1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_nested.h" 65 #include "hw/ppc/spapr_vio.h" 66 #include "hw/ppc/vof.h" 67 #include "hw/qdev-properties.h" 68 #include "hw/pci-host/spapr.h" 69 #include "hw/pci/msi.h" 70 71 #include "hw/pci/pci.h" 72 #include "hw/scsi/scsi.h" 73 #include "hw/virtio/virtio-scsi.h" 74 #include "hw/virtio/vhost-scsi-common.h" 75 76 #include "exec/ram_addr.h" 77 #include "hw/usb.h" 78 #include "qemu/config-file.h" 79 #include "qemu/error-report.h" 80 #include "trace.h" 81 #include "hw/nmi.h" 82 #include "hw/intc/intc.h" 83 84 #include "hw/ppc/spapr_cpu_core.h" 85 #include "hw/mem/memory-device.h" 86 #include "hw/ppc/spapr_tpm_proxy.h" 87 #include "hw/ppc/spapr_nvdimm.h" 88 #include "hw/ppc/spapr_numa.h" 89 #include "hw/ppc/pef.h" 90 91 #include "monitor/monitor.h" 92 93 #include <libfdt.h> 94 95 /* SLOF memory layout: 96 * 97 * SLOF raw image loaded at 0, copies its romfs right below the flat 98 * device-tree, then position SLOF itself 31M below that 99 * 100 * So we set FW_OVERHEAD to 40MB which should account for all of that 101 * and more 102 * 103 * We load our kernel at 4M, leaving space for SLOF initial image 104 */ 105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 106 #define FW_MAX_SIZE 0x400000 107 #define FW_FILE_NAME "slof.bin" 108 #define FW_FILE_NAME_VOF "vof.bin" 109 #define FW_OVERHEAD 0x2800000 110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 111 112 #define MIN_RMA_SLOF (128 * MiB) 113 114 #define PHANDLE_INTC 0x00001111 115 116 /* These two functions implement the VCPU id numbering: one to compute them 117 * all and one to identify thread 0 of a VCORE. Any change to the first one 118 * is likely to have an impact on the second one, so let's keep them close. 119 */ 120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 121 { 122 MachineState *ms = MACHINE(spapr); 123 unsigned int smp_threads = ms->smp.threads; 124 125 assert(spapr->vsmt); 126 return 127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 128 } 129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 130 PowerPCCPU *cpu) 131 { 132 assert(spapr->vsmt); 133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 134 } 135 136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 137 { 138 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 139 * and newer QEMUs don't even have them. In both cases, we don't want 140 * to send anything on the wire. 141 */ 142 return false; 143 } 144 145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 146 /* 147 * Hack ahead. We can't have two devices with the same name and 148 * instance id. So I rename this to pass make check. 149 * Real help from people who knows the hardware is needed. 150 */ 151 .name = "icp/server", 152 .version_id = 1, 153 .minimum_version_id = 1, 154 .needed = pre_2_10_vmstate_dummy_icp_needed, 155 .fields = (const VMStateField[]) { 156 VMSTATE_UNUSED(4), /* uint32_t xirr */ 157 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 158 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 159 VMSTATE_END_OF_LIST() 160 }, 161 }; 162 163 /* 164 * See comment in hw/intc/xics.c:icp_realize() 165 * 166 * You have to remove vmstate_replace_hack_for_ppc() when you remove 167 * the machine types that need the following function. 168 */ 169 static void pre_2_10_vmstate_register_dummy_icp(int i) 170 { 171 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 172 (void *)(uintptr_t) i); 173 } 174 175 /* 176 * See comment in hw/intc/xics.c:icp_realize() 177 * 178 * You have to remove vmstate_replace_hack_for_ppc() when you remove 179 * the machine types that need the following function. 180 */ 181 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 182 { 183 /* 184 * This used to be: 185 * 186 * vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 187 * (void *)(uintptr_t) i); 188 */ 189 } 190 191 int spapr_max_server_number(SpaprMachineState *spapr) 192 { 193 MachineState *ms = MACHINE(spapr); 194 195 assert(spapr->vsmt); 196 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 197 } 198 199 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 200 int smt_threads) 201 { 202 int i, ret = 0; 203 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 204 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 205 int index = spapr_get_vcpu_id(cpu); 206 207 if (cpu->compat_pvr) { 208 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 209 if (ret < 0) { 210 return ret; 211 } 212 } 213 214 /* Build interrupt servers and gservers properties */ 215 for (i = 0; i < smt_threads; i++) { 216 servers_prop[i] = cpu_to_be32(index + i); 217 /* Hack, direct the group queues back to cpu 0 */ 218 gservers_prop[i*2] = cpu_to_be32(index + i); 219 gservers_prop[i*2 + 1] = 0; 220 } 221 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 222 servers_prop, sizeof(*servers_prop) * smt_threads); 223 if (ret < 0) { 224 return ret; 225 } 226 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 227 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 228 229 return ret; 230 } 231 232 static void spapr_dt_pa_features(SpaprMachineState *spapr, 233 PowerPCCPU *cpu, 234 void *fdt, int offset) 235 { 236 uint8_t pa_features_206[] = { 6, 0, 237 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 238 uint8_t pa_features_207[] = { 24, 0, 239 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 240 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 241 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 243 uint8_t pa_features_300[] = { 66, 0, 244 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 245 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 246 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 247 /* 6: DS207 */ 248 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 249 /* 16: Vector */ 250 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 251 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 252 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 253 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 254 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 255 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 256 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 257 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 258 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 259 /* 42: PM, 44: PC RA, 46: SC vec'd */ 260 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 261 /* 48: SIMD, 50: QP BFP, 52: String */ 262 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 263 /* 54: DecFP, 56: DecI, 58: SHA */ 264 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 265 /* 60: NM atomic, 62: RNG */ 266 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 267 }; 268 uint8_t *pa_features = NULL; 269 size_t pa_size; 270 271 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 272 pa_features = pa_features_206; 273 pa_size = sizeof(pa_features_206); 274 } 275 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 276 pa_features = pa_features_207; 277 pa_size = sizeof(pa_features_207); 278 } 279 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 280 pa_features = pa_features_300; 281 pa_size = sizeof(pa_features_300); 282 } 283 if (!pa_features) { 284 return; 285 } 286 287 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 288 /* 289 * Note: we keep CI large pages off by default because a 64K capable 290 * guest provisioned with large pages might otherwise try to map a qemu 291 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 292 * even if that qemu runs on a 4k host. 293 * We dd this bit back here if we are confident this is not an issue 294 */ 295 pa_features[3] |= 0x20; 296 } 297 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 298 pa_features[24] |= 0x80; /* Transactional memory support */ 299 } 300 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 301 /* Workaround for broken kernels that attempt (guest) radix 302 * mode when they can't handle it, if they see the radix bit set 303 * in pa-features. So hide it from them. */ 304 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 305 } 306 307 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 308 } 309 310 static hwaddr spapr_node0_size(MachineState *machine) 311 { 312 if (machine->numa_state->num_nodes) { 313 int i; 314 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 315 if (machine->numa_state->nodes[i].node_mem) { 316 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 317 machine->ram_size); 318 } 319 } 320 } 321 return machine->ram_size; 322 } 323 324 static void add_str(GString *s, const gchar *s1) 325 { 326 g_string_append_len(s, s1, strlen(s1) + 1); 327 } 328 329 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 330 hwaddr start, hwaddr size) 331 { 332 char mem_name[32]; 333 uint64_t mem_reg_property[2]; 334 int off; 335 336 mem_reg_property[0] = cpu_to_be64(start); 337 mem_reg_property[1] = cpu_to_be64(size); 338 339 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 340 off = fdt_add_subnode(fdt, 0, mem_name); 341 _FDT(off); 342 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 343 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 344 sizeof(mem_reg_property)))); 345 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 346 return off; 347 } 348 349 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 350 { 351 MemoryDeviceInfoList *info; 352 353 for (info = list; info; info = info->next) { 354 MemoryDeviceInfo *value = info->value; 355 356 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 357 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 358 359 if (addr >= pcdimm_info->addr && 360 addr < (pcdimm_info->addr + pcdimm_info->size)) { 361 return pcdimm_info->node; 362 } 363 } 364 } 365 366 return -1; 367 } 368 369 struct sPAPRDrconfCellV2 { 370 uint32_t seq_lmbs; 371 uint64_t base_addr; 372 uint32_t drc_index; 373 uint32_t aa_index; 374 uint32_t flags; 375 } QEMU_PACKED; 376 377 typedef struct DrconfCellQueue { 378 struct sPAPRDrconfCellV2 cell; 379 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 380 } DrconfCellQueue; 381 382 static DrconfCellQueue * 383 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 384 uint32_t drc_index, uint32_t aa_index, 385 uint32_t flags) 386 { 387 DrconfCellQueue *elem; 388 389 elem = g_malloc0(sizeof(*elem)); 390 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 391 elem->cell.base_addr = cpu_to_be64(base_addr); 392 elem->cell.drc_index = cpu_to_be32(drc_index); 393 elem->cell.aa_index = cpu_to_be32(aa_index); 394 elem->cell.flags = cpu_to_be32(flags); 395 396 return elem; 397 } 398 399 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 400 int offset, MemoryDeviceInfoList *dimms) 401 { 402 MachineState *machine = MACHINE(spapr); 403 uint8_t *int_buf, *cur_index; 404 int ret; 405 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 406 uint64_t addr, cur_addr, size; 407 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 408 uint64_t mem_end = machine->device_memory->base + 409 memory_region_size(&machine->device_memory->mr); 410 uint32_t node, buf_len, nr_entries = 0; 411 SpaprDrc *drc; 412 DrconfCellQueue *elem, *next; 413 MemoryDeviceInfoList *info; 414 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 415 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 416 417 /* Entry to cover RAM and the gap area */ 418 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 419 SPAPR_LMB_FLAGS_RESERVED | 420 SPAPR_LMB_FLAGS_DRC_INVALID); 421 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 422 nr_entries++; 423 424 cur_addr = machine->device_memory->base; 425 for (info = dimms; info; info = info->next) { 426 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 427 428 addr = di->addr; 429 size = di->size; 430 node = di->node; 431 432 /* 433 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 434 * area is marked hotpluggable in the next iteration for the bigger 435 * chunk including the NVDIMM occupied area. 436 */ 437 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 438 continue; 439 440 /* Entry for hot-pluggable area */ 441 if (cur_addr < addr) { 442 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 443 g_assert(drc); 444 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 445 cur_addr, spapr_drc_index(drc), -1, 0); 446 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 447 nr_entries++; 448 } 449 450 /* Entry for DIMM */ 451 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 452 g_assert(drc); 453 elem = spapr_get_drconf_cell(size / lmb_size, addr, 454 spapr_drc_index(drc), node, 455 (SPAPR_LMB_FLAGS_ASSIGNED | 456 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 457 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 458 nr_entries++; 459 cur_addr = addr + size; 460 } 461 462 /* Entry for remaining hotpluggable area */ 463 if (cur_addr < mem_end) { 464 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 465 g_assert(drc); 466 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 467 cur_addr, spapr_drc_index(drc), -1, 0); 468 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 469 nr_entries++; 470 } 471 472 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 473 int_buf = cur_index = g_malloc0(buf_len); 474 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 475 cur_index += sizeof(nr_entries); 476 477 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 478 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 479 cur_index += sizeof(elem->cell); 480 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 481 g_free(elem); 482 } 483 484 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 485 g_free(int_buf); 486 if (ret < 0) { 487 return -1; 488 } 489 return 0; 490 } 491 492 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 493 int offset, MemoryDeviceInfoList *dimms) 494 { 495 MachineState *machine = MACHINE(spapr); 496 int i, ret; 497 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 498 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 499 uint32_t nr_lmbs = (machine->device_memory->base + 500 memory_region_size(&machine->device_memory->mr)) / 501 lmb_size; 502 uint32_t *int_buf, *cur_index, buf_len; 503 504 /* 505 * Allocate enough buffer size to fit in ibm,dynamic-memory 506 */ 507 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 508 cur_index = int_buf = g_malloc0(buf_len); 509 int_buf[0] = cpu_to_be32(nr_lmbs); 510 cur_index++; 511 for (i = 0; i < nr_lmbs; i++) { 512 uint64_t addr = i * lmb_size; 513 uint32_t *dynamic_memory = cur_index; 514 515 if (i >= device_lmb_start) { 516 SpaprDrc *drc; 517 518 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 519 g_assert(drc); 520 521 dynamic_memory[0] = cpu_to_be32(addr >> 32); 522 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 523 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 524 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 525 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 526 if (memory_region_present(get_system_memory(), addr)) { 527 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 528 } else { 529 dynamic_memory[5] = cpu_to_be32(0); 530 } 531 } else { 532 /* 533 * LMB information for RMA, boot time RAM and gap b/n RAM and 534 * device memory region -- all these are marked as reserved 535 * and as having no valid DRC. 536 */ 537 dynamic_memory[0] = cpu_to_be32(addr >> 32); 538 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 539 dynamic_memory[2] = cpu_to_be32(0); 540 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 541 dynamic_memory[4] = cpu_to_be32(-1); 542 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 543 SPAPR_LMB_FLAGS_DRC_INVALID); 544 } 545 546 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 547 } 548 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 549 g_free(int_buf); 550 if (ret < 0) { 551 return -1; 552 } 553 return 0; 554 } 555 556 /* 557 * Adds ibm,dynamic-reconfiguration-memory node. 558 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 559 * of this device tree node. 560 */ 561 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 562 void *fdt) 563 { 564 MachineState *machine = MACHINE(spapr); 565 int ret, offset; 566 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 567 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 568 cpu_to_be32(lmb_size & 0xffffffff)}; 569 MemoryDeviceInfoList *dimms = NULL; 570 571 /* Don't create the node if there is no device memory. */ 572 if (!machine->device_memory) { 573 return 0; 574 } 575 576 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 577 578 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 579 sizeof(prop_lmb_size)); 580 if (ret < 0) { 581 return ret; 582 } 583 584 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 585 if (ret < 0) { 586 return ret; 587 } 588 589 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 590 if (ret < 0) { 591 return ret; 592 } 593 594 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 595 dimms = qmp_memory_device_list(); 596 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 597 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 598 } else { 599 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 600 } 601 qapi_free_MemoryDeviceInfoList(dimms); 602 603 if (ret < 0) { 604 return ret; 605 } 606 607 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 608 609 return ret; 610 } 611 612 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 613 { 614 MachineState *machine = MACHINE(spapr); 615 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 616 hwaddr mem_start, node_size; 617 int i, nb_nodes = machine->numa_state->num_nodes; 618 NodeInfo *nodes = machine->numa_state->nodes; 619 620 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 621 if (!nodes[i].node_mem) { 622 continue; 623 } 624 if (mem_start >= machine->ram_size) { 625 node_size = 0; 626 } else { 627 node_size = nodes[i].node_mem; 628 if (node_size > machine->ram_size - mem_start) { 629 node_size = machine->ram_size - mem_start; 630 } 631 } 632 if (!mem_start) { 633 /* spapr_machine_init() checks for rma_size <= node0_size 634 * already */ 635 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 636 mem_start += spapr->rma_size; 637 node_size -= spapr->rma_size; 638 } 639 for ( ; node_size; ) { 640 hwaddr sizetmp = pow2floor(node_size); 641 642 /* mem_start != 0 here */ 643 if (ctzl(mem_start) < ctzl(sizetmp)) { 644 sizetmp = 1ULL << ctzl(mem_start); 645 } 646 647 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 648 node_size -= sizetmp; 649 mem_start += sizetmp; 650 } 651 } 652 653 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 654 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 655 int ret; 656 657 g_assert(smc->dr_lmb_enabled); 658 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 659 if (ret) { 660 return ret; 661 } 662 } 663 664 return 0; 665 } 666 667 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 668 SpaprMachineState *spapr) 669 { 670 MachineState *ms = MACHINE(spapr); 671 PowerPCCPU *cpu = POWERPC_CPU(cs); 672 CPUPPCState *env = &cpu->env; 673 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 674 int index = spapr_get_vcpu_id(cpu); 675 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 676 0xffffffff, 0xffffffff}; 677 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 678 : SPAPR_TIMEBASE_FREQ; 679 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 680 uint32_t page_sizes_prop[64]; 681 size_t page_sizes_prop_size; 682 unsigned int smp_threads = ms->smp.threads; 683 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 684 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 685 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 686 SpaprDrc *drc; 687 int drc_index; 688 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 689 int i; 690 691 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 692 if (drc) { 693 drc_index = spapr_drc_index(drc); 694 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 695 } 696 697 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 698 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 699 700 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 701 