1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qemu/datadir.h" 30 #include "qapi/error.h" 31 #include "qapi/visitor.h" 32 #include "sysemu/sysemu.h" 33 #include "sysemu/hostmem.h" 34 #include "sysemu/numa.h" 35 #include "sysemu/qtest.h" 36 #include "sysemu/reset.h" 37 #include "sysemu/runstate.h" 38 #include "qemu/log.h" 39 #include "hw/fw-path-provider.h" 40 #include "elf.h" 41 #include "net/net.h" 42 #include "sysemu/device_tree.h" 43 #include "sysemu/cpus.h" 44 #include "sysemu/hw_accel.h" 45 #include "kvm_ppc.h" 46 #include "migration/misc.h" 47 #include "migration/qemu-file-types.h" 48 #include "migration/global_state.h" 49 #include "migration/register.h" 50 #include "migration/blocker.h" 51 #include "mmu-hash64.h" 52 #include "mmu-book3s-v3.h" 53 #include "cpu-models.h" 54 #include "hw/core/cpu.h" 55 56 #include "hw/boards.h" 57 #include "hw/ppc/ppc.h" 58 #include "hw/loader.h" 59 60 #include "hw/ppc/fdt.h" 61 #include "hw/ppc/spapr.h" 62 #include "hw/ppc/spapr_vio.h" 63 #include "hw/qdev-properties.h" 64 #include "hw/pci-host/spapr.h" 65 #include "hw/pci/msi.h" 66 67 #include "hw/pci/pci.h" 68 #include "hw/scsi/scsi.h" 69 #include "hw/virtio/virtio-scsi.h" 70 #include "hw/virtio/vhost-scsi-common.h" 71 72 #include "exec/address-spaces.h" 73 #include "exec/ram_addr.h" 74 #include "hw/usb.h" 75 #include "qemu/config-file.h" 76 #include "qemu/error-report.h" 77 #include "trace.h" 78 #include "hw/nmi.h" 79 #include "hw/intc/intc.h" 80 81 #include "hw/ppc/spapr_cpu_core.h" 82 #include "hw/mem/memory-device.h" 83 #include "hw/ppc/spapr_tpm_proxy.h" 84 #include "hw/ppc/spapr_nvdimm.h" 85 #include "hw/ppc/spapr_numa.h" 86 87 #include "monitor/monitor.h" 88 89 #include <libfdt.h> 90 91 /* SLOF memory layout: 92 * 93 * SLOF raw image loaded at 0, copies its romfs right below the flat 94 * device-tree, then position SLOF itself 31M below that 95 * 96 * So we set FW_OVERHEAD to 40MB which should account for all of that 97 * and more 98 * 99 * We load our kernel at 4M, leaving space for SLOF initial image 100 */ 101 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 102 #define FW_MAX_SIZE 0x400000 103 #define FW_FILE_NAME "slof.bin" 104 #define FW_OVERHEAD 0x2800000 105 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 106 107 #define MIN_RMA_SLOF (128 * MiB) 108 109 #define PHANDLE_INTC 0x00001111 110 111 /* These two functions implement the VCPU id numbering: one to compute them 112 * all and one to identify thread 0 of a VCORE. Any change to the first one 113 * is likely to have an impact on the second one, so let's keep them close. 114 */ 115 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 116 { 117 MachineState *ms = MACHINE(spapr); 118 unsigned int smp_threads = ms->smp.threads; 119 120 assert(spapr->vsmt); 121 return 122 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 123 } 124 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 125 PowerPCCPU *cpu) 126 { 127 assert(spapr->vsmt); 128 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 129 } 130 131 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 132 { 133 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 134 * and newer QEMUs don't even have them. In both cases, we don't want 135 * to send anything on the wire. 136 */ 137 return false; 138 } 139 140 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 141 .name = "icp/server", 142 .version_id = 1, 143 .minimum_version_id = 1, 144 .needed = pre_2_10_vmstate_dummy_icp_needed, 145 .fields = (VMStateField[]) { 146 VMSTATE_UNUSED(4), /* uint32_t xirr */ 147 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 148 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 149 VMSTATE_END_OF_LIST() 150 }, 151 }; 152 153 static void pre_2_10_vmstate_register_dummy_icp(int i) 154 { 155 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 156 (void *)(uintptr_t) i); 157 } 158 159 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 160 { 161 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 162 (void *)(uintptr_t) i); 163 } 164 165 int spapr_max_server_number(SpaprMachineState *spapr) 166 { 167 MachineState *ms = MACHINE(spapr); 168 169 assert(spapr->vsmt); 170 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 171 } 172 173 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 174 int smt_threads) 175 { 176 int i, ret = 0; 177 uint32_t servers_prop[smt_threads]; 178 uint32_t gservers_prop[smt_threads * 2]; 179 int index = spapr_get_vcpu_id(cpu); 180 181 if (cpu->compat_pvr) { 182 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 183 if (ret < 0) { 184 return ret; 185 } 186 } 187 188 /* Build interrupt servers and gservers properties */ 189 for (i = 0; i < smt_threads; i++) { 190 servers_prop[i] = cpu_to_be32(index + i); 191 /* Hack, direct the group queues back to cpu 0 */ 192 gservers_prop[i*2] = cpu_to_be32(index + i); 193 gservers_prop[i*2 + 1] = 0; 194 } 195 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 196 servers_prop, sizeof(servers_prop)); 197 if (ret < 0) { 198 return ret; 199 } 200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 201 gservers_prop, sizeof(gservers_prop)); 202 203 return ret; 204 } 205 206 static void spapr_dt_pa_features(SpaprMachineState *spapr, 207 PowerPCCPU *cpu, 208 void *fdt, int offset) 209 { 210 uint8_t pa_features_206[] = { 6, 0, 211 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 212 uint8_t pa_features_207[] = { 24, 0, 213 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 214 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 215 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 216 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 217 uint8_t pa_features_300[] = { 66, 0, 218 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 219 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 220 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 221 /* 6: DS207 */ 222 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 223 /* 16: Vector */ 224 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 225 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 226 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 227 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 228 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 229 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 230 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 231 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 233 /* 42: PM, 44: PC RA, 46: SC vec'd */ 234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 235 /* 48: SIMD, 50: QP BFP, 52: String */ 236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 237 /* 54: DecFP, 56: DecI, 58: SHA */ 238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 239 /* 60: NM atomic, 62: RNG */ 240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 241 }; 242 uint8_t *pa_features = NULL; 243 size_t pa_size; 244 245 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 246 pa_features = pa_features_206; 247 pa_size = sizeof(pa_features_206); 248 } 249 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 250 pa_features = pa_features_207; 251 pa_size = sizeof(pa_features_207); 252 } 253 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 254 pa_features = pa_features_300; 255 pa_size = sizeof(pa_features_300); 256 } 257 if (!pa_features) { 258 return; 259 } 260 261 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 262 /* 263 * Note: we keep CI large pages off by default because a 64K capable 264 * guest provisioned with large pages might otherwise try to map a qemu 265 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 266 * even if that qemu runs on a 4k host. 267 * We dd this bit back here if we are confident this is not an issue 268 */ 269 pa_features[3] |= 0x20; 270 } 271 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 272 pa_features[24] |= 0x80; /* Transactional memory support */ 273 } 274 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 275 /* Workaround for broken kernels that attempt (guest) radix 276 * mode when they can't handle it, if they see the radix bit set 277 * in pa-features. So hide it from them. */ 278 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 279 } 280 281 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 282 } 283 284 static hwaddr spapr_node0_size(MachineState *machine) 285 { 286 if (machine->numa_state->num_nodes) { 287 int i; 288 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 289 if (machine->numa_state->nodes[i].node_mem) { 290 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 291 machine->ram_size); 292 } 293 } 294 } 295 return machine->ram_size; 296 } 297 298 bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr) 299 { 300 MachineState *machine = MACHINE(spapr); 301 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 302 303 return smc->pre_5_2_numa_associativity || 304 machine->numa_state->num_nodes <= 1; 305 } 306 307 static void add_str(GString *s, const gchar *s1) 308 { 309 g_string_append_len(s, s1, strlen(s1) + 1); 310 } 311 312 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 313 hwaddr start, hwaddr size) 314 { 315 char mem_name[32]; 316 uint64_t mem_reg_property[2]; 317 int off; 318 319 mem_reg_property[0] = cpu_to_be64(start); 320 mem_reg_property[1] = cpu_to_be64(size); 321 322 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 323 off = fdt_add_subnode(fdt, 0, mem_name); 324 _FDT(off); 325 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 326 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 327 sizeof(mem_reg_property)))); 328 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 329 return off; 330 } 331 332 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 333 { 334 MemoryDeviceInfoList *info; 335 336 for (info = list; info; info = info->next) { 337 MemoryDeviceInfo *value = info->value; 338 339 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 340 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 341 342 if (addr >= pcdimm_info->addr && 343 addr < (pcdimm_info->addr + pcdimm_info->size)) { 344 return pcdimm_info->node; 345 } 346 } 347 } 348 349 return -1; 350 } 351 352 struct sPAPRDrconfCellV2 { 353 uint32_t seq_lmbs; 354 uint64_t base_addr; 355 uint32_t drc_index; 356 uint32_t aa_index; 357 uint32_t flags; 358 } QEMU_PACKED; 359 360 typedef struct DrconfCellQueue { 361 struct sPAPRDrconfCellV2 cell; 362 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 363 } DrconfCellQueue; 364 365 static DrconfCellQueue * 366 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 367 uint32_t drc_index, uint32_t aa_index, 368 uint32_t flags) 369 { 370 DrconfCellQueue *elem; 371 372 elem = g_malloc0(sizeof(*elem)); 373 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 374 elem->cell.base_addr = cpu_to_be64(base_addr); 375 elem->cell.drc_index = cpu_to_be32(drc_index); 376 elem->cell.aa_index = cpu_to_be32(aa_index); 377 elem->cell.flags = cpu_to_be32(flags); 378 379 return elem; 380 } 381 382 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 383 int offset, MemoryDeviceInfoList *dimms) 384 { 385 MachineState *machine = MACHINE(spapr); 386 uint8_t *int_buf, *cur_index; 387 int ret; 388 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 389 uint64_t addr, cur_addr, size; 390 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 391 uint64_t mem_end = machine->device_memory->base + 392 memory_region_size(&machine->device_memory->mr); 393 uint32_t node, buf_len, nr_entries = 0; 394 SpaprDrc *drc; 395 DrconfCellQueue *elem, *next; 396 MemoryDeviceInfoList *info; 397 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 398 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 399 400 /* Entry to cover RAM and the gap area */ 401 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 402 SPAPR_LMB_FLAGS_RESERVED | 403 SPAPR_LMB_FLAGS_DRC_INVALID); 404 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 405 nr_entries++; 406 407 cur_addr = machine->device_memory->base; 408 for (info = dimms; info; info = info->next) { 409 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 410 411 addr = di->addr; 412 size = di->size; 413 node = di->node; 414 415 /* 416 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 417 * area is marked hotpluggable in the next iteration for the bigger 418 * chunk including the NVDIMM occupied area. 419 */ 420 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 421 continue; 422 423 /* Entry for hot-pluggable area */ 424 if (cur_addr < addr) { 425 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 426 g_assert(drc); 427 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 428 cur_addr, spapr_drc_index(drc), -1, 0); 429 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 430 nr_entries++; 431 } 432 433 /* Entry for DIMM */ 434 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 435 g_assert(drc); 436 elem = spapr_get_drconf_cell(size / lmb_size, addr, 437 spapr_drc_index(drc), node, 438 (SPAPR_LMB_FLAGS_ASSIGNED | 439 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 440 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 441 nr_entries++; 442 cur_addr = addr + size; 443 } 444 445 /* Entry for remaining hotpluggable area */ 446 if (cur_addr < mem_end) { 447 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 448 g_assert(drc); 449 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 450 cur_addr, spapr_drc_index(drc), -1, 0); 451 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 452 nr_entries++; 453 } 454 455 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 456 int_buf = cur_index = g_malloc0(buf_len); 457 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 458 cur_index += sizeof(nr_entries); 459 460 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 461 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 462 cur_index += sizeof(elem->cell); 463 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 464 g_free(elem); 465 } 466 467 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 468 g_free(int_buf); 469 if (ret < 0) { 470 return -1; 471 } 472 return 0; 473 } 474 475 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 476 int offset, MemoryDeviceInfoList *dimms) 477 { 478 MachineState *machine = MACHINE(spapr); 479 int i, ret; 480 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 481 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 482 uint32_t nr_lmbs = (machine->device_memory->base + 483 memory_region_size(&machine->device_memory->mr)) / 484 lmb_size; 485 uint32_t *int_buf, *cur_index, buf_len; 486 487 /* 488 * Allocate enough buffer size to fit in ibm,dynamic-memory 489 */ 490 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 491 cur_index = int_buf = g_malloc0(buf_len); 492 int_buf[0] = cpu_to_be32(nr_lmbs); 493 cur_index++; 494 for (i = 0; i < nr_lmbs; i++) { 495 uint64_t addr = i * lmb_size; 496 uint32_t *dynamic_memory = cur_index; 497 498 if (i >= device_lmb_start) { 499 SpaprDrc *drc; 500 501 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 502 g_assert(drc); 503 504 dynamic_memory[0] = cpu_to_be32(addr >> 32); 505 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 506 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 507 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 508 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 509 if (memory_region_present(get_system_memory(), addr)) { 510 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 511 } else { 512 dynamic_memory[5] = cpu_to_be32(0); 513 } 514 } else { 515 /* 516 * LMB information for RMA, boot time RAM and gap b/n RAM and 517 * device memory region -- all these are marked as reserved 518 * and as having no valid DRC. 519 */ 520 dynamic_memory[0] = cpu_to_be32(addr >> 32); 521 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 522 dynamic_memory[2] = cpu_to_be32(0); 523 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 524 dynamic_memory[4] = cpu_to_be32(-1); 525 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 526 SPAPR_LMB_FLAGS_DRC_INVALID); 527 } 528 529 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 530 } 531 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 532 g_free(int_buf); 533 if (ret < 0) { 534 return -1; 535 } 536 return 0; 537 } 538 539 /* 540 * Adds ibm,dynamic-reconfiguration-memory node. 541 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 542 * of this device tree node. 543 */ 544 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 545 void *fdt) 546 { 547 MachineState *machine = MACHINE(spapr); 548 int ret, offset; 549 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 550 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 551 cpu_to_be32(lmb_size & 0xffffffff)}; 552 MemoryDeviceInfoList *dimms = NULL; 553 554 /* 555 * Don't create the node if there is no device memory 556 */ 557 if (machine->ram_size == machine->maxram_size) { 558 return 0; 559 } 560 561 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 562 563 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 564 sizeof(prop_lmb_size)); 565 if (ret < 0) { 566 return ret; 567 } 568 569 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 570 if (ret < 0) { 571 return ret; 572 } 573 574 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 575 if (ret < 0) { 576 return ret; 577 } 578 579 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 580 dimms = qmp_memory_device_list(); 581 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 582 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 583 } else { 584 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 585 } 586 qapi_free_MemoryDeviceInfoList(dimms); 587 588 if (ret < 0) { 589 return ret; 590 } 591 592 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 593 594 return ret; 595 } 596 597 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 598 { 599 MachineState *machine = MACHINE(spapr); 600 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 601 hwaddr mem_start, node_size; 602 int i, nb_nodes = machine->numa_state->num_nodes; 603 NodeInfo *nodes = machine->numa_state->nodes; 604 605 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 606 if (!nodes[i].node_mem) { 607 continue; 608 } 609 if (mem_start >= machine->ram_size) { 610 node_size = 0; 611 } else { 612 node_size = nodes[i].node_mem; 613 if (node_size > machine->ram_size - mem_start) { 614 node_size = machine->ram_size - mem_start; 615 } 616 } 617 if (!mem_start) { 618 /* spapr_machine_init() checks for rma_size <= node0_size 619 * already */ 620 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 621 mem_start += spapr->rma_size; 622 node_size -= spapr->rma_size; 623 } 624 for ( ; node_size; ) { 625 hwaddr sizetmp = pow2floor(node_size); 626 627 /* mem_start != 0 here */ 628 if (ctzl(mem_start) < ctzl(sizetmp)) { 629 sizetmp = 1ULL << ctzl(mem_start); 630 } 631 632 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 633 node_size -= sizetmp; 634 mem_start += sizetmp; 635 } 636 } 637 638 