 * case anyway. 979 * 980 * The extra 8 bytes is required because Linux's FWNMI error log check 981 * is off-by-one. 982 * 983 * RTAS_MIN_SIZE is required for the RTAS blob itself. 984 */ 985 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 986 RTAS_ERROR_LOG_MAX + 987 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 988 sizeof(uint64_t))); 989 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 990 RTAS_ERROR_LOG_MAX)); 991 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 992 RTAS_EVENT_SCAN_RATE)); 993 994 g_assert(msi_nonbroken); 995 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 996 997 /* 998 * According to PAPR, rtas ibm,os-term does not guarantee a return 999 * back to the guest cpu. 1000 * 1001 * While an additional ibm,extended-os-term property indicates 1002 * that rtas call return will always occur. Set this property. 1003 */ 1004 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1005 1006 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1007 lrdr_capacity, sizeof(lrdr_capacity))); 1008 1009 spapr_dt_rtas_tokens(fdt, rtas); 1010 } 1011 1012 /* 1013 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1014 * and the XIVE features that the guest may request and thus the valid 1015 * values for bytes 23..26 of option vector 5: 1016 */ 1017 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1018 int chosen) 1019 { 1020 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1021 1022 char val[2 * 4] = { 1023 23, 0x00, /* XICS / XIVE mode */ 1024 24, 0x00, /* Hash/Radix, filled in below. */ 1025 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1026 26, 0x40, /* Radix options: GTSE == yes. */ 1027 }; 1028 1029 if (spapr->irq->xics && spapr->irq->xive) { 1030 val[1] = SPAPR_OV5_XIVE_BOTH; 1031 } else if (spapr->irq->xive) { 1032 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1033 } else { 1034 assert(spapr->irq->xics); 1035 val[1] = SPAPR_OV5_XIVE_LEGACY; 1036 } 1037 1038 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1039 first_ppc_cpu->compat_pvr)) { 1040 /* 1041 * If we're in a pre POWER9 compat mode then the guest should 1042 * do hash and use the legacy interrupt mode 1043 */ 1044 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1045 val[3] = 0x00; /* Hash */ 1046 spapr_check_mmu_mode(false); 1047 } else if (kvm_enabled()) { 1048 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1049 val[3] = 0x80; /* OV5_MMU_BOTH */ 1050 } else if (kvmppc_has_cap_mmu_radix()) { 1051 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1052 } else { 1053 val[3] = 0x00; /* Hash */ 1054 } 1055 } else { 1056 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1057 val[3] = 0xC0; 1058 } 1059 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1060 val, sizeof(val))); 1061 } 1062 1063 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1064 { 1065 MachineState *machine = MACHINE(spapr); 1066 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1067 int chosen; 1068 1069 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1070 1071 if (reset) { 1072 const char *boot_device = spapr->boot_device; 1073 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1074 size_t cb = 0; 1075 g_autofree char *bootlist = get_boot_devices_list(&cb); 1076 1077 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1078 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1079 machine->kernel_cmdline)); 1080 } 1081 1082 if (spapr->initrd_size) { 1083 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1084 spapr->initrd_base)); 1085 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1086 spapr->initrd_base + spapr->initrd_size)); 1087 } 1088 1089 if (spapr->kernel_size) { 1090 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1091 cpu_to_be64(spapr->kernel_size) }; 1092 1093 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1094 &kprop, sizeof(kprop))); 1095 if (spapr->kernel_le) { 1096 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1097 } 1098 } 1099 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1100 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1101 } 1102 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1103 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1104 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1105 1106 if (cb && bootlist) { 1107 int i; 1108 1109 for (i = 0; i < cb; i++) { 1110 if (bootlist[i] == '\n') { 1111 bootlist[i] = ' '; 1112 } 1113 } 1114 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1115 } 1116 1117 if (boot_device && strlen(boot_device)) { 1118 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1119 } 1120 1121 if (spapr->want_stdout_path && stdout_path) { 1122 /* 1123 * "linux,stdout-path" and "stdout" properties are 1124 * deprecated by linux kernel. New platforms should only 1125 * use the "stdout-path" property. Set the new property 1126 * and continue using older property to remain compatible 1127 * with the existing firmware. 1128 */ 1129 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1130 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1131 } 1132 1133 /* 1134 * We can deal with BAR reallocation just fine, advertise it 1135 * to the guest 1136 */ 1137 if (smc->linux_pci_probe) { 1138 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1139 } 1140 1141 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1142 } 1143 1144 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); 1145 1146 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1147 } 1148 1149 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1150 { 1151 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1152 * KVM to work under pHyp with some guest co-operation */ 1153 int hypervisor; 1154 uint8_t hypercall[16]; 1155 1156 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1157 /* indicate KVM hypercall interface */ 1158 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1159 if (kvmppc_has_cap_fixup_hcalls()) { 1160 /* 1161 * Older KVM versions with older guest kernels were broken 1162 * with the magic page, don't allow the guest to map it. 1163 */ 1164 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall, 1165 sizeof(hypercall))) { 1166 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1167 hypercall, sizeof(hypercall))); 1168 } 1169 } 1170 } 1171 1172 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1173 { 1174 MachineState *machine = MACHINE(spapr); 1175 MachineClass *mc = MACHINE_GET_CLASS(machine); 1176 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1177 uint32_t root_drc_type_mask = 0; 1178 int ret; 1179 void *fdt; 1180 SpaprPhbState *phb; 1181 char *buf; 1182 1183 fdt = g_malloc0(space); 1184 _FDT((fdt_create_empty_tree(fdt, space))); 1185 1186 /* Root node */ 1187 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1188 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1189 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1190 1191 /* Guest UUID & Name*/ 1192 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1193 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1194 if (qemu_uuid_set) { 1195 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1196 } 1197 g_free(buf); 1198 1199 if (qemu_get_vm_name()) { 1200 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1201 qemu_get_vm_name())); 1202 } 1203 1204 /* Host Model & Serial Number */ 1205 if (spapr->host_model) { 1206 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1207 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1208 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1209 g_free(buf); 1210 } 1211 1212 if (spapr->host_serial) { 1213 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1214 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1215 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1216 g_free(buf); 1217 } 1218 1219 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1220 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1221 1222 /* /interrupt controller */ 1223 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1224 1225 ret = spapr_dt_memory(spapr, fdt); 1226 if (ret < 0) { 1227 error_report("couldn't setup memory nodes in fdt"); 1228 exit(1); 1229 } 1230 1231 /* /vdevice */ 1232 spapr_dt_vdevice(spapr->vio_bus, fdt); 1233 1234 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1235 ret = spapr_dt_rng(fdt); 1236 if (ret < 0) { 1237 error_report("could not set up rng device in the fdt"); 1238 exit(1); 1239 } 1240 } 1241 1242 QLIST_FOREACH(phb, &spapr->phbs, list) { 1243 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1244 if (ret < 0) { 1245 error_report("couldn't setup PCI devices in fdt"); 1246 exit(1); 1247 } 1248 } 1249 1250 spapr_dt_cpus(fdt, spapr); 1251 1252 /* ibm,drc-indexes and friends */ 1253 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1254 if (smc->dr_phb_enabled) { 1255 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1256 } 1257 if (mc->nvdimm_supported) { 1258 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1259 } 1260 if (root_drc_type_mask) { 1261 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1262 } 1263 1264 if (mc->has_hotpluggable_cpus) { 1265 int offset = fdt_path_offset(fdt, "/cpus"); 1266 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1267 if (ret < 0) { 1268 error_report("Couldn't set up CPU DR device tree properties"); 1269 exit(1); 1270 } 1271 } 1272 1273 /* /event-sources */ 1274 spapr_dt_events(spapr, fdt); 1275 1276 /* /rtas */ 1277 spapr_dt_rtas(spapr, fdt); 1278 1279 /* /chosen */ 1280 spapr_dt_chosen(spapr, fdt, reset); 1281 1282 /* /hypervisor */ 1283 if (kvm_enabled()) { 1284 spapr_dt_hypervisor(spapr, fdt); 1285 } 1286 1287 /* Build memory reserve map */ 1288 if (reset) { 1289 if (spapr->kernel_size) { 1290 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1291 spapr->kernel_size))); 1292 } 1293 if (spapr->initrd_size) { 1294 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1295 spapr->initrd_size))); 1296 } 1297 } 1298 1299 /* NVDIMM devices */ 1300 if (mc->nvdimm_supported) { 1301 spapr_dt_persistent_memory(spapr, fdt); 1302 } 1303 1304 return fdt; 1305 } 1306 1307 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1308 { 1309 SpaprMachineState *spapr = opaque; 1310 1311 return (addr & 0x0fffffff) + spapr->kernel_addr; 1312 } 1313 1314 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1315 PowerPCCPU *cpu) 1316 { 1317 CPUPPCState *env = &cpu->env; 1318 1319 /* The TCG path should also be holding the BQL at this point */ 1320 g_assert(bql_locked()); 1321 1322 g_assert(!vhyp_cpu_in_nested(cpu)); 1323 1324 if (FIELD_EX64(env->msr, MSR, PR)) { 1325 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1326 env->gpr[3] = H_PRIVILEGE; 1327 } else { 1328 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1329 } 1330 } 1331 1332 struct LPCRSyncState { 1333 target_ulong value; 1334 target_ulong mask; 1335 }; 1336 1337 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1338 { 1339 struct LPCRSyncState *s = arg.host_ptr; 1340 PowerPCCPU *cpu = POWERPC_CPU(cs); 1341 CPUPPCState *env = &cpu->env; 1342 target_ulong lpcr; 1343 1344 cpu_synchronize_state(cs); 1345 lpcr = env->spr[SPR_LPCR]; 1346 lpcr &= ~s->mask; 1347 lpcr |= s->value; 1348 ppc_store_lpcr(cpu, lpcr); 1349 } 1350 1351 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1352 { 1353 CPUState *cs; 1354 struct LPCRSyncState s = { 1355 .value = value, 1356 .mask = mask 1357 }; 1358 CPU_FOREACH(cs) { 1359 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1360 } 1361 } 1362 1363 /* May be used when the machine is not running */ 1364 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1365 { 1366 CPUState *cs; 1367 CPU_FOREACH(cs) { 1368 PowerPCCPU *cpu = POWERPC_CPU(cs); 1369 CPUPPCState *env = &cpu->env; 1370 target_ulong lpcr; 1371 1372 lpcr = env->spr[SPR_LPCR]; 1373 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1374 ppc_store_lpcr(cpu, lpcr); 1375 } 1376 } 1377 1378 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1379 target_ulong lpid, ppc_v3_pate_t *entry) 1380 { 1381 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1382 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1383 1384 if (!spapr_cpu->in_nested) { 1385 assert(lpid == 0); 1386 1387 /* Copy PATE1:GR into PATE0:HR */ 1388 entry->dw0 = spapr->patb_entry & PATE0_HR; 1389 entry->dw1 = spapr->patb_entry; 1390 return true; 1391 } else { 1392 if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) { 1393 return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry); 1394 } else if (spapr_nested_api(spapr) == NESTED_API_PAPR) { 1395 return spapr_get_pate_nested_papr(spapr, cpu, lpid, entry); 1396 } else { 1397 g_assert_not_reached(); 1398 } 1399 } 1400 } 1401 1402 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1403 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1404 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1405 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1406 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1407 1408 /* 1409 * Get the fd to access the kernel htab, re-opening it if necessary 1410 */ 1411 static int get_htab_fd(SpaprMachineState *spapr) 1412 { 1413 Error *local_err = NULL; 1414 1415 if (spapr->htab_fd >= 0) { 1416 return spapr->htab_fd; 1417 } 1418 1419 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1420 if (spapr->htab_fd < 0) { 1421 error_report_err(local_err); 1422 } 1423 1424 return spapr->htab_fd; 1425 } 1426 1427 void close_htab_fd(SpaprMachineState *spapr) 1428 { 1429 if (spapr->htab_fd >= 0) { 1430 close(spapr->htab_fd); 1431 } 1432 spapr->htab_fd = -1; 1433 } 1434 1435 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1436 { 1437 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1438 1439 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1440 } 1441 1442 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1443 { 1444 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1445 1446 assert(kvm_enabled()); 1447 1448 if (!spapr->htab) { 1449 return 0; 1450 } 1451 1452 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1453 } 1454 1455 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1456 hwaddr ptex, int n) 1457 { 1458 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1459 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1460 1461 if (!spapr->htab) { 1462 /* 1463 * HTAB is controlled by KVM. Fetch into temporary buffer 1464 */ 1465 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1466 kvmppc_read_hptes(hptes, ptex, n); 1467 return hptes; 1468 } 1469 1470 /* 1471 * HTAB is controlled by QEMU. Just point to the internally 1472 * accessible PTEG. 1473 */ 1474 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1475 } 1476 1477 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1478 const ppc_hash_pte64_t *hptes, 1479 hwaddr ptex, int n) 1480 { 1481 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1482 1483 if (!spapr->htab) { 1484 g_free((void *)hptes); 1485 } 1486 1487 /* Nothing to do for qemu managed HPT */ 1488 } 1489 1490 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1491 uint64_t pte0, uint64_t pte1) 1492 { 1493 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1494 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1495 1496 if (!spapr->htab) { 1497 kvmppc_write_hpte(ptex, pte0, pte1); 1498 } else { 1499 if (pte0 & HPTE64_V_VALID) { 1500 