1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "hw/core/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "hw/ppc/spapr_cpu_core.h" 80 #include "hw/mem/memory-device.h" 81 #include "hw/ppc/spapr_tpm_proxy.h" 82 83 #include "monitor/monitor.h" 84 85 #include <libfdt.h> 86 87 /* SLOF memory layout: 88 * 89 * SLOF raw image loaded at 0, copies its romfs right below the flat 90 * device-tree, then position SLOF itself 31M below that 91 * 92 * So we set FW_OVERHEAD to 40MB which should account for all of that 93 * and more 94 * 95 * We load our kernel at 4M, leaving space for SLOF initial image 96 */ 97 #define FDT_MAX_SIZE 0x100000 98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 99 #define FW_MAX_SIZE 0x400000 100 #define FW_FILE_NAME "slof.bin" 101 #define FW_OVERHEAD 0x2800000 102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 103 104 #define MIN_RMA_SLOF 128UL 105 106 #define PHANDLE_INTC 0x00001111 107 108 /* These two functions implement the VCPU id numbering: one to compute them 109 * all and one to identify thread 0 of a VCORE. Any change to the first one 110 * is likely to have an impact on the second one, so let's keep them close. 111 */ 112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 113 { 114 MachineState *ms = MACHINE(spapr); 115 unsigned int smp_threads = ms->smp.threads; 116 117 assert(spapr->vsmt); 118 return 119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 120 } 121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 122 PowerPCCPU *cpu) 123 { 124 assert(spapr->vsmt); 125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 126 } 127 128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 129 { 130 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 131 * and newer QEMUs don't even have them. In both cases, we don't want 132 * to send anything on the wire. 133 */ 134 return false; 135 } 136 137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 138 .name = "icp/server", 139 .version_id = 1, 140 .minimum_version_id = 1, 141 .needed = pre_2_10_vmstate_dummy_icp_needed, 142 .fields = (VMStateField[]) { 143 VMSTATE_UNUSED(4), /* uint32_t xirr */ 144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 145 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 146 VMSTATE_END_OF_LIST() 147 }, 148 }; 149 150 static void pre_2_10_vmstate_register_dummy_icp(int i) 151 { 152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 153 (void *)(uintptr_t) i); 154 } 155 156 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 157 { 158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 159 (void *)(uintptr_t) i); 160 } 161 162 int spapr_max_server_number(SpaprMachineState *spapr) 163 { 164 MachineState *ms = MACHINE(spapr); 165 166 assert(spapr->vsmt); 167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 168 } 169 170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 171 int smt_threads) 172 { 173 int i, ret = 0; 174 uint32_t servers_prop[smt_threads]; 175 uint32_t gservers_prop[smt_threads * 2]; 176 int index = spapr_get_vcpu_id(cpu); 177 178 if (cpu->compat_pvr) { 179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 180 if (ret < 0) { 181 return ret; 182 } 183 } 184 185 /* Build interrupt servers and gservers properties */ 186 for (i = 0; i < smt_threads; i++) { 187 servers_prop[i] = cpu_to_be32(index + i); 188 /* Hack, direct the group queues back to cpu 0 */ 189 gservers_prop[i*2] = cpu_to_be32(index + i); 190 gservers_prop[i*2 + 1] = 0; 191 } 192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 193 servers_prop, sizeof(servers_prop)); 194 if (ret < 0) { 195 return ret; 196 } 197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 198 gservers_prop, sizeof(gservers_prop)); 199 200 return ret; 201 } 202 203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 204 { 205 int index = spapr_get_vcpu_id(cpu); 206 uint32_t associativity[] = {cpu_to_be32(0x5), 207 cpu_to_be32(0x0), 208 cpu_to_be32(0x0), 209 cpu_to_be32(0x0), 210 cpu_to_be32(cpu->node_id), 211 cpu_to_be32(index)}; 212 213 /* Advertise NUMA via ibm,associativity */ 214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 215 sizeof(associativity)); 216 } 217 218 /* Populate the "ibm,pa-features" property */ 219 static void spapr_populate_pa_features(SpaprMachineState *spapr, 220 PowerPCCPU *cpu, 221 void *fdt, int offset) 222 { 223 uint8_t pa_features_206[] = { 6, 0, 224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 225 uint8_t pa_features_207[] = { 24, 0, 226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 230 uint8_t pa_features_300[] = { 66, 0, 231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 234 /* 6: DS207 */ 235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 236 /* 16: Vector */ 237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 246 /* 42: PM, 44: PC RA, 46: SC vec'd */ 247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 248 /* 48: SIMD, 50: QP BFP, 52: String */ 249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 250 /* 54: DecFP, 56: DecI, 58: SHA */ 251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 252 /* 60: NM atomic, 62: RNG */ 253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 254 }; 255 uint8_t *pa_features = NULL; 256 size_t pa_size; 257 258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 259 pa_features = pa_features_206; 260 pa_size = sizeof(pa_features_206); 261 } 262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 263 pa_features = pa_features_207; 264 pa_size = sizeof(pa_features_207); 265 } 266 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 267 pa_features = pa_features_300; 268 pa_size = sizeof(pa_features_300); 269 } 270 if (!pa_features) { 271 return; 272 } 273 274 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 275 /* 276 * Note: we keep CI large pages off by default because a 64K capable 277 * guest provisioned with large pages might otherwise try to map a qemu 278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 279 * even if that qemu runs on a 4k host. 280 * We dd this bit back here if we are confident this is not an issue 281 */ 282 pa_features[3] |= 0x20; 283 } 284 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 285 pa_features[24] |= 0x80; /* Transactional memory support */ 286 } 287 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 288 /* Workaround for broken kernels that attempt (guest) radix 289 * mode when they can't handle it, if they see the radix bit set 290 * in pa-features. So hide it from them. */ 291 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 292 } 293 294 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 295 } 296 297 static hwaddr spapr_node0_size(MachineState *machine) 298 { 299 if (machine->numa_state->num_nodes) { 300 int i; 301 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 302 if (machine->numa_state->nodes[i].node_mem) { 303 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 304 machine->ram_size); 305 } 306 } 307 } 308 return machine->ram_size; 309 } 310 311 static void add_str(GString *s, const gchar *s1) 312 { 313 g_string_append_len(s, s1, strlen(s1) + 1); 314 } 315 316 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 317 hwaddr size) 318 { 319 uint32_t associativity[] = { 320 cpu_to_be32(0x4), /* length */ 321 cpu_to_be32(0x0), cpu_to_be32(0x0), 322 cpu_to_be32(0x0), cpu_to_be32(nodeid) 323 }; 324 char mem_name[32]; 325 uint64_t mem_reg_property[2]; 326 int off; 327 328 mem_reg_property[0] = cpu_to_be64(start); 329 mem_reg_property[1] = cpu_to_be64(size); 330 331 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 332 off = fdt_add_subnode(fdt, 0, mem_name); 333 _FDT(off); 334 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 335 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 336 sizeof(mem_reg_property)))); 337 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 338 sizeof(associativity)))); 339 return off; 340 } 341 342 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 343 { 344 MachineState *machine = MACHINE(spapr); 345 hwaddr mem_start, node_size; 346 int i, nb_nodes = machine->numa_state->num_nodes; 347 NodeInfo *nodes = machine->numa_state->nodes; 348 349 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 350 if (!nodes[i].node_mem) { 351 continue; 352 } 353 if (mem_start >= machine->ram_size) { 354 node_size = 0; 355 } else { 356 node_size = nodes[i].node_mem; 357 if (node_size > machine->ram_size - mem_start) { 358 node_size = machine->ram_size - mem_start; 359 } 360 } 361 if (!mem_start) { 362 /* spapr_machine_init() checks for rma_size <= node0_size 363 * already */ 364 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 365 mem_start += spapr->rma_size; 366 node_size -= spapr->rma_size; 367 } 368 for ( ; node_size; ) { 369 hwaddr sizetmp = pow2floor(node_size); 370 371 /* mem_start != 0 here */ 372 if (ctzl(mem_start) < ctzl(sizetmp)) { 373 sizetmp = 1ULL << ctzl(mem_start); 374 } 375 376 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 377 node_size -= sizetmp; 378 mem_start += sizetmp; 379 } 380 } 381 382 return 0; 383 } 384 385 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 386 SpaprMachineState *spapr) 387 { 388 MachineState *ms = MACHINE(spapr); 389 PowerPCCPU *cpu = POWERPC_CPU(cs); 390 CPUPPCState *env = &cpu->env; 391 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 392 int index = spapr_get_vcpu_id(cpu); 393 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 394 0xffffffff, 0xffffffff}; 395 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 396 : SPAPR_TIMEBASE_FREQ; 397 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 398 uint32_t page_sizes_prop[64]; 399 size_t page_sizes_prop_size; 400 unsigned int smp_threads = ms->smp.threads; 401 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 402 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 403 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 404 SpaprDrc *drc; 405 int drc_index; 406 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 407 int i; 408 409 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 410 if (drc) { 411 drc_index = spapr_drc_index(drc); 412 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 413 } 414 415 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 416 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 417 418 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 419 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 420 env->dcache_line_size))); 421 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 422 env->dcache_line_size))); 423 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 424 env->icache_line_size))); 425 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 426 env->icache_line_size))); 427 428 if (pcc->l1_dcache_size) { 429 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 430 pcc->l1_dcache_size))); 431 } else { 432 warn_report("Unknown L1 dcache size for cpu"); 433 } 434 if (pcc->l1_icache_size) { 435 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 436 pcc->l1_icache_size))); 437 } else { 438 warn_report("Unknown L1 icache size for cpu"); 439 } 440 441 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 442 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 443 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 444 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 445 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 446 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 447 448 if (env->spr_cb[SPR_PURR].oea_read) { 449 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 450 } 451 if (env->spr_cb[SPR_SPURR].oea_read) { 452 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 453 } 454 455 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 456 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 457 segs, sizeof(segs)))); 458 } 459 460 /* Advertise VSX (vector extensions) if available 461 * 1 == VMX / Altivec available 462 * 2 == VSX available 463 * 464 * Only CPUs for which we create core types in spapr_cpu_core.c 465 * are possible, and all of those have VMX */ 466 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 467 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 468 } else { 469 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 470 } 471 472 /* Advertise DFP (Decimal Floating Point) if available 473 * 0 / no property == no DFP 474 * 1 == DFP available */ 475 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 476 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 477 } 478 479 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 480 sizeof(page_sizes_prop)); 481 if (page_sizes_prop_size) { 482 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 483 page_sizes_prop, page_sizes_prop_size))); 484 } 485 486 spapr_populate_pa_features(spapr, cpu, fdt, offset); 487 488 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 489 cs->cpu_index / vcpus_per_socket))); 490 491 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 492 pft_size_prop, sizeof(pft_size_prop)))); 493 494 if (ms->numa_state->num_nodes > 1) { 495 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 496 } 497 498 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 499 500 if (pcc->radix_page_info) { 501 for (i = 0; i < pcc->radix_page_info->count; i++) { 502 radix_AP_encodings[i] = 503 cpu_to_be32(pcc->radix_page_info->entries[i]); 504 } 505 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 506 radix_AP_encodings, 507 pcc->radix_page_info->count * 508 sizeof(radix_AP_encodings[0])))); 509 } 510 511 /* 512 * We set this property to let the guest know that it can use the large 513 * decrementer and its width in bits. 514 */ 515 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 516 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 517 pcc->lrg_decr_bits))); 518 } 519 520 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 521 { 522 CPUState **rev; 523 CPUState *cs; 524 int n_cpus; 525 int cpus_offset; 526 char *nodename; 527 int i; 528 529 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 530 _FDT(cpus_offset); 531 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 532 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 533 534 /* 535 * We walk the CPUs in reverse order to ensure that CPU DT nodes 536 * created by fdt_add_subnode() end up in the right order in FDT 537 * for the guest kernel the enumerate the CPUs correctly. 538 * 539 * The CPU list cannot be traversed in reverse order, so we need 540 * to do extra work. 541 */ 542 n_cpus = 0; 543 rev = NULL; 544 CPU_FOREACH(cs) { 545 rev = g_renew(CPUState *, rev, n_cpus + 1); 546 rev[n_cpus++] = cs; 547 } 548 549 for (i = n_cpus - 1; i >= 0; i--) { 550 CPUState *cs = rev[i]; 551 PowerPCCPU *cpu = POWERPC_CPU(cs); 552 int index = spapr_get_vcpu_id(cpu); 553 DeviceClass *dc = DEVICE_GET_CLASS(cs); 554 int offset; 555 556 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 557 continue; 558 } 559 560 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 561 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 562 g_free(nodename); 563 _FDT(offset); 564 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 565 } 566 567 g_free(rev); 568 } 569 570 static int spapr_rng_populate_dt(void *fdt) 571 { 572 int node; 573 int ret; 574 575 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 576 if (node <= 0) { 577 return -1; 578 } 579 ret = fdt_setprop_string(fdt, node, "device_type", 580 "ibm,platform-facilities"); 581 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 582 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 583 584 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 585 if (node <= 0) { 586 return -1; 587 } 588 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 589 590 return ret ? -1 : 0; 591 } 592 593 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 594 { 595 MemoryDeviceInfoList *info; 596 597 for (info = list; info; info = info->next) { 598 MemoryDeviceInfo *value = info->value; 599 600 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 601 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 602 603 if (addr >= pcdimm_info->addr && 604 addr < (pcdimm_info->addr + pcdimm_info->size)) { 605 return pcdimm_info->node; 606 } 607 } 608 } 609 610 return -1; 611 } 612 613 struct sPAPRDrconfCellV2 { 614 uint32_t seq_lmbs; 615 uint64_t base_addr; 616 uint32_t drc_index; 617 uint32_t aa_index; 618 uint32_t flags; 619 } QEMU_PACKED; 620 621 typedef struct DrconfCellQueue { 622 struct sPAPRDrconfCellV2 cell; 623 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 624 } DrconfCellQueue; 625 626 static DrconfCellQueue * 627 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 628 uint32_t drc_index, uint32_t aa_index, 629 uint32_t flags) 630 { 631 DrconfCellQueue *elem; 632 633 elem = g_malloc0(sizeof(*elem)); 634 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 635 elem->cell.base_addr = cpu_to_be64(base_addr); 636 elem->cell.drc_index = cpu_to_be32(drc_index); 637 elem->cell.aa_index = cpu_to_be32(aa_index); 638 elem->cell.flags = cpu_to_be32(flags); 639 640 return elem; 641 } 642 643 /* ibm,dynamic-memory-v2 */ 644 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 645 int offset, MemoryDeviceInfoList *dimms) 646 { 647 MachineState *machine = MACHINE(spapr); 648 uint8_t *int_buf, *cur_index; 649 int ret; 650 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 651 uint64_t addr, cur_addr, size; 652 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 653 uint64_t mem_end = machine->device_memory->base + 654 memory_region_size(&machine->device_memory->mr); 655 uint32_t node, buf_len, nr_entries = 0; 656 SpaprDrc *drc; 657 DrconfCellQueue *elem, *next; 658 MemoryDeviceInfoList *info; 659 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 660 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 661 662 /* Entry to cover RAM and the gap area */ 663 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 664 SPAPR_LMB_FLAGS_RESERVED | 665 SPAPR_LMB_FLAGS_DRC_INVALID); 666 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 667 nr_entries++; 668 669 cur_addr = machine->device_memory->base; 670 