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 639 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 640 int ret; 641 642 g_assert(smc->dr_lmb_enabled); 643 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 644 if (ret) { 645 return ret; 646 } 647 } 648 649 return 0; 650 } 651 652 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 653 SpaprMachineState *spapr) 654 { 655 MachineState *ms = MACHINE(spapr); 656 PowerPCCPU *cpu = POWERPC_CPU(cs); 657 CPUPPCState *env = &cpu->env; 658 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 659 int index = spapr_get_vcpu_id(cpu); 660 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 661 0xffffffff, 0xffffffff}; 662 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 663 : SPAPR_TIMEBASE_FREQ; 664 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 665 uint32_t page_sizes_prop[64]; 666 size_t page_sizes_prop_size; 667 unsigned int smp_threads = ms->smp.threads; 668 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 669 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 670 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 671 SpaprDrc *drc; 672 int drc_index; 673 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 674 int i; 675 676 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 677 if (drc) { 678 drc_index = spapr_drc_index(drc); 679 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 680 } 681 682 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 683 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 684 685 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 686 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 687 env->dcache_line_size))); 688 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 689 env->dcache_line_size))); 690 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 691 env->icache_line_size))); 692 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 693 env->icache_line_size))); 694 695 if (pcc->l1_dcache_size) { 696 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 697 pcc->l1_dcache_size))); 698 } else { 699 warn_report("Unknown L1 dcache size for cpu"); 700 } 701 if (pcc->l1_icache_size) { 702 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 703 pcc->l1_icache_size))); 704 } else { 705 warn_report("Unknown L1 icache size for cpu"); 706 } 707 708 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 709 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 710 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 711 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 712 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 713 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 714 715 if (env->spr_cb[SPR_PURR].oea_read) { 716 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 717 } 718 if (env->spr_cb[SPR_SPURR].oea_read) { 719 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 720 } 721 722 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 723 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 724 segs, sizeof(segs)))); 725 } 726 727 /* Advertise VSX (vector extensions) if available 728 * 1 == VMX / Altivec available 729 * 2 == VSX available 730 * 731 * Only CPUs for which we create core types in spapr_cpu_core.c 732 * are possible, and all of those have VMX */ 733 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 734 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 735 } else { 736 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 737 } 738 739 /* Advertise DFP (Decimal Floating Point) if available 740 * 0 / no property == no DFP 741 * 1 == DFP available */ 742 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 743 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 744 } 745 746 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 747 sizeof(page_sizes_prop)); 748 if (page_sizes_prop_size) { 749 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 750 page_sizes_prop, page_sizes_prop_size))); 751 } 752 753 spapr_dt_pa_features(spapr, cpu, fdt, offset); 754 755 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 756 cs->cpu_index / vcpus_per_socket))); 757 758 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 759 pft_size_prop, sizeof(pft_size_prop)))); 760 761 if (ms->numa_state->num_nodes > 1) { 762 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 763 } 764 765 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 766 767 if (pcc->radix_page_info) { 768 for (i = 0; i < pcc->radix_page_info->count; i++) { 769 radix_AP_encodings[i] = 770 cpu_to_be32(pcc->radix_page_info->entries[i]); 771 } 772 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 773 radix_AP_encodings, 774 pcc->radix_page_info->count * 775 sizeof(radix_AP_encodings[0])))); 776 } 777 778 /* 779 * We set this property to let the guest know that it can use the large 780 * decrementer and its width in bits. 781 */ 782 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 783 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 784 pcc->lrg_decr_bits))); 785 } 786 787 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 788 { 789 CPUState **rev; 790 CPUState *cs; 791 int n_cpus; 792 int cpus_offset; 793 char *nodename; 794 int i; 795 796 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 797 _FDT(cpus_offset); 798 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 799 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 800 801 /* 802 * We walk the CPUs in reverse order to ensure that CPU DT nodes 803 * created by fdt_add_subnode() end up in the right order in FDT 804 * for the guest kernel the enumerate the CPUs correctly. 805 * 806 * The CPU list cannot be traversed in reverse order, so we need 807 * to do extra work. 808 */ 809 n_cpus = 0; 810 rev = NULL; 811 CPU_FOREACH(cs) { 812 rev = g_renew(CPUState *, rev, n_cpus + 1); 813 rev[n_cpus++] = cs; 814 } 815 816 for (i = n_cpus - 1; i >= 0; i--) { 817 CPUState *cs = rev[i]; 818 PowerPCCPU *cpu = POWERPC_CPU(cs); 819 int index = spapr_get_vcpu_id(cpu); 820 DeviceClass *dc = DEVICE_GET_CLASS(cs); 821 int offset; 822 823 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 824 continue; 825 } 826 827 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 828 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 829 g_free(nodename); 830 _FDT(offset); 831 spapr_dt_cpu(cs, fdt, offset, spapr); 832 } 833 834 g_free(rev); 835 } 836 837 static int spapr_dt_rng(void *fdt) 838 { 839 int node; 840 int ret; 841 842 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 843 if (node <= 0) { 844 return -1; 845 } 846 ret = fdt_setprop_string(fdt, node, "device_type", 847 "ibm,platform-facilities"); 848 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 849 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 850 851 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 852 if (node <= 0) { 853 return -1; 854 } 855 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 856 857 return ret ? -1 : 0; 858 } 859 860 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 861 { 862 MachineState *ms = MACHINE(spapr); 863 int rtas; 864 GString *hypertas = g_string_sized_new(256); 865 GString *qemu_hypertas = g_string_sized_new(256); 866 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 867 memory_region_size(&MACHINE(spapr)->device_memory->mr); 868 uint32_t lrdr_capacity[] = { 869 cpu_to_be32(max_device_addr >> 32), 870 cpu_to_be32(max_device_addr & 0xffffffff), 871 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 872 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 873 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 874 }; 875 876 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 877 878 /* hypertas */ 879 add_str(hypertas, "hcall-pft"); 880 add_str(hypertas, "hcall-term"); 881 add_str(hypertas, "hcall-dabr"); 882 add_str(hypertas, "hcall-interrupt"); 883 add_str(hypertas, "hcall-tce"); 884 add_str(hypertas, "hcall-vio"); 885 add_str(hypertas, "hcall-splpar"); 886 add_str(hypertas, "hcall-join"); 887 add_str(hypertas, "hcall-bulk"); 888 add_str(hypertas, "hcall-set-mode"); 889 add_str(hypertas, "hcall-sprg0"); 890 add_str(hypertas, "hcall-copy"); 891 add_str(hypertas, "hcall-debug"); 892 add_str(hypertas, "hcall-vphn"); 893 add_str(qemu_hypertas, "hcall-memop1"); 894 895 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 896 add_str(hypertas, "hcall-multi-tce"); 897 } 898 899 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 900 add_str(hypertas, "hcall-hpt-resize"); 901 } 902 903 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 904 hypertas->str, hypertas->len)); 905 g_string_free(hypertas, TRUE); 906 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 907 qemu_hypertas->str, qemu_hypertas->len)); 908 g_string_free(qemu_hypertas, TRUE); 909 910 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 911 912 /* 913 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 914 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 915 * 916 * The system reset requirements are driven by existing Linux and PowerVM 917 * implementation which (contrary to PAPR) saves r3 in the error log 918 * structure like machine check, so Linux expects to find the saved r3 919 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 920 * does not look at the error value). 921 * 922 * System reset interrupts are not subject to interlock like machine 923 * check, so this memory area could be corrupted if the sreset is 924 * interrupted by a machine check (or vice versa) if it was shared. To 925 * prevent this, system reset uses per-CPU areas for the sreset save 926 * area. A system reset that interrupts a system reset handler could 927 * still overwrite this area, but Linux doesn't try to recover in that 928 * case anyway. 929 * 930 * The extra 8 bytes is required because Linux's FWNMI error log check 931 * is off-by-one. 932 */ 933 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX + 934 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t))); 935 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 936 RTAS_ERROR_LOG_MAX)); 937 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 938 RTAS_EVENT_SCAN_RATE)); 939 940 g_assert(msi_nonbroken); 941 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 942 943 /* 944 * According to PAPR, rtas ibm,os-term does not guarantee a return 945 * back to the guest cpu. 946 * 947 * While an additional ibm,extended-os-term property indicates 948 * that rtas call return will always occur. Set this property. 949 */ 950 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 951 952 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 953 lrdr_capacity, sizeof(lrdr_capacity))); 954 955 spapr_dt_rtas_tokens(fdt, rtas); 956 } 957 958 /* 959 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 960 * and the XIVE features that the guest may request and thus the valid 961 * values for bytes 23..26 of option vector 5: 962 */ 963 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 964 int chosen) 965 { 966 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 967 968 char val[2 * 4] = { 969 23, 0x00, /* XICS / XIVE mode */ 970 24, 0x00, /* Hash/Radix, filled in below. */ 971 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 972 26, 0x40, /* Radix options: GTSE == yes. */ 973 }; 974 975 if (spapr->irq->xics && spapr->irq->xive) { 976 val[1] = SPAPR_OV5_XIVE_BOTH; 977 } else if (spapr->irq->xive) { 978 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 979 } else { 980 assert(spapr->irq->xics); 981 val[1] = SPAPR_OV5_XIVE_LEGACY; 982 } 983 984 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 985 first_ppc_cpu->compat_pvr)) { 986 /* 987 * If we're in a pre POWER9 compat mode then the guest should 988 * do hash and use the legacy interrupt mode 989 */ 990 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 991 val[3] = 0x00; /* Hash */ 992 } else if (kvm_enabled()) { 993 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 994 val[3] = 0x80; /* OV5_MMU_BOTH */ 995 } else if (kvmppc_has_cap_mmu_radix()) { 996 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 997 } else { 998 val[3] = 0x00; /* Hash */ 999 } 1000 } else { 1001 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1002 val[3] = 0xC0; 1003 } 1004 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1005 val, sizeof(val))); 1006 } 1007 1008 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1009 { 1010 MachineState *machine = MACHINE(spapr); 1011 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1012 int chosen; 1013 1014 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1015 1016 if (reset) { 1017 const char *boot_device = machine->boot_order; 1018 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1019 size_t cb = 0; 1020 char *bootlist = get_boot_devices_list(&cb); 1021 1022 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1023 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1024 machine->kernel_cmdline)); 1025 } 1026 1027 if (spapr->initrd_size) { 1028 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1029 spapr->initrd_base)); 1030 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1031 spapr->initrd_base + spapr->initrd_size)); 1032 } 1033 1034 if (spapr->kernel_size) { 1035 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1036 cpu_to_be64(spapr->kernel_size) }; 1037 1038 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1039 &kprop, sizeof(kprop))); 1040 if (spapr->kernel_le) { 1041 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1042 } 1043 } 1044 if (boot_menu) { 1045 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1046 } 1047 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1048 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1049 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1050 1051 if (cb && bootlist) { 1052 int i; 1053 1054 for (i = 0; i < cb; i++) { 1055 if (bootlist[i] == '\n') { 1056 bootlist[i] = ' '; 1057 } 1058 } 1059 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1060 } 1061 1062 if (boot_device && strlen(boot_device)) { 1063 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1064 } 1065 1066 if (!spapr->has_graphics && stdout_path) { 1067 /* 1068 * "linux,stdout-path" and "stdout" properties are 1069 * deprecated by linux kernel. New platforms should only 1070 * use the "stdout-path" property. Set the new property 1071 * and continue using older property to remain compatible 1072 * with the existing firmware. 1073 */ 1074 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1075 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1076 } 1077 1078 /* 1079 * We can deal with BAR reallocation just fine, advertise it 1080 * to the guest 1081 */ 1082 if (smc->linux_pci_probe) { 1083 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1084 } 1085 1086 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1087 1088 g_free(stdout_path); 1089 g_free(bootlist); 1090 } 1091 1092 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1093 } 1094 1095 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1096 { 1097 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1098 * KVM to work under pHyp with some guest co-operation */ 1099 int hypervisor; 1100 uint8_t hypercall[16]; 1101 1102 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1103 /* indicate KVM hypercall interface */ 1104 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1105 if (kvmppc_has_cap_fixup_hcalls()) { 1106 /* 1107 * Older KVM versions with older guest kernels were broken 1108 * with the magic page, don't allow the guest to map it. 1109 */ 1110 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1111 sizeof(hypercall))) { 1112 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1113 hypercall, sizeof(hypercall))); 1114 } 1115 } 1116 } 1117 1118 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1119 { 1120 MachineState *machine = MACHINE(spapr); 1121 MachineClass *mc = MACHINE_GET_CLASS(machine); 1122 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1123 int ret; 1124 void *fdt; 1125 SpaprPhbState *phb; 1126 char *buf; 1127 1128 fdt = g_malloc0(space); 1129 _FDT((fdt_create_empty_tree(fdt, space))); 1130 1131 /* Root node */ 1132 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1133 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1134 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1135 1136 /* Guest UUID & Name*/ 1137 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1138 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1139 if (qemu_uuid_set) { 1140 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1141 } 1142 g_free(buf); 1143 1144 if (qemu_get_vm_name()) { 1145 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1146 qemu_get_vm_name())); 1147 } 1148 1149 /* Host Model & Serial Number */ 1150 if (spapr->host_model) { 1151 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1152 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1153 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1154 g_free(buf); 1155 } 1156 1157 if (spapr->host_serial) { 1158 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1159 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1160 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1161 g_free(buf); 1162 } 1163 1164 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1165 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1166 1167 /* /interrupt controller */ 1168 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1169 1170 ret = spapr_dt_memory(spapr, fdt); 1171 if (ret < 0) { 1172 error_report("couldn't setup memory nodes in fdt"); 1173 exit(1); 1174 } 1175 1176 /* /vdevice */ 1177 spapr_dt_vdevice(spapr->vio_bus, fdt); 1178 1179 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1180 ret = spapr_dt_rng(fdt); 1181 if (ret < 0) { 1182 error_report("could not set up rng device in the fdt"); 1183 exit(1); 1184 } 1185 } 1186 1187 QLIST_FOREACH(phb, &spapr->phbs, list) { 1188 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1189 if (ret < 0) { 1190 error_report("couldn't setup PCI devices in fdt"); 1191 exit(1); 1192 } 1193 } 1194 1195 spapr_dt_cpus(fdt, spapr); 1196 1197 if (smc->dr_lmb_enabled) { 1198 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1199 } 1200 1201 if (mc->has_hotpluggable_cpus) { 1202 int offset = fdt_path_offset(fdt, "/cpus"); 1203 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1204 if (ret < 0) { 1205 error_report("Couldn't set up CPU DR device tree properties"); 1206 exit(1); 1207 } 1208 } 1209 1210 /* /event-sources */ 1211 spapr_dt_events(spapr, fdt); 1212 1213 /* /rtas */ 1214 spapr_dt_rtas(spapr, fdt); 1215 1216 /* /chosen */ 1217 spapr_dt_chosen(spapr, fdt, reset); 1218 1219 /* /hypervisor */ 1220 if (kvm_enabled()) { 1221 spapr_dt_hypervisor(spapr, fdt); 1222 } 1223 1224 /* Build memory reserve map */ 1225 if (reset) { 1226 if (spapr->kernel_size) { 1227 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1228 spapr->kernel_size))); 1229 } 1230 if (spapr->initrd_size) { 1231 