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 702 env->dcache_line_size))); 703 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 704 env->dcache_line_size))); 705 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 706 env->icache_line_size))); 707 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 708 env->icache_line_size))); 709 710 if (pcc->l1_dcache_size) { 711 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 712 pcc->l1_dcache_size))); 713 } else { 714 warn_report("Unknown L1 dcache size for cpu"); 715 } 716 if (pcc->l1_icache_size) { 717 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 718 pcc->l1_icache_size))); 719 } else { 720 warn_report("Unknown L1 icache size for cpu"); 721 } 722 723 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 724 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 725 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 726 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 727 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 728 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 729 730 if (ppc_has_spr(cpu, SPR_PURR)) { 731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 732 } 733 if (ppc_has_spr(cpu, SPR_PURR)) { 734 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 735 } 736 737 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 738 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 739 segs, sizeof(segs)))); 740 } 741 742 /* Advertise VSX (vector extensions) if available 743 * 1 == VMX / Altivec available 744 * 2 == VSX available 745 * 746 * Only CPUs for which we create core types in spapr_cpu_core.c 747 * are possible, and all of those have VMX */ 748 if (env->insns_flags & PPC_ALTIVEC) { 749 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 750 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 751 } else { 752 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 753 } 754 } 755 756 /* Advertise DFP (Decimal Floating Point) if available 757 * 0 / no property == no DFP 758 * 1 == DFP available */ 759 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 760 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 761 } 762 763 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 764 sizeof(page_sizes_prop)); 765 if (page_sizes_prop_size) { 766 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 767 page_sizes_prop, page_sizes_prop_size))); 768 } 769 770 spapr_dt_pa_features(spapr, cpu, fdt, offset); 771 772 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 773 cs->cpu_index / vcpus_per_socket))); 774 775 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 776 pft_size_prop, sizeof(pft_size_prop)))); 777 778 if (ms->numa_state->num_nodes > 1) { 779 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 780 } 781 782 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 783 784 if (pcc->radix_page_info) { 785 for (i = 0; i < pcc->radix_page_info->count; i++) { 786 radix_AP_encodings[i] = 787 cpu_to_be32(pcc->radix_page_info->entries[i]); 788 } 789 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 790 radix_AP_encodings, 791 pcc->radix_page_info->count * 792 sizeof(radix_AP_encodings[0])))); 793 } 794 795 /* 796 * We set this property to let the guest know that it can use the large 797 * decrementer and its width in bits. 798 */ 799 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 800 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 801 pcc->lrg_decr_bits))); 802 } 803 804 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs, 805 int cpus_offset) 806 { 807 PowerPCCPU *cpu = POWERPC_CPU(cs); 808 int index = spapr_get_vcpu_id(cpu); 809 DeviceClass *dc = DEVICE_GET_CLASS(cs); 810 g_autofree char *nodename = NULL; 811 int offset; 812 813 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 814 return; 815 } 816 817 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 818 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 819 _FDT(offset); 820 spapr_dt_cpu(cs, fdt, offset, spapr); 821 } 822 823 824 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 825 { 826 CPUState **rev; 827 CPUState *cs; 828 int n_cpus; 829 int cpus_offset; 830 int i; 831 832 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 833 _FDT(cpus_offset); 834 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 835 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 836 837 /* 838 * We walk the CPUs in reverse order to ensure that CPU DT nodes 839 * created by fdt_add_subnode() end up in the right order in FDT 840 * for the guest kernel the enumerate the CPUs correctly. 841 * 842 * The CPU list cannot be traversed in reverse order, so we need 843 * to do extra work. 844 */ 845 n_cpus = 0; 846 rev = NULL; 847 CPU_FOREACH(cs) { 848 rev = g_renew(CPUState *, rev, n_cpus + 1); 849 rev[n_cpus++] = cs; 850 } 851 852 for (i = n_cpus - 1; i >= 0; i--) { 853 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset); 854 } 855 856 g_free(rev); 857 } 858 859 static int spapr_dt_rng(void *fdt) 860 { 861 int node; 862 int ret; 863 864 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 865 if (node <= 0) { 866 return -1; 867 } 868 ret = fdt_setprop_string(fdt, node, "device_type", 869 "ibm,platform-facilities"); 870 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 871 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 872 873 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 874 if (node <= 0) { 875 return -1; 876 } 877 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 878 879 return ret ? -1 : 0; 880 } 881 882 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 883 { 884 MachineState *ms = MACHINE(spapr); 885 int rtas; 886 GString *hypertas = g_string_sized_new(256); 887 GString *qemu_hypertas = g_string_sized_new(256); 888 uint32_t lrdr_capacity[] = { 889 0, 890 0, 891 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 892 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 893 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 894 }; 895 896 /* Do we have device memory? */ 897 if (MACHINE(spapr)->device_memory) { 898 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 899 memory_region_size(&MACHINE(spapr)->device_memory->mr); 900 901 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 902 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 903 } 904 905 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 906 907 /* hypertas */ 908 add_str(hypertas, "hcall-pft"); 909 add_str(hypertas, "hcall-term"); 910 add_str(hypertas, "hcall-dabr"); 911 add_str(hypertas, "hcall-interrupt"); 912 add_str(hypertas, "hcall-tce"); 913 add_str(hypertas, "hcall-vio"); 914 add_str(hypertas, "hcall-splpar"); 915 add_str(hypertas, "hcall-join"); 916 add_str(hypertas, "hcall-bulk"); 917 add_str(hypertas, "hcall-set-mode"); 918 add_str(hypertas, "hcall-sprg0"); 919 add_str(hypertas, "hcall-copy"); 920 add_str(hypertas, "hcall-debug"); 921 add_str(hypertas, "hcall-vphn"); 922 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 923 add_str(hypertas, "hcall-rpt-invalidate"); 924 } 925 926 add_str(qemu_hypertas, "hcall-memop1"); 927 928 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 929 add_str(hypertas, "hcall-multi-tce"); 930 } 931 932 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 933 add_str(hypertas, "hcall-hpt-resize"); 934 } 935 936 add_str(hypertas, "hcall-watchdog"); 937 938 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 939 hypertas->str, hypertas->len)); 940 g_string_free(hypertas, TRUE); 941 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 942 qemu_hypertas->str, qemu_hypertas->len)); 943 g_string_free(qemu_hypertas, TRUE); 944 945 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 946 947 /* 948 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 949 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 950 * 951 * The system reset requirements are driven by existing Linux and PowerVM 952 * implementation which (contrary to PAPR) saves r3 in the error log 953 * structure like machine check, so Linux expects to find the saved r3 954 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 955 * does not look at the error value). 956 * 957 * System reset interrupts are not subject to interlock like machine 958 * check, so this memory area could be corrupted if the sreset is 959 * interrupted by a machine check (or vice versa) if it was shared. To 960 * prevent this, system reset uses per-CPU areas for the sreset save 961 * area. A system reset that interrupts a system reset handler could 962 * still overwrite this area, but Linux doesn't try to recover in that 963 * case anyway. 964 * 965 * The extra 8 bytes is required because Linux's FWNMI error log check 966 * is off-by-one. 967 * 968 * RTAS_MIN_SIZE is required for the RTAS blob itself. 969 */ 970 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 971 RTAS_ERROR_LOG_MAX + 972 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 973 sizeof(uint64_t))); 974 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 975 RTAS_ERROR_LOG_MAX)); 976 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 977 RTAS_EVENT_SCAN_RATE)); 978 979 g_assert(msi_nonbroken); 980 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 981 982 /* 983 * According to PAPR, rtas ibm,os-term does not guarantee a return 984 * back to the guest cpu. 985 * 986 * While an additional ibm,extended-os-term property indicates 987 * that rtas call return will always occur. Set this property. 988 */ 989 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 990 991 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 992 lrdr_capacity, sizeof(lrdr_capacity))); 993 994 spapr_dt_rtas_tokens(fdt, rtas); 995 } 996 997 /* 998 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 999 * and the XIVE features that the guest may request and thus the valid 1000 * values for bytes 23..26 of option vector 5: 1001 */ 1002 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1003 int chosen) 1004 { 1005 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1006 1007 char val[2 * 4] = { 1008 23, 0x00, /* XICS / XIVE mode */ 1009 24, 0x00, /* Hash/Radix, filled in below. */ 1010 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1011 26, 0x40, /* Radix options: GTSE == yes. */ 1012 }; 1013 1014 if (spapr->irq->xics && spapr->irq->xive) { 1015 val[1] = SPAPR_OV5_XIVE_BOTH; 1016 } else if (spapr->irq->xive) { 1017 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1018 } else { 1019 assert(spapr->irq->xics); 1020 val[1] = SPAPR_OV5_XIVE_LEGACY; 1021 } 1022 1023 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1024 first_ppc_cpu->compat_pvr)) { 1025 /* 1026 * If we're in a pre POWER9 compat mode then the guest should 1027 * do hash and use the legacy interrupt mode 1028 */ 1029 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1030 val[3] = 0x00; /* Hash */ 1031 spapr_check_mmu_mode(false); 1032 } else if (kvm_enabled()) { 1033 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1034 val[3] = 0x80; /* OV5_MMU_BOTH */ 1035 } else if (kvmppc_has_cap_mmu_radix()) { 1036 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1037 } else { 1038 val[3] = 0x00; /* Hash */ 1039 } 1040 } else { 1041 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1042 val[3] = 0xC0; 1043 } 1044 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1045 val, sizeof(val))); 1046 } 1047 1048 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1049 { 1050 MachineState *machine = MACHINE(spapr); 1051 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1052 int chosen; 1053 1054 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1055 1056 if (reset) { 1057 const char *boot_device = spapr->boot_device; 1058 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1059 size_t cb = 0; 1060 g_autofree char *bootlist = get_boot_devices_list(&cb); 1061 1062 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1063 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1064 machine->kernel_cmdline)); 1065 } 1066 1067 if (spapr->initrd_size) { 1068 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1069 spapr->initrd_base)); 1070 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1071 spapr->initrd_base + spapr->initrd_size)); 1072 } 1073 1074 if (spapr->kernel_size) { 1075 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1076 cpu_to_be64(spapr->kernel_size) }; 1077 1078 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1079 &kprop, sizeof(kprop))); 1080 if (spapr->kernel_le) { 1081 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1082 } 1083 } 1084 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1085 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1086 } 1087 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1088 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1089 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1090 1091 if (cb && bootlist) { 1092 int i; 1093 1094 for (i = 0; i < cb; i++) { 1095 if (bootlist[i] == '\n') { 1096 bootlist[i] = ' '; 1097 } 1098 } 1099 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1100 } 1101 1102 if (boot_device && strlen(boot_device)) { 1103 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1104 } 1105 1106 if (spapr->want_stdout_path && stdout_path) { 1107 /* 1108 * "linux,stdout-path" and "stdout" properties are 1109 * deprecated by linux kernel. New platforms should only 1110 * use the "stdout-path" property. Set the new property 1111 * and continue using older property to remain compatible 1112 * with the existing firmware. 1113 */ 1114 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1115 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1116 } 1117 1118 /* 1119 * We can deal with BAR reallocation just fine, advertise it 1120 * to the guest 1121 */ 1122 if (smc->linux_pci_probe) { 1123 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1124 } 1125 1126 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1127 } 1128 1129 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); 1130 1131 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1132 } 1133 1134 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1135 { 1136 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1137 * KVM to work under pHyp with some guest co-operation */ 1138 int hypervisor; 1139 uint8_t hypercall[16]; 1140 1141 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1142 /* indicate KVM hypercall interface */ 1143 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1144 if (kvmppc_has_cap_fixup_hcalls()) { 1145 /* 1146 * Older KVM versions with older guest kernels were broken 1147 * with the magic page, don't allow the guest to map it. 1148 */ 1149 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall, 1150 sizeof(hypercall))) { 1151 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1152 hypercall, sizeof(hypercall))); 1153 } 1154 } 1155 } 1156 1157 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1158 { 1159 MachineState *machine = MACHINE(spapr); 1160 MachineClass *mc = MACHINE_GET_CLASS(machine); 1161 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1162 uint32_t root_drc_type_mask = 0; 1163 int ret; 1164 void *fdt; 1165 SpaprPhbState *phb; 1166 char *buf; 1167 1168 fdt = g_malloc0(space); 1169 _FDT((fdt_create_empty_tree(fdt, space))); 1170 1171 /* Root node */ 1172 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1173 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1174 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1175 1176 /* Guest UUID & Name*/ 1177 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1178 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1179 if (qemu_uuid_set) { 1180 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1181 } 1182 g_free(buf); 1183 1184 if (qemu_get_vm_name()) { 1185 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1186 qemu_get_vm_name())); 1187 } 1188 1189 /* Host Model & Serial Number */ 1190 if (spapr->host_model) { 1191 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1192 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1193 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1194 g_free(buf); 1195 } 1196 1197 if (spapr->host_serial) { 1198 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1199 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1200 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1201 g_free(buf); 1202 } 1203 1204 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1205 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1206 1207 /* /interrupt controller */ 1208 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1209 1210 ret = spapr_dt_memory(spapr, fdt); 1211 if (ret < 0) { 1212 error_report("couldn't setup memory nodes in fdt"); 1213 exit(1); 1214 } 1215 1216 /* /vdevice */ 1217 spapr_dt_vdevice(spapr->vio_bus, fdt); 1218 1219 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1220 ret = spapr_dt_rng(fdt); 1221 if (ret < 0) { 1222 error_report("could not set up rng device in the fdt"); 1223 exit(1); 1224 } 1225 } 1226 1227 QLIST_FOREACH(phb, &spapr->phbs, list) { 1228 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1229 if (ret < 0) { 1230 error_report("couldn't setup PCI devices in fdt"); 1231 exit(1); 1232 } 1233 } 1234 1235 spapr_dt_cpus(fdt, spapr); 1236 1237 /* ibm,drc-indexes and friends */ 1238 if (smc->dr_lmb_enabled) { 1239 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1240 } 1241 if (smc->dr_phb_enabled) { 1242 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1243 } 1244 if (mc->nvdimm_supported) { 1245 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1246 } 1247 if (root_drc_type_mask) { 1248 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1249 } 1250 1251 if (mc->has_hotpluggable_cpus) { 1252 int offset = fdt_path_offset(fdt, "/cpus"); 1253 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1254 if (ret < 0) { 1255 error_report("Couldn't set up CPU DR device tree properties"); 1256 exit(1); 1257 } 1258 } 1259 1260 /* /event-sources */ 1261 spapr_dt_events(spapr, fdt); 1262 1263 /* /rtas */ 1264 spapr_dt_rtas(spapr, fdt); 1265 1266 /* /chosen */ 1267 spapr_dt_chosen(spapr, fdt, reset); 1268 1269 /* /hypervisor */ 1270 if (kvm_enabled()) { 1271 spapr_dt_hypervisor(spapr, fdt); 1272 } 1273 1274 /* Build memory reserve map */ 1275 if (reset) { 1276 if (spapr->kernel_size) { 1277 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1278 spapr->kernel_size))); 1279 } 1280 if (spapr->initrd_size) { 1281 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1282 spapr->initrd_size))); 1283 } 1284 } 1285 1286 /* NVDIMM devices */ 1287 if (mc->nvdimm_supported) { 1288 spapr_dt_persistent_memory(spapr, fdt); 1289 } 1290 1291 return fdt; 1292 } 1293 1294 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1295 { 1296 SpaprMachineState *spapr = opaque; 1297 1298 return (addr & 0x0fffffff) + spapr->kernel_addr; 1299 } 1300 1301 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1302 PowerPCCPU *cpu) 1303 { 1304 CPUPPCState *env = &cpu->env; 1305 1306 /* The TCG path should also be holding the BQL at this point */ 1307 g_assert(qemu_mutex_iothread_locked()); 1308 1309 g_assert(!vhyp_cpu_in_nested(cpu)); 1310 1311 if (FIELD_EX64(env->msr, MSR, PR)) { 1312 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1313 env->gpr[3] = H_PRIVILEGE; 1314 } else { 1315 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1316 } 1317 } 1318 1319 struct LPCRSyncState { 1320 target_ulong value; 1321 target_ulong mask; 1322 }; 1323 1324 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1325 { 1326 struct LPCRSyncState *s = arg.host_ptr; 1327 PowerPCCPU *cpu = POWERPC_CPU(cs); 1328 CPUPPCState *env = &cpu->env; 1329 target_ulong lpcr; 1330 1331 cpu_synchronize_state(cs); 1332 lpcr = env->spr[SPR_LPCR]; 1333 lpcr &= ~s->mask; 1334 lpcr |= s->value; 1335 ppc_store_lpcr(cpu, lpcr); 1336 } 1337 1338 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1339 { 1340 CPUState *cs; 1341 struct LPCRSyncState s = { 1342 .value = value, 1343 .mask = mask 1344 }; 1345 CPU_FOREACH(cs) { 1346 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1347 } 1348 } 1349 1350 /* May be used when the machine is not running */ 1351 