1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "sysemu/qtest.h" 33 #include "hw/hw.h" 34 #include "qemu/log.h" 35 #include "hw/fw-path-provider.h" 36 #include "elf.h" 37 #include "net/net.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/cpus.h" 40 #include "sysemu/hw_accel.h" 41 #include "kvm_ppc.h" 42 #include "migration/misc.h" 43 #include "migration/global_state.h" 44 #include "migration/register.h" 45 #include "mmu-hash64.h" 46 #include "mmu-book3s-v3.h" 47 #include "cpu-models.h" 48 #include "qom/cpu.h" 49 50 #include "hw/boards.h" 51 #include "hw/ppc/ppc.h" 52 #include "hw/loader.h" 53 54 #include "hw/ppc/fdt.h" 55 #include "hw/ppc/spapr.h" 56 #include "hw/ppc/spapr_vio.h" 57 #include "hw/pci-host/spapr.h" 58 #include "hw/pci/msi.h" 59 60 #include "hw/pci/pci.h" 61 #include "hw/scsi/scsi.h" 62 #include "hw/virtio/virtio-scsi.h" 63 #include "hw/virtio/vhost-scsi-common.h" 64 65 #include "exec/address-spaces.h" 66 #include "exec/ram_addr.h" 67 #include "hw/usb.h" 68 #include "qemu/config-file.h" 69 #include "qemu/error-report.h" 70 #include "trace.h" 71 #include "hw/nmi.h" 72 #include "hw/intc/intc.h" 73 74 #include "qemu/cutils.h" 75 #include "hw/ppc/spapr_cpu_core.h" 76 #include "hw/mem/memory-device.h" 77 78 #include <libfdt.h> 79 80 /* SLOF memory layout: 81 * 82 * SLOF raw image loaded at 0, copies its romfs right below the flat 83 * device-tree, then position SLOF itself 31M below that 84 * 85 * So we set FW_OVERHEAD to 40MB which should account for all of that 86 * and more 87 * 88 * We load our kernel at 4M, leaving space for SLOF initial image 89 */ 90 #define FDT_MAX_SIZE 0x100000 91 #define RTAS_MAX_SIZE 0x10000 92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 93 #define FW_MAX_SIZE 0x400000 94 #define FW_FILE_NAME "slof.bin" 95 #define FW_OVERHEAD 0x2800000 96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 97 98 #define MIN_RMA_SLOF 128UL 99 100 #define PHANDLE_INTC 0x00001111 101 102 /* These two functions implement the VCPU id numbering: one to compute them 103 * all and one to identify thread 0 of a VCORE. Any change to the first one 104 * is likely to have an impact on the second one, so let's keep them close. 105 */ 106 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 107 { 108 assert(spapr->vsmt); 109 return 110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 111 } 112 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 113 PowerPCCPU *cpu) 114 { 115 assert(spapr->vsmt); 116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 117 } 118 119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 120 { 121 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 122 * and newer QEMUs don't even have them. In both cases, we don't want 123 * to send anything on the wire. 124 */ 125 return false; 126 } 127 128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 129 .name = "icp/server", 130 .version_id = 1, 131 .minimum_version_id = 1, 132 .needed = pre_2_10_vmstate_dummy_icp_needed, 133 .fields = (VMStateField[]) { 134 VMSTATE_UNUSED(4), /* uint32_t xirr */ 135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 136 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 137 VMSTATE_END_OF_LIST() 138 }, 139 }; 140 141 static void pre_2_10_vmstate_register_dummy_icp(int i) 142 { 143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 144 (void *)(uintptr_t) i); 145 } 146 147 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 148 { 149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 150 (void *)(uintptr_t) i); 151 } 152 153 int spapr_max_server_number(SpaprMachineState *spapr) 154 { 155 assert(spapr->vsmt); 156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 157 } 158 159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 160 int smt_threads) 161 { 162 int i, ret = 0; 163 uint32_t servers_prop[smt_threads]; 164 uint32_t gservers_prop[smt_threads * 2]; 165 int index = spapr_get_vcpu_id(cpu); 166 167 if (cpu->compat_pvr) { 168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 169 if (ret < 0) { 170 return ret; 171 } 172 } 173 174 /* Build interrupt servers and gservers properties */ 175 for (i = 0; i < smt_threads; i++) { 176 servers_prop[i] = cpu_to_be32(index + i); 177 /* Hack, direct the group queues back to cpu 0 */ 178 gservers_prop[i*2] = cpu_to_be32(index + i); 179 gservers_prop[i*2 + 1] = 0; 180 } 181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 182 servers_prop, sizeof(servers_prop)); 183 if (ret < 0) { 184 return ret; 185 } 186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 187 gservers_prop, sizeof(gservers_prop)); 188 189 return ret; 190 } 191 192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 193 { 194 int index = spapr_get_vcpu_id(cpu); 195 uint32_t associativity[] = {cpu_to_be32(0x5), 196 cpu_to_be32(0x0), 197 cpu_to_be32(0x0), 198 cpu_to_be32(0x0), 199 cpu_to_be32(cpu->node_id), 200 cpu_to_be32(index)}; 201 202 /* Advertise NUMA via ibm,associativity */ 203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 204 sizeof(associativity)); 205 } 206 207 /* Populate the "ibm,pa-features" property */ 208 static void spapr_populate_pa_features(SpaprMachineState *spapr, 209 PowerPCCPU *cpu, 210 void *fdt, int offset, 211 bool legacy_guest) 212 { 213 uint8_t pa_features_206[] = { 6, 0, 214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 215 uint8_t pa_features_207[] = { 24, 0, 216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 220 uint8_t pa_features_300[] = { 66, 0, 221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 224 /* 6: DS207 */ 225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 226 /* 16: Vector */ 227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 236 /* 42: PM, 44: PC RA, 46: SC vec'd */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 238 /* 48: SIMD, 50: QP BFP, 52: String */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 240 /* 54: DecFP, 56: DecI, 58: SHA */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 242 /* 60: NM atomic, 62: RNG */ 243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 244 }; 245 uint8_t *pa_features = NULL; 246 size_t pa_size; 247 248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 249 pa_features = pa_features_206; 250 pa_size = sizeof(pa_features_206); 251 } 252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 253 pa_features = pa_features_207; 254 pa_size = sizeof(pa_features_207); 255 } 256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 257 pa_features = pa_features_300; 258 pa_size = sizeof(pa_features_300); 259 } 260 if (!pa_features) { 261 return; 262 } 263 264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 265 /* 266 * Note: we keep CI large pages off by default because a 64K capable 267 * guest provisioned with large pages might otherwise try to map a qemu 268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 269 * even if that qemu runs on a 4k host. 270 * We dd this bit back here if we are confident this is not an issue 271 */ 272 pa_features[3] |= 0x20; 273 } 274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 275 pa_features[24] |= 0x80; /* Transactional memory support */ 276 } 277 if (legacy_guest && pa_size > 40) { 278 /* Workaround for broken kernels that attempt (guest) radix 279 * mode when they can't handle it, if they see the radix bit set 280 * in pa-features. So hide it from them. */ 281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 282 } 283 284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 285 } 286 287 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 288 { 289 int ret = 0, offset, cpus_offset; 290 CPUState *cs; 291 char cpu_model[32]; 292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 293 294 CPU_FOREACH(cs) { 295 PowerPCCPU *cpu = POWERPC_CPU(cs); 296 DeviceClass *dc = DEVICE_GET_CLASS(cs); 297 int index = spapr_get_vcpu_id(cpu); 298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 299 300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 301 continue; 302 } 303 304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 305 306 cpus_offset = fdt_path_offset(fdt, "/cpus"); 307 if (cpus_offset < 0) { 308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 309 if (cpus_offset < 0) { 310 return cpus_offset; 311 } 312 } 313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 314 if (offset < 0) { 315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 316 if (offset < 0) { 317 return offset; 318 } 319 } 320 321 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 322 pft_size_prop, sizeof(pft_size_prop)); 323 if (ret < 0) { 324 return ret; 325 } 326 327 if (nb_numa_nodes > 1) { 328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 329 if (ret < 0) { 330 return ret; 331 } 332 } 333 334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 335 if (ret < 0) { 336 return ret; 337 } 338 339 spapr_populate_pa_features(spapr, cpu, fdt, offset, 340 spapr->cas_legacy_guest_workaround); 341 } 342 return ret; 343 } 344 345 static hwaddr spapr_node0_size(MachineState *machine) 346 { 347 if (nb_numa_nodes) { 348 int i; 349 for (i = 0; i < nb_numa_nodes; ++i) { 350 if (numa_info[i].node_mem) { 351 return MIN(pow2floor(numa_info[i].node_mem), 352 machine->ram_size); 353 } 354 } 355 } 356 return machine->ram_size; 357 } 358 359 static void add_str(GString *s, const gchar *s1) 360 { 361 g_string_append_len(s, s1, strlen(s1) + 1); 362 } 363 364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 365 hwaddr size) 366 { 367 uint32_t associativity[] = { 368 cpu_to_be32(0x4), /* length */ 369 cpu_to_be32(0x0), cpu_to_be32(0x0), 370 cpu_to_be32(0x0), cpu_to_be32(nodeid) 371 }; 372 char mem_name[32]; 373 uint64_t mem_reg_property[2]; 374 int off; 375 376 mem_reg_property[0] = cpu_to_be64(start); 377 mem_reg_property[1] = cpu_to_be64(size); 378 379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 380 off = fdt_add_subnode(fdt, 0, mem_name); 381 _FDT(off); 382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 384 sizeof(mem_reg_property)))); 385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 386 sizeof(associativity)))); 387 return off; 388 } 389 390 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 391 { 392 MachineState *machine = MACHINE(spapr); 393 hwaddr mem_start, node_size; 394 int i, nb_nodes = nb_numa_nodes; 395 NodeInfo *nodes = numa_info; 396 NodeInfo ramnode; 397 398 /* No NUMA nodes, assume there is just one node with whole RAM */ 399 if (!nb_numa_nodes) { 400 nb_nodes = 1; 401 ramnode.node_mem = machine->ram_size; 402 nodes = &ramnode; 403 } 404 405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 406 if (!nodes[i].node_mem) { 407 continue; 408 } 409 if (mem_start >= machine->ram_size) { 410 node_size = 0; 411 } else { 412 node_size = nodes[i].node_mem; 413 if (node_size > machine->ram_size - mem_start) { 414 node_size = machine->ram_size - mem_start; 415 } 416 } 417 if (!mem_start) { 418 /* spapr_machine_init() checks for rma_size <= node0_size 419 * already */ 420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 421 mem_start += spapr->rma_size; 422 node_size -= spapr->rma_size; 423 } 424 for ( ; node_size; ) { 425 hwaddr sizetmp = pow2floor(node_size); 426 427 /* mem_start != 0 here */ 428 if (ctzl(mem_start) < ctzl(sizetmp)) { 429 sizetmp = 1ULL << ctzl(mem_start); 430 } 431 432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 433 node_size -= sizetmp; 434 mem_start += sizetmp; 435 } 436 } 437 438 return 0; 439 } 440 441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 442 SpaprMachineState *spapr) 443 { 444 PowerPCCPU *cpu = POWERPC_CPU(cs); 445 CPUPPCState *env = &cpu->env; 446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 447 int index = spapr_get_vcpu_id(cpu); 448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 449 0xffffffff, 0xffffffff}; 450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 451 : SPAPR_TIMEBASE_FREQ; 452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 453 uint32_t page_sizes_prop[64]; 454 size_t page_sizes_prop_size; 455 uint32_t vcpus_per_socket = smp_threads * smp_cores; 456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 458 SpaprDrc *drc; 459 int drc_index; 460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 461 int i; 462 463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 464 if (drc) { 465 drc_index = spapr_drc_index(drc); 466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 467 } 468 469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 471 472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 474 env->dcache_line_size))); 475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 476 env->dcache_line_size))); 477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 478 env->icache_line_size))); 479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 480 env->icache_line_size))); 481 482 if (pcc->l1_dcache_size) { 483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 484 pcc->l1_dcache_size))); 485 } else { 486 warn_report("Unknown L1 dcache size for cpu"); 487 } 488 if (pcc->l1_icache_size) { 489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 490 pcc->l1_icache_size))); 491 } else { 492 warn_report("Unknown L1 icache size for cpu"); 493 } 494 495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 501 502 if (env->spr_cb[SPR_PURR].oea_read) { 503 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 504 } 505 if (env->spr_cb[SPR_SPURR].oea_read) { 506 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 507 } 508 509 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 510 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 511 segs, sizeof(segs)))); 512 } 513 514 /* Advertise VSX (vector extensions) if available 515 * 1 == VMX / Altivec available 516 * 2 == VSX available 517 * 518 * Only CPUs for which we create core types in spapr_cpu_core.c 519 * are possible, and all of those have VMX */ 520 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 521 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 522 } else { 523 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 524 } 525 526 /* Advertise DFP (Decimal Floating Point) if available 527 * 0 / no property == no DFP 528 * 1 == DFP available */ 529 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 530 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 531 } 532 533 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 534 sizeof(page_sizes_prop)); 535 if (page_sizes_prop_size) { 536 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 537 page_sizes_prop, page_sizes_prop_size))); 538 } 539 540 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 541 542 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 543 cs->cpu_index / vcpus_per_socket))); 544 545 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 546 pft_size_prop, sizeof(pft_size_prop)))); 547 548 if (nb_numa_nodes > 1) { 549 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 550 } 551 552 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 553 554 if (pcc->radix_page_info) { 555 for (i = 0; i < pcc->radix_page_info->count; i++) { 556 radix_AP_encodings[i] = 557 cpu_to_be32(pcc->radix_page_info->entries[i]); 558 } 559 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 560 radix_AP_encodings, 561 pcc->radix_page_info->count * 562 sizeof(radix_AP_encodings[0])))); 563 } 564 565 /* 566 * We set this property to let the guest know that it can use the large 567 * decrementer and its width in bits. 568 */ 569 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 570 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 571 pcc->lrg_decr_bits))); 572 } 573 574 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 575 { 576 CPUState **rev; 577 CPUState *cs; 578 int n_cpus; 579 int cpus_offset; 580 char *nodename; 581 int i; 582 583 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 584 _FDT(cpus_offset); 585 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 586 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 587 588 /* 589 * We walk the CPUs in reverse order to ensure that CPU DT nodes 590 * created by fdt_add_subnode() end up in the right order in FDT 591 * for the guest kernel the enumerate the CPUs correctly. 