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1232 spapr->initrd_size))); 1233 } 1234 } 1235 1236 if (smc->dr_phb_enabled) { 1237 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1238 if (ret < 0) { 1239 error_report("Couldn't set up PHB DR device tree properties"); 1240 exit(1); 1241 } 1242 } 1243 1244 /* NVDIMM devices */ 1245 if (mc->nvdimm_supported) { 1246 spapr_dt_persistent_memory(spapr, fdt); 1247 } 1248 1249 return fdt; 1250 } 1251 1252 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1253 { 1254 SpaprMachineState *spapr = opaque; 1255 1256 return (addr & 0x0fffffff) + spapr->kernel_addr; 1257 } 1258 1259 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1260 PowerPCCPU *cpu) 1261 { 1262 CPUPPCState *env = &cpu->env; 1263 1264 /* The TCG path should also be holding the BQL at this point */ 1265 g_assert(qemu_mutex_iothread_locked()); 1266 1267 if (msr_pr) { 1268 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1269 env->gpr[3] = H_PRIVILEGE; 1270 } else { 1271 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1272 } 1273 } 1274 1275 struct LPCRSyncState { 1276 target_ulong value; 1277 target_ulong mask; 1278 }; 1279 1280 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1281 { 1282 struct LPCRSyncState *s = arg.host_ptr; 1283 PowerPCCPU *cpu = POWERPC_CPU(cs); 1284 CPUPPCState *env = &cpu->env; 1285 target_ulong lpcr; 1286 1287 cpu_synchronize_state(cs); 1288 lpcr = env->spr[SPR_LPCR]; 1289 lpcr &= ~s->mask; 1290 lpcr |= s->value; 1291 ppc_store_lpcr(cpu, lpcr); 1292 } 1293 1294 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1295 { 1296 CPUState *cs; 1297 struct LPCRSyncState s = { 1298 .value = value, 1299 .mask = mask 1300 }; 1301 CPU_FOREACH(cs) { 1302 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1303 } 1304 } 1305 1306 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1307 { 1308 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1309 1310 /* Copy PATE1:GR into PATE0:HR */ 1311 entry->dw0 = spapr->patb_entry & PATE0_HR; 1312 entry->dw1 = spapr->patb_entry; 1313 } 1314 1315 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1316 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1317 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1318 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1319 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1320 1321 /* 1322 * Get the fd to access the kernel htab, re-opening it if necessary 1323 */ 1324 static int get_htab_fd(SpaprMachineState *spapr) 1325 { 1326 Error *local_err = NULL; 1327 1328 if (spapr->htab_fd >= 0) { 1329 return spapr->htab_fd; 1330 } 1331 1332 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1333 if (spapr->htab_fd < 0) { 1334 error_report_err(local_err); 1335 } 1336 1337 return spapr->htab_fd; 1338 } 1339 1340 void close_htab_fd(SpaprMachineState *spapr) 1341 { 1342 if (spapr->htab_fd >= 0) { 1343 close(spapr->htab_fd); 1344 } 1345 spapr->htab_fd = -1; 1346 } 1347 1348 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1349 { 1350 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1351 1352 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1353 } 1354 1355 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1356 { 1357 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1358 1359 assert(kvm_enabled()); 1360 1361 if (!spapr->htab) { 1362 return 0; 1363 } 1364 1365 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1366 } 1367 1368 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1369 hwaddr ptex, int n) 1370 { 1371 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1372 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1373 1374 if (!spapr->htab) { 1375 /* 1376 * HTAB is controlled by KVM. Fetch into temporary buffer 1377 */ 1378 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1379 kvmppc_read_hptes(hptes, ptex, n); 1380 return hptes; 1381 } 1382 1383 /* 1384 * HTAB is controlled by QEMU. Just point to the internally 1385 * accessible PTEG. 1386 */ 1387 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1388 } 1389 1390 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1391 const ppc_hash_pte64_t *hptes, 1392 hwaddr ptex, int n) 1393 { 1394 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1395 1396 if (!spapr->htab) { 1397 g_free((void *)hptes); 1398 } 1399 1400 /* Nothing to do for qemu managed HPT */ 1401 } 1402 1403 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1404 uint64_t pte0, uint64_t pte1) 1405 { 1406 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1407 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1408 1409 if (!spapr->htab) { 1410 kvmppc_write_hpte(ptex, pte0, pte1); 1411 } else { 1412 if (pte0 & HPTE64_V_VALID) { 1413 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1414 /* 1415 * When setting valid, we write PTE1 first. This ensures 1416 * proper synchronization with the reading code in 1417 * ppc_hash64_pteg_search() 1418 */ 1419 smp_wmb(); 1420 stq_p(spapr->htab + offset, pte0); 1421 } else { 1422 stq_p(spapr->htab + offset, pte0); 1423 /* 1424 * When clearing it we set PTE0 first. This ensures proper 1425 * synchronization with the reading code in 1426 * ppc_hash64_pteg_search() 1427 */ 1428 smp_wmb(); 1429 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1430 } 1431 } 1432 } 1433 1434 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1435 uint64_t pte1) 1436 { 1437 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1438 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1439 1440 if (!spapr->htab) { 1441 /* There should always be a hash table when this is called */ 1442 error_report("spapr_hpte_set_c called with no hash table !"); 1443 return; 1444 } 1445 1446 /* The HW performs a non-atomic byte update */ 1447 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1448 } 1449 1450 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1451 uint64_t pte1) 1452 { 1453 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1454 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1455 1456 if (!spapr->htab) { 1457 /* There should always be a hash table when this is called */ 1458 error_report("spapr_hpte_set_r called with no hash table !"); 1459 return; 1460 } 1461 1462 /* The HW performs a non-atomic byte update */ 1463 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1464 } 1465 1466 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1467 { 1468 int shift; 1469 1470 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1471 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1472 * that's much more than is needed for Linux guests */ 1473 shift = ctz64(pow2ceil(ramsize)) - 7; 1474 shift = MAX(shift, 18); /* Minimum architected size */ 1475 shift = MIN(shift, 46); /* Maximum architected size */ 1476 return shift; 1477 } 1478 1479 void spapr_free_hpt(SpaprMachineState *spapr) 1480 { 1481 g_free(spapr->htab); 1482 spapr->htab = NULL; 1483 spapr->htab_shift = 0; 1484 close_htab_fd(spapr); 1485 } 1486 1487 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1488 { 1489 ERRP_GUARD(); 1490 long rc; 1491 1492 /* Clean up any HPT info from a previous boot */ 1493 spapr_free_hpt(spapr); 1494 1495 rc = kvmppc_reset_htab(shift); 1496 1497 if (rc == -EOPNOTSUPP) { 1498 error_setg(errp, "HPT not supported in nested guests"); 1499 return -EOPNOTSUPP; 1500 } 1501 1502 if (rc < 0) { 1503 /* kernel-side HPT needed, but couldn't allocate one */ 1504 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1505 shift); 1506 error_append_hint(errp, "Try smaller maxmem?\n"); 1507 return -errno; 1508 } else if (rc > 0) { 1509 /* kernel-side HPT allocated */ 1510 if (rc != shift) { 1511 error_setg(errp, 1512 "Requested order %d HPT, but kernel allocated order %ld", 1513 shift, rc); 1514 error_append_hint(errp, "Try smaller maxmem?\n"); 1515 return -ENOSPC; 1516 } 1517 1518 spapr->htab_shift = shift; 1519 spapr->htab = NULL; 1520 } else { 1521 /* kernel-side HPT not needed, allocate in userspace instead */ 1522 size_t size = 1ULL << shift; 1523 int i; 1524 1525 spapr->htab = qemu_memalign(size, size); 1526 memset(spapr->htab, 0, size); 1527 spapr->htab_shift = shift; 1528 1529 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1530 DIRTY_HPTE(HPTE(spapr->htab, i)); 1531 } 1532 } 1533 /* We're setting up a hash table, so that means we're not radix */ 1534 spapr->patb_entry = 0; 1535 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1536 return 0; 1537 } 1538 1539 void spapr_setup_hpt(SpaprMachineState *spapr) 1540 { 1541 int hpt_shift; 1542 1543 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1544 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1545 } else { 1546 uint64_t current_ram_size; 1547 1548 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1549 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1550 } 1551 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1552 1553 if (kvm_enabled()) { 1554 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1555 1556 /* Check our RMA fits in the possible VRMA */ 1557 if (vrma_limit < spapr->rma_size) { 1558 error_report("Unable to create %" HWADDR_PRIu 1559 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1560 spapr->rma_size / MiB, vrma_limit / MiB); 1561 exit(EXIT_FAILURE); 1562 } 1563 } 1564 } 1565 1566 static int spapr_reset_drcs(Object *child, void *opaque) 1567 { 1568 SpaprDrc *drc = 1569 (SpaprDrc *) object_dynamic_cast(child, 1570 TYPE_SPAPR_DR_CONNECTOR); 1571 1572 if (drc) { 1573 spapr_drc_reset(drc); 1574 } 1575 1576 return 0; 1577 } 1578 1579 static void spapr_machine_reset(MachineState *machine) 1580 { 1581 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1582 PowerPCCPU *first_ppc_cpu; 1583 hwaddr fdt_addr; 1584 void *fdt; 1585 int rc; 1586 1587 kvmppc_svm_off(&error_fatal); 1588 spapr_caps_apply(spapr); 1589 1590 first_ppc_cpu = POWERPC_CPU(first_cpu); 1591 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1592 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1593 spapr->max_compat_pvr)) { 1594 /* 1595 * If using KVM with radix mode available, VCPUs can be started 1596 * without a HPT because KVM will start them in radix mode. 1597 * Set the GR bit in PATE so that we know there is no HPT. 1598 */ 1599 spapr->patb_entry = PATE1_GR; 1600 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1601 } else { 1602 spapr_setup_hpt(spapr); 1603 } 1604 1605 qemu_devices_reset(); 1606 1607 spapr_ovec_cleanup(spapr->ov5_cas); 1608 spapr->ov5_cas = spapr_ovec_new(); 1609 1610 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1611 1612 /* 1613 * This is fixing some of the default configuration of the XIVE 1614 * devices. To be called after the reset of the machine devices. 1615 */ 1616 spapr_irq_reset(spapr, &error_fatal); 1617 1618 /* 1619 * There is no CAS under qtest. Simulate one to please the code that 1620 * depends on spapr->ov5_cas. This is especially needed to test device 1621 * unplug, so we do that before resetting the DRCs. 1622 */ 1623 if (qtest_enabled()) { 1624 spapr_ovec_cleanup(spapr->ov5_cas); 1625 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1626 } 1627 1628 /* DRC reset may cause a device to be unplugged. This will cause troubles 1629 * if this device is used by another device (eg, a running vhost backend 1630 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1631 * situations, we reset DRCs after all devices have been reset. 1632 */ 1633 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1634 1635 spapr_clear_pending_events(spapr); 1636 1637 /* 1638 * We place the device tree and RTAS just below either the top of the RMA, 1639 * or just below 2GB, whichever is lower, so that it can be 1640 * processed with 32-bit real mode code if necessary 1641 */ 1642 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE; 1643 1644 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1645 1646 rc = fdt_pack(fdt); 1647 1648 /* Should only fail if we've built a corrupted tree */ 1649 assert(rc == 0); 1650 1651 /* Load the fdt */ 1652 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1653 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1654 g_free(spapr->fdt_blob); 1655 spapr->fdt_size = fdt_totalsize(fdt); 1656 spapr->fdt_initial_size = spapr->fdt_size; 1657 spapr->fdt_blob = fdt; 1658 1659 /* Set up the entry state */ 1660 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0); 1661 first_ppc_cpu->env.gpr[5] = 0; 1662 1663 spapr->fwnmi_system_reset_addr = -1; 1664 spapr->fwnmi_machine_check_addr = -1; 1665 spapr->fwnmi_machine_check_interlock = -1; 1666 1667 /* Signal all vCPUs waiting on this condition */ 1668 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1669 1670 migrate_del_blocker(spapr->fwnmi_migration_blocker); 1671 } 1672 1673 static void spapr_create_nvram(SpaprMachineState *spapr) 1674 { 1675 DeviceState *dev = qdev_new("spapr-nvram"); 1676 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1677 1678 if (dinfo) { 1679 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1680 &error_fatal); 1681 } 1682 1683 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1684 1685 spapr->nvram = (struct SpaprNvram *)dev; 1686 } 1687 1688 static void spapr_rtc_create(SpaprMachineState *spapr) 1689 { 1690 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1691 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1692 &error_fatal, NULL); 1693 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1694 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1695 "date"); 1696 } 1697 1698 /* Returns whether we want to use VGA or not */ 1699 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1700 { 1701 switch (vga_interface_type) { 1702 case VGA_NONE: 1703 return false; 1704 case VGA_DEVICE: 1705 return true; 1706 case VGA_STD: 1707 case VGA_VIRTIO: 1708 case VGA_CIRRUS: 1709 return pci_vga_init(pci_bus) != NULL; 1710 default: 1711 error_setg(errp, 1712 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1713 return false; 1714 } 1715 } 1716 1717 static int spapr_pre_load(void *opaque) 1718 { 1719 int rc; 1720 1721 rc = spapr_caps_pre_load(opaque); 1722 if (rc) { 1723 return rc; 1724 } 1725 1726 return 0; 1727 } 1728 1729 static int spapr_post_load(void *opaque, int version_id) 1730 { 1731 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1732 int err = 0; 1733 1734 err = spapr_caps_post_migration(spapr); 1735 if (err) { 1736 return err; 1737 } 1738 1739 /* 1740 * In earlier versions, there was no separate qdev for the PAPR 1741 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1742 * So when migrating from those versions, poke the incoming offset 1743 * value into the RTC device 1744 */ 1745 if (version_id < 3) { 1746 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1747 if (err) { 1748 return err; 1749 } 1750 } 1751 1752 if (kvm_enabled() && spapr->patb_entry) { 1753 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1754 bool radix = !!(spapr->patb_entry & PATE1_GR); 1755 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1756 1757 /* 1758 * Update LPCR:HR and UPRT as they may not be set properly in 1759 * the stream 1760 */ 1761 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1762 LPCR_HR | LPCR_UPRT); 1763 1764 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1765 if (err) { 1766 error_report("Process table config unsupported by the host"); 1767 return -EINVAL; 1768 } 1769 } 1770 1771 err = spapr_irq_post_load(spapr, version_id); 1772 if (err) { 1773 return err; 1774 } 1775 1776 return err; 1777 } 1778 1779 static int spapr_pre_save(void *opaque) 1780 { 1781 int rc; 1782 1783 rc = spapr_caps_pre_save(opaque); 1784 if (rc) { 1785 return rc; 1786 } 1787 1788 return 0; 1789 } 1790 1791 static bool version_before_3(void *opaque, int version_id) 1792 { 1793 return version_id < 3; 1794 } 1795 1796 static bool spapr_pending_events_needed(void *opaque) 1797 { 1798 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1799 return !QTAILQ_EMPTY(&spapr->pending_events); 1800 } 1801 1802 static const VMStateDescription vmstate_spapr_event_entry = { 1803 .name = "spapr_event_log_entry", 1804 .version_id = 1, 1805 .minimum_version_id = 1, 1806 .fields = (VMStateField[]) { 1807 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1808 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1809 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1810 NULL, extended_length), 1811 VMSTATE_END_OF_LIST() 1812 }, 1813 }; 1814 1815 static const VMStateDescription vmstate_spapr_pending_events = { 1816 .name = "spapr_pending_events", 1817 .version_id = 1, 1818 .minimum_version_id = 1, 1819 .needed = spapr_pending_events_needed, 1820 .fields = (VMStateField[]) { 1821 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1822 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1823 VMSTATE_END_OF_LIST() 1824 }, 1825 }; 1826 1827 static bool spapr_ov5_cas_needed(void *opaque) 1828 { 1829 SpaprMachineState *spapr = opaque; 1830 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1831 bool cas_needed; 1832 1833 /* Prior to the introduction of SpaprOptionVector, we had two option 1834 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1835 * Both of these options encode machine topology into the device-tree 1836 * in such a way that the now-booted OS should still be able to interact 1837 * appropriately with QEMU regardless of what options were actually 1838 * negotiatied on the source side. 1839 * 1840 * As such, we can avoid migrating the CAS-negotiated options if these 1841 * are the only options available on the current machine/platform. 1842 * Since these are the only options available for pseries-2.7 and 1843 * earlier, this allows us to maintain old->new/new->old migration 1844 * compatibility. 1845 * 1846 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1847 * via default pseries-2.8 machines and explicit command-line parameters. 