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1352 { 1353 CPUState *cs; 1354 CPU_FOREACH(cs) { 1355 PowerPCCPU *cpu = POWERPC_CPU(cs); 1356 CPUPPCState *env = &cpu->env; 1357 target_ulong lpcr; 1358 1359 lpcr = env->spr[SPR_LPCR]; 1360 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1361 ppc_store_lpcr(cpu, lpcr); 1362 } 1363 } 1364 1365 1366 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1367 target_ulong lpid, ppc_v3_pate_t *entry) 1368 { 1369 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1370 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1371 1372 if (!spapr_cpu->in_nested) { 1373 assert(lpid == 0); 1374 1375 /* Copy PATE1:GR into PATE0:HR */ 1376 entry->dw0 = spapr->patb_entry & PATE0_HR; 1377 entry->dw1 = spapr->patb_entry; 1378 1379 } else { 1380 uint64_t patb, pats; 1381 1382 assert(lpid != 0); 1383 1384 patb = spapr->nested_ptcr & PTCR_PATB; 1385 pats = spapr->nested_ptcr & PTCR_PATS; 1386 1387 /* Check if partition table is properly aligned */ 1388 if (patb & MAKE_64BIT_MASK(0, pats + 12)) { 1389 return false; 1390 } 1391 1392 /* Calculate number of entries */ 1393 pats = 1ull << (pats + 12 - 4); 1394 if (pats <= lpid) { 1395 return false; 1396 } 1397 1398 /* Grab entry */ 1399 patb += 16 * lpid; 1400 entry->dw0 = ldq_phys(CPU(cpu)->as, patb); 1401 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8); 1402 } 1403 1404 return true; 1405 } 1406 1407 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1408 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1409 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1410 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1411 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1412 1413 /* 1414 * Get the fd to access the kernel htab, re-opening it if necessary 1415 */ 1416 static int get_htab_fd(SpaprMachineState *spapr) 1417 { 1418 Error *local_err = NULL; 1419 1420 if (spapr->htab_fd >= 0) { 1421 return spapr->htab_fd; 1422 } 1423 1424 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1425 if (spapr->htab_fd < 0) { 1426 error_report_err(local_err); 1427 } 1428 1429 return spapr->htab_fd; 1430 } 1431 1432 void close_htab_fd(SpaprMachineState *spapr) 1433 { 1434 if (spapr->htab_fd >= 0) { 1435 close(spapr->htab_fd); 1436 } 1437 spapr->htab_fd = -1; 1438 } 1439 1440 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1441 { 1442 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1443 1444 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1445 } 1446 1447 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1448 { 1449 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1450 1451 assert(kvm_enabled()); 1452 1453 if (!spapr->htab) { 1454 return 0; 1455 } 1456 1457 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1458 } 1459 1460 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1461 hwaddr ptex, int n) 1462 { 1463 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1464 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1465 1466 if (!spapr->htab) { 1467 /* 1468 * HTAB is controlled by KVM. Fetch into temporary buffer 1469 */ 1470 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1471 kvmppc_read_hptes(hptes, ptex, n); 1472 return hptes; 1473 } 1474 1475 /* 1476 * HTAB is controlled by QEMU. Just point to the internally 1477 * accessible PTEG. 1478 */ 1479 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1480 } 1481 1482 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1483 const ppc_hash_pte64_t *hptes, 1484 hwaddr ptex, int n) 1485 { 1486 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1487 1488 if (!spapr->htab) { 1489 g_free((void *)hptes); 1490 } 1491 1492 /* Nothing to do for qemu managed HPT */ 1493 } 1494 1495 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1496 uint64_t pte0, uint64_t pte1) 1497 { 1498 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1499 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1500 1501 if (!spapr->htab) { 1502 kvmppc_write_hpte(ptex, pte0, pte1); 1503 } else { 1504 if (pte0 & HPTE64_V_VALID) { 1505 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1506 /* 1507 * When setting valid, we write PTE1 first. This ensures 1508 * proper synchronization with the reading code in 1509 * ppc_hash64_pteg_search() 1510 */ 1511 smp_wmb(); 1512 stq_p(spapr->htab + offset, pte0); 1513 } else { 1514 stq_p(spapr->htab + offset, pte0); 1515 /* 1516 * When clearing it we set PTE0 first. This ensures proper 1517 * synchronization with the reading code in 1518 * ppc_hash64_pteg_search() 1519 */ 1520 smp_wmb(); 1521 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1522 } 1523 } 1524 } 1525 1526 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1527 uint64_t pte1) 1528 { 1529 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1530 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1531 1532 if (!spapr->htab) { 1533 /* There should always be a hash table when this is called */ 1534 error_report("spapr_hpte_set_c called with no hash table !"); 1535 return; 1536 } 1537 1538 /* The HW performs a non-atomic byte update */ 1539 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1540 } 1541 1542 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1543 uint64_t pte1) 1544 { 1545 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1546 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1547 1548 if (!spapr->htab) { 1549 /* There should always be a hash table when this is called */ 1550 error_report("spapr_hpte_set_r called with no hash table !"); 1551 return; 1552 } 1553 1554 /* The HW performs a non-atomic byte update */ 1555 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1556 } 1557 1558 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1559 { 1560 int shift; 1561 1562 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1563 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1564 * that's much more than is needed for Linux guests */ 1565 shift = ctz64(pow2ceil(ramsize)) - 7; 1566 shift = MAX(shift, 18); /* Minimum architected size */ 1567 shift = MIN(shift, 46); /* Maximum architected size */ 1568 return shift; 1569 } 1570 1571 void spapr_free_hpt(SpaprMachineState *spapr) 1572 { 1573 qemu_vfree(spapr->htab); 1574 spapr->htab = NULL; 1575 spapr->htab_shift = 0; 1576 close_htab_fd(spapr); 1577 } 1578 1579 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1580 { 1581 ERRP_GUARD(); 1582 long rc; 1583 1584 /* Clean up any HPT info from a previous boot */ 1585 spapr_free_hpt(spapr); 1586 1587 rc = kvmppc_reset_htab(shift); 1588 1589 if (rc == -EOPNOTSUPP) { 1590 error_setg(errp, "HPT not supported in nested guests"); 1591 return -EOPNOTSUPP; 1592 } 1593 1594 if (rc < 0) { 1595 /* kernel-side HPT needed, but couldn't allocate one */ 1596 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1597 shift); 1598 error_append_hint(errp, "Try smaller maxmem?\n"); 1599 return -errno; 1600 } else if (rc > 0) { 1601 /* kernel-side HPT allocated */ 1602 if (rc != shift) { 1603 error_setg(errp, 1604 "Requested order %d HPT, but kernel allocated order %ld", 1605 shift, rc); 1606 error_append_hint(errp, "Try smaller maxmem?\n"); 1607 return -ENOSPC; 1608 } 1609 1610 spapr->htab_shift = shift; 1611 spapr->htab = NULL; 1612 } else { 1613 /* kernel-side HPT not needed, allocate in userspace instead */ 1614 size_t size = 1ULL << shift; 1615 int i; 1616 1617 spapr->htab = qemu_memalign(size, size); 1618 memset(spapr->htab, 0, size); 1619 spapr->htab_shift = shift; 1620 1621 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1622 DIRTY_HPTE(HPTE(spapr->htab, i)); 1623 } 1624 } 1625 /* We're setting up a hash table, so that means we're not radix */ 1626 spapr->patb_entry = 0; 1627 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1628 return 0; 1629 } 1630 1631 void spapr_setup_hpt(SpaprMachineState *spapr) 1632 { 1633 int hpt_shift; 1634 1635 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1636 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1637 } else { 1638 uint64_t current_ram_size; 1639 1640 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1641 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1642 } 1643 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1644 1645 if (kvm_enabled()) { 1646 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1647 1648 /* Check our RMA fits in the possible VRMA */ 1649 if (vrma_limit < spapr->rma_size) { 1650 error_report("Unable to create %" HWADDR_PRIu 1651 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1652 spapr->rma_size / MiB, vrma_limit / MiB); 1653 exit(EXIT_FAILURE); 1654 } 1655 } 1656 } 1657 1658 void spapr_check_mmu_mode(bool guest_radix) 1659 { 1660 if (guest_radix) { 1661 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1662 error_report("Guest requested unavailable MMU mode (radix)."); 1663 exit(EXIT_FAILURE); 1664 } 1665 } else { 1666 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1667 && !kvmppc_has_cap_mmu_hash_v3()) { 1668 error_report("Guest requested unavailable MMU mode (hash)."); 1669 exit(EXIT_FAILURE); 1670 } 1671 } 1672 } 1673 1674 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1675 { 1676 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1677 PowerPCCPU *first_ppc_cpu; 1678 hwaddr fdt_addr; 1679 void *fdt; 1680 int rc; 1681 1682 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) { 1683 /* 1684 * Record-replay snapshot load must not consume random, this was 1685 * already replayed from initial machine reset. 1686 */ 1687 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); 1688 } 1689 1690 pef_kvm_reset(machine->cgs, &error_fatal); 1691 spapr_caps_apply(spapr); 1692 1693 first_ppc_cpu = POWERPC_CPU(first_cpu); 1694 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1695 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1696 spapr->max_compat_pvr)) { 1697 /* 1698 * If using KVM with radix mode available, VCPUs can be started 1699 * without a HPT because KVM will start them in radix mode. 1700 * Set the GR bit in PATE so that we know there is no HPT. 1701 */ 1702 spapr->patb_entry = PATE1_GR; 1703 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1704 } else { 1705 spapr_setup_hpt(spapr); 1706 } 1707 1708 qemu_devices_reset(reason); 1709 1710 spapr_ovec_cleanup(spapr->ov5_cas); 1711 spapr->ov5_cas = spapr_ovec_new(); 1712 1713 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1714 1715 /* 1716 * This is fixing some of the default configuration of the XIVE 1717 * devices. To be called after the reset of the machine devices. 1718 */ 1719 spapr_irq_reset(spapr, &error_fatal); 1720 1721 /* 1722 * There is no CAS under qtest. Simulate one to please the code that 1723 * depends on spapr->ov5_cas. This is especially needed to test device 1724 * unplug, so we do that before resetting the DRCs. 1725 */ 1726 if (qtest_enabled()) { 1727 spapr_ovec_cleanup(spapr->ov5_cas); 1728 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1729 } 1730 1731 spapr_nvdimm_finish_flushes(); 1732 1733 /* DRC reset may cause a device to be unplugged. This will cause troubles 1734 * if this device is used by another device (eg, a running vhost backend 1735 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1736 * situations, we reset DRCs after all devices have been reset. 1737 */ 1738 spapr_drc_reset_all(spapr); 1739 1740 spapr_clear_pending_events(spapr); 1741 1742 /* 1743 * We place the device tree just below either the top of the RMA, 1744 * or just below 2GB, whichever is lower, so that it can be 1745 * processed with 32-bit real mode code if necessary 1746 */ 1747 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1748 1749 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1750 if (spapr->vof) { 1751 spapr_vof_reset(spapr, fdt, &error_fatal); 1752 /* 1753 * Do not pack the FDT as the client may change properties. 1754 * VOF client does not expect the FDT so we do not load it to the VM. 1755 */ 1756 } else { 1757 rc = fdt_pack(fdt); 1758 /* Should only fail if we've built a corrupted tree */ 1759 assert(rc == 0); 1760 1761 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1762 0, fdt_addr, 0); 1763 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1764 } 1765 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1766 1767 g_free(spapr->fdt_blob); 1768 spapr->fdt_size = fdt_totalsize(fdt); 1769 spapr->fdt_initial_size = spapr->fdt_size; 1770 spapr->fdt_blob = fdt; 1771 1772 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1773 machine->fdt = fdt; 1774 1775 /* Set up the entry state */ 1776 first_ppc_cpu->env.gpr[5] = 0; 1777 1778 spapr->fwnmi_system_reset_addr = -1; 1779 spapr->fwnmi_machine_check_addr = -1; 1780 spapr->fwnmi_machine_check_interlock = -1; 1781 1782 /* Signal all vCPUs waiting on this condition */ 1783 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1784 1785 migrate_del_blocker(&spapr->fwnmi_migration_blocker); 1786 } 1787 1788 static void spapr_create_nvram(SpaprMachineState *spapr) 1789 { 1790 DeviceState *dev = qdev_new("spapr-nvram"); 1791 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1792 1793 if (dinfo) { 1794 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1795 &error_fatal); 1796 } 1797 1798 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1799 1800 spapr->nvram = (struct SpaprNvram *)dev; 1801 } 1802 1803 static void spapr_rtc_create(SpaprMachineState *spapr) 1804 { 1805 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1806 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1807 &error_fatal, NULL); 1808 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1809 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1810 "date"); 1811 } 1812 1813 /* Returns whether we want to use VGA or not */ 1814 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1815 { 1816 vga_interface_created = true; 1817 switch (vga_interface_type) { 1818 case VGA_NONE: 1819 return false; 1820 case VGA_DEVICE: 1821 return true; 1822 case VGA_STD: 1823 case VGA_VIRTIO: 1824 case VGA_CIRRUS: 1825 return pci_vga_init(pci_bus) != NULL; 1826 default: 1827 error_setg(errp, 1828 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1829 return false; 1830 } 1831 } 1832 1833 static int spapr_pre_load(void *opaque) 1834 { 1835 int rc; 1836 1837 rc = spapr_caps_pre_load(opaque); 1838 if (rc) { 1839 return rc; 1840 } 1841 1842 return 0; 1843 } 1844 1845 static int spapr_post_load(void *opaque, int version_id) 1846 { 1847 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1848 int err = 0; 1849 1850 err = spapr_caps_post_migration(spapr); 1851 if (err) { 1852 return err; 1853 } 1854 1855 /* 1856 * In earlier versions, there was no separate qdev for the PAPR 1857 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1858 * So when migrating from those versions, poke the incoming offset 1859 * value into the RTC device 1860 */ 1861 if (version_id < 3) { 1862 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1863 if (err) { 1864 return err; 1865 } 1866 } 1867 1868 if (kvm_enabled() && spapr->patb_entry) { 1869 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1870 bool radix = !!(spapr->patb_entry & PATE1_GR); 1871 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1872 1873 /* 1874 * Update LPCR:HR and UPRT as they may not be set properly in 1875 * the stream 1876 */ 1877 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1878 LPCR_HR | LPCR_UPRT); 1879 1880 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1881 if (err) { 1882 error_report("Process table config unsupported by the host"); 1883 return -EINVAL; 1884 } 1885 } 1886 1887 err = spapr_irq_post_load(spapr, version_id); 1888 if (err) { 1889 return err; 1890 } 1891 1892 return err; 1893 } 1894 1895 static int spapr_pre_save(void *opaque) 1896 { 1897 int rc; 1898 1899 rc = spapr_caps_pre_save(opaque); 1900 if (rc) { 1901 return rc; 1902 } 1903 1904 return 0; 1905 } 1906 1907 static bool version_before_3(void *opaque, int version_id) 1908 { 1909 return version_id < 3; 1910 } 1911 1912 static bool spapr_pending_events_needed(void *opaque) 1913 { 1914 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1915 return !QTAILQ_EMPTY(&spapr->pending_events); 1916 } 1917 1918 static const VMStateDescription vmstate_spapr_event_entry = { 1919 .name = "spapr_event_log_entry", 1920 .version_id = 1, 1921 .minimum_version_id = 1, 1922 .fields = (const VMStateField[]) { 1923 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1924 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1925 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1926 NULL, extended_length), 1927 VMSTATE_END_OF_LIST() 1928 }, 1929 }; 1930 1931 static const VMStateDescription vmstate_spapr_pending_events = { 1932 .name = "spapr_pending_events", 1933 .version_id = 1, 1934 .minimum_version_id = 1, 1935 .needed = spapr_pending_events_needed, 1936 .fields = (const VMStateField[]) { 1937 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1938 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1939 VMSTATE_END_OF_LIST() 1940 }, 1941 }; 1942 1943 static bool spapr_ov5_cas_needed(void *opaque) 1944 { 1945 SpaprMachineState *spapr = opaque; 1946 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1947 bool cas_needed; 1948 1949 /* Prior to the introduction of SpaprOptionVector, we had two option 1950 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1951 * Both of these options encode machine topology into the device-tree 1952 * in such a way that the now-booted OS should still be able to interact 1953 * appropriately with QEMU regardless of what options were actually 1954 * negotiatied on the source side. 1955 * 1956 * As such, we can avoid migrating the CAS-negotiated options if these 1957 * are the only options available on the current machine/platform. 1958 * Since these are the only options available for pseries-2.7 and 1959 * earlier, this allows us to maintain old->new/new->old migration 1960 * compatibility. 1961 * 1962 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1963 * via default pseries-2.8 machines and explicit command-line parameters. 1964 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1965 * of the actual CAS-negotiated values to continue working properly. For 1966 * example, availability of memory unplug depends on knowing whether 1967 * OV5_HP_EVT was negotiated via CAS. 1968 * 1969 * Thus, for any cases where the set of available CAS-negotiatable 1970 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1971 * include the CAS-negotiated options in the migration stream, unless 1972 * if they affect boot time behaviour only. 1973 */ 1974 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1975 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1976 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1977 1978 /* We need extra information if we have any bits outside the mask 1979 * defined above */ 1980 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1981 1982 spapr_ovec_cleanup(ov5_mask); 1983 1984 return cas_needed; 1985 } 1986 1987 static const VMStateDescription vmstate_spapr_ov5_cas = { 1988 .name = "spapr_option_vector_ov5_cas", 1989 .version_id = 1, 1990 .minimum_version_id = 1, 1991 .needed = spapr_ov5_cas_needed, 1992 .fields = (const VMStateField[]) { 1993 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1994 vmstate_spapr_ovec, SpaprOptionVector), 1995 VMSTATE_END_OF_LIST() 1996 }, 1997 }; 1998 1999 static bool spapr_patb_entry_needed(void *opaque) 2000 { 2001 SpaprMachineState *spapr = opaque; 2002 2003 return !!spapr->patb_entry; 2004 } 2005 2006 static const VMStateDescription vmstate_spapr_patb_entry = { 2007 .name = "spapr_patb_entry", 2008 .version_id = 1, 2009 .minimum_version_id = 1, 2010 .needed = spapr_patb_entry_needed, 2011 .fields = (const VMStateField[]) { 2012 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2013 VMSTATE_END_OF_LIST() 2014 }, 2015 }; 2016 2017 static bool spapr_irq_map_needed(void *opaque) 2018 { 2019 SpaprMachineState *spapr = opaque; 2020 2021 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2022 } 2023 2024 static const VMStateDescription vmstate_spapr_irq_map = { 2025 .name = "spapr_irq_map", 2026 .version_id = 1, 2027 .minimum_version_id = 1, 2028 .needed = spapr_irq_map_needed, 2029 .fields = (const VMStateField[]) { 2030 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2031 VMSTATE_END_OF_LIST() 2032 }, 2033 }; 2034 2035 static bool spapr_dtb_needed(void *opaque) 2036 { 2037 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2038 2039 return smc->update_dt_enabled; 2040 } 2041 2042 static int spapr_dtb_pre_load(void *opaque) 2043 { 2044 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2045 2046 g_free(spapr->fdt_blob); 2047 spapr->fdt_blob = NULL; 2048 spapr->fdt_size = 0; 2049 2050 return 0; 2051 } 2052 2053 static const VMStateDescription vmstate_spapr_dtb = { 2054 .name = "spapr_dtb", 2055 .version_id = 1, 2056 .minimum_version_id = 1, 2057 .needed = spapr_dtb_needed, 2058 .pre_load = spapr_dtb_pre_load, 2059 .fields = (const VMStateField[]) { 2060 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2061 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2062 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2063 fdt_size), 2064 VMSTATE_END_OF_LIST() 2065 }, 2066 }; 2067 2068 static bool spapr_fwnmi_needed(void *opaque) 2069 { 2070 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2071 2072 return spapr->fwnmi_machine_check_addr != -1; 2073 } 2074 2075 static int spapr_fwnmi_pre_save(void *opaque) 2076 { 2077 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2078 2079 /* 2080 * Check if machine check handling is in progress and print a 2081 * warning message. 