592 * 593 * The CPU list cannot be traversed in reverse order, so we need 594 * to do extra work. 595 */ 596 n_cpus = 0; 597 rev = NULL; 598 CPU_FOREACH(cs) { 599 rev = g_renew(CPUState *, rev, n_cpus + 1); 600 rev[n_cpus++] = cs; 601 } 602 603 for (i = n_cpus - 1; i >= 0; i--) { 604 CPUState *cs = rev[i]; 605 PowerPCCPU *cpu = POWERPC_CPU(cs); 606 int index = spapr_get_vcpu_id(cpu); 607 DeviceClass *dc = DEVICE_GET_CLASS(cs); 608 int offset; 609 610 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 611 continue; 612 } 613 614 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 615 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 616 g_free(nodename); 617 _FDT(offset); 618 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 619 } 620 621 g_free(rev); 622 } 623 624 static int spapr_rng_populate_dt(void *fdt) 625 { 626 int node; 627 int ret; 628 629 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 630 if (node <= 0) { 631 return -1; 632 } 633 ret = fdt_setprop_string(fdt, node, "device_type", 634 "ibm,platform-facilities"); 635 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 636 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 637 638 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 639 if (node <= 0) { 640 return -1; 641 } 642 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 643 644 return ret ? -1 : 0; 645 } 646 647 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 648 { 649 MemoryDeviceInfoList *info; 650 651 for (info = list; info; info = info->next) { 652 MemoryDeviceInfo *value = info->value; 653 654 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 655 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 656 657 if (addr >= pcdimm_info->addr && 658 addr < (pcdimm_info->addr + pcdimm_info->size)) { 659 return pcdimm_info->node; 660 } 661 } 662 } 663 664 return -1; 665 } 666 667 struct sPAPRDrconfCellV2 { 668 uint32_t seq_lmbs; 669 uint64_t base_addr; 670 uint32_t drc_index; 671 uint32_t aa_index; 672 uint32_t flags; 673 } QEMU_PACKED; 674 675 typedef struct DrconfCellQueue { 676 struct sPAPRDrconfCellV2 cell; 677 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 678 } DrconfCellQueue; 679 680 static DrconfCellQueue * 681 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 682 uint32_t drc_index, uint32_t aa_index, 683 uint32_t flags) 684 { 685 DrconfCellQueue *elem; 686 687 elem = g_malloc0(sizeof(*elem)); 688 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 689 elem->cell.base_addr = cpu_to_be64(base_addr); 690 elem->cell.drc_index = cpu_to_be32(drc_index); 691 elem->cell.aa_index = cpu_to_be32(aa_index); 692 elem->cell.flags = cpu_to_be32(flags); 693 694 return elem; 695 } 696 697 /* ibm,dynamic-memory-v2 */ 698 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 699 int offset, MemoryDeviceInfoList *dimms) 700 { 701 MachineState *machine = MACHINE(spapr); 702 uint8_t *int_buf, *cur_index; 703 int ret; 704 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 705 uint64_t addr, cur_addr, size; 706 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 707 uint64_t mem_end = machine->device_memory->base + 708 memory_region_size(&machine->device_memory->mr); 709 uint32_t node, buf_len, nr_entries = 0; 710 SpaprDrc *drc; 711 DrconfCellQueue *elem, *next; 712 MemoryDeviceInfoList *info; 713 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 714 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 715 716 /* Entry to cover RAM and the gap area */ 717 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 718 SPAPR_LMB_FLAGS_RESERVED | 719 SPAPR_LMB_FLAGS_DRC_INVALID); 720 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 721 nr_entries++; 722 723 cur_addr = machine->device_memory->base; 724 for (info = dimms; info; info = info->next) { 725 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 726 727 addr = di->addr; 728 size = di->size; 729 node = di->node; 730 731 /* Entry for hot-pluggable area */ 732 if (cur_addr < addr) { 733 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 734 g_assert(drc); 735 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 736 cur_addr, spapr_drc_index(drc), -1, 0); 737 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 738 nr_entries++; 739 } 740 741 /* Entry for DIMM */ 742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 743 g_assert(drc); 744 elem = spapr_get_drconf_cell(size / lmb_size, addr, 745 spapr_drc_index(drc), node, 746 SPAPR_LMB_FLAGS_ASSIGNED); 747 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 748 nr_entries++; 749 cur_addr = addr + size; 750 } 751 752 /* Entry for remaining hotpluggable area */ 753 if (cur_addr < mem_end) { 754 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 755 g_assert(drc); 756 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 757 cur_addr, spapr_drc_index(drc), -1, 0); 758 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 759 nr_entries++; 760 } 761 762 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 763 int_buf = cur_index = g_malloc0(buf_len); 764 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 765 cur_index += sizeof(nr_entries); 766 767 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 768 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 769 cur_index += sizeof(elem->cell); 770 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 771 g_free(elem); 772 } 773 774 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 775 g_free(int_buf); 776 if (ret < 0) { 777 return -1; 778 } 779 return 0; 780 } 781 782 /* ibm,dynamic-memory */ 783 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 784 int offset, MemoryDeviceInfoList *dimms) 785 { 786 MachineState *machine = MACHINE(spapr); 787 int i, ret; 788 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 789 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 790 uint32_t nr_lmbs = (machine->device_memory->base + 791 memory_region_size(&machine->device_memory->mr)) / 792 lmb_size; 793 uint32_t *int_buf, *cur_index, buf_len; 794 795 /* 796 * Allocate enough buffer size to fit in ibm,dynamic-memory 797 */ 798 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 799 cur_index = int_buf = g_malloc0(buf_len); 800 int_buf[0] = cpu_to_be32(nr_lmbs); 801 cur_index++; 802 for (i = 0; i < nr_lmbs; i++) { 803 uint64_t addr = i * lmb_size; 804 uint32_t *dynamic_memory = cur_index; 805 806 if (i >= device_lmb_start) { 807 SpaprDrc *drc; 808 809 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 810 g_assert(drc); 811 812 dynamic_memory[0] = cpu_to_be32(addr >> 32); 813 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 814 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 815 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 816 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 817 if (memory_region_present(get_system_memory(), addr)) { 818 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 819 } else { 820 dynamic_memory[5] = cpu_to_be32(0); 821 } 822 } else { 823 /* 824 * LMB information for RMA, boot time RAM and gap b/n RAM and 825 * device memory region -- all these are marked as reserved 826 * and as having no valid DRC. 827 */ 828 dynamic_memory[0] = cpu_to_be32(addr >> 32); 829 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 830 dynamic_memory[2] = cpu_to_be32(0); 831 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 832 dynamic_memory[4] = cpu_to_be32(-1); 833 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 834 SPAPR_LMB_FLAGS_DRC_INVALID); 835 } 836 837 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 838 } 839 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 840 g_free(int_buf); 841 if (ret < 0) { 842 return -1; 843 } 844 return 0; 845 } 846 847 /* 848 * Adds ibm,dynamic-reconfiguration-memory node. 849 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 850 * of this device tree node. 851 */ 852 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 853 { 854 MachineState *machine = MACHINE(spapr); 855 int ret, i, offset; 856 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 857 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 858 uint32_t *int_buf, *cur_index, buf_len; 859 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 860 MemoryDeviceInfoList *dimms = NULL; 861 862 /* 863 * Don't create the node if there is no device memory 864 */ 865 if (machine->ram_size == machine->maxram_size) { 866 return 0; 867 } 868 869 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 870 871 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 872 sizeof(prop_lmb_size)); 873 if (ret < 0) { 874 return ret; 875 } 876 877 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 878 if (ret < 0) { 879 return ret; 880 } 881 882 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 883 if (ret < 0) { 884 return ret; 885 } 886 887 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 888 dimms = qmp_memory_device_list(); 889 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 890 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 891 } else { 892 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 893 } 894 qapi_free_MemoryDeviceInfoList(dimms); 895 896 if (ret < 0) { 897 return ret; 898 } 899 900 /* ibm,associativity-lookup-arrays */ 901 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 902 cur_index = int_buf = g_malloc0(buf_len); 903 int_buf[0] = cpu_to_be32(nr_nodes); 904 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 905 cur_index += 2; 906 for (i = 0; i < nr_nodes; i++) { 907 uint32_t associativity[] = { 908 cpu_to_be32(0x0), 909 cpu_to_be32(0x0), 910 cpu_to_be32(0x0), 911 cpu_to_be32(i) 912 }; 913 memcpy(cur_index, associativity, sizeof(associativity)); 914 cur_index += 4; 915 } 916 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 917 (cur_index - int_buf) * sizeof(uint32_t)); 918 g_free(int_buf); 919 920 return ret; 921 } 922 923 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 924 SpaprOptionVector *ov5_updates) 925 { 926 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 927 int ret = 0, offset; 928 929 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 930 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 931 g_assert(smc->dr_lmb_enabled); 932 ret = spapr_populate_drconf_memory(spapr, fdt); 933 if (ret) { 934 goto out; 935 } 936 } 937 938 offset = fdt_path_offset(fdt, "/chosen"); 939 if (offset < 0) { 940 offset = fdt_add_subnode(fdt, 0, "chosen"); 941 if (offset < 0) { 942 return offset; 943 } 944 } 945 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 946 "ibm,architecture-vec-5"); 947 948 out: 949 return ret; 950 } 951 952 static bool spapr_hotplugged_dev_before_cas(void) 953 { 954 Object *drc_container, *obj; 955 ObjectProperty *prop; 956 ObjectPropertyIterator iter; 957 958 drc_container = container_get(object_get_root(), "/dr-connector"); 959 object_property_iter_init(&iter, drc_container); 960 while ((prop = object_property_iter_next(&iter))) { 961 if (!strstart(prop->type, "link<", NULL)) { 962 continue; 963 } 964 obj = object_property_get_link(drc_container, prop->name, NULL); 965 if (spapr_drc_needed(obj)) { 966 return true; 967 } 968 } 969 return false; 970 } 971 972 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 973 target_ulong addr, target_ulong size, 974 SpaprOptionVector *ov5_updates) 975 { 976 void *fdt, *fdt_skel; 977 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 978 979 if (spapr_hotplugged_dev_before_cas()) { 980 return 1; 981 } 982 983 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 984 error_report("SLOF provided an unexpected CAS buffer size " 985 TARGET_FMT_lu " (min: %zu, max: %u)", 986 size, sizeof(hdr), FW_MAX_SIZE); 987 exit(EXIT_FAILURE); 988 } 989 990 size -= sizeof(hdr); 991 992 /* Create skeleton */ 993 fdt_skel = g_malloc0(size); 994 _FDT((fdt_create(fdt_skel, size))); 995 _FDT((fdt_finish_reservemap(fdt_skel))); 996 _FDT((fdt_begin_node(fdt_skel, ""))); 997 _FDT((fdt_end_node(fdt_skel))); 998 _FDT((fdt_finish(fdt_skel))); 999 fdt = g_malloc0(size); 1000 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1001 g_free(fdt_skel); 1002 1003 /* Fixup cpu nodes */ 1004 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1005 1006 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1007 return -1; 1008 } 1009 1010 /* Pack resulting tree */ 1011 _FDT((fdt_pack(fdt))); 1012 1013 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1014 trace_spapr_cas_failed(size); 1015 return -1; 1016 } 1017 1018 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1019 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1020 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1021 g_free(fdt); 1022 1023 return 0; 1024 } 1025 1026 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1027 { 1028 int rtas; 1029 GString *hypertas = g_string_sized_new(256); 1030 GString *qemu_hypertas = g_string_sized_new(256); 1031 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1032 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1033 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1034 uint32_t lrdr_capacity[] = { 1035 cpu_to_be32(max_device_addr >> 32), 1036 cpu_to_be32(max_device_addr & 0xffffffff), 1037 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1038 cpu_to_be32(max_cpus / smp_threads), 1039 }; 1040 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1041 uint32_t maxdomains[] = { 1042 cpu_to_be32(4), 1043 maxdomain, 1044 maxdomain, 1045 maxdomain, 1046 cpu_to_be32(spapr->gpu_numa_id), 1047 }; 1048 1049 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1050 1051 /* hypertas */ 1052 add_str(hypertas, "hcall-pft"); 1053 add_str(hypertas, "hcall-term"); 1054 add_str(hypertas, "hcall-dabr"); 1055 add_str(hypertas, "hcall-interrupt"); 1056 add_str(hypertas, "hcall-tce"); 1057 add_str(hypertas, "hcall-vio"); 1058 add_str(hypertas, "hcall-splpar"); 1059 add_str(hypertas, "hcall-bulk"); 1060 add_str(hypertas, "hcall-set-mode"); 1061 add_str(hypertas, "hcall-sprg0"); 1062 add_str(hypertas, "hcall-copy"); 1063 add_str(hypertas, "hcall-debug"); 1064 add_str(hypertas, "hcall-vphn"); 1065 add_str(qemu_hypertas, "hcall-memop1"); 1066 1067 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1068 add_str(hypertas, "hcall-multi-tce"); 1069 } 1070 1071 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1072 add_str(hypertas, "hcall-hpt-resize"); 1073 } 1074 1075 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1076 hypertas->str, hypertas->len)); 1077 g_string_free(hypertas, TRUE); 1078 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1079 qemu_hypertas->str, qemu_hypertas->len)); 1080 g_string_free(qemu_hypertas, TRUE); 1081 1082 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1083 refpoints, sizeof(refpoints))); 1084 1085 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1086 maxdomains, sizeof(maxdomains))); 1087 1088 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1089 RTAS_ERROR_LOG_MAX)); 1090 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1091 RTAS_EVENT_SCAN_RATE)); 1092 1093 g_assert(msi_nonbroken); 1094 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1095 1096 /* 1097 * According to PAPR, rtas ibm,os-term does not guarantee a return 1098 * back to the guest cpu. 1099 * 1100 * While an additional ibm,extended-os-term property indicates 1101 * that rtas call return will always occur. Set this property. 1102 */ 1103 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1104 1105 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1106 lrdr_capacity, sizeof(lrdr_capacity))); 1107 1108 spapr_dt_rtas_tokens(fdt, rtas); 1109 } 1110 1111 /* 1112 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1113 * and the XIVE features that the guest may request and thus the valid 1114 * values for bytes 23..26 of option vector 5: 1115 */ 1116 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1117 int chosen) 1118 { 1119 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1120 1121 char val[2 * 4] = { 1122 23, spapr->irq->ov5, /* Xive mode. */ 1123 24, 0x00, /* Hash/Radix, filled in below. */ 1124 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1125 26, 0x40, /* Radix options: GTSE == yes. */ 1126 }; 1127 1128 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1129 first_ppc_cpu->compat_pvr)) { 1130 /* 1131 * If we're in a pre POWER9 compat mode then the guest should 1132 * do hash and use the legacy interrupt mode 1133 */ 1134 val[1] = 0x00; /* XICS */ 1135 val[3] = 0x00; /* Hash */ 1136 } else if (kvm_enabled()) { 1137 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1138 val[3] = 0x80; /* OV5_MMU_BOTH */ 1139 } else if (kvmppc_has_cap_mmu_radix()) { 1140 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1141 } else { 1142 val[3] = 0x00; /* Hash */ 1143 } 1144 } else { 1145 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1146 val[3] = 0xC0; 1147 } 1148 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1149 val, sizeof(val))); 1150 } 1151 1152 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1153 { 1154 MachineState *machine = MACHINE(spapr); 1155 int chosen; 1156 const char *boot_device = machine->boot_order; 1157 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1158 size_t cb = 0; 1159 char *bootlist = get_boot_devices_list(&cb); 1160 1161 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1162 1163 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1164 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1165 spapr->initrd_base)); 1166 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1167 spapr->initrd_base + spapr->initrd_size)); 1168 1169 if (spapr->kernel_size) { 1170 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1171 cpu_to_be64(spapr->kernel_size) }; 1172 1173 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1174 &kprop, sizeof(kprop))); 1175 if (spapr->kernel_le) { 1176 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1177 } 1178 } 1179 if (boot_menu) { 1180 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1181 } 1182 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1183 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1184 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1185 1186 if (cb && bootlist) { 1187 int i; 1188 1189 for (i = 0; i < cb; i++) { 1190 if (bootlist[i] == '\n') { 1191 bootlist[i] = ' '; 1192 } 1193 } 1194 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1195 } 1196 1197 if (boot_device && strlen(boot_device)) { 1198 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1199 } 1200 1201 if (!spapr->has_graphics && stdout_path) { 1202 /* 1203 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1204 * kernel. New platforms should only use the "stdout-path" property. Set 1205 * the new property and continue using older property to remain 1206 * compatible with the existing firmware. 