1848 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1849 * of the actual CAS-negotiated values to continue working properly. For 1850 * example, availability of memory unplug depends on knowing whether 1851 * OV5_HP_EVT was negotiated via CAS. 1852 * 1853 * Thus, for any cases where the set of available CAS-negotiatable 1854 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1855 * include the CAS-negotiated options in the migration stream, unless 1856 * if they affect boot time behaviour only. 1857 */ 1858 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1859 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1860 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1861 1862 /* We need extra information if we have any bits outside the mask 1863 * defined above */ 1864 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1865 1866 spapr_ovec_cleanup(ov5_mask); 1867 1868 return cas_needed; 1869 } 1870 1871 static const VMStateDescription vmstate_spapr_ov5_cas = { 1872 .name = "spapr_option_vector_ov5_cas", 1873 .version_id = 1, 1874 .minimum_version_id = 1, 1875 .needed = spapr_ov5_cas_needed, 1876 .fields = (VMStateField[]) { 1877 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1878 vmstate_spapr_ovec, SpaprOptionVector), 1879 VMSTATE_END_OF_LIST() 1880 }, 1881 }; 1882 1883 static bool spapr_patb_entry_needed(void *opaque) 1884 { 1885 SpaprMachineState *spapr = opaque; 1886 1887 return !!spapr->patb_entry; 1888 } 1889 1890 static const VMStateDescription vmstate_spapr_patb_entry = { 1891 .name = "spapr_patb_entry", 1892 .version_id = 1, 1893 .minimum_version_id = 1, 1894 .needed = spapr_patb_entry_needed, 1895 .fields = (VMStateField[]) { 1896 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1897 VMSTATE_END_OF_LIST() 1898 }, 1899 }; 1900 1901 static bool spapr_irq_map_needed(void *opaque) 1902 { 1903 SpaprMachineState *spapr = opaque; 1904 1905 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1906 } 1907 1908 static const VMStateDescription vmstate_spapr_irq_map = { 1909 .name = "spapr_irq_map", 1910 .version_id = 1, 1911 .minimum_version_id = 1, 1912 .needed = spapr_irq_map_needed, 1913 .fields = (VMStateField[]) { 1914 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 1915 VMSTATE_END_OF_LIST() 1916 }, 1917 }; 1918 1919 static bool spapr_dtb_needed(void *opaque) 1920 { 1921 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1922 1923 return smc->update_dt_enabled; 1924 } 1925 1926 static int spapr_dtb_pre_load(void *opaque) 1927 { 1928 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1929 1930 g_free(spapr->fdt_blob); 1931 spapr->fdt_blob = NULL; 1932 spapr->fdt_size = 0; 1933 1934 return 0; 1935 } 1936 1937 static const VMStateDescription vmstate_spapr_dtb = { 1938 .name = "spapr_dtb", 1939 .version_id = 1, 1940 .minimum_version_id = 1, 1941 .needed = spapr_dtb_needed, 1942 .pre_load = spapr_dtb_pre_load, 1943 .fields = (VMStateField[]) { 1944 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 1945 VMSTATE_UINT32(fdt_size, SpaprMachineState), 1946 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 1947 fdt_size), 1948 VMSTATE_END_OF_LIST() 1949 }, 1950 }; 1951 1952 static bool spapr_fwnmi_needed(void *opaque) 1953 { 1954 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1955 1956 return spapr->fwnmi_machine_check_addr != -1; 1957 } 1958 1959 static int spapr_fwnmi_pre_save(void *opaque) 1960 { 1961 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1962 1963 /* 1964 * Check if machine check handling is in progress and print a 1965 * warning message. 1966 */ 1967 if (spapr->fwnmi_machine_check_interlock != -1) { 1968 warn_report("A machine check is being handled during migration. The" 1969 "handler may run and log hardware error on the destination"); 1970 } 1971 1972 return 0; 1973 } 1974 1975 static const VMStateDescription vmstate_spapr_fwnmi = { 1976 .name = "spapr_fwnmi", 1977 .version_id = 1, 1978 .minimum_version_id = 1, 1979 .needed = spapr_fwnmi_needed, 1980 .pre_save = spapr_fwnmi_pre_save, 1981 .fields = (VMStateField[]) { 1982 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 1983 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 1984 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 1985 VMSTATE_END_OF_LIST() 1986 }, 1987 }; 1988 1989 static const VMStateDescription vmstate_spapr = { 1990 .name = "spapr", 1991 .version_id = 3, 1992 .minimum_version_id = 1, 1993 .pre_load = spapr_pre_load, 1994 .post_load = spapr_post_load, 1995 .pre_save = spapr_pre_save, 1996 .fields = (VMStateField[]) { 1997 /* used to be @next_irq */ 1998 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1999 2000 /* RTC offset */ 2001 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2002 2003 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2004 VMSTATE_END_OF_LIST() 2005 }, 2006 .subsections = (const VMStateDescription*[]) { 2007 &vmstate_spapr_ov5_cas, 2008 &vmstate_spapr_patb_entry, 2009 &vmstate_spapr_pending_events, 2010 &vmstate_spapr_cap_htm, 2011 &vmstate_spapr_cap_vsx, 2012 &vmstate_spapr_cap_dfp, 2013 &vmstate_spapr_cap_cfpc, 2014 &vmstate_spapr_cap_sbbc, 2015 &vmstate_spapr_cap_ibs, 2016 &vmstate_spapr_cap_hpt_maxpagesize, 2017 &vmstate_spapr_irq_map, 2018 &vmstate_spapr_cap_nested_kvm_hv, 2019 &vmstate_spapr_dtb, 2020 &vmstate_spapr_cap_large_decr, 2021 &vmstate_spapr_cap_ccf_assist, 2022 &vmstate_spapr_cap_fwnmi, 2023 &vmstate_spapr_fwnmi, 2024 NULL 2025 } 2026 }; 2027 2028 static int htab_save_setup(QEMUFile *f, void *opaque) 2029 { 2030 SpaprMachineState *spapr = opaque; 2031 2032 /* "Iteration" header */ 2033 if (!spapr->htab_shift) { 2034 qemu_put_be32(f, -1); 2035 } else { 2036 qemu_put_be32(f, spapr->htab_shift); 2037 } 2038 2039 if (spapr->htab) { 2040 spapr->htab_save_index = 0; 2041 spapr->htab_first_pass = true; 2042 } else { 2043 if (spapr->htab_shift) { 2044 assert(kvm_enabled()); 2045 } 2046 } 2047 2048 2049 return 0; 2050 } 2051 2052 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2053 int chunkstart, int n_valid, int n_invalid) 2054 { 2055 qemu_put_be32(f, chunkstart); 2056 qemu_put_be16(f, n_valid); 2057 qemu_put_be16(f, n_invalid); 2058 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2059 HASH_PTE_SIZE_64 * n_valid); 2060 } 2061 2062 static void htab_save_end_marker(QEMUFile *f) 2063 { 2064 qemu_put_be32(f, 0); 2065 qemu_put_be16(f, 0); 2066 qemu_put_be16(f, 0); 2067 } 2068 2069 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2070 int64_t max_ns) 2071 { 2072 bool has_timeout = max_ns != -1; 2073 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2074 int index = spapr->htab_save_index; 2075 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2076 2077 assert(spapr->htab_first_pass); 2078 2079 do { 2080 int chunkstart; 2081 2082 /* Consume invalid HPTEs */ 2083 while ((index < htabslots) 2084 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2085 CLEAN_HPTE(HPTE(spapr->htab, index)); 2086 index++; 2087 } 2088 2089 /* Consume valid HPTEs */ 2090 chunkstart = index; 2091 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2092 && HPTE_VALID(HPTE(spapr->htab, index))) { 2093 CLEAN_HPTE(HPTE(spapr->htab, index)); 2094 index++; 2095 } 2096 2097 if (index > chunkstart) { 2098 int n_valid = index - chunkstart; 2099 2100 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2101 2102 if (has_timeout && 2103 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2104 break; 2105 } 2106 } 2107 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2108 2109 if (index >= htabslots) { 2110 assert(index == htabslots); 2111 index = 0; 2112 spapr->htab_first_pass = false; 2113 } 2114 spapr->htab_save_index = index; 2115 } 2116 2117 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2118 int64_t max_ns) 2119 { 2120 bool final = max_ns < 0; 2121 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2122 int examined = 0, sent = 0; 2123 int index = spapr->htab_save_index; 2124 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2125 2126 assert(!spapr->htab_first_pass); 2127 2128 do { 2129 int chunkstart, invalidstart; 2130 2131 /* Consume non-dirty HPTEs */ 2132 while ((index < htabslots) 2133 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2134 index++; 2135 examined++; 2136 } 2137 2138 chunkstart = index; 2139 /* Consume valid dirty HPTEs */ 2140 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2141 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2142 && HPTE_VALID(HPTE(spapr->htab, index))) { 2143 CLEAN_HPTE(HPTE(spapr->htab, index)); 2144 index++; 2145 examined++; 2146 } 2147 2148 invalidstart = index; 2149 /* Consume invalid dirty HPTEs */ 2150 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2151 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2152 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2153 CLEAN_HPTE(HPTE(spapr->htab, index)); 2154 index++; 2155 examined++; 2156 } 2157 2158 if (index > chunkstart) { 2159 int n_valid = invalidstart - chunkstart; 2160 int n_invalid = index - invalidstart; 2161 2162 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2163 sent += index - chunkstart; 2164 2165 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2166 break; 2167 } 2168 } 2169 2170 if (examined >= htabslots) { 2171 break; 2172 } 2173 2174 if (index >= htabslots) { 2175 assert(index == htabslots); 2176 index = 0; 2177 } 2178 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2179 2180 if (index >= htabslots) { 2181 assert(index == htabslots); 2182 index = 0; 2183 } 2184 2185 spapr->htab_save_index = index; 2186 2187 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2188 } 2189 2190 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2191 #define MAX_KVM_BUF_SIZE 2048 2192 2193 static int htab_save_iterate(QEMUFile *f, void *opaque) 2194 { 2195 SpaprMachineState *spapr = opaque; 2196 int fd; 2197 int rc = 0; 2198 2199 /* Iteration header */ 2200 if (!spapr->htab_shift) { 2201 qemu_put_be32(f, -1); 2202 return 1; 2203 } else { 2204 qemu_put_be32(f, 0); 2205 } 2206 2207 if (!spapr->htab) { 2208 assert(kvm_enabled()); 2209 2210 fd = get_htab_fd(spapr); 2211 if (fd < 0) { 2212 return fd; 2213 } 2214 2215 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2216 if (rc < 0) { 2217 return rc; 2218 } 2219 } else if (spapr->htab_first_pass) { 2220 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2221 } else { 2222 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2223 } 2224 2225 htab_save_end_marker(f); 2226 2227 return rc; 2228 } 2229 2230 static int htab_save_complete(QEMUFile *f, void *opaque) 2231 { 2232 SpaprMachineState *spapr = opaque; 2233 int fd; 2234 2235 /* Iteration header */ 2236 if (!spapr->htab_shift) { 2237 qemu_put_be32(f, -1); 2238 return 0; 2239 } else { 2240 qemu_put_be32(f, 0); 2241 } 2242 2243 if (!spapr->htab) { 2244 int rc; 2245 2246 assert(kvm_enabled()); 2247 2248 fd = get_htab_fd(spapr); 2249 if (fd < 0) { 2250 return fd; 2251 } 2252 2253 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2254 if (rc < 0) { 2255 return rc; 2256 } 2257 } else { 2258 if (spapr->htab_first_pass) { 2259 htab_save_first_pass(f, spapr, -1); 2260 } 2261 htab_save_later_pass(f, spapr, -1); 2262 } 2263 2264 /* End marker */ 2265 htab_save_end_marker(f); 2266 2267 return 0; 2268 } 2269 2270 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2271 { 2272 SpaprMachineState *spapr = opaque; 2273 uint32_t section_hdr; 2274 int fd = -1; 2275 Error *local_err = NULL; 2276 2277 if (version_id < 1 || version_id > 1) { 2278 error_report("htab_load() bad version"); 2279 return -EINVAL; 2280 } 2281 2282 section_hdr = qemu_get_be32(f); 2283 2284 if (section_hdr == -1) { 2285 spapr_free_hpt(spapr); 2286 return 0; 2287 } 2288 2289 if (section_hdr) { 2290 int ret; 2291 2292 /* First section gives the htab size */ 2293 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2294 if (ret < 0) { 2295 error_report_err(local_err); 2296 return ret; 2297 } 2298 return 0; 2299 } 2300 2301 if (!spapr->htab) { 2302 assert(kvm_enabled()); 2303 2304 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2305 if (fd < 0) { 2306 error_report_err(local_err); 2307 return fd; 2308 } 2309 } 2310 2311 while (true) { 2312 uint32_t index; 2313 uint16_t n_valid, n_invalid; 2314 2315 index = qemu_get_be32(f); 2316 n_valid = qemu_get_be16(f); 2317 n_invalid = qemu_get_be16(f); 2318 2319 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2320 /* End of Stream */ 2321 break; 2322 } 2323 2324 if ((index + n_valid + n_invalid) > 2325 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2326 /* Bad index in stream */ 2327 error_report( 2328 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2329 index, n_valid, n_invalid, spapr->htab_shift); 2330 return -EINVAL; 2331 } 2332 2333 if (spapr->htab) { 2334 if (n_valid) { 2335 qemu_get_buffer(f, HPTE(spapr->htab, index), 2336 HASH_PTE_SIZE_64 * n_valid); 2337 } 2338 if (n_invalid) { 2339 memset(HPTE(spapr->htab, index + n_valid), 0, 2340 HASH_PTE_SIZE_64 * n_invalid); 2341 } 2342 } else { 2343 int rc; 2344 2345 assert(fd >= 0); 2346 2347 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2348 &local_err); 2349 if (rc < 0) { 2350 error_report_err(local_err); 2351 return rc; 2352 } 2353 } 2354 } 2355 2356 if (!spapr->htab) { 2357 assert(fd >= 0); 2358 close(fd); 2359 } 2360 2361 return 0; 2362 } 2363 2364 static void htab_save_cleanup(void *opaque) 2365 { 2366 SpaprMachineState *spapr = opaque; 2367 2368 close_htab_fd(spapr); 2369 } 2370 2371 static SaveVMHandlers savevm_htab_handlers = { 2372 .save_setup = htab_save_setup, 2373 .save_live_iterate = htab_save_iterate, 2374 .save_live_complete_precopy = htab_save_complete, 2375 .save_cleanup = htab_save_cleanup, 2376 .load_state = htab_load, 2377 }; 2378 2379 static void spapr_boot_set(void *opaque, const char *boot_device, 2380 Error **errp) 2381 { 2382 MachineState *machine = MACHINE(opaque); 2383 machine->boot_order = g_strdup(boot_device); 2384 } 2385 2386 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2387 { 2388 MachineState *machine = MACHINE(spapr); 2389 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2390 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2391 int i; 2392 2393 for (i = 0; i < nr_lmbs; i++) { 2394 uint64_t addr; 2395 2396 addr = i * lmb_size + machine->device_memory->base; 2397 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2398 addr / lmb_size); 2399 } 2400 } 2401 2402 /* 2403 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2404 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2405 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2406 */ 2407 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2408 { 2409 int i; 2410 2411 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2412 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2413 " is not aligned to %" PRIu64 " MiB", 2414 machine->ram_size, 2415 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2416 return; 2417 } 2418 2419 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2420 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2421 " is not aligned to %" PRIu64 " MiB", 2422 machine->ram_size, 2423 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2424 return; 2425 } 2426 2427 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2428 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2429 error_setg(errp, 2430 "Node %d memory size 0x%" PRIx64 2431 " is not aligned to %" PRIu64 " MiB", 2432 i, machine->numa_state->nodes[i].node_mem, 2433 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2434 return; 2435 } 2436 } 2437 } 2438 2439 /* find cpu slot in machine->possible_cpus by core_id */ 2440 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2441 { 2442 int index = id / ms->smp.threads; 2443 2444 if (index >= ms->possible_cpus->len) { 2445 return NULL; 2446 } 2447 if (idx) { 2448 *idx = index; 2449 } 2450 return &ms->possible_cpus->cpus[index]; 2451 } 2452 2453 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2454 { 2455 MachineState *ms = MACHINE(spapr); 2456 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2457 Error *local_err = NULL; 2458 bool vsmt_user = !!spapr->vsmt; 2459 int kvm_smt = kvmppc_smt_threads(); 2460 int ret; 2461 unsigned int smp_threads = ms->smp.threads; 2462 2463 if (!kvm_enabled() && (smp_threads > 1)) { 2464 error_setg(errp, "TCG cannot support more than 1 thread/core " 2465 "on a pseries machine"); 2466 return; 2467 } 2468 if (!is_power_of_2(smp_threads)) { 2469 error_setg(errp, "Cannot support %d threads/core on a pseries " 2470 "machine because it must be a power of 2", smp_threads); 2471 return; 2472 } 2473 2474 /* Detemine the VSMT mode to use: */ 2475 if (vsmt_user) { 2476 if (spapr->vsmt < smp_threads) { 2477 error_setg(errp, "Cannot support VSMT mode %d" 2478 " because it must be >= threads/core (%d)", 2479 spapr->vsmt, smp_threads); 2480 return; 2481 } 2482 /* In this case, spapr->vsmt has been set by the command line */ 2483 } else if (!smc->smp_threads_vsmt) { 2484 /* 2485 * Default VSMT value is tricky, because we need it to be as 2486 * consistent as possible (for migration), but this requires 2487 * changing it for at least some existing cases. We pick 8 as 2488 * the value that we'd get with KVM on POWER8, the 2489 * overwhelmingly common case in production systems. 2490 */ 2491 spapr->vsmt = MAX(8, smp_threads); 2492 } else { 2493 spapr->vsmt = smp_threads; 2494 } 2495 2496 /* KVM: If necessary, set the SMT mode: */ 2497 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2498 ret = kvmppc_set_smt_threads(spapr->vsmt); 2499 if (ret) { 2500 /* Looks like KVM isn't able to change VSMT mode */ 2501 error_setg(&local_err, 2502 "Failed to set KVM's VSMT mode to %d (errno %d)", 2503 spapr->vsmt, ret); 2504 /* We can live with that if the default one is big enough 2505 * for the number of threads, and a submultiple of the one 2506 * we want. In this case we'll waste some vcpu ids, but 2507 * behaviour will be correct */ 2508 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2509 warn_report_err(local_err); 2510 } else { 2511 if (!vsmt_user) { 2512 error_append_hint(&local_err, 2513 "On PPC, a VM with %d threads/core" 2514 " on a host with %d threads/core" 2515 " requires the use of VSMT mode %d.\n", 2516 smp_threads, kvm_smt, spapr->vsmt); 2517 } 2518 kvmppc_error_append_smt_possible_hint(&local_err); 2519 error_propagate(errp, local_err); 2520 } 2521 } 2522 } 2523 /* else TCG: nothing to do currently */ 2524 } 2525 2526 static void spapr_init_cpus(SpaprMachineState *spapr) 2527 { 2528 MachineState *machine = MACHINE(spapr); 2529 MachineClass *mc = MACHINE_GET_CLASS(machine); 2530 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2531 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2532 const CPUArchIdList *possible_cpus; 2533 unsigned int smp_cpus = machine->smp.cpus; 2534 unsigned int smp_threads = machine->smp.threads; 2535 unsigned int max_cpus = machine->smp.max_cpus; 2536 int boot_cores_nr = smp_cpus / smp_threads; 2537 int i; 2538 2539 possible_cpus = mc->possible_cpu_arch_ids(machine); 2540 if (mc->has_hotpluggable_cpus) { 2541 if (smp_cpus % smp_threads) { 2542 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2543 smp_cpus, smp_threads); 2544 exit(1); 2545 } 2546 if (max_cpus % smp_threads) { 2547 error_report("max_cpus (%u) must be multiple of threads (%u)", 2548 max_cpus, smp_threads); 2549 exit(1); 2550 } 2551 } else { 2552 if (max_cpus != smp_cpus) { 2553 error_report("This machine version does not support CPU hotplug"); 2554 exit(1); 2555 } 2556 boot_cores_nr = possible_cpus->len; 2557 } 2558 2559 if (smc->pre_2_10_has_unused_icps) { 2560 int i; 2561 2562 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2563 /* Dummy entries get deregistered when real ICPState objects 2564 * are registered during CPU core hotplug. 