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1501 /* 1502 * When setting valid, we write PTE1 first. This ensures 1503 * proper synchronization with the reading code in 1504 * ppc_hash64_pteg_search() 1505 */ 1506 smp_wmb(); 1507 stq_p(spapr->htab + offset, pte0); 1508 } else { 1509 stq_p(spapr->htab + offset, pte0); 1510 /* 1511 * When clearing it we set PTE0 first. This ensures proper 1512 * synchronization with the reading code in 1513 * ppc_hash64_pteg_search() 1514 */ 1515 smp_wmb(); 1516 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1517 } 1518 } 1519 } 1520 1521 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1522 uint64_t pte1) 1523 { 1524 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1525 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1526 1527 if (!spapr->htab) { 1528 /* There should always be a hash table when this is called */ 1529 error_report("spapr_hpte_set_c called with no hash table !"); 1530 return; 1531 } 1532 1533 /* The HW performs a non-atomic byte update */ 1534 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1535 } 1536 1537 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1538 uint64_t pte1) 1539 { 1540 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1541 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1542 1543 if (!spapr->htab) { 1544 /* There should always be a hash table when this is called */ 1545 error_report("spapr_hpte_set_r called with no hash table !"); 1546 return; 1547 } 1548 1549 /* The HW performs a non-atomic byte update */ 1550 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1551 } 1552 1553 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1554 { 1555 int shift; 1556 1557 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1558 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1559 * that's much more than is needed for Linux guests */ 1560 shift = ctz64(pow2ceil(ramsize)) - 7; 1561 shift = MAX(shift, 18); /* Minimum architected size */ 1562 shift = MIN(shift, 46); /* Maximum architected size */ 1563 return shift; 1564 } 1565 1566 void spapr_free_hpt(SpaprMachineState *spapr) 1567 { 1568 qemu_vfree(spapr->htab); 1569 spapr->htab = NULL; 1570 spapr->htab_shift = 0; 1571 close_htab_fd(spapr); 1572 } 1573 1574 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1575 { 1576 ERRP_GUARD(); 1577 long rc; 1578 1579 /* Clean up any HPT info from a previous boot */ 1580 spapr_free_hpt(spapr); 1581 1582 rc = kvmppc_reset_htab(shift); 1583 1584 if (rc == -EOPNOTSUPP) { 1585 error_setg(errp, "HPT not supported in nested guests"); 1586 return -EOPNOTSUPP; 1587 } 1588 1589 if (rc < 0) { 1590 /* kernel-side HPT needed, but couldn't allocate one */ 1591 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1592 shift); 1593 error_append_hint(errp, "Try smaller maxmem?\n"); 1594 return -errno; 1595 } else if (rc > 0) { 1596 /* kernel-side HPT allocated */ 1597 if (rc != shift) { 1598 error_setg(errp, 1599 "Requested order %d HPT, but kernel allocated order %ld", 1600 shift, rc); 1601 error_append_hint(errp, "Try smaller maxmem?\n"); 1602 return -ENOSPC; 1603 } 1604 1605 spapr->htab_shift = shift; 1606 spapr->htab = NULL; 1607 } else { 1608 /* kernel-side HPT not needed, allocate in userspace instead */ 1609 size_t size = 1ULL << shift; 1610 int i; 1611 1612 spapr->htab = qemu_memalign(size, size); 1613 memset(spapr->htab, 0, size); 1614 spapr->htab_shift = shift; 1615 1616 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1617 DIRTY_HPTE(HPTE(spapr->htab, i)); 1618 } 1619 } 1620 /* We're setting up a hash table, so that means we're not radix */ 1621 spapr->patb_entry = 0; 1622 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1623 return 0; 1624 } 1625 1626 void spapr_setup_hpt(SpaprMachineState *spapr) 1627 { 1628 int hpt_shift; 1629 1630 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1631 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1632 } else { 1633 uint64_t current_ram_size; 1634 1635 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1636 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1637 } 1638 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1639 1640 if (kvm_enabled()) { 1641 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1642 1643 /* Check our RMA fits in the possible VRMA */ 1644 if (vrma_limit < spapr->rma_size) { 1645 error_report("Unable to create %" HWADDR_PRIu 1646 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1647 spapr->rma_size / MiB, vrma_limit / MiB); 1648 exit(EXIT_FAILURE); 1649 } 1650 } 1651 } 1652 1653 void spapr_check_mmu_mode(bool guest_radix) 1654 { 1655 if (guest_radix) { 1656 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1657 error_report("Guest requested unavailable MMU mode (radix)."); 1658 exit(EXIT_FAILURE); 1659 } 1660 } else { 1661 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1662 && !kvmppc_has_cap_mmu_hash_v3()) { 1663 error_report("Guest requested unavailable MMU mode (hash)."); 1664 exit(EXIT_FAILURE); 1665 } 1666 } 1667 } 1668 1669 static void spapr_machine_reset(MachineState *machine, ResetType type) 1670 { 1671 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1672 PowerPCCPU *first_ppc_cpu; 1673 hwaddr fdt_addr; 1674 void *fdt; 1675 int rc; 1676 1677 if (type != RESET_TYPE_SNAPSHOT_LOAD) { 1678 /* 1679 * Record-replay snapshot load must not consume random, this was 1680 * already replayed from initial machine reset. 1681 */ 1682 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); 1683 } 1684 1685 if (machine->cgs) { 1686 confidential_guest_kvm_reset(machine->cgs, &error_fatal); 1687 } 1688 spapr_caps_apply(spapr); 1689 spapr_nested_reset(spapr); 1690 1691 first_ppc_cpu = POWERPC_CPU(first_cpu); 1692 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1693 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1694 spapr->max_compat_pvr)) { 1695 /* 1696 * If using KVM with radix mode available, VCPUs can be started 1697 * without a HPT because KVM will start them in radix mode. 1698 * Set the GR bit in PATE so that we know there is no HPT. 1699 */ 1700 spapr->patb_entry = PATE1_GR; 1701 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1702 } else { 1703 spapr_setup_hpt(spapr); 1704 } 1705 1706 qemu_devices_reset(type); 1707 1708 spapr_ovec_cleanup(spapr->ov5_cas); 1709 spapr->ov5_cas = spapr_ovec_new(); 1710 1711 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1712 1713 /* 1714 * This is fixing some of the default configuration of the XIVE 1715 * devices. To be called after the reset of the machine devices. 1716 */ 1717 spapr_irq_reset(spapr, &error_fatal); 1718 1719 /* 1720 * There is no CAS under qtest. Simulate one to please the code that 1721 * depends on spapr->ov5_cas. This is especially needed to test device 1722 * unplug, so we do that before resetting the DRCs. 1723 */ 1724 if (qtest_enabled()) { 1725 spapr_ovec_cleanup(spapr->ov5_cas); 1726 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1727 } 1728 1729 spapr_nvdimm_finish_flushes(); 1730 1731 /* DRC reset may cause a device to be unplugged. This will cause troubles 1732 * if this device is used by another device (eg, a running vhost backend 1733 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1734 * situations, we reset DRCs after all devices have been reset. 1735 */ 1736 spapr_drc_reset_all(spapr); 1737 1738 spapr_clear_pending_events(spapr); 1739 1740 /* 1741 * We place the device tree just below either the top of the RMA, 1742 * or just below 2GB, whichever is lower, so that it can be 1743 * processed with 32-bit real mode code if necessary 1744 */ 1745 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1746 1747 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1748 if (spapr->vof) { 1749 spapr_vof_reset(spapr, fdt, &error_fatal); 1750 /* 1751 * Do not pack the FDT as the client may change properties. 1752 * VOF client does not expect the FDT so we do not load it to the VM. 1753 */ 1754 } else { 1755 rc = fdt_pack(fdt); 1756 /* Should only fail if we've built a corrupted tree */ 1757 assert(rc == 0); 1758 1759 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1760 0, fdt_addr, 0); 1761 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1762 } 1763 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1764 1765 g_free(spapr->fdt_blob); 1766 spapr->fdt_size = fdt_totalsize(fdt); 1767 spapr->fdt_initial_size = spapr->fdt_size; 1768 spapr->fdt_blob = fdt; 1769 1770 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1771 machine->fdt = fdt; 1772 1773 /* Set up the entry state */ 1774 first_ppc_cpu->env.gpr[5] = 0; 1775 1776 spapr->fwnmi_system_reset_addr = -1; 1777 spapr->fwnmi_machine_check_addr = -1; 1778 spapr->fwnmi_machine_check_interlock = -1; 1779 1780 /* Signal all vCPUs waiting on this condition */ 1781 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1782 1783 migrate_del_blocker(&spapr->fwnmi_migration_blocker); 1784 } 1785 1786 static void spapr_create_nvram(SpaprMachineState *spapr) 1787 { 1788 DeviceState *dev = qdev_new("spapr-nvram"); 1789 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1790 1791 if (dinfo) { 1792 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1793 &error_fatal); 1794 } 1795 1796 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1797 1798 spapr->nvram = (struct SpaprNvram *)dev; 1799 } 1800 1801 static void spapr_rtc_create(SpaprMachineState *spapr) 1802 { 1803 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1804 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1805 &error_fatal, NULL); 1806 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1807 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1808 "date"); 1809 } 1810 1811 /* Returns whether we want to use VGA or not */ 1812 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1813 { 1814 vga_interface_created = true; 1815 switch (vga_interface_type) { 1816 case VGA_NONE: 1817 return false; 1818 case VGA_DEVICE: 1819 return true; 1820 case VGA_STD: 1821 case VGA_VIRTIO: 1822 case VGA_CIRRUS: 1823 return pci_vga_init(pci_bus) != NULL; 1824 default: 1825 error_setg(errp, 1826 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1827 return false; 1828 } 1829 } 1830 1831 static int spapr_pre_load(void *opaque) 1832 { 1833 int rc; 1834 1835 rc = spapr_caps_pre_load(opaque); 1836 if (rc) { 1837 return rc; 1838 } 1839 1840 return 0; 1841 } 1842 1843 static int spapr_post_load(void *opaque, int version_id) 1844 { 1845 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1846 int err = 0; 1847 1848 err = spapr_caps_post_migration(spapr); 1849 if (err) { 1850 return err; 1851 } 1852 1853 /* 1854 * In earlier versions, there was no separate qdev for the PAPR 1855 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1856 * So when migrating from those versions, poke the incoming offset 1857 * value into the RTC device 1858 */ 1859 if (version_id < 3) { 1860 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1861 if (err) { 1862 return err; 1863 } 1864 } 1865 1866 if (kvm_enabled() && spapr->patb_entry) { 1867 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1868 bool radix = !!(spapr->patb_entry & PATE1_GR); 1869 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1870 1871 /* 1872 * Update LPCR:HR and UPRT as they may not be set properly in 1873 * the stream 1874 */ 1875 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1876 LPCR_HR | LPCR_UPRT); 1877 1878 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1879 if (err) { 1880 error_report("Process table config unsupported by the host"); 1881 return -EINVAL; 1882 } 1883 } 1884 1885 err = spapr_irq_post_load(spapr, version_id); 1886 if (err) { 1887 return err; 1888 } 1889 1890 return err; 1891 } 1892 1893 static int spapr_pre_save(void *opaque) 1894 { 1895 int rc; 1896 1897 rc = spapr_caps_pre_save(opaque); 1898 if (rc) { 1899 return rc; 1900 } 1901 1902 return 0; 1903 } 1904 1905 static bool version_before_3(void *opaque, int version_id) 1906 { 1907 return version_id < 3; 1908 } 1909 1910 static bool spapr_pending_events_needed(void *opaque) 1911 { 1912 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1913 return !QTAILQ_EMPTY(&spapr->pending_events); 1914 } 1915 1916 static const VMStateDescription vmstate_spapr_event_entry = { 1917 .name = "spapr_event_log_entry", 1918 .version_id = 1, 1919 .minimum_version_id = 1, 1920 .fields = (const VMStateField[]) { 1921 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1922 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1923 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1924 NULL, extended_length), 1925 VMSTATE_END_OF_LIST() 1926 }, 1927 }; 1928 1929 static const VMStateDescription vmstate_spapr_pending_events = { 1930 .name = "spapr_pending_events", 1931 .version_id = 1, 1932 .minimum_version_id = 1, 1933 .needed = spapr_pending_events_needed, 1934 .fields = (const VMStateField[]) { 1935 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1936 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1937 VMSTATE_END_OF_LIST() 1938 }, 1939 }; 1940 1941 static bool spapr_ov5_cas_needed(void *opaque) 1942 { 1943 SpaprMachineState *spapr = opaque; 1944 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1945 bool cas_needed; 1946 1947 /* Prior to the introduction of SpaprOptionVector, we had two option 1948 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1949 * Both of these options encode machine topology into the device-tree 1950 * in such a way that the now-booted OS should still be able to interact 1951 * appropriately with QEMU regardless of what options were actually 1952 * negotiatied on the source side. 1953 * 1954 * As such, we can avoid migrating the CAS-negotiated options if these 1955 * are the only options available on the current machine/platform. 1956 * Since these are the only options available for pseries-2.7 and 1957 * earlier, this allows us to maintain old->new/new->old migration 1958 * compatibility. 1959 * 1960 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1961 * via default pseries-2.8 machines and explicit command-line parameters. 