2082 */ 2083 if (spapr->fwnmi_machine_check_interlock != -1) { 2084 warn_report("A machine check is being handled during migration. The" 2085 "handler may run and log hardware error on the destination"); 2086 } 2087 2088 return 0; 2089 } 2090 2091 static const VMStateDescription vmstate_spapr_fwnmi = { 2092 .name = "spapr_fwnmi", 2093 .version_id = 1, 2094 .minimum_version_id = 1, 2095 .needed = spapr_fwnmi_needed, 2096 .pre_save = spapr_fwnmi_pre_save, 2097 .fields = (const VMStateField[]) { 2098 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2099 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2100 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2101 VMSTATE_END_OF_LIST() 2102 }, 2103 }; 2104 2105 static const VMStateDescription vmstate_spapr = { 2106 .name = "spapr", 2107 .version_id = 3, 2108 .minimum_version_id = 1, 2109 .pre_load = spapr_pre_load, 2110 .post_load = spapr_post_load, 2111 .pre_save = spapr_pre_save, 2112 .fields = (const VMStateField[]) { 2113 /* used to be @next_irq */ 2114 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2115 2116 /* RTC offset */ 2117 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2118 2119 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2120 VMSTATE_END_OF_LIST() 2121 }, 2122 .subsections = (const VMStateDescription * const []) { 2123 &vmstate_spapr_ov5_cas, 2124 &vmstate_spapr_patb_entry, 2125 &vmstate_spapr_pending_events, 2126 &vmstate_spapr_cap_htm, 2127 &vmstate_spapr_cap_vsx, 2128 &vmstate_spapr_cap_dfp, 2129 &vmstate_spapr_cap_cfpc, 2130 &vmstate_spapr_cap_sbbc, 2131 &vmstate_spapr_cap_ibs, 2132 &vmstate_spapr_cap_hpt_maxpagesize, 2133 &vmstate_spapr_irq_map, 2134 &vmstate_spapr_cap_nested_kvm_hv, 2135 &vmstate_spapr_dtb, 2136 &vmstate_spapr_cap_large_decr, 2137 &vmstate_spapr_cap_ccf_assist, 2138 &vmstate_spapr_cap_fwnmi, 2139 &vmstate_spapr_fwnmi, 2140 &vmstate_spapr_cap_rpt_invalidate, 2141 NULL 2142 } 2143 }; 2144 2145 static int htab_save_setup(QEMUFile *f, void *opaque) 2146 { 2147 SpaprMachineState *spapr = opaque; 2148 2149 /* "Iteration" header */ 2150 if (!spapr->htab_shift) { 2151 qemu_put_be32(f, -1); 2152 } else { 2153 qemu_put_be32(f, spapr->htab_shift); 2154 } 2155 2156 if (spapr->htab) { 2157 spapr->htab_save_index = 0; 2158 spapr->htab_first_pass = true; 2159 } else { 2160 if (spapr->htab_shift) { 2161 assert(kvm_enabled()); 2162 } 2163 } 2164 2165 2166 return 0; 2167 } 2168 2169 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2170 int chunkstart, int n_valid, int n_invalid) 2171 { 2172 qemu_put_be32(f, chunkstart); 2173 qemu_put_be16(f, n_valid); 2174 qemu_put_be16(f, n_invalid); 2175 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2176 HASH_PTE_SIZE_64 * n_valid); 2177 } 2178 2179 static void htab_save_end_marker(QEMUFile *f) 2180 { 2181 qemu_put_be32(f, 0); 2182 qemu_put_be16(f, 0); 2183 qemu_put_be16(f, 0); 2184 } 2185 2186 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2187 int64_t max_ns) 2188 { 2189 bool has_timeout = max_ns != -1; 2190 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2191 int index = spapr->htab_save_index; 2192 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2193 2194 assert(spapr->htab_first_pass); 2195 2196 do { 2197 int chunkstart; 2198 2199 /* Consume invalid HPTEs */ 2200 while ((index < htabslots) 2201 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2202 CLEAN_HPTE(HPTE(spapr->htab, index)); 2203 index++; 2204 } 2205 2206 /* Consume valid HPTEs */ 2207 chunkstart = index; 2208 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2209 && HPTE_VALID(HPTE(spapr->htab, index))) { 2210 CLEAN_HPTE(HPTE(spapr->htab, index)); 2211 index++; 2212 } 2213 2214 if (index > chunkstart) { 2215 int n_valid = index - chunkstart; 2216 2217 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2218 2219 if (has_timeout && 2220 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2221 break; 2222 } 2223 } 2224 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2225 2226 if (index >= htabslots) { 2227 assert(index == htabslots); 2228 index = 0; 2229 spapr->htab_first_pass = false; 2230 } 2231 spapr->htab_save_index = index; 2232 } 2233 2234 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2235 int64_t max_ns) 2236 { 2237 bool final = max_ns < 0; 2238 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2239 int examined = 0, sent = 0; 2240 int index = spapr->htab_save_index; 2241 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2242 2243 assert(!spapr->htab_first_pass); 2244 2245 do { 2246 int chunkstart, invalidstart; 2247 2248 /* Consume non-dirty HPTEs */ 2249 while ((index < htabslots) 2250 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2251 index++; 2252 examined++; 2253 } 2254 2255 chunkstart = index; 2256 /* Consume valid dirty HPTEs */ 2257 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2258 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2259 && HPTE_VALID(HPTE(spapr->htab, index))) { 2260 CLEAN_HPTE(HPTE(spapr->htab, index)); 2261 index++; 2262 examined++; 2263 } 2264 2265 invalidstart = index; 2266 /* Consume invalid dirty HPTEs */ 2267 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2268 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2269 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2270 CLEAN_HPTE(HPTE(spapr->htab, index)); 2271 index++; 2272 examined++; 2273 } 2274 2275 if (index > chunkstart) { 2276 int n_valid = invalidstart - chunkstart; 2277 int n_invalid = index - invalidstart; 2278 2279 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2280 sent += index - chunkstart; 2281 2282 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2283 break; 2284 } 2285 } 2286 2287 if (examined >= htabslots) { 2288 break; 2289 } 2290 2291 if (index >= htabslots) { 2292 assert(index == htabslots); 2293 index = 0; 2294 } 2295 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2296 2297 if (index >= htabslots) { 2298 assert(index == htabslots); 2299 index = 0; 2300 } 2301 2302 spapr->htab_save_index = index; 2303 2304 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2305 } 2306 2307 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2308 #define MAX_KVM_BUF_SIZE 2048 2309 2310 static int htab_save_iterate(QEMUFile *f, void *opaque) 2311 { 2312 SpaprMachineState *spapr = opaque; 2313 int fd; 2314 int rc = 0; 2315 2316 /* Iteration header */ 2317 if (!spapr->htab_shift) { 2318 qemu_put_be32(f, -1); 2319 return 1; 2320 } else { 2321 qemu_put_be32(f, 0); 2322 } 2323 2324 if (!spapr->htab) { 2325 assert(kvm_enabled()); 2326 2327 fd = get_htab_fd(spapr); 2328 if (fd < 0) { 2329 return fd; 2330 } 2331 2332 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2333 if (rc < 0) { 2334 return rc; 2335 } 2336 } else if (spapr->htab_first_pass) { 2337 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2338 } else { 2339 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2340 } 2341 2342 htab_save_end_marker(f); 2343 2344 return rc; 2345 } 2346 2347 static int htab_save_complete(QEMUFile *f, void *opaque) 2348 { 2349 SpaprMachineState *spapr = opaque; 2350 int fd; 2351 2352 /* Iteration header */ 2353 if (!spapr->htab_shift) { 2354 qemu_put_be32(f, -1); 2355 return 0; 2356 } else { 2357 qemu_put_be32(f, 0); 2358 } 2359 2360 if (!spapr->htab) { 2361 int rc; 2362 2363 assert(kvm_enabled()); 2364 2365 fd = get_htab_fd(spapr); 2366 if (fd < 0) { 2367 return fd; 2368 } 2369 2370 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2371 if (rc < 0) { 2372 return rc; 2373 } 2374 } else { 2375 if (spapr->htab_first_pass) { 2376 htab_save_first_pass(f, spapr, -1); 2377 } 2378 htab_save_later_pass(f, spapr, -1); 2379 } 2380 2381 /* End marker */ 2382 htab_save_end_marker(f); 2383 2384 return 0; 2385 } 2386 2387 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2388 { 2389 SpaprMachineState *spapr = opaque; 2390 uint32_t section_hdr; 2391 int fd = -1; 2392 Error *local_err = NULL; 2393 2394 if (version_id < 1 || version_id > 1) { 2395 error_report("htab_load() bad version"); 2396 return -EINVAL; 2397 } 2398 2399 section_hdr = qemu_get_be32(f); 2400 2401 if (section_hdr == -1) { 2402 spapr_free_hpt(spapr); 2403 return 0; 2404 } 2405 2406 if (section_hdr) { 2407 int ret; 2408 2409 /* First section gives the htab size */ 2410 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2411 if (ret < 0) { 2412 error_report_err(local_err); 2413 return ret; 2414 } 2415 return 0; 2416 } 2417 2418 if (!spapr->htab) { 2419 assert(kvm_enabled()); 2420 2421 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2422 if (fd < 0) { 2423 error_report_err(local_err); 2424 return fd; 2425 } 2426 } 2427 2428 while (true) { 2429 uint32_t index; 2430 uint16_t n_valid, n_invalid; 2431 2432 index = qemu_get_be32(f); 2433 n_valid = qemu_get_be16(f); 2434 n_invalid = qemu_get_be16(f); 2435 2436 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2437 /* End of Stream */ 2438 break; 2439 } 2440 2441 if ((index + n_valid + n_invalid) > 2442 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2443 /* Bad index in stream */ 2444 error_report( 2445 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2446 index, n_valid, n_invalid, spapr->htab_shift); 2447 return -EINVAL; 2448 } 2449 2450 if (spapr->htab) { 2451 if (n_valid) { 2452 qemu_get_buffer(f, HPTE(spapr->htab, index), 2453 HASH_PTE_SIZE_64 * n_valid); 2454 } 2455 if (n_invalid) { 2456 memset(HPTE(spapr->htab, index + n_valid), 0, 2457 HASH_PTE_SIZE_64 * n_invalid); 2458 } 2459 } else { 2460 int rc; 2461 2462 assert(fd >= 0); 2463 2464 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2465 &local_err); 2466 if (rc < 0) { 2467 error_report_err(local_err); 2468 return rc; 2469 } 2470 } 2471 } 2472 2473 if (!spapr->htab) { 2474 assert(fd >= 0); 2475 close(fd); 2476 } 2477 2478 return 0; 2479 } 2480 2481 static void htab_save_cleanup(void *opaque) 2482 { 2483 SpaprMachineState *spapr = opaque; 2484 2485 close_htab_fd(spapr); 2486 } 2487 2488 static SaveVMHandlers savevm_htab_handlers = { 2489 .save_setup = htab_save_setup, 2490 .save_live_iterate = htab_save_iterate, 2491 .save_live_complete_precopy = htab_save_complete, 2492 .save_cleanup = htab_save_cleanup, 2493 .load_state = htab_load, 2494 }; 2495 2496 static void spapr_boot_set(void *opaque, const char *boot_device, 2497 Error **errp) 2498 { 2499 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2500 2501 g_free(spapr->boot_device); 2502 spapr->boot_device = g_strdup(boot_device); 2503 } 2504 2505 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2506 { 2507 MachineState *machine = MACHINE(spapr); 2508 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2509 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2510 int i; 2511 2512 g_assert(!nr_lmbs || machine->device_memory); 2513 for (i = 0; i < nr_lmbs; i++) { 2514 uint64_t addr; 2515 2516 addr = i * lmb_size + machine->device_memory->base; 2517 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2518 addr / lmb_size); 2519 } 2520 } 2521 2522 /* 2523 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2524 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2525 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2526 */ 2527 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2528 { 2529 int i; 2530 2531 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2532 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2533 " is not aligned to %" PRIu64 " MiB", 2534 machine->ram_size, 2535 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2536 return; 2537 } 2538 2539 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2540 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2541 " is not aligned to %" PRIu64 " MiB", 2542 machine->ram_size, 2543 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2544 return; 2545 } 2546 2547 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2548 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2549 error_setg(errp, 2550 "Node %d memory size 0x%" PRIx64 2551 " is not aligned to %" PRIu64 " MiB", 2552 i, machine->numa_state->nodes[i].node_mem, 2553 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2554 return; 2555 } 2556 } 2557 } 2558 2559 /* find cpu slot in machine->possible_cpus by core_id */ 2560 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2561 { 2562 int index = id / ms->smp.threads; 2563 2564 if (index >= ms->possible_cpus->len) { 2565 return NULL; 2566 } 2567 if (idx) { 2568 *idx = index; 2569 } 2570 return &ms->possible_cpus->cpus[index]; 2571 } 2572 2573 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2574 { 2575 MachineState *ms = MACHINE(spapr); 2576 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2577 Error *local_err = NULL; 2578 bool vsmt_user = !!spapr->vsmt; 2579 int kvm_smt = kvmppc_smt_threads(); 2580 int ret; 2581 unsigned int smp_threads = ms->smp.threads; 2582 2583 if (tcg_enabled()) { 2584 if (smp_threads > 1 && 2585 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2586 spapr->max_compat_pvr)) { 2587 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2588 return; 2589 } 2590 2591 if (smp_threads > 8) { 2592 error_setg(errp, "TCG cannot support more than 8 threads/core " 2593 "on a pseries machine"); 2594 return; 2595 } 2596 } 2597 if (!is_power_of_2(smp_threads)) { 2598 error_setg(errp, "Cannot support %d threads/core on a pseries " 2599 "machine because it must be a power of 2", smp_threads); 2600 return; 2601 } 2602 2603 /* Determine the VSMT mode to use: */ 2604 if (vsmt_user) { 2605 if (spapr->vsmt < smp_threads) { 2606 error_setg(errp, "Cannot support VSMT mode %d" 2607 " because it must be >= threads/core (%d)", 2608 spapr->vsmt, smp_threads); 2609 return; 2610 } 2611 /* In this case, spapr->vsmt has been set by the command line */ 2612 } else if (!smc->smp_threads_vsmt) { 2613 /* 2614 * Default VSMT value is tricky, because we need it to be as 2615 * consistent as possible (for migration), but this requires 2616 * changing it for at least some existing cases. We pick 8 as 2617 * the value that we'd get with KVM on POWER8, the 2618 * overwhelmingly common case in production systems. 2619 */ 2620 spapr->vsmt = MAX(8, smp_threads); 2621 } else { 2622 spapr->vsmt = smp_threads; 2623 } 2624 2625 /* KVM: If necessary, set the SMT mode: */ 2626 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2627 ret = kvmppc_set_smt_threads(spapr->vsmt); 2628 if (ret) { 2629 /* Looks like KVM isn't able to change VSMT mode */ 2630 error_setg(&local_err, 2631 "Failed to set KVM's VSMT mode to %d (errno %d)", 2632 spapr->vsmt, ret); 2633 /* We can live with that if the default one is big enough 2634 * for the number of threads, and a submultiple of the one 2635 * we want. In this case we'll waste some vcpu ids, but 2636 * behaviour will be correct */ 2637 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2638 warn_report_err(local_err); 2639 } else { 2640 if (!vsmt_user) { 2641 error_append_hint(&local_err, 2642 "On PPC, a VM with %d threads/core" 2643 " on a host with %d threads/core" 2644 " requires the use of VSMT mode %d.\n", 2645 smp_threads, kvm_smt, spapr->vsmt); 2646 } 2647 kvmppc_error_append_smt_possible_hint(&local_err); 2648 error_propagate(errp, local_err); 2649 } 2650 } 2651 } 2652 /* else TCG: nothing to do currently */ 2653 } 2654 2655 static void spapr_init_cpus(SpaprMachineState *spapr) 2656 { 2657 MachineState *machine = MACHINE(spapr); 2658 MachineClass *mc = MACHINE_GET_CLASS(machine); 2659 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2660 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2661 const CPUArchIdList *possible_cpus; 2662 unsigned int smp_cpus = machine->smp.cpus; 2663 unsigned int smp_threads = machine->smp.threads; 2664 unsigned int max_cpus = machine->smp.max_cpus; 2665 int boot_cores_nr = smp_cpus / smp_threads; 2666 int i; 2667 2668 possible_cpus = mc->possible_cpu_arch_ids(machine); 2669 if (mc->has_hotpluggable_cpus) { 2670 if (smp_cpus % smp_threads) { 2671 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2672 smp_cpus, smp_threads); 2673 exit(1); 2674 } 2675 if (max_cpus % smp_threads) { 2676 error_report("max_cpus (%u) must be multiple of threads (%u)", 2677 max_cpus, smp_threads); 2678 exit(1); 2679 } 2680 } else { 2681 if (max_cpus != smp_cpus) { 2682 error_report("This machine version does not support CPU hotplug"); 2683 exit(1); 2684 } 2685 boot_cores_nr = possible_cpus->len; 2686 } 2687 2688 if (smc->pre_2_10_has_unused_icps) { 2689 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2690 /* Dummy entries get deregistered when real ICPState objects 2691 * are registered during CPU core hotplug. 2692 */ 2693 pre_2_10_vmstate_register_dummy_icp(i); 2694 } 2695 } 2696 2697 for (i = 0; i < possible_cpus->len; i++) { 2698 int core_id = i * smp_threads; 2699 2700 if (mc->has_hotpluggable_cpus) { 2701 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2702 spapr_vcpu_id(spapr, core_id)); 2703 } 2704 2705 if (i < boot_cores_nr) { 2706 Object *core = object_new(type); 2707 int nr_threads = smp_threads; 2708 2709 /* Handle the partially filled core for older machine types */ 2710 if ((i + 1) * smp_threads >= smp_cpus) { 2711 nr_threads = smp_cpus - i * smp_threads; 2712 } 2713 2714 object_property_set_int(core, "nr-threads", nr_threads, 2715 &error_fatal); 2716 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2717 &error_fatal); 2718 qdev_realize(DEVICE(core), NULL, &error_fatal); 2719 2720 object_unref(core); 2721 } 2722 } 2723 } 2724 2725 static PCIHostState *spapr_create_default_phb(void) 2726 { 2727 DeviceState *dev; 2728 2729 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2730 qdev_prop_set_uint32(dev, "index", 0); 2731 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2732 2733 return PCI_HOST_BRIDGE(dev); 2734 } 2735 2736 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2737 { 2738 MachineState *machine = MACHINE(spapr); 2739 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2740 hwaddr rma_size = machine->ram_size; 2741 hwaddr node0_size = spapr_node0_size(machine); 2742 2743 /* RMA has to fit in the first NUMA node */ 2744 rma_size = MIN(rma_size, node0_size); 2745 2746 /* 2747 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2748 * never exceed that 2749 */ 2750 rma_size = MIN(rma_size, 1 * TiB); 2751 2752 /* 2753 * Clamp the RMA size based on machine type. This is for 2754 * migration compatibility with older qemu versions, which limited 2755 * the RMA size for complicated and mostly bad reasons. 