2565 */ 2566 pre_2_10_vmstate_register_dummy_icp(i); 2567 } 2568 } 2569 2570 for (i = 0; i < possible_cpus->len; i++) { 2571 int core_id = i * smp_threads; 2572 2573 if (mc->has_hotpluggable_cpus) { 2574 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2575 spapr_vcpu_id(spapr, core_id)); 2576 } 2577 2578 if (i < boot_cores_nr) { 2579 Object *core = object_new(type); 2580 int nr_threads = smp_threads; 2581 2582 /* Handle the partially filled core for older machine types */ 2583 if ((i + 1) * smp_threads >= smp_cpus) { 2584 nr_threads = smp_cpus - i * smp_threads; 2585 } 2586 2587 object_property_set_int(core, "nr-threads", nr_threads, 2588 &error_fatal); 2589 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2590 &error_fatal); 2591 qdev_realize(DEVICE(core), NULL, &error_fatal); 2592 2593 object_unref(core); 2594 } 2595 } 2596 } 2597 2598 static PCIHostState *spapr_create_default_phb(void) 2599 { 2600 DeviceState *dev; 2601 2602 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2603 qdev_prop_set_uint32(dev, "index", 0); 2604 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2605 2606 return PCI_HOST_BRIDGE(dev); 2607 } 2608 2609 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2610 { 2611 MachineState *machine = MACHINE(spapr); 2612 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2613 hwaddr rma_size = machine->ram_size; 2614 hwaddr node0_size = spapr_node0_size(machine); 2615 2616 /* RMA has to fit in the first NUMA node */ 2617 rma_size = MIN(rma_size, node0_size); 2618 2619 /* 2620 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2621 * never exceed that 2622 */ 2623 rma_size = MIN(rma_size, 1 * TiB); 2624 2625 /* 2626 * Clamp the RMA size based on machine type. This is for 2627 * migration compatibility with older qemu versions, which limited 2628 * the RMA size for complicated and mostly bad reasons. 2629 */ 2630 if (smc->rma_limit) { 2631 rma_size = MIN(rma_size, smc->rma_limit); 2632 } 2633 2634 if (rma_size < MIN_RMA_SLOF) { 2635 error_setg(errp, 2636 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2637 "ldMiB guest RMA (Real Mode Area memory)", 2638 MIN_RMA_SLOF / MiB); 2639 return 0; 2640 } 2641 2642 return rma_size; 2643 } 2644 2645 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2646 { 2647 MachineState *machine = MACHINE(spapr); 2648 int i; 2649 2650 for (i = 0; i < machine->ram_slots; i++) { 2651 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2652 } 2653 } 2654 2655 /* pSeries LPAR / sPAPR hardware init */ 2656 static void spapr_machine_init(MachineState *machine) 2657 { 2658 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2659 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2660 MachineClass *mc = MACHINE_GET_CLASS(machine); 2661 const char *bios_name = machine->firmware ?: FW_FILE_NAME; 2662 const char *kernel_filename = machine->kernel_filename; 2663 const char *initrd_filename = machine->initrd_filename; 2664 PCIHostState *phb; 2665 int i; 2666 MemoryRegion *sysmem = get_system_memory(); 2667 long load_limit, fw_size; 2668 char *filename; 2669 Error *resize_hpt_err = NULL; 2670 2671 msi_nonbroken = true; 2672 2673 QLIST_INIT(&spapr->phbs); 2674 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2675 2676 /* Determine capabilities to run with */ 2677 spapr_caps_init(spapr); 2678 2679 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2680 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2681 /* 2682 * If the user explicitly requested a mode we should either 2683 * supply it, or fail completely (which we do below). But if 2684 * it's not set explicitly, we reset our mode to something 2685 * that works 2686 */ 2687 if (resize_hpt_err) { 2688 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2689 error_free(resize_hpt_err); 2690 resize_hpt_err = NULL; 2691 } else { 2692 spapr->resize_hpt = smc->resize_hpt_default; 2693 } 2694 } 2695 2696 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2697 2698 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2699 /* 2700 * User requested HPT resize, but this host can't supply it. Bail out 2701 */ 2702 error_report_err(resize_hpt_err); 2703 exit(1); 2704 } 2705 error_free(resize_hpt_err); 2706 2707 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2708 2709 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2710 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2711 2712 /* 2713 * VSMT must be set in order to be able to compute VCPU ids, ie to 2714 * call spapr_max_server_number() or spapr_vcpu_id(). 2715 */ 2716 spapr_set_vsmt_mode(spapr, &error_fatal); 2717 2718 /* Set up Interrupt Controller before we create the VCPUs */ 2719 spapr_irq_init(spapr, &error_fatal); 2720 2721 /* Set up containers for ibm,client-architecture-support negotiated options 2722 */ 2723 spapr->ov5 = spapr_ovec_new(); 2724 spapr->ov5_cas = spapr_ovec_new(); 2725 2726 if (smc->dr_lmb_enabled) { 2727 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2728 spapr_validate_node_memory(machine, &error_fatal); 2729 } 2730 2731 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2732 2733 /* advertise support for dedicated HP event source to guests */ 2734 if (spapr->use_hotplug_event_source) { 2735 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2736 } 2737 2738 /* advertise support for HPT resizing */ 2739 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2740 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2741 } 2742 2743 /* advertise support for ibm,dyamic-memory-v2 */ 2744 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2745 2746 /* advertise XIVE on POWER9 machines */ 2747 if (spapr->irq->xive) { 2748 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2749 } 2750 2751 /* init CPUs */ 2752 spapr_init_cpus(spapr); 2753 2754 /* 2755 * check we don't have a memory-less/cpu-less NUMA node 2756 * Firmware relies on the existing memory/cpu topology to provide the 2757 * NUMA topology to the kernel. 2758 * And the linux kernel needs to know the NUMA topology at start 2759 * to be able to hotplug CPUs later. 2760 */ 2761 if (machine->numa_state->num_nodes) { 2762 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 2763 /* check for memory-less node */ 2764 if (machine->numa_state->nodes[i].node_mem == 0) { 2765 CPUState *cs; 2766 int found = 0; 2767 /* check for cpu-less node */ 2768 CPU_FOREACH(cs) { 2769 PowerPCCPU *cpu = POWERPC_CPU(cs); 2770 if (cpu->node_id == i) { 2771 found = 1; 2772 break; 2773 } 2774 } 2775 /* memory-less and cpu-less node */ 2776 if (!found) { 2777 error_report( 2778 "Memory-less/cpu-less nodes are not supported (node %d)", 2779 i); 2780 exit(1); 2781 } 2782 } 2783 } 2784 2785 } 2786 2787 /* 2788 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 2789 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 2790 * called from vPHB reset handler so we initialize the counter here. 2791 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 2792 * must be equally distant from any other node. 2793 * The final value of spapr->gpu_numa_id is going to be written to 2794 * max-associativity-domains in spapr_build_fdt(). 2795 */ 2796 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes); 2797 2798 /* Init numa_assoc_array */ 2799 spapr_numa_associativity_init(spapr, machine); 2800 2801 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2802 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2803 spapr->max_compat_pvr)) { 2804 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2805 /* KVM and TCG always allow GTSE with radix... */ 2806 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2807 } 2808 /* ... but not with hash (currently). */ 2809 2810 if (kvm_enabled()) { 2811 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2812 kvmppc_enable_logical_ci_hcalls(); 2813 kvmppc_enable_set_mode_hcall(); 2814 2815 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2816 kvmppc_enable_clear_ref_mod_hcalls(); 2817 2818 /* Enable H_PAGE_INIT */ 2819 kvmppc_enable_h_page_init(); 2820 } 2821 2822 /* map RAM */ 2823 memory_region_add_subregion(sysmem, 0, machine->ram); 2824 2825 /* always allocate the device memory information */ 2826 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2827 2828 /* initialize hotplug memory address space */ 2829 if (machine->ram_size < machine->maxram_size) { 2830 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2831 /* 2832 * Limit the number of hotpluggable memory slots to half the number 2833 * slots that KVM supports, leaving the other half for PCI and other 2834 * devices. However ensure that number of slots doesn't drop below 32. 2835 */ 2836 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2837 SPAPR_MAX_RAM_SLOTS; 2838 2839 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2840 max_memslots = SPAPR_MAX_RAM_SLOTS; 2841 } 2842 if (machine->ram_slots > max_memslots) { 2843 error_report("Specified number of memory slots %" 2844 PRIu64" exceeds max supported %d", 2845 machine->ram_slots, max_memslots); 2846 exit(1); 2847 } 2848 2849 machine->device_memory->base = ROUND_UP(machine->ram_size, 2850 SPAPR_DEVICE_MEM_ALIGN); 2851 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2852 "device-memory", device_mem_size); 2853 memory_region_add_subregion(sysmem, machine->device_memory->base, 2854 &machine->device_memory->mr); 2855 } 2856 2857 if (smc->dr_lmb_enabled) { 2858 spapr_create_lmb_dr_connectors(spapr); 2859 } 2860 2861 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) { 2862 /* Create the error string for live migration blocker */ 2863 error_setg(&spapr->fwnmi_migration_blocker, 2864 "A machine check is being handled during migration. The handler" 2865 "may run and log hardware error on the destination"); 2866 } 2867 2868 if (mc->nvdimm_supported) { 2869 spapr_create_nvdimm_dr_connectors(spapr); 2870 } 2871 2872 /* Set up RTAS event infrastructure */ 2873 spapr_events_init(spapr); 2874 2875 /* Set up the RTC RTAS interfaces */ 2876 spapr_rtc_create(spapr); 2877 2878 /* Set up VIO bus */ 2879 spapr->vio_bus = spapr_vio_bus_init(); 2880 2881 for (i = 0; serial_hd(i); i++) { 2882 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2883 } 2884 2885 /* We always have at least the nvram device on VIO */ 2886 spapr_create_nvram(spapr); 2887 2888 /* 2889 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2890 * connectors (described in root DT node's "ibm,drc-types" property) 2891 * are pre-initialized here. additional child connectors (such as 2892 * connectors for a PHBs PCI slots) are added as needed during their 2893 * parent's realization. 2894 */ 2895 if (smc->dr_phb_enabled) { 2896 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2897 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2898 } 2899 } 2900 2901 /* Set up PCI */ 2902 spapr_pci_rtas_init(); 2903 2904 phb = spapr_create_default_phb(); 2905 2906 for (i = 0; i < nb_nics; i++) { 2907 NICInfo *nd = &nd_table[i]; 2908 2909 if (!nd->model) { 2910 nd->model = g_strdup("spapr-vlan"); 2911 } 2912 2913 if (g_str_equal(nd->model, "spapr-vlan") || 2914 g_str_equal(nd->model, "ibmveth")) { 2915 spapr_vlan_create(spapr->vio_bus, nd); 2916 } else { 2917 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2918 } 2919 } 2920 2921 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2922 spapr_vscsi_create(spapr->vio_bus); 2923 } 2924 2925 /* Graphics */ 2926 if (spapr_vga_init(phb->bus, &error_fatal)) { 2927 spapr->has_graphics = true; 2928 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2929 } 2930 2931 if (machine->usb) { 2932 if (smc->use_ohci_by_default) { 2933 pci_create_simple(phb->bus, -1, "pci-ohci"); 2934 } else { 2935 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2936 } 2937 2938 if (spapr->has_graphics) { 2939 USBBus *usb_bus = usb_bus_find(-1); 2940 2941 usb_create_simple(usb_bus, "usb-kbd"); 2942 usb_create_simple(usb_bus, "usb-mouse"); 2943 } 2944 } 2945 2946 if (kernel_filename) { 2947 spapr->kernel_size = load_elf(kernel_filename, NULL, 2948 translate_kernel_address, spapr, 2949 NULL, NULL, NULL, NULL, 1, 2950 PPC_ELF_MACHINE, 0, 0); 2951 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2952 spapr->kernel_size = load_elf(kernel_filename, NULL, 2953 translate_kernel_address, spapr, 2954 NULL, NULL, NULL, NULL, 0, 2955 PPC_ELF_MACHINE, 0, 0); 2956 spapr->kernel_le = spapr->kernel_size > 0; 2957 } 2958 if (spapr->kernel_size < 0) { 2959 error_report("error loading %s: %s", kernel_filename, 2960 load_elf_strerror(spapr->kernel_size)); 2961 exit(1); 2962 } 2963 2964 /* load initrd */ 2965 if (initrd_filename) { 2966 /* Try to locate the initrd in the gap between the kernel 2967 * and the firmware. Add a bit of space just in case 2968 */ 2969 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 2970 + 0x1ffff) & ~0xffff; 2971 spapr->initrd_size = load_image_targphys(initrd_filename, 2972 spapr->initrd_base, 2973 load_limit 2974 - spapr->initrd_base); 2975 if (spapr->initrd_size < 0) { 2976 error_report("could not load initial ram disk '%s'", 2977 initrd_filename); 2978 exit(1); 2979 } 2980 } 2981 } 2982 2983 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2984 if (!filename) { 2985 error_report("Could not find LPAR firmware '%s'", bios_name); 2986 exit(1); 2987 } 2988 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2989 if (fw_size <= 0) { 2990 error_report("Could not load LPAR firmware '%s'", filename); 2991 exit(1); 2992 } 2993 g_free(filename); 2994 2995 /* FIXME: Should register things through the MachineState's qdev 2996 * interface, this is a legacy from the sPAPREnvironment structure 2997 * which predated MachineState but had a similar function */ 2998 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2999 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3000 &savevm_htab_handlers, spapr); 3001 3002 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3003 3004 qemu_register_boot_set(spapr_boot_set, spapr); 3005 3006 /* 3007 * Nothing needs to be done to resume a suspended guest because 3008 * suspending does not change the machine state, so no need for 3009 * a ->wakeup method. 3010 */ 3011 qemu_register_wakeup_support(); 3012 3013 if (kvm_enabled()) { 3014 /* to stop and start vmclock */ 3015 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3016 &spapr->tb); 3017 3018 kvmppc_spapr_enable_inkernel_multitce(); 3019 } 3020 3021 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3022 } 3023 3024 #define DEFAULT_KVM_TYPE "auto" 3025 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3026 { 3027 /* 3028 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3029 * accomodate the 'HV' and 'PV' formats that exists in the 3030 * wild. The 'auto' mode is being introduced already as 3031 * lower-case, thus we don't need to bother checking for 3032 * "AUTO". 3033 */ 3034 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3035 return 0; 3036 } 3037 3038 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3039 return 1; 3040 } 3041 3042 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3043 return 2; 3044 } 3045 3046 error_report("Unknown kvm-type specified '%s'", vm_type); 3047 exit(1); 3048 } 3049 3050 /* 3051 * Implementation of an interface to adjust firmware path 3052 * for the bootindex property handling. 3053 */ 3054 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3055 DeviceState *dev) 3056 { 3057 #define CAST(type, obj, name) \ 3058 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3059 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3060 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3061 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3062 3063 if (d) { 3064 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3065 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3066 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3067 3068 if (spapr) { 3069 /* 3070 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3071 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3072 * 0x8000 | (target << 8) | (bus << 5) | lun 3073 * (see the "Logical unit addressing format" table in SAM5) 3074 */ 3075 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3076 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3077 (uint64_t)id << 48); 3078 } else if (virtio) { 3079 /* 3080 * We use SRP luns of the form 01000000 | (target << 8) | lun 3081 * in the top 32 bits of the 64-bit LUN 3082 * Note: the quote above is from SLOF and it is wrong, 3083 * the actual binding is: 3084 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3085 */ 3086 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3087 if (d->lun >= 256) { 3088 /* Use the LUN "flat space addressing method" */ 3089 id |= 0x4000; 3090 } 3091 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3092 (uint64_t)id << 32); 3093 } else if (usb) { 3094 /* 3095 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3096 * in the top 32 bits of the 64-bit LUN 3097 */ 3098 unsigned usb_port = atoi(usb->port->path); 3099 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3100 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3101 (uint64_t)id << 32); 3102 } 3103 } 3104 3105 /* 3106 * SLOF probes the USB devices, and if it recognizes that the device is a 3107 * storage device, it changes its name to "storage" instead of "usb-host", 3108 * and additionally adds a child node for the SCSI LUN, so the correct 3109 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3110 */ 3111 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3112 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3113 if (usb_host_dev_is_scsi_storage(usbdev)) { 3114 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3115 } 3116 } 3117 3118 if (phb) { 3119 /* Replace "pci" with "pci@800000020000000" */ 3120 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3121 } 3122 3123 if (vsc) { 3124 /* Same logic as virtio above */ 3125 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3126 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3127 } 3128 3129 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3130 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3131 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3132 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3133 } 3134 3135 return NULL; 3136 } 3137 3138 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3139 { 3140 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3141 3142 return g_strdup(spapr->kvm_type); 3143 } 3144 3145 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3146 { 3147 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3148 3149 g_free(spapr->kvm_type); 3150 spapr->kvm_type = g_strdup(value); 3151 } 3152 3153 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3154 { 3155 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3156 3157 return spapr->use_hotplug_event_source; 3158 } 3159 3160 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3161 Error **errp) 3162 { 3163 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3164 3165 spapr->use_hotplug_event_source = value; 3166 } 3167 3168 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3169 { 3170 return true; 3171 } 3172 3173 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3174 { 3175 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3176 3177 switch (spapr->resize_hpt) { 3178 case SPAPR_RESIZE_HPT_DEFAULT: 3179 return g_strdup("default"); 3180 case SPAPR_RESIZE_HPT_DISABLED: 3181 return g_strdup("disabled"); 3182 case SPAPR_RESIZE_HPT_ENABLED: 3183 return g_strdup("enabled"); 3184 case SPAPR_RESIZE_HPT_REQUIRED: 3185 return g_strdup("required"); 3186 } 3187 g_assert_not_reached(); 3188 } 3189 3190 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3191 { 3192 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3193 3194 if (strcmp(value, "default") == 0) { 3195 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3196 } else if (strcmp(value, "disabled") == 0) { 3197 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3198 } else if (strcmp(value, "enabled") == 0) { 3199 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3200 } else if (strcmp(value, "required") == 0) { 3201 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3202 } else { 3203 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3204 } 3205 } 3206 3207 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3208 { 3209 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3210 3211 if (spapr->irq == &spapr_irq_xics_legacy) { 3212 return g_strdup("legacy"); 3213 } else if (spapr->irq == &spapr_irq_xics) { 3214 return g_strdup("xics"); 3215 } else if (spapr->irq == &spapr_irq_xive) { 3216 return g_strdup("xive"); 3217 } else if (spapr->irq == &spapr_irq_dual) { 3218 return g_strdup("dual"); 3219 } 3220 g_assert_not_reached(); 3221 } 3222 3223 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3224 { 3225 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3226 3227 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3228 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3229 return; 3230 } 3231 3232 /* The legacy IRQ backend can not be set */ 3233 if (strcmp(value, "xics") == 0) { 3234 spapr->irq = &spapr_irq_xics; 3235 } else if (strcmp(value, "xive") == 0) { 3236 spapr->irq = &spapr_irq_xive; 3237 } else if (strcmp(value, "dual") == 0) { 3238 spapr->irq = &spapr_irq_dual; 3239 } else { 3240 error_setg(errp, "Bad value for \"ic-mode\" property"); 3241 } 3242 } 3243 3244 static char *spapr_get_host_model(Object *obj, Error **errp) 3245 { 3246 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3247 3248 return g_strdup(spapr->host_model); 3249 } 3250 3251 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3252 { 3253 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3254 3255 g_free(spapr->host_model); 3256 spapr->host_model = g_strdup(value); 3257 } 3258 3259 static char *spapr_get_host_serial(Object *obj, Error **errp) 3260 { 3261 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3262 3263 return g_strdup(spapr->host_serial); 3264 } 3265 3266 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3267 { 3268 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3269 3270 g_free(spapr->host_serial); 3271 spapr->host_serial = g_strdup(value); 3272 } 3273 3274 static void spapr_instance_init(Object *obj) 3275 { 3276 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3277 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3278 3279 spapr->htab_fd = -1; 3280 spapr->use_hotplug_event_source = true; 3281 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3282 object_property_add_str(obj, "kvm-type", 3283 spapr_get_kvm_type, spapr_set_kvm_type); 3284 object_property_set_description(obj, "kvm-type", 3285 "Specifies the KVM virtualization mode (auto," 3286 " hv, pr). Defaults to 'auto'. This mode will use" 3287 " any available KVM module loaded in the host," 3288 " where kvm_hv takes precedence if both kvm_hv and" 3289 " kvm_pr are loaded."); 3290 object_property_add_bool(obj, "modern-hotplug-events", 3291 spapr_get_modern_hotplug_events, 3292 spapr_set_modern_hotplug_events); 3293 object_property_set_description(obj, "modern-hotplug-events", 3294 "Use dedicated hotplug event mechanism in" 3295 " place of standard EPOW events when possible" 3296 " (required for memory hot-unplug support)"); 3297 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3298 "Maximum permitted CPU compatibility mode"); 3299 3300 object_property_add_str(obj, "resize-hpt", 3301 spapr_get_resize_hpt, spapr_set_resize_hpt); 3302 object_property_set_description(obj, "resize-hpt", 3303 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3304 object_property_add_uint32_ptr(obj, "vsmt", 3305 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3306 object_property_set_description(obj, "vsmt", 3307 "Virtual SMT: KVM behaves as if this were" 3308 " the host's SMT mode"); 3309 3310 object_property_add_bool(obj, "vfio-no-msix-emulation", 3311 spapr_get_msix_emulation, NULL); 3312 3313 object_property_add_uint64_ptr(obj, "kernel-addr", 3314 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3315 object_property_set_description(obj, "kernel-addr", 3316 stringify(KERNEL_LOAD_ADDR) 3317 " for -kernel is the default"); 3318 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3319 /* The machine class defines the default interrupt controller mode */ 3320 spapr->irq = smc->irq; 3321 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3322 spapr_set_ic_mode); 3323 object_property_set_description(obj, "ic-mode", 3324 "Specifies the interrupt controller mode (xics, xive, dual)"); 3325 3326 object_property_add_str(obj, "host-model", 3327 spapr_get_host_model, spapr_set_host_model); 3328 object_property_set_description(obj, "host-model", 3329 "Host model to advertise in guest device tree"); 3330 object_property_add_str(obj, "host-serial", 3331 spapr_get_host_serial, spapr_set_host_serial); 3332 object_property_set_description(obj, "host-serial", 3333 "Host serial number to advertise in guest device tree"); 3334 } 3335 3336 static void spapr_machine_finalizefn(Object *obj) 3337 { 3338 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3339 3340 g_free(spapr->kvm_type); 3341 } 3342 3343 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3344 { 3345 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3346 PowerPCCPU *cpu = POWERPC_CPU(cs); 3347 CPUPPCState *env = &cpu->env; 3348 3349 cpu_synchronize_state(cs); 3350 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3351 if (spapr->fwnmi_system_reset_addr != -1) { 3352 uint64_t rtas_addr, addr; 3353 3354 /* get rtas addr from fdt */ 3355 rtas_addr = spapr_get_rtas_addr(); 3356 if (!rtas_addr) { 3357 qemu_system_guest_panicked(NULL); 3358 return; 3359 } 3360 3361 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3362 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3363 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3364 env->gpr[3] = addr; 3365 } 3366 ppc_cpu_do_system_reset(cs); 3367 if (spapr->fwnmi_system_reset_addr != -1) { 3368 env->nip = spapr->fwnmi_system_reset_addr; 3369 } 3370 } 3371 3372 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3373 { 3374 CPUState *cs; 3375 3376 CPU_FOREACH(cs) { 3377 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3378 } 3379 } 3380 3381 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3382 void *fdt, int *fdt_start_offset, Error **errp) 3383 { 3384 uint64_t addr; 3385 uint32_t node; 3386 3387 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3388 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3389 &error_abort); 3390 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3391 SPAPR_MEMORY_BLOCK_SIZE); 3392 return 0; 3393 } 3394 3395 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3396 bool dedicated_hp_event_source) 3397 { 3398 SpaprDrc *drc; 3399 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3400 int i; 3401 uint64_t addr = addr_start; 3402 bool hotplugged = spapr_drc_hotplugged(dev); 3403 3404 for (i = 0; i < nr_lmbs; i++) { 3405 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3406 addr / SPAPR_MEMORY_BLOCK_SIZE); 3407 g_assert(drc); 3408 3409 /* 3410 * memory_device_get_free_addr() provided a range of free addresses 3411 * that doesn't overlap with any existing mapping at pre-plug. The 3412 * corresponding LMB DRCs are thus assumed to be all attachable. 3413 */ 3414 spapr_drc_attach(drc, dev); 3415 if (!hotplugged) { 3416 spapr_drc_reset(drc); 3417 } 3418 addr += SPAPR_MEMORY_BLOCK_SIZE; 3419 } 3420 /* send hotplug notification to the 3421 * guest only in case of hotplugged memory 3422 */ 3423 if (hotplugged) { 3424 if (dedicated_hp_event_source) { 3425 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3426 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3427 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3428 nr_lmbs, 3429 spapr_drc_index(drc)); 3430 } else { 3431 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3432 nr_lmbs); 3433 } 3434 } 3435 } 3436 3437 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3438 { 3439 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3440 PCDIMMDevice *dimm = PC_DIMM(dev); 3441 uint64_t size, addr; 3442 int64_t slot; 3443 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3444 3445 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3446 3447 pc_dimm_plug(dimm, MACHINE(ms)); 3448 3449 if (!is_nvdimm) { 3450 addr = object_property_get_uint(OBJECT(dimm), 3451 PC_DIMM_ADDR_PROP, &error_abort); 3452 spapr_add_lmbs(dev, addr, size, 3453 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3454 } else { 3455 slot = object_property_get_int(OBJECT(dimm), 3456 PC_DIMM_SLOT_PROP, &error_abort); 3457 /* We should have valid slot number at this point */ 3458 g_assert(slot >= 0); 3459 spapr_add_nvdimm(dev, slot); 3460 } 3461 } 3462 3463 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3464 Error **errp) 3465 { 3466 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3467 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3468 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3469 PCDIMMDevice *dimm = PC_DIMM(dev); 3470 Error *local_err = NULL; 3471 uint64_t size; 3472 Object *memdev; 3473 hwaddr pagesize; 3474 3475 if (!smc->dr_lmb_enabled) { 3476 error_setg(errp, "Memory hotplug not supported for this machine"); 3477 return; 3478 } 3479 3480 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3481 if (local_err) { 3482 error_propagate(errp, local_err); 3483 return; 3484 } 3485 3486 if (is_nvdimm) { 3487 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3488 return; 3489 } 3490 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3491 error_setg(errp, "Hotplugged memory size must be a multiple of " 3492 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3493 return; 3494 } 3495 3496 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3497 &error_abort); 3498 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3499 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3500 return; 3501 } 3502 3503 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3504 } 3505 3506 struct SpaprDimmState { 3507 PCDIMMDevice *dimm; 3508 uint32_t nr_lmbs; 3509 QTAILQ_ENTRY(SpaprDimmState) next; 3510 }; 3511 3512 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3513 PCDIMMDevice *dimm) 3514 { 3515 SpaprDimmState *dimm_state = NULL; 3516 3517 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3518 if (dimm_state->dimm == dimm) { 3519 break; 3520 } 3521 } 3522 return dimm_state; 3523 } 3524 3525 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3526 uint32_t nr_lmbs, 3527 PCDIMMDevice *dimm) 3528 { 3529 SpaprDimmState *ds = NULL; 3530 3531 /* 3532 * If this request is for a DIMM whose removal had failed earlier 3533 * (due to guest's refusal to remove the LMBs), we would have this 3534 * dimm already in the pending_dimm_unplugs list. In that 3535 * case don't add again. 3536 */ 3537 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3538 if (!ds) { 3539 ds = g_malloc0(sizeof(SpaprDimmState)); 3540 ds->nr_lmbs = nr_lmbs; 3541 ds->dimm = dimm; 3542 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3543 } 3544 return ds; 3545 } 3546 3547 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3548 SpaprDimmState *dimm_state) 3549 { 3550 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3551 g_free(dimm_state); 3552 } 3553 3554 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3555 PCDIMMDevice *dimm) 3556 { 3557 SpaprDrc *drc; 3558 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3559 &error_abort); 3560 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3561 uint32_t avail_lmbs = 0; 3562 uint64_t addr_start, addr; 3563 int i; 3564 3565 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3566 &error_abort); 3567 3568 addr = addr_start; 3569 for (i = 0; i < nr_lmbs; i++) { 3570 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3571 addr / SPAPR_MEMORY_BLOCK_SIZE); 3572 g_assert(drc); 3573 if (drc->dev) { 3574 avail_lmbs++; 3575 } 3576 addr += SPAPR_MEMORY_BLOCK_SIZE; 3577 } 3578 3579 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3580 } 3581 3582 /* Callback to be called during DRC release. */ 3583 void spapr_lmb_release(DeviceState *dev) 3584 { 3585 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3586 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3587 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3588 3589 /* This information will get lost if a migration occurs 3590 * during the unplug process. In this case recover it. */ 3591 if (ds == NULL) { 3592 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3593 g_assert(ds); 3594 /* The DRC being examined by the caller at least must be counted */ 3595 g_assert(ds->nr_lmbs); 3596 } 3597 3598 if (--ds->nr_lmbs) { 3599 return; 3600 } 3601 3602 /* 3603 * Now that all the LMBs have been removed by the guest, call the 3604 * unplug handler chain. This can never fail. 3605 */ 3606 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3607 object_unparent(OBJECT(dev)); 3608 } 3609 3610 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3611 { 3612 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3613 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3614 3615 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3616 qdev_unrealize(dev); 3617 spapr_pending_dimm_unplugs_remove(spapr, ds); 3618 } 3619 3620 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3621 DeviceState *dev, Error **errp) 3622 { 3623 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3624 PCDIMMDevice *dimm = PC_DIMM(dev); 3625 uint32_t nr_lmbs; 3626 uint64_t size, addr_start, addr; 3627 int i; 3628 SpaprDrc *drc; 3629 3630 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3631 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3632 return; 3633 } 3634 3635 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3636 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3637 3638 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3639 &error_abort); 3640 3641 /* 3642 * An existing pending dimm state for this DIMM means that there is an 3643 * unplug operation in progress, waiting for the spapr_lmb_release 3644 * callback to complete the job (BQL can't cover that far). In this case, 3645 * bail out to avoid detaching DRCs that were already released. 3646 */ 3647 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3648 error_setg(errp, "Memory unplug already in progress for device %s", 3649 dev->id); 3650 return; 3651 } 3652 3653 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3654 3655 addr = addr_start; 3656 for (i = 0; i < nr_lmbs; i++) { 3657 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3658 addr / SPAPR_MEMORY_BLOCK_SIZE); 3659 g_assert(drc); 3660 3661 spapr_drc_detach(drc); 3662 addr += SPAPR_MEMORY_BLOCK_SIZE; 3663 } 3664 3665 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3666 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3667 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3668 nr_lmbs, spapr_drc_index(drc)); 3669 } 3670 3671 /* Callback to be called during DRC release. */ 3672 void spapr_core_release(DeviceState *dev) 3673 { 3674 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3675 3676 /* Call the unplug handler chain. This can never fail. */ 3677 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3678 object_unparent(OBJECT(dev)); 3679 } 3680 3681 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3682 { 3683 MachineState *ms = MACHINE(hotplug_dev); 3684 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3685 CPUCore *cc = CPU_CORE(dev); 3686 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3687 3688 if (smc->pre_2_10_has_unused_icps) { 3689 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3690 int i; 3691 3692 for (i = 0; i < cc->nr_threads; i++) { 3693 CPUState *cs = CPU(sc->threads[i]); 3694 3695 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3696 } 3697 } 3698 3699 assert(core_slot); 3700 core_slot->cpu = NULL; 3701 qdev_unrealize(dev); 3702 } 3703 3704 static 3705 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3706 Error **errp) 3707 { 3708 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3709 int index; 3710 SpaprDrc *drc; 3711 CPUCore *cc = CPU_CORE(dev); 3712 3713 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3714 error_setg(errp, "Unable to find CPU core with core-id: %d", 3715 cc->core_id); 3716 return; 3717 } 3718 if (index == 0) { 3719 error_setg(errp, "Boot CPU core may not be unplugged"); 3720 return; 3721 } 3722 3723 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3724 spapr_vcpu_id(spapr, cc->core_id)); 3725 g_assert(drc); 3726 3727 if (!spapr_drc_unplug_requested(drc)) { 3728 spapr_drc_detach(drc); 3729 spapr_hotplug_req_remove_by_index(drc); 3730 } 3731 } 3732 3733 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3734 void *fdt, int *fdt_start_offset, Error **errp) 3735 { 3736 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3737 CPUState *cs = CPU(core->threads[0]); 3738 PowerPCCPU *cpu = POWERPC_CPU(cs); 3739 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3740 int id = spapr_get_vcpu_id(cpu); 3741 char *nodename; 3742 int offset; 3743 3744 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3745 offset = fdt_add_subnode(fdt, 0, nodename); 3746 g_free(nodename); 3747 3748 spapr_dt_cpu(cs, fdt, offset, spapr); 3749 3750 *fdt_start_offset = offset; 3751 return 0; 3752 } 3753 3754 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3755 { 3756 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3757 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3758 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3759 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3760 CPUCore *cc = CPU_CORE(dev); 3761 CPUState *cs; 3762 SpaprDrc *drc; 3763 CPUArchId *core_slot; 3764 int index; 3765 bool hotplugged = spapr_drc_hotplugged(dev); 3766 int i; 3767 3768 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3769 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3770 3771 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3772 spapr_vcpu_id(spapr, cc->core_id)); 3773 3774 g_assert(drc || !mc->has_hotpluggable_cpus); 3775 3776 if (drc) { 3777 /* 3778 * spapr_core_pre_plug() already buys us this is a brand new 3779 * core being plugged into a free slot. Nothing should already 3780 * be attached to the corresponding DRC. 3781 */ 3782 spapr_drc_attach(drc, dev); 3783 3784 if (hotplugged) { 3785 /* 3786 * Send hotplug notification interrupt to the guest only 3787 * in case of hotplugged CPUs. 3788 */ 3789 spapr_hotplug_req_add_by_index(drc); 3790 } else { 3791 spapr_drc_reset(drc); 3792 } 3793 } 3794 3795 core_slot->cpu = OBJECT(dev); 3796 3797 /* 3798 * Set compatibility mode to match the boot CPU, which was either set 3799 * by the machine reset code or by CAS. This really shouldn't fail at 3800 * this point. 