1207 */ 1208 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1209 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1210 } 1211 1212 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1213 1214 g_free(stdout_path); 1215 g_free(bootlist); 1216 } 1217 1218 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1219 { 1220 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1221 * KVM to work under pHyp with some guest co-operation */ 1222 int hypervisor; 1223 uint8_t hypercall[16]; 1224 1225 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1226 /* indicate KVM hypercall interface */ 1227 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1228 if (kvmppc_has_cap_fixup_hcalls()) { 1229 /* 1230 * Older KVM versions with older guest kernels were broken 1231 * with the magic page, don't allow the guest to map it. 1232 */ 1233 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1234 sizeof(hypercall))) { 1235 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1236 hypercall, sizeof(hypercall))); 1237 } 1238 } 1239 } 1240 1241 static void *spapr_build_fdt(SpaprMachineState *spapr) 1242 { 1243 MachineState *machine = MACHINE(spapr); 1244 MachineClass *mc = MACHINE_GET_CLASS(machine); 1245 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1246 int ret; 1247 void *fdt; 1248 SpaprPhbState *phb; 1249 char *buf; 1250 1251 fdt = g_malloc0(FDT_MAX_SIZE); 1252 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1253 1254 /* Root node */ 1255 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1256 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1257 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1258 1259 /* Guest UUID & Name*/ 1260 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1261 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1262 if (qemu_uuid_set) { 1263 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1264 } 1265 g_free(buf); 1266 1267 if (qemu_get_vm_name()) { 1268 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1269 qemu_get_vm_name())); 1270 } 1271 1272 /* Host Model & Serial Number */ 1273 if (spapr->host_model) { 1274 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1275 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1276 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1277 g_free(buf); 1278 } 1279 1280 if (spapr->host_serial) { 1281 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1282 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1283 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1284 g_free(buf); 1285 } 1286 1287 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1288 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1289 1290 /* /interrupt controller */ 1291 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1292 PHANDLE_INTC); 1293 1294 ret = spapr_populate_memory(spapr, fdt); 1295 if (ret < 0) { 1296 error_report("couldn't setup memory nodes in fdt"); 1297 exit(1); 1298 } 1299 1300 /* /vdevice */ 1301 spapr_dt_vdevice(spapr->vio_bus, fdt); 1302 1303 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1304 ret = spapr_rng_populate_dt(fdt); 1305 if (ret < 0) { 1306 error_report("could not set up rng device in the fdt"); 1307 exit(1); 1308 } 1309 } 1310 1311 QLIST_FOREACH(phb, &spapr->phbs, list) { 1312 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt, 1313 spapr->irq->nr_msis, NULL); 1314 if (ret < 0) { 1315 error_report("couldn't setup PCI devices in fdt"); 1316 exit(1); 1317 } 1318 } 1319 1320 /* cpus */ 1321 spapr_populate_cpus_dt_node(fdt, spapr); 1322 1323 if (smc->dr_lmb_enabled) { 1324 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1325 } 1326 1327 if (mc->has_hotpluggable_cpus) { 1328 int offset = fdt_path_offset(fdt, "/cpus"); 1329 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1330 SPAPR_DR_CONNECTOR_TYPE_CPU); 1331 if (ret < 0) { 1332 error_report("Couldn't set up CPU DR device tree properties"); 1333 exit(1); 1334 } 1335 } 1336 1337 /* /event-sources */ 1338 spapr_dt_events(spapr, fdt); 1339 1340 /* /rtas */ 1341 spapr_dt_rtas(spapr, fdt); 1342 1343 /* /chosen */ 1344 spapr_dt_chosen(spapr, fdt); 1345 1346 /* /hypervisor */ 1347 if (kvm_enabled()) { 1348 spapr_dt_hypervisor(spapr, fdt); 1349 } 1350 1351 /* Build memory reserve map */ 1352 if (spapr->kernel_size) { 1353 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1354 } 1355 if (spapr->initrd_size) { 1356 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1357 } 1358 1359 /* ibm,client-architecture-support updates */ 1360 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1361 if (ret < 0) { 1362 error_report("couldn't setup CAS properties fdt"); 1363 exit(1); 1364 } 1365 1366 if (smc->dr_phb_enabled) { 1367 ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1368 if (ret < 0) { 1369 error_report("Couldn't set up PHB DR device tree properties"); 1370 exit(1); 1371 } 1372 } 1373 1374 return fdt; 1375 } 1376 1377 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1378 { 1379 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1380 } 1381 1382 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1383 PowerPCCPU *cpu) 1384 { 1385 CPUPPCState *env = &cpu->env; 1386 1387 /* The TCG path should also be holding the BQL at this point */ 1388 g_assert(qemu_mutex_iothread_locked()); 1389 1390 if (msr_pr) { 1391 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1392 env->gpr[3] = H_PRIVILEGE; 1393 } else { 1394 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1395 } 1396 } 1397 1398 struct LPCRSyncState { 1399 target_ulong value; 1400 target_ulong mask; 1401 }; 1402 1403 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1404 { 1405 struct LPCRSyncState *s = arg.host_ptr; 1406 PowerPCCPU *cpu = POWERPC_CPU(cs); 1407 CPUPPCState *env = &cpu->env; 1408 target_ulong lpcr; 1409 1410 cpu_synchronize_state(cs); 1411 lpcr = env->spr[SPR_LPCR]; 1412 lpcr &= ~s->mask; 1413 lpcr |= s->value; 1414 ppc_store_lpcr(cpu, lpcr); 1415 } 1416 1417 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1418 { 1419 CPUState *cs; 1420 struct LPCRSyncState s = { 1421 .value = value, 1422 .mask = mask 1423 }; 1424 CPU_FOREACH(cs) { 1425 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1426 } 1427 } 1428 1429 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1430 { 1431 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1432 1433 /* Copy PATE1:GR into PATE0:HR */ 1434 entry->dw0 = spapr->patb_entry & PATE0_HR; 1435 entry->dw1 = spapr->patb_entry; 1436 } 1437 1438 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1439 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1440 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1441 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1442 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1443 1444 /* 1445 * Get the fd to access the kernel htab, re-opening it if necessary 1446 */ 1447 static int get_htab_fd(SpaprMachineState *spapr) 1448 { 1449 Error *local_err = NULL; 1450 1451 if (spapr->htab_fd >= 0) { 1452 return spapr->htab_fd; 1453 } 1454 1455 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1456 if (spapr->htab_fd < 0) { 1457 error_report_err(local_err); 1458 } 1459 1460 return spapr->htab_fd; 1461 } 1462 1463 void close_htab_fd(SpaprMachineState *spapr) 1464 { 1465 if (spapr->htab_fd >= 0) { 1466 close(spapr->htab_fd); 1467 } 1468 spapr->htab_fd = -1; 1469 } 1470 1471 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1472 { 1473 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1474 1475 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1476 } 1477 1478 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1479 { 1480 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1481 1482 assert(kvm_enabled()); 1483 1484 if (!spapr->htab) { 1485 return 0; 1486 } 1487 1488 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1489 } 1490 1491 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1492 hwaddr ptex, int n) 1493 { 1494 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1495 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1496 1497 if (!spapr->htab) { 1498 /* 1499 * HTAB is controlled by KVM. Fetch into temporary buffer 1500 */ 1501 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1502 kvmppc_read_hptes(hptes, ptex, n); 1503 return hptes; 1504 } 1505 1506 /* 1507 * HTAB is controlled by QEMU. Just point to the internally 1508 * accessible PTEG. 1509 */ 1510 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1511 } 1512 1513 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1514 const ppc_hash_pte64_t *hptes, 1515 hwaddr ptex, int n) 1516 { 1517 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1518 1519 if (!spapr->htab) { 1520 g_free((void *)hptes); 1521 } 1522 1523 /* Nothing to do for qemu managed HPT */ 1524 } 1525 1526 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1527 uint64_t pte0, uint64_t pte1) 1528 { 1529 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1530 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1531 1532 if (!spapr->htab) { 1533 kvmppc_write_hpte(ptex, pte0, pte1); 1534 } else { 1535 if (pte0 & HPTE64_V_VALID) { 1536 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1537 /* 1538 * When setting valid, we write PTE1 first. This ensures 1539 * proper synchronization with the reading code in 1540 * ppc_hash64_pteg_search() 1541 */ 1542 smp_wmb(); 1543 stq_p(spapr->htab + offset, pte0); 1544 } else { 1545 stq_p(spapr->htab + offset, pte0); 1546 /* 1547 * When clearing it we set PTE0 first. This ensures proper 1548 * synchronization with the reading code in 1549 * ppc_hash64_pteg_search() 1550 */ 1551 smp_wmb(); 1552 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1553 } 1554 } 1555 } 1556 1557 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1558 uint64_t pte1) 1559 { 1560 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1561 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1562 1563 if (!spapr->htab) { 1564 /* There should always be a hash table when this is called */ 1565 error_report("spapr_hpte_set_c called with no hash table !"); 1566 return; 1567 } 1568 1569 /* The HW performs a non-atomic byte update */ 1570 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1571 } 1572 1573 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1574 uint64_t pte1) 1575 { 1576 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1577 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1578 1579 if (!spapr->htab) { 1580 /* There should always be a hash table when this is called */ 1581 error_report("spapr_hpte_set_r called with no hash table !"); 1582 return; 1583 } 1584 1585 /* The HW performs a non-atomic byte update */ 1586 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1587 } 1588 1589 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1590 { 1591 int shift; 1592 1593 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1594 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1595 * that's much more than is needed for Linux guests */ 1596 shift = ctz64(pow2ceil(ramsize)) - 7; 1597 shift = MAX(shift, 18); /* Minimum architected size */ 1598 shift = MIN(shift, 46); /* Maximum architected size */ 1599 return shift; 1600 } 1601 1602 void spapr_free_hpt(SpaprMachineState *spapr) 1603 { 1604 g_free(spapr->htab); 1605 spapr->htab = NULL; 1606 spapr->htab_shift = 0; 1607 close_htab_fd(spapr); 1608 } 1609 1610 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1611 Error **errp) 1612 { 1613 long rc; 1614 1615 /* Clean up any HPT info from a previous boot */ 1616 spapr_free_hpt(spapr); 1617 1618 rc = kvmppc_reset_htab(shift); 1619 if (rc < 0) { 1620 /* kernel-side HPT needed, but couldn't allocate one */ 1621 error_setg_errno(errp, errno, 1622 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1623 shift); 1624 /* This is almost certainly fatal, but if the caller really 1625 * wants to carry on with shift == 0, it's welcome to try */ 1626 } else if (rc > 0) { 1627 /* kernel-side HPT allocated */ 1628 if (rc != shift) { 1629 error_setg(errp, 1630 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1631 shift, rc); 1632 } 1633 1634 spapr->htab_shift = shift; 1635 spapr->htab = NULL; 1636 } else { 1637 /* kernel-side HPT not needed, allocate in userspace instead */ 1638 size_t size = 1ULL << shift; 1639 int i; 1640 1641 spapr->htab = qemu_memalign(size, size); 1642 if (!spapr->htab) { 1643 error_setg_errno(errp, errno, 1644 "Could not allocate HPT of order %d", shift); 1645 return; 1646 } 1647 1648 memset(spapr->htab, 0, size); 1649 spapr->htab_shift = shift; 1650 1651 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1652 DIRTY_HPTE(HPTE(spapr->htab, i)); 1653 } 1654 } 1655 /* We're setting up a hash table, so that means we're not radix */ 1656 spapr->patb_entry = 0; 1657 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1658 } 1659 1660 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1661 { 1662 int hpt_shift; 1663 1664 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1665 || (spapr->cas_reboot 1666 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1667 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1668 } else { 1669 uint64_t current_ram_size; 1670 1671 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1672 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1673 } 1674 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1675 1676 if (spapr->vrma_adjust) { 1677 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1678 spapr->htab_shift); 1679 } 1680 } 1681 1682 static int spapr_reset_drcs(Object *child, void *opaque) 1683 { 1684 SpaprDrc *drc = 1685 (SpaprDrc *) object_dynamic_cast(child, 1686 TYPE_SPAPR_DR_CONNECTOR); 1687 1688 if (drc) { 1689 spapr_drc_reset(drc); 1690 } 1691 1692 return 0; 1693 } 1694 1695 static void spapr_machine_reset(void) 1696 { 1697 MachineState *machine = MACHINE(qdev_get_machine()); 1698 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1699 PowerPCCPU *first_ppc_cpu; 1700 uint32_t rtas_limit; 1701 hwaddr rtas_addr, fdt_addr; 1702 void *fdt; 1703 int rc; 1704 1705 spapr_caps_apply(spapr); 1706 1707 first_ppc_cpu = POWERPC_CPU(first_cpu); 1708 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1709 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1710 spapr->max_compat_pvr)) { 1711 /* 1712 * If using KVM with radix mode available, VCPUs can be started 1713 * without a HPT because KVM will start them in radix mode. 1714 * Set the GR bit in PATE so that we know there is no HPT. 1715 */ 1716 spapr->patb_entry = PATE1_GR; 1717 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1718 } else { 1719 spapr_setup_hpt_and_vrma(spapr); 1720 } 1721 1722 /* 1723 * If this reset wasn't generated by CAS, we should reset our 1724 * negotiated options and start from scratch 1725 */ 1726 if (!spapr->cas_reboot) { 1727 spapr_ovec_cleanup(spapr->ov5_cas); 1728 spapr->ov5_cas = spapr_ovec_new(); 1729 1730 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1731 } 1732 1733 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1734 spapr_irq_msi_reset(spapr); 1735 } 1736 1737 /* 1738 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1739 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1740 * called from vPHB reset handler so we initialize the counter here. 1741 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1742 * must be equally distant from any other node. 1743 * The final value of spapr->gpu_numa_id is going to be written to 1744 * max-associativity-domains in spapr_build_fdt(). 1745 */ 1746 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1747 qemu_devices_reset(); 1748 1749 /* 1750 * This is fixing some of the default configuration of the XIVE 1751 * devices. To be called after the reset of the machine devices. 1752 */ 1753 spapr_irq_reset(spapr, &error_fatal); 1754 1755 /* 1756 * There is no CAS under qtest. Simulate one to please the code that 1757 * depends on spapr->ov5_cas. This is especially needed to test device 1758 * unplug, so we do that before resetting the DRCs. 1759 */ 1760 if (qtest_enabled()) { 1761 spapr_ovec_cleanup(spapr->ov5_cas); 1762 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1763 } 1764 1765 /* DRC reset may cause a device to be unplugged. This will cause troubles 1766 * if this device is used by another device (eg, a running vhost backend 1767 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1768 * situations, we reset DRCs after all devices have been reset. 1769 */ 1770 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1771 1772 spapr_clear_pending_events(spapr); 1773 1774 /* 1775 * We place the device tree and RTAS just below either the top of the RMA, 1776 * or just below 2GB, whichever is lower, so that it can be 1777 * processed with 32-bit real mode code if necessary 1778 */ 1779 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1780 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1781 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1782 1783 fdt = spapr_build_fdt(spapr); 1784 1785 spapr_load_rtas(spapr, fdt, rtas_addr); 1786 1787 rc = fdt_pack(fdt); 1788 1789 /* Should only fail if we've built a corrupted tree */ 1790 assert(rc == 0); 1791 1792 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1793 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1794 fdt_totalsize(fdt), FDT_MAX_SIZE); 1795 exit(1); 1796 } 1797 1798 /* Load the fdt */ 1799 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1800 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1801 g_free(spapr->fdt_blob); 1802 spapr->fdt_size = fdt_totalsize(fdt); 1803 spapr->fdt_initial_size = spapr->fdt_size; 1804 spapr->fdt_blob = fdt; 1805 1806 /* Set up the entry state */ 1807 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1808 first_ppc_cpu->env.gpr[5] = 0; 1809 1810 spapr->cas_reboot = false; 1811 } 1812 1813 static void spapr_create_nvram(SpaprMachineState *spapr) 1814 { 1815 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1816 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1817 1818 if (dinfo) { 1819 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1820 &error_fatal); 1821 } 1822 1823 qdev_init_nofail(dev); 1824 1825 spapr->nvram = (struct SpaprNvram *)dev; 1826 } 1827 1828 static void spapr_rtc_create(SpaprMachineState *spapr) 1829 { 1830 object_initialize_child(OBJECT(spapr), "rtc", 1831 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1832 &error_fatal, NULL); 1833 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1834 &error_fatal); 1835 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1836 "date", &error_fatal); 1837 } 1838 1839 /* Returns whether we want to use VGA or not */ 1840 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1841 { 1842 switch (vga_interface_type) { 1843 case VGA_NONE: 1844 return false; 1845 case VGA_DEVICE: 1846 return true; 1847 case VGA_STD: 1848 case VGA_VIRTIO: 1849 case VGA_CIRRUS: 1850 return pci_vga_init(pci_bus) != NULL; 1851 default: 1852 error_setg(errp, 1853 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1854 return false; 1855 } 1856 } 1857 1858 static int spapr_pre_load(void *opaque) 1859 { 1860 int rc; 1861 1862 rc = spapr_caps_pre_load(opaque); 1863 if (rc) { 1864 return rc; 1865 } 1866 1867 return 0; 1868 } 1869 1870 static int spapr_post_load(void *opaque, int version_id) 1871 { 1872 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1873 int err = 0; 1874 1875 err = spapr_caps_post_migration(spapr); 1876 if (err) { 1877 return err; 1878 } 1879 1880 /* 1881 * In earlier versions, there was no separate qdev for the PAPR 1882 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1883 * So when migrating from those versions, poke the incoming offset 1884 * value into the RTC device 1885 */ 1886 if (version_id < 3) { 1887 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1888 if (err) { 1889 return err; 1890 } 1891 } 1892 1893 if (kvm_enabled() && spapr->patb_entry) { 1894 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1895 bool radix = !!