2756 */ 2757 if (smc->rma_limit) { 2758 rma_size = MIN(rma_size, smc->rma_limit); 2759 } 2760 2761 if (rma_size < MIN_RMA_SLOF) { 2762 error_setg(errp, 2763 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2764 "ldMiB guest RMA (Real Mode Area memory)", 2765 MIN_RMA_SLOF / MiB); 2766 return 0; 2767 } 2768 2769 return rma_size; 2770 } 2771 2772 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2773 { 2774 MachineState *machine = MACHINE(spapr); 2775 int i; 2776 2777 for (i = 0; i < machine->ram_slots; i++) { 2778 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2779 } 2780 } 2781 2782 /* pSeries LPAR / sPAPR hardware init */ 2783 static void spapr_machine_init(MachineState *machine) 2784 { 2785 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2786 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2787 MachineClass *mc = MACHINE_GET_CLASS(machine); 2788 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2789 const char *bios_name = machine->firmware ?: bios_default; 2790 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2791 const char *kernel_filename = machine->kernel_filename; 2792 const char *initrd_filename = machine->initrd_filename; 2793 PCIHostState *phb; 2794 bool has_vga; 2795 int i; 2796 MemoryRegion *sysmem = get_system_memory(); 2797 long load_limit, fw_size; 2798 Error *resize_hpt_err = NULL; 2799 2800 if (!filename) { 2801 error_report("Could not find LPAR firmware '%s'", bios_name); 2802 exit(1); 2803 } 2804 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2805 if (fw_size <= 0) { 2806 error_report("Could not load LPAR firmware '%s'", filename); 2807 exit(1); 2808 } 2809 2810 /* 2811 * if Secure VM (PEF) support is configured, then initialize it 2812 */ 2813 pef_kvm_init(machine->cgs, &error_fatal); 2814 2815 msi_nonbroken = true; 2816 2817 QLIST_INIT(&spapr->phbs); 2818 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2819 2820 /* Determine capabilities to run with */ 2821 spapr_caps_init(spapr); 2822 2823 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2824 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2825 /* 2826 * If the user explicitly requested a mode we should either 2827 * supply it, or fail completely (which we do below). But if 2828 * it's not set explicitly, we reset our mode to something 2829 * that works 2830 */ 2831 if (resize_hpt_err) { 2832 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2833 error_free(resize_hpt_err); 2834 resize_hpt_err = NULL; 2835 } else { 2836 spapr->resize_hpt = smc->resize_hpt_default; 2837 } 2838 } 2839 2840 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2841 2842 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2843 /* 2844 * User requested HPT resize, but this host can't supply it. Bail out 2845 */ 2846 error_report_err(resize_hpt_err); 2847 exit(1); 2848 } 2849 error_free(resize_hpt_err); 2850 2851 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2852 2853 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2854 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2855 2856 /* 2857 * VSMT must be set in order to be able to compute VCPU ids, ie to 2858 * call spapr_max_server_number() or spapr_vcpu_id(). 2859 */ 2860 spapr_set_vsmt_mode(spapr, &error_fatal); 2861 2862 /* Set up Interrupt Controller before we create the VCPUs */ 2863 spapr_irq_init(spapr, &error_fatal); 2864 2865 /* Set up containers for ibm,client-architecture-support negotiated options 2866 */ 2867 spapr->ov5 = spapr_ovec_new(); 2868 spapr->ov5_cas = spapr_ovec_new(); 2869 2870 if (smc->dr_lmb_enabled) { 2871 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2872 spapr_validate_node_memory(machine, &error_fatal); 2873 } 2874 2875 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2876 2877 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2878 if (!smc->pre_6_2_numa_affinity) { 2879 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2880 } 2881 2882 /* advertise support for dedicated HP event source to guests */ 2883 if (spapr->use_hotplug_event_source) { 2884 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2885 } 2886 2887 /* advertise support for HPT resizing */ 2888 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2889 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2890 } 2891 2892 /* advertise support for ibm,dyamic-memory-v2 */ 2893 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2894 2895 /* advertise XIVE on POWER9 machines */ 2896 if (spapr->irq->xive) { 2897 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2898 } 2899 2900 /* init CPUs */ 2901 spapr_init_cpus(spapr); 2902 2903 /* Init numa_assoc_array */ 2904 spapr_numa_associativity_init(spapr, machine); 2905 2906 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2907 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2908 spapr->max_compat_pvr)) { 2909 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2910 /* KVM and TCG always allow GTSE with radix... */ 2911 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2912 } 2913 /* ... but not with hash (currently). */ 2914 2915 if (kvm_enabled()) { 2916 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2917 kvmppc_enable_logical_ci_hcalls(); 2918 kvmppc_enable_set_mode_hcall(); 2919 2920 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2921 kvmppc_enable_clear_ref_mod_hcalls(); 2922 2923 /* Enable H_PAGE_INIT */ 2924 kvmppc_enable_h_page_init(); 2925 } 2926 2927 /* map RAM */ 2928 memory_region_add_subregion(sysmem, 0, machine->ram); 2929 2930 /* initialize hotplug memory address space */ 2931 if (machine->ram_size < machine->maxram_size) { 2932 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2933 hwaddr device_mem_base; 2934 2935 /* 2936 * Limit the number of hotpluggable memory slots to half the number 2937 * slots that KVM supports, leaving the other half for PCI and other 2938 * devices. However ensure that number of slots doesn't drop below 32. 2939 */ 2940 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2941 SPAPR_MAX_RAM_SLOTS; 2942 2943 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2944 max_memslots = SPAPR_MAX_RAM_SLOTS; 2945 } 2946 if (machine->ram_slots > max_memslots) { 2947 error_report("Specified number of memory slots %" 2948 PRIu64" exceeds max supported %d", 2949 machine->ram_slots, max_memslots); 2950 exit(1); 2951 } 2952 2953 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2954 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2955 } 2956 2957 if (smc->dr_lmb_enabled) { 2958 spapr_create_lmb_dr_connectors(spapr); 2959 } 2960 2961 if (mc->nvdimm_supported) { 2962 spapr_create_nvdimm_dr_connectors(spapr); 2963 } 2964 2965 /* Set up RTAS event infrastructure */ 2966 spapr_events_init(spapr); 2967 2968 /* Set up the RTC RTAS interfaces */ 2969 spapr_rtc_create(spapr); 2970 2971 /* Set up VIO bus */ 2972 spapr->vio_bus = spapr_vio_bus_init(); 2973 2974 for (i = 0; serial_hd(i); i++) { 2975 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2976 } 2977 2978 /* We always have at least the nvram device on VIO */ 2979 spapr_create_nvram(spapr); 2980 2981 /* 2982 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2983 * connectors (described in root DT node's "ibm,drc-types" property) 2984 * are pre-initialized here. additional child connectors (such as 2985 * connectors for a PHBs PCI slots) are added as needed during their 2986 * parent's realization. 2987 */ 2988 if (smc->dr_phb_enabled) { 2989 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2990 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2991 } 2992 } 2993 2994 /* Set up PCI */ 2995 spapr_pci_rtas_init(); 2996 2997 phb = spapr_create_default_phb(); 2998 2999 for (i = 0; i < nb_nics; i++) { 3000 NICInfo *nd = &nd_table[i]; 3001 3002 if (!nd->model) { 3003 nd->model = g_strdup("spapr-vlan"); 3004 } 3005 3006 if (g_str_equal(nd->model, "spapr-vlan") || 3007 g_str_equal(nd->model, "ibmveth")) { 3008 spapr_vlan_create(spapr->vio_bus, nd); 3009 } else { 3010 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 3011 } 3012 } 3013 3014 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 3015 spapr_vscsi_create(spapr->vio_bus); 3016 } 3017 3018 /* Graphics */ 3019 has_vga = spapr_vga_init(phb->bus, &error_fatal); 3020 if (has_vga) { 3021 spapr->want_stdout_path = !machine->enable_graphics; 3022 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3023 } else { 3024 spapr->want_stdout_path = true; 3025 } 3026 3027 if (machine->usb) { 3028 if (smc->use_ohci_by_default) { 3029 pci_create_simple(phb->bus, -1, "pci-ohci"); 3030 } else { 3031 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3032 } 3033 3034 if (has_vga) { 3035 USBBus *usb_bus = usb_bus_find(-1); 3036 3037 usb_create_simple(usb_bus, "usb-kbd"); 3038 usb_create_simple(usb_bus, "usb-mouse"); 3039 } 3040 } 3041 3042 if (kernel_filename) { 3043 uint64_t loaded_addr = 0; 3044 3045 spapr->kernel_size = load_elf(kernel_filename, NULL, 3046 translate_kernel_address, spapr, 3047 NULL, &loaded_addr, NULL, NULL, 1, 3048 PPC_ELF_MACHINE, 0, 0); 3049 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3050 spapr->kernel_size = load_elf(kernel_filename, NULL, 3051 translate_kernel_address, spapr, 3052 NULL, &loaded_addr, NULL, NULL, 0, 3053 PPC_ELF_MACHINE, 0, 0); 3054 spapr->kernel_le = spapr->kernel_size > 0; 3055 } 3056 if (spapr->kernel_size < 0) { 3057 error_report("error loading %s: %s", kernel_filename, 3058 load_elf_strerror(spapr->kernel_size)); 3059 exit(1); 3060 } 3061 3062 if (spapr->kernel_addr != loaded_addr) { 3063 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3064 " to 0x%"PRIx64, 3065 spapr->kernel_addr, loaded_addr); 3066 spapr->kernel_addr = loaded_addr; 3067 } 3068 3069 /* load initrd */ 3070 if (initrd_filename) { 3071 /* Try to locate the initrd in the gap between the kernel 3072 * and the firmware. Add a bit of space just in case 3073 */ 3074 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3075 + 0x1ffff) & ~0xffff; 3076 spapr->initrd_size = load_image_targphys(initrd_filename, 3077 spapr->initrd_base, 3078 load_limit 3079 - spapr->initrd_base); 3080 if (spapr->initrd_size < 0) { 3081 error_report("could not load initial ram disk '%s'", 3082 initrd_filename); 3083 exit(1); 3084 } 3085 } 3086 } 3087 3088 /* FIXME: Should register things through the MachineState's qdev 3089 * interface, this is a legacy from the sPAPREnvironment structure 3090 * which predated MachineState but had a similar function */ 3091 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3092 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3093 &savevm_htab_handlers, spapr); 3094 3095 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3096 3097 qemu_register_boot_set(spapr_boot_set, spapr); 3098 3099 /* 3100 * Nothing needs to be done to resume a suspended guest because 3101 * suspending does not change the machine state, so no need for 3102 * a ->wakeup method. 3103 */ 3104 qemu_register_wakeup_support(); 3105 3106 if (kvm_enabled()) { 3107 /* to stop and start vmclock */ 3108 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3109 &spapr->tb); 3110 3111 kvmppc_spapr_enable_inkernel_multitce(); 3112 } 3113 3114 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3115 if (spapr->vof) { 3116 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3117 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3118 } 3119 3120 spapr_watchdog_init(spapr); 3121 } 3122 3123 #define DEFAULT_KVM_TYPE "auto" 3124 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3125 { 3126 /* 3127 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3128 * accommodate the 'HV' and 'PV' formats that exists in the 3129 * wild. The 'auto' mode is being introduced already as 3130 * lower-case, thus we don't need to bother checking for 3131 * "AUTO". 3132 */ 3133 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3134 return 0; 3135 } 3136 3137 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3138 return 1; 3139 } 3140 3141 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3142 return 2; 3143 } 3144 3145 error_report("Unknown kvm-type specified '%s'", vm_type); 3146 return -1; 3147 } 3148 3149 /* 3150 * Implementation of an interface to adjust firmware path 3151 * for the bootindex property handling. 3152 */ 3153 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3154 DeviceState *dev) 3155 { 3156 #define CAST(type, obj, name) \ 3157 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3158 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3159 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3160 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3161 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3162 3163 if (d && bus) { 3164 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3165 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3166 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3167 3168 if (spapr) { 3169 /* 3170 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3171 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3172 * 0x8000 | (target << 8) | (bus << 5) | lun 3173 * (see the "Logical unit addressing format" table in SAM5) 3174 */ 3175 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3176 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3177 (uint64_t)id << 48); 3178 } else if (virtio) { 3179 /* 3180 * We use SRP luns of the form 01000000 | (target << 8) | lun 3181 * in the top 32 bits of the 64-bit LUN 3182 * Note: the quote above is from SLOF and it is wrong, 3183 * the actual binding is: 3184 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3185 */ 3186 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3187 if (d->lun >= 256) { 3188 /* Use the LUN "flat space addressing method" */ 3189 id |= 0x4000; 3190 } 3191 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3192 (uint64_t)id << 32); 3193 } else if (usb) { 3194 /* 3195 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3196 * in the top 32 bits of the 64-bit LUN 3197 */ 3198 unsigned usb_port = atoi(usb->port->path); 3199 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3200 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3201 (uint64_t)id << 32); 3202 } 3203 } 3204 3205 /* 3206 * SLOF probes the USB devices, and if it recognizes that the device is a 3207 * storage device, it changes its name to "storage" instead of "usb-host", 3208 * and additionally adds a child node for the SCSI LUN, so the correct 3209 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3210 */ 3211 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3212 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3213 if (usb_device_is_scsi_storage(usbdev)) { 3214 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3215 } 3216 } 3217 3218 if (phb) { 3219 /* Replace "pci" with "pci@800000020000000" */ 3220 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3221 } 3222 3223 if (vsc) { 3224 /* Same logic as virtio above */ 3225 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3226 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3227 } 3228 3229 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3230 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3231 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3232 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn)); 3233 } 3234 3235 if (pcidev) { 3236 return spapr_pci_fw_dev_name(pcidev); 3237 } 3238 3239 return NULL; 3240 } 3241 3242 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3243 { 3244 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3245 3246 return g_strdup(spapr->kvm_type); 3247 } 3248 3249 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3250 { 3251 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3252 3253 g_free(spapr->kvm_type); 3254 spapr->kvm_type = g_strdup(value); 3255 } 3256 3257 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3258 { 3259 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3260 3261 return spapr->use_hotplug_event_source; 3262 } 3263 3264 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3265 Error **errp) 3266 { 3267 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3268 3269 spapr->use_hotplug_event_source = value; 3270 } 3271 3272 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3273 { 3274 return true; 3275 } 3276 3277 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3278 { 3279 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3280 3281 switch (spapr->resize_hpt) { 3282 case SPAPR_RESIZE_HPT_DEFAULT: 3283 return g_strdup("default"); 3284 case SPAPR_RESIZE_HPT_DISABLED: 3285 return g_strdup("disabled"); 3286 case SPAPR_RESIZE_HPT_ENABLED: 3287 return g_strdup("enabled"); 3288 case SPAPR_RESIZE_HPT_REQUIRED: 3289 return g_strdup("required"); 3290 } 3291 g_assert_not_reached(); 3292 } 3293 3294 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3295 { 3296 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3297 3298 if (strcmp(value, "default") == 0) { 3299 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3300 } else if (strcmp(value, "disabled") == 0) { 3301 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3302 } else if (strcmp(value, "enabled") == 0) { 3303 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3304 } else if (strcmp(value, "required") == 0) { 3305 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3306 } else { 3307 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3308 } 3309 } 3310 3311 static bool spapr_get_vof(Object *obj, Error **errp) 3312 { 3313 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3314 3315 return spapr->vof != NULL; 3316 } 3317 3318 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3319 { 3320 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3321 3322 if (spapr->vof) { 3323 vof_cleanup(spapr->vof); 3324 g_free(spapr->vof); 3325 spapr->vof = NULL; 3326 } 3327 if (!value) { 3328 return; 3329 } 3330 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3331 } 3332 3333 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3334 { 3335 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3336 3337 if (spapr->irq == &spapr_irq_xics_legacy) { 3338 return g_strdup("legacy"); 3339 } else if (spapr->irq == &spapr_irq_xics) { 3340 return g_strdup("xics"); 3341 } else if (spapr->irq == &spapr_irq_xive) { 3342 return g_strdup("xive"); 3343 } else if (spapr->irq == &spapr_irq_dual) { 3344 return g_strdup("dual"); 3345 } 3346 g_assert_not_reached(); 3347 } 3348 3349 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3350 { 3351 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3352 3353 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3354 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3355 return; 3356 } 3357 3358 /* The legacy IRQ backend can not be set */ 3359 if (strcmp(value, "xics") == 0) { 3360 spapr->irq = &spapr_irq_xics; 3361 } else if (strcmp(value, "xive") == 0) { 3362 spapr->irq = &spapr_irq_xive; 3363 } else if (strcmp(value, "dual") == 0) { 3364 spapr->irq = &spapr_irq_dual; 3365 } else { 3366 error_setg(errp, "Bad value for \"ic-mode\" property"); 3367 } 3368 } 3369 3370 static char *spapr_get_host_model(Object *obj, Error **errp) 3371 { 3372 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3373 3374 return g_strdup(spapr->host_model); 3375 } 3376 3377 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3378 { 3379 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3380 3381 g_free(spapr->host_model); 3382 spapr->host_model = g_strdup(value); 3383 } 3384 3385 static char *spapr_get_host_serial(Object *obj, Error **errp) 3386 { 3387 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3388 3389 return g_strdup(spapr->host_serial); 3390 } 3391 3392 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3393 { 3394 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3395 3396 g_free(spapr->host_serial); 3397 spapr->host_serial = g_strdup(value); 3398 } 3399 3400 static void spapr_instance_init(Object *obj) 3401 { 3402 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3403 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3404 MachineState *ms = MACHINE(spapr); 3405 MachineClass *mc = MACHINE_GET_CLASS(ms); 3406 3407 /* 3408 * NVDIMM support went live in 5.1 without considering that, in 3409 * other archs, the user needs to enable NVDIMM support with the 3410 * 'nvdimm' machine option and the default behavior is NVDIMM 3411 * support disabled. It is too late to roll back to the standard 3412 * behavior without breaking 5.1 guests. 