3801 */ 3802 if (hotplugged) { 3803 for (i = 0; i < cc->nr_threads; i++) { 3804 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3805 &error_abort); 3806 } 3807 } 3808 3809 if (smc->pre_2_10_has_unused_icps) { 3810 for (i = 0; i < cc->nr_threads; i++) { 3811 cs = CPU(core->threads[i]); 3812 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3813 } 3814 } 3815 } 3816 3817 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3818 Error **errp) 3819 { 3820 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3821 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3822 CPUCore *cc = CPU_CORE(dev); 3823 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3824 const char *type = object_get_typename(OBJECT(dev)); 3825 CPUArchId *core_slot; 3826 int index; 3827 unsigned int smp_threads = machine->smp.threads; 3828 3829 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3830 error_setg(errp, "CPU hotplug not supported for this machine"); 3831 return; 3832 } 3833 3834 if (strcmp(base_core_type, type)) { 3835 error_setg(errp, "CPU core type should be %s", base_core_type); 3836 return; 3837 } 3838 3839 if (cc->core_id % smp_threads) { 3840 error_setg(errp, "invalid core id %d", cc->core_id); 3841 return; 3842 } 3843 3844 /* 3845 * In general we should have homogeneous threads-per-core, but old 3846 * (pre hotplug support) machine types allow the last core to have 3847 * reduced threads as a compatibility hack for when we allowed 3848 * total vcpus not a multiple of threads-per-core. 3849 */ 3850 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3851 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 3852 smp_threads); 3853 return; 3854 } 3855 3856 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3857 if (!core_slot) { 3858 error_setg(errp, "core id %d out of range", cc->core_id); 3859 return; 3860 } 3861 3862 if (core_slot->cpu) { 3863 error_setg(errp, "core %d already populated", cc->core_id); 3864 return; 3865 } 3866 3867 numa_cpu_pre_plug(core_slot, dev, errp); 3868 } 3869 3870 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3871 void *fdt, int *fdt_start_offset, Error **errp) 3872 { 3873 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3874 int intc_phandle; 3875 3876 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3877 if (intc_phandle <= 0) { 3878 return -1; 3879 } 3880 3881 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 3882 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3883 return -1; 3884 } 3885 3886 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3887 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3888 3889 return 0; 3890 } 3891 3892 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3893 Error **errp) 3894 { 3895 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3896 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3897 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3898 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3899 SpaprDrc *drc; 3900 3901 if (dev->hotplugged && !smc->dr_phb_enabled) { 3902 error_setg(errp, "PHB hotplug not supported for this machine"); 3903 return false; 3904 } 3905 3906 if (sphb->index == (uint32_t)-1) { 3907 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3908 return false; 3909 } 3910 3911 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3912 if (drc && drc->dev) { 3913 error_setg(errp, "PHB %d already attached", sphb->index); 3914 return false; 3915 } 3916 3917 /* 3918 * This will check that sphb->index doesn't exceed the maximum number of 3919 * PHBs for the current machine type. 3920 */ 3921 return 3922 smc->phb_placement(spapr, sphb->index, 3923 &sphb->buid, &sphb->io_win_addr, 3924 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3925 windows_supported, sphb->dma_liobn, 3926 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3927 errp); 3928 } 3929 3930 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3931 { 3932 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3933 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3934 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3935 SpaprDrc *drc; 3936 bool hotplugged = spapr_drc_hotplugged(dev); 3937 3938 if (!smc->dr_phb_enabled) { 3939 return; 3940 } 3941 3942 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3943 /* hotplug hooks should check it's enabled before getting this far */ 3944 assert(drc); 3945 3946 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 3947 spapr_drc_attach(drc, dev); 3948 3949 if (hotplugged) { 3950 spapr_hotplug_req_add_by_index(drc); 3951 } else { 3952 spapr_drc_reset(drc); 3953 } 3954 } 3955 3956 void spapr_phb_release(DeviceState *dev) 3957 { 3958 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3959 3960 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3961 object_unparent(OBJECT(dev)); 3962 } 3963 3964 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3965 { 3966 qdev_unrealize(dev); 3967 } 3968 3969 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 3970 DeviceState *dev, Error **errp) 3971 { 3972 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3973 SpaprDrc *drc; 3974 3975 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3976 assert(drc); 3977 3978 if (!spapr_drc_unplug_requested(drc)) { 3979 spapr_drc_detach(drc); 3980 spapr_hotplug_req_remove_by_index(drc); 3981 } 3982 } 3983 3984 static 3985 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3986 Error **errp) 3987 { 3988 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3989 3990 if (spapr->tpm_proxy != NULL) { 3991 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 3992 return false; 3993 } 3994 3995 return true; 3996 } 3997 3998 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3999 { 4000 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4001 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4002 4003 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4004 g_assert(spapr->tpm_proxy == NULL); 4005 4006 spapr->tpm_proxy = tpm_proxy; 4007 } 4008 4009 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4010 { 4011 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4012 4013 qdev_unrealize(dev); 4014 object_unparent(OBJECT(dev)); 4015 spapr->tpm_proxy = NULL; 4016 } 4017 4018 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4019 DeviceState *dev, Error **errp) 4020 { 4021 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4022 spapr_memory_plug(hotplug_dev, dev); 4023 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4024 spapr_core_plug(hotplug_dev, dev); 4025 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4026 spapr_phb_plug(hotplug_dev, dev); 4027 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4028 spapr_tpm_proxy_plug(hotplug_dev, dev); 4029 } 4030 } 4031 4032 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4033 DeviceState *dev, Error **errp) 4034 { 4035 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4036 spapr_memory_unplug(hotplug_dev, dev); 4037 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4038 spapr_core_unplug(hotplug_dev, dev); 4039 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4040 spapr_phb_unplug(hotplug_dev, dev); 4041 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4042 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4043 } 4044 } 4045 4046 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4047 DeviceState *dev, Error **errp) 4048 { 4049 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4050 MachineClass *mc = MACHINE_GET_CLASS(sms); 4051 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4052 4053 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4054 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4055 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4056 } else { 4057 /* NOTE: this means there is a window after guest reset, prior to 4058 * CAS negotiation, where unplug requests will fail due to the 4059 * capability not being detected yet. This is a bit different than 4060 * the case with PCI unplug, where the events will be queued and 4061 * eventually handled by the guest after boot 4062 */ 4063 error_setg(errp, "Memory hot unplug not supported for this guest"); 4064 } 4065 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4066 if (!mc->has_hotpluggable_cpus) { 4067 error_setg(errp, "CPU hot unplug not supported on this machine"); 4068 return; 4069 } 4070 spapr_core_unplug_request(hotplug_dev, dev, errp); 4071 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4072 if (!smc->dr_phb_enabled) { 4073 error_setg(errp, "PHB hot unplug not supported on this machine"); 4074 return; 4075 } 4076 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4077 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4078 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4079 } 4080 } 4081 4082 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4083 DeviceState *dev, Error **errp) 4084 { 4085 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4086 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4087 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4088 spapr_core_pre_plug(hotplug_dev, dev, errp); 4089 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4090 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4091 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4092 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4093 } 4094 } 4095 4096 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4097 DeviceState *dev) 4098 { 4099 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4100 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4101 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4102 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4103 return HOTPLUG_HANDLER(machine); 4104 } 4105 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4106 PCIDevice *pcidev = PCI_DEVICE(dev); 4107 PCIBus *root = pci_device_root_bus(pcidev); 4108 SpaprPhbState *phb = 4109 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4110 TYPE_SPAPR_PCI_HOST_BRIDGE); 4111 4112 if (phb) { 4113 return HOTPLUG_HANDLER(phb); 4114 } 4115 } 4116 return NULL; 4117 } 4118 4119 static CpuInstanceProperties 4120 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4121 { 4122 CPUArchId *core_slot; 4123 MachineClass *mc = MACHINE_GET_CLASS(machine); 4124 4125 /* make sure possible_cpu are intialized */ 4126 mc->possible_cpu_arch_ids(machine); 4127 /* get CPU core slot containing thread that matches cpu_index */ 4128 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4129 assert(core_slot); 4130 return core_slot->props; 4131 } 4132 4133 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4134 { 4135 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4136 } 4137 4138 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4139 { 4140 int i; 4141 unsigned int smp_threads = machine->smp.threads; 4142 unsigned int smp_cpus = machine->smp.cpus; 4143 const char *core_type; 4144 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4145 MachineClass *mc = MACHINE_GET_CLASS(machine); 4146 4147 if (!mc->has_hotpluggable_cpus) { 4148 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4149 } 4150 if (machine->possible_cpus) { 4151 assert(machine->possible_cpus->len == spapr_max_cores); 4152 return machine->possible_cpus; 4153 } 4154 4155 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4156 if (!core_type) { 4157 error_report("Unable to find sPAPR CPU Core definition"); 4158 exit(1); 4159 } 4160 4161 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4162 sizeof(CPUArchId) * spapr_max_cores); 4163 machine->possible_cpus->len = spapr_max_cores; 4164 for (i = 0; i < machine->possible_cpus->len; i++) { 4165 int core_id = i * smp_threads; 4166 4167 machine->possible_cpus->cpus[i].type = core_type; 4168 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4169 machine->possible_cpus->cpus[i].arch_id = core_id; 4170 machine->possible_cpus->cpus[i].props.has_core_id = true; 4171 machine->possible_cpus->cpus[i].props.core_id = core_id; 4172 } 4173 return machine->possible_cpus; 4174 } 4175 4176 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4177 uint64_t *buid, hwaddr *pio, 4178 hwaddr *mmio32, hwaddr *mmio64, 4179 unsigned n_dma, uint32_t *liobns, 4180 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4181 { 4182 /* 4183 * New-style PHB window placement. 4184 * 4185 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4186 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4187 * windows. 4188 * 4189 * Some guest kernels can't work with MMIO windows above 1<<46 4190 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4191 * 4192 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4193 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4194 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4195 * 1TiB 64-bit MMIO windows for each PHB. 4196 */ 4197 const uint64_t base_buid = 0x800000020000000ULL; 4198 int i; 4199 4200 /* Sanity check natural alignments */ 4201 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4202 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4203 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4204 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4205 /* Sanity check bounds */ 4206 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4207 SPAPR_PCI_MEM32_WIN_SIZE); 4208 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4209 SPAPR_PCI_MEM64_WIN_SIZE); 4210 4211 if (index >= SPAPR_MAX_PHBS) { 4212 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4213 SPAPR_MAX_PHBS - 1); 4214 return false; 4215 } 4216 4217 *buid = base_buid + index; 4218 for (i = 0; i < n_dma; ++i) { 4219 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4220 } 4221 4222 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4223 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4224 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4225 4226 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4227 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4228 return true; 4229 } 4230 4231 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4232 { 4233 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4234 4235 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4236 } 4237 4238 static void spapr_ics_resend(XICSFabric *dev) 4239 { 4240 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4241 4242 ics_resend(spapr->ics); 4243 } 4244 4245 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4246 { 4247 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4248 4249 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4250 } 4251 4252 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4253 Monitor *mon) 4254 { 4255 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4256 4257 spapr_irq_print_info(spapr, mon); 4258 monitor_printf(mon, "irqchip: %s\n", 4259 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4260 } 4261 4262 /* 4263 * This is a XIVE only operation 4264 */ 4265 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4266 uint8_t nvt_blk, uint32_t nvt_idx, 4267 bool cam_ignore, uint8_t priority, 4268 uint32_t logic_serv, XiveTCTXMatch *match) 4269 { 4270 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4271 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4272 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4273 int count; 4274 4275 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4276 priority, logic_serv, match); 4277 if (count < 0) { 4278 return count; 4279 } 4280 4281 /* 4282 * When we implement the save and restore of the thread interrupt 4283 * contexts in the enter/exit CPU handlers of the machine and the 4284 * escalations in QEMU, we should be able to handle non dispatched 4285 * vCPUs. 4286 * 4287 * Until this is done, the sPAPR machine should find at least one 4288 * matching context always. 4289 */ 4290 if (count == 0) { 4291 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4292 nvt_blk, nvt_idx); 4293 } 4294 4295 return count; 4296 } 4297 4298 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4299 { 4300 return cpu->vcpu_id; 4301 } 4302 4303 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4304 { 4305 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4306 MachineState *ms = MACHINE(spapr); 4307 int vcpu_id; 4308 4309 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4310 4311 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4312 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4313 error_append_hint(errp, "Adjust the number of cpus to %d " 4314 "or try to raise the number of threads per core\n", 4315 vcpu_id * ms->smp.threads / spapr->vsmt); 4316 return false; 4317 } 4318 4319 cpu->vcpu_id = vcpu_id; 4320 return true; 4321 } 4322 4323 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4324 { 4325 CPUState *cs; 4326 4327 CPU_FOREACH(cs) { 4328 PowerPCCPU *cpu = POWERPC_CPU(cs); 4329 4330 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4331 return cpu; 4332 } 4333 } 4334 4335 return NULL; 4336 } 4337 4338 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4339 { 4340 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4341 4342 /* These are only called by TCG, KVM maintains dispatch state */ 4343 4344 spapr_cpu->prod = false; 4345 if (spapr_cpu->vpa_addr) { 4346 CPUState *cs = CPU(cpu); 4347 uint32_t dispatch; 4348 4349 dispatch = ldl_be_phys(cs->as, 4350 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4351 dispatch++; 4352 if ((dispatch & 1) != 0) { 4353 qemu_log_mask(LOG_GUEST_ERROR, 4354 "VPA: incorrect dispatch counter value for " 4355 "dispatched partition %u, correcting.\n", dispatch); 4356 dispatch++; 4357 } 4358 stl_be_phys(cs->as, 4359 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4360 } 4361 } 4362 4363 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4364 { 4365 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4366 4367 if (spapr_cpu->vpa_addr) { 4368 CPUState *cs = CPU(cpu); 4369 uint32_t dispatch; 4370 4371 dispatch = ldl_be_phys(cs->as, 4372 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4373 dispatch++; 4374 if ((dispatch & 1) != 1) { 4375 qemu_log_mask(LOG_GUEST_ERROR, 4376 "VPA: incorrect dispatch counter value for " 4377 "preempted partition %u, correcting.