(spapr->patb_entry & PATE1_GR); 1896 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1897 1898 /* 1899 * Update LPCR:HR and UPRT as they may not be set properly in 1900 * the stream 1901 */ 1902 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1903 LPCR_HR | LPCR_UPRT); 1904 1905 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1906 if (err) { 1907 error_report("Process table config unsupported by the host"); 1908 return -EINVAL; 1909 } 1910 } 1911 1912 err = spapr_irq_post_load(spapr, version_id); 1913 if (err) { 1914 return err; 1915 } 1916 1917 return err; 1918 } 1919 1920 static int spapr_pre_save(void *opaque) 1921 { 1922 int rc; 1923 1924 rc = spapr_caps_pre_save(opaque); 1925 if (rc) { 1926 return rc; 1927 } 1928 1929 return 0; 1930 } 1931 1932 static bool version_before_3(void *opaque, int version_id) 1933 { 1934 return version_id < 3; 1935 } 1936 1937 static bool spapr_pending_events_needed(void *opaque) 1938 { 1939 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1940 return !QTAILQ_EMPTY(&spapr->pending_events); 1941 } 1942 1943 static const VMStateDescription vmstate_spapr_event_entry = { 1944 .name = "spapr_event_log_entry", 1945 .version_id = 1, 1946 .minimum_version_id = 1, 1947 .fields = (VMStateField[]) { 1948 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1949 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1950 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1951 NULL, extended_length), 1952 VMSTATE_END_OF_LIST() 1953 }, 1954 }; 1955 1956 static const VMStateDescription vmstate_spapr_pending_events = { 1957 .name = "spapr_pending_events", 1958 .version_id = 1, 1959 .minimum_version_id = 1, 1960 .needed = spapr_pending_events_needed, 1961 .fields = (VMStateField[]) { 1962 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1963 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1964 VMSTATE_END_OF_LIST() 1965 }, 1966 }; 1967 1968 static bool spapr_ov5_cas_needed(void *opaque) 1969 { 1970 SpaprMachineState *spapr = opaque; 1971 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1972 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1973 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1974 bool cas_needed; 1975 1976 /* Prior to the introduction of SpaprOptionVector, we had two option 1977 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1978 * Both of these options encode machine topology into the device-tree 1979 * in such a way that the now-booted OS should still be able to interact 1980 * appropriately with QEMU regardless of what options were actually 1981 * negotiatied on the source side. 1982 * 1983 * As such, we can avoid migrating the CAS-negotiated options if these 1984 * are the only options available on the current machine/platform. 1985 * Since these are the only options available for pseries-2.7 and 1986 * earlier, this allows us to maintain old->new/new->old migration 1987 * compatibility. 1988 * 1989 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1990 * via default pseries-2.8 machines and explicit command-line parameters. 1991 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1992 * of the actual CAS-negotiated values to continue working properly. For 1993 * example, availability of memory unplug depends on knowing whether 1994 * OV5_HP_EVT was negotiated via CAS. 1995 * 1996 * Thus, for any cases where the set of available CAS-negotiatable 1997 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1998 * include the CAS-negotiated options in the migration stream, unless 1999 * if they affect boot time behaviour only. 2000 */ 2001 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2002 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2003 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2004 2005 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2006 * the mask itself since in the future it's possible "legacy" bits may be 2007 * removed via machine options, which could generate a false positive 2008 * that breaks migration. 2009 */ 2010 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2011 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2012 2013 spapr_ovec_cleanup(ov5_mask); 2014 spapr_ovec_cleanup(ov5_legacy); 2015 spapr_ovec_cleanup(ov5_removed); 2016 2017 return cas_needed; 2018 } 2019 2020 static const VMStateDescription vmstate_spapr_ov5_cas = { 2021 .name = "spapr_option_vector_ov5_cas", 2022 .version_id = 1, 2023 .minimum_version_id = 1, 2024 .needed = spapr_ov5_cas_needed, 2025 .fields = (VMStateField[]) { 2026 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2027 vmstate_spapr_ovec, SpaprOptionVector), 2028 VMSTATE_END_OF_LIST() 2029 }, 2030 }; 2031 2032 static bool spapr_patb_entry_needed(void *opaque) 2033 { 2034 SpaprMachineState *spapr = opaque; 2035 2036 return !!spapr->patb_entry; 2037 } 2038 2039 static const VMStateDescription vmstate_spapr_patb_entry = { 2040 .name = "spapr_patb_entry", 2041 .version_id = 1, 2042 .minimum_version_id = 1, 2043 .needed = spapr_patb_entry_needed, 2044 .fields = (VMStateField[]) { 2045 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2046 VMSTATE_END_OF_LIST() 2047 }, 2048 }; 2049 2050 static bool spapr_irq_map_needed(void *opaque) 2051 { 2052 SpaprMachineState *spapr = opaque; 2053 2054 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2055 } 2056 2057 static const VMStateDescription vmstate_spapr_irq_map = { 2058 .name = "spapr_irq_map", 2059 .version_id = 1, 2060 .minimum_version_id = 1, 2061 .needed = spapr_irq_map_needed, 2062 .fields = (VMStateField[]) { 2063 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2064 VMSTATE_END_OF_LIST() 2065 }, 2066 }; 2067 2068 static bool spapr_dtb_needed(void *opaque) 2069 { 2070 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2071 2072 return smc->update_dt_enabled; 2073 } 2074 2075 static int spapr_dtb_pre_load(void *opaque) 2076 { 2077 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2078 2079 g_free(spapr->fdt_blob); 2080 spapr->fdt_blob = NULL; 2081 spapr->fdt_size = 0; 2082 2083 return 0; 2084 } 2085 2086 static const VMStateDescription vmstate_spapr_dtb = { 2087 .name = "spapr_dtb", 2088 .version_id = 1, 2089 .minimum_version_id = 1, 2090 .needed = spapr_dtb_needed, 2091 .pre_load = spapr_dtb_pre_load, 2092 .fields = (VMStateField[]) { 2093 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2094 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2095 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2096 fdt_size), 2097 VMSTATE_END_OF_LIST() 2098 }, 2099 }; 2100 2101 static const VMStateDescription vmstate_spapr = { 2102 .name = "spapr", 2103 .version_id = 3, 2104 .minimum_version_id = 1, 2105 .pre_load = spapr_pre_load, 2106 .post_load = spapr_post_load, 2107 .pre_save = spapr_pre_save, 2108 .fields = (VMStateField[]) { 2109 /* used to be @next_irq */ 2110 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2111 2112 /* RTC offset */ 2113 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2114 2115 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2116 VMSTATE_END_OF_LIST() 2117 }, 2118 .subsections = (const VMStateDescription*[]) { 2119 &vmstate_spapr_ov5_cas, 2120 &vmstate_spapr_patb_entry, 2121 &vmstate_spapr_pending_events, 2122 &vmstate_spapr_cap_htm, 2123 &vmstate_spapr_cap_vsx, 2124 &vmstate_spapr_cap_dfp, 2125 &vmstate_spapr_cap_cfpc, 2126 &vmstate_spapr_cap_sbbc, 2127 &vmstate_spapr_cap_ibs, 2128 &vmstate_spapr_cap_hpt_maxpagesize, 2129 &vmstate_spapr_irq_map, 2130 &vmstate_spapr_cap_nested_kvm_hv, 2131 &vmstate_spapr_dtb, 2132 &vmstate_spapr_cap_large_decr, 2133 &vmstate_spapr_cap_ccf_assist, 2134 NULL 2135 } 2136 }; 2137 2138 static int htab_save_setup(QEMUFile *f, void *opaque) 2139 { 2140 SpaprMachineState *spapr = opaque; 2141 2142 /* "Iteration" header */ 2143 if (!spapr->htab_shift) { 2144 qemu_put_be32(f, -1); 2145 } else { 2146 qemu_put_be32(f, spapr->htab_shift); 2147 } 2148 2149 if (spapr->htab) { 2150 spapr->htab_save_index = 0; 2151 spapr->htab_first_pass = true; 2152 } else { 2153 if (spapr->htab_shift) { 2154 assert(kvm_enabled()); 2155 } 2156 } 2157 2158 2159 return 0; 2160 } 2161 2162 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2163 int chunkstart, int n_valid, int n_invalid) 2164 { 2165 qemu_put_be32(f, chunkstart); 2166 qemu_put_be16(f, n_valid); 2167 qemu_put_be16(f, n_invalid); 2168 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2169 HASH_PTE_SIZE_64 * n_valid); 2170 } 2171 2172 static void htab_save_end_marker(QEMUFile *f) 2173 { 2174 qemu_put_be32(f, 0); 2175 qemu_put_be16(f, 0); 2176 qemu_put_be16(f, 0); 2177 } 2178 2179 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2180 int64_t max_ns) 2181 { 2182 bool has_timeout = max_ns != -1; 2183 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2184 int index = spapr->htab_save_index; 2185 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2186 2187 assert(spapr->htab_first_pass); 2188 2189 do { 2190 int chunkstart; 2191 2192 /* Consume invalid HPTEs */ 2193 while ((index < htabslots) 2194 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2195 CLEAN_HPTE(HPTE(spapr->htab, index)); 2196 index++; 2197 } 2198 2199 /* Consume valid HPTEs */ 2200 chunkstart = index; 2201 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2202 && HPTE_VALID(HPTE(spapr->htab, index))) { 2203 CLEAN_HPTE(HPTE(spapr->htab, index)); 2204 index++; 2205 } 2206 2207 if (index > chunkstart) { 2208 int n_valid = index - chunkstart; 2209 2210 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2211 2212 if (has_timeout && 2213 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2214 break; 2215 } 2216 } 2217 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2218 2219 if (index >= htabslots) { 2220 assert(index == htabslots); 2221 index = 0; 2222 spapr->htab_first_pass = false; 2223 } 2224 spapr->htab_save_index = index; 2225 } 2226 2227 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2228 int64_t max_ns) 2229 { 2230 bool final = max_ns < 0; 2231 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2232 int examined = 0, sent = 0; 2233 int index = spapr->htab_save_index; 2234 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2235 2236 assert(!spapr->htab_first_pass); 2237 2238 do { 2239 int chunkstart, invalidstart; 2240 2241 /* Consume non-dirty HPTEs */ 2242 while ((index < htabslots) 2243 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2244 index++; 2245 examined++; 2246 } 2247 2248 chunkstart = index; 2249 /* Consume valid dirty HPTEs */ 2250 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2251 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2252 && HPTE_VALID(HPTE(spapr->htab, index))) { 2253 CLEAN_HPTE(HPTE(spapr->htab, index)); 2254 index++; 2255 examined++; 2256 } 2257 2258 invalidstart = index; 2259 /* Consume invalid dirty HPTEs */ 2260 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2261 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2262 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2263 CLEAN_HPTE(HPTE(spapr->htab, index)); 2264 index++; 2265 examined++; 2266 } 2267 2268 if (index > chunkstart) { 2269 int n_valid = invalidstart - chunkstart; 2270 int n_invalid = index - invalidstart; 2271 2272 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2273 sent += index - chunkstart; 2274 2275 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2276 break; 2277 } 2278 } 2279 2280 if (examined >= htabslots) { 2281 break; 2282 } 2283 2284 if (index >= htabslots) { 2285 assert(index == htabslots); 2286 index = 0; 2287 } 2288 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2289 2290 if (index >= htabslots) { 2291 assert(index == htabslots); 2292 index = 0; 2293 } 2294 2295 spapr->htab_save_index = index; 2296 2297 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2298 } 2299 2300 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2301 #define MAX_KVM_BUF_SIZE 2048 2302 2303 static int htab_save_iterate(QEMUFile *f, void *opaque) 2304 { 2305 SpaprMachineState *spapr = opaque; 2306 int fd; 2307 int rc = 0; 2308 2309 /* Iteration header */ 2310 if (!spapr->htab_shift) { 2311 qemu_put_be32(f, -1); 2312 return 1; 2313 } else { 2314 qemu_put_be32(f, 0); 2315 } 2316 2317 if (!spapr->htab) { 2318 assert(kvm_enabled()); 2319 2320 fd = get_htab_fd(spapr); 2321 if (fd < 0) { 2322 return fd; 2323 } 2324 2325 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2326 if (rc < 0) { 2327 return rc; 2328 } 2329 } else if (spapr->htab_first_pass) { 2330 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2331 } else { 2332 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2333 } 2334 2335 htab_save_end_marker(f); 2336 2337 return rc; 2338 } 2339 2340 static int htab_save_complete(QEMUFile *f, void *opaque) 2341 { 2342 SpaprMachineState *spapr = opaque; 2343 int fd; 2344 2345 /* Iteration header */ 2346 if (!spapr->htab_shift) { 2347 qemu_put_be32(f, -1); 2348 return 0; 2349 } else { 2350 qemu_put_be32(f, 0); 2351 } 2352 2353 if (!spapr->htab) { 2354 int rc; 2355 2356 assert(kvm_enabled()); 2357 2358 fd = get_htab_fd(spapr); 2359 if (fd < 0) { 2360 return fd; 2361 } 2362 2363 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2364 if (rc < 0) { 2365 return rc; 2366 } 2367 } else { 2368 if (spapr->htab_first_pass) { 2369 htab_save_first_pass(f, spapr, -1); 2370 } 2371 htab_save_later_pass(f, spapr, -1); 2372 } 2373 2374 /* End marker */ 2375 htab_save_end_marker(f); 2376 2377 return 0; 2378 } 2379 2380 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2381 { 2382 SpaprMachineState *spapr = opaque; 2383 uint32_t section_hdr; 2384 int fd = -1; 2385 Error *local_err = NULL; 2386 2387 if (version_id < 1 || version_id > 1) { 2388 error_report("htab_load() bad version"); 2389 return -EINVAL; 2390 } 2391 2392 section_hdr = qemu_get_be32(f); 2393 2394 if (section_hdr == -1) { 2395 spapr_free_hpt(spapr); 2396 return 0; 2397 } 2398 2399 if (section_hdr) { 2400 /* First section gives the htab size */ 2401 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2402 if (local_err) { 2403 error_report_err(local_err); 2404 return -EINVAL; 2405 } 2406 return 0; 2407 } 2408 2409 if (!spapr->htab) { 2410 assert(kvm_enabled()); 2411 2412 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2413 if (fd < 0) { 2414 error_report_err(local_err); 2415 return fd; 2416 } 2417 } 2418 2419 while (true) { 2420 uint32_t index; 2421 uint16_t n_valid, n_invalid; 2422 2423 index = qemu_get_be32(f); 2424 n_valid = qemu_get_be16(f); 2425 n_invalid = qemu_get_be16(f); 2426 2427 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2428 /* End of Stream */ 2429 break; 2430 } 2431 2432 if ((index + n_valid + n_invalid) > 2433 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2434 /* Bad index in stream */ 2435 error_report( 2436 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2437 index, n_valid, n_invalid, spapr->htab_shift); 2438 return -EINVAL; 2439 } 2440 2441 if (spapr->htab) { 2442 if (n_valid) { 2443 qemu_get_buffer(f, HPTE(spapr->htab, index), 2444 HASH_PTE_SIZE_64 * n_valid); 2445 } 2446 if (n_invalid) { 2447 memset(HPTE(spapr->htab, index + n_valid), 0, 2448 HASH_PTE_SIZE_64 * n_invalid); 2449 } 2450 } else { 2451 int rc; 2452 2453 assert(fd >= 0); 2454 2455 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2456 if (rc < 0) { 2457 return rc; 2458 } 2459 } 2460 } 2461 2462 if (!spapr->htab) { 2463 assert(fd >= 0); 2464 close(fd); 2465 } 2466 2467 return 0; 2468 } 2469 2470 static void htab_save_cleanup(void *opaque) 2471 { 2472 SpaprMachineState *spapr = opaque; 2473 2474 close_htab_fd(spapr); 2475 } 2476 2477 static SaveVMHandlers savevm_htab_handlers = { 2478 .save_setup = htab_save_setup, 2479 .save_live_iterate = htab_save_iterate, 2480 .save_live_complete_precopy = htab_save_complete, 2481 .save_cleanup = htab_save_cleanup, 2482 .load_state = htab_load, 2483 }; 2484 2485 static void spapr_boot_set(void *opaque, const char *boot_device, 2486 Error **errp) 2487 { 2488 MachineState *machine = MACHINE(opaque); 2489 machine->boot_order = g_strdup(boot_device); 2490 } 2491 2492 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2493 { 2494 MachineState *machine = MACHINE(spapr); 2495 