for (info = dimms; info; info = info->next) { 671 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 672 673 addr = di->addr; 674 size = di->size; 675 node = di->node; 676 677 /* Entry for hot-pluggable area */ 678 if (cur_addr < addr) { 679 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 680 g_assert(drc); 681 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 682 cur_addr, spapr_drc_index(drc), -1, 0); 683 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 684 nr_entries++; 685 } 686 687 /* Entry for DIMM */ 688 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 689 g_assert(drc); 690 elem = spapr_get_drconf_cell(size / lmb_size, addr, 691 spapr_drc_index(drc), node, 692 SPAPR_LMB_FLAGS_ASSIGNED); 693 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 694 nr_entries++; 695 cur_addr = addr + size; 696 } 697 698 /* Entry for remaining hotpluggable area */ 699 if (cur_addr < mem_end) { 700 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 701 g_assert(drc); 702 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 703 cur_addr, spapr_drc_index(drc), -1, 0); 704 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 705 nr_entries++; 706 } 707 708 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 709 int_buf = cur_index = g_malloc0(buf_len); 710 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 711 cur_index += sizeof(nr_entries); 712 713 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 714 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 715 cur_index += sizeof(elem->cell); 716 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 717 g_free(elem); 718 } 719 720 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 721 g_free(int_buf); 722 if (ret < 0) { 723 return -1; 724 } 725 return 0; 726 } 727 728 /* ibm,dynamic-memory */ 729 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 730 int offset, MemoryDeviceInfoList *dimms) 731 { 732 MachineState *machine = MACHINE(spapr); 733 int i, ret; 734 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 735 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 736 uint32_t nr_lmbs = (machine->device_memory->base + 737 memory_region_size(&machine->device_memory->mr)) / 738 lmb_size; 739 uint32_t *int_buf, *cur_index, buf_len; 740 741 /* 742 * Allocate enough buffer size to fit in ibm,dynamic-memory 743 */ 744 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 745 cur_index = int_buf = g_malloc0(buf_len); 746 int_buf[0] = cpu_to_be32(nr_lmbs); 747 cur_index++; 748 for (i = 0; i < nr_lmbs; i++) { 749 uint64_t addr = i * lmb_size; 750 uint32_t *dynamic_memory = cur_index; 751 752 if (i >= device_lmb_start) { 753 SpaprDrc *drc; 754 755 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 756 g_assert(drc); 757 758 dynamic_memory[0] = cpu_to_be32(addr >> 32); 759 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 760 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 761 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 762 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 763 if (memory_region_present(get_system_memory(), addr)) { 764 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 765 } else { 766 dynamic_memory[5] = cpu_to_be32(0); 767 } 768 } else { 769 /* 770 * LMB information for RMA, boot time RAM and gap b/n RAM and 771 * device memory region -- all these are marked as reserved 772 * and as having no valid DRC. 773 */ 774 dynamic_memory[0] = cpu_to_be32(addr >> 32); 775 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 776 dynamic_memory[2] = cpu_to_be32(0); 777 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 778 dynamic_memory[4] = cpu_to_be32(-1); 779 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 780 SPAPR_LMB_FLAGS_DRC_INVALID); 781 } 782 783 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 784 } 785 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 786 g_free(int_buf); 787 if (ret < 0) { 788 return -1; 789 } 790 return 0; 791 } 792 793 /* 794 * Adds ibm,dynamic-reconfiguration-memory node. 795 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 796 * of this device tree node. 797 */ 798 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 799 { 800 MachineState *machine = MACHINE(spapr); 801 int nb_numa_nodes = machine->numa_state->num_nodes; 802 int ret, i, offset; 803 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 804 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 805 uint32_t *int_buf, *cur_index, buf_len; 806 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 807 MemoryDeviceInfoList *dimms = NULL; 808 809 /* 810 * Don't create the node if there is no device memory 811 */ 812 if (machine->ram_size == machine->maxram_size) { 813 return 0; 814 } 815 816 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 817 818 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 819 sizeof(prop_lmb_size)); 820 if (ret < 0) { 821 return ret; 822 } 823 824 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 825 if (ret < 0) { 826 return ret; 827 } 828 829 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 830 if (ret < 0) { 831 return ret; 832 } 833 834 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 835 dimms = qmp_memory_device_list(); 836 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 837 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 838 } else { 839 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 840 } 841 qapi_free_MemoryDeviceInfoList(dimms); 842 843 if (ret < 0) { 844 return ret; 845 } 846 847 /* ibm,associativity-lookup-arrays */ 848 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 849 cur_index = int_buf = g_malloc0(buf_len); 850 int_buf[0] = cpu_to_be32(nr_nodes); 851 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 852 cur_index += 2; 853 for (i = 0; i < nr_nodes; i++) { 854 uint32_t associativity[] = { 855 cpu_to_be32(0x0), 856 cpu_to_be32(0x0), 857 cpu_to_be32(0x0), 858 cpu_to_be32(i) 859 }; 860 memcpy(cur_index, associativity, sizeof(associativity)); 861 cur_index += 4; 862 } 863 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 864 (cur_index - int_buf) * sizeof(uint32_t)); 865 g_free(int_buf); 866 867 return ret; 868 } 869 870 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 871 SpaprOptionVector *ov5_updates) 872 { 873 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 874 int ret = 0, offset; 875 876 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 877 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 878 g_assert(smc->dr_lmb_enabled); 879 ret = spapr_populate_drconf_memory(spapr, fdt); 880 if (ret) { 881 return ret; 882 } 883 } 884 885 offset = fdt_path_offset(fdt, "/chosen"); 886 if (offset < 0) { 887 offset = fdt_add_subnode(fdt, 0, "chosen"); 888 if (offset < 0) { 889 return offset; 890 } 891 } 892 return spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 893 "ibm,architecture-vec-5"); 894 } 895 896 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 897 { 898 MachineState *ms = MACHINE(spapr); 899 int rtas; 900 GString *hypertas = g_string_sized_new(256); 901 GString *qemu_hypertas = g_string_sized_new(256); 902 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 903 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 904 memory_region_size(&MACHINE(spapr)->device_memory->mr); 905 uint32_t lrdr_capacity[] = { 906 cpu_to_be32(max_device_addr >> 32), 907 cpu_to_be32(max_device_addr & 0xffffffff), 908 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 909 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 910 }; 911 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 912 uint32_t maxdomains[] = { 913 cpu_to_be32(4), 914 maxdomain, 915 maxdomain, 916 maxdomain, 917 cpu_to_be32(spapr->gpu_numa_id), 918 }; 919 920 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 921 922 /* hypertas */ 923 add_str(hypertas, "hcall-pft"); 924 add_str(hypertas, "hcall-term"); 925 add_str(hypertas, "hcall-dabr"); 926 add_str(hypertas, "hcall-interrupt"); 927 add_str(hypertas, "hcall-tce"); 928 add_str(hypertas, "hcall-vio"); 929 add_str(hypertas, "hcall-splpar"); 930 add_str(hypertas, "hcall-join"); 931 add_str(hypertas, "hcall-bulk"); 932 add_str(hypertas, "hcall-set-mode"); 933 add_str(hypertas, "hcall-sprg0"); 934 add_str(hypertas, "hcall-copy"); 935 add_str(hypertas, "hcall-debug"); 936 add_str(hypertas, "hcall-vphn"); 937 add_str(qemu_hypertas, "hcall-memop1"); 938 939 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 940 add_str(hypertas, "hcall-multi-tce"); 941 } 942 943 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 944 add_str(hypertas, "hcall-hpt-resize"); 945 } 946 947 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 948 hypertas->str, hypertas->len)); 949 g_string_free(hypertas, TRUE); 950 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 951 qemu_hypertas->str, qemu_hypertas->len)); 952 g_string_free(qemu_hypertas, TRUE); 953 954 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 955 refpoints, sizeof(refpoints))); 956 957 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 958 maxdomains, sizeof(maxdomains))); 959 960 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 961 RTAS_ERROR_LOG_MAX)); 962 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 963 RTAS_EVENT_SCAN_RATE)); 964 965 g_assert(msi_nonbroken); 966 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 967 968 /* 969 * According to PAPR, rtas ibm,os-term does not guarantee a return 970 * back to the guest cpu. 971 * 972 * While an additional ibm,extended-os-term property indicates 973 * that rtas call return will always occur. Set this property. 974 */ 975 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 976 977 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 978 lrdr_capacity, sizeof(lrdr_capacity))); 979 980 spapr_dt_rtas_tokens(fdt, rtas); 981 } 982 983 /* 984 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 985 * and the XIVE features that the guest may request and thus the valid 986 * values for bytes 23..26 of option vector 5: 987 */ 988 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 989 int chosen) 990 { 991 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 992 993 char val[2 * 4] = { 994 23, 0x00, /* XICS / XIVE mode */ 995 24, 0x00, /* Hash/Radix, filled in below. */ 996 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 997 26, 0x40, /* Radix options: GTSE == yes. */ 998 }; 999 1000 if (spapr->irq->xics && spapr->irq->xive) { 1001 val[1] = SPAPR_OV5_XIVE_BOTH; 1002 } else if (spapr->irq->xive) { 1003 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1004 } else { 1005 assert(spapr->irq->xics); 1006 val[1] = SPAPR_OV5_XIVE_LEGACY; 1007 } 1008 1009 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1010 first_ppc_cpu->compat_pvr)) { 1011 /* 1012 * If we're in a pre POWER9 compat mode then the guest should 1013 * do hash and use the legacy interrupt mode 1014 */ 1015 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1016 val[3] = 0x00; /* Hash */ 1017 } else if (kvm_enabled()) { 1018 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1019 val[3] = 0x80; /* OV5_MMU_BOTH */ 1020 } else if (kvmppc_has_cap_mmu_radix()) { 1021 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1022 } else { 1023 val[3] = 0x00; /* Hash */ 1024 } 1025 } else { 1026 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1027 val[3] = 0xC0; 1028 } 1029 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1030 val, sizeof(val))); 1031 } 1032 1033 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1034 { 1035 MachineState *machine = MACHINE(spapr); 1036 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1037 int chosen; 1038 const char *boot_device = machine->boot_order; 1039 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1040 size_t cb = 0; 1041 char *bootlist = get_boot_devices_list(&cb); 1042 1043 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1044 1045 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1046 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1047 machine->kernel_cmdline)); 1048 } 1049 if (spapr->initrd_size) { 1050 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1051 spapr->initrd_base)); 1052 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1053 spapr->initrd_base + spapr->initrd_size)); 1054 } 1055 1056 if (spapr->kernel_size) { 1057 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1058 cpu_to_be64(spapr->kernel_size) }; 1059 1060 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1061 &kprop, sizeof(kprop))); 1062 if (spapr->kernel_le) { 1063 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1064 } 1065 } 1066 if (boot_menu) { 1067 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1068 } 1069 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1070 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1071 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1072 1073 if (cb && bootlist) { 1074 int i; 1075 1076 for (i = 0; i < cb; i++) { 1077 if (bootlist[i] == '\n') { 1078 bootlist[i] = ' '; 1079 } 1080 } 1081 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1082 } 1083 1084 if (boot_device && strlen(boot_device)) { 1085 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1086 } 1087 1088 if (!spapr->has_graphics && stdout_path) { 1089 /* 1090 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1091 * kernel. New platforms should only use the "stdout-path" property. Set 1092 * the new property and continue using older property to remain 1093 * compatible with the existing firmware. 1094 */ 1095 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1096 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1097 } 1098 1099 /* We can deal with BAR reallocation just fine, advertise it to the guest */ 1100 if (smc->linux_pci_probe) { 1101 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1102 } 1103 1104 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1105 1106 g_free(stdout_path); 1107 g_free(bootlist); 1108 } 1109 1110 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1111 { 1112 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1113 * KVM to work under pHyp with some guest co-operation */ 1114 int hypervisor; 1115 uint8_t hypercall[16]; 1116 1117 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1118 /* indicate KVM hypercall interface */ 1119 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1120 if (kvmppc_has_cap_fixup_hcalls()) { 1121 /* 1122 * Older KVM versions with older guest kernels were broken 1123 * with the magic page, don't allow the guest to map it. 1124 */ 1125 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1126 sizeof(hypercall))) { 1127 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1128 hypercall, sizeof(hypercall))); 1129 } 1130 } 1131 } 1132 1133 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1134 { 1135 MachineState *machine = MACHINE(spapr); 1136 MachineClass *mc = MACHINE_GET_CLASS(machine); 1137 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1138 int ret; 1139 void *fdt; 1140 SpaprPhbState *phb; 1141 char *buf; 1142 1143 fdt = g_malloc0(space); 1144 _FDT((fdt_create_empty_tree(fdt, space))); 1145 1146 /* Root node */ 1147 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1148 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1149 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1150 1151 /* Guest UUID & Name*/ 1152 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1153 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1154 if (qemu_uuid_set) { 1155 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1156 } 1157 g_free(buf); 1158 1159 if (qemu_get_vm_name()) { 1160 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1161 qemu_get_vm_name())); 1162 } 1163 1164 /* Host Model & Serial Number */ 1165 if (spapr->host_model) { 1166 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1167 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1168 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1169 g_free(buf); 1170 } 1171 1172 if (spapr->host_serial) { 1173 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1174 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1175 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1176 g_free(buf); 1177 } 1178 1179 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1180 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1181 1182 /* /interrupt controller */ 1183 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1184 1185 ret = spapr_populate_memory(spapr, fdt); 1186 if (ret < 0) { 1187 error_report("couldn't setup memory nodes in fdt"); 1188 exit(1); 1189 } 1190 1191 /* /vdevice */ 1192 spapr_dt_vdevice(spapr->vio_bus, fdt); 1193 1194 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1195 ret = spapr_rng_populate_dt(fdt); 1196 if (ret < 0) { 1197 error_report("could not set up rng device in the fdt"); 1198 exit(1); 1199 } 1200 } 1201 1202 QLIST_FOREACH(phb, &spapr->phbs, list) { 1203 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1204 if (ret < 0) { 1205 error_report("couldn't setup PCI devices in fdt"); 1206 exit(1); 1207 } 1208 } 1209 1210 /* cpus */ 1211 spapr_populate_cpus_dt_node(fdt, spapr); 1212 1213 if (smc->dr_lmb_enabled) { 1214 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1215 } 1216 1217 if (mc->has_hotpluggable_cpus) { 1218 int offset = fdt_path_offset(fdt, "/cpus"); 1219 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1220 if (ret < 0) { 1221 error_report("Couldn't set up CPU DR device tree properties"); 1222 exit(1); 1223 } 1224 } 1225 1226 /* /event-sources */ 1227 spapr_dt_events(spapr, fdt); 1228 1229 /* /rtas */ 1230 spapr_dt_rtas(spapr, fdt); 1231 1232 /* /chosen */ 1233 if (reset) { 1234 spapr_dt_chosen(spapr, fdt); 1235 } 1236 1237 /* /hypervisor */ 1238 if (kvm_enabled()) { 1239 spapr_dt_hypervisor(spapr, fdt); 1240 } 1241 1242 /* Build memory reserve map */ 1243 if (reset) { 1244 if (spapr->kernel_size) { 1245 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1246 } 1247 if (spapr->initrd_size) { 1248 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1249 spapr->initrd_size))); 1250 } 1251 } 1252 1253 /* ibm,client-architecture-support updates */ 1254 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1255 if (ret < 0) { 1256 error_report("couldn't setup CAS properties fdt"); 1257 exit(1); 1258 } 1259 1260 if (smc->dr_phb_enabled) { 1261 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1262 if (ret < 0) { 1263 error_report("Couldn't set up PHB DR device tree properties"); 1264 exit(1); 1265 } 1266 } 1267 1268 return fdt; 1269 } 1270 1271 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1272 { 1273 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1274 } 1275 1276 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1277 PowerPCCPU *cpu) 1278 { 1279 CPUPPCState *env = &cpu->env; 1280 1281 /* The TCG path should also be holding the BQL at this point */ 1282 g_assert(qemu_mutex_iothread_locked()); 1283 1284 if (msr_pr) { 1285 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1286 env->gpr[3] = H_PRIVILEGE; 1287 } else { 1288 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1289 } 1290 } 1291 1292 struct LPCRSyncState { 1293 target_ulong value; 1294 target_ulong mask; 1295 }; 1296 1297 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1298 { 1299 struct LPCRSyncState *s = arg.host_ptr; 1300 PowerPCCPU *cpu = POWERPC_CPU(cs); 1301 CPUPPCState *env = &cpu->env; 1302 target_ulong lpcr; 1303 1304 cpu_synchronize_state(cs); 1305 lpcr = env->spr[SPR_LPCR]; 1306 lpcr &= ~s->mask; 1307 lpcr |= s->value; 1308 ppc_store_lpcr(cpu, lpcr); 1309 } 1310 1311 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1312 { 1313 CPUState *cs; 1314 struct LPCRSyncState s = { 1315 .value = value, 1316 .mask = mask 1317 }; 1318 CPU_FOREACH(cs) { 1319 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1320 } 1321 } 1322 1323 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1324 { 1325 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1326 1327 /* Copy PATE1:GR into PATE0:HR */ 1328 entry->dw0 = spapr->patb_entry & PATE0_HR; 1329 entry->dw1 = spapr->patb_entry; 1330 } 1331 1332 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1333 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1334 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1335 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1336 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1337 1338 /* 1339 * Get the fd to access the kernel htab, re-opening it if necessary 1340 */ 1341 static int get_htab_fd(SpaprMachineState *spapr) 1342 { 1343 Error *local_err = NULL; 1344 1345 if (spapr->htab_fd >= 0) { 1346 return spapr->htab_fd; 1347 } 1348 1349 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1350 if (spapr->htab_fd < 0) { 1351 error_report_err(local_err); 1352 } 1353 1354 return spapr->htab_fd; 1355 } 1356 1357 void close_htab_fd(SpaprMachineState *spapr) 1358 { 1359 if (spapr->htab_fd >= 0) { 1360 close(spapr->htab_fd); 1361 } 1362 spapr->htab_fd = -1; 1363 } 1364 1365 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1366 { 1367 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1368 1369 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1370 } 1371 1372 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1373 { 1374 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1375 1376 assert(kvm_enabled()); 1377 1378 if (!spapr->htab) { 1379 return 0; 1380 } 1381 1382 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1383 } 1384 1385 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1386 hwaddr ptex, int n) 1387 { 1388 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1389 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1390 1391 if (!spapr->htab) { 1392 /* 1393 * HTAB is controlled by KVM. Fetch into temporary buffer 1394 */ 1395 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1396 kvmppc_read_hptes(hptes, ptex, n); 1397 return hptes; 1398 } 1399 1400 /* 1401 * HTAB is controlled by QEMU. Just point to the internally 1402 * accessible PTEG. 1403 */ 1404 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1405 } 1406 1407 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1408 const ppc_hash_pte64_t *hptes, 1409 hwaddr ptex, int n) 1410 { 1411 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1412 1413 if (!spapr->htab) { 1414 g_free((void *)hptes); 1415 } 1416 1417 /* Nothing to do for qemu managed HPT */ 1418 } 1419 1420 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1421 uint64_t pte0, uint64_t pte1) 1422 { 1423 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1424 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1425 1426 if (!spapr->htab) { 1427 kvmppc_write_hpte(ptex, pte0, pte1); 1428 } else { 1429 if (pte0 & HPTE64_V_VALID) { 1430 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1431 /* 1432 * When setting valid, we write PTE1 first. This ensures 1433 * proper synchronization with the reading code in 1434 * ppc_hash64_pteg_search() 1435 */ 1436 smp_wmb(); 1437 stq_p(spapr->htab + offset, pte0); 1438 } else { 1439 stq_p(spapr->htab + offset, pte0); 1440 /* 1441 * When clearing it we set PTE0 first. This ensures proper 1442 * synchronization with the reading code in 1443 * ppc_hash64_pteg_search() 1444 */ 1445 smp_wmb(); 1446 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1447 } 1448 } 1449 } 1450 1451 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1452 uint64_t pte1) 1453 { 1454 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1455 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1456 1457 if (!spapr->htab) { 1458 /* There should always be a hash table when this is called */ 1459 error_report("spapr_hpte_set_c called with no hash table !"); 1460 return; 1461 } 1462 1463 /* The HW performs a non-atomic byte update */ 1464 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1465 } 1466 1467 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1468 uint64_t pte1) 1469 { 1470 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1471 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1472 1473 if (!spapr->htab) { 1474 /* There should always be a hash table when this is called */ 1475 error_report("spapr_hpte_set_r called with no hash table !"); 1476 return; 1477 } 1478 1479 /* The HW performs a non-atomic byte update */ 1480 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1481 } 1482 1483 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1484 { 1485 int shift; 1486 1487 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1488 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1489 * that's much more than is needed for Linux guests */ 1490 shift = ctz64(pow2ceil(ramsize)) - 7; 1491 shift = MAX(shift, 18); /* Minimum architected size */ 1492 shift = MIN(shift, 46); /* Maximum architected size */ 1493 return shift; 1494 } 1495 1496 void spapr_free_hpt(SpaprMachineState *spapr) 1497 { 1498 g_free(spapr->htab); 1499 spapr->htab = NULL; 1500 spapr->htab_shift = 0; 1501 close_htab_fd(spapr); 1502 } 1503 1504 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1505 Error **errp) 1506 { 1507 long rc; 1508 1509 /* Clean up any HPT info from a previous boot */ 1510 spapr_free_hpt(spapr); 1511 1512 rc = kvmppc_reset_htab(shift); 1513 if (rc < 0) { 1514 /* kernel-side HPT needed, but couldn't allocate one */ 1515 error_setg_errno(errp, errno, 1516 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1517 shift); 1518 /* This is almost certainly fatal, but if the caller really 1519 * wants to carry on with shift == 0, it's welcome to try */ 1520 } else if (rc > 0) { 1521 /* kernel-side HPT allocated */ 1522 if (rc != shift) { 1523 error_setg(errp, 1524 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1525 shift, rc); 1526 } 1527 1528 spapr->htab_shift = shift; 1529 spapr->htab = NULL; 1530 } else { 1531 /* kernel-side HPT not needed, allocate in userspace instead */ 1532 size_t size = 1ULL << shift; 1533 int i; 1534 1535 spapr->htab = qemu_memalign(size, size); 1536 if (!spapr->htab) { 1537 error_setg_errno(errp, errno, 1538 "Could not allocate HPT of order %d", shift); 1539 return; 1540 } 1541 1542 memset(spapr->htab, 0, size); 1543 spapr->htab_shift = shift; 1544 1545 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1546 DIRTY_HPTE(HPTE(spapr->htab, i)); 1547 } 1548 } 1549 /* We're setting up a hash table, so that means we're not radix */ 1550 spapr->patb_entry = 0; 1551 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1552 } 1553 1554 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1555 { 1556 int hpt_shift; 1557 1558 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1559 || (spapr->cas_reboot 1560 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1561 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1562 } else { 1563 uint64_t current_ram_size; 1564 1565 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1566 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1567 } 1568 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1569 1570 if (spapr->vrma_adjust) { 1571 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1572 spapr->htab_shift); 1573 } 1574 } 1575 1576 static int spapr_reset_drcs(Object *child, void *opaque) 1577 { 1578 SpaprDrc *drc = 1579 (SpaprDrc *) object_dynamic_cast(child, 1580 TYPE_SPAPR_DR_CONNECTOR); 1581 1582 if (drc) { 1583 spapr_drc_reset(drc); 1584 } 1585 1586 return 0; 1587 } 1588 1589 static void spapr_machine_reset(MachineState *machine) 1590 { 1591 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1592 PowerPCCPU *first_ppc_cpu; 1593 hwaddr fdt_addr; 1594 void *fdt; 1595 int rc; 1596 1597 kvmppc_svm_off(&error_fatal); 1598 spapr_caps_apply(spapr); 1599 1600 first_ppc_cpu = POWERPC_CPU(first_cpu); 1601 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1602 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1603 spapr->max_compat_pvr)) { 1604 /* 1605 * If using KVM with radix mode available, VCPUs can be started 1606 * without a HPT because KVM will start them in radix mode. 1607 * Set the GR bit in PATE so that we know there is no HPT. 1608 */ 1609 spapr->patb_entry = PATE1_GR; 1610 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1611 } else { 1612 spapr_setup_hpt_and_vrma(spapr); 1613 } 1614 1615 qemu_devices_reset(); 1616 1617 /* 1618 * If this reset wasn't generated by CAS, we should reset our 1619 * negotiated options and start from scratch 1620 */ 1621 if (!spapr->cas_reboot) { 1622 spapr_ovec_cleanup(spapr->ov5_cas); 1623 spapr->ov5_cas = spapr_ovec_new(); 1624 1625 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1626 } 1627 1628 /* 1629 * This is fixing some of the default configuration of the XIVE 1630 * devices. To be called after the reset of the machine devices. 1631 */ 1632 spapr_irq_reset(spapr, &error_fatal); 1633 1634 /* 1635 * There is no CAS under qtest. Simulate one to please the code that 1636 * depends on spapr->ov5_cas. This is especially needed to test device 1637 * unplug, so we do that before resetting the DRCs. 1638 */ 1639 if (qtest_enabled()) { 1640 spapr_ovec_cleanup(spapr->ov5_cas); 1641 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1642 } 1643 1644 /* DRC reset may cause a device to be unplugged. This will cause troubles 1645 * if this device is used by another device (eg, a running vhost backend 1646 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1647 * situations, we reset DRCs after all devices have been reset. 1648 */ 1649 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1650 1651 spapr_clear_pending_events(spapr); 1652 1653 /* 1654 * We place the device tree and RTAS just below either the top of the RMA, 1655 * or just below 2GB, whichever is lower, so that it can be 1656 * processed with 32-bit real mode code if necessary 1657 */ 1658 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE; 1659 1660 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1661 1662 rc = fdt_pack(fdt); 1663 1664 /* Should only fail if we've built a corrupted tree */ 1665 assert(rc == 0); 1666 1667 /* Load the fdt */ 1668 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1669 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1670 g_free(spapr->fdt_blob); 1671 spapr->fdt_size = fdt_totalsize(fdt); 1672 spapr->fdt_initial_size = spapr->fdt_size; 1673 spapr->fdt_blob = fdt; 1674 1675 /* Set up the entry state */ 1676 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1677 first_ppc_cpu->env.gpr[5] = 0; 1678 1679 spapr->cas_reboot = false; 1680 } 1681 1682 static void spapr_create_nvram(SpaprMachineState *spapr) 1683 { 1684 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1685 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1686 1687 if (dinfo) { 1688 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1689 &error_fatal); 1690 } 1691 1692 qdev_init_nofail(dev); 1693 1694 spapr->nvram = (struct SpaprNvram *)dev; 1695 } 1696 1697 static void spapr_rtc_create(SpaprMachineState *spapr) 1698 { 1699 object_initialize_child(OBJECT(spapr), "rtc", 1700 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1701 &error_fatal, NULL); 1702 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1703 &error_fatal); 1704 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1705 "date", &error_fatal); 1706 } 1707 1708 /* Returns whether we want to use VGA or not */ 1709 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1710 { 1711 switch (vga_interface_type) { 1712 case VGA_NONE: 1713 return false; 1714 case VGA_DEVICE: 1715 return true; 1716 case VGA_STD: 1717 case VGA_VIRTIO: 1718 case VGA_CIRRUS: 1719 return pci_vga_init(pci_bus) != NULL; 1720 default: 1721 error_setg(errp, 1722 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1723 return false; 1724 } 1725 } 1726 1727 static int spapr_pre_load(void *opaque) 1728 { 1729 int rc; 1730 1731 rc = spapr_caps_pre_load(opaque); 1732 if (rc) { 1733 return rc; 1734 } 1735 1736 return 0; 1737 } 1738 1739 static int spapr_post_load(void *opaque, int version_id) 1740 { 1741 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1742 int err = 0; 1743 1744 err = spapr_caps_post_migration(spapr); 1745 if (err) { 1746 return err; 1747 } 1748 1749 /* 1750 * In earlier versions, there was no separate qdev for the PAPR 1751 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1752 * So when migrating from those versions, poke the incoming offset 1753 * value into the RTC device 1754 */ 1755 if (version_id < 3) { 1756 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1757 if (err) { 1758 return err; 1759 } 1760 } 1761 1762 if (kvm_enabled() && spapr->patb_entry) { 1763 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1764 bool radix = !!(spapr->patb_entry & PATE1_GR); 1765 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1766 1767 /* 1768 * Update LPCR:HR and UPRT as they may not be set properly in 1769 * the stream 1770 */ 1771 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1772 LPCR_HR | LPCR_UPRT); 1773 1774 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1775 if (err) { 1776 error_report("Process table config unsupported by the host"); 1777 return -EINVAL; 1778 } 1779 } 1780 1781 err = spapr_irq_post_load(spapr, version_id); 1782 if (err) { 1783 return err; 1784 } 1785 1786 return err; 1787 } 1788 1789 static int spapr_pre_save(void *opaque) 1790 { 1791 int rc; 1792 1793 rc = spapr_caps_pre_save(opaque); 1794 if (rc) { 1795 return rc; 1796 } 1797 1798 return 0; 1799 } 1800 1801 static bool version_before_3(void *opaque, int version_id) 1802 { 1803 return version_id < 3; 1804 } 1805 1806 static bool spapr_pending_events_needed(void *opaque) 1807 { 1808 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1809 return !QTAILQ_EMPTY(&spapr->pending_events); 1810 } 1811 1812 static const VMStateDescription vmstate_spapr_event_entry = { 1813 .name = "spapr_event_log_entry", 1814 .version_id = 1, 1815 .minimum_version_id = 1, 1816 .fields = (VMStateField[]) { 1817 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1818 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1819 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1820 NULL, extended_length), 1821 VMSTATE_END_OF_LIST() 1822 }, 1823 }; 1824 1825 static const VMStateDescription vmstate_spapr_pending_events = { 1826 .name = "spapr_pending_events", 1827 .version_id = 1, 1828 .minimum_version_id = 1, 1829 .needed = spapr_pending_events_needed, 1830 .fields = (VMStateField[]) { 1831 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1832 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1833 VMSTATE_END_OF_LIST() 1834 }, 1835 }; 1836 1837 static bool spapr_ov5_cas_needed(void *opaque) 1838 { 1839 SpaprMachineState *spapr = opaque; 1840 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1841 bool cas_needed; 1842 1843 /* Prior to the introduction of SpaprOptionVector, we had two option 1844 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1845 * Both of these options encode machine topology into the device-tree 1846 * in such a way that the now-booted OS should still be able to interact 1847 * appropriately with QEMU regardless of what options were actually 1848 * negotiatied on the source side. 1849 * 1850 * As such, we can avoid migrating the CAS-negotiated options if these 1851 * are the only options available on the current machine/platform. 1852 * Since these are the only options available for pseries-2.7 and 1853 * earlier, this allows us to maintain old->new/new->old migration 1854 * compatibility. 1855 * 1856 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1857 * via default pseries-2.8 machines and explicit command-line parameters. 