\n", dispatch); 4378 dispatch++; 4379 } 4380 stl_be_phys(cs->as, 4381 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4382 } 4383 } 4384 4385 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4386 { 4387 MachineClass *mc = MACHINE_CLASS(oc); 4388 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4389 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4390 NMIClass *nc = NMI_CLASS(oc); 4391 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4392 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4393 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4394 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4395 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4396 4397 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4398 mc->ignore_boot_device_suffixes = true; 4399 4400 /* 4401 * We set up the default / latest behaviour here. The class_init 4402 * functions for the specific versioned machine types can override 4403 * these details for backwards compatibility 4404 */ 4405 mc->init = spapr_machine_init; 4406 mc->reset = spapr_machine_reset; 4407 mc->block_default_type = IF_SCSI; 4408 mc->max_cpus = 1024; 4409 mc->no_parallel = 1; 4410 mc->default_boot_order = ""; 4411 mc->default_ram_size = 512 * MiB; 4412 mc->default_ram_id = "ppc_spapr.ram"; 4413 mc->default_display = "std"; 4414 mc->kvm_type = spapr_kvm_type; 4415 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4416 mc->pci_allow_0_address = true; 4417 assert(!mc->get_hotplug_handler); 4418 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4419 hc->pre_plug = spapr_machine_device_pre_plug; 4420 hc->plug = spapr_machine_device_plug; 4421 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4422 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4423 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4424 hc->unplug_request = spapr_machine_device_unplug_request; 4425 hc->unplug = spapr_machine_device_unplug; 4426 4427 smc->dr_lmb_enabled = true; 4428 smc->update_dt_enabled = true; 4429 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4430 mc->has_hotpluggable_cpus = true; 4431 mc->nvdimm_supported = true; 4432 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4433 fwc->get_dev_path = spapr_get_fw_dev_path; 4434 nc->nmi_monitor_handler = spapr_nmi; 4435 smc->phb_placement = spapr_phb_placement; 4436 vhc->hypercall = emulate_spapr_hypercall; 4437 vhc->hpt_mask = spapr_hpt_mask; 4438 vhc->map_hptes = spapr_map_hptes; 4439 vhc->unmap_hptes = spapr_unmap_hptes; 4440 vhc->hpte_set_c = spapr_hpte_set_c; 4441 vhc->hpte_set_r = spapr_hpte_set_r; 4442 vhc->get_pate = spapr_get_pate; 4443 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4444 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4445 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4446 xic->ics_get = spapr_ics_get; 4447 xic->ics_resend = spapr_ics_resend; 4448 xic->icp_get = spapr_icp_get; 4449 ispc->print_info = spapr_pic_print_info; 4450 /* Force NUMA node memory size to be a multiple of 4451 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4452 * in which LMBs are represented and hot-added 4453 */ 4454 mc->numa_mem_align_shift = 28; 4455 mc->auto_enable_numa = true; 4456 4457 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4458 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4459 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4460 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4461 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4462 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4463 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4464 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4465 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4466 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4467 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4468 spapr_caps_add_properties(smc); 4469 smc->irq = &spapr_irq_dual; 4470 smc->dr_phb_enabled = true; 4471 smc->linux_pci_probe = true; 4472 smc->smp_threads_vsmt = true; 4473 smc->nr_xirqs = SPAPR_NR_XIRQS; 4474 xfc->match_nvt = spapr_match_nvt; 4475 } 4476 4477 static const TypeInfo spapr_machine_info = { 4478 .name = TYPE_SPAPR_MACHINE, 4479 .parent = TYPE_MACHINE, 4480 .abstract = true, 4481 .instance_size = sizeof(SpaprMachineState), 4482 .instance_init = spapr_instance_init, 4483 .instance_finalize = spapr_machine_finalizefn, 4484 .class_size = sizeof(SpaprMachineClass), 4485 .class_init = spapr_machine_class_init, 4486 .interfaces = (InterfaceInfo[]) { 4487 { TYPE_FW_PATH_PROVIDER }, 4488 { TYPE_NMI }, 4489 { TYPE_HOTPLUG_HANDLER }, 4490 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4491 { TYPE_XICS_FABRIC }, 4492 { TYPE_INTERRUPT_STATS_PROVIDER }, 4493 { TYPE_XIVE_FABRIC }, 4494 { } 4495 }, 4496 }; 4497 4498 static void spapr_machine_latest_class_options(MachineClass *mc) 4499 { 4500 mc->alias = "pseries"; 4501 mc->is_default = true; 4502 } 4503 4504 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4505 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4506 void *data) \ 4507 { \ 4508 MachineClass *mc = MACHINE_CLASS(oc); \ 4509 spapr_machine_##suffix##_class_options(mc); \ 4510 if (latest) { \ 4511 spapr_machine_latest_class_options(mc); \ 4512 } \ 4513 } \ 4514 static const TypeInfo spapr_machine_##suffix##_info = { \ 4515 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4516 .parent = TYPE_SPAPR_MACHINE, \ 4517 .class_init = spapr_machine_##suffix##_class_init, \ 4518 }; \ 4519 static void spapr_machine_register_##suffix(void) \ 4520 { \ 4521 type_register(&spapr_machine_##suffix##_info); \ 4522 } \ 4523 type_init(spapr_machine_register_##suffix) 4524 4525 /* 4526 * pseries-6.0 4527 */ 4528 static void spapr_machine_6_0_class_options(MachineClass *mc) 4529 { 4530 /* Defaults for the latest behaviour inherited from the base class */ 4531 } 4532 4533 DEFINE_SPAPR_MACHINE(6_0, "6.0", true); 4534 4535 /* 4536 * pseries-5.2 4537 */ 4538 static void spapr_machine_5_2_class_options(MachineClass *mc) 4539 { 4540 spapr_machine_6_0_class_options(mc); 4541 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4542 } 4543 4544 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4545 4546 /* 4547 * pseries-5.1 4548 */ 4549 static void spapr_machine_5_1_class_options(MachineClass *mc) 4550 { 4551 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4552 4553 spapr_machine_5_2_class_options(mc); 4554 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4555 smc->pre_5_2_numa_associativity = true; 4556 } 4557 4558 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4559 4560 /* 4561 * pseries-5.0 4562 */ 4563 static void spapr_machine_5_0_class_options(MachineClass *mc) 4564 { 4565 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4566 static GlobalProperty compat[] = { 4567 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4568 }; 4569 4570 spapr_machine_5_1_class_options(mc); 4571 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4572 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4573 mc->numa_mem_supported = true; 4574 smc->pre_5_1_assoc_refpoints = true; 4575 } 4576 4577 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4578 4579 /* 4580 * pseries-4.2 4581 */ 4582 static void spapr_machine_4_2_class_options(MachineClass *mc) 4583 { 4584 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4585 4586 spapr_machine_5_0_class_options(mc); 4587 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4588 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4589 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4590 smc->rma_limit = 16 * GiB; 4591 mc->nvdimm_supported = false; 4592 } 4593 4594 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4595 4596 /* 4597 * pseries-4.1 4598 */ 4599 static void spapr_machine_4_1_class_options(MachineClass *mc) 4600 { 4601 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4602 static GlobalProperty compat[] = { 4603 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4604 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4605 }; 4606 4607 spapr_machine_4_2_class_options(mc); 4608 smc->linux_pci_probe = false; 4609 smc->smp_threads_vsmt = false; 4610 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4611 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4612 } 4613 4614 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4615 4616 /* 4617 * pseries-4.0 4618 */ 4619 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4620 uint64_t *buid, hwaddr *pio, 4621 hwaddr *mmio32, hwaddr *mmio64, 4622 unsigned n_dma, uint32_t *liobns, 4623 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4624 { 4625 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4626 liobns, nv2gpa, nv2atsd, errp)) { 4627 return false; 4628 } 4629 4630 *nv2gpa = 0; 4631 *nv2atsd = 0; 4632 return true; 4633 } 4634 static void spapr_machine_4_0_class_options(MachineClass *mc) 4635 { 4636 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4637 4638 spapr_machine_4_1_class_options(mc); 4639 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4640 smc->phb_placement = phb_placement_4_0; 4641 smc->irq = &spapr_irq_xics; 4642 smc->pre_4_1_migration = true; 4643 } 4644 4645 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4646 4647 /* 4648 * pseries-3.1 4649 */ 4650 static void spapr_machine_3_1_class_options(MachineClass *mc) 4651 { 4652 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4653 4654 spapr_machine_4_0_class_options(mc); 4655 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4656 4657 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4658 smc->update_dt_enabled = false; 4659 smc->dr_phb_enabled = false; 4660 smc->broken_host_serial_model = true; 4661 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4662 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4663 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4664 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4665 } 4666 4667 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4668 4669 /* 4670 * pseries-3.0 4671 */ 4672 4673 static void spapr_machine_3_0_class_options(MachineClass *mc) 4674 { 4675 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4676 4677 spapr_machine_3_1_class_options(mc); 4678 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4679 4680 smc->legacy_irq_allocation = true; 4681 smc->nr_xirqs = 0x400; 4682 smc->irq = &spapr_irq_xics_legacy; 4683 } 4684 4685 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4686 4687 /* 4688 * pseries-2.12 4689 */ 4690 static void spapr_machine_2_12_class_options(MachineClass *mc) 4691 { 4692 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4693 static GlobalProperty compat[] = { 4694 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4695 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4696 }; 4697 4698 spapr_machine_3_0_class_options(mc); 4699 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4700 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4701 4702 /* We depend on kvm_enabled() to choose a default value for the 4703 * hpt-max-page-size capability. Of course we can't do it here 4704 * because this is too early and the HW accelerator isn't initialzed 4705 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4706 */ 4707 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4708 } 4709 4710 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4711 4712 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4713 { 4714 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4715 4716 spapr_machine_2_12_class_options(mc); 4717 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4718 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4719 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4720 } 4721 4722 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4723 4724 /* 4725 * pseries-2.11 4726 */ 4727 4728 static void spapr_machine_2_11_class_options(MachineClass *mc) 4729 { 4730 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4731 4732 spapr_machine_2_12_class_options(mc); 4733 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4734 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4735 } 4736 4737 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4738 4739 /* 4740 * pseries-2.10 4741 */ 4742 4743 static void spapr_machine_2_10_class_options(MachineClass *mc) 4744 { 4745 spapr_machine_2_11_class_options(mc); 4746 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4747 } 4748 4749 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4750 4751 /* 4752 * pseries-2.9 4753 */ 4754 4755 static void spapr_machine_2_9_class_options(MachineClass *mc) 4756 { 4757 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4758 static GlobalProperty compat[] = { 4759 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4760 }; 4761 4762 spapr_machine_2_10_class_options(mc); 4763 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4764 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4765 smc->pre_2_10_has_unused_icps = true; 4766 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4767 } 4768 4769 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4770 4771 /* 4772 * pseries-2.8 4773 */ 4774 4775 static void spapr_machine_2_8_class_options(MachineClass *mc) 4776 { 4777 static GlobalProperty compat[] = { 4778 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4779 }; 4780 4781 spapr_machine_2_9_class_options(mc); 4782 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4783 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4784 mc->numa_mem_align_shift = 23; 4785 } 4786 4787 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4788 4789 /* 4790 * pseries-2.7 4791 */ 4792 4793 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4794 uint64_t *buid, hwaddr *pio, 4795 hwaddr *mmio32, hwaddr *mmio64, 4796 unsigned n_dma, uint32_t *liobns, 4797 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4798 { 4799 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4800 const uint64_t base_buid = 0x800000020000000ULL; 4801 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4802 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4803 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4804 const uint32_t max_index = 255; 4805 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4806 4807 uint64_t ram_top = MACHINE(spapr)->ram_size; 4808 hwaddr phb0_base, phb_base; 4809 int i; 4810 4811 /* Do we have device memory? */ 4812 if (MACHINE(spapr)->maxram_size > ram_top) { 4813 /* Can't just use maxram_size, because there may be an 4814 * alignment gap between normal and device memory regions 4815 */ 4816 ram_top = MACHINE(spapr)->device_memory->base + 4817 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4818 } 4819 4820 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4821 4822 if (index > max_index) { 4823 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4824 max_index); 4825 return false; 4826 } 4827 4828 *buid = base_buid + index; 4829 for (i = 0; i < n_dma; ++i) { 4830 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4831 } 4832 4833 phb_base = phb0_base + index * phb_spacing; 4834 *pio = phb_base + pio_offset; 4835 *mmio32 = phb_base + mmio_offset; 4836 /* 4837 * We don't set the 64-bit MMIO window, relying on the PHB's 4838 * fallback behaviour of automatically splitting a large "32-bit" 4839 * window into contiguous 32-bit and 64-bit windows 4840 */ 4841 4842 *nv2gpa = 0; 4843 *nv2atsd = 0; 4844 return true; 4845 } 4846 4847 static void spapr_machine_2_7_class_options(MachineClass *mc) 4848 { 4849 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4850 static GlobalProperty compat[] = { 4851 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4852 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4853 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4854 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4855 }; 4856 4857 spapr_machine_2_8_class_options(mc); 4858 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4859 mc->default_machine_opts = "modern-hotplug-events=off"; 4860 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4861 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4862 smc->phb_placement = phb_placement_2_7; 4863 } 4864 4865 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4866 4867 /* 4868 * pseries-2.6 4869 */ 4870 4871 static void spapr_machine_2_6_class_options(MachineClass *mc) 4872 { 4873 static GlobalProperty compat[] = { 4874 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4875 }; 4876 4877 spapr_machine_2_7_class_options(mc); 4878 mc->has_hotpluggable_cpus = false; 4879 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4880 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4881 } 4882 4883 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4884 4885 /* 4886 * pseries-2.5 4887 */ 4888 4889 static void spapr_machine_2_5_class_options(MachineClass *mc) 4890 { 4891 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4892 static GlobalProperty compat[] = { 4893 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4894 }; 4895 4896 spapr_machine_2_6_class_options(mc); 4897 smc->use_ohci_by_default = true; 4898 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4899 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4900 } 4901 4902 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4903 4904 /* 4905 * pseries-2.4 4906 */ 4907 4908 static void spapr_machine_2_4_class_options(MachineClass *mc) 4909 { 4910 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4911 4912 spapr_machine_2_5_class_options(mc); 4913 smc->dr_lmb_enabled = false; 4914 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4915 } 4916 4917 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4918 4919 /* 4920 * pseries-2.3 4921 */ 4922 4923 static void spapr_machine_2_3_class_options(MachineClass *mc) 4924 { 4925 static GlobalProperty compat[] = { 4926 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4927 }; 4928 spapr_machine_2_4_class_options(mc); 4929 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4930 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4931 } 4932 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4933 4934 /* 4935 * pseries-2.2 4936 */ 4937 4938 static void spapr_machine_2_2_class_options(MachineClass *mc) 4939 { 4940 static GlobalProperty compat[] = { 4941 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4942 }; 4943 4944 spapr_machine_2_3_class_options(mc); 4945 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4946 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4947 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4948 } 4949 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4950 4951 /* 4952 * pseries-2.1 4953 */ 4954 4955 static void spapr_machine_2_1_class_options(MachineClass *mc) 4956 { 4957 spapr_machine_2_2_class_options(mc); 4958 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4959 } 4960 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4961 4962 static void spapr_machine_register_types(void) 4963 { 4964 type_register_static(&spapr_machine_info); 4965 } 4966 4967 type_init(spapr_machine_register_types) 4968