1962 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1963 * of the actual CAS-negotiated values to continue working properly. For 1964 * example, availability of memory unplug depends on knowing whether 1965 * OV5_HP_EVT was negotiated via CAS. 1966 * 1967 * Thus, for any cases where the set of available CAS-negotiatable 1968 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1969 * include the CAS-negotiated options in the migration stream, unless 1970 * if they affect boot time behaviour only. 1971 */ 1972 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1973 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1974 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1975 1976 /* We need extra information if we have any bits outside the mask 1977 * defined above */ 1978 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1979 1980 spapr_ovec_cleanup(ov5_mask); 1981 1982 return cas_needed; 1983 } 1984 1985 static const VMStateDescription vmstate_spapr_ov5_cas = { 1986 .name = "spapr_option_vector_ov5_cas", 1987 .version_id = 1, 1988 .minimum_version_id = 1, 1989 .needed = spapr_ov5_cas_needed, 1990 .fields = (const VMStateField[]) { 1991 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1992 vmstate_spapr_ovec, SpaprOptionVector), 1993 VMSTATE_END_OF_LIST() 1994 }, 1995 }; 1996 1997 static bool spapr_patb_entry_needed(void *opaque) 1998 { 1999 SpaprMachineState *spapr = opaque; 2000 2001 return !!spapr->patb_entry; 2002 } 2003 2004 static const VMStateDescription vmstate_spapr_patb_entry = { 2005 .name = "spapr_patb_entry", 2006 .version_id = 1, 2007 .minimum_version_id = 1, 2008 .needed = spapr_patb_entry_needed, 2009 .fields = (const VMStateField[]) { 2010 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2011 VMSTATE_END_OF_LIST() 2012 }, 2013 }; 2014 2015 static bool spapr_irq_map_needed(void *opaque) 2016 { 2017 SpaprMachineState *spapr = opaque; 2018 2019 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2020 } 2021 2022 static const VMStateDescription vmstate_spapr_irq_map = { 2023 .name = "spapr_irq_map", 2024 .version_id = 1, 2025 .minimum_version_id = 1, 2026 .needed = spapr_irq_map_needed, 2027 .fields = (const VMStateField[]) { 2028 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2029 VMSTATE_END_OF_LIST() 2030 }, 2031 }; 2032 2033 static bool spapr_dtb_needed(void *opaque) 2034 { 2035 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2036 2037 return smc->update_dt_enabled; 2038 } 2039 2040 static int spapr_dtb_pre_load(void *opaque) 2041 { 2042 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2043 2044 g_free(spapr->fdt_blob); 2045 spapr->fdt_blob = NULL; 2046 spapr->fdt_size = 0; 2047 2048 return 0; 2049 } 2050 2051 static const VMStateDescription vmstate_spapr_dtb = { 2052 .name = "spapr_dtb", 2053 .version_id = 1, 2054 .minimum_version_id = 1, 2055 .needed = spapr_dtb_needed, 2056 .pre_load = spapr_dtb_pre_load, 2057 .fields = (const VMStateField[]) { 2058 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2059 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2060 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2061 fdt_size), 2062 VMSTATE_END_OF_LIST() 2063 }, 2064 }; 2065 2066 static bool spapr_fwnmi_needed(void *opaque) 2067 { 2068 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2069 2070 return spapr->fwnmi_machine_check_addr != -1; 2071 } 2072 2073 static int spapr_fwnmi_pre_save(void *opaque) 2074 { 2075 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2076 2077 /* 2078 * Check if machine check handling is in progress and print a 2079 * warning message. 2080 */ 2081 if (spapr->fwnmi_machine_check_interlock != -1) { 2082 warn_report("A machine check is being handled during migration. The" 2083 "handler may run and log hardware error on the destination"); 2084 } 2085 2086 return 0; 2087 } 2088 2089 static const VMStateDescription vmstate_spapr_fwnmi = { 2090 .name = "spapr_fwnmi", 2091 .version_id = 1, 2092 .minimum_version_id = 1, 2093 .needed = spapr_fwnmi_needed, 2094 .pre_save = spapr_fwnmi_pre_save, 2095 .fields = (const VMStateField[]) { 2096 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2097 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2098 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2099 VMSTATE_END_OF_LIST() 2100 }, 2101 }; 2102 2103 static const VMStateDescription vmstate_spapr = { 2104 .name = "spapr", 2105 .version_id = 3, 2106 .minimum_version_id = 1, 2107 .pre_load = spapr_pre_load, 2108 .post_load = spapr_post_load, 2109 .pre_save = spapr_pre_save, 2110 .fields = (const VMStateField[]) { 2111 /* used to be @next_irq */ 2112 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2113 2114 /* RTC offset */ 2115 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2116 2117 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2118 VMSTATE_END_OF_LIST() 2119 }, 2120 .subsections = (const VMStateDescription * const []) { 2121 &vmstate_spapr_ov5_cas, 2122 &vmstate_spapr_patb_entry, 2123 &vmstate_spapr_pending_events, 2124 &vmstate_spapr_cap_htm, 2125 &vmstate_spapr_cap_vsx, 2126 &vmstate_spapr_cap_dfp, 2127 &vmstate_spapr_cap_cfpc, 2128 &vmstate_spapr_cap_sbbc, 2129 &vmstate_spapr_cap_ibs, 2130 &vmstate_spapr_cap_hpt_maxpagesize, 2131 &vmstate_spapr_irq_map, 2132 &vmstate_spapr_cap_nested_kvm_hv, 2133 &vmstate_spapr_dtb, 2134 &vmstate_spapr_cap_large_decr, 2135 &vmstate_spapr_cap_ccf_assist, 2136 &vmstate_spapr_cap_fwnmi, 2137 &vmstate_spapr_fwnmi, 2138 &vmstate_spapr_cap_rpt_invalidate, 2139 &vmstate_spapr_cap_ail_mode_3, 2140 &vmstate_spapr_cap_nested_papr, 2141 NULL 2142 } 2143 }; 2144 2145 static int htab_save_setup(QEMUFile *f, void *opaque, Error **errp) 2146 { 2147 SpaprMachineState *spapr = opaque; 2148 2149 /* "Iteration" header */ 2150 if (!spapr->htab_shift) { 2151 qemu_put_be32(f, -1); 2152 } else { 2153 qemu_put_be32(f, spapr->htab_shift); 2154 } 2155 2156 if (spapr->htab) { 2157 spapr->htab_save_index = 0; 2158 spapr->htab_first_pass = true; 2159 } else { 2160 if (spapr->htab_shift) { 2161 assert(kvm_enabled()); 2162 } 2163 } 2164 2165 2166 return 0; 2167 } 2168 2169 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2170 int chunkstart, int n_valid, int n_invalid) 2171 { 2172 qemu_put_be32(f, chunkstart); 2173 qemu_put_be16(f, n_valid); 2174 qemu_put_be16(f, n_invalid); 2175 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2176 HASH_PTE_SIZE_64 * n_valid); 2177 } 2178 2179 static void htab_save_end_marker(QEMUFile *f) 2180 { 2181 qemu_put_be32(f, 0); 2182 qemu_put_be16(f, 0); 2183 qemu_put_be16(f, 0); 2184 } 2185 2186 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2187 int64_t max_ns) 2188 { 2189 bool has_timeout = max_ns != -1; 2190 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2191 int index = spapr->htab_save_index; 2192 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2193 2194 assert(spapr->htab_first_pass); 2195 2196 do { 2197 int chunkstart; 2198 2199 /* Consume invalid HPTEs */ 2200 while ((index < htabslots) 2201 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2202 CLEAN_HPTE(HPTE(spapr->htab, index)); 2203 index++; 2204 } 2205 2206 /* Consume valid HPTEs */ 2207 chunkstart = index; 2208 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2209 && HPTE_VALID(HPTE(spapr->htab, index))) { 2210 CLEAN_HPTE(HPTE(spapr->htab, index)); 2211 index++; 2212 } 2213 2214 if (index > chunkstart) { 2215 int n_valid = index - chunkstart; 2216 2217 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2218 2219 if (has_timeout && 2220 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2221 break; 2222 } 2223 } 2224 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2225 2226 if (index >= htabslots) { 2227 assert(index == htabslots); 2228 index = 0; 2229 spapr->htab_first_pass = false; 2230 } 2231 spapr->htab_save_index = index; 2232 } 2233 2234 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2235 int64_t max_ns) 2236 { 2237 bool final = max_ns < 0; 2238 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2239 int examined = 0, sent = 0; 2240 int index = spapr->htab_save_index; 2241 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2242 2243 assert(!spapr->htab_first_pass); 2244 2245 do { 2246 int chunkstart, invalidstart; 2247 2248 /* Consume non-dirty HPTEs */ 2249 while ((index < htabslots) 2250 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2251 index++; 2252 examined++; 2253 } 2254 2255 chunkstart = index; 2256 /* Consume valid dirty HPTEs */ 2257 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2258 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2259 && HPTE_VALID(HPTE(spapr->htab, index))) { 2260 CLEAN_HPTE(HPTE(spapr->htab, index)); 2261 index++; 2262 examined++; 2263 } 2264 2265 invalidstart = index; 2266 /* Consume invalid dirty HPTEs */ 2267 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2268 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2269 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2270 CLEAN_HPTE(HPTE(spapr->htab, index)); 2271 index++; 2272 examined++; 2273 } 2274 2275 if (index > chunkstart) { 2276 int n_valid = invalidstart - chunkstart; 2277 int n_invalid = index - invalidstart; 2278 2279 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2280 sent += index - chunkstart; 2281 2282 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2283 break; 2284 } 2285 } 2286 2287 if (examined >= htabslots) { 2288 break; 2289 } 2290 2291 if (index >= htabslots) { 2292 assert(index == htabslots); 2293 index = 0; 2294 } 2295 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2296 2297 if (index >= htabslots) { 2298 assert(index == htabslots); 2299 index = 0; 2300 } 2301 2302 spapr->htab_save_index = index; 2303 2304 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2305 } 2306 2307 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2308 #define MAX_KVM_BUF_SIZE 2048 2309 2310 static int htab_save_iterate(QEMUFile *f, void *opaque) 2311 { 2312 SpaprMachineState *spapr = opaque; 2313 int fd; 2314 int rc = 0; 2315 2316 /* Iteration header */ 2317 if (!spapr->htab_shift) { 2318 qemu_put_be32(f, -1); 2319 return 1; 2320 } else { 2321 qemu_put_be32(f, 0); 2322 } 2323 2324 if (!spapr->htab) { 2325 assert(kvm_enabled()); 2326 2327 fd = get_htab_fd(spapr); 2328 if (fd < 0) { 2329 return fd; 2330 } 2331 2332 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2333 if (rc < 0) { 2334 return rc; 2335 } 2336 } else if (spapr->htab_first_pass) { 2337 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2338 } else { 2339 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2340 } 2341 2342 htab_save_end_marker(f); 2343 2344 return rc; 2345 } 2346 2347 static int htab_save_complete(QEMUFile *f, void *opaque) 2348 { 2349 SpaprMachineState *spapr = opaque; 2350 int fd; 2351 2352 /* Iteration header */ 2353 if (!spapr->htab_shift) { 2354 qemu_put_be32(f, -1); 2355 return 0; 2356 } else { 2357 qemu_put_be32(f, 0); 2358 } 2359 2360 if (!spapr->htab) { 2361 int rc; 2362 2363 assert(kvm_enabled()); 2364 2365 fd = get_htab_fd(spapr); 2366 if (fd < 0) { 2367 return fd; 2368 } 2369 2370 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2371 if (rc < 0) { 2372 return rc; 2373 } 2374 } else { 2375 if (spapr->htab_first_pass) { 2376 htab_save_first_pass(f, spapr, -1); 2377 } 2378 htab_save_later_pass(f, spapr, -1); 2379 } 2380 2381 /* End marker */ 2382 htab_save_end_marker(f); 2383 2384 return 0; 2385 } 2386 2387 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2388 { 2389 SpaprMachineState *spapr = opaque; 2390 uint32_t section_hdr; 2391 int fd = -1; 2392 Error *local_err = NULL; 2393 2394 if (version_id < 1 || version_id > 1) { 2395 error_report("htab_load() bad version"); 2396 return -EINVAL; 2397 } 2398 2399 section_hdr = qemu_get_be32(f); 2400 2401 if (section_hdr == -1) { 2402 spapr_free_hpt(spapr); 2403 return 0; 2404 } 2405 2406 if (section_hdr) { 2407 int ret; 2408 2409 /* First section gives the htab size */ 2410 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2411 if (ret < 0) { 2412 error_report_err(local_err); 2413 return ret; 2414 } 2415 return 0; 2416 } 2417 2418 if (!spapr->htab) { 2419 assert(kvm_enabled()); 2420 2421 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2422 if (fd < 0) { 2423 error_report_err(local_err); 2424 return fd; 2425 } 2426 } 2427 2428 while (true) { 2429 uint32_t index; 2430 uint16_t n_valid, n_invalid; 2431 2432 index = qemu_get_be32(f); 2433 n_valid = qemu_get_be16(f); 2434 n_invalid = qemu_get_be16(f); 2435 2436 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2437 /* End of Stream */ 2438 break; 2439 } 2440 2441 if ((index + n_valid + n_invalid) > 2442 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2443 /* Bad index in stream */ 2444 error_report( 2445 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2446 index, n_valid, n_invalid, spapr->htab_shift); 2447 return -EINVAL; 2448 } 2449 2450 if (spapr->htab) { 2451 if (n_valid) { 2452 qemu_get_buffer(f, HPTE(spapr->htab, index), 2453 HASH_PTE_SIZE_64 * n_valid); 2454 } 2455 if (n_invalid) { 2456 memset(HPTE(spapr->htab, index + n_valid), 0, 2457 HASH_PTE_SIZE_64 * n_invalid); 2458 } 2459 } else { 2460 int rc; 2461 2462 assert(fd >= 0); 2463 2464 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2465 &local_err); 2466 if (rc < 0) { 2467 error_report_err(local_err); 2468 return rc; 2469 } 2470 } 2471 } 2472 2473 if (!spapr->htab) { 2474 assert(fd >= 0); 2475 close(fd); 2476 } 2477 2478 return 0; 2479 } 2480 2481 static void htab_save_cleanup(void *opaque) 2482 { 2483 SpaprMachineState *spapr = opaque; 2484 2485 close_htab_fd(spapr); 2486 } 2487 2488 static SaveVMHandlers savevm_htab_handlers = { 2489 .save_setup = htab_save_setup, 2490 .save_live_iterate = htab_save_iterate, 2491 .save_live_complete_precopy = htab_save_complete, 2492 .save_cleanup = htab_save_cleanup, 2493 .load_state = htab_load, 2494 }; 2495 2496 static void spapr_boot_set(void *opaque, const char *boot_device, 2497 Error **errp) 2498 { 2499 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2500 2501 g_free(spapr->boot_device); 2502 spapr->boot_device = g_strdup(boot_device); 2503 } 2504 2505 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2506 { 2507 MachineState *machine = MACHINE(spapr); 2508 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2509 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2510 int i; 2511 2512 g_assert(!nr_lmbs || machine->device_memory); 2513 for (i = 0; i < nr_lmbs; i++) { 2514 uint64_t addr; 2515 2516 addr = i * lmb_size + machine->device_memory->base; 2517 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2518 addr / lmb_size); 2519 } 2520 } 2521 2522 /* 2523 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2524 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2525 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2526 */ 2527 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2528 { 2529 int i; 2530 2531 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2532 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2533 " is not aligned to %" PRIu64 " MiB", 2534 machine->ram_size, 2535 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2536 return; 2537 } 2538 2539 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2540 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2541 " is not aligned to %" PRIu64 " MiB", 2542 machine->ram_size, 2543 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2544 return; 2545 } 2546 2547 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2548 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2549 error_setg(errp, 2550 "Node %d memory size 0x%" PRIx64 2551 " is not aligned to %" PRIu64 " MiB", 2552 i, machine->numa_state->nodes[i].node_mem, 2553 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2554 return; 2555 } 2556 } 2557 } 2558 2559 /* find cpu slot in machine->possible_cpus by core_id */ 2560 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2561 { 2562 int index = id / ms->smp.threads; 2563 2564 if (index >= ms->possible_cpus->len) { 2565 return NULL; 2566 } 2567 if (idx) { 2568 *idx = index; 2569 } 2570 return &ms->possible_cpus->cpus[index]; 2571 } 2572 2573 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2574 { 2575 MachineState *ms = MACHINE(spapr); 2576 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2577 Error *local_err = NULL; 2578 bool vsmt_user = !!spapr->vsmt; 2579 int kvm_smt = kvmppc_smt_threads(); 2580 int ret; 2581 unsigned int smp_threads = ms->smp.threads; 2582 2583 if (tcg_enabled()) { 2584 if (smp_threads > 1 && 2585 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2586 spapr->max_compat_pvr)) { 2587 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2588 return; 2589 } 2590 2591 if (smp_threads > 8) { 2592 error_setg(errp, "TCG cannot support more than 8 threads/core " 2593 "on a pseries machine"); 2594 return; 2595 } 2596 } 2597 if (!is_power_of_2(smp_threads)) { 2598 error_setg(errp, "Cannot support %d threads/core on a pseries " 2599 "machine because it must be a power of 2", smp_threads); 2600 return; 2601 } 2602 2603 /* Determine the VSMT mode to use: */ 2604 if (vsmt_user) { 2605 if (spapr->vsmt < smp_threads) { 2606 error_setg(errp, "Cannot support VSMT mode %d" 2607 " because it must be >= threads/core (%d)", 2608 spapr->vsmt, smp_threads); 2609 return; 2610 } 2611 /* In this case, spapr->vsmt has been set by the command line */ 2612 } else if (!smc->smp_threads_vsmt) { 2613 /* 2614 * Default VSMT value is tricky, because we need it to be as 2615 * consistent as possible (for migration), but this requires 2616 * changing it for at least some existing cases. We pick 8 as 2617 * the value that we'd get with KVM on POWER8, the 2618 * overwhelmingly common case in production systems. 