1858 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1859 * of the actual CAS-negotiated values to continue working properly. For 1860 * example, availability of memory unplug depends on knowing whether 1861 * OV5_HP_EVT was negotiated via CAS. 1862 * 1863 * Thus, for any cases where the set of available CAS-negotiatable 1864 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1865 * include the CAS-negotiated options in the migration stream, unless 1866 * if they affect boot time behaviour only. 1867 */ 1868 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1869 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1870 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1871 1872 /* We need extra information if we have any bits outside the mask 1873 * defined above */ 1874 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1875 1876 spapr_ovec_cleanup(ov5_mask); 1877 1878 return cas_needed; 1879 } 1880 1881 static const VMStateDescription vmstate_spapr_ov5_cas = { 1882 .name = "spapr_option_vector_ov5_cas", 1883 .version_id = 1, 1884 .minimum_version_id = 1, 1885 .needed = spapr_ov5_cas_needed, 1886 .fields = (VMStateField[]) { 1887 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1888 vmstate_spapr_ovec, SpaprOptionVector), 1889 VMSTATE_END_OF_LIST() 1890 }, 1891 }; 1892 1893 static bool spapr_patb_entry_needed(void *opaque) 1894 { 1895 SpaprMachineState *spapr = opaque; 1896 1897 return !!spapr->patb_entry; 1898 } 1899 1900 static const VMStateDescription vmstate_spapr_patb_entry = { 1901 .name = "spapr_patb_entry", 1902 .version_id = 1, 1903 .minimum_version_id = 1, 1904 .needed = spapr_patb_entry_needed, 1905 .fields = (VMStateField[]) { 1906 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1907 VMSTATE_END_OF_LIST() 1908 }, 1909 }; 1910 1911 static bool spapr_irq_map_needed(void *opaque) 1912 { 1913 SpaprMachineState *spapr = opaque; 1914 1915 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1916 } 1917 1918 static const VMStateDescription vmstate_spapr_irq_map = { 1919 .name = "spapr_irq_map", 1920 .version_id = 1, 1921 .minimum_version_id = 1, 1922 .needed = spapr_irq_map_needed, 1923 .fields = (VMStateField[]) { 1924 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 1925 VMSTATE_END_OF_LIST() 1926 }, 1927 }; 1928 1929 static bool spapr_dtb_needed(void *opaque) 1930 { 1931 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1932 1933 return smc->update_dt_enabled; 1934 } 1935 1936 static int spapr_dtb_pre_load(void *opaque) 1937 { 1938 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1939 1940 g_free(spapr->fdt_blob); 1941 spapr->fdt_blob = NULL; 1942 spapr->fdt_size = 0; 1943 1944 return 0; 1945 } 1946 1947 static const VMStateDescription vmstate_spapr_dtb = { 1948 .name = "spapr_dtb", 1949 .version_id = 1, 1950 .minimum_version_id = 1, 1951 .needed = spapr_dtb_needed, 1952 .pre_load = spapr_dtb_pre_load, 1953 .fields = (VMStateField[]) { 1954 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 1955 VMSTATE_UINT32(fdt_size, SpaprMachineState), 1956 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 1957 fdt_size), 1958 VMSTATE_END_OF_LIST() 1959 }, 1960 }; 1961 1962 static const VMStateDescription vmstate_spapr = { 1963 .name = "spapr", 1964 .version_id = 3, 1965 .minimum_version_id = 1, 1966 .pre_load = spapr_pre_load, 1967 .post_load = spapr_post_load, 1968 .pre_save = spapr_pre_save, 1969 .fields = (VMStateField[]) { 1970 /* used to be @next_irq */ 1971 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1972 1973 /* RTC offset */ 1974 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 1975 1976 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 1977 VMSTATE_END_OF_LIST() 1978 }, 1979 .subsections = (const VMStateDescription*[]) { 1980 &vmstate_spapr_ov5_cas, 1981 &vmstate_spapr_patb_entry, 1982 &vmstate_spapr_pending_events, 1983 &vmstate_spapr_cap_htm, 1984 &vmstate_spapr_cap_vsx, 1985 &vmstate_spapr_cap_dfp, 1986 &vmstate_spapr_cap_cfpc, 1987 &vmstate_spapr_cap_sbbc, 1988 &vmstate_spapr_cap_ibs, 1989 &vmstate_spapr_cap_hpt_maxpagesize, 1990 &vmstate_spapr_irq_map, 1991 &vmstate_spapr_cap_nested_kvm_hv, 1992 &vmstate_spapr_dtb, 1993 &vmstate_spapr_cap_large_decr, 1994 &vmstate_spapr_cap_ccf_assist, 1995 NULL 1996 } 1997 }; 1998 1999 static int htab_save_setup(QEMUFile *f, void *opaque) 2000 { 2001 SpaprMachineState *spapr = opaque; 2002 2003 /* "Iteration" header */ 2004 if (!spapr->htab_shift) { 2005 qemu_put_be32(f, -1); 2006 } else { 2007 qemu_put_be32(f, spapr->htab_shift); 2008 } 2009 2010 if (spapr->htab) { 2011 spapr->htab_save_index = 0; 2012 spapr->htab_first_pass = true; 2013 } else { 2014 if (spapr->htab_shift) { 2015 assert(kvm_enabled()); 2016 } 2017 } 2018 2019 2020 return 0; 2021 } 2022 2023 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2024 int chunkstart, int n_valid, int n_invalid) 2025 { 2026 qemu_put_be32(f, chunkstart); 2027 qemu_put_be16(f, n_valid); 2028 qemu_put_be16(f, n_invalid); 2029 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2030 HASH_PTE_SIZE_64 * n_valid); 2031 } 2032 2033 static void htab_save_end_marker(QEMUFile *f) 2034 { 2035 qemu_put_be32(f, 0); 2036 qemu_put_be16(f, 0); 2037 qemu_put_be16(f, 0); 2038 } 2039 2040 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2041 int64_t max_ns) 2042 { 2043 bool has_timeout = max_ns != -1; 2044 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2045 int index = spapr->htab_save_index; 2046 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2047 2048 assert(spapr->htab_first_pass); 2049 2050 do { 2051 int chunkstart; 2052 2053 /* Consume invalid HPTEs */ 2054 while ((index < htabslots) 2055 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2056 CLEAN_HPTE(HPTE(spapr->htab, index)); 2057 index++; 2058 } 2059 2060 /* Consume valid HPTEs */ 2061 chunkstart = index; 2062 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2063 && HPTE_VALID(HPTE(spapr->htab, index))) { 2064 CLEAN_HPTE(HPTE(spapr->htab, index)); 2065 index++; 2066 } 2067 2068 if (index > chunkstart) { 2069 int n_valid = index - chunkstart; 2070 2071 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2072 2073 if (has_timeout && 2074 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2075 break; 2076 } 2077 } 2078 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2079 2080 if (index >= htabslots) { 2081 assert(index == htabslots); 2082 index = 0; 2083 spapr->htab_first_pass = false; 2084 } 2085 spapr->htab_save_index = index; 2086 } 2087 2088 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2089 int64_t max_ns) 2090 { 2091 bool final = max_ns < 0; 2092 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2093 int examined = 0, sent = 0; 2094 int index = spapr->htab_save_index; 2095 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2096 2097 assert(!spapr->htab_first_pass); 2098 2099 do { 2100 int chunkstart, invalidstart; 2101 2102 /* Consume non-dirty HPTEs */ 2103 while ((index < htabslots) 2104 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2105 index++; 2106 examined++; 2107 } 2108 2109 chunkstart = index; 2110 /* Consume valid dirty HPTEs */ 2111 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2112 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2113 && HPTE_VALID(HPTE(spapr->htab, index))) { 2114 CLEAN_HPTE(HPTE(spapr->htab, index)); 2115 index++; 2116 examined++; 2117 } 2118 2119 invalidstart = index; 2120 /* Consume invalid dirty HPTEs */ 2121 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2122 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2123 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2124 CLEAN_HPTE(HPTE(spapr->htab, index)); 2125 index++; 2126 examined++; 2127 } 2128 2129 if (index > chunkstart) { 2130 int n_valid = invalidstart - chunkstart; 2131 int n_invalid = index - invalidstart; 2132 2133 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2134 sent += index - chunkstart; 2135 2136 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2137 break; 2138 } 2139 } 2140 2141 if (examined >= htabslots) { 2142 break; 2143 } 2144 2145 if (index >= htabslots) { 2146 assert(index == htabslots); 2147 index = 0; 2148 } 2149 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2150 2151 if (index >= htabslots) { 2152 assert(index == htabslots); 2153 index = 0; 2154 } 2155 2156 spapr->htab_save_index = index; 2157 2158 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2159 } 2160 2161 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2162 #define MAX_KVM_BUF_SIZE 2048 2163 2164 static int htab_save_iterate(QEMUFile *f, void *opaque) 2165 { 2166 SpaprMachineState *spapr = opaque; 2167 int fd; 2168 int rc = 0; 2169 2170 /* Iteration header */ 2171 if (!spapr->htab_shift) { 2172 qemu_put_be32(f, -1); 2173 return 1; 2174 } else { 2175 qemu_put_be32(f, 0); 2176 } 2177 2178 if (!spapr->htab) { 2179 assert(kvm_enabled()); 2180 2181 fd = get_htab_fd(spapr); 2182 if (fd < 0) { 2183 return fd; 2184 } 2185 2186 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2187 if (rc < 0) { 2188 return rc; 2189 } 2190 } else if (spapr->htab_first_pass) { 2191 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2192 } else { 2193 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2194 } 2195 2196 htab_save_end_marker(f); 2197 2198 return rc; 2199 } 2200 2201 static int htab_save_complete(QEMUFile *f, void *opaque) 2202 { 2203 SpaprMachineState *spapr = opaque; 2204 int fd; 2205 2206 /* Iteration header */ 2207 if (!spapr->htab_shift) { 2208 qemu_put_be32(f, -1); 2209 return 0; 2210 } else { 2211 qemu_put_be32(f, 0); 2212 } 2213 2214 if (!spapr->htab) { 2215 int rc; 2216 2217 assert(kvm_enabled()); 2218 2219 fd = get_htab_fd(spapr); 2220 if (fd < 0) { 2221 return fd; 2222 } 2223 2224 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2225 if (rc < 0) { 2226 return rc; 2227 } 2228 } else { 2229 if (spapr->htab_first_pass) { 2230 htab_save_first_pass(f, spapr, -1); 2231 } 2232 htab_save_later_pass(f, spapr, -1); 2233 } 2234 2235 /* End marker */ 2236 htab_save_end_marker(f); 2237 2238 return 0; 2239 } 2240 2241 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2242 { 2243 SpaprMachineState *spapr = opaque; 2244 uint32_t section_hdr; 2245 int fd = -1; 2246 Error *local_err = NULL; 2247 2248 if (version_id < 1 || version_id > 1) { 2249 error_report("htab_load() bad version"); 2250 return -EINVAL; 2251 } 2252 2253 section_hdr = qemu_get_be32(f); 2254 2255 if (section_hdr == -1) { 2256 spapr_free_hpt(spapr); 2257 return 0; 2258 } 2259 2260 if (section_hdr) { 2261 /* First section gives the htab size */ 2262 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2263 if (local_err) { 2264 error_report_err(local_err); 2265 return -EINVAL; 2266 } 2267 return 0; 2268 } 2269 2270 if (!spapr->htab) { 2271 assert(kvm_enabled()); 2272 2273 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2274 if (fd < 0) { 2275 error_report_err(local_err); 2276 return fd; 2277 } 2278 } 2279 2280 while (true) { 2281 uint32_t index; 2282 uint16_t n_valid, n_invalid; 2283 2284 index = qemu_get_be32(f); 2285 n_valid = qemu_get_be16(f); 2286 n_invalid = qemu_get_be16(f); 2287 2288 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2289 /* End of Stream */ 2290 break; 2291 } 2292 2293 if ((index + n_valid + n_invalid) > 2294 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2295 /* Bad index in stream */ 2296 error_report( 2297 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2298 index, n_valid, n_invalid, spapr->htab_shift); 2299 return -EINVAL; 2300 } 2301 2302 if (spapr->htab) { 2303 if (n_valid) { 2304 qemu_get_buffer(f, HPTE(spapr->htab, index), 2305 HASH_PTE_SIZE_64 * n_valid); 2306 } 2307 if (n_invalid) { 2308 memset(HPTE(spapr->htab, index + n_valid), 0, 2309 HASH_PTE_SIZE_64 * n_invalid); 2310 } 2311 } else { 2312 int rc; 2313 2314 assert(fd >= 0); 2315 2316 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2317 if (rc < 0) { 2318 return rc; 2319 } 2320 } 2321 } 2322 2323 if (!spapr->htab) { 2324 assert(fd >= 0); 2325 close(fd); 2326 } 2327 2328 return 0; 2329 } 2330 2331 static void htab_save_cleanup(void *opaque) 2332 { 2333 SpaprMachineState *spapr = opaque; 2334 2335 close_htab_fd(spapr); 2336 } 2337 2338 static SaveVMHandlers savevm_htab_handlers = { 2339 .save_setup = htab_save_setup, 2340 .save_live_iterate = htab_save_iterate, 2341 .save_live_complete_precopy = htab_save_complete, 2342 .save_cleanup = htab_save_cleanup, 2343 .load_state = htab_load, 2344 }; 2345 2346 static void spapr_boot_set(void *opaque, const char *boot_device, 2347 Error **errp) 2348 { 2349 MachineState *machine = MACHINE(opaque); 2350 machine->boot_order = g_strdup(boot_device); 2351 } 2352 2353 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2354 { 2355 MachineState *machine = MACHINE(spapr); 2356 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2357 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2358 int i; 2359 2360 for (i = 0; i < nr_lmbs; i++) { 2361 uint64_t addr; 2362 2363 addr = i * lmb_size + machine->device_memory->base; 2364 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2365 addr / lmb_size); 2366 } 2367 } 2368 2369 /* 2370 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2371 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2372 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2373 */ 2374 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2375 { 2376 int i; 2377 2378 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2379 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2380 " is not aligned to %" PRIu64 " MiB", 2381 machine->ram_size, 2382 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2383 return; 2384 } 2385 2386 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2387 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2388 " is not aligned to %" PRIu64 " MiB", 2389 machine->ram_size, 2390 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2391 return; 2392 } 2393 2394 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2395 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2396 error_setg(errp, 2397 "Node %d memory size 0x%" PRIx64 2398 " is not aligned to %" PRIu64 " MiB", 2399 i, machine->numa_state->nodes[i].node_mem, 2400 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2401 return; 2402 } 2403 } 2404 } 2405 2406 /* find cpu slot in machine->possible_cpus by core_id */ 2407 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2408 { 2409 int index = id / ms->smp.threads; 2410 2411 if (index >= ms->possible_cpus->len) { 2412 return NULL; 2413 } 2414 if (idx) { 2415 *idx = index; 2416 } 2417 return &ms->possible_cpus->cpus[index]; 2418 } 2419 2420 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2421 { 2422 MachineState *ms = MACHINE(spapr); 2423 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2424 Error *local_err = NULL; 2425 bool vsmt_user = !!spapr->vsmt; 2426 int kvm_smt = kvmppc_smt_threads(); 2427 int ret; 2428 unsigned int smp_threads = ms->smp.threads; 2429 2430 if (!kvm_enabled() && (smp_threads > 1)) { 2431 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2432 "on a pseries machine"); 2433 goto out; 2434 } 2435 if (!is_power_of_2(smp_threads)) { 2436 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2437 "machine because it must be a power of 2", smp_threads); 2438 goto out; 2439 } 2440 2441 /* Detemine the VSMT mode to use: */ 2442 if (vsmt_user) { 2443 if (spapr->vsmt < smp_threads) { 2444 error_setg(&local_err, "Cannot support VSMT mode %d" 2445 " because it must be >= threads/core (%d)", 2446 spapr->vsmt, smp_threads); 2447 goto out; 2448 } 2449 /* In this case, spapr->vsmt has been set by the command line */ 2450 } else if (!smc->smp_threads_vsmt) { 2451 /* 2452 * Default VSMT value is tricky, because we need it to be as 2453 * consistent as possible (for migration), but this requires 2454 * changing it for at least some existing cases. We pick 8 as 2455 * the value that we'd get with KVM on POWER8, the 2456 * overwhelmingly common case in production systems. 2457 */ 2458 spapr->vsmt = MAX(8, smp_threads); 2459 } else { 2460 spapr->vsmt = smp_threads; 2461 } 2462 2463 /* KVM: If necessary, set the SMT mode: */ 2464 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2465 ret = kvmppc_set_smt_threads(spapr->vsmt); 2466 if (ret) { 2467 /* Looks like KVM isn't able to change VSMT mode */ 2468 error_setg(&local_err, 2469 "Failed to set KVM's VSMT mode to %d (errno %d)", 2470 spapr->vsmt, ret); 2471 /* We can live with that if the default one is big enough 2472 * for the number of threads, and a submultiple of the one 2473 * we want. In this case we'll waste some vcpu ids, but 2474 * behaviour will be correct */ 2475 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2476 warn_report_err(local_err); 2477 local_err = NULL; 2478 goto out; 2479 } else { 2480 if (!vsmt_user) { 2481 error_append_hint(&local_err, 2482 "On PPC, a VM with %d threads/core" 2483 " on a host with %d threads/core" 2484 " requires the use of VSMT mode %d.\n", 2485 smp_threads, kvm_smt, spapr->vsmt); 2486 } 2487 kvmppc_error_append_smt_possible_hint(&local_err); 2488 goto out; 2489 } 2490 } 2491 } 2492 /* else TCG: nothing to do currently */ 2493 out: 2494 error_propagate(errp, local_err); 2495 } 2496 2497 static void spapr_init_cpus(SpaprMachineState *spapr) 2498 { 2499 MachineState *machine = MACHINE(spapr); 2500 MachineClass *mc = MACHINE_GET_CLASS(machine); 2501 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2502 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2503 const CPUArchIdList *possible_cpus; 2504 unsigned int smp_cpus = machine->smp.cpus; 2505 unsigned int smp_threads = machine->smp.threads; 2506 unsigned int max_cpus = machine->smp.max_cpus; 2507 int boot_cores_nr = smp_cpus / smp_threads; 2508 int i; 2509 2510 possible_cpus = mc->possible_cpu_arch_ids(machine); 2511 if (mc->has_hotpluggable_cpus) { 2512 if (smp_cpus % smp_threads) { 2513 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2514 smp_cpus, smp_threads); 2515 exit(1); 2516 } 2517 if (max_cpus % smp_threads) { 2518 error_report("max_cpus (%u) must be multiple of threads (%u)", 2519 max_cpus, smp_threads); 2520 exit(1); 2521 } 2522 } else { 2523 if (max_cpus != smp_cpus) { 2524 error_report("This machine version does not support CPU hotplug"); 2525 exit(1); 2526 } 2527 boot_cores_nr = possible_cpus->len; 2528 } 2529 2530 if (smc->pre_2_10_has_unused_icps) { 2531 int i; 2532 2533 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2534 /* Dummy entries get deregistered when real ICPState objects 2535 * are registered during CPU core hotplug. 