3413 */ 3414 if (mc->nvdimm_supported) { 3415 ms->nvdimms_state->is_enabled = true; 3416 } 3417 3418 spapr->htab_fd = -1; 3419 spapr->use_hotplug_event_source = true; 3420 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3421 object_property_add_str(obj, "kvm-type", 3422 spapr_get_kvm_type, spapr_set_kvm_type); 3423 object_property_set_description(obj, "kvm-type", 3424 "Specifies the KVM virtualization mode (auto," 3425 " hv, pr). Defaults to 'auto'. This mode will use" 3426 " any available KVM module loaded in the host," 3427 " where kvm_hv takes precedence if both kvm_hv and" 3428 " kvm_pr are loaded."); 3429 object_property_add_bool(obj, "modern-hotplug-events", 3430 spapr_get_modern_hotplug_events, 3431 spapr_set_modern_hotplug_events); 3432 object_property_set_description(obj, "modern-hotplug-events", 3433 "Use dedicated hotplug event mechanism in" 3434 " place of standard EPOW events when possible" 3435 " (required for memory hot-unplug support)"); 3436 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3437 "Maximum permitted CPU compatibility mode"); 3438 3439 object_property_add_str(obj, "resize-hpt", 3440 spapr_get_resize_hpt, spapr_set_resize_hpt); 3441 object_property_set_description(obj, "resize-hpt", 3442 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3443 object_property_add_uint32_ptr(obj, "vsmt", 3444 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3445 object_property_set_description(obj, "vsmt", 3446 "Virtual SMT: KVM behaves as if this were" 3447 " the host's SMT mode"); 3448 3449 object_property_add_bool(obj, "vfio-no-msix-emulation", 3450 spapr_get_msix_emulation, NULL); 3451 3452 object_property_add_uint64_ptr(obj, "kernel-addr", 3453 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3454 object_property_set_description(obj, "kernel-addr", 3455 stringify(KERNEL_LOAD_ADDR) 3456 " for -kernel is the default"); 3457 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3458 3459 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3460 object_property_set_description(obj, "x-vof", 3461 "Enable Virtual Open Firmware (experimental)"); 3462 3463 /* The machine class defines the default interrupt controller mode */ 3464 spapr->irq = smc->irq; 3465 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3466 spapr_set_ic_mode); 3467 object_property_set_description(obj, "ic-mode", 3468 "Specifies the interrupt controller mode (xics, xive, dual)"); 3469 3470 object_property_add_str(obj, "host-model", 3471 spapr_get_host_model, spapr_set_host_model); 3472 object_property_set_description(obj, "host-model", 3473 "Host model to advertise in guest device tree"); 3474 object_property_add_str(obj, "host-serial", 3475 spapr_get_host_serial, spapr_set_host_serial); 3476 object_property_set_description(obj, "host-serial", 3477 "Host serial number to advertise in guest device tree"); 3478 } 3479 3480 static void spapr_machine_finalizefn(Object *obj) 3481 { 3482 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3483 3484 g_free(spapr->kvm_type); 3485 } 3486 3487 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3488 { 3489 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3490 PowerPCCPU *cpu = POWERPC_CPU(cs); 3491 CPUPPCState *env = &cpu->env; 3492 3493 cpu_synchronize_state(cs); 3494 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3495 if (spapr->fwnmi_system_reset_addr != -1) { 3496 uint64_t rtas_addr, addr; 3497 3498 /* get rtas addr from fdt */ 3499 rtas_addr = spapr_get_rtas_addr(); 3500 if (!rtas_addr) { 3501 qemu_system_guest_panicked(NULL); 3502 return; 3503 } 3504 3505 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3506 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3507 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3508 env->gpr[3] = addr; 3509 } 3510 ppc_cpu_do_system_reset(cs); 3511 if (spapr->fwnmi_system_reset_addr != -1) { 3512 env->nip = spapr->fwnmi_system_reset_addr; 3513 } 3514 } 3515 3516 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3517 { 3518 CPUState *cs; 3519 3520 CPU_FOREACH(cs) { 3521 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3522 } 3523 } 3524 3525 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3526 void *fdt, int *fdt_start_offset, Error **errp) 3527 { 3528 uint64_t addr; 3529 uint32_t node; 3530 3531 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3532 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3533 &error_abort); 3534 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3535 SPAPR_MEMORY_BLOCK_SIZE); 3536 return 0; 3537 } 3538 3539 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3540 bool dedicated_hp_event_source) 3541 { 3542 SpaprDrc *drc; 3543 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3544 int i; 3545 uint64_t addr = addr_start; 3546 bool hotplugged = spapr_drc_hotplugged(dev); 3547 3548 for (i = 0; i < nr_lmbs; i++) { 3549 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3550 addr / SPAPR_MEMORY_BLOCK_SIZE); 3551 g_assert(drc); 3552 3553 /* 3554 * memory_device_get_free_addr() provided a range of free addresses 3555 * that doesn't overlap with any existing mapping at pre-plug. The 3556 * corresponding LMB DRCs are thus assumed to be all attachable. 3557 */ 3558 spapr_drc_attach(drc, dev); 3559 if (!hotplugged) { 3560 spapr_drc_reset(drc); 3561 } 3562 addr += SPAPR_MEMORY_BLOCK_SIZE; 3563 } 3564 /* send hotplug notification to the 3565 * guest only in case of hotplugged memory 3566 */ 3567 if (hotplugged) { 3568 if (dedicated_hp_event_source) { 3569 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3570 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3571 g_assert(drc); 3572 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3573 nr_lmbs, 3574 spapr_drc_index(drc)); 3575 } else { 3576 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3577 nr_lmbs); 3578 } 3579 } 3580 } 3581 3582 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3583 { 3584 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3585 PCDIMMDevice *dimm = PC_DIMM(dev); 3586 uint64_t size, addr; 3587 int64_t slot; 3588 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3589 3590 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3591 3592 pc_dimm_plug(dimm, MACHINE(ms)); 3593 3594 if (!is_nvdimm) { 3595 addr = object_property_get_uint(OBJECT(dimm), 3596 PC_DIMM_ADDR_PROP, &error_abort); 3597 spapr_add_lmbs(dev, addr, size, 3598 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3599 } else { 3600 slot = object_property_get_int(OBJECT(dimm), 3601 PC_DIMM_SLOT_PROP, &error_abort); 3602 /* We should have valid slot number at this point */ 3603 g_assert(slot >= 0); 3604 spapr_add_nvdimm(dev, slot); 3605 } 3606 } 3607 3608 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3609 Error **errp) 3610 { 3611 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3612 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3613 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3614 PCDIMMDevice *dimm = PC_DIMM(dev); 3615 Error *local_err = NULL; 3616 uint64_t size; 3617 Object *memdev; 3618 hwaddr pagesize; 3619 3620 if (!smc->dr_lmb_enabled) { 3621 error_setg(errp, "Memory hotplug not supported for this machine"); 3622 return; 3623 } 3624 3625 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3626 if (local_err) { 3627 error_propagate(errp, local_err); 3628 return; 3629 } 3630 3631 if (is_nvdimm) { 3632 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3633 return; 3634 } 3635 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3636 error_setg(errp, "Hotplugged memory size must be a multiple of " 3637 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3638 return; 3639 } 3640 3641 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3642 &error_abort); 3643 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3644 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3645 return; 3646 } 3647 3648 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3649 } 3650 3651 struct SpaprDimmState { 3652 PCDIMMDevice *dimm; 3653 uint32_t nr_lmbs; 3654 QTAILQ_ENTRY(SpaprDimmState) next; 3655 }; 3656 3657 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3658 PCDIMMDevice *dimm) 3659 { 3660 SpaprDimmState *dimm_state = NULL; 3661 3662 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3663 if (dimm_state->dimm == dimm) { 3664 break; 3665 } 3666 } 3667 return dimm_state; 3668 } 3669 3670 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3671 uint32_t nr_lmbs, 3672 PCDIMMDevice *dimm) 3673 { 3674 SpaprDimmState *ds = NULL; 3675 3676 /* 3677 * If this request is for a DIMM whose removal had failed earlier 3678 * (due to guest's refusal to remove the LMBs), we would have this 3679 * dimm already in the pending_dimm_unplugs list. In that 3680 * case don't add again. 3681 */ 3682 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3683 if (!ds) { 3684 ds = g_new0(SpaprDimmState, 1); 3685 ds->nr_lmbs = nr_lmbs; 3686 ds->dimm = dimm; 3687 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3688 } 3689 return ds; 3690 } 3691 3692 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3693 SpaprDimmState *dimm_state) 3694 { 3695 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3696 g_free(dimm_state); 3697 } 3698 3699 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3700 PCDIMMDevice *dimm) 3701 { 3702 SpaprDrc *drc; 3703 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3704 &error_abort); 3705 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3706 uint32_t avail_lmbs = 0; 3707 uint64_t addr_start, addr; 3708 int i; 3709 3710 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3711 &error_abort); 3712 3713 addr = addr_start; 3714 for (i = 0; i < nr_lmbs; i++) { 3715 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3716 addr / SPAPR_MEMORY_BLOCK_SIZE); 3717 g_assert(drc); 3718 if (drc->dev) { 3719 avail_lmbs++; 3720 } 3721 addr += SPAPR_MEMORY_BLOCK_SIZE; 3722 } 3723 3724 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3725 } 3726 3727 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3728 { 3729 SpaprDimmState *ds; 3730 PCDIMMDevice *dimm; 3731 SpaprDrc *drc; 3732 uint32_t nr_lmbs; 3733 uint64_t size, addr_start, addr; 3734 g_autofree char *qapi_error = NULL; 3735 int i; 3736 3737 if (!dev) { 3738 return; 3739 } 3740 3741 dimm = PC_DIMM(dev); 3742 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3743 3744 /* 3745 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3746 * unplug state, but one of its DRC is marked as unplug_requested. 3747 * This is bad and weird enough to g_assert() out. 3748 */ 3749 g_assert(ds); 3750 3751 spapr_pending_dimm_unplugs_remove(spapr, ds); 3752 3753 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3754 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3755 3756 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3757 &error_abort); 3758 3759 addr = addr_start; 3760 for (i = 0; i < nr_lmbs; i++) { 3761 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3762 addr / SPAPR_MEMORY_BLOCK_SIZE); 3763 g_assert(drc); 3764 3765 drc->unplug_requested = false; 3766 addr += SPAPR_MEMORY_BLOCK_SIZE; 3767 } 3768 3769 /* 3770 * Tell QAPI that something happened and the memory 3771 * hotunplug wasn't successful. Keep sending 3772 * MEM_UNPLUG_ERROR even while sending 3773 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3774 * MEM_UNPLUG_ERROR is due. 3775 */ 3776 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3777 "for device %s", dev->id); 3778 3779 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3780 3781 qapi_event_send_device_unplug_guest_error(dev->id, 3782 dev->canonical_path); 3783 } 3784 3785 /* Callback to be called during DRC release. */ 3786 void spapr_lmb_release(DeviceState *dev) 3787 { 3788 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3789 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3790 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3791 3792 /* This information will get lost if a migration occurs 3793 * during the unplug process. In this case recover it. */ 3794 if (ds == NULL) { 3795 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3796 g_assert(ds); 3797 /* The DRC being examined by the caller at least must be counted */ 3798 g_assert(ds->nr_lmbs); 3799 } 3800 3801 if (--ds->nr_lmbs) { 3802 return; 3803 } 3804 3805 /* 3806 * Now that all the LMBs have been removed by the guest, call the 3807 * unplug handler chain. This can never fail. 3808 */ 3809 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3810 object_unparent(OBJECT(dev)); 3811 } 3812 3813 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3814 { 3815 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3816 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3817 3818 /* We really shouldn't get this far without anything to unplug */ 3819 g_assert(ds); 3820 3821 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3822 qdev_unrealize(dev); 3823 spapr_pending_dimm_unplugs_remove(spapr, ds); 3824 } 3825 3826 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3827 DeviceState *dev, Error **errp) 3828 { 3829 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3830 PCDIMMDevice *dimm = PC_DIMM(dev); 3831 uint32_t nr_lmbs; 3832 uint64_t size, addr_start, addr; 3833 int i; 3834 SpaprDrc *drc; 3835 3836 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3837 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3838 return; 3839 } 3840 3841 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3842 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3843 3844 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3845 &error_abort); 3846 3847 /* 3848 * An existing pending dimm state for this DIMM means that there is an 3849 * unplug operation in progress, waiting for the spapr_lmb_release 3850 * callback to complete the job (BQL can't cover that far). In this case, 3851 * bail out to avoid detaching DRCs that were already released. 3852 */ 3853 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3854 error_setg(errp, "Memory unplug already in progress for device %s", 3855 dev->id); 3856 return; 3857 } 3858 3859 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3860 3861 addr = addr_start; 3862 for (i = 0; i < nr_lmbs; i++) { 3863 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3864 addr / SPAPR_MEMORY_BLOCK_SIZE); 3865 g_assert(drc); 3866 3867 spapr_drc_unplug_request(drc); 3868 addr += SPAPR_MEMORY_BLOCK_SIZE; 3869 } 3870 3871 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3872 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3873 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3874 nr_lmbs, spapr_drc_index(drc)); 3875 } 3876 3877 /* Callback to be called during DRC release. */ 3878 void spapr_core_release(DeviceState *dev) 3879 { 3880 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3881 3882 /* Call the unplug handler chain. This can never fail. */ 3883 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3884 object_unparent(OBJECT(dev)); 3885 } 3886 3887 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3888 { 3889 MachineState *ms = MACHINE(hotplug_dev); 3890 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3891 CPUCore *cc = CPU_CORE(dev); 3892 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3893 3894 if (smc->pre_2_10_has_unused_icps) { 3895 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3896 int i; 3897 3898 for (i = 0; i < cc->nr_threads; i++) { 3899 CPUState *cs = CPU(sc->threads[i]); 3900 3901 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3902 } 3903 } 3904 3905 assert(core_slot); 3906 core_slot->cpu = NULL; 3907 qdev_unrealize(dev); 3908 } 3909 3910 static 3911 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3912 Error **errp) 3913 { 3914 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3915 int index; 3916 SpaprDrc *drc; 3917 CPUCore *cc = CPU_CORE(dev); 3918 3919 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3920 error_setg(errp, "Unable to find CPU core with core-id: %d", 3921 cc->core_id); 3922 return; 3923 } 3924 if (index == 0) { 3925 error_setg(errp, "Boot CPU core may not be unplugged"); 3926 return; 3927 } 3928 3929 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3930 spapr_vcpu_id(spapr, cc->core_id)); 3931 g_assert(drc); 3932 3933 if (!spapr_drc_unplug_requested(drc)) { 3934 spapr_drc_unplug_request(drc); 3935 } 3936 3937 /* 3938 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3939 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3940 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3941 * attempt (e.g. the kernel will refuse to remove the last online 3942 * CPU), we will never attempt it again because unplug_requested 3943 * will still be 'true' in that case. 3944 */ 3945 spapr_hotplug_req_remove_by_index(drc); 3946 } 3947 3948 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3949 void *fdt, int *fdt_start_offset, Error **errp) 3950 { 3951 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3952 CPUState *cs = CPU(core->threads[0]); 3953 PowerPCCPU *cpu = POWERPC_CPU(cs); 3954 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3955 int id = spapr_get_vcpu_id(cpu); 3956 g_autofree char *nodename = NULL; 3957 int offset; 3958 3959 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3960 offset = fdt_add_subnode(fdt, 0, nodename); 3961 3962 spapr_dt_cpu(cs, fdt, offset, spapr); 3963 3964 /* 3965 * spapr_dt_cpu() does not fill the 'name' property in the 3966 * CPU node. The function is called during boot process, before 3967 * and after CAS, and overwriting the 'name' property written 3968 * by SLOF is not allowed. 3969 * 3970 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3971 * CPUs more compatible with the coldplugged ones, which have 3972 * the 'name' property. Linux Kernel also relies on this 3973 * property to identify CPU nodes. 3974 */ 3975 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3976 3977 *fdt_start_offset = offset; 3978 return 0; 3979 } 3980 3981 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3982 { 3983 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3984 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3985 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3986 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3987 CPUCore *cc = CPU_CORE(dev); 3988 CPUState *cs; 3989 SpaprDrc *drc; 3990 CPUArchId *core_slot; 3991 int index; 3992 bool hotplugged = spapr_drc_hotplugged(dev); 3993 int i; 3994 3995 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3996 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3997 3998 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3999 spapr_vcpu_id(spapr, cc->core_id)); 4000 4001 g_assert(drc || !mc->has_hotpluggable_cpus); 4002 4003 if (drc) { 4004 /* 4005 * spapr_core_pre_plug() already buys us this is a brand new 4006 * core being plugged into a free slot. Nothing should already 4007 * be attached to the corresponding DRC. 4008 */ 4009 spapr_drc_attach(drc, dev); 4010 4011 if (hotplugged) { 4012 /* 4013 * Send hotplug notification interrupt to the guest only 4014 * in case of hotplugged CPUs. 4015 */ 4016 spapr_hotplug_req_add_by_index(drc); 4017 } else { 4018 spapr_drc_reset(drc); 4019 } 4020 } 4021 4022 core_slot->cpu = OBJECT(dev); 4023 4024 /* 4025 * Set compatibility mode to match the boot CPU, which was either set 4026 * by the machine reset code or by CAS. This really shouldn't fail at 4027 * this point. 