2619 */ 2620 spapr->vsmt = MAX(8, smp_threads); 2621 } else { 2622 spapr->vsmt = smp_threads; 2623 } 2624 2625 /* KVM: If necessary, set the SMT mode: */ 2626 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2627 ret = kvmppc_set_smt_threads(spapr->vsmt); 2628 if (ret) { 2629 /* Looks like KVM isn't able to change VSMT mode */ 2630 error_setg(&local_err, 2631 "Failed to set KVM's VSMT mode to %d (errno %d)", 2632 spapr->vsmt, ret); 2633 /* We can live with that if the default one is big enough 2634 * for the number of threads, and a submultiple of the one 2635 * we want. In this case we'll waste some vcpu ids, but 2636 * behaviour will be correct */ 2637 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2638 warn_report_err(local_err); 2639 } else { 2640 if (!vsmt_user) { 2641 error_append_hint(&local_err, 2642 "On PPC, a VM with %d threads/core" 2643 " on a host with %d threads/core" 2644 " requires the use of VSMT mode %d.\n", 2645 smp_threads, kvm_smt, spapr->vsmt); 2646 } 2647 kvmppc_error_append_smt_possible_hint(&local_err); 2648 error_propagate(errp, local_err); 2649 } 2650 } 2651 } 2652 /* else TCG: nothing to do currently */ 2653 } 2654 2655 static void spapr_init_cpus(SpaprMachineState *spapr) 2656 { 2657 MachineState *machine = MACHINE(spapr); 2658 MachineClass *mc = MACHINE_GET_CLASS(machine); 2659 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2660 const CPUArchIdList *possible_cpus; 2661 unsigned int smp_cpus = machine->smp.cpus; 2662 unsigned int smp_threads = machine->smp.threads; 2663 unsigned int max_cpus = machine->smp.max_cpus; 2664 int boot_cores_nr = smp_cpus / smp_threads; 2665 int i; 2666 2667 possible_cpus = mc->possible_cpu_arch_ids(machine); 2668 if (mc->has_hotpluggable_cpus) { 2669 if (smp_cpus % smp_threads) { 2670 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2671 smp_cpus, smp_threads); 2672 exit(1); 2673 } 2674 if (max_cpus % smp_threads) { 2675 error_report("max_cpus (%u) must be multiple of threads (%u)", 2676 max_cpus, smp_threads); 2677 exit(1); 2678 } 2679 } else { 2680 if (max_cpus != smp_cpus) { 2681 error_report("This machine version does not support CPU hotplug"); 2682 exit(1); 2683 } 2684 boot_cores_nr = possible_cpus->len; 2685 } 2686 2687 for (i = 0; i < possible_cpus->len; i++) { 2688 int core_id = i * smp_threads; 2689 2690 if (mc->has_hotpluggable_cpus) { 2691 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2692 spapr_vcpu_id(spapr, core_id)); 2693 } 2694 2695 if (i < boot_cores_nr) { 2696 Object *core = object_new(type); 2697 int nr_threads = smp_threads; 2698 2699 /* Handle the partially filled core for older machine types */ 2700 if ((i + 1) * smp_threads >= smp_cpus) { 2701 nr_threads = smp_cpus - i * smp_threads; 2702 } 2703 2704 object_property_set_int(core, "nr-threads", nr_threads, 2705 &error_fatal); 2706 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2707 &error_fatal); 2708 qdev_realize(DEVICE(core), NULL, &error_fatal); 2709 2710 object_unref(core); 2711 } 2712 } 2713 } 2714 2715 static PCIHostState *spapr_create_default_phb(void) 2716 { 2717 DeviceState *dev; 2718 2719 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2720 qdev_prop_set_uint32(dev, "index", 0); 2721 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2722 2723 return PCI_HOST_BRIDGE(dev); 2724 } 2725 2726 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2727 { 2728 MachineState *machine = MACHINE(spapr); 2729 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2730 hwaddr rma_size = machine->ram_size; 2731 hwaddr node0_size = spapr_node0_size(machine); 2732 2733 /* RMA has to fit in the first NUMA node */ 2734 rma_size = MIN(rma_size, node0_size); 2735 2736 /* 2737 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2738 * never exceed that 2739 */ 2740 rma_size = MIN(rma_size, 1 * TiB); 2741 2742 /* 2743 * Clamp the RMA size based on machine type. This is for 2744 * migration compatibility with older qemu versions, which limited 2745 * the RMA size for complicated and mostly bad reasons. 2746 */ 2747 if (smc->rma_limit) { 2748 rma_size = MIN(rma_size, smc->rma_limit); 2749 } 2750 2751 if (rma_size < MIN_RMA_SLOF) { 2752 error_setg(errp, 2753 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2754 "ldMiB guest RMA (Real Mode Area memory)", 2755 MIN_RMA_SLOF / MiB); 2756 return 0; 2757 } 2758 2759 return rma_size; 2760 } 2761 2762 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2763 { 2764 MachineState *machine = MACHINE(spapr); 2765 int i; 2766 2767 for (i = 0; i < machine->ram_slots; i++) { 2768 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2769 } 2770 } 2771 2772 /* pSeries LPAR / sPAPR hardware init */ 2773 static void spapr_machine_init(MachineState *machine) 2774 { 2775 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2776 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2777 MachineClass *mc = MACHINE_GET_CLASS(machine); 2778 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2779 const char *bios_name = machine->firmware ?: bios_default; 2780 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2781 const char *kernel_filename = machine->kernel_filename; 2782 const char *initrd_filename = machine->initrd_filename; 2783 PCIHostState *phb; 2784 bool has_vga; 2785 int i; 2786 MemoryRegion *sysmem = get_system_memory(); 2787 long load_limit, fw_size; 2788 Error *resize_hpt_err = NULL; 2789 NICInfo *nd; 2790 2791 if (!filename) { 2792 error_report("Could not find LPAR firmware '%s'", bios_name); 2793 exit(1); 2794 } 2795 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2796 if (fw_size <= 0) { 2797 error_report("Could not load LPAR firmware '%s'", filename); 2798 exit(1); 2799 } 2800 2801 /* 2802 * if Secure VM (PEF) support is configured, then initialize it 2803 */ 2804 if (machine->cgs) { 2805 confidential_guest_kvm_init(machine->cgs, &error_fatal); 2806 } 2807 2808 msi_nonbroken = true; 2809 2810 QLIST_INIT(&spapr->phbs); 2811 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2812 2813 /* Determine capabilities to run with */ 2814 spapr_caps_init(spapr); 2815 2816 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2817 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2818 /* 2819 * If the user explicitly requested a mode we should either 2820 * supply it, or fail completely (which we do below). But if 2821 * it's not set explicitly, we reset our mode to something 2822 * that works 2823 */ 2824 if (resize_hpt_err) { 2825 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2826 error_free(resize_hpt_err); 2827 resize_hpt_err = NULL; 2828 } else { 2829 spapr->resize_hpt = smc->resize_hpt_default; 2830 } 2831 } 2832 2833 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2834 2835 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2836 /* 2837 * User requested HPT resize, but this host can't supply it. Bail out 2838 */ 2839 error_report_err(resize_hpt_err); 2840 exit(1); 2841 } 2842 error_free(resize_hpt_err); 2843 2844 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2845 2846 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2847 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2848 2849 /* 2850 * VSMT must be set in order to be able to compute VCPU ids, ie to 2851 * call spapr_max_server_number() or spapr_vcpu_id(). 2852 */ 2853 spapr_set_vsmt_mode(spapr, &error_fatal); 2854 2855 /* Set up Interrupt Controller before we create the VCPUs */ 2856 spapr_irq_init(spapr, &error_fatal); 2857 2858 /* Set up containers for ibm,client-architecture-support negotiated options 2859 */ 2860 spapr->ov5 = spapr_ovec_new(); 2861 spapr->ov5_cas = spapr_ovec_new(); 2862 2863 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2864 spapr_validate_node_memory(machine, &error_fatal); 2865 2866 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2867 2868 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2869 if (!smc->pre_6_2_numa_affinity) { 2870 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2871 } 2872 2873 /* advertise support for dedicated HP event source to guests */ 2874 if (spapr->use_hotplug_event_source) { 2875 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2876 } 2877 2878 /* advertise support for HPT resizing */ 2879 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2880 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2881 } 2882 2883 /* advertise support for ibm,dyamic-memory-v2 */ 2884 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2885 2886 /* advertise XIVE on POWER9 machines */ 2887 if (spapr->irq->xive) { 2888 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2889 } 2890 2891 /* init CPUs */ 2892 spapr_init_cpus(spapr); 2893 2894 /* Init numa_assoc_array */ 2895 spapr_numa_associativity_init(spapr, machine); 2896 2897 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2898 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2899 spapr->max_compat_pvr)) { 2900 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2901 /* KVM and TCG always allow GTSE with radix... */ 2902 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2903 } 2904 /* ... but not with hash (currently). */ 2905 2906 if (kvm_enabled()) { 2907 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2908 kvmppc_enable_logical_ci_hcalls(); 2909 kvmppc_enable_set_mode_hcall(); 2910 2911 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2912 kvmppc_enable_clear_ref_mod_hcalls(); 2913 2914 /* Enable H_PAGE_INIT */ 2915 kvmppc_enable_h_page_init(); 2916 } 2917 2918 /* map RAM */ 2919 memory_region_add_subregion(sysmem, 0, machine->ram); 2920 2921 /* initialize hotplug memory address space */ 2922 if (machine->ram_size < machine->maxram_size) { 2923 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2924 hwaddr device_mem_base; 2925 2926 /* 2927 * Limit the number of hotpluggable memory slots to half the number 2928 * slots that KVM supports, leaving the other half for PCI and other 2929 * devices. However ensure that number of slots doesn't drop below 32. 2930 */ 2931 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2932 SPAPR_MAX_RAM_SLOTS; 2933 2934 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2935 max_memslots = SPAPR_MAX_RAM_SLOTS; 2936 } 2937 if (machine->ram_slots > max_memslots) { 2938 error_report("Specified number of memory slots %" 2939 PRIu64" exceeds max supported %d", 2940 machine->ram_slots, max_memslots); 2941 exit(1); 2942 } 2943 2944 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2945 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2946 } 2947 2948 spapr_create_lmb_dr_connectors(spapr); 2949 2950 if (mc->nvdimm_supported) { 2951 spapr_create_nvdimm_dr_connectors(spapr); 2952 } 2953 2954 /* Set up RTAS event infrastructure */ 2955 spapr_events_init(spapr); 2956 2957 /* Set up the RTC RTAS interfaces */ 2958 spapr_rtc_create(spapr); 2959 2960 /* Set up VIO bus */ 2961 spapr->vio_bus = spapr_vio_bus_init(); 2962 2963 for (i = 0; serial_hd(i); i++) { 2964 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2965 } 2966 2967 /* We always have at least the nvram device on VIO */ 2968 spapr_create_nvram(spapr); 2969 2970 /* 2971 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2972 * connectors (described in root DT node's "ibm,drc-types" property) 2973 * are pre-initialized here. additional child connectors (such as 2974 * connectors for a PHBs PCI slots) are added as needed during their 2975 * parent's realization. 2976 */ 2977 if (smc->dr_phb_enabled) { 2978 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2979 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2980 } 2981 } 2982 2983 /* Set up PCI */ 2984 spapr_pci_rtas_init(); 2985 2986 phb = spapr_create_default_phb(); 2987 2988 while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) { 2989 spapr_vlan_create(spapr->vio_bus, nd); 2990 } 2991 2992 pci_init_nic_devices(phb->bus, NULL); 2993 2994 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2995 spapr_vscsi_create(spapr->vio_bus); 2996 } 2997 2998 /* Graphics */ 2999 has_vga = spapr_vga_init(phb->bus, &error_fatal); 3000 if (has_vga) { 3001 spapr->want_stdout_path = !machine->enable_graphics; 3002 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3003 } else { 3004 spapr->want_stdout_path = true; 3005 } 3006 3007 if (machine->usb) { 3008 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3009 3010 if (has_vga) { 3011 USBBus *usb_bus; 3012 3013 usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS, 3014 &error_abort)); 3015 usb_create_simple(usb_bus, "usb-kbd"); 3016 usb_create_simple(usb_bus, "usb-mouse"); 3017 } 3018 } 3019 3020 if (kernel_filename) { 3021 uint64_t loaded_addr = 0; 3022 3023 spapr->kernel_size = load_elf(kernel_filename, NULL, 3024 translate_kernel_address, spapr, 3025 NULL, &loaded_addr, NULL, NULL, 1, 3026 PPC_ELF_MACHINE, 0, 0); 3027 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3028 spapr->kernel_size = load_elf(kernel_filename, NULL, 3029 translate_kernel_address, spapr, 3030 NULL, &loaded_addr, NULL, NULL, 0, 3031 PPC_ELF_MACHINE, 0, 0); 3032 spapr->kernel_le = spapr->kernel_size > 0; 3033 } 3034 if (spapr->kernel_size < 0) { 3035 error_report("error loading %s: %s", kernel_filename, 3036 load_elf_strerror(spapr->kernel_size)); 3037 exit(1); 3038 } 3039 3040 if (spapr->kernel_addr != loaded_addr) { 3041 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3042 " to 0x%"PRIx64, 3043 spapr->kernel_addr, loaded_addr); 3044 spapr->kernel_addr = loaded_addr; 3045 } 3046 3047 /* load initrd */ 3048 if (initrd_filename) { 3049 /* Try to locate the initrd in the gap between the kernel 3050 * and the firmware. Add a bit of space just in case 3051 */ 3052 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3053 + 0x1ffff) & ~0xffff; 3054 spapr->initrd_size = load_image_targphys(initrd_filename, 3055 spapr->initrd_base, 3056 load_limit 3057 - spapr->initrd_base); 3058 if (spapr->initrd_size < 0) { 3059 error_report("could not load initial ram disk '%s'", 3060 initrd_filename); 3061 exit(1); 3062 } 3063 } 3064 } 3065 3066 /* FIXME: Should register things through the MachineState's qdev 3067 * interface, this is a legacy from the sPAPREnvironment structure 3068 * which predated MachineState but had a similar function */ 3069 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3070 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3071 &savevm_htab_handlers, spapr); 3072 3073 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3074 3075 qemu_register_boot_set(spapr_boot_set, spapr); 3076 3077 /* 3078 * Nothing needs to be done to resume a suspended guest because 3079 * suspending does not change the machine state, so no need for 3080 * a ->wakeup method. 