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2496 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2497 int i; 2498 2499 for (i = 0; i < nr_lmbs; i++) { 2500 uint64_t addr; 2501 2502 addr = i * lmb_size + machine->device_memory->base; 2503 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2504 addr / lmb_size); 2505 } 2506 } 2507 2508 /* 2509 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2510 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2511 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2512 */ 2513 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2514 { 2515 int i; 2516 2517 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2518 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2519 " is not aligned to %" PRIu64 " MiB", 2520 machine->ram_size, 2521 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2522 return; 2523 } 2524 2525 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2526 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2527 " is not aligned to %" PRIu64 " MiB", 2528 machine->ram_size, 2529 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2530 return; 2531 } 2532 2533 for (i = 0; i < nb_numa_nodes; i++) { 2534 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2535 error_setg(errp, 2536 "Node %d memory size 0x%" PRIx64 2537 " is not aligned to %" PRIu64 " MiB", 2538 i, numa_info[i].node_mem, 2539 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2540 return; 2541 } 2542 } 2543 } 2544 2545 /* find cpu slot in machine->possible_cpus by core_id */ 2546 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2547 { 2548 int index = id / smp_threads; 2549 2550 if (index >= ms->possible_cpus->len) { 2551 return NULL; 2552 } 2553 if (idx) { 2554 *idx = index; 2555 } 2556 return &ms->possible_cpus->cpus[index]; 2557 } 2558 2559 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2560 { 2561 Error *local_err = NULL; 2562 bool vsmt_user = !!spapr->vsmt; 2563 int kvm_smt = kvmppc_smt_threads(); 2564 int ret; 2565 2566 if (!kvm_enabled() && (smp_threads > 1)) { 2567 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2568 "on a pseries machine"); 2569 goto out; 2570 } 2571 if (!is_power_of_2(smp_threads)) { 2572 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2573 "machine because it must be a power of 2", smp_threads); 2574 goto out; 2575 } 2576 2577 /* Detemine the VSMT mode to use: */ 2578 if (vsmt_user) { 2579 if (spapr->vsmt < smp_threads) { 2580 error_setg(&local_err, "Cannot support VSMT mode %d" 2581 " because it must be >= threads/core (%d)", 2582 spapr->vsmt, smp_threads); 2583 goto out; 2584 } 2585 /* In this case, spapr->vsmt has been set by the command line */ 2586 } else { 2587 /* 2588 * Default VSMT value is tricky, because we need it to be as 2589 * consistent as possible (for migration), but this requires 2590 * changing it for at least some existing cases. We pick 8 as 2591 * the value that we'd get with KVM on POWER8, the 2592 * overwhelmingly common case in production systems. 2593 */ 2594 spapr->vsmt = MAX(8, smp_threads); 2595 } 2596 2597 /* KVM: If necessary, set the SMT mode: */ 2598 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2599 ret = kvmppc_set_smt_threads(spapr->vsmt); 2600 if (ret) { 2601 /* Looks like KVM isn't able to change VSMT mode */ 2602 error_setg(&local_err, 2603 "Failed to set KVM's VSMT mode to %d (errno %d)", 2604 spapr->vsmt, ret); 2605 /* We can live with that if the default one is big enough 2606 * for the number of threads, and a submultiple of the one 2607 * we want. In this case we'll waste some vcpu ids, but 2608 * behaviour will be correct */ 2609 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2610 warn_report_err(local_err); 2611 local_err = NULL; 2612 goto out; 2613 } else { 2614 if (!vsmt_user) { 2615 error_append_hint(&local_err, 2616 "On PPC, a VM with %d threads/core" 2617 " on a host with %d threads/core" 2618 " requires the use of VSMT mode %d.\n", 2619 smp_threads, kvm_smt, spapr->vsmt); 2620 } 2621 kvmppc_hint_smt_possible(&local_err); 2622 goto out; 2623 } 2624 } 2625 } 2626 /* else TCG: nothing to do currently */ 2627 out: 2628 error_propagate(errp, local_err); 2629 } 2630 2631 static void spapr_init_cpus(SpaprMachineState *spapr) 2632 { 2633 MachineState *machine = MACHINE(spapr); 2634 MachineClass *mc = MACHINE_GET_CLASS(machine); 2635 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2636 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2637 const CPUArchIdList *possible_cpus; 2638 int boot_cores_nr = smp_cpus / smp_threads; 2639 int i; 2640 2641 possible_cpus = mc->possible_cpu_arch_ids(machine); 2642 if (mc->has_hotpluggable_cpus) { 2643 if (smp_cpus % smp_threads) { 2644 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2645 smp_cpus, smp_threads); 2646 exit(1); 2647 } 2648 if (max_cpus % smp_threads) { 2649 error_report("max_cpus (%u) must be multiple of threads (%u)", 2650 max_cpus, smp_threads); 2651 exit(1); 2652 } 2653 } else { 2654 if (max_cpus != smp_cpus) { 2655 error_report("This machine version does not support CPU hotplug"); 2656 exit(1); 2657 } 2658 boot_cores_nr = possible_cpus->len; 2659 } 2660 2661 if (smc->pre_2_10_has_unused_icps) { 2662 int i; 2663 2664 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2665 /* Dummy entries get deregistered when real ICPState objects 2666 * are registered during CPU core hotplug. 2667 */ 2668 pre_2_10_vmstate_register_dummy_icp(i); 2669 } 2670 } 2671 2672 for (i = 0; i < possible_cpus->len; i++) { 2673 int core_id = i * smp_threads; 2674 2675 if (mc->has_hotpluggable_cpus) { 2676 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2677 spapr_vcpu_id(spapr, core_id)); 2678 } 2679 2680 if (i < boot_cores_nr) { 2681 Object *core = object_new(type); 2682 int nr_threads = smp_threads; 2683 2684 /* Handle the partially filled core for older machine types */ 2685 if ((i + 1) * smp_threads >= smp_cpus) { 2686 nr_threads = smp_cpus - i * smp_threads; 2687 } 2688 2689 object_property_set_int(core, nr_threads, "nr-threads", 2690 &error_fatal); 2691 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2692 &error_fatal); 2693 object_property_set_bool(core, true, "realized", &error_fatal); 2694 2695 object_unref(core); 2696 } 2697 } 2698 } 2699 2700 static PCIHostState *spapr_create_default_phb(void) 2701 { 2702 DeviceState *dev; 2703 2704 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2705 qdev_prop_set_uint32(dev, "index", 0); 2706 qdev_init_nofail(dev); 2707 2708 return PCI_HOST_BRIDGE(dev); 2709 } 2710 2711 /* pSeries LPAR / sPAPR hardware init */ 2712 static void spapr_machine_init(MachineState *machine) 2713 { 2714 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2715 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2716 const char *kernel_filename = machine->kernel_filename; 2717 const char *initrd_filename = machine->initrd_filename; 2718 PCIHostState *phb; 2719 int i; 2720 MemoryRegion *sysmem = get_system_memory(); 2721 MemoryRegion *ram = g_new(MemoryRegion, 1); 2722 hwaddr node0_size = spapr_node0_size(machine); 2723 long load_limit, fw_size; 2724 char *filename; 2725 Error *resize_hpt_err = NULL; 2726 2727 msi_nonbroken = true; 2728 2729 QLIST_INIT(&spapr->phbs); 2730 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2731 2732 /* Determine capabilities to run with */ 2733 spapr_caps_init(spapr); 2734 2735 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2736 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2737 /* 2738 * If the user explicitly requested a mode we should either 2739 * supply it, or fail completely (which we do below). But if 2740 * it's not set explicitly, we reset our mode to something 2741 * that works 2742 */ 2743 if (resize_hpt_err) { 2744 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2745 error_free(resize_hpt_err); 2746 resize_hpt_err = NULL; 2747 } else { 2748 spapr->resize_hpt = smc->resize_hpt_default; 2749 } 2750 } 2751 2752 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2753 2754 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2755 /* 2756 * User requested HPT resize, but this host can't supply it. Bail out 2757 */ 2758 error_report_err(resize_hpt_err); 2759 exit(1); 2760 } 2761 2762 spapr->rma_size = node0_size; 2763 2764 /* With KVM, we don't actually know whether KVM supports an 2765 * unbounded RMA (PR KVM) or is limited by the hash table size 2766 * (HV KVM using VRMA), so we always assume the latter 2767 * 2768 * In that case, we also limit the initial allocations for RTAS 2769 * etc... to 256M since we have no way to know what the VRMA size 2770 * is going to be as it depends on the size of the hash table 2771 * which isn't determined yet. 2772 */ 2773 if (kvm_enabled()) { 2774 spapr->vrma_adjust = 1; 2775 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2776 } 2777 2778 /* Actually we don't support unbounded RMA anymore since we added 2779 * proper emulation of HV mode. The max we can get is 16G which 2780 * also happens to be what we configure for PAPR mode so make sure 2781 * we don't do anything bigger than that 2782 */ 2783 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2784 2785 if (spapr->rma_size > node0_size) { 2786 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2787 spapr->rma_size); 2788 exit(1); 2789 } 2790 2791 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2792 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2793 2794 /* 2795 * VSMT must be set in order to be able to compute VCPU ids, ie to 2796 * call spapr_max_server_number() or spapr_vcpu_id(). 2797 */ 2798 spapr_set_vsmt_mode(spapr, &error_fatal); 2799 2800 /* Set up Interrupt Controller before we create the VCPUs */ 2801 spapr_irq_init(spapr, &error_fatal); 2802 2803 /* Set up containers for ibm,client-architecture-support negotiated options 2804 */ 2805 spapr->ov5 = spapr_ovec_new(); 2806 spapr->ov5_cas = spapr_ovec_new(); 2807 2808 if (smc->dr_lmb_enabled) { 2809 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2810 spapr_validate_node_memory(machine, &error_fatal); 2811 } 2812 2813 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2814 2815 /* advertise support for dedicated HP event source to guests */ 2816 if (spapr->use_hotplug_event_source) { 2817 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2818 } 2819 2820 /* advertise support for HPT resizing */ 2821 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2822 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2823 } 2824 2825 /* advertise support for ibm,dyamic-memory-v2 */ 2826 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2827 2828 /* advertise XIVE on POWER9 machines */ 2829 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2830 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2831 } 2832 2833 /* init CPUs */ 2834 spapr_init_cpus(spapr); 2835 2836 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2837 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2838 spapr->max_compat_pvr)) { 2839 /* KVM and TCG always allow GTSE with radix... */ 2840 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2841 } 2842 /* ... but not with hash (currently). */ 2843 2844 if (kvm_enabled()) { 2845 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2846 kvmppc_enable_logical_ci_hcalls(); 2847 kvmppc_enable_set_mode_hcall(); 2848 2849 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2850 kvmppc_enable_clear_ref_mod_hcalls(); 2851 2852 /* Enable H_PAGE_INIT */ 2853 kvmppc_enable_h_page_init(); 2854 } 2855 2856 /* allocate RAM */ 2857 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2858 machine->ram_size); 2859 memory_region_add_subregion(sysmem, 0, ram); 2860 2861 /* always allocate the device memory information */ 2862 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2863 2864 /* initialize hotplug memory address space */ 2865 if (machine->ram_size < machine->maxram_size) { 2866 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2867 /* 2868 * Limit the number of hotpluggable memory slots to half the number 2869 * slots that KVM supports, leaving the other half for PCI and other 2870 * devices. However ensure that number of slots doesn't drop below 32. 2871 */ 2872 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2873 SPAPR_MAX_RAM_SLOTS; 2874 2875 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2876 max_memslots = SPAPR_MAX_RAM_SLOTS; 2877 } 2878 if (machine->ram_slots > max_memslots) { 2879 error_report("Specified number of memory slots %" 2880 PRIu64" exceeds max supported %d", 2881 machine->ram_slots, max_memslots); 2882 exit(1); 2883 } 2884 2885 machine->device_memory->base = ROUND_UP(machine->ram_size, 2886 SPAPR_DEVICE_MEM_ALIGN); 2887 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2888 "device-memory", device_mem_size); 2889 memory_region_add_subregion(sysmem, machine->device_memory->base, 2890 &machine->device_memory->mr); 2891 } 2892 2893 if (smc->dr_lmb_enabled) { 2894 spapr_create_lmb_dr_connectors(spapr); 2895 } 2896 2897 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2898 if (!filename) { 2899 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2900 exit(1); 2901 } 2902 spapr->rtas_size = get_image_size(filename); 2903 if (spapr->rtas_size < 0) { 2904 error_report("Could not get size of LPAR rtas '%s'", filename); 2905 exit(1); 2906 } 2907 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2908 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2909 error_report("Could not load LPAR rtas '%s'", filename); 2910 exit(1); 2911 } 2912 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2913 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2914 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2915 exit(1); 2916 } 2917 g_free(filename); 2918 2919 /* Set up RTAS event infrastructure */ 2920 spapr_events_init(spapr); 2921 2922 /* Set up the RTC RTAS interfaces */ 2923 spapr_rtc_create(spapr); 2924 2925 /* Set up VIO bus */ 2926 spapr->vio_bus = spapr_vio_bus_init(); 2927 2928 for (i = 0; i < serial_max_hds(); i++) { 2929 if (serial_hd(i)) { 2930 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2931 } 2932 } 2933 2934 /* We always have at least the nvram device on VIO */ 2935 spapr_create_nvram(spapr); 2936 2937 /* 2938 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2939 * connectors (described in root DT node's "ibm,drc-types" property) 2940 * are pre-initialized here. additional child connectors (such as 2941 * connectors for a PHBs PCI slots) are added as needed during their 2942 * parent's realization. 2943 */ 2944 if (smc->dr_phb_enabled) { 2945 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2946 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2947 } 2948 } 2949 2950 /* Set up PCI */ 2951 spapr_pci_rtas_init(); 2952 2953 phb = spapr_create_default_phb(); 2954 2955 for (i = 0; i < nb_nics; i++) { 2956 NICInfo *nd = &nd_table[i]; 2957 2958 if (!nd->model) { 2959 nd->model = g_strdup("spapr-vlan"); 2960 } 2961 2962 if (g_str_equal(nd->model, "spapr-vlan") || 2963 g_str_equal(nd->model, "ibmveth")) { 2964 spapr_vlan_create(spapr->vio_bus, nd); 2965 } else { 2966 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2967 } 2968 } 2969 2970 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2971 spapr_vscsi_create(spapr->vio_bus); 2972 } 2973 2974 /* Graphics */ 2975 if (spapr_vga_init(phb->bus, &error_fatal)) { 2976 spapr->has_graphics = true; 2977 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2978 } 2979 2980 if (machine->usb) { 2981 if (smc->use_ohci_by_default) { 2982 pci_create_simple(phb->bus, -1, "pci-ohci"); 2983 } else { 2984 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2985 } 2986 2987 if (spapr->has_graphics) { 2988 USBBus *usb_bus = usb_bus_find(-1); 2989 2990 usb_create_simple(usb_bus, "usb-kbd"); 2991 usb_create_simple(usb_bus, "usb-mouse"); 2992 } 2993 } 2994 2995 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2996 error_report( 2997 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2998 MIN_RMA_SLOF); 2999 exit(1); 3000 } 3001 3002 if (kernel_filename) { 3003 uint64_t lowaddr = 0; 3004 3005 spapr->kernel_size = load_elf(kernel_filename, NULL, 3006 translate_kernel_address, NULL, 3007 NULL, &lowaddr, NULL, 1, 3008 PPC_ELF_MACHINE, 0, 0); 3009 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3010 spapr->kernel_size = load_elf(kernel_filename, NULL, 3011 translate_kernel_address, NULL, NULL, 3012 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3013 0, 0); 3014 spapr->kernel_le = spapr->kernel_size > 0; 3015 } 3016 if (spapr->kernel_size < 0) { 3017 error_report("error loading %s: %s", kernel_filename, 3018 load_elf_strerror(spapr->kernel_size)); 3019 exit(1); 3020 } 3021 3022 /* load initrd */ 3023 if (initrd_filename) { 3024 /* Try to locate the initrd in the gap between the kernel 3025 * and the firmware. Add a bit of space just in case 3026 */ 3027 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3028 + 0x1ffff) & ~0xffff; 3029 spapr->initrd_size = load_image_targphys(initrd_filename, 3030 spapr->initrd_base, 3031 load_limit 3032 - spapr->initrd_base); 3033 if (spapr->initrd_size < 0) { 3034 error_report("could not load initial ram disk '%s'", 3035 initrd_filename); 3036 exit(1); 3037 } 3038 } 3039 } 3040 3041 if (bios_name == NULL) { 3042 bios_name = FW_FILE_NAME; 3043 } 3044 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3045 if (!filename) { 3046 error_report("Could not find LPAR firmware '%s'", bios_name); 3047 exit(1); 3048 } 3049 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3050 if (fw_size <= 0) { 3051 error_report("Could not load LPAR firmware '%s'", filename); 3052 exit(1); 3053 } 3054 g_free(filename); 3055 3056 /* FIXME: Should register things through the MachineState's qdev 3057 * interface, this is a legacy from the sPAPREnvironment structure 3058 * which predated MachineState but had a similar function */ 3059 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3060 register_savevm_live(NULL, "spapr/htab", -1, 1, 3061 &savevm_htab_handlers, spapr); 3062 3063 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3064 &error_fatal); 3065 3066 qemu_register_boot_set(spapr_boot_set, spapr); 3067 3068 if (kvm_enabled()) { 3069 /* to stop and start vmclock */ 3070 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3071 &spapr->tb); 3072 3073 kvmppc_spapr_enable_inkernel_multitce(); 3074 } 3075 } 3076 3077 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3078 { 3079 if (!vm_type) { 3080 return 0; 3081 } 3082 3083 if (!strcmp(vm_type, "HV")) { 3084 return 1; 3085 } 3086 3087 if (!strcmp(vm_type, "PR")) { 3088 return 2; 3089 } 3090 3091 error_report("Unknown kvm-type specified '%s'", vm_type); 3092 exit(1); 3093 } 3094 3095 /* 3096 * Implementation of an interface to adjust firmware path 3097 * for the bootindex property handling. 