2536 */ 2537 pre_2_10_vmstate_register_dummy_icp(i); 2538 } 2539 } 2540 2541 for (i = 0; i < possible_cpus->len; i++) { 2542 int core_id = i * smp_threads; 2543 2544 if (mc->has_hotpluggable_cpus) { 2545 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2546 spapr_vcpu_id(spapr, core_id)); 2547 } 2548 2549 if (i < boot_cores_nr) { 2550 Object *core = object_new(type); 2551 int nr_threads = smp_threads; 2552 2553 /* Handle the partially filled core for older machine types */ 2554 if ((i + 1) * smp_threads >= smp_cpus) { 2555 nr_threads = smp_cpus - i * smp_threads; 2556 } 2557 2558 object_property_set_int(core, nr_threads, "nr-threads", 2559 &error_fatal); 2560 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2561 &error_fatal); 2562 object_property_set_bool(core, true, "realized", &error_fatal); 2563 2564 object_unref(core); 2565 } 2566 } 2567 } 2568 2569 static PCIHostState *spapr_create_default_phb(void) 2570 { 2571 DeviceState *dev; 2572 2573 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2574 qdev_prop_set_uint32(dev, "index", 0); 2575 qdev_init_nofail(dev); 2576 2577 return PCI_HOST_BRIDGE(dev); 2578 } 2579 2580 /* pSeries LPAR / sPAPR hardware init */ 2581 static void spapr_machine_init(MachineState *machine) 2582 { 2583 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2584 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2585 const char *kernel_filename = machine->kernel_filename; 2586 const char *initrd_filename = machine->initrd_filename; 2587 PCIHostState *phb; 2588 int i; 2589 MemoryRegion *sysmem = get_system_memory(); 2590 MemoryRegion *ram = g_new(MemoryRegion, 1); 2591 hwaddr node0_size = spapr_node0_size(machine); 2592 long load_limit, fw_size; 2593 char *filename; 2594 Error *resize_hpt_err = NULL; 2595 2596 msi_nonbroken = true; 2597 2598 QLIST_INIT(&spapr->phbs); 2599 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2600 2601 /* Determine capabilities to run with */ 2602 spapr_caps_init(spapr); 2603 2604 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2605 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2606 /* 2607 * If the user explicitly requested a mode we should either 2608 * supply it, or fail completely (which we do below). But if 2609 * it's not set explicitly, we reset our mode to something 2610 * that works 2611 */ 2612 if (resize_hpt_err) { 2613 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2614 error_free(resize_hpt_err); 2615 resize_hpt_err = NULL; 2616 } else { 2617 spapr->resize_hpt = smc->resize_hpt_default; 2618 } 2619 } 2620 2621 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2622 2623 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2624 /* 2625 * User requested HPT resize, but this host can't supply it. Bail out 2626 */ 2627 error_report_err(resize_hpt_err); 2628 exit(1); 2629 } 2630 2631 spapr->rma_size = node0_size; 2632 2633 /* With KVM, we don't actually know whether KVM supports an 2634 * unbounded RMA (PR KVM) or is limited by the hash table size 2635 * (HV KVM using VRMA), so we always assume the latter 2636 * 2637 * In that case, we also limit the initial allocations for RTAS 2638 * etc... to 256M since we have no way to know what the VRMA size 2639 * is going to be as it depends on the size of the hash table 2640 * which isn't determined yet. 2641 */ 2642 if (kvm_enabled()) { 2643 spapr->vrma_adjust = 1; 2644 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2645 } 2646 2647 /* Actually we don't support unbounded RMA anymore since we added 2648 * proper emulation of HV mode. The max we can get is 16G which 2649 * also happens to be what we configure for PAPR mode so make sure 2650 * we don't do anything bigger than that 2651 */ 2652 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2653 2654 if (spapr->rma_size > node0_size) { 2655 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2656 spapr->rma_size); 2657 exit(1); 2658 } 2659 2660 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2661 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2662 2663 /* 2664 * VSMT must be set in order to be able to compute VCPU ids, ie to 2665 * call spapr_max_server_number() or spapr_vcpu_id(). 2666 */ 2667 spapr_set_vsmt_mode(spapr, &error_fatal); 2668 2669 /* Set up Interrupt Controller before we create the VCPUs */ 2670 spapr_irq_init(spapr, &error_fatal); 2671 2672 /* Set up containers for ibm,client-architecture-support negotiated options 2673 */ 2674 spapr->ov5 = spapr_ovec_new(); 2675 spapr->ov5_cas = spapr_ovec_new(); 2676 2677 if (smc->dr_lmb_enabled) { 2678 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2679 spapr_validate_node_memory(machine, &error_fatal); 2680 } 2681 2682 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2683 2684 /* advertise support for dedicated HP event source to guests */ 2685 if (spapr->use_hotplug_event_source) { 2686 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2687 } 2688 2689 /* advertise support for HPT resizing */ 2690 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2691 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2692 } 2693 2694 /* advertise support for ibm,dyamic-memory-v2 */ 2695 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2696 2697 /* advertise XIVE on POWER9 machines */ 2698 if (spapr->irq->xive) { 2699 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2700 } 2701 2702 /* init CPUs */ 2703 spapr_init_cpus(spapr); 2704 2705 /* 2706 * check we don't have a memory-less/cpu-less NUMA node 2707 * Firmware relies on the existing memory/cpu topology to provide the 2708 * NUMA topology to the kernel. 2709 * And the linux kernel needs to know the NUMA topology at start 2710 * to be able to hotplug CPUs later. 2711 */ 2712 if (machine->numa_state->num_nodes) { 2713 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 2714 /* check for memory-less node */ 2715 if (machine->numa_state->nodes[i].node_mem == 0) { 2716 CPUState *cs; 2717 int found = 0; 2718 /* check for cpu-less node */ 2719 CPU_FOREACH(cs) { 2720 PowerPCCPU *cpu = POWERPC_CPU(cs); 2721 if (cpu->node_id == i) { 2722 found = 1; 2723 break; 2724 } 2725 } 2726 /* memory-less and cpu-less node */ 2727 if (!found) { 2728 error_report( 2729 "Memory-less/cpu-less nodes are not supported (node %d)", 2730 i); 2731 exit(1); 2732 } 2733 } 2734 } 2735 2736 } 2737 2738 /* 2739 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 2740 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 2741 * called from vPHB reset handler so we initialize the counter here. 2742 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 2743 * must be equally distant from any other node. 2744 * The final value of spapr->gpu_numa_id is going to be written to 2745 * max-associativity-domains in spapr_build_fdt(). 2746 */ 2747 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes); 2748 2749 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2750 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2751 spapr->max_compat_pvr)) { 2752 /* KVM and TCG always allow GTSE with radix... */ 2753 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2754 } 2755 /* ... but not with hash (currently). */ 2756 2757 if (kvm_enabled()) { 2758 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2759 kvmppc_enable_logical_ci_hcalls(); 2760 kvmppc_enable_set_mode_hcall(); 2761 2762 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2763 kvmppc_enable_clear_ref_mod_hcalls(); 2764 2765 /* Enable H_PAGE_INIT */ 2766 kvmppc_enable_h_page_init(); 2767 } 2768 2769 /* allocate RAM */ 2770 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2771 machine->ram_size); 2772 memory_region_add_subregion(sysmem, 0, ram); 2773 2774 /* always allocate the device memory information */ 2775 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2776 2777 /* initialize hotplug memory address space */ 2778 if (machine->ram_size < machine->maxram_size) { 2779 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2780 /* 2781 * Limit the number of hotpluggable memory slots to half the number 2782 * slots that KVM supports, leaving the other half for PCI and other 2783 * devices. However ensure that number of slots doesn't drop below 32. 2784 */ 2785 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2786 SPAPR_MAX_RAM_SLOTS; 2787 2788 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2789 max_memslots = SPAPR_MAX_RAM_SLOTS; 2790 } 2791 if (machine->ram_slots > max_memslots) { 2792 error_report("Specified number of memory slots %" 2793 PRIu64" exceeds max supported %d", 2794 machine->ram_slots, max_memslots); 2795 exit(1); 2796 } 2797 2798 machine->device_memory->base = ROUND_UP(machine->ram_size, 2799 SPAPR_DEVICE_MEM_ALIGN); 2800 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2801 "device-memory", device_mem_size); 2802 memory_region_add_subregion(sysmem, machine->device_memory->base, 2803 &machine->device_memory->mr); 2804 } 2805 2806 if (smc->dr_lmb_enabled) { 2807 spapr_create_lmb_dr_connectors(spapr); 2808 } 2809 2810 /* Set up RTAS event infrastructure */ 2811 spapr_events_init(spapr); 2812 2813 /* Set up the RTC RTAS interfaces */ 2814 spapr_rtc_create(spapr); 2815 2816 /* Set up VIO bus */ 2817 spapr->vio_bus = spapr_vio_bus_init(); 2818 2819 for (i = 0; i < serial_max_hds(); i++) { 2820 if (serial_hd(i)) { 2821 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2822 } 2823 } 2824 2825 /* We always have at least the nvram device on VIO */ 2826 spapr_create_nvram(spapr); 2827 2828 /* 2829 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2830 * connectors (described in root DT node's "ibm,drc-types" property) 2831 * are pre-initialized here. additional child connectors (such as 2832 * connectors for a PHBs PCI slots) are added as needed during their 2833 * parent's realization. 2834 */ 2835 if (smc->dr_phb_enabled) { 2836 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2837 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2838 } 2839 } 2840 2841 /* Set up PCI */ 2842 spapr_pci_rtas_init(); 2843 2844 phb = spapr_create_default_phb(); 2845 2846 for (i = 0; i < nb_nics; i++) { 2847 NICInfo *nd = &nd_table[i]; 2848 2849 if (!nd->model) { 2850 nd->model = g_strdup("spapr-vlan"); 2851 } 2852 2853 if (g_str_equal(nd->model, "spapr-vlan") || 2854 g_str_equal(nd->model, "ibmveth")) { 2855 spapr_vlan_create(spapr->vio_bus, nd); 2856 } else { 2857 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2858 } 2859 } 2860 2861 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2862 spapr_vscsi_create(spapr->vio_bus); 2863 } 2864 2865 /* Graphics */ 2866 if (spapr_vga_init(phb->bus, &error_fatal)) { 2867 spapr->has_graphics = true; 2868 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2869 } 2870 2871 if (machine->usb) { 2872 if (smc->use_ohci_by_default) { 2873 pci_create_simple(phb->bus, -1, "pci-ohci"); 2874 } else { 2875 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2876 } 2877 2878 if (spapr->has_graphics) { 2879 USBBus *usb_bus = usb_bus_find(-1); 2880 2881 usb_create_simple(usb_bus, "usb-kbd"); 2882 usb_create_simple(usb_bus, "usb-mouse"); 2883 } 2884 } 2885 2886 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2887 error_report( 2888 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2889 MIN_RMA_SLOF); 2890 exit(1); 2891 } 2892 2893 if (kernel_filename) { 2894 uint64_t lowaddr = 0; 2895 2896 spapr->kernel_size = load_elf(kernel_filename, NULL, 2897 translate_kernel_address, NULL, 2898 NULL, &lowaddr, NULL, 1, 2899 PPC_ELF_MACHINE, 0, 0); 2900 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2901 spapr->kernel_size = load_elf(kernel_filename, NULL, 2902 translate_kernel_address, NULL, NULL, 2903 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2904 0, 0); 2905 spapr->kernel_le = spapr->kernel_size > 0; 2906 } 2907 if (spapr->kernel_size < 0) { 2908 error_report("error loading %s: %s", kernel_filename, 2909 load_elf_strerror(spapr->kernel_size)); 2910 exit(1); 2911 } 2912 2913 /* load initrd */ 2914 if (initrd_filename) { 2915 /* Try to locate the initrd in the gap between the kernel 2916 * and the firmware. Add a bit of space just in case 2917 */ 2918 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2919 + 0x1ffff) & ~0xffff; 2920 spapr->initrd_size = load_image_targphys(initrd_filename, 2921 spapr->initrd_base, 2922 load_limit 2923 - spapr->initrd_base); 2924 if (spapr->initrd_size < 0) { 2925 error_report("could not load initial ram disk '%s'", 2926 initrd_filename); 2927 exit(1); 2928 } 2929 } 2930 } 2931 2932 if (bios_name == NULL) { 2933 bios_name = FW_FILE_NAME; 2934 } 2935 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2936 if (!filename) { 2937 error_report("Could not find LPAR firmware '%s'", bios_name); 2938 exit(1); 2939 } 2940 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2941 if (fw_size <= 0) { 2942 error_report("Could not load LPAR firmware '%s'", filename); 2943 exit(1); 2944 } 2945 g_free(filename); 2946 2947 /* FIXME: Should register things through the MachineState's qdev 2948 * interface, this is a legacy from the sPAPREnvironment structure 2949 * which predated MachineState but had a similar function */ 2950 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2951 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 2952 &savevm_htab_handlers, spapr); 2953 2954 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 2955 &error_fatal); 2956 2957 qemu_register_boot_set(spapr_boot_set, spapr); 2958 2959 /* 2960 * Nothing needs to be done to resume a suspended guest because 2961 * suspending does not change the machine state, so no need for 2962 * a ->wakeup method. 2963 */ 2964 qemu_register_wakeup_support(); 2965 2966 if (kvm_enabled()) { 2967 /* to stop and start vmclock */ 2968 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2969 &spapr->tb); 2970 2971 kvmppc_spapr_enable_inkernel_multitce(); 2972 } 2973 } 2974 2975 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 2976 { 2977 if (!vm_type) { 2978 return 0; 2979 } 2980 2981 if (!strcmp(vm_type, "HV")) { 2982 return 1; 2983 } 2984 2985 if (!strcmp(vm_type, "PR")) { 2986 return 2; 2987 } 2988 2989 error_report("Unknown kvm-type specified '%s'", vm_type); 2990 exit(1); 2991 } 2992 2993 /* 2994 * Implementation of an interface to adjust firmware path 2995 * for the bootindex property handling. 2996 */ 2997 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2998 DeviceState *dev) 2999 { 3000 #define CAST(type, obj, name) \ 3001 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3002 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3003 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3004 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3005 3006 if (d) { 3007 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3008 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3009 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3010 3011 if (spapr) { 3012 /* 3013 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3014 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3015 * 0x8000 | (target << 8) | (bus << 5) | lun 3016 * (see the "Logical unit addressing format" table in SAM5) 3017 */ 3018 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3019 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3020 (uint64_t)id << 48); 3021 } else if (virtio) { 3022 /* 3023 * We use SRP luns of the form 01000000 | (target << 8) | lun 3024 * in the top 32 bits of the 64-bit LUN 3025 * Note: the quote above is from SLOF and it is wrong, 3026 * the actual binding is: 3027 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3028 */ 3029 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3030 if (d->lun >= 256) { 3031 /* Use the LUN "flat space addressing method" */ 3032 id |= 0x4000; 3033 } 3034 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3035 (uint64_t)id << 32); 3036 } else if (usb) { 3037 /* 3038 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3039 * in the top 32 bits of the 64-bit LUN 3040 */ 3041 unsigned usb_port = atoi(usb->port->path); 3042 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3043 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3044 (uint64_t)id << 32); 3045 } 3046 } 3047 3048 /* 3049 * SLOF probes the USB devices, and if it recognizes that the device is a 3050 * storage device, it changes its name to "storage" instead of "usb-host", 3051 * and additionally adds a child node for the SCSI LUN, so the correct 3052 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3053 */ 3054 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3055 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3056 if (usb_host_dev_is_scsi_storage(usbdev)) { 3057 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3058 } 3059 } 3060 3061 if (phb) { 3062 /* Replace "pci" with "pci@800000020000000" */ 3063 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3064 } 3065 3066 if (vsc) { 3067 /* Same logic as virtio above */ 3068 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3069 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3070 } 3071 3072 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3073 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3074 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3075 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3076 } 3077 3078 return NULL; 3079 } 3080 3081 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3082 { 3083 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3084 3085 return g_strdup(spapr->kvm_type); 3086 } 3087 3088 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3089 { 3090 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3091 3092 g_free(spapr->kvm_type); 3093 spapr->kvm_type = g_strdup(value); 3094 } 3095 3096 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3097 { 3098 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3099 3100 return spapr->use_hotplug_event_source; 3101 } 3102 3103 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3104 Error **errp) 3105 { 3106 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3107 3108 spapr->use_hotplug_event_source = value; 3109 } 3110 3111 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3112 { 3113 return