3081 */ 3082 qemu_register_wakeup_support(); 3083 3084 if (kvm_enabled()) { 3085 /* to stop and start vmclock */ 3086 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3087 &spapr->tb); 3088 3089 kvmppc_spapr_enable_inkernel_multitce(); 3090 } 3091 3092 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3093 if (spapr->vof) { 3094 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3095 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3096 } 3097 3098 spapr_watchdog_init(spapr); 3099 } 3100 3101 #define DEFAULT_KVM_TYPE "auto" 3102 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3103 { 3104 /* 3105 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3106 * accommodate the 'HV' and 'PV' formats that exists in the 3107 * wild. The 'auto' mode is being introduced already as 3108 * lower-case, thus we don't need to bother checking for 3109 * "AUTO". 3110 */ 3111 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3112 return 0; 3113 } 3114 3115 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3116 return 1; 3117 } 3118 3119 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3120 return 2; 3121 } 3122 3123 error_report("Unknown kvm-type specified '%s'", vm_type); 3124 return -1; 3125 } 3126 3127 /* 3128 * Implementation of an interface to adjust firmware path 3129 * for the bootindex property handling. 3130 */ 3131 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3132 DeviceState *dev) 3133 { 3134 #define CAST(type, obj, name) \ 3135 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3136 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3137 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3138 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3139 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3140 3141 if (d && bus) { 3142 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3143 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3144 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3145 3146 if (spapr) { 3147 /* 3148 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3149 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3150 * 0x8000 | (target << 8) | (bus << 5) | lun 3151 * (see the "Logical unit addressing format" table in SAM5) 3152 */ 3153 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3154 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3155 (uint64_t)id << 48); 3156 } else if (virtio) { 3157 /* 3158 * We use SRP luns of the form 01000000 | (target << 8) | lun 3159 * in the top 32 bits of the 64-bit LUN 3160 * Note: the quote above is from SLOF and it is wrong, 3161 * the actual binding is: 3162 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3163 */ 3164 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3165 if (d->lun >= 256) { 3166 /* Use the LUN "flat space addressing method" */ 3167 id |= 0x4000; 3168 } 3169 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3170 (uint64_t)id << 32); 3171 } else if (usb) { 3172 /* 3173 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3174 * in the top 32 bits of the 64-bit LUN 3175 */ 3176 unsigned usb_port = atoi(usb->port->path); 3177 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3178 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3179 (uint64_t)id << 32); 3180 } 3181 } 3182 3183 /* 3184 * SLOF probes the USB devices, and if it recognizes that the device is a 3185 * storage device, it changes its name to "storage" instead of "usb-host", 3186 * and additionally adds a child node for the SCSI LUN, so the correct 3187 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3188 */ 3189 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3190 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3191 if (usb_device_is_scsi_storage(usbdev)) { 3192 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3193 } 3194 } 3195 3196 if (phb) { 3197 /* Replace "pci" with "pci@800000020000000" */ 3198 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3199 } 3200 3201 if (vsc) { 3202 /* Same logic as virtio above */ 3203 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3204 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3205 } 3206 3207 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3208 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3209 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3210 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn)); 3211 } 3212 3213 if (pcidev) { 3214 return spapr_pci_fw_dev_name(pcidev); 3215 } 3216 3217 return NULL; 3218 } 3219 3220 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3221 { 3222 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3223 3224 return g_strdup(spapr->kvm_type); 3225 } 3226 3227 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3228 { 3229 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3230 3231 g_free(spapr->kvm_type); 3232 spapr->kvm_type = g_strdup(value); 3233 } 3234 3235 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3236 { 3237 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3238 3239 return spapr->use_hotplug_event_source; 3240 } 3241 3242 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3243 Error **errp) 3244 { 3245 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3246 3247 spapr->use_hotplug_event_source = value; 3248 } 3249 3250 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3251 { 3252 return true; 3253 } 3254 3255 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3256 { 3257 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3258 3259 switch (spapr->resize_hpt) { 3260 case SPAPR_RESIZE_HPT_DEFAULT: 3261 return g_strdup("default"); 3262 case SPAPR_RESIZE_HPT_DISABLED: 3263 return g_strdup("disabled"); 3264 case SPAPR_RESIZE_HPT_ENABLED: 3265 return g_strdup("enabled"); 3266 case SPAPR_RESIZE_HPT_REQUIRED: 3267 return g_strdup("required"); 3268 } 3269 g_assert_not_reached(); 3270 } 3271 3272 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3273 { 3274 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3275 3276 if (strcmp(value, "default") == 0) { 3277 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3278 } else if (strcmp(value, "disabled") == 0) { 3279 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3280 } else if (strcmp(value, "enabled") == 0) { 3281 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3282 } else if (strcmp(value, "required") == 0) { 3283 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3284 } else { 3285 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3286 } 3287 } 3288 3289 static bool spapr_get_vof(Object *obj, Error **errp) 3290 { 3291 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3292 3293 return spapr->vof != NULL; 3294 } 3295 3296 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3297 { 3298 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3299 3300 if (spapr->vof) { 3301 vof_cleanup(spapr->vof); 3302 g_free(spapr->vof); 3303 spapr->vof = NULL; 3304 } 3305 if (!value) { 3306 return; 3307 } 3308 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3309 } 3310 3311 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3312 { 3313 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3314 3315 if (spapr->irq == &spapr_irq_xics_legacy) { 3316 return g_strdup("legacy"); 3317 } else if (spapr->irq == &spapr_irq_xics) { 3318 return g_strdup("xics"); 3319 } else if (spapr->irq == &spapr_irq_xive) { 3320 return g_strdup("xive"); 3321 } else if (spapr->irq == &spapr_irq_dual) { 3322 return g_strdup("dual"); 3323 } 3324 g_assert_not_reached(); 3325 } 3326 3327 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3328 { 3329 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3330 3331 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3332 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3333 return; 3334 } 3335 3336 /* The legacy IRQ backend can not be set */ 3337 if (strcmp(value, "xics") == 0) { 3338 spapr->irq = &spapr_irq_xics; 3339 } else if (strcmp(value, "xive") == 0) { 3340 spapr->irq = &spapr_irq_xive; 3341 } else if (strcmp(value, "dual") == 0) { 3342 spapr->irq = &spapr_irq_dual; 3343 } else { 3344 error_setg(errp, "Bad value for \"ic-mode\" property"); 3345 } 3346 } 3347 3348 static char *spapr_get_host_model(Object *obj, Error **errp) 3349 { 3350 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3351 3352 return g_strdup(spapr->host_model); 3353 } 3354 3355 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3356 { 3357 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3358 3359 g_free(spapr->host_model); 3360 spapr->host_model = g_strdup(value); 3361 } 3362 3363 static char *spapr_get_host_serial(Object *obj, Error **errp) 3364 { 3365 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3366 3367 return g_strdup(spapr->host_serial); 3368 } 3369 3370 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3371 { 3372 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3373 3374 g_free(spapr->host_serial); 3375 spapr->host_serial = g_strdup(value); 3376 } 3377 3378 static void spapr_instance_init(Object *obj) 3379 { 3380 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3381 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3382 MachineState *ms = MACHINE(spapr); 3383 MachineClass *mc = MACHINE_GET_CLASS(ms); 3384 3385 /* 3386 * NVDIMM support went live in 5.1 without considering that, in 3387 * other archs, the user needs to enable NVDIMM support with the 3388 * 'nvdimm' machine option and the default behavior is NVDIMM 3389 * support disabled. It is too late to roll back to the standard 3390 * behavior without breaking 5.1 guests. 3391 */ 3392 if (mc->nvdimm_supported) { 3393 ms->nvdimms_state->is_enabled = true; 3394 } 3395 3396 spapr->htab_fd = -1; 3397 spapr->use_hotplug_event_source = true; 3398 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3399 object_property_add_str(obj, "kvm-type", 3400 spapr_get_kvm_type, spapr_set_kvm_type); 3401 object_property_set_description(obj, "kvm-type", 3402 "Specifies the KVM virtualization mode (auto," 3403 " hv, pr). Defaults to 'auto'. This mode will use" 3404 " any available KVM module loaded in the host," 3405 " where kvm_hv takes precedence if both kvm_hv and" 3406 " kvm_pr are loaded."); 3407 object_property_add_bool(obj, "modern-hotplug-events", 3408 spapr_get_modern_hotplug_events, 3409 spapr_set_modern_hotplug_events); 3410 object_property_set_description(obj, "modern-hotplug-events", 3411 "Use dedicated hotplug event mechanism in" 3412 " place of standard EPOW events when possible" 3413 " (required for memory hot-unplug support)"); 3414 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3415 "Maximum permitted CPU compatibility mode"); 3416 3417 object_property_add_str(obj, "resize-hpt", 3418 spapr_get_resize_hpt, spapr_set_resize_hpt); 3419 object_property_set_description(obj, "resize-hpt", 3420 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3421 object_property_add_uint32_ptr(obj, "vsmt", 3422 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3423 object_property_set_description(obj, "vsmt", 3424 "Virtual SMT: KVM behaves as if this were" 3425 " the host's SMT mode"); 3426 3427 object_property_add_bool(obj, "vfio-no-msix-emulation", 3428 spapr_get_msix_emulation, NULL); 3429 3430 object_property_add_uint64_ptr(obj, "kernel-addr", 3431 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3432 object_property_set_description(obj, "kernel-addr", 3433 stringify(KERNEL_LOAD_ADDR) 3434 " for -kernel is the default"); 3435 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3436 3437 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3438 object_property_set_description(obj, "x-vof", 3439 "Enable Virtual Open Firmware (experimental)"); 3440 3441 /* The machine class defines the default interrupt controller mode */ 3442 spapr->irq = smc->irq; 3443 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3444 spapr_set_ic_mode); 3445 object_property_set_description(obj, "ic-mode", 3446 "Specifies the interrupt controller mode (xics, xive, dual)"); 3447 3448 object_property_add_str(obj, "host-model", 3449 spapr_get_host_model, spapr_set_host_model); 3450 object_property_set_description(obj, "host-model", 3451 "Host model to advertise in guest device tree"); 3452 object_property_add_str(obj, "host-serial", 3453 spapr_get_host_serial, spapr_set_host_serial); 3454 object_property_set_description(obj, "host-serial", 3455 "Host serial number to advertise in guest device tree"); 3456 } 3457 3458 static void spapr_machine_finalizefn(Object *obj) 3459 { 3460 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3461 3462 g_free(spapr->kvm_type); 3463 } 3464 3465 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3466 { 3467 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3468 CPUPPCState *env = cpu_env(cs); 3469 3470 cpu_synchronize_state(cs); 3471 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3472 if (spapr->fwnmi_system_reset_addr != -1) { 3473 uint64_t rtas_addr, addr; 3474 3475 /* get rtas addr from fdt */ 3476 rtas_addr = spapr_get_rtas_addr(); 3477 if (!rtas_addr) { 3478 qemu_system_guest_panicked(NULL); 3479 return; 3480 } 3481 3482 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3483 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3484 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3485 env->gpr[3] = addr; 3486 } 3487 ppc_cpu_do_system_reset(cs); 3488 if (spapr->fwnmi_system_reset_addr != -1) { 3489 env->nip = spapr->fwnmi_system_reset_addr; 3490 } 3491 } 3492 3493 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3494 { 3495 CPUState *cs; 3496 3497 CPU_FOREACH(cs) { 3498 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3499 } 3500 } 3501 3502 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3503 void *fdt, int *fdt_start_offset, Error **errp) 3504 { 3505 uint64_t addr; 3506 uint32_t node; 3507 3508 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3509 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3510 &error_abort); 3511 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3512 SPAPR_MEMORY_BLOCK_SIZE); 3513 return 0; 3514 } 3515 3516 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3517 bool dedicated_hp_event_source) 3518 { 3519 SpaprDrc *drc; 3520 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3521 int i; 3522 uint64_t addr = addr_start; 3523 bool hotplugged = spapr_drc_hotplugged(dev); 3524 3525 for (i = 0; i < nr_lmbs; i++) { 3526 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3527 addr / SPAPR_MEMORY_BLOCK_SIZE); 3528 g_assert(drc); 3529 3530 /* 3531 * memory_device_get_free_addr() provided a range of free addresses 3532 * that doesn't overlap with any existing mapping at pre-plug. The 3533 * corresponding LMB DRCs are thus assumed to be all attachable. 