3098 */ 3099 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3100 DeviceState *dev) 3101 { 3102 #define CAST(type, obj, name) \ 3103 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3104 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3105 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3106 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3107 3108 if (d) { 3109 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3110 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3111 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3112 3113 if (spapr) { 3114 /* 3115 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3116 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3117 * 0x8000 | (target << 8) | (bus << 5) | lun 3118 * (see the "Logical unit addressing format" table in SAM5) 3119 */ 3120 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3121 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3122 (uint64_t)id << 48); 3123 } else if (virtio) { 3124 /* 3125 * We use SRP luns of the form 01000000 | (target << 8) | lun 3126 * in the top 32 bits of the 64-bit LUN 3127 * Note: the quote above is from SLOF and it is wrong, 3128 * the actual binding is: 3129 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3130 */ 3131 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3132 if (d->lun >= 256) { 3133 /* Use the LUN "flat space addressing method" */ 3134 id |= 0x4000; 3135 } 3136 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3137 (uint64_t)id << 32); 3138 } else if (usb) { 3139 /* 3140 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3141 * in the top 32 bits of the 64-bit LUN 3142 */ 3143 unsigned usb_port = atoi(usb->port->path); 3144 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3145 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3146 (uint64_t)id << 32); 3147 } 3148 } 3149 3150 /* 3151 * SLOF probes the USB devices, and if it recognizes that the device is a 3152 * storage device, it changes its name to "storage" instead of "usb-host", 3153 * and additionally adds a child node for the SCSI LUN, so the correct 3154 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3155 */ 3156 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3157 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3158 if (usb_host_dev_is_scsi_storage(usbdev)) { 3159 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3160 } 3161 } 3162 3163 if (phb) { 3164 /* Replace "pci" with "pci@800000020000000" */ 3165 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3166 } 3167 3168 if (vsc) { 3169 /* Same logic as virtio above */ 3170 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3171 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3172 } 3173 3174 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3175 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3176 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3177 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3178 } 3179 3180 return NULL; 3181 } 3182 3183 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3184 { 3185 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3186 3187 return g_strdup(spapr->kvm_type); 3188 } 3189 3190 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3191 { 3192 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3193 3194 g_free(spapr->kvm_type); 3195 spapr->kvm_type = g_strdup(value); 3196 } 3197 3198 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3199 { 3200 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3201 3202 return spapr->use_hotplug_event_source; 3203 } 3204 3205 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3206 Error **errp) 3207 { 3208 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3209 3210 spapr->use_hotplug_event_source = value; 3211 } 3212 3213 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3214 { 3215 return true; 3216 } 3217 3218 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3219 { 3220 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3221 3222 switch (spapr->resize_hpt) { 3223 case SPAPR_RESIZE_HPT_DEFAULT: 3224 return g_strdup("default"); 3225 case SPAPR_RESIZE_HPT_DISABLED: 3226 return g_strdup("disabled"); 3227 case SPAPR_RESIZE_HPT_ENABLED: 3228 return g_strdup("enabled"); 3229 case SPAPR_RESIZE_HPT_REQUIRED: 3230 return g_strdup("required"); 3231 } 3232 g_assert_not_reached(); 3233 } 3234 3235 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3236 { 3237 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3238 3239 if (strcmp(value, "default") == 0) { 3240 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3241 } else if (strcmp(value, "disabled") == 0) { 3242 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3243 } else if (strcmp(value, "enabled") == 0) { 3244 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3245 } else if (strcmp(value, "required") == 0) { 3246 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3247 } else { 3248 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3249 } 3250 } 3251 3252 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3253 void *opaque, Error **errp) 3254 { 3255 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3256 } 3257 3258 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3259 void *opaque, Error **errp) 3260 { 3261 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3262 } 3263 3264 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3265 { 3266 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3267 3268 if (spapr->irq == &spapr_irq_xics_legacy) { 3269 return g_strdup("legacy"); 3270 } else if (spapr->irq == &spapr_irq_xics) { 3271 return g_strdup("xics"); 3272 } else if (spapr->irq == &spapr_irq_xive) { 3273 return g_strdup("xive"); 3274 } else if (spapr->irq == &spapr_irq_dual) { 3275 return g_strdup("dual"); 3276 } 3277 g_assert_not_reached(); 3278 } 3279 3280 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3281 { 3282 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3283 3284 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3285 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3286 return; 3287 } 3288 3289 /* The legacy IRQ backend can not be set */ 3290 if (strcmp(value, "xics") == 0) { 3291 spapr->irq = &spapr_irq_xics; 3292 } else if (strcmp(value, "xive") == 0) { 3293 spapr->irq = &spapr_irq_xive; 3294 } else if (strcmp(value, "dual") == 0) { 3295 spapr->irq = &spapr_irq_dual; 3296 } else { 3297 error_setg(errp, "Bad value for \"ic-mode\" property"); 3298 } 3299 } 3300 3301 static char *spapr_get_host_model(Object *obj, Error **errp) 3302 { 3303 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3304 3305 return g_strdup(spapr->host_model); 3306 } 3307 3308 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3309 { 3310 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3311 3312 g_free(spapr->host_model); 3313 spapr->host_model = g_strdup(value); 3314 } 3315 3316 static char *spapr_get_host_serial(Object *obj, Error **errp) 3317 { 3318 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3319 3320 return g_strdup(spapr->host_serial); 3321 } 3322 3323 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3324 { 3325 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3326 3327 g_free(spapr->host_serial); 3328 spapr->host_serial = g_strdup(value); 3329 } 3330 3331 static void spapr_instance_init(Object *obj) 3332 { 3333 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3334 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3335 3336 spapr->htab_fd = -1; 3337 spapr->use_hotplug_event_source = true; 3338 object_property_add_str(obj, "kvm-type", 3339 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3340 object_property_set_description(obj, "kvm-type", 3341 "Specifies the KVM virtualization mode (HV, PR)", 3342 NULL); 3343 object_property_add_bool(obj, "modern-hotplug-events", 3344 spapr_get_modern_hotplug_events, 3345 spapr_set_modern_hotplug_events, 3346 NULL); 3347 object_property_set_description(obj, "modern-hotplug-events", 3348 "Use dedicated hotplug event mechanism in" 3349 " place of standard EPOW events when possible" 3350 " (required for memory hot-unplug support)", 3351 NULL); 3352 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3353 "Maximum permitted CPU compatibility mode", 3354 &error_fatal); 3355 3356 object_property_add_str(obj, "resize-hpt", 3357 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3358 object_property_set_description(obj, "resize-hpt", 3359 "Resizing of the Hash Page Table (enabled, disabled, required)", 3360 NULL); 3361 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3362 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3363 object_property_set_description(obj, "vsmt", 3364 "Virtual SMT: KVM behaves as if this were" 3365 " the host's SMT mode", &error_abort); 3366 object_property_add_bool(obj, "vfio-no-msix-emulation", 3367 spapr_get_msix_emulation, NULL, NULL); 3368 3369 /* The machine class defines the default interrupt controller mode */ 3370 spapr->irq = smc->irq; 3371 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3372 spapr_set_ic_mode, NULL); 3373 object_property_set_description(obj, "ic-mode", 3374 "Specifies the interrupt controller mode (xics, xive, dual)", 3375 NULL); 3376 3377 object_property_add_str(obj, "host-model", 3378 spapr_get_host_model, spapr_set_host_model, 3379 &error_abort); 3380 object_property_set_description(obj, "host-model", 3381 "Host model to advertise in guest device tree", &error_abort); 3382 object_property_add_str(obj, "host-serial", 3383 spapr_get_host_serial, spapr_set_host_serial, 3384 &error_abort); 3385 object_property_set_description(obj, "host-serial", 3386 "Host serial number to advertise in guest device tree", &error_abort); 3387 } 3388 3389 static void spapr_machine_finalizefn(Object *obj) 3390 { 3391 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3392 3393 g_free(spapr->kvm_type); 3394 } 3395 3396 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3397 { 3398 cpu_synchronize_state(cs); 3399 ppc_cpu_do_system_reset(cs); 3400 } 3401 3402 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3403 { 3404 CPUState *cs; 3405 3406 CPU_FOREACH(cs) { 3407 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3408 } 3409 } 3410 3411 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3412 void *fdt, int *fdt_start_offset, Error **errp) 3413 { 3414 uint64_t addr; 3415 uint32_t node; 3416 3417 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3418 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3419 &error_abort); 3420 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3421 SPAPR_MEMORY_BLOCK_SIZE); 3422 return 0; 3423 } 3424 3425 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3426 bool dedicated_hp_event_source, Error **errp) 3427 { 3428 SpaprDrc *drc; 3429 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3430 int i; 3431 uint64_t addr = addr_start; 3432 bool hotplugged = spapr_drc_hotplugged(dev); 3433 Error *local_err = NULL; 3434 3435 for (i = 0; i < nr_lmbs; i++) { 3436 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3437 addr / SPAPR_MEMORY_BLOCK_SIZE); 3438 g_assert(drc); 3439 3440 spapr_drc_attach(drc, dev, &local_err); 3441 if (local_err) { 3442 while (addr > addr_start) { 3443 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3444 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3445 addr / SPAPR_MEMORY_BLOCK_SIZE); 3446 spapr_drc_detach(drc); 3447 } 3448 error_propagate(errp, local_err); 3449 return; 3450 } 3451 if (!hotplugged) { 3452 spapr_drc_reset(drc); 3453 } 3454 addr += SPAPR_MEMORY_BLOCK_SIZE; 3455 } 3456 /* send hotplug notification to the 3457 * guest only in case of hotplugged memory 3458 */ 3459 if (hotplugged) { 3460 if (dedicated_hp_event_source) { 3461 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3462 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3463 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3464 nr_lmbs, 3465 spapr_drc_index(drc)); 3466 } else { 3467 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3468 nr_lmbs); 3469 } 3470 } 3471 } 3472 3473 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3474 Error **errp) 3475 { 3476 Error *local_err = NULL; 3477 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3478 PCDIMMDevice *dimm = PC_DIMM(dev); 3479 uint64_t size, addr; 3480 3481 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3482 3483 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3484 if (local_err) { 3485 goto out; 3486 } 3487 3488 addr = object_property_get_uint(OBJECT(dimm), 3489 PC_DIMM_ADDR_PROP, &local_err); 3490 if (local_err) { 3491 goto out_unplug; 3492 } 3493 3494 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3495 &local_err); 3496 if (local_err) { 3497 goto out_unplug; 3498 } 3499 3500 return; 3501 3502 out_unplug: 3503 pc_dimm_unplug(dimm, MACHINE(ms)); 3504 out: 3505 error_propagate(errp, local_err); 3506 } 3507 3508 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3509 Error **errp) 3510 { 3511 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3512 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3513 PCDIMMDevice *dimm = PC_DIMM(dev); 3514 Error *local_err = NULL; 3515 uint64_t size; 3516 Object *memdev; 3517 hwaddr pagesize; 3518 3519 if (!smc->dr_lmb_enabled) { 3520 error_setg(errp, "Memory hotplug not supported for this machine"); 3521 return; 3522 } 3523 3524 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3525 if (local_err) { 3526 error_propagate(errp, local_err); 3527 return; 3528 } 3529 3530 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3531 error_setg(errp, "Hotplugged memory size must be a multiple of " 3532 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3533 return; 3534 } 3535 3536 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3537 &error_abort); 3538 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3539 spapr_check_pagesize(spapr, pagesize, &local_err); 3540 if (local_err) { 3541 error_propagate(errp, local_err); 3542 return; 3543 } 3544 3545 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3546 } 3547 3548 struct SpaprDimmState { 3549 PCDIMMDevice *dimm; 3550 uint32_t nr_lmbs; 3551 QTAILQ_ENTRY(SpaprDimmState) next; 3552 }; 3553 3554 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3555 PCDIMMDevice *dimm) 3556 { 3557 SpaprDimmState *dimm_state = NULL; 3558 3559 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3560 if (dimm_state->dimm == dimm) { 3561 break; 3562 } 3563 } 3564 return dimm_state; 3565 } 3566 3567 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3568 uint32_t nr_lmbs, 3569 PCDIMMDevice *dimm) 3570 { 3571 SpaprDimmState *ds = NULL; 3572 3573 /* 3574 * If this request is for a DIMM whose removal had failed earlier 3575 * (due to guest's refusal to remove the LMBs), we would have this 3576 * dimm already in the pending_dimm_unplugs list. In that 3577 * case don't add again. 3578 */ 3579 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3580 if (!ds) { 3581 ds = g_malloc0(sizeof(SpaprDimmState)); 3582 ds->nr_lmbs = nr_lmbs; 3583 ds->dimm = dimm; 3584 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3585 } 3586 return ds; 3587 } 3588 3589 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3590 SpaprDimmState *dimm_state) 3591 { 3592 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3593 g_free(dimm_state); 3594 } 3595 3596 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3597 PCDIMMDevice *dimm) 3598 { 3599 SpaprDrc *drc; 3600 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3601 &error_abort); 3602 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3603 uint32_t avail_lmbs = 0; 3604 uint64_t addr_start, addr; 3605 int i; 3606 3607 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3608 &error_abort); 3609 3610 addr = addr_start; 3611 for (i = 0; i < nr_lmbs; i++) { 3612 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3613 addr / SPAPR_MEMORY_BLOCK_SIZE); 3614 g_assert(drc); 3615 if (drc->dev) { 3616 avail_lmbs++; 3617 } 3618 addr += SPAPR_MEMORY_BLOCK_SIZE; 3619 } 3620 3621 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3622 } 3623 3624 /* Callback to be called during DRC release. */ 3625 void spapr_lmb_release(DeviceState *dev) 3626 { 3627 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3628 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3629 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3630 3631 /* This information will get lost if a migration occurs 3632 * during the unplug process. In this case recover it. */ 3633 if (ds == NULL) { 3634 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3635 g_assert(ds); 3636 /* The DRC being examined by the caller at least must be counted */ 3637 g_assert(ds->nr_lmbs); 3638 } 3639 3640 if (--ds->nr_lmbs) { 3641 return; 3642 } 3643 3644 /* 3645 * Now that all the LMBs have been removed by the guest, call the 3646 * unplug handler chain. This can never fail. 3647 */ 3648 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3649 object_unparent(OBJECT(dev)); 3650 } 3651 3652 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3653 { 3654 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3655 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3656 3657 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3658 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3659 spapr_pending_dimm_unplugs_remove(spapr, ds); 3660 } 3661 3662 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3663 DeviceState *dev, Error **errp) 3664 { 3665 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3666 Error *local_err = NULL; 3667 PCDIMMDevice *dimm = PC_DIMM(dev); 3668 uint32_t nr_lmbs; 3669 uint64_t size, addr_start, addr; 3670 int i; 3671 SpaprDrc *drc; 3672 3673 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3674 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3675 3676 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3677 &local_err); 3678 if (local_err) { 3679 goto out; 3680 } 3681 3682 /* 3683 * An existing pending dimm state for this DIMM means that there is an 3684 * unplug operation in progress, waiting for the spapr_lmb_release 3685 * callback to complete the job (BQL can't cover that far). In this case, 3686 * bail out to avoid detaching DRCs that were already released. 