true; 3114 } 3115 3116 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3117 { 3118 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3119 3120 switch (spapr->resize_hpt) { 3121 case SPAPR_RESIZE_HPT_DEFAULT: 3122 return g_strdup("default"); 3123 case SPAPR_RESIZE_HPT_DISABLED: 3124 return g_strdup("disabled"); 3125 case SPAPR_RESIZE_HPT_ENABLED: 3126 return g_strdup("enabled"); 3127 case SPAPR_RESIZE_HPT_REQUIRED: 3128 return g_strdup("required"); 3129 } 3130 g_assert_not_reached(); 3131 } 3132 3133 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3134 { 3135 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3136 3137 if (strcmp(value, "default") == 0) { 3138 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3139 } else if (strcmp(value, "disabled") == 0) { 3140 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3141 } else if (strcmp(value, "enabled") == 0) { 3142 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3143 } else if (strcmp(value, "required") == 0) { 3144 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3145 } else { 3146 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3147 } 3148 } 3149 3150 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3151 void *opaque, Error **errp) 3152 { 3153 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3154 } 3155 3156 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3157 void *opaque, Error **errp) 3158 { 3159 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3160 } 3161 3162 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3163 { 3164 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3165 3166 if (spapr->irq == &spapr_irq_xics_legacy) { 3167 return g_strdup("legacy"); 3168 } else if (spapr->irq == &spapr_irq_xics) { 3169 return g_strdup("xics"); 3170 } else if (spapr->irq == &spapr_irq_xive) { 3171 return g_strdup("xive"); 3172 } else if (spapr->irq == &spapr_irq_dual) { 3173 return g_strdup("dual"); 3174 } 3175 g_assert_not_reached(); 3176 } 3177 3178 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3179 { 3180 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3181 3182 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3183 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3184 return; 3185 } 3186 3187 /* The legacy IRQ backend can not be set */ 3188 if (strcmp(value, "xics") == 0) { 3189 spapr->irq = &spapr_irq_xics; 3190 } else if (strcmp(value, "xive") == 0) { 3191 spapr->irq = &spapr_irq_xive; 3192 } else if (strcmp(value, "dual") == 0) { 3193 spapr->irq = &spapr_irq_dual; 3194 } else { 3195 error_setg(errp, "Bad value for \"ic-mode\" property"); 3196 } 3197 } 3198 3199 static char *spapr_get_host_model(Object *obj, Error **errp) 3200 { 3201 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3202 3203 return g_strdup(spapr->host_model); 3204 } 3205 3206 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3207 { 3208 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3209 3210 g_free(spapr->host_model); 3211 spapr->host_model = g_strdup(value); 3212 } 3213 3214 static char *spapr_get_host_serial(Object *obj, Error **errp) 3215 { 3216 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3217 3218 return g_strdup(spapr->host_serial); 3219 } 3220 3221 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3222 { 3223 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3224 3225 g_free(spapr->host_serial); 3226 spapr->host_serial = g_strdup(value); 3227 } 3228 3229 static void spapr_instance_init(Object *obj) 3230 { 3231 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3232 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3233 3234 spapr->htab_fd = -1; 3235 spapr->use_hotplug_event_source = true; 3236 object_property_add_str(obj, "kvm-type", 3237 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3238 object_property_set_description(obj, "kvm-type", 3239 "Specifies the KVM virtualization mode (HV, PR)", 3240 NULL); 3241 object_property_add_bool(obj, "modern-hotplug-events", 3242 spapr_get_modern_hotplug_events, 3243 spapr_set_modern_hotplug_events, 3244 NULL); 3245 object_property_set_description(obj, "modern-hotplug-events", 3246 "Use dedicated hotplug event mechanism in" 3247 " place of standard EPOW events when possible" 3248 " (required for memory hot-unplug support)", 3249 NULL); 3250 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3251 "Maximum permitted CPU compatibility mode", 3252 &error_fatal); 3253 3254 object_property_add_str(obj, "resize-hpt", 3255 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3256 object_property_set_description(obj, "resize-hpt", 3257 "Resizing of the Hash Page Table (enabled, disabled, required)", 3258 NULL); 3259 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3260 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3261 object_property_set_description(obj, "vsmt", 3262 "Virtual SMT: KVM behaves as if this were" 3263 " the host's SMT mode", &error_abort); 3264 object_property_add_bool(obj, "vfio-no-msix-emulation", 3265 spapr_get_msix_emulation, NULL, NULL); 3266 3267 /* The machine class defines the default interrupt controller mode */ 3268 spapr->irq = smc->irq; 3269 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3270 spapr_set_ic_mode, NULL); 3271 object_property_set_description(obj, "ic-mode", 3272 "Specifies the interrupt controller mode (xics, xive, dual)", 3273 NULL); 3274 3275 object_property_add_str(obj, "host-model", 3276 spapr_get_host_model, spapr_set_host_model, 3277 &error_abort); 3278 object_property_set_description(obj, "host-model", 3279 "Host model to advertise in guest device tree", &error_abort); 3280 object_property_add_str(obj, "host-serial", 3281 spapr_get_host_serial, spapr_set_host_serial, 3282 &error_abort); 3283 object_property_set_description(obj, "host-serial", 3284 "Host serial number to advertise in guest device tree", &error_abort); 3285 } 3286 3287 static void spapr_machine_finalizefn(Object *obj) 3288 { 3289 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3290 3291 g_free(spapr->kvm_type); 3292 } 3293 3294 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3295 { 3296 cpu_synchronize_state(cs); 3297 ppc_cpu_do_system_reset(cs); 3298 } 3299 3300 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3301 { 3302 CPUState *cs; 3303 3304 CPU_FOREACH(cs) { 3305 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3306 } 3307 } 3308 3309 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3310 void *fdt, int *fdt_start_offset, Error **errp) 3311 { 3312 uint64_t addr; 3313 uint32_t node; 3314 3315 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3316 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3317 &error_abort); 3318 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3319 SPAPR_MEMORY_BLOCK_SIZE); 3320 return 0; 3321 } 3322 3323 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3324 bool dedicated_hp_event_source, Error **errp) 3325 { 3326 SpaprDrc *drc; 3327 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3328 int i; 3329 uint64_t addr = addr_start; 3330 bool hotplugged = spapr_drc_hotplugged(dev); 3331 Error *local_err = NULL; 3332 3333 for (i = 0; i < nr_lmbs; i++) { 3334 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3335 addr / SPAPR_MEMORY_BLOCK_SIZE); 3336 g_assert(drc); 3337 3338 spapr_drc_attach(drc, dev, &local_err); 3339 if (local_err) { 3340 while (addr > addr_start) { 3341 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3342 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3343 addr / SPAPR_MEMORY_BLOCK_SIZE); 3344 spapr_drc_detach(drc); 3345 } 3346 error_propagate(errp, local_err); 3347 return; 3348 } 3349 if (!hotplugged) { 3350 spapr_drc_reset(drc); 3351 } 3352 addr += SPAPR_MEMORY_BLOCK_SIZE; 3353 } 3354 /* send hotplug notification to the 3355 * guest only in case of hotplugged memory 3356 */ 3357 if (hotplugged) { 3358 if (dedicated_hp_event_source) { 3359 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3360 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3361 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3362 nr_lmbs, 3363 spapr_drc_index(drc)); 3364 } else { 3365 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3366 nr_lmbs); 3367 } 3368 } 3369 } 3370 3371 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3372 Error **errp) 3373 { 3374 Error *local_err = NULL; 3375 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3376 PCDIMMDevice *dimm = PC_DIMM(dev); 3377 uint64_t size, addr; 3378 3379 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3380 3381 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3382 if (local_err) { 3383 goto out; 3384 } 3385 3386 addr = object_property_get_uint(OBJECT(dimm), 3387 PC_DIMM_ADDR_PROP, &local_err); 3388 if (local_err) { 3389 goto out_unplug; 3390 } 3391 3392 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3393 &local_err); 3394 if (local_err) { 3395 goto out_unplug; 3396 } 3397 3398 return; 3399 3400 out_unplug: 3401 pc_dimm_unplug(dimm, MACHINE(ms)); 3402 out: 3403 error_propagate(errp, local_err); 3404 } 3405 3406 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3407 Error **errp) 3408 { 3409 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3410 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3411 PCDIMMDevice *dimm = PC_DIMM(dev); 3412 Error *local_err = NULL; 3413 uint64_t size; 3414 Object *memdev; 3415 hwaddr pagesize; 3416 3417 if (!smc->dr_lmb_enabled) { 3418 error_setg(errp, "Memory hotplug not supported for this machine"); 3419 return; 3420 } 3421 3422 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3423 if (local_err) { 3424 error_propagate(errp, local_err); 3425 return; 3426 } 3427 3428 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3429 error_setg(errp, "Hotplugged memory size must be a multiple of " 3430 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3431 return; 3432 } 3433 3434 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3435 &error_abort); 3436 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3437 spapr_check_pagesize(spapr, pagesize, &local_err); 3438 if (local_err) { 3439 error_propagate(errp, local_err); 3440 return; 3441 } 3442 3443 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3444 } 3445 3446 struct SpaprDimmState { 3447 PCDIMMDevice *dimm; 3448 uint32_t nr_lmbs; 3449 QTAILQ_ENTRY(SpaprDimmState) next; 3450 }; 3451 3452 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3453 PCDIMMDevice *dimm) 3454 { 3455 SpaprDimmState *dimm_state = NULL; 3456 3457 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3458 if (dimm_state->dimm == dimm) { 3459 break; 3460 } 3461 } 3462 return dimm_state; 3463 } 3464 3465 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3466 uint32_t nr_lmbs, 3467 PCDIMMDevice *dimm) 3468 { 3469 SpaprDimmState *ds = NULL; 3470 3471 /* 3472 * If this request is for a DIMM whose removal had failed earlier 3473 * (due to guest's refusal to remove the LMBs), we would have this 3474 * dimm already in the pending_dimm_unplugs list. In that 3475 * case don't add again. 3476 */ 3477 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3478 if (!ds) { 3479 ds = g_malloc0(sizeof(SpaprDimmState)); 3480 ds->nr_lmbs = nr_lmbs; 3481 ds->dimm = dimm; 3482 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3483 } 3484 return ds; 3485 } 3486 3487 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3488 SpaprDimmState *dimm_state) 3489 { 3490 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3491 g_free(dimm_state); 3492 } 3493 3494 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3495 PCDIMMDevice *dimm) 3496 { 3497 SpaprDrc *drc; 3498 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3499 &error_abort); 3500 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3501 uint32_t avail_lmbs = 0; 3502 uint64_t addr_start, addr; 3503 int i; 3504 3505 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3506 &error_abort); 3507 3508 addr = addr_start; 3509 for (i = 0; i < nr_lmbs; i++) { 3510 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3511 addr / SPAPR_MEMORY_BLOCK_SIZE); 3512 g_assert(drc); 3513 if (drc->dev) { 3514 avail_lmbs++; 3515 } 3516 addr += SPAPR_MEMORY_BLOCK_SIZE; 3517 } 3518 3519 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3520 } 3521 3522 /* Callback to be called during DRC release. */ 3523 void spapr_lmb_release(DeviceState *dev) 3524 { 3525 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3526 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3527 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3528 3529 /* This information will get lost if a migration occurs 3530 * during the unplug process. In this case recover it. */ 3531 if (ds == NULL) { 3532 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3533 g_assert(ds); 3534 /* The DRC being examined by the caller at least must be counted */ 3535 g_assert(ds->nr_lmbs); 3536 } 3537 3538 if (--ds->nr_lmbs) { 3539 return; 3540 } 3541 3542 /* 3543 * Now that all the LMBs have been removed by the guest, call the 3544 * unplug handler chain. This can never fail. 3545 */ 3546 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3547 object_unparent(OBJECT(dev)); 3548 } 3549 3550 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3551 { 3552 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3553 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3554 3555 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3556 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3557 spapr_pending_dimm_unplugs_remove(spapr, ds); 3558 } 3559 3560 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3561 DeviceState *dev, Error **errp) 3562 { 3563 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3564 Error *local_err = NULL; 3565 PCDIMMDevice *dimm = PC_DIMM(dev); 3566 uint32_t nr_lmbs; 3567 uint64_t size, addr_start, addr; 3568 int i; 3569 SpaprDrc *drc; 3570 3571 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3572 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3573 3574 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3575 &local_err); 3576 if (local_err) { 3577 goto out; 3578 } 3579 3580 /* 3581 * An existing pending dimm state for this DIMM means that there is an 3582 * unplug operation in progress, waiting for the spapr_lmb_release 3583 * callback to complete the job (BQL can't cover that far). In this case, 3584 * bail out to avoid detaching DRCs that were already released. 3585 */ 3586 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3587 error_setg(&local_err, 3588 "Memory unplug already in progress for device %s", 3589 dev->id); 3590 goto out; 3591 } 3592 3593 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3594 3595 addr = addr_start; 3596 for (i = 0; i < nr_lmbs; i++) { 3597 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3598 addr / SPAPR_MEMORY_BLOCK_SIZE); 3599 g_assert(drc); 3600 3601 spapr_drc_detach(drc); 3602 addr += SPAPR_MEMORY_BLOCK_SIZE; 3603 } 3604 3605 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3606 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3607 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3608 nr_lmbs, spapr_drc_index(drc)); 3609 out: 3610 error_propagate(errp, local_err); 3611 } 3612 3613 /* Callback to be called during DRC release. */ 3614 void spapr_core_release(DeviceState *dev) 3615 { 3616 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3617 3618 /* Call the unplug handler chain. This can never fail. */ 3619 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3620 object_unparent(OBJECT(dev)); 3621 } 3622 3623 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3624 { 3625 MachineState *ms = MACHINE(hotplug_dev); 3626 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3627 CPUCore *cc = CPU_CORE(dev); 3628 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3629 3630 if (smc->pre_2_10_has_unused_icps) { 3631 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3632 int i; 3633 3634 for (i = 0; i < cc->nr_threads; i++) { 3635 CPUState *cs = CPU(sc->threads[i]); 3636 3637 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3638 } 3639 } 3640 3641 assert(core_slot); 3642 core_slot->cpu = NULL; 3643 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3644 } 3645 3646 static 3647 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3648 Error **errp) 3649 { 3650 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3651 int index; 3652 SpaprDrc *drc; 3653 CPUCore *cc = CPU_CORE(dev); 3654 3655 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3656 error_setg(errp, "Unable to find CPU core with core-id: %d", 3657 cc->core_id); 3658 return; 3659 } 3660 if (index == 0) { 3661 error_setg(errp, "Boot CPU core may not be unplugged"); 3662 return; 3663 } 3664 3665 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3666 spapr_vcpu_id(spapr, cc->core_id)); 3667 g_assert(drc); 3668 3669 if (!spapr_drc_unplug_requested(drc)) { 3670 spapr_drc_detach(drc); 3671 spapr_hotplug_req_remove_by_index(drc); 3672 } 3673 } 3674 3675 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3676 void *fdt, int *fdt_start_offset, Error **errp) 3677 { 3678 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3679 CPUState *cs = CPU(core->threads[0]); 3680 PowerPCCPU *cpu = POWERPC_CPU(cs); 3681 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3682 int id = spapr_get_vcpu_id(cpu); 3683 char *nodename; 3684 int offset; 3685 3686 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3687 offset = fdt_add_subnode(fdt, 0, nodename); 3688 g_free(nodename); 3689 3690 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3691 3692 *fdt_start_offset = offset; 3693 return 0; 3694 } 3695 3696 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3697 Error **errp) 3698 { 3699 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3700 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3701 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3702 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3703 CPUCore *cc = CPU_CORE(dev); 3704 CPUState *cs; 3705 SpaprDrc *drc; 3706 Error *local_err = NULL; 3707 CPUArchId *core_slot; 3708 int index; 3709 bool