3534 */ 3535 spapr_drc_attach(drc, dev); 3536 if (!hotplugged) { 3537 spapr_drc_reset(drc); 3538 } 3539 addr += SPAPR_MEMORY_BLOCK_SIZE; 3540 } 3541 /* send hotplug notification to the 3542 * guest only in case of hotplugged memory 3543 */ 3544 if (hotplugged) { 3545 if (dedicated_hp_event_source) { 3546 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3547 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3548 g_assert(drc); 3549 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3550 nr_lmbs, 3551 spapr_drc_index(drc)); 3552 } else { 3553 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3554 nr_lmbs); 3555 } 3556 } 3557 } 3558 3559 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3560 { 3561 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3562 PCDIMMDevice *dimm = PC_DIMM(dev); 3563 uint64_t size, addr; 3564 int64_t slot; 3565 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3566 3567 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3568 3569 pc_dimm_plug(dimm, MACHINE(ms)); 3570 3571 if (!is_nvdimm) { 3572 addr = object_property_get_uint(OBJECT(dimm), 3573 PC_DIMM_ADDR_PROP, &error_abort); 3574 spapr_add_lmbs(dev, addr, size, 3575 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3576 } else { 3577 slot = object_property_get_int(OBJECT(dimm), 3578 PC_DIMM_SLOT_PROP, &error_abort); 3579 /* We should have valid slot number at this point */ 3580 g_assert(slot >= 0); 3581 spapr_add_nvdimm(dev, slot); 3582 } 3583 } 3584 3585 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3586 Error **errp) 3587 { 3588 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3589 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3590 PCDIMMDevice *dimm = PC_DIMM(dev); 3591 Error *local_err = NULL; 3592 uint64_t size; 3593 Object *memdev; 3594 hwaddr pagesize; 3595 3596 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3597 if (local_err) { 3598 error_propagate(errp, local_err); 3599 return; 3600 } 3601 3602 if (is_nvdimm) { 3603 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3604 return; 3605 } 3606 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3607 error_setg(errp, "Hotplugged memory size must be a multiple of " 3608 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3609 return; 3610 } 3611 3612 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3613 &error_abort); 3614 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3615 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3616 return; 3617 } 3618 3619 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), errp); 3620 } 3621 3622 struct SpaprDimmState { 3623 PCDIMMDevice *dimm; 3624 uint32_t nr_lmbs; 3625 QTAILQ_ENTRY(SpaprDimmState) next; 3626 }; 3627 3628 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3629 PCDIMMDevice *dimm) 3630 { 3631 SpaprDimmState *dimm_state = NULL; 3632 3633 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3634 if (dimm_state->dimm == dimm) { 3635 break; 3636 } 3637 } 3638 return dimm_state; 3639 } 3640 3641 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3642 uint32_t nr_lmbs, 3643 PCDIMMDevice *dimm) 3644 { 3645 SpaprDimmState *ds = NULL; 3646 3647 /* 3648 * If this request is for a DIMM whose removal had failed earlier 3649 * (due to guest's refusal to remove the LMBs), we would have this 3650 * dimm already in the pending_dimm_unplugs list. In that 3651 * case don't add again. 3652 */ 3653 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3654 if (!ds) { 3655 ds = g_new0(SpaprDimmState, 1); 3656 ds->nr_lmbs = nr_lmbs; 3657 ds->dimm = dimm; 3658 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3659 } 3660 return ds; 3661 } 3662 3663 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3664 SpaprDimmState *dimm_state) 3665 { 3666 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3667 g_free(dimm_state); 3668 } 3669 3670 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3671 PCDIMMDevice *dimm) 3672 { 3673 SpaprDrc *drc; 3674 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3675 &error_abort); 3676 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3677 uint32_t avail_lmbs = 0; 3678 uint64_t addr_start, addr; 3679 int i; 3680 3681 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3682 &error_abort); 3683 3684 addr = addr_start; 3685 for (i = 0; i < nr_lmbs; i++) { 3686 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3687 addr / SPAPR_MEMORY_BLOCK_SIZE); 3688 g_assert(drc); 3689 if (drc->dev) { 3690 avail_lmbs++; 3691 } 3692 addr += SPAPR_MEMORY_BLOCK_SIZE; 3693 } 3694 3695 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3696 } 3697 3698 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3699 { 3700 SpaprDimmState *ds; 3701 PCDIMMDevice *dimm; 3702 SpaprDrc *drc; 3703 uint32_t nr_lmbs; 3704 uint64_t size, addr_start, addr; 3705 int i; 3706 3707 if (!dev) { 3708 return; 3709 } 3710 3711 dimm = PC_DIMM(dev); 3712 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3713 3714 /* 3715 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3716 * unplug state, but one of its DRC is marked as unplug_requested. 3717 * This is bad and weird enough to g_assert() out. 3718 */ 3719 g_assert(ds); 3720 3721 spapr_pending_dimm_unplugs_remove(spapr, ds); 3722 3723 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3724 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3725 3726 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3727 &error_abort); 3728 3729 addr = addr_start; 3730 for (i = 0; i < nr_lmbs; i++) { 3731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3732 addr / SPAPR_MEMORY_BLOCK_SIZE); 3733 g_assert(drc); 3734 3735 drc->unplug_requested = false; 3736 addr += SPAPR_MEMORY_BLOCK_SIZE; 3737 } 3738 3739 /* 3740 * Tell QAPI that something happened and the memory 3741 * hotunplug wasn't successful. 3742 */ 3743 qapi_event_send_device_unplug_guest_error(dev->id, 3744 dev->canonical_path); 3745 } 3746 3747 /* Callback to be called during DRC release. */ 3748 void spapr_lmb_release(DeviceState *dev) 3749 { 3750 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3751 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3752 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3753 3754 /* This information will get lost if a migration occurs 3755 * during the unplug process. In this case recover it. */ 3756 if (ds == NULL) { 3757 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3758 g_assert(ds); 3759 /* The DRC being examined by the caller at least must be counted */ 3760 g_assert(ds->nr_lmbs); 3761 } 3762 3763 if (--ds->nr_lmbs) { 3764 return; 3765 } 3766 3767 /* 3768 * Now that all the LMBs have been removed by the guest, call the 3769 * unplug handler chain. This can never fail. 3770 */ 3771 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3772 object_unparent(OBJECT(dev)); 3773 } 3774 3775 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3776 { 3777 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3778 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3779 3780 /* We really shouldn't get this far without anything to unplug */ 3781 g_assert(ds); 3782 3783 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3784 qdev_unrealize(dev); 3785 spapr_pending_dimm_unplugs_remove(spapr, ds); 3786 } 3787 3788 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3789 DeviceState *dev, Error **errp) 3790 { 3791 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3792 PCDIMMDevice *dimm = PC_DIMM(dev); 3793 uint32_t nr_lmbs; 3794 uint64_t size, addr_start, addr; 3795 int i; 3796 SpaprDrc *drc; 3797 3798 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3799 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3800 return; 3801 } 3802 3803 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3804 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3805 3806 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3807 &error_abort); 3808 3809 /* 3810 * An existing pending dimm state for this DIMM means that there is an 3811 * unplug operation in progress, waiting for the spapr_lmb_release 3812 * callback to complete the job (BQL can't cover that far). In this case, 3813 * bail out to avoid detaching DRCs that were already released. 3814 */ 3815 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3816 error_setg(errp, "Memory unplug already in progress for device %s", 3817 dev->id); 3818 return; 3819 } 3820 3821 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3822 3823 addr = addr_start; 3824 for (i = 0; i < nr_lmbs; i++) { 3825 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3826 addr / SPAPR_MEMORY_BLOCK_SIZE); 3827 g_assert(drc); 3828 3829 spapr_drc_unplug_request(drc); 3830 addr += SPAPR_MEMORY_BLOCK_SIZE; 3831 } 3832 3833 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3834 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3835 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3836 nr_lmbs, spapr_drc_index(drc)); 3837 } 3838 3839 /* Callback to be called during DRC release. */ 3840 void spapr_core_release(DeviceState *dev) 3841 { 3842 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3843 3844 /* Call the unplug handler chain. This can never fail. */ 3845 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3846 object_unparent(OBJECT(dev)); 3847 } 3848 3849 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3850 { 3851 MachineState *ms = MACHINE(hotplug_dev); 3852 CPUCore *cc = CPU_CORE(dev); 3853 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3854 3855 assert(core_slot); 3856 core_slot->cpu = NULL; 3857 qdev_unrealize(dev); 3858 } 3859 3860 static 3861 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3862 Error **errp) 3863 { 3864 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3865 int index; 3866 SpaprDrc *drc; 3867 CPUCore *cc = CPU_CORE(dev); 3868 3869 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3870 error_setg(errp, "Unable to find CPU core with core-id: %d", 3871 cc->core_id); 3872 return; 3873 } 3874 if (index == 0) { 3875 error_setg(errp, "Boot CPU core may not be unplugged"); 3876 return; 3877 } 3878 3879 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3880 spapr_vcpu_id(spapr, cc->core_id)); 3881 g_assert(drc); 3882 3883 if (!spapr_drc_unplug_requested(drc)) { 3884 spapr_drc_unplug_request(drc); 3885 } 3886 3887 /* 3888 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3889 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3890 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3891 * attempt (e.g. the kernel will refuse to remove the last online 3892 * CPU), we will never attempt it again because unplug_requested 3893 * will still be 'true' in that case. 3894 */ 3895 spapr_hotplug_req_remove_by_index(drc); 3896 } 3897 3898 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3899 void *fdt, int *fdt_start_offset, Error **errp) 3900 { 3901 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3902 CPUState *cs = CPU(core->threads[0]); 3903 PowerPCCPU *cpu = POWERPC_CPU(cs); 3904 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3905 int id = spapr_get_vcpu_id(cpu); 3906 g_autofree char *nodename = NULL; 3907 int offset; 3908 3909 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3910 offset = fdt_add_subnode(fdt, 0, nodename); 3911 3912 spapr_dt_cpu(cs, fdt, offset, spapr); 3913 3914 /* 3915 * spapr_dt_cpu() does not fill the 'name' property in the 3916 * CPU node. The function is called during boot process, before 3917 * and after CAS, and overwriting the 'name' property written 3918 * by SLOF is not allowed. 3919 * 3920 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3921 * CPUs more compatible with the coldplugged ones, which have 3922 * the 'name' property. Linux Kernel also relies on this 3923 * property to identify CPU nodes. 3924 */ 3925 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3926 3927 *fdt_start_offset = offset; 3928 return 0; 3929 } 3930 3931 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3932 { 3933 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3934 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3935 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3936 CPUCore *cc = CPU_CORE(dev); 3937 SpaprDrc *drc; 3938 CPUArchId *core_slot; 3939 int index; 3940 bool hotplugged = spapr_drc_hotplugged(dev); 3941 int i; 3942 3943 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3944 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3945 3946 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3947 spapr_vcpu_id(spapr, cc->core_id)); 3948 3949 g_assert(drc || !mc->has_hotpluggable_cpus); 3950 3951 if (drc) { 3952 /* 3953 * spapr_core_pre_plug() already buys us this is a brand new 3954 * core being plugged into a free slot. Nothing should already 3955 * be attached to the corresponding DRC. 3956 */ 3957 spapr_drc_attach(drc, dev); 3958 3959 if (hotplugged) { 3960 /* 3961 * Send hotplug notification interrupt to the guest only 3962 * in case of hotplugged CPUs. 3963 */ 3964 spapr_hotplug_req_add_by_index(drc); 3965 } else { 3966 spapr_drc_reset(drc); 3967 } 3968 } 3969 3970 core_slot->cpu = CPU(dev); 3971 3972 /* 3973 * Set compatibility mode to match the boot CPU, which was either set 3974 * by the machine reset code or by CAS. This really shouldn't fail at 3975 * this point. 