4028 */ 4029 if (hotplugged) { 4030 for (i = 0; i < cc->nr_threads; i++) { 4031 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 4032 &error_abort); 4033 } 4034 } 4035 4036 if (smc->pre_2_10_has_unused_icps) { 4037 for (i = 0; i < cc->nr_threads; i++) { 4038 cs = CPU(core->threads[i]); 4039 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4040 } 4041 } 4042 } 4043 4044 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4045 Error **errp) 4046 { 4047 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4048 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4049 CPUCore *cc = CPU_CORE(dev); 4050 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4051 const char *type = object_get_typename(OBJECT(dev)); 4052 CPUArchId *core_slot; 4053 int index; 4054 unsigned int smp_threads = machine->smp.threads; 4055 4056 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4057 error_setg(errp, "CPU hotplug not supported for this machine"); 4058 return; 4059 } 4060 4061 if (strcmp(base_core_type, type)) { 4062 error_setg(errp, "CPU core type should be %s", base_core_type); 4063 return; 4064 } 4065 4066 if (cc->core_id % smp_threads) { 4067 error_setg(errp, "invalid core id %d", cc->core_id); 4068 return; 4069 } 4070 4071 /* 4072 * In general we should have homogeneous threads-per-core, but old 4073 * (pre hotplug support) machine types allow the last core to have 4074 * reduced threads as a compatibility hack for when we allowed 4075 * total vcpus not a multiple of threads-per-core. 4076 */ 4077 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4078 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4079 smp_threads); 4080 return; 4081 } 4082 4083 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4084 if (!core_slot) { 4085 error_setg(errp, "core id %d out of range", cc->core_id); 4086 return; 4087 } 4088 4089 if (core_slot->cpu) { 4090 error_setg(errp, "core %d already populated", cc->core_id); 4091 return; 4092 } 4093 4094 numa_cpu_pre_plug(core_slot, dev, errp); 4095 } 4096 4097 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4098 void *fdt, int *fdt_start_offset, Error **errp) 4099 { 4100 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4101 int intc_phandle; 4102 4103 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4104 if (intc_phandle <= 0) { 4105 return -1; 4106 } 4107 4108 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4109 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4110 return -1; 4111 } 4112 4113 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4114 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4115 4116 return 0; 4117 } 4118 4119 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4120 Error **errp) 4121 { 4122 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4123 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4124 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4125 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4126 SpaprDrc *drc; 4127 4128 if (dev->hotplugged && !smc->dr_phb_enabled) { 4129 error_setg(errp, "PHB hotplug not supported for this machine"); 4130 return false; 4131 } 4132 4133 if (sphb->index == (uint32_t)-1) { 4134 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4135 return false; 4136 } 4137 4138 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4139 if (drc && drc->dev) { 4140 error_setg(errp, "PHB %d already attached", sphb->index); 4141 return false; 4142 } 4143 4144 /* 4145 * This will check that sphb->index doesn't exceed the maximum number of 4146 * PHBs for the current machine type. 4147 */ 4148 return 4149 smc->phb_placement(spapr, sphb->index, 4150 &sphb->buid, &sphb->io_win_addr, 4151 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4152 windows_supported, sphb->dma_liobn, 4153 errp); 4154 } 4155 4156 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4157 { 4158 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4159 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4160 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4161 SpaprDrc *drc; 4162 bool hotplugged = spapr_drc_hotplugged(dev); 4163 4164 if (!smc->dr_phb_enabled) { 4165 return; 4166 } 4167 4168 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4169 /* hotplug hooks should check it's enabled before getting this far */ 4170 assert(drc); 4171 4172 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4173 spapr_drc_attach(drc, dev); 4174 4175 if (hotplugged) { 4176 spapr_hotplug_req_add_by_index(drc); 4177 } else { 4178 spapr_drc_reset(drc); 4179 } 4180 } 4181 4182 void spapr_phb_release(DeviceState *dev) 4183 { 4184 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4185 4186 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4187 object_unparent(OBJECT(dev)); 4188 } 4189 4190 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4191 { 4192 qdev_unrealize(dev); 4193 } 4194 4195 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4196 DeviceState *dev, Error **errp) 4197 { 4198 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4199 SpaprDrc *drc; 4200 4201 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4202 assert(drc); 4203 4204 if (!spapr_drc_unplug_requested(drc)) { 4205 spapr_drc_unplug_request(drc); 4206 spapr_hotplug_req_remove_by_index(drc); 4207 } else { 4208 error_setg(errp, 4209 "PCI Host Bridge unplug already in progress for device %s", 4210 dev->id); 4211 } 4212 } 4213 4214 static 4215 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4216 Error **errp) 4217 { 4218 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4219 4220 if (spapr->tpm_proxy != NULL) { 4221 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4222 return false; 4223 } 4224 4225 return true; 4226 } 4227 4228 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4229 { 4230 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4231 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4232 4233 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4234 g_assert(spapr->tpm_proxy == NULL); 4235 4236 spapr->tpm_proxy = tpm_proxy; 4237 } 4238 4239 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4240 { 4241 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4242 4243 qdev_unrealize(dev); 4244 object_unparent(OBJECT(dev)); 4245 spapr->tpm_proxy = NULL; 4246 } 4247 4248 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4249 DeviceState *dev, Error **errp) 4250 { 4251 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4252 spapr_memory_plug(hotplug_dev, dev); 4253 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4254 spapr_core_plug(hotplug_dev, dev); 4255 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4256 spapr_phb_plug(hotplug_dev, dev); 4257 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4258 spapr_tpm_proxy_plug(hotplug_dev, dev); 4259 } 4260 } 4261 4262 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4263 DeviceState *dev, Error **errp) 4264 { 4265 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4266 spapr_memory_unplug(hotplug_dev, dev); 4267 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4268 spapr_core_unplug(hotplug_dev, dev); 4269 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4270 spapr_phb_unplug(hotplug_dev, dev); 4271 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4272 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4273 } 4274 } 4275 4276 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4277 { 4278 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4279 /* 4280 * CAS will process all pending unplug requests. 4281 * 4282 * HACK: a guest could theoretically have cleared all bits in OV5, 4283 * but none of the guests we care for do. 4284 */ 4285 spapr_ovec_empty(spapr->ov5_cas); 4286 } 4287 4288 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4289 DeviceState *dev, Error **errp) 4290 { 4291 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4292 MachineClass *mc = MACHINE_GET_CLASS(sms); 4293 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4294 4295 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4296 if (spapr_memory_hot_unplug_supported(sms)) { 4297 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4298 } else { 4299 error_setg(errp, "Memory hot unplug not supported for this guest"); 4300 } 4301 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4302 if (!mc->has_hotpluggable_cpus) { 4303 error_setg(errp, "CPU hot unplug not supported on this machine"); 4304 return; 4305 } 4306 spapr_core_unplug_request(hotplug_dev, dev, errp); 4307 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4308 if (!smc->dr_phb_enabled) { 4309 error_setg(errp, "PHB hot unplug not supported on this machine"); 4310 return; 4311 } 4312 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4313 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4314 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4315 } 4316 } 4317 4318 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4319 DeviceState *dev, Error **errp) 4320 { 4321 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4322 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4323 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4324 spapr_core_pre_plug(hotplug_dev, dev, errp); 4325 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4326 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4327 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4328 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4329 } 4330 } 4331 4332 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4333 DeviceState *dev) 4334 { 4335 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4336 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4337 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4338 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4339 return HOTPLUG_HANDLER(machine); 4340 } 4341 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4342 PCIDevice *pcidev = PCI_DEVICE(dev); 4343 PCIBus *root = pci_device_root_bus(pcidev); 4344 SpaprPhbState *phb = 4345 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4346 TYPE_SPAPR_PCI_HOST_BRIDGE); 4347 4348 if (phb) { 4349 return HOTPLUG_HANDLER(phb); 4350 } 4351 } 4352 return NULL; 4353 } 4354 4355 static CpuInstanceProperties 4356 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4357 { 4358 CPUArchId *core_slot; 4359 MachineClass *mc = MACHINE_GET_CLASS(machine); 4360 4361 /* make sure possible_cpu are initialized */ 4362 mc->possible_cpu_arch_ids(machine); 4363 /* get CPU core slot containing thread that matches cpu_index */ 4364 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4365 assert(core_slot); 4366 return core_slot->props; 4367 } 4368 4369 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4370 { 4371 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4372 } 4373 4374 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4375 { 4376 int i; 4377 unsigned int smp_threads = machine->smp.threads; 4378 unsigned int smp_cpus = machine->smp.cpus; 4379 const char *core_type; 4380 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4381 MachineClass *mc = MACHINE_GET_CLASS(machine); 4382 4383 if (!mc->has_hotpluggable_cpus) { 4384 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4385 } 4386 if (machine->possible_cpus) { 4387 assert(machine->possible_cpus->len == spapr_max_cores); 4388 return machine->possible_cpus; 4389 } 4390 4391 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4392 if (!core_type) { 4393 error_report("Unable to find sPAPR CPU Core definition"); 4394 exit(1); 4395 } 4396 4397 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4398 sizeof(CPUArchId) * spapr_max_cores); 4399 machine->possible_cpus->len = spapr_max_cores; 4400 for (i = 0; i < machine->possible_cpus->len; i++) { 4401 int core_id = i * smp_threads; 4402 4403 machine->possible_cpus->cpus[i].type = core_type; 4404 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4405 machine->possible_cpus->cpus[i].arch_id = core_id; 4406 machine->possible_cpus->cpus[i].props.has_core_id = true; 4407 machine->possible_cpus->cpus[i].props.core_id = core_id; 4408 } 4409 return machine->possible_cpus; 4410 } 4411 4412 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4413 uint64_t *buid, hwaddr *pio, 4414 hwaddr *mmio32, hwaddr *mmio64, 4415 unsigned n_dma, uint32_t *liobns, Error **errp) 4416 { 4417 /* 4418 * New-style PHB window placement. 4419 * 4420 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4421 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4422 * windows. 4423 * 4424 * Some guest kernels can't work with MMIO windows above 1<<46 4425 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4426 * 4427 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4428 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4429 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4430 * 1TiB 64-bit MMIO windows for each PHB. 4431 */ 4432 const uint64_t base_buid = 0x800000020000000ULL; 4433 int i; 4434 4435 /* Sanity check natural alignments */ 4436 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4437 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4438 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4439 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4440 /* Sanity check bounds */ 4441 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4442 SPAPR_PCI_MEM32_WIN_SIZE); 4443 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4444 SPAPR_PCI_MEM64_WIN_SIZE); 4445 4446 if (index >= SPAPR_MAX_PHBS) { 4447 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4448 SPAPR_MAX_PHBS - 1); 4449 return false; 4450 } 4451 4452 *buid = base_buid + index; 4453 for (i = 0; i < n_dma; ++i) { 4454 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4455 } 4456 4457 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4458 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4459 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4460 return true; 4461 } 4462 4463 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4464 { 4465 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4466 4467 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4468 } 4469 4470 static void spapr_ics_resend(XICSFabric *dev) 4471 { 4472 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4473 4474 ics_resend(spapr->ics); 4475 } 4476 4477 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4478 { 4479 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4480 4481 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4482 } 4483 4484 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4485 Monitor *mon) 4486 { 4487 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4488 4489 spapr_irq_print_info(spapr, mon); 4490 monitor_printf(mon, "irqchip: %s\n", 4491 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4492 } 4493 4494 /* 4495 * This is a XIVE only operation 4496 */ 4497 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4498 uint8_t nvt_blk, uint32_t nvt_idx, 4499 bool cam_ignore, uint8_t priority, 4500 uint32_t logic_serv, XiveTCTXMatch *match) 4501 { 4502 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4503 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4504 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4505 int count; 4506 4507 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4508 priority, logic_serv, match); 4509 if (count < 0) { 4510 return count; 4511 } 4512 4513 /* 4514 * When we implement the save and restore of the thread interrupt 4515 * contexts in the enter/exit CPU handlers of the machine and the 4516 * escalations in QEMU, we should be able to handle non dispatched 4517 * vCPUs. 4518 * 4519 * Until this is done, the sPAPR machine should find at least one 4520 * matching context always. 4521 */ 4522 if (count == 0) { 4523 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4524 nvt_blk, nvt_idx); 4525 } 4526 4527 return count; 4528 } 4529 4530 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4531 { 4532 return cpu->vcpu_id; 4533 } 4534 4535 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4536 { 4537 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4538 MachineState *ms = MACHINE(spapr); 4539 int vcpu_id; 4540 4541 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4542 4543 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4544 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4545 error_append_hint(errp, "Adjust the number of cpus to %d " 4546 "or try to raise the number of threads per core\n", 4547 vcpu_id * ms->smp.threads / spapr->vsmt); 4548 return false; 4549 } 4550 4551 cpu->vcpu_id = vcpu_id; 4552 return true; 4553 } 4554 4555 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4556 { 4557 CPUState *cs; 4558 4559 CPU_FOREACH(cs) { 4560 PowerPCCPU *cpu = POWERPC_CPU(cs); 4561 4562 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4563 return cpu; 4564 } 4565 } 4566 4567 return NULL; 4568 } 4569 4570 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4571 { 4572 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4573 4574 return spapr_cpu->in_nested; 4575 } 4576 4577 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4578 { 4579 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4580 4581 /* These are only called by TCG, KVM maintains dispatch state */ 4582 4583 spapr_cpu->prod = false; 4584 if (spapr_cpu->vpa_addr) { 4585 CPUState *cs = CPU(cpu); 4586 uint32_t dispatch; 4587 4588 dispatch = ldl_be_phys(cs->as, 4589 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4590 dispatch++; 4591 if ((dispatch & 1) != 0) { 4592 qemu_log_mask(LOG_GUEST_ERROR, 4593 "VPA: incorrect dispatch counter value for " 4594 "dispatched partition %u, correcting.\n", dispatch); 4595 dispatch++; 4596 } 4597 stl_be_phys(cs->as, 4598 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4599 } 4600 } 4601 4602 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4603 { 4604 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4605 4606 if (spapr_cpu->vpa_addr) { 4607 CPUState *cs = CPU(cpu); 4608 uint32_t dispatch; 4609 4610 dispatch = ldl_be_phys(cs->as, 4611 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4612 dispatch++; 4613 if ((dispatch & 1) != 1) { 4614 qemu_log_mask(LOG_GUEST_ERROR, 4615 "VPA: incorrect dispatch counter value for " 4616 "preempted partition %u, correcting.\n", dispatch); 4617 dispatch++; 4618 } 4619 stl_be_phys(cs->as, 4620 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4621 } 4622 } 4623 4624 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4625 { 4626 MachineClass *mc = MACHINE_CLASS(oc); 4627 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4628 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4629 NMIClass *nc = NMI_CLASS(oc); 4630 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4631 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4632 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4633 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4634 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4635 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4636 4637 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4638 mc->ignore_boot_device_suffixes = true; 4639 4640 /* 4641 * We set up the default / latest behaviour here. The class_init 4642 * functions for the specific versioned machine types can override 4643 * these details for backwards compatibility 4644 */ 4645 mc->init = spapr_machine_init; 4646 mc->reset = spapr_machine_reset; 4647 mc->block_default_type = IF_SCSI; 4648 4649 /* 4650 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values 4651 * should be limited by the host capability instead of hardcoded. 4652 * max_cpus for KVM guests will be checked in kvm_init(), and TCG 4653 * guests are welcome to have as many CPUs as the host are capable 4654 * of emulate. 