hotplugged = spapr_drc_hotplugged(dev); 3710 int i; 3711 3712 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3713 if (!core_slot) { 3714 error_setg(errp, "Unable to find CPU core with core-id: %d", 3715 cc->core_id); 3716 return; 3717 } 3718 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3719 spapr_vcpu_id(spapr, cc->core_id)); 3720 3721 g_assert(drc || !mc->has_hotpluggable_cpus); 3722 3723 if (drc) { 3724 spapr_drc_attach(drc, dev, &local_err); 3725 if (local_err) { 3726 error_propagate(errp, local_err); 3727 return; 3728 } 3729 3730 if (hotplugged) { 3731 /* 3732 * Send hotplug notification interrupt to the guest only 3733 * in case of hotplugged CPUs. 3734 */ 3735 spapr_hotplug_req_add_by_index(drc); 3736 } else { 3737 spapr_drc_reset(drc); 3738 } 3739 } 3740 3741 core_slot->cpu = OBJECT(dev); 3742 3743 if (smc->pre_2_10_has_unused_icps) { 3744 for (i = 0; i < cc->nr_threads; i++) { 3745 cs = CPU(core->threads[i]); 3746 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3747 } 3748 } 3749 3750 /* 3751 * Set compatibility mode to match the boot CPU, which was either set 3752 * by the machine reset code or by CAS. 3753 */ 3754 if (hotplugged) { 3755 for (i = 0; i < cc->nr_threads; i++) { 3756 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3757 &local_err); 3758 if (local_err) { 3759 error_propagate(errp, local_err); 3760 return; 3761 } 3762 } 3763 } 3764 } 3765 3766 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3767 Error **errp) 3768 { 3769 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3770 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3771 Error *local_err = NULL; 3772 CPUCore *cc = CPU_CORE(dev); 3773 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3774 const char *type = object_get_typename(OBJECT(dev)); 3775 CPUArchId *core_slot; 3776 int index; 3777 unsigned int smp_threads = machine->smp.threads; 3778 3779 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3780 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3781 goto out; 3782 } 3783 3784 if (strcmp(base_core_type, type)) { 3785 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3786 goto out; 3787 } 3788 3789 if (cc->core_id % smp_threads) { 3790 error_setg(&local_err, "invalid core id %d", cc->core_id); 3791 goto out; 3792 } 3793 3794 /* 3795 * In general we should have homogeneous threads-per-core, but old 3796 * (pre hotplug support) machine types allow the last core to have 3797 * reduced threads as a compatibility hack for when we allowed 3798 * total vcpus not a multiple of threads-per-core. 3799 */ 3800 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3801 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3802 cc->nr_threads, smp_threads); 3803 goto out; 3804 } 3805 3806 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3807 if (!core_slot) { 3808 error_setg(&local_err, "core id %d out of range", cc->core_id); 3809 goto out; 3810 } 3811 3812 if (core_slot->cpu) { 3813 error_setg(&local_err, "core %d already populated", cc->core_id); 3814 goto out; 3815 } 3816 3817 numa_cpu_pre_plug(core_slot, dev, &local_err); 3818 3819 out: 3820 error_propagate(errp, local_err); 3821 } 3822 3823 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3824 void *fdt, int *fdt_start_offset, Error **errp) 3825 { 3826 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3827 int intc_phandle; 3828 3829 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3830 if (intc_phandle <= 0) { 3831 return -1; 3832 } 3833 3834 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 3835 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3836 return -1; 3837 } 3838 3839 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3840 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3841 3842 return 0; 3843 } 3844 3845 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3846 Error **errp) 3847 { 3848 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3849 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3850 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3851 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3852 3853 if (dev->hotplugged && !smc->dr_phb_enabled) { 3854 error_setg(errp, "PHB hotplug not supported for this machine"); 3855 return; 3856 } 3857 3858 if (sphb->index == (uint32_t)-1) { 3859 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3860 return; 3861 } 3862 3863 /* 3864 * This will check that sphb->index doesn't exceed the maximum number of 3865 * PHBs for the current machine type. 3866 */ 3867 smc->phb_placement(spapr, sphb->index, 3868 &sphb->buid, &sphb->io_win_addr, 3869 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3870 windows_supported, sphb->dma_liobn, 3871 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3872 errp); 3873 } 3874 3875 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3876 Error **errp) 3877 { 3878 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3879 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3880 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3881 SpaprDrc *drc; 3882 bool hotplugged = spapr_drc_hotplugged(dev); 3883 Error *local_err = NULL; 3884 3885 if (!smc->dr_phb_enabled) { 3886 return; 3887 } 3888 3889 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3890 /* hotplug hooks should check it's enabled before getting this far */ 3891 assert(drc); 3892 3893 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3894 if (local_err) { 3895 error_propagate(errp, local_err); 3896 return; 3897 } 3898 3899 if (hotplugged) { 3900 spapr_hotplug_req_add_by_index(drc); 3901 } else { 3902 spapr_drc_reset(drc); 3903 } 3904 } 3905 3906 void spapr_phb_release(DeviceState *dev) 3907 { 3908 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3909 3910 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3911 object_unparent(OBJECT(dev)); 3912 } 3913 3914 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3915 { 3916 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3917 } 3918 3919 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 3920 DeviceState *dev, Error **errp) 3921 { 3922 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3923 SpaprDrc *drc; 3924 3925 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3926 assert(drc); 3927 3928 if (!spapr_drc_unplug_requested(drc)) { 3929 spapr_drc_detach(drc); 3930 spapr_hotplug_req_remove_by_index(drc); 3931 } 3932 } 3933 3934 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3935 Error **errp) 3936 { 3937 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3938 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 3939 3940 if (spapr->tpm_proxy != NULL) { 3941 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 3942 return; 3943 } 3944 3945 spapr->tpm_proxy = tpm_proxy; 3946 } 3947 3948 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3949 { 3950 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3951 3952 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3953 object_unparent(OBJECT(dev)); 3954 spapr->tpm_proxy = NULL; 3955 } 3956 3957 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3958 DeviceState *dev, Error **errp) 3959 { 3960 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3961 spapr_memory_plug(hotplug_dev, dev, errp); 3962 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3963 spapr_core_plug(hotplug_dev, dev, errp); 3964 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 3965 spapr_phb_plug(hotplug_dev, dev, errp); 3966 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 3967 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 3968 } 3969 } 3970 3971 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 3972 DeviceState *dev, Error **errp) 3973 { 3974 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3975 spapr_memory_unplug(hotplug_dev, dev); 3976 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3977 spapr_core_unplug(hotplug_dev, dev); 3978 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 3979 spapr_phb_unplug(hotplug_dev, dev); 3980 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 3981 spapr_tpm_proxy_unplug(hotplug_dev, dev); 3982 } 3983 } 3984 3985 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3986 DeviceState *dev, Error **errp) 3987 { 3988 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3989 MachineClass *mc = MACHINE_GET_CLASS(sms); 3990 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3991 3992 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3993 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3994 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3995 } else { 3996 /* NOTE: this means there is a window after guest reset, prior to 3997 * CAS negotiation, where unplug requests will fail due to the 3998 * capability not being detected yet. This is a bit different than 3999 * the case with PCI unplug, where the events will be queued and 4000 * eventually handled by the guest after boot 4001 */ 4002 error_setg(errp, "Memory hot unplug not supported for this guest"); 4003 } 4004 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4005 if (!mc->has_hotpluggable_cpus) { 4006 error_setg(errp, "CPU hot unplug not supported on this machine"); 4007 return; 4008 } 4009 spapr_core_unplug_request(hotplug_dev, dev, errp); 4010 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4011 if (!smc->dr_phb_enabled) { 4012 error_setg(errp, "PHB hot unplug not supported on this machine"); 4013 return; 4014 } 4015 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4016 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4017 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4018 } 4019 } 4020 4021 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4022 DeviceState *dev, Error **errp) 4023 { 4024 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4025 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4026 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4027 spapr_core_pre_plug(hotplug_dev, dev, errp); 4028 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4029 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4030 } 4031 } 4032 4033 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4034 DeviceState *dev) 4035 { 4036 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4037 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4038 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4039 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4040 return HOTPLUG_HANDLER(machine); 4041 } 4042 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4043 PCIDevice *pcidev = PCI_DEVICE(dev); 4044 PCIBus *root = pci_device_root_bus(pcidev); 4045 SpaprPhbState *phb = 4046 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4047 TYPE_SPAPR_PCI_HOST_BRIDGE); 4048 4049 if (phb) { 4050 return HOTPLUG_HANDLER(phb); 4051 } 4052 } 4053 return NULL; 4054 } 4055 4056 static CpuInstanceProperties 4057 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4058 { 4059 CPUArchId *core_slot; 4060 MachineClass *mc = MACHINE_GET_CLASS(machine); 4061 4062 /* make sure possible_cpu are intialized */ 4063 mc->possible_cpu_arch_ids(machine); 4064 /* get CPU core slot containing thread that matches cpu_index */ 4065 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4066 assert(core_slot); 4067 return core_slot->props; 4068 } 4069 4070 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4071 { 4072 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4073 } 4074 4075 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4076 { 4077 int i; 4078 unsigned int smp_threads = machine->smp.threads; 4079 unsigned int smp_cpus = machine->smp.cpus; 4080 const char *core_type; 4081 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4082 MachineClass *mc = MACHINE_GET_CLASS(machine); 4083 4084 if (!mc->has_hotpluggable_cpus) { 4085 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4086 } 4087 if (machine->possible_cpus) { 4088 assert(machine->possible_cpus->len == spapr_max_cores); 4089 return machine->possible_cpus; 4090 } 4091 4092 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4093 if (!core_type) { 4094 error_report("Unable to find sPAPR CPU Core definition"); 4095 exit(1); 4096 } 4097 4098 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4099 sizeof(CPUArchId) * spapr_max_cores); 4100 machine->possible_cpus->len = spapr_max_cores; 4101 for (i = 0; i < machine->possible_cpus->len; i++) { 4102 int core_id = i * smp_threads; 4103 4104 machine->possible_cpus->cpus[i].type = core_type; 4105 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4106 machine->possible_cpus->cpus[i].arch_id = core_id; 4107 machine->possible_cpus->cpus[i].props.has_core_id = true; 4108 machine->possible_cpus->cpus[i].props.core_id = core_id; 4109 } 4110 return machine->possible_cpus; 4111 } 4112 4113 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4114 uint64_t *buid, hwaddr *pio, 4115 hwaddr *mmio32, hwaddr *mmio64, 4116 unsigned n_dma, uint32_t *liobns, 4117 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4118 { 4119 /* 4120 * New-style PHB window placement. 4121 * 4122 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4123 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4124 * windows. 4125 * 4126 * Some guest kernels can't work with MMIO windows above 1<<46 4127 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4128 * 4129 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4130 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4131 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4132 * 1TiB 64-bit MMIO windows for each PHB. 4133 */ 4134 const uint64_t base_buid = 0x800000020000000ULL; 4135 int i; 4136 4137 /* Sanity check natural alignments */ 4138 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4139 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4140 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4141 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4142 /* Sanity check bounds */ 4143 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4144 SPAPR_PCI_MEM32_WIN_SIZE); 4145 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4146 SPAPR_PCI_MEM64_WIN_SIZE); 4147 4148 if (index >= SPAPR_MAX_PHBS) { 4149 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4150 SPAPR_MAX_PHBS - 1); 4151 return; 4152 } 4153 4154 *buid = base_buid + index; 4155 for (i = 0; i < n_dma; ++i) { 4156 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4157 } 4158 4159 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4160 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4161 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4162 4163 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4164 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4165 } 4166 4167 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4168 { 4169 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4170 4171 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4172 } 4173 4174 static void spapr_ics_resend(XICSFabric *dev) 4175 { 4176 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4177 4178 ics_resend(spapr->ics); 4179 } 4180 4181 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4182 { 4183 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4184 4185 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4186 } 4187 4188 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4189 Monitor *mon) 4190 { 4191 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4192 4193 spapr_irq_print_info(spapr, mon); 4194 monitor_printf(mon, "irqchip: %s\n", 4195 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4196 } 4197 4198 /* 4199 * This is a XIVE only operation 4200 */ 4201 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4202 uint8_t nvt_blk, uint32_t nvt_idx, 4203 bool cam_ignore, uint8_t priority, 4204 uint32_t logic_serv, XiveTCTXMatch *match) 4205 { 4206 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4207 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4208 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4209 int count; 4210 4211 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4212 priority, logic_serv, match); 4213 if (count < 0) { 4214 return count; 4215 } 4216 4217 /* 4218 * When we implement the save and restore of the thread interrupt 4219 * contexts in the enter/exit CPU handlers of the machine and the 4220 * escalations in QEMU, we should be able to handle non dispatched 4221 * vCPUs. 4222 * 4223 * Until this is done, the sPAPR machine should find at least one 4224 * matching context always. 4225 */ 4226 if (count == 0) { 4227 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4228 nvt_blk, nvt_idx); 4229 } 4230 4231 return count; 4232 } 4233 4234 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4235 { 4236 return cpu->vcpu_id; 4237 } 4238 4239 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4240 { 4241 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4242 MachineState *ms = MACHINE(spapr); 4243 int vcpu_id; 4244 4245 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4246 4247 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4248 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4249 error_append_hint(errp, "Adjust the number of cpus to %d " 4250 "or try to raise the number of threads per core\n", 4251 vcpu_id * ms->smp.threads / spapr->vsmt); 4252 return; 4253 } 4254 4255 cpu->vcpu_id = vcpu_id; 4256 } 4257 4258 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4259 { 4260 CPUState *cs; 4261 4262 CPU_FOREACH(cs) { 4263 PowerPCCPU *cpu = POWERPC_CPU(cs); 4264 4265 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4266 return cpu; 4267 } 4268 } 4269 4270 return NULL; 4271 } 4272 4273 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4274 { 4275 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4276 4277 /* These are only called by TCG, KVM maintains dispatch state */ 4278 4279 spapr_cpu->prod = false; 4280 if (spapr_cpu->vpa_addr) { 4281 CPUState *cs = CPU(cpu); 4282 uint32_t dispatch; 4283 4284 dispatch = ldl_be_phys(cs->as, 4285 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4286 dispatch++; 4287 if ((dispatch & 1) != 0) { 4288 qemu_log_mask(LOG_GUEST_ERROR, 4289 "VPA: incorrect dispatch counter value for " 4290 "dispatched partition %u, correcting.