3976 */ 3977 if (hotplugged) { 3978 for (i = 0; i < cc->nr_threads; i++) { 3979 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3980 &error_abort); 3981 } 3982 } 3983 3984 } 3985 3986 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3987 Error **errp) 3988 { 3989 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3990 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3991 CPUCore *cc = CPU_CORE(dev); 3992 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3993 const char *type = object_get_typename(OBJECT(dev)); 3994 CPUArchId *core_slot; 3995 int index; 3996 unsigned int smp_threads = machine->smp.threads; 3997 3998 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3999 error_setg(errp, "CPU hotplug not supported for this machine"); 4000 return; 4001 } 4002 4003 if (strcmp(base_core_type, type)) { 4004 error_setg(errp, "CPU core type should be %s", base_core_type); 4005 return; 4006 } 4007 4008 if (cc->core_id % smp_threads) { 4009 error_setg(errp, "invalid core id %d", cc->core_id); 4010 return; 4011 } 4012 4013 /* 4014 * In general we should have homogeneous threads-per-core, but old 4015 * (pre hotplug support) machine types allow the last core to have 4016 * reduced threads as a compatibility hack for when we allowed 4017 * total vcpus not a multiple of threads-per-core. 4018 */ 4019 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4020 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4021 smp_threads); 4022 return; 4023 } 4024 4025 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4026 if (!core_slot) { 4027 error_setg(errp, "core id %d out of range", cc->core_id); 4028 return; 4029 } 4030 4031 if (core_slot->cpu) { 4032 error_setg(errp, "core %d already populated", cc->core_id); 4033 return; 4034 } 4035 4036 numa_cpu_pre_plug(core_slot, dev, errp); 4037 } 4038 4039 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4040 void *fdt, int *fdt_start_offset, Error **errp) 4041 { 4042 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4043 int intc_phandle; 4044 4045 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4046 if (intc_phandle <= 0) { 4047 return -1; 4048 } 4049 4050 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4051 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4052 return -1; 4053 } 4054 4055 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4056 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4057 4058 return 0; 4059 } 4060 4061 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4062 Error **errp) 4063 { 4064 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4065 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4066 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4067 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4068 SpaprDrc *drc; 4069 4070 if (dev->hotplugged && !smc->dr_phb_enabled) { 4071 error_setg(errp, "PHB hotplug not supported for this machine"); 4072 return false; 4073 } 4074 4075 if (sphb->index == (uint32_t)-1) { 4076 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4077 return false; 4078 } 4079 4080 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4081 if (drc && drc->dev) { 4082 error_setg(errp, "PHB %d already attached", sphb->index); 4083 return false; 4084 } 4085 4086 /* 4087 * This will check that sphb->index doesn't exceed the maximum number of 4088 * PHBs for the current machine type. 4089 */ 4090 return 4091 smc->phb_placement(spapr, sphb->index, 4092 &sphb->buid, &sphb->io_win_addr, 4093 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4094 windows_supported, sphb->dma_liobn, 4095 errp); 4096 } 4097 4098 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4099 { 4100 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4101 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4102 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4103 SpaprDrc *drc; 4104 bool hotplugged = spapr_drc_hotplugged(dev); 4105 4106 if (!smc->dr_phb_enabled) { 4107 return; 4108 } 4109 4110 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4111 /* hotplug hooks should check it's enabled before getting this far */ 4112 assert(drc); 4113 4114 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4115 spapr_drc_attach(drc, dev); 4116 4117 if (hotplugged) { 4118 spapr_hotplug_req_add_by_index(drc); 4119 } else { 4120 spapr_drc_reset(drc); 4121 } 4122 } 4123 4124 void spapr_phb_release(DeviceState *dev) 4125 { 4126 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4127 4128 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4129 object_unparent(OBJECT(dev)); 4130 } 4131 4132 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4133 { 4134 qdev_unrealize(dev); 4135 } 4136 4137 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4138 DeviceState *dev, Error **errp) 4139 { 4140 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4141 SpaprDrc *drc; 4142 4143 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4144 assert(drc); 4145 4146 if (!spapr_drc_unplug_requested(drc)) { 4147 spapr_drc_unplug_request(drc); 4148 spapr_hotplug_req_remove_by_index(drc); 4149 } else { 4150 error_setg(errp, 4151 "PCI Host Bridge unplug already in progress for device %s", 4152 dev->id); 4153 } 4154 } 4155 4156 static 4157 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4158 Error **errp) 4159 { 4160 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4161 4162 if (spapr->tpm_proxy != NULL) { 4163 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4164 return false; 4165 } 4166 4167 return true; 4168 } 4169 4170 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4171 { 4172 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4173 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4174 4175 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4176 g_assert(spapr->tpm_proxy == NULL); 4177 4178 spapr->tpm_proxy = tpm_proxy; 4179 } 4180 4181 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4182 { 4183 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4184 4185 qdev_unrealize(dev); 4186 object_unparent(OBJECT(dev)); 4187 spapr->tpm_proxy = NULL; 4188 } 4189 4190 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4191 DeviceState *dev, Error **errp) 4192 { 4193 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4194 spapr_memory_plug(hotplug_dev, dev); 4195 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4196 spapr_core_plug(hotplug_dev, dev); 4197 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4198 spapr_phb_plug(hotplug_dev, dev); 4199 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4200 spapr_tpm_proxy_plug(hotplug_dev, dev); 4201 } 4202 } 4203 4204 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4205 DeviceState *dev, Error **errp) 4206 { 4207 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4208 spapr_memory_unplug(hotplug_dev, dev); 4209 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4210 spapr_core_unplug(hotplug_dev, dev); 4211 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4212 spapr_phb_unplug(hotplug_dev, dev); 4213 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4214 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4215 } 4216 } 4217 4218 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4219 { 4220 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4221 /* 4222 * CAS will process all pending unplug requests. 4223 * 4224 * HACK: a guest could theoretically have cleared all bits in OV5, 4225 * but none of the guests we care for do. 4226 */ 4227 spapr_ovec_empty(spapr->ov5_cas); 4228 } 4229 4230 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4231 DeviceState *dev, Error **errp) 4232 { 4233 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4234 MachineClass *mc = MACHINE_GET_CLASS(sms); 4235 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4236 4237 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4238 if (spapr_memory_hot_unplug_supported(sms)) { 4239 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4240 } else { 4241 error_setg(errp, "Memory hot unplug not supported for this guest"); 4242 } 4243 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4244 if (!mc->has_hotpluggable_cpus) { 4245 error_setg(errp, "CPU hot unplug not supported on this machine"); 4246 return; 4247 } 4248 spapr_core_unplug_request(hotplug_dev, dev, errp); 4249 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4250 if (!smc->dr_phb_enabled) { 4251 error_setg(errp, "PHB hot unplug not supported on this machine"); 4252 return; 4253 } 4254 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4255 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4256 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4257 } 4258 } 4259 4260 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4261 DeviceState *dev, Error **errp) 4262 { 4263 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4264 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4265 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4266 spapr_core_pre_plug(hotplug_dev, dev, errp); 4267 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4268 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4269 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4270 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4271 } 4272 } 4273 4274 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4275 DeviceState *dev) 4276 { 4277 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4278 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4279 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4280 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4281 return HOTPLUG_HANDLER(machine); 4282 } 4283 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4284 PCIDevice *pcidev = PCI_DEVICE(dev); 4285 PCIBus *root = pci_device_root_bus(pcidev); 4286 SpaprPhbState *phb = 4287 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4288 TYPE_SPAPR_PCI_HOST_BRIDGE); 4289 4290 if (phb) { 4291 return HOTPLUG_HANDLER(phb); 4292 } 4293 } 4294 return NULL; 4295 } 4296 4297 static CpuInstanceProperties 4298 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4299 { 4300 CPUArchId *core_slot; 4301 MachineClass *mc = MACHINE_GET_CLASS(machine); 4302 4303 /* make sure possible_cpu are initialized */ 4304 mc->possible_cpu_arch_ids(machine); 4305 /* get CPU core slot containing thread that matches cpu_index */ 4306 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4307 assert(core_slot); 4308 return core_slot->props; 4309 } 4310 4311 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4312 { 4313 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4314 } 4315 4316 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4317 { 4318 int i; 4319 unsigned int smp_threads = machine->smp.threads; 4320 unsigned int smp_cpus = machine->smp.cpus; 4321 const char *core_type; 4322 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4323 MachineClass *mc = MACHINE_GET_CLASS(machine); 4324 4325 if (!mc->has_hotpluggable_cpus) { 4326 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4327 } 4328 if (machine->possible_cpus) { 4329 assert(machine->possible_cpus->len == spapr_max_cores); 4330 return machine->possible_cpus; 4331 } 4332 4333 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4334 if (!core_type) { 4335 error_report("Unable to find sPAPR CPU Core definition"); 4336 exit(1); 4337 } 4338 4339 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4340 sizeof(CPUArchId) * spapr_max_cores); 4341 machine->possible_cpus->len = spapr_max_cores; 4342 for (i = 0; i < machine->possible_cpus->len; i++) { 4343 int core_id = i * smp_threads; 4344 4345 machine->possible_cpus->cpus[i].type = core_type; 4346 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4347 machine->possible_cpus->cpus[i].arch_id = core_id; 4348 machine->possible_cpus->cpus[i].props.has_core_id = true; 4349 machine->possible_cpus->cpus[i].props.core_id = core_id; 4350 } 4351 return machine->possible_cpus; 4352 } 4353 4354 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4355 uint64_t *buid, hwaddr *pio, 4356 hwaddr *mmio32, hwaddr *mmio64, 4357 unsigned n_dma, uint32_t *liobns, Error **errp) 4358 { 4359 /* 4360 * New-style PHB window placement. 4361 * 4362 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4363 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4364 * windows. 4365 * 4366 * Some guest kernels can't work with MMIO windows above 1<<46 4367 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4368 * 4369 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4370 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4371 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4372 * 1TiB 64-bit MMIO windows for each PHB. 4373 */ 4374 const uint64_t base_buid = 0x800000020000000ULL; 4375 int i; 4376 4377 /* Sanity check natural alignments */ 4378 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4379 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4380 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4381 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4382 /* Sanity check bounds */ 4383 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4384 SPAPR_PCI_MEM32_WIN_SIZE); 4385 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4386 SPAPR_PCI_MEM64_WIN_SIZE); 4387 4388 if (index >= SPAPR_MAX_PHBS) { 4389 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4390 SPAPR_MAX_PHBS - 1); 4391 return false; 4392 } 4393 4394 *buid = base_buid + index; 4395 for (i = 0; i < n_dma; ++i) { 4396 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4397 } 4398 4399 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4400 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4401 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4402 return true; 4403 } 4404 4405 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4406 { 4407 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4408 4409 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4410 } 4411 4412 static void spapr_ics_resend(XICSFabric *dev) 4413 { 4414 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4415 4416 ics_resend(spapr->ics); 4417 } 4418 4419 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4420 { 4421 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4422 4423 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4424 } 4425 4426 static void spapr_pic_print_info(InterruptStatsProvider *obj, GString *buf) 4427 { 4428 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4429 4430 spapr_irq_print_info(spapr, buf); 4431 g_string_append_printf(buf, "irqchip: %s\n", 4432 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4433 } 4434 4435 /* 4436 * This is a XIVE only operation 4437 */ 4438 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4439 uint8_t nvt_blk, uint32_t nvt_idx, 4440 bool cam_ignore, uint8_t priority, 4441 uint32_t logic_serv, XiveTCTXMatch *match) 4442 { 4443 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4444 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4445 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4446 int count; 4447 4448 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4449 priority, logic_serv, match); 4450 if (count < 0) { 4451 return count; 4452 } 4453 4454 /* 4455 * When we implement the save and restore of the thread interrupt 4456 * contexts in the enter/exit CPU handlers of the machine and the 4457 * escalations in QEMU, we should be able to handle non dispatched 4458 * vCPUs. 4459 * 4460 * Until this is done, the sPAPR machine should find at least one 4461 * matching context always. 4462 */ 4463 if (count == 0) { 4464 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4465 nvt_blk, nvt_idx); 4466 } 4467 4468 return count; 4469 } 4470 4471 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4472 { 4473 return cpu->vcpu_id; 4474 } 4475 4476 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4477 { 4478 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4479 MachineState *ms = MACHINE(spapr); 4480 int vcpu_id; 4481 4482 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4483 4484 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4485 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4486 error_append_hint(errp, "Adjust the number of cpus to %d " 4487 "or try to raise the number of threads per core\n", 4488 vcpu_id * ms->smp.threads / spapr->vsmt); 4489 return false; 4490 } 4491 4492 cpu->vcpu_id = vcpu_id; 4493 return true; 4494 } 4495 4496 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4497 { 4498 CPUState *cs; 4499 4500 CPU_FOREACH(cs) { 4501 PowerPCCPU *cpu = POWERPC_CPU(cs); 4502 4503 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4504 return cpu; 4505 } 4506 } 4507 4508 return NULL; 4509 } 4510 4511 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4512 { 4513 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4514 4515 return spapr_cpu->in_nested; 4516 } 4517 4518 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4519 { 4520 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4521 4522 /* These are only called by TCG, KVM maintains dispatch state */ 4523 4524 spapr_cpu->prod = false; 4525 if (spapr_cpu->vpa_addr) { 4526 CPUState *cs = CPU(cpu); 4527 uint32_t dispatch; 4528 4529 dispatch = ldl_be_phys(cs->as, 4530 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4531 dispatch++; 4532 if ((dispatch & 1) != 0) { 4533 qemu_log_mask(LOG_GUEST_ERROR, 4534 "VPA: incorrect dispatch counter value for " 4535 "dispatched partition %u, correcting.