3687 */ 3688 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3689 error_setg(&local_err, 3690 "Memory unplug already in progress for device %s", 3691 dev->id); 3692 goto out; 3693 } 3694 3695 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3696 3697 addr = addr_start; 3698 for (i = 0; i < nr_lmbs; i++) { 3699 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3700 addr / SPAPR_MEMORY_BLOCK_SIZE); 3701 g_assert(drc); 3702 3703 spapr_drc_detach(drc); 3704 addr += SPAPR_MEMORY_BLOCK_SIZE; 3705 } 3706 3707 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3708 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3709 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3710 nr_lmbs, spapr_drc_index(drc)); 3711 out: 3712 error_propagate(errp, local_err); 3713 } 3714 3715 /* Callback to be called during DRC release. */ 3716 void spapr_core_release(DeviceState *dev) 3717 { 3718 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3719 3720 /* Call the unplug handler chain. This can never fail. */ 3721 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3722 object_unparent(OBJECT(dev)); 3723 } 3724 3725 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3726 { 3727 MachineState *ms = MACHINE(hotplug_dev); 3728 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3729 CPUCore *cc = CPU_CORE(dev); 3730 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3731 3732 if (smc->pre_2_10_has_unused_icps) { 3733 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3734 int i; 3735 3736 for (i = 0; i < cc->nr_threads; i++) { 3737 CPUState *cs = CPU(sc->threads[i]); 3738 3739 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3740 } 3741 } 3742 3743 assert(core_slot); 3744 core_slot->cpu = NULL; 3745 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3746 } 3747 3748 static 3749 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3750 Error **errp) 3751 { 3752 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3753 int index; 3754 SpaprDrc *drc; 3755 CPUCore *cc = CPU_CORE(dev); 3756 3757 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3758 error_setg(errp, "Unable to find CPU core with core-id: %d", 3759 cc->core_id); 3760 return; 3761 } 3762 if (index == 0) { 3763 error_setg(errp, "Boot CPU core may not be unplugged"); 3764 return; 3765 } 3766 3767 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3768 spapr_vcpu_id(spapr, cc->core_id)); 3769 g_assert(drc); 3770 3771 spapr_drc_detach(drc); 3772 3773 spapr_hotplug_req_remove_by_index(drc); 3774 } 3775 3776 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3777 void *fdt, int *fdt_start_offset, Error **errp) 3778 { 3779 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3780 CPUState *cs = CPU(core->threads[0]); 3781 PowerPCCPU *cpu = POWERPC_CPU(cs); 3782 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3783 int id = spapr_get_vcpu_id(cpu); 3784 char *nodename; 3785 int offset; 3786 3787 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3788 offset = fdt_add_subnode(fdt, 0, nodename); 3789 g_free(nodename); 3790 3791 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3792 3793 *fdt_start_offset = offset; 3794 return 0; 3795 } 3796 3797 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3798 Error **errp) 3799 { 3800 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3801 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3802 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3803 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3804 CPUCore *cc = CPU_CORE(dev); 3805 CPUState *cs; 3806 SpaprDrc *drc; 3807 Error *local_err = NULL; 3808 CPUArchId *core_slot; 3809 int index; 3810 bool hotplugged = spapr_drc_hotplugged(dev); 3811 3812 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3813 if (!core_slot) { 3814 error_setg(errp, "Unable to find CPU core with core-id: %d", 3815 cc->core_id); 3816 return; 3817 } 3818 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3819 spapr_vcpu_id(spapr, cc->core_id)); 3820 3821 g_assert(drc || !mc->has_hotpluggable_cpus); 3822 3823 if (drc) { 3824 spapr_drc_attach(drc, dev, &local_err); 3825 if (local_err) { 3826 error_propagate(errp, local_err); 3827 return; 3828 } 3829 3830 if (hotplugged) { 3831 /* 3832 * Send hotplug notification interrupt to the guest only 3833 * in case of hotplugged CPUs. 3834 */ 3835 spapr_hotplug_req_add_by_index(drc); 3836 } else { 3837 spapr_drc_reset(drc); 3838 } 3839 } 3840 3841 core_slot->cpu = OBJECT(dev); 3842 3843 if (smc->pre_2_10_has_unused_icps) { 3844 int i; 3845 3846 for (i = 0; i < cc->nr_threads; i++) { 3847 cs = CPU(core->threads[i]); 3848 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3849 } 3850 } 3851 } 3852 3853 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3854 Error **errp) 3855 { 3856 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3857 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3858 Error *local_err = NULL; 3859 CPUCore *cc = CPU_CORE(dev); 3860 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3861 const char *type = object_get_typename(OBJECT(dev)); 3862 CPUArchId *core_slot; 3863 int index; 3864 3865 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3866 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3867 goto out; 3868 } 3869 3870 if (strcmp(base_core_type, type)) { 3871 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3872 goto out; 3873 } 3874 3875 if (cc->core_id % smp_threads) { 3876 error_setg(&local_err, "invalid core id %d", cc->core_id); 3877 goto out; 3878 } 3879 3880 /* 3881 * In general we should have homogeneous threads-per-core, but old 3882 * (pre hotplug support) machine types allow the last core to have 3883 * reduced threads as a compatibility hack for when we allowed 3884 * total vcpus not a multiple of threads-per-core. 3885 */ 3886 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3887 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3888 cc->nr_threads, smp_threads); 3889 goto out; 3890 } 3891 3892 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3893 if (!core_slot) { 3894 error_setg(&local_err, "core id %d out of range", cc->core_id); 3895 goto out; 3896 } 3897 3898 if (core_slot->cpu) { 3899 error_setg(&local_err, "core %d already populated", cc->core_id); 3900 goto out; 3901 } 3902 3903 numa_cpu_pre_plug(core_slot, dev, &local_err); 3904 3905 out: 3906 error_propagate(errp, local_err); 3907 } 3908 3909 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3910 void *fdt, int *fdt_start_offset, Error **errp) 3911 { 3912 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3913 int intc_phandle; 3914 3915 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3916 if (intc_phandle <= 0) { 3917 return -1; 3918 } 3919 3920 if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3921 fdt_start_offset)) { 3922 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3923 return -1; 3924 } 3925 3926 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3927 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3928 3929 return 0; 3930 } 3931 3932 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3933 Error **errp) 3934 { 3935 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3936 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3937 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3938 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3939 3940 if (dev->hotplugged && !smc->dr_phb_enabled) { 3941 error_setg(errp, "PHB hotplug not supported for this machine"); 3942 return; 3943 } 3944 3945 if (sphb->index == (uint32_t)-1) { 3946 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3947 return; 3948 } 3949 3950 /* 3951 * This will check that sphb->index doesn't exceed the maximum number of 3952 * PHBs for the current machine type. 3953 */ 3954 smc->phb_placement(spapr, sphb->index, 3955 &sphb->buid, &sphb->io_win_addr, 3956 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3957 windows_supported, sphb->dma_liobn, 3958 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3959 errp); 3960 } 3961 3962 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3963 Error **errp) 3964 { 3965 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3966 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3967 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3968 SpaprDrc *drc; 3969 bool hotplugged = spapr_drc_hotplugged(dev); 3970 Error *local_err = NULL; 3971 3972 if (!smc->dr_phb_enabled) { 3973 return; 3974 } 3975 3976 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3977 /* hotplug hooks should check it's enabled before getting this far */ 3978 assert(drc); 3979 3980 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3981 if (local_err) { 3982 error_propagate(errp, local_err); 3983 return; 3984 } 3985 3986 if (hotplugged) { 3987 spapr_hotplug_req_add_by_index(drc); 3988 } else { 3989 spapr_drc_reset(drc); 3990 } 3991 } 3992 3993 void spapr_phb_release(DeviceState *dev) 3994 { 3995 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3996 3997 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3998 object_unparent(OBJECT(dev)); 3999 } 4000 4001 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4002 { 4003 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4004 } 4005 4006 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4007 DeviceState *dev, Error **errp) 4008 { 4009 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4010 SpaprDrc *drc; 4011 4012 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4013 assert(drc); 4014 4015 if (!spapr_drc_unplug_requested(drc)) { 4016 spapr_drc_detach(drc); 4017 spapr_hotplug_req_remove_by_index(drc); 4018 } 4019 } 4020 4021 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4022 DeviceState *dev, Error **errp) 4023 { 4024 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4025 spapr_memory_plug(hotplug_dev, dev, errp); 4026 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4027 spapr_core_plug(hotplug_dev, dev, errp); 4028 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4029 spapr_phb_plug(hotplug_dev, dev, errp); 4030 } 4031 } 4032 4033 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4034 DeviceState *dev, Error **errp) 4035 { 4036 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4037 spapr_memory_unplug(hotplug_dev, dev); 4038 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4039 spapr_core_unplug(hotplug_dev, dev); 4040 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4041 spapr_phb_unplug(hotplug_dev, dev); 4042 } 4043 } 4044 4045 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4046 DeviceState *dev, Error **errp) 4047 { 4048 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4049 MachineClass *mc = MACHINE_GET_CLASS(sms); 4050 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4051 4052 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4053 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4054 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4055 } else { 4056 /* NOTE: this means there is a window after guest reset, prior to 4057 * CAS negotiation, where unplug requests will fail due to the 4058 * capability not being detected yet. This is a bit different than 4059 * the case with PCI unplug, where the events will be queued and 4060 * eventually handled by the guest after boot 4061 */ 4062 error_setg(errp, "Memory hot unplug not supported for this guest"); 4063 } 4064 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4065 if (!mc->has_hotpluggable_cpus) { 4066 error_setg(errp, "CPU hot unplug not supported on this machine"); 4067 return; 4068 } 4069 spapr_core_unplug_request(hotplug_dev, dev, errp); 4070 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4071 if (!smc->dr_phb_enabled) { 4072 error_setg(errp, "PHB hot unplug not supported on this machine"); 4073 return; 4074 } 4075 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4076 } 4077 } 4078 4079 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4080 DeviceState *dev, Error **errp) 4081 { 4082 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4083 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4084 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4085 spapr_core_pre_plug(hotplug_dev, dev, errp); 4086 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4087 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4088 } 4089 } 4090 4091 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4092 DeviceState *dev) 4093 { 4094 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4095 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4096 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4097 return HOTPLUG_HANDLER(machine); 4098 } 4099 return NULL; 4100 } 4101 4102 static CpuInstanceProperties 4103 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4104 { 4105 CPUArchId *core_slot; 4106 MachineClass *mc = MACHINE_GET_CLASS(machine); 4107 4108 /* make sure possible_cpu are intialized */ 4109 mc->possible_cpu_arch_ids(machine); 4110 /* get CPU core slot containing thread that matches cpu_index */ 4111 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4112 assert(core_slot); 4113 return core_slot->props; 4114 } 4115 4116 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4117 { 4118 return idx / smp_cores % nb_numa_nodes; 4119 } 4120 4121 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4122 { 4123 int i; 4124 const char *core_type; 4125 int spapr_max_cores = max_cpus / smp_threads; 4126 MachineClass *mc = MACHINE_GET_CLASS(machine); 4127 4128 if (!mc->has_hotpluggable_cpus) { 4129 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4130 } 4131 if (machine->possible_cpus) { 4132 assert(machine->possible_cpus->len == spapr_max_cores); 4133 return machine->possible_cpus; 4134 } 4135 4136 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4137 if (!core_type) { 4138 error_report("Unable to find sPAPR CPU Core definition"); 4139 exit(1); 4140 } 4141 4142 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4143 sizeof(CPUArchId) * spapr_max_cores); 4144 machine->possible_cpus->len = spapr_max_cores; 4145 for (i = 0; i < machine->possible_cpus->len; i++) { 4146 int core_id = i * smp_threads; 4147 4148 machine->possible_cpus->cpus[i].type = core_type; 4149 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4150 machine->possible_cpus->cpus[i].arch_id = core_id; 4151 machine->possible_cpus->cpus[i].props.has_core_id = true; 4152 machine->possible_cpus->cpus[i].props.core_id = core_id; 4153 } 4154 return machine->possible_cpus; 4155 } 4156 4157 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4158 uint64_t *buid, hwaddr *pio, 4159 hwaddr *mmio32, hwaddr *mmio64, 4160 unsigned n_dma, uint32_t *liobns, 4161 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4162 { 4163 /* 4164 * New-style PHB window placement. 4165 * 4166 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4167 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4168 * windows. 