4655 */ 4656 mc->max_cpus = INT32_MAX; 4657 4658 mc->no_parallel = 1; 4659 mc->default_boot_order = ""; 4660 mc->default_ram_size = 512 * MiB; 4661 mc->default_ram_id = "ppc_spapr.ram"; 4662 mc->default_display = "std"; 4663 mc->kvm_type = spapr_kvm_type; 4664 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4665 mc->pci_allow_0_address = true; 4666 assert(!mc->get_hotplug_handler); 4667 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4668 hc->pre_plug = spapr_machine_device_pre_plug; 4669 hc->plug = spapr_machine_device_plug; 4670 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4671 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4672 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4673 hc->unplug_request = spapr_machine_device_unplug_request; 4674 hc->unplug = spapr_machine_device_unplug; 4675 4676 smc->dr_lmb_enabled = true; 4677 smc->update_dt_enabled = true; 4678 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); 4679 mc->has_hotpluggable_cpus = true; 4680 mc->nvdimm_supported = true; 4681 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4682 fwc->get_dev_path = spapr_get_fw_dev_path; 4683 nc->nmi_monitor_handler = spapr_nmi; 4684 smc->phb_placement = spapr_phb_placement; 4685 vhc->cpu_in_nested = spapr_cpu_in_nested; 4686 vhc->deliver_hv_excp = spapr_exit_nested; 4687 vhc->hypercall = emulate_spapr_hypercall; 4688 vhc->hpt_mask = spapr_hpt_mask; 4689 vhc->map_hptes = spapr_map_hptes; 4690 vhc->unmap_hptes = spapr_unmap_hptes; 4691 vhc->hpte_set_c = spapr_hpte_set_c; 4692 vhc->hpte_set_r = spapr_hpte_set_r; 4693 vhc->get_pate = spapr_get_pate; 4694 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4695 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4696 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4697 xic->ics_get = spapr_ics_get; 4698 xic->ics_resend = spapr_ics_resend; 4699 xic->icp_get = spapr_icp_get; 4700 ispc->print_info = spapr_pic_print_info; 4701 /* Force NUMA node memory size to be a multiple of 4702 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4703 * in which LMBs are represented and hot-added 4704 */ 4705 mc->numa_mem_align_shift = 28; 4706 mc->auto_enable_numa = true; 4707 4708 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4709 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4710 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4711 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4712 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4713 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4714 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4715 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4716 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4717 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4718 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4719 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4720 4721 /* 4722 * This cap specifies whether the AIL 3 mode for 4723 * H_SET_RESOURCE is supported. The default is modified 4724 * by default_caps_with_cpu(). 4725 */ 4726 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4727 spapr_caps_add_properties(smc); 4728 smc->irq = &spapr_irq_dual; 4729 smc->dr_phb_enabled = true; 4730 smc->linux_pci_probe = true; 4731 smc->smp_threads_vsmt = true; 4732 smc->nr_xirqs = SPAPR_NR_XIRQS; 4733 xfc->match_nvt = spapr_match_nvt; 4734 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4735 vmc->quiesce = spapr_vof_quiesce; 4736 vmc->setprop = spapr_vof_setprop; 4737 } 4738 4739 static const TypeInfo spapr_machine_info = { 4740 .name = TYPE_SPAPR_MACHINE, 4741 .parent = TYPE_MACHINE, 4742 .abstract = true, 4743 .instance_size = sizeof(SpaprMachineState), 4744 .instance_init = spapr_instance_init, 4745 .instance_finalize = spapr_machine_finalizefn, 4746 .class_size = sizeof(SpaprMachineClass), 4747 .class_init = spapr_machine_class_init, 4748 .interfaces = (InterfaceInfo[]) { 4749 { TYPE_FW_PATH_PROVIDER }, 4750 { TYPE_NMI }, 4751 { TYPE_HOTPLUG_HANDLER }, 4752 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4753 { TYPE_XICS_FABRIC }, 4754 { TYPE_INTERRUPT_STATS_PROVIDER }, 4755 { TYPE_XIVE_FABRIC }, 4756 { TYPE_VOF_MACHINE_IF }, 4757 { } 4758 }, 4759 }; 4760 4761 static void spapr_machine_latest_class_options(MachineClass *mc) 4762 { 4763 mc->alias = "pseries"; 4764 mc->is_default = true; 4765 } 4766 4767 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4768 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4769 void *data) \ 4770 { \ 4771 MachineClass *mc = MACHINE_CLASS(oc); \ 4772 spapr_machine_##suffix##_class_options(mc); \ 4773 if (latest) { \ 4774 spapr_machine_latest_class_options(mc); \ 4775 } \ 4776 } \ 4777 static const TypeInfo spapr_machine_##suffix##_info = { \ 4778 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4779 .parent = TYPE_SPAPR_MACHINE, \ 4780 .class_init = spapr_machine_##suffix##_class_init, \ 4781 }; \ 4782 static void spapr_machine_register_##suffix(void) \ 4783 { \ 4784 type_register(&spapr_machine_##suffix##_info); \ 4785 } \ 4786 type_init(spapr_machine_register_##suffix) 4787 4788 /* 4789 * pseries-9.0 4790 */ 4791 static void spapr_machine_9_0_class_options(MachineClass *mc) 4792 { 4793 /* Defaults for the latest behaviour inherited from the base class */ 4794 } 4795 4796 DEFINE_SPAPR_MACHINE(9_0, "9.0", true); 4797 4798 /* 4799 * pseries-8.2 4800 */ 4801 static void spapr_machine_8_2_class_options(MachineClass *mc) 4802 { 4803 spapr_machine_9_0_class_options(mc); 4804 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 4805 } 4806 4807 DEFINE_SPAPR_MACHINE(8_2, "8.2", false); 4808 4809 /* 4810 * pseries-8.1 4811 */ 4812 static void spapr_machine_8_1_class_options(MachineClass *mc) 4813 { 4814 spapr_machine_8_2_class_options(mc); 4815 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4816 } 4817 4818 DEFINE_SPAPR_MACHINE(8_1, "8.1", false); 4819 4820 /* 4821 * pseries-8.0 4822 */ 4823 static void spapr_machine_8_0_class_options(MachineClass *mc) 4824 { 4825 spapr_machine_8_1_class_options(mc); 4826 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4827 } 4828 4829 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4830 4831 /* 4832 * pseries-7.2 4833 */ 4834 static void spapr_machine_7_2_class_options(MachineClass *mc) 4835 { 4836 spapr_machine_8_0_class_options(mc); 4837 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4838 } 4839 4840 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4841 4842 /* 4843 * pseries-7.1 4844 */ 4845 static void spapr_machine_7_1_class_options(MachineClass *mc) 4846 { 4847 spapr_machine_7_2_class_options(mc); 4848 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4849 } 4850 4851 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4852 4853 /* 4854 * pseries-7.0 4855 */ 4856 static void spapr_machine_7_0_class_options(MachineClass *mc) 4857 { 4858 spapr_machine_7_1_class_options(mc); 4859 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4860 } 4861 4862 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4863 4864 /* 4865 * pseries-6.2 4866 */ 4867 static void spapr_machine_6_2_class_options(MachineClass *mc) 4868 { 4869 spapr_machine_7_0_class_options(mc); 4870 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4871 } 4872 4873 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4874 4875 /* 4876 * pseries-6.1 4877 */ 4878 static void spapr_machine_6_1_class_options(MachineClass *mc) 4879 { 4880 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4881 4882 spapr_machine_6_2_class_options(mc); 4883 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4884 smc->pre_6_2_numa_affinity = true; 4885 mc->smp_props.prefer_sockets = true; 4886 } 4887 4888 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4889 4890 /* 4891 * pseries-6.0 4892 */ 4893 static void spapr_machine_6_0_class_options(MachineClass *mc) 4894 { 4895 spapr_machine_6_1_class_options(mc); 4896 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4897 } 4898 4899 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4900 4901 /* 4902 * pseries-5.2 4903 */ 4904 static void spapr_machine_5_2_class_options(MachineClass *mc) 4905 { 4906 spapr_machine_6_0_class_options(mc); 4907 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4908 } 4909 4910 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4911 4912 /* 4913 * pseries-5.1 4914 */ 4915 static void spapr_machine_5_1_class_options(MachineClass *mc) 4916 { 4917 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4918 4919 spapr_machine_5_2_class_options(mc); 4920 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4921 smc->pre_5_2_numa_associativity = true; 4922 } 4923 4924 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4925 4926 /* 4927 * pseries-5.0 4928 */ 4929 static void spapr_machine_5_0_class_options(MachineClass *mc) 4930 { 4931 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4932 static GlobalProperty compat[] = { 4933 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4934 }; 4935 4936 spapr_machine_5_1_class_options(mc); 4937 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4938 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4939 mc->numa_mem_supported = true; 4940 smc->pre_5_1_assoc_refpoints = true; 4941 } 4942 4943 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4944 4945 /* 4946 * pseries-4.2 4947 */ 4948 static void spapr_machine_4_2_class_options(MachineClass *mc) 4949 { 4950 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4951 4952 spapr_machine_5_0_class_options(mc); 4953 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4954 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4955 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4956 smc->rma_limit = 16 * GiB; 4957 mc->nvdimm_supported = false; 4958 } 4959 4960 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4961 4962 /* 4963 * pseries-4.1 4964 */ 4965 static void spapr_machine_4_1_class_options(MachineClass *mc) 4966 { 4967 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4968 static GlobalProperty compat[] = { 4969 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4970 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4971 }; 4972 4973 spapr_machine_4_2_class_options(mc); 4974 smc->linux_pci_probe = false; 4975 smc->smp_threads_vsmt = false; 4976 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4977 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4978 } 4979 4980 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4981 4982 /* 4983 * pseries-4.0 4984 */ 4985 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4986 uint64_t *buid, hwaddr *pio, 4987 hwaddr *mmio32, hwaddr *mmio64, 4988 unsigned n_dma, uint32_t *liobns, Error **errp) 4989 { 4990 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4991 liobns, errp)) { 4992 return false; 4993 } 4994 return true; 4995 } 4996 static void spapr_machine_4_0_class_options(MachineClass *mc) 4997 { 4998 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4999 5000 spapr_machine_4_1_class_options(mc); 5001 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 5002 smc->phb_placement = phb_placement_4_0; 5003 smc->irq = &spapr_irq_xics; 5004 smc->pre_4_1_migration = true; 5005 } 5006 5007 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 5008 5009 /* 5010 * pseries-3.1 5011 */ 5012 static void spapr_machine_3_1_class_options(MachineClass *mc) 5013 { 5014 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5015 5016 spapr_machine_4_0_class_options(mc); 5017 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 5018 5019 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 5020 smc->update_dt_enabled = false; 5021 smc->dr_phb_enabled = false; 5022 smc->broken_host_serial_model = true; 5023 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 5024 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 5025 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 5026 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 5027 } 5028 5029 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 5030 5031 /* 5032 * pseries-3.0 5033 */ 5034 5035 static void spapr_machine_3_0_class_options(MachineClass *mc) 5036 { 5037 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5038 5039 spapr_machine_3_1_class_options(mc); 5040 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5041 5042 smc->legacy_irq_allocation = true; 5043 smc->nr_xirqs = 0x400; 5044 smc->irq = &spapr_irq_xics_legacy; 5045 } 5046 5047 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 5048 5049 /* 5050 * pseries-2.12 5051 */ 5052 static void spapr_machine_2_12_class_options(MachineClass *mc) 5053 { 5054 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5055 static GlobalProperty compat[] = { 5056 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5057 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5058 }; 5059 5060 spapr_machine_3_0_class_options(mc); 5061 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5062 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5063 5064 /* We depend on kvm_enabled() to choose a default value for the 5065 * hpt-max-page-size capability. Of course we can't do it here 5066 * because this is too early and the HW accelerator isn't initialized 5067 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5068 */ 5069 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5070 } 5071 5072 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5073 5074 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5075 { 5076 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5077 5078 spapr_machine_2_12_class_options(mc); 5079 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5080 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5081 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5082 } 5083 5084 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5085 5086 /* 5087 * pseries-2.11 5088 */ 5089 5090 static void spapr_machine_2_11_class_options(MachineClass *mc) 5091 { 5092 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5093 5094 spapr_machine_2_12_class_options(mc); 5095 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5096 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5097 } 5098 5099 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5100 5101 /* 5102 * pseries-2.10 5103 */ 5104 5105 static void spapr_machine_2_10_class_options(MachineClass *mc) 5106 { 5107 spapr_machine_2_11_class_options(mc); 5108 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5109 } 5110 5111 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5112 5113 /* 5114 * pseries-2.9 5115 */ 5116 5117 static void spapr_machine_2_9_class_options(MachineClass *mc) 5118 { 5119 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5120 static GlobalProperty compat[] = { 5121 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5122 }; 5123 5124 spapr_machine_2_10_class_options(mc); 5125 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5126 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5127 smc->pre_2_10_has_unused_icps = true; 5128 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5129 } 5130 5131 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5132 5133 /* 5134 * pseries-2.8 5135 */ 5136 5137 static void spapr_machine_2_8_class_options(MachineClass *mc) 5138 { 5139 static GlobalProperty compat[] = { 5140 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5141 }; 5142 5143 spapr_machine_2_9_class_options(mc); 5144 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5145 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5146 mc->numa_mem_align_shift = 23; 5147 } 5148 5149 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5150 5151 /* 5152 * pseries-2.7 5153 */ 5154 5155 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5156 uint64_t *buid, hwaddr *pio, 5157 hwaddr *mmio32, hwaddr *mmio64, 5158 unsigned n_dma, uint32_t *liobns, Error **errp) 5159 { 5160 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5161 const uint64_t base_buid = 0x800000020000000ULL; 5162 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5163 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5164 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5165 const uint32_t max_index = 255; 5166 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5167 5168 uint64_t ram_top = MACHINE(spapr)->ram_size; 5169 hwaddr phb0_base, phb_base; 5170 int i; 5171 5172 /* Do we have device memory? */ 5173 if (MACHINE(spapr)->device_memory) { 5174 /* Can't just use maxram_size, because there may be an 5175 * alignment gap between normal and device memory regions 5176 */ 5177 ram_top = MACHINE(spapr)->device_memory->base + 5178 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5179 } 5180 5181 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5182 5183 if (index > max_index) { 5184 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5185 max_index); 5186 return false; 5187 } 5188 5189 *buid = base_buid + index; 5190 for (i = 0; i < n_dma; ++i) { 5191 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5192 } 5193 5194 phb_base = phb0_base + index * phb_spacing; 5195 *pio = phb_base + pio_offset; 5196 *mmio32 = phb_base + mmio_offset; 5197 /* 5198 * We don't set the 64-bit MMIO window, relying on the PHB's 5199 * fallback behaviour of automatically splitting a large "32-bit" 5200 * window into contiguous 32-bit and 64-bit windows 5201 */ 5202 5203 return true; 5204 } 5205 5206 static void spapr_machine_2_7_class_options(MachineClass *mc) 5207 { 5208 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5209 static GlobalProperty compat[] = { 5210 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5211 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5212 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5213 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5214 }; 5215 5216 spapr_machine_2_8_class_options(mc); 5217 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5218 mc->default_machine_opts = "modern-hotplug-events=off"; 5219 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5220 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5221 smc->phb_placement = phb_placement_2_7; 5222 } 5223 5224 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5225 5226 /* 5227 * pseries-2.6 5228 */ 5229 5230 static void spapr_machine_2_6_class_options(MachineClass *mc) 5231 { 5232 static GlobalProperty compat[] = { 5233 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5234 }; 5235 5236 spapr_machine_2_7_class_options(mc); 5237 mc->has_hotpluggable_cpus = false; 5238 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5239 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5240 } 5241 5242 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5243 5244 /* 5245 * pseries-2.5 5246 */ 5247 5248 static void spapr_machine_2_5_class_options(MachineClass *mc) 5249 { 5250 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5251 static GlobalProperty compat[] = { 5252 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5253 }; 5254 5255 spapr_machine_2_6_class_options(mc); 5256 smc->use_ohci_by_default = true; 5257 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5258 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5259 } 5260 5261 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5262 5263 /* 5264 * pseries-2.4 5265 */ 5266 5267 static void spapr_machine_2_4_class_options(MachineClass *mc) 5268 { 5269 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5270 5271 spapr_machine_2_5_class_options(mc); 5272 smc->dr_lmb_enabled = false; 5273 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5274 } 5275 5276 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5277 5278 /* 5279 * pseries-2.3 5280 */ 5281 5282 static void spapr_machine_2_3_class_options(MachineClass *mc) 5283 { 5284 static GlobalProperty compat[] = { 5285 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5286 }; 5287 spapr_machine_2_4_class_options(mc); 5288 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5289 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5290 } 5291 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5292 5293 /* 5294 * pseries-2.2 5295 */ 5296 5297 static void spapr_machine_2_2_class_options(MachineClass *mc) 5298 { 5299 static GlobalProperty compat[] = { 5300 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5301 }; 5302 5303 spapr_machine_2_3_class_options(mc); 5304 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5305 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5306 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5307 } 5308 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5309 5310 /* 5311 * pseries-2.1 5312 */ 5313 5314 static void spapr_machine_2_1_class_options(MachineClass *mc) 5315 { 5316 spapr_machine_2_2_class_options(mc); 5317 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5318 } 5319 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5320 5321 static void spapr_machine_register_types(void) 5322 { 5323 type_register_static(&spapr_machine_info); 5324 } 5325 5326 type_init(spapr_machine_register_types) 5327