\n", dispatch); 4291 dispatch++; 4292 } 4293 stl_be_phys(cs->as, 4294 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4295 } 4296 } 4297 4298 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4299 { 4300 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4301 4302 if (spapr_cpu->vpa_addr) { 4303 CPUState *cs = CPU(cpu); 4304 uint32_t dispatch; 4305 4306 dispatch = ldl_be_phys(cs->as, 4307 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4308 dispatch++; 4309 if ((dispatch & 1) != 1) { 4310 qemu_log_mask(LOG_GUEST_ERROR, 4311 "VPA: incorrect dispatch counter value for " 4312 "preempted partition %u, correcting.\n", dispatch); 4313 dispatch++; 4314 } 4315 stl_be_phys(cs->as, 4316 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4317 } 4318 } 4319 4320 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4321 { 4322 MachineClass *mc = MACHINE_CLASS(oc); 4323 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4324 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4325 NMIClass *nc = NMI_CLASS(oc); 4326 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4327 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4328 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4329 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4330 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4331 4332 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4333 mc->ignore_boot_device_suffixes = true; 4334 4335 /* 4336 * We set up the default / latest behaviour here. The class_init 4337 * functions for the specific versioned machine types can override 4338 * these details for backwards compatibility 4339 */ 4340 mc->init = spapr_machine_init; 4341 mc->reset = spapr_machine_reset; 4342 mc->block_default_type = IF_SCSI; 4343 mc->max_cpus = 1024; 4344 mc->no_parallel = 1; 4345 mc->default_boot_order = ""; 4346 mc->default_ram_size = 512 * MiB; 4347 mc->default_display = "std"; 4348 mc->kvm_type = spapr_kvm_type; 4349 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4350 mc->pci_allow_0_address = true; 4351 assert(!mc->get_hotplug_handler); 4352 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4353 hc->pre_plug = spapr_machine_device_pre_plug; 4354 hc->plug = spapr_machine_device_plug; 4355 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4356 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4357 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4358 hc->unplug_request = spapr_machine_device_unplug_request; 4359 hc->unplug = spapr_machine_device_unplug; 4360 4361 smc->dr_lmb_enabled = true; 4362 smc->update_dt_enabled = true; 4363 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4364 mc->has_hotpluggable_cpus = true; 4365 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4366 fwc->get_dev_path = spapr_get_fw_dev_path; 4367 nc->nmi_monitor_handler = spapr_nmi; 4368 smc->phb_placement = spapr_phb_placement; 4369 vhc->hypercall = emulate_spapr_hypercall; 4370 vhc->hpt_mask = spapr_hpt_mask; 4371 vhc->map_hptes = spapr_map_hptes; 4372 vhc->unmap_hptes = spapr_unmap_hptes; 4373 vhc->hpte_set_c = spapr_hpte_set_c; 4374 vhc->hpte_set_r = spapr_hpte_set_r; 4375 vhc->get_pate = spapr_get_pate; 4376 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4377 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4378 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4379 xic->ics_get = spapr_ics_get; 4380 xic->ics_resend = spapr_ics_resend; 4381 xic->icp_get = spapr_icp_get; 4382 ispc->print_info = spapr_pic_print_info; 4383 /* Force NUMA node memory size to be a multiple of 4384 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4385 * in which LMBs are represented and hot-added 4386 */ 4387 mc->numa_mem_align_shift = 28; 4388 mc->numa_mem_supported = true; 4389 mc->auto_enable_numa = true; 4390 4391 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4392 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4393 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4394 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4395 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4396 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4397 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4398 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4399 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4400 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4401 spapr_caps_add_properties(smc, &error_abort); 4402 smc->irq = &spapr_irq_dual; 4403 smc->dr_phb_enabled = true; 4404 smc->linux_pci_probe = true; 4405 smc->smp_threads_vsmt = true; 4406 smc->nr_xirqs = SPAPR_NR_XIRQS; 4407 xfc->match_nvt = spapr_match_nvt; 4408 } 4409 4410 static const TypeInfo spapr_machine_info = { 4411 .name = TYPE_SPAPR_MACHINE, 4412 .parent = TYPE_MACHINE, 4413 .abstract = true, 4414 .instance_size = sizeof(SpaprMachineState), 4415 .instance_init = spapr_instance_init, 4416 .instance_finalize = spapr_machine_finalizefn, 4417 .class_size = sizeof(SpaprMachineClass), 4418 .class_init = spapr_machine_class_init, 4419 .interfaces = (InterfaceInfo[]) { 4420 { TYPE_FW_PATH_PROVIDER }, 4421 { TYPE_NMI }, 4422 { TYPE_HOTPLUG_HANDLER }, 4423 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4424 { TYPE_XICS_FABRIC }, 4425 { TYPE_INTERRUPT_STATS_PROVIDER }, 4426 { TYPE_XIVE_FABRIC }, 4427 { } 4428 }, 4429 }; 4430 4431 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4432 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4433 void *data) \ 4434 { \ 4435 MachineClass *mc = MACHINE_CLASS(oc); \ 4436 spapr_machine_##suffix##_class_options(mc); \ 4437 if (latest) { \ 4438 mc->alias = "pseries"; \ 4439 mc->is_default = 1; \ 4440 } \ 4441 } \ 4442 static const TypeInfo spapr_machine_##suffix##_info = { \ 4443 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4444 .parent = TYPE_SPAPR_MACHINE, \ 4445 .class_init = spapr_machine_##suffix##_class_init, \ 4446 }; \ 4447 static void spapr_machine_register_##suffix(void) \ 4448 { \ 4449 type_register(&spapr_machine_##suffix##_info); \ 4450 } \ 4451 type_init(spapr_machine_register_##suffix) 4452 4453 /* 4454 * pseries-5.0 4455 */ 4456 static void spapr_machine_5_0_class_options(MachineClass *mc) 4457 { 4458 /* Defaults for the latest behaviour inherited from the base class */ 4459 } 4460 4461 DEFINE_SPAPR_MACHINE(5_0, "5.0", true); 4462 4463 /* 4464 * pseries-4.2 4465 */ 4466 static void spapr_machine_4_2_class_options(MachineClass *mc) 4467 { 4468 spapr_machine_5_0_class_options(mc); 4469 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4470 } 4471 4472 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4473 4474 /* 4475 * pseries-4.1 4476 */ 4477 static void spapr_machine_4_1_class_options(MachineClass *mc) 4478 { 4479 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4480 static GlobalProperty compat[] = { 4481 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4482 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4483 }; 4484 4485 spapr_machine_4_2_class_options(mc); 4486 smc->linux_pci_probe = false; 4487 smc->smp_threads_vsmt = false; 4488 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4489 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4490 } 4491 4492 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4493 4494 /* 4495 * pseries-4.0 4496 */ 4497 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4498 uint64_t *buid, hwaddr *pio, 4499 hwaddr *mmio32, hwaddr *mmio64, 4500 unsigned n_dma, uint32_t *liobns, 4501 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4502 { 4503 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4504 nv2gpa, nv2atsd, errp); 4505 *nv2gpa = 0; 4506 *nv2atsd = 0; 4507 } 4508 4509 static void spapr_machine_4_0_class_options(MachineClass *mc) 4510 { 4511 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4512 4513 spapr_machine_4_1_class_options(mc); 4514 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4515 smc->phb_placement = phb_placement_4_0; 4516 smc->irq = &spapr_irq_xics; 4517 smc->pre_4_1_migration = true; 4518 } 4519 4520 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4521 4522 /* 4523 * pseries-3.1 4524 */ 4525 static void spapr_machine_3_1_class_options(MachineClass *mc) 4526 { 4527 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4528 4529 spapr_machine_4_0_class_options(mc); 4530 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4531 4532 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4533 smc->update_dt_enabled = false; 4534 smc->dr_phb_enabled = false; 4535 smc->broken_host_serial_model = true; 4536 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4537 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4538 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4539 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4540 } 4541 4542 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4543 4544 /* 4545 * pseries-3.0 4546 */ 4547 4548 static void spapr_machine_3_0_class_options(MachineClass *mc) 4549 { 4550 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4551 4552 spapr_machine_3_1_class_options(mc); 4553 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4554 4555 smc->legacy_irq_allocation = true; 4556 smc->nr_xirqs = 0x400; 4557 smc->irq = &spapr_irq_xics_legacy; 4558 } 4559 4560 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4561 4562 /* 4563 * pseries-2.12 4564 */ 4565 static void spapr_machine_2_12_class_options(MachineClass *mc) 4566 { 4567 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4568 static GlobalProperty compat[] = { 4569 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4570 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4571 }; 4572 4573 spapr_machine_3_0_class_options(mc); 4574 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4575 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4576 4577 /* We depend on kvm_enabled() to choose a default value for the 4578 * hpt-max-page-size capability. Of course we can't do it here 4579 * because this is too early and the HW accelerator isn't initialzed 4580 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4581 */ 4582 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4583 } 4584 4585 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4586 4587 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4588 { 4589 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4590 4591 spapr_machine_2_12_class_options(mc); 4592 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4593 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4594 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4595 } 4596 4597 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4598 4599 /* 4600 * pseries-2.11 4601 */ 4602 4603 static void spapr_machine_2_11_class_options(MachineClass *mc) 4604 { 4605 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4606 4607 spapr_machine_2_12_class_options(mc); 4608 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4609 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4610 } 4611 4612 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4613 4614 /* 4615 * pseries-2.10 4616 */ 4617 4618 static void spapr_machine_2_10_class_options(MachineClass *mc) 4619 { 4620 spapr_machine_2_11_class_options(mc); 4621 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4622 } 4623 4624 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4625 4626 /* 4627 * pseries-2.9 4628 */ 4629 4630 static void spapr_machine_2_9_class_options(MachineClass *mc) 4631 { 4632 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4633 static GlobalProperty compat[] = { 4634 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4635 }; 4636 4637 spapr_machine_2_10_class_options(mc); 4638 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4639 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4640 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4641 smc->pre_2_10_has_unused_icps = true; 4642 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4643 } 4644 4645 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4646 4647 /* 4648 * pseries-2.8 4649 */ 4650 4651 static void spapr_machine_2_8_class_options(MachineClass *mc) 4652 { 4653 static GlobalProperty compat[] = { 4654 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4655 }; 4656 4657 spapr_machine_2_9_class_options(mc); 4658 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4659 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4660 mc->numa_mem_align_shift = 23; 4661 } 4662 4663 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4664 4665 /* 4666 * pseries-2.7 4667 */ 4668 4669 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4670 uint64_t *buid, hwaddr *pio, 4671 hwaddr *mmio32, hwaddr *mmio64, 4672 unsigned n_dma, uint32_t *liobns, 4673 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4674 { 4675 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4676 const uint64_t base_buid = 0x800000020000000ULL; 4677 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4678 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4679 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4680 const uint32_t max_index = 255; 4681 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4682 4683 uint64_t ram_top = MACHINE(spapr)->ram_size; 4684 hwaddr phb0_base, phb_base; 4685 int i; 4686 4687 /* Do we have device memory? */ 4688 if (MACHINE(spapr)->maxram_size > ram_top) { 4689 /* Can't just use maxram_size, because there may be an 4690 * alignment gap between normal and device memory regions 4691 */ 4692 ram_top = MACHINE(spapr)->device_memory->base + 4693 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4694 } 4695 4696 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4697 4698 if (index > max_index) { 4699 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4700 max_index); 4701 return; 4702 } 4703 4704 *buid = base_buid + index; 4705 for (i = 0; i < n_dma; ++i) { 4706 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4707 } 4708 4709 phb_base = phb0_base + index * phb_spacing; 4710 *pio = phb_base + pio_offset; 4711 *mmio32 = phb_base + mmio_offset; 4712 /* 4713 * We don't set the 64-bit MMIO window, relying on the PHB's 4714 * fallback behaviour of automatically splitting a large "32-bit" 4715 * window into contiguous 32-bit and 64-bit windows 4716 */ 4717 4718 *nv2gpa = 0; 4719 *nv2atsd = 0; 4720 } 4721 4722 static void spapr_machine_2_7_class_options(MachineClass *mc) 4723 { 4724 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4725 static GlobalProperty compat[] = { 4726 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4727 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4728 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4729 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4730 }; 4731 4732 spapr_machine_2_8_class_options(mc); 4733 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4734 mc->default_machine_opts = "modern-hotplug-events=off"; 4735 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4736 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4737 smc->phb_placement = phb_placement_2_7; 4738 } 4739 4740 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4741 4742 /* 4743 * pseries-2.6 4744 */ 4745 4746 static void spapr_machine_2_6_class_options(MachineClass *mc) 4747 { 4748 static GlobalProperty compat[] = { 4749 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4750 }; 4751 4752 spapr_machine_2_7_class_options(mc); 4753 mc->has_hotpluggable_cpus = false; 4754 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4755 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4756 } 4757 4758 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4759 4760 /* 4761 * pseries-2.5 4762 */ 4763 4764 static void spapr_machine_2_5_class_options(MachineClass *mc) 4765 { 4766 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4767 static GlobalProperty compat[] = { 4768 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4769 }; 4770 4771 spapr_machine_2_6_class_options(mc); 4772 smc->use_ohci_by_default = true; 4773 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4774 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4775 } 4776 4777 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4778 4779 /* 4780 * pseries-2.4 4781 */ 4782 4783 static void spapr_machine_2_4_class_options(MachineClass *mc) 4784 { 4785 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4786 4787 spapr_machine_2_5_class_options(mc); 4788 smc->dr_lmb_enabled = false; 4789 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4790 } 4791 4792 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4793 4794 /* 4795 * pseries-2.3 4796 */ 4797 4798 static void spapr_machine_2_3_class_options(MachineClass *mc) 4799 { 4800 static GlobalProperty compat[] = { 4801 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4802 }; 4803 spapr_machine_2_4_class_options(mc); 4804 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4805 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4806 } 4807 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4808 4809 /* 4810 * pseries-2.2 4811 */ 4812 4813 static void spapr_machine_2_2_class_options(MachineClass *mc) 4814 { 4815 static GlobalProperty compat[] = { 4816 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4817 }; 4818 4819 spapr_machine_2_3_class_options(mc); 4820 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4821 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4822 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4823 } 4824 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4825 4826 /* 4827 * pseries-2.1 4828 */ 4829 4830 static void spapr_machine_2_1_class_options(MachineClass *mc) 4831 { 4832 spapr_machine_2_2_class_options(mc); 4833 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4834 } 4835 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4836 4837 static void spapr_machine_register_types(void) 4838 { 4839 type_register_static(&spapr_machine_info); 4840 } 4841 4842 type_init(spapr_machine_register_types) 4843