4169 * 4170 * Some guest kernels can't work with MMIO windows above 1<<46 4171 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4172 * 4173 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4174 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4175 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4176 * 1TiB 64-bit MMIO windows for each PHB. 4177 */ 4178 const uint64_t base_buid = 0x800000020000000ULL; 4179 int i; 4180 4181 /* Sanity check natural alignments */ 4182 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4183 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4184 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4185 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4186 /* Sanity check bounds */ 4187 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4188 SPAPR_PCI_MEM32_WIN_SIZE); 4189 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4190 SPAPR_PCI_MEM64_WIN_SIZE); 4191 4192 if (index >= SPAPR_MAX_PHBS) { 4193 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4194 SPAPR_MAX_PHBS - 1); 4195 return; 4196 } 4197 4198 *buid = base_buid + index; 4199 for (i = 0; i < n_dma; ++i) { 4200 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4201 } 4202 4203 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4204 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4205 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4206 4207 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4208 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4209 } 4210 4211 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4212 { 4213 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4214 4215 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4216 } 4217 4218 static void spapr_ics_resend(XICSFabric *dev) 4219 { 4220 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4221 4222 ics_resend(spapr->ics); 4223 } 4224 4225 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4226 { 4227 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4228 4229 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4230 } 4231 4232 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4233 Monitor *mon) 4234 { 4235 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4236 4237 spapr->irq->print_info(spapr, mon); 4238 } 4239 4240 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4241 { 4242 return cpu->vcpu_id; 4243 } 4244 4245 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4246 { 4247 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4248 int vcpu_id; 4249 4250 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4251 4252 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4253 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4254 error_append_hint(errp, "Adjust the number of cpus to %d " 4255 "or try to raise the number of threads per core\n", 4256 vcpu_id * smp_threads / spapr->vsmt); 4257 return; 4258 } 4259 4260 cpu->vcpu_id = vcpu_id; 4261 } 4262 4263 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4264 { 4265 CPUState *cs; 4266 4267 CPU_FOREACH(cs) { 4268 PowerPCCPU *cpu = POWERPC_CPU(cs); 4269 4270 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4271 return cpu; 4272 } 4273 } 4274 4275 return NULL; 4276 } 4277 4278 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4279 { 4280 MachineClass *mc = MACHINE_CLASS(oc); 4281 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4282 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4283 NMIClass *nc = NMI_CLASS(oc); 4284 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4285 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4286 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4287 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4288 4289 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4290 mc->ignore_boot_device_suffixes = true; 4291 4292 /* 4293 * We set up the default / latest behaviour here. The class_init 4294 * functions for the specific versioned machine types can override 4295 * these details for backwards compatibility 4296 */ 4297 mc->init = spapr_machine_init; 4298 mc->reset = spapr_machine_reset; 4299 mc->block_default_type = IF_SCSI; 4300 mc->max_cpus = 1024; 4301 mc->no_parallel = 1; 4302 mc->default_boot_order = ""; 4303 mc->default_ram_size = 512 * MiB; 4304 mc->default_display = "std"; 4305 mc->kvm_type = spapr_kvm_type; 4306 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4307 mc->pci_allow_0_address = true; 4308 assert(!mc->get_hotplug_handler); 4309 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4310 hc->pre_plug = spapr_machine_device_pre_plug; 4311 hc->plug = spapr_machine_device_plug; 4312 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4313 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4314 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4315 hc->unplug_request = spapr_machine_device_unplug_request; 4316 hc->unplug = spapr_machine_device_unplug; 4317 4318 smc->dr_lmb_enabled = true; 4319 smc->update_dt_enabled = true; 4320 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4321 mc->has_hotpluggable_cpus = true; 4322 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4323 fwc->get_dev_path = spapr_get_fw_dev_path; 4324 nc->nmi_monitor_handler = spapr_nmi; 4325 smc->phb_placement = spapr_phb_placement; 4326 vhc->hypercall = emulate_spapr_hypercall; 4327 vhc->hpt_mask = spapr_hpt_mask; 4328 vhc->map_hptes = spapr_map_hptes; 4329 vhc->unmap_hptes = spapr_unmap_hptes; 4330 vhc->hpte_set_c = spapr_hpte_set_c; 4331 vhc->hpte_set_r = spapr_hpte_set_r; 4332 vhc->get_pate = spapr_get_pate; 4333 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4334 xic->ics_get = spapr_ics_get; 4335 xic->ics_resend = spapr_ics_resend; 4336 xic->icp_get = spapr_icp_get; 4337 ispc->print_info = spapr_pic_print_info; 4338 /* Force NUMA node memory size to be a multiple of 4339 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4340 * in which LMBs are represented and hot-added 4341 */ 4342 mc->numa_mem_align_shift = 28; 4343 4344 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4345 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4346 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4347 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4348 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4349 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4350 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4351 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4352 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4353 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4354 spapr_caps_add_properties(smc, &error_abort); 4355 smc->irq = &spapr_irq_dual; 4356 smc->dr_phb_enabled = true; 4357 } 4358 4359 static const TypeInfo spapr_machine_info = { 4360 .name = TYPE_SPAPR_MACHINE, 4361 .parent = TYPE_MACHINE, 4362 .abstract = true, 4363 .instance_size = sizeof(SpaprMachineState), 4364 .instance_init = spapr_instance_init, 4365 .instance_finalize = spapr_machine_finalizefn, 4366 .class_size = sizeof(SpaprMachineClass), 4367 .class_init = spapr_machine_class_init, 4368 .interfaces = (InterfaceInfo[]) { 4369 { TYPE_FW_PATH_PROVIDER }, 4370 { TYPE_NMI }, 4371 { TYPE_HOTPLUG_HANDLER }, 4372 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4373 { TYPE_XICS_FABRIC }, 4374 { TYPE_INTERRUPT_STATS_PROVIDER }, 4375 { } 4376 }, 4377 }; 4378 4379 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4380 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4381 void *data) \ 4382 { \ 4383 MachineClass *mc = MACHINE_CLASS(oc); \ 4384 spapr_machine_##suffix##_class_options(mc); \ 4385 if (latest) { \ 4386 mc->alias = "pseries"; \ 4387 mc->is_default = 1; \ 4388 } \ 4389 } \ 4390 static const TypeInfo spapr_machine_##suffix##_info = { \ 4391 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4392 .parent = TYPE_SPAPR_MACHINE, \ 4393 .class_init = spapr_machine_##suffix##_class_init, \ 4394 }; \ 4395 static void spapr_machine_register_##suffix(void) \ 4396 { \ 4397 type_register(&spapr_machine_##suffix##_info); \ 4398 } \ 4399 type_init(spapr_machine_register_##suffix) 4400 4401 /* 4402 * pseries-4.1 4403 */ 4404 static void spapr_machine_4_1_class_options(MachineClass *mc) 4405 { 4406 /* Defaults for the latest behaviour inherited from the base class */ 4407 } 4408 4409 DEFINE_SPAPR_MACHINE(4_1, "4.1", true); 4410 4411 /* 4412 * pseries-4.0 4413 */ 4414 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4415 uint64_t *buid, hwaddr *pio, 4416 hwaddr *mmio32, hwaddr *mmio64, 4417 unsigned n_dma, uint32_t *liobns, 4418 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4419 { 4420 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4421 nv2gpa, nv2atsd, errp); 4422 *nv2gpa = 0; 4423 *nv2atsd = 0; 4424 } 4425 4426 static void spapr_machine_4_0_class_options(MachineClass *mc) 4427 { 4428 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4429 4430 spapr_machine_4_1_class_options(mc); 4431 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4432 smc->phb_placement = phb_placement_4_0; 4433 smc->irq = &spapr_irq_xics; 4434 smc->pre_4_1_migration = true; 4435 } 4436 4437 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4438 4439 /* 4440 * pseries-3.1 4441 */ 4442 static void spapr_machine_3_1_class_options(MachineClass *mc) 4443 { 4444 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4445 4446 spapr_machine_4_0_class_options(mc); 4447 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4448 4449 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4450 smc->update_dt_enabled = false; 4451 smc->dr_phb_enabled = false; 4452 smc->broken_host_serial_model = true; 4453 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4454 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4455 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4456 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4457 } 4458 4459 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4460 4461 /* 4462 * pseries-3.0 4463 */ 4464 4465 static void spapr_machine_3_0_class_options(MachineClass *mc) 4466 { 4467 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4468 4469 spapr_machine_3_1_class_options(mc); 4470 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4471 4472 smc->legacy_irq_allocation = true; 4473 smc->irq = &spapr_irq_xics_legacy; 4474 } 4475 4476 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4477 4478 /* 4479 * pseries-2.12 4480 */ 4481 static void spapr_machine_2_12_class_options(MachineClass *mc) 4482 { 4483 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4484 static GlobalProperty compat[] = { 4485 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4486 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4487 }; 4488 4489 spapr_machine_3_0_class_options(mc); 4490 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4491 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4492 4493 /* We depend on kvm_enabled() to choose a default value for the 4494 * hpt-max-page-size capability. Of course we can't do it here 4495 * because this is too early and the HW accelerator isn't initialzed 4496 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4497 */ 4498 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4499 } 4500 4501 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4502 4503 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4504 { 4505 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4506 4507 spapr_machine_2_12_class_options(mc); 4508 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4509 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4510 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4511 } 4512 4513 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4514 4515 /* 4516 * pseries-2.11 4517 */ 4518 4519 static void spapr_machine_2_11_class_options(MachineClass *mc) 4520 { 4521 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4522 4523 spapr_machine_2_12_class_options(mc); 4524 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4525 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4526 } 4527 4528 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4529 4530 /* 4531 * pseries-2.10 4532 */ 4533 4534 static void spapr_machine_2_10_class_options(MachineClass *mc) 4535 { 4536 spapr_machine_2_11_class_options(mc); 4537 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4538 } 4539 4540 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4541 4542 /* 4543 * pseries-2.9 4544 */ 4545 4546 static void spapr_machine_2_9_class_options(MachineClass *mc) 4547 { 4548 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4549 static GlobalProperty compat[] = { 4550 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4551 }; 4552 4553 spapr_machine_2_10_class_options(mc); 4554 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4555 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4556 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4557 smc->pre_2_10_has_unused_icps = true; 4558 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4559 } 4560 4561 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4562 4563 /* 4564 * pseries-2.8 4565 */ 4566 4567 static void spapr_machine_2_8_class_options(MachineClass *mc) 4568 { 4569 static GlobalProperty compat[] = { 4570 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4571 }; 4572 4573 spapr_machine_2_9_class_options(mc); 4574 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4575 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4576 mc->numa_mem_align_shift = 23; 4577 } 4578 4579 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4580 4581 /* 4582 * pseries-2.7 4583 */ 4584 4585 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4586 uint64_t *buid, hwaddr *pio, 4587 hwaddr *mmio32, hwaddr *mmio64, 4588 unsigned n_dma, uint32_t *liobns, 4589 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4590 { 4591 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4592 const uint64_t base_buid = 0x800000020000000ULL; 4593 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4594 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4595 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4596 const uint32_t max_index = 255; 4597 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4598 4599 uint64_t ram_top = MACHINE(spapr)->ram_size; 4600 hwaddr phb0_base, phb_base; 4601 int i; 4602 4603 /* Do we have device memory? */ 4604 if (MACHINE(spapr)->maxram_size > ram_top) { 4605 /* Can't just use maxram_size, because there may be an 4606 * alignment gap between normal and device memory regions 4607 */ 4608 ram_top = MACHINE(spapr)->device_memory->base + 4609 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4610 } 4611 4612 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4613 4614 if (index > max_index) { 4615 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4616 max_index); 4617 return; 4618 } 4619 4620 *buid = base_buid + index; 4621 for (i = 0; i < n_dma; ++i) { 4622 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4623 } 4624 4625 phb_base = phb0_base + index * phb_spacing; 4626 *pio = phb_base + pio_offset; 4627 *mmio32 = phb_base + mmio_offset; 4628 /* 4629 * We don't set the 64-bit MMIO window, relying on the PHB's 4630 * fallback behaviour of automatically splitting a large "32-bit" 4631 * window into contiguous 32-bit and 64-bit windows 4632 */ 4633 4634 *nv2gpa = 0; 4635 *nv2atsd = 0; 4636 } 4637 4638 static void spapr_machine_2_7_class_options(MachineClass *mc) 4639 { 4640 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4641 static GlobalProperty compat[] = { 4642 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4643 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4644 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4645 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4646 }; 4647 4648 spapr_machine_2_8_class_options(mc); 4649 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4650 mc->default_machine_opts = "modern-hotplug-events=off"; 4651 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4652 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4653 smc->phb_placement = phb_placement_2_7; 4654 } 4655 4656 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4657 4658 /* 4659 * pseries-2.6 4660 */ 4661 4662 static void spapr_machine_2_6_class_options(MachineClass *mc) 4663 { 4664 static GlobalProperty compat[] = { 4665 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4666 }; 4667 4668 spapr_machine_2_7_class_options(mc); 4669 mc->has_hotpluggable_cpus = false; 4670 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4671 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4672 } 4673 4674 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4675 4676 /* 4677 * pseries-2.5 4678 */ 4679 4680 static void spapr_machine_2_5_class_options(MachineClass *mc) 4681 { 4682 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4683 static GlobalProperty compat[] = { 4684 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4685 }; 4686 4687 spapr_machine_2_6_class_options(mc); 4688 smc->use_ohci_by_default = true; 4689 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4690 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4691 } 4692 4693 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4694 4695 /* 4696 * pseries-2.4 4697 */ 4698 4699 static void spapr_machine_2_4_class_options(MachineClass *mc) 4700 { 4701 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4702 4703 spapr_machine_2_5_class_options(mc); 4704 smc->dr_lmb_enabled = false; 4705 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4706 } 4707 4708 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4709 4710 /* 4711 * pseries-2.3 4712 */ 4713 4714 static void spapr_machine_2_3_class_options(MachineClass *mc) 4715 { 4716 static GlobalProperty compat[] = { 4717 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4718 }; 4719 spapr_machine_2_4_class_options(mc); 4720 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4721 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4722 } 4723 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4724 4725 /* 4726 * pseries-2.2 4727 */ 4728 4729 static void spapr_machine_2_2_class_options(MachineClass *mc) 4730 { 4731 static GlobalProperty compat[] = { 4732 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4733 }; 4734 4735 spapr_machine_2_3_class_options(mc); 4736 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4737 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4738 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4739 } 4740 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4741 4742 /* 4743 * pseries-2.1 4744 */ 4745 4746 static void spapr_machine_2_1_class_options(MachineClass *mc) 4747 { 4748 spapr_machine_2_2_class_options(mc); 4749 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4750 } 4751 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4752 4753 static void spapr_machine_register_types(void) 4754 { 4755 type_register_static(&spapr_machine_info); 4756 } 4757 4758 type_init(spapr_machine_register_types) 4759