\n", dispatch); 4536 dispatch++; 4537 } 4538 stl_be_phys(cs->as, 4539 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4540 } 4541 } 4542 4543 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4544 { 4545 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4546 4547 if (spapr_cpu->vpa_addr) { 4548 CPUState *cs = CPU(cpu); 4549 uint32_t dispatch; 4550 4551 dispatch = ldl_be_phys(cs->as, 4552 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4553 dispatch++; 4554 if ((dispatch & 1) != 1) { 4555 qemu_log_mask(LOG_GUEST_ERROR, 4556 "VPA: incorrect dispatch counter value for " 4557 "preempted partition %u, correcting.\n", dispatch); 4558 dispatch++; 4559 } 4560 stl_be_phys(cs->as, 4561 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4562 } 4563 } 4564 4565 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4566 { 4567 MachineClass *mc = MACHINE_CLASS(oc); 4568 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4569 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4570 NMIClass *nc = NMI_CLASS(oc); 4571 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4572 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4573 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4574 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4575 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4576 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4577 4578 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4579 mc->ignore_boot_device_suffixes = true; 4580 4581 /* 4582 * We set up the default / latest behaviour here. The class_init 4583 * functions for the specific versioned machine types can override 4584 * these details for backwards compatibility 4585 */ 4586 mc->init = spapr_machine_init; 4587 mc->reset = spapr_machine_reset; 4588 mc->block_default_type = IF_SCSI; 4589 4590 /* 4591 * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(), 4592 * In TCG the limit is restricted by the range of CPU IPIs available. 4593 */ 4594 mc->max_cpus = SPAPR_IRQ_NR_IPIS; 4595 4596 mc->no_parallel = 1; 4597 mc->default_boot_order = ""; 4598 mc->default_ram_size = 512 * MiB; 4599 mc->default_ram_id = "ppc_spapr.ram"; 4600 mc->default_display = "std"; 4601 mc->kvm_type = spapr_kvm_type; 4602 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4603 mc->pci_allow_0_address = true; 4604 assert(!mc->get_hotplug_handler); 4605 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4606 hc->pre_plug = spapr_machine_device_pre_plug; 4607 hc->plug = spapr_machine_device_plug; 4608 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4609 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4610 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4611 hc->unplug_request = spapr_machine_device_unplug_request; 4612 hc->unplug = spapr_machine_device_unplug; 4613 4614 smc->update_dt_enabled = true; 4615 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 4616 mc->has_hotpluggable_cpus = true; 4617 mc->nvdimm_supported = true; 4618 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4619 fwc->get_dev_path = spapr_get_fw_dev_path; 4620 nc->nmi_monitor_handler = spapr_nmi; 4621 smc->phb_placement = spapr_phb_placement; 4622 vhc->cpu_in_nested = spapr_cpu_in_nested; 4623 vhc->deliver_hv_excp = spapr_exit_nested; 4624 vhc->hypercall = emulate_spapr_hypercall; 4625 vhc->hpt_mask = spapr_hpt_mask; 4626 vhc->map_hptes = spapr_map_hptes; 4627 vhc->unmap_hptes = spapr_unmap_hptes; 4628 vhc->hpte_set_c = spapr_hpte_set_c; 4629 vhc->hpte_set_r = spapr_hpte_set_r; 4630 vhc->get_pate = spapr_get_pate; 4631 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4632 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4633 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4634 xic->ics_get = spapr_ics_get; 4635 xic->ics_resend = spapr_ics_resend; 4636 xic->icp_get = spapr_icp_get; 4637 ispc->print_info = spapr_pic_print_info; 4638 /* Force NUMA node memory size to be a multiple of 4639 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4640 * in which LMBs are represented and hot-added 4641 */ 4642 mc->numa_mem_align_shift = 28; 4643 mc->auto_enable_numa = true; 4644 4645 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4646 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4647 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4648 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4649 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4650 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4651 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4652 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4653 smc->default_caps.caps[SPAPR_CAP_NESTED_PAPR] = SPAPR_CAP_OFF; 4654 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4655 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4656 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4657 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4658 4659 /* 4660 * This cap specifies whether the AIL 3 mode for 4661 * H_SET_RESOURCE is supported. The default is modified 4662 * by default_caps_with_cpu(). 4663 */ 4664 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4665 spapr_caps_add_properties(smc); 4666 smc->irq = &spapr_irq_dual; 4667 smc->dr_phb_enabled = true; 4668 smc->linux_pci_probe = true; 4669 smc->smp_threads_vsmt = true; 4670 smc->nr_xirqs = SPAPR_NR_XIRQS; 4671 xfc->match_nvt = spapr_match_nvt; 4672 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4673 vmc->quiesce = spapr_vof_quiesce; 4674 vmc->setprop = spapr_vof_setprop; 4675 } 4676 4677 static const TypeInfo spapr_machine_info = { 4678 .name = TYPE_SPAPR_MACHINE, 4679 .parent = TYPE_MACHINE, 4680 .abstract = true, 4681 .instance_size = sizeof(SpaprMachineState), 4682 .instance_init = spapr_instance_init, 4683 .instance_finalize = spapr_machine_finalizefn, 4684 .class_size = sizeof(SpaprMachineClass), 4685 .class_init = spapr_machine_class_init, 4686 .interfaces = (InterfaceInfo[]) { 4687 { TYPE_FW_PATH_PROVIDER }, 4688 { TYPE_NMI }, 4689 { TYPE_HOTPLUG_HANDLER }, 4690 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4691 { TYPE_XICS_FABRIC }, 4692 { TYPE_INTERRUPT_STATS_PROVIDER }, 4693 { TYPE_XIVE_FABRIC }, 4694 { TYPE_VOF_MACHINE_IF }, 4695 { } 4696 }, 4697 }; 4698 4699 static void spapr_machine_latest_class_options(MachineClass *mc) 4700 { 4701 mc->alias = "pseries"; 4702 mc->is_default = true; 4703 } 4704 4705 #define DEFINE_SPAPR_MACHINE_IMPL(latest, ...) \ 4706 static void MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__)( \ 4707 ObjectClass *oc, \ 4708 void *data) \ 4709 { \ 4710 MachineClass *mc = MACHINE_CLASS(oc); \ 4711 MACHINE_VER_SYM(class_options, spapr, __VA_ARGS__)(mc); \ 4712 MACHINE_VER_DEPRECATION(__VA_ARGS__); \ 4713 if (latest) { \ 4714 spapr_machine_latest_class_options(mc); \ 4715 } \ 4716 } \ 4717 static const TypeInfo MACHINE_VER_SYM(info, spapr, __VA_ARGS__) = \ 4718 { \ 4719 .name = MACHINE_VER_TYPE_NAME("pseries", __VA_ARGS__), \ 4720 .parent = TYPE_SPAPR_MACHINE, \ 4721 .class_init = MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__), \ 4722 }; \ 4723 static void MACHINE_VER_SYM(register, spapr, __VA_ARGS__)(void) \ 4724 { \ 4725 MACHINE_VER_DELETION(__VA_ARGS__); \ 4726 type_register(&MACHINE_VER_SYM(info, spapr, __VA_ARGS__)); \ 4727 } \ 4728 type_init(MACHINE_VER_SYM(register, spapr, __VA_ARGS__)) 4729 4730 #define DEFINE_SPAPR_MACHINE_AS_LATEST(major, minor) \ 4731 DEFINE_SPAPR_MACHINE_IMPL(true, major, minor) 4732 #define DEFINE_SPAPR_MACHINE(major, minor) \ 4733 DEFINE_SPAPR_MACHINE_IMPL(false, major, minor) 4734 4735 /* 4736 * pseries-9.2 4737 */ 4738 static void spapr_machine_9_2_class_options(MachineClass *mc) 4739 { 4740 /* Defaults for the latest behaviour inherited from the base class */ 4741 } 4742 4743 DEFINE_SPAPR_MACHINE_AS_LATEST(9, 2); 4744 4745 /* 4746 * pseries-9.1 4747 */ 4748 static void spapr_machine_9_1_class_options(MachineClass *mc) 4749 { 4750 spapr_machine_9_2_class_options(mc); 4751 compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len); 4752 } 4753 4754 DEFINE_SPAPR_MACHINE(9, 1); 4755 4756 /* 4757 * pseries-9.0 4758 */ 4759 static void spapr_machine_9_0_class_options(MachineClass *mc) 4760 { 4761 spapr_machine_9_1_class_options(mc); 4762 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); 4763 } 4764 4765 DEFINE_SPAPR_MACHINE(9, 0); 4766 4767 /* 4768 * pseries-8.2 4769 */ 4770 static void spapr_machine_8_2_class_options(MachineClass *mc) 4771 { 4772 spapr_machine_9_0_class_options(mc); 4773 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 4774 } 4775 4776 DEFINE_SPAPR_MACHINE(8, 2); 4777 4778 /* 4779 * pseries-8.1 4780 */ 4781 static void spapr_machine_8_1_class_options(MachineClass *mc) 4782 { 4783 spapr_machine_8_2_class_options(mc); 4784 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4785 } 4786 4787 DEFINE_SPAPR_MACHINE(8, 1); 4788 4789 /* 4790 * pseries-8.0 4791 */ 4792 static void spapr_machine_8_0_class_options(MachineClass *mc) 4793 { 4794 spapr_machine_8_1_class_options(mc); 4795 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4796 } 4797 4798 DEFINE_SPAPR_MACHINE(8, 0); 4799 4800 /* 4801 * pseries-7.2 4802 */ 4803 static void spapr_machine_7_2_class_options(MachineClass *mc) 4804 { 4805 spapr_machine_8_0_class_options(mc); 4806 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4807 } 4808 4809 DEFINE_SPAPR_MACHINE(7, 2); 4810 4811 /* 4812 * pseries-7.1 4813 */ 4814 static void spapr_machine_7_1_class_options(MachineClass *mc) 4815 { 4816 spapr_machine_7_2_class_options(mc); 4817 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4818 } 4819 4820 DEFINE_SPAPR_MACHINE(7, 1); 4821 4822 /* 4823 * pseries-7.0 4824 */ 4825 static void spapr_machine_7_0_class_options(MachineClass *mc) 4826 { 4827 spapr_machine_7_1_class_options(mc); 4828 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4829 } 4830 4831 DEFINE_SPAPR_MACHINE(7, 0); 4832 4833 /* 4834 * pseries-6.2 4835 */ 4836 static void spapr_machine_6_2_class_options(MachineClass *mc) 4837 { 4838 spapr_machine_7_0_class_options(mc); 4839 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4840 } 4841 4842 DEFINE_SPAPR_MACHINE(6, 2); 4843 4844 /* 4845 * pseries-6.1 4846 */ 4847 static void spapr_machine_6_1_class_options(MachineClass *mc) 4848 { 4849 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4850 4851 spapr_machine_6_2_class_options(mc); 4852 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4853 smc->pre_6_2_numa_affinity = true; 4854 mc->smp_props.prefer_sockets = true; 4855 } 4856 4857 DEFINE_SPAPR_MACHINE(6, 1); 4858 4859 /* 4860 * pseries-6.0 4861 */ 4862 static void spapr_machine_6_0_class_options(MachineClass *mc) 4863 { 4864 spapr_machine_6_1_class_options(mc); 4865 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4866 } 4867 4868 DEFINE_SPAPR_MACHINE(6, 0); 4869 4870 /* 4871 * pseries-5.2 4872 */ 4873 static void spapr_machine_5_2_class_options(MachineClass *mc) 4874 { 4875 spapr_machine_6_0_class_options(mc); 4876 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4877 } 4878 4879 DEFINE_SPAPR_MACHINE(5, 2); 4880 4881 /* 4882 * pseries-5.1 4883 */ 4884 static void spapr_machine_5_1_class_options(MachineClass *mc) 4885 { 4886 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4887 4888 spapr_machine_5_2_class_options(mc); 4889 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4890 smc->pre_5_2_numa_associativity = true; 4891 } 4892 4893 DEFINE_SPAPR_MACHINE(5, 1); 4894 4895 /* 4896 * pseries-5.0 4897 */ 4898 static void spapr_machine_5_0_class_options(MachineClass *mc) 4899 { 4900 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4901 static GlobalProperty compat[] = { 4902 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4903 }; 4904 4905 spapr_machine_5_1_class_options(mc); 4906 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4907 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4908 mc->numa_mem_supported = true; 4909 smc->pre_5_1_assoc_refpoints = true; 4910 } 4911 4912 DEFINE_SPAPR_MACHINE(5, 0); 4913 4914 /* 4915 * pseries-4.2 4916 */ 4917 static void spapr_machine_4_2_class_options(MachineClass *mc) 4918 { 4919 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4920 4921 spapr_machine_5_0_class_options(mc); 4922 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4923 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4924 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4925 smc->rma_limit = 16 * GiB; 4926 mc->nvdimm_supported = false; 4927 } 4928 4929 DEFINE_SPAPR_MACHINE(4, 2); 4930 4931 /* 4932 * pseries-4.1 4933 */ 4934 static void spapr_machine_4_1_class_options(MachineClass *mc) 4935 { 4936 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4937 static GlobalProperty compat[] = { 4938 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4939 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4940 }; 4941 4942 spapr_machine_4_2_class_options(mc); 4943 smc->linux_pci_probe = false; 4944 smc->smp_threads_vsmt = false; 4945 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4946 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4947 } 4948 4949 DEFINE_SPAPR_MACHINE(4, 1); 4950 4951 /* 4952 * pseries-4.0 4953 */ 4954 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4955 uint64_t *buid, hwaddr *pio, 4956 hwaddr *mmio32, hwaddr *mmio64, 4957 unsigned n_dma, uint32_t *liobns, Error **errp) 4958 { 4959 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4960 liobns, errp)) { 4961 return false; 4962 } 4963 return true; 4964 } 4965 static void spapr_machine_4_0_class_options(MachineClass *mc) 4966 { 4967 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4968 4969 spapr_machine_4_1_class_options(mc); 4970 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4971 smc->phb_placement = phb_placement_4_0; 4972 smc->irq = &spapr_irq_xics; 4973 smc->pre_4_1_migration = true; 4974 } 4975 4976 DEFINE_SPAPR_MACHINE(4, 0); 4977 4978 /* 4979 * pseries-3.1 4980 */ 4981 static void spapr_machine_3_1_class_options(MachineClass *mc) 4982 { 4983 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4984 4985 spapr_machine_4_0_class_options(mc); 4986 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4987 4988 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4989 smc->update_dt_enabled = false; 4990 smc->dr_phb_enabled = false; 4991 smc->broken_host_serial_model = true; 4992 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4993 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4994 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4995 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4996 } 4997 4998 DEFINE_SPAPR_MACHINE(3, 1); 4999 5000 /* 5001 * pseries-3.0 5002 */ 5003 5004 static void spapr_machine_3_0_class_options(MachineClass *mc) 5005 { 5006 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5007 5008 spapr_machine_3_1_class_options(mc); 5009 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5010 5011 smc->legacy_irq_allocation = true; 5012 smc->nr_xirqs = 0x400; 5013 smc->irq = &spapr_irq_xics_legacy; 5014 } 5015 5016 DEFINE_SPAPR_MACHINE(3, 0); 5017 5018 static void spapr_machine_register_types(void) 5019 { 5020 type_register_static(&spapr_machine_info); 5021 } 5022 5023 type_init(spapr_machine_register_types) 5024