xref: /openbmc/qemu/hw/ppc/spapr.c (revision 64552b6b)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/numa.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/reset.h"
35 #include "hw/hw.h"
36 #include "qemu/log.h"
37 #include "hw/fw-path-provider.h"
38 #include "elf.h"
39 #include "net/net.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/cpus.h"
42 #include "sysemu/hw_accel.h"
43 #include "kvm_ppc.h"
44 #include "migration/misc.h"
45 #include "migration/qemu-file-types.h"
46 #include "migration/global_state.h"
47 #include "migration/register.h"
48 #include "mmu-hash64.h"
49 #include "mmu-book3s-v3.h"
50 #include "cpu-models.h"
51 #include "qom/cpu.h"
52 
53 #include "hw/boards.h"
54 #include "hw/ppc/ppc.h"
55 #include "hw/loader.h"
56 
57 #include "hw/ppc/fdt.h"
58 #include "hw/ppc/spapr.h"
59 #include "hw/ppc/spapr_vio.h"
60 #include "hw/pci-host/spapr.h"
61 #include "hw/pci/msi.h"
62 
63 #include "hw/pci/pci.h"
64 #include "hw/scsi/scsi.h"
65 #include "hw/virtio/virtio-scsi.h"
66 #include "hw/virtio/vhost-scsi-common.h"
67 
68 #include "exec/address-spaces.h"
69 #include "exec/ram_addr.h"
70 #include "hw/usb.h"
71 #include "qemu/config-file.h"
72 #include "qemu/error-report.h"
73 #include "trace.h"
74 #include "hw/nmi.h"
75 #include "hw/intc/intc.h"
76 
77 #include "qemu/cutils.h"
78 #include "hw/ppc/spapr_cpu_core.h"
79 #include "hw/mem/memory-device.h"
80 
81 #include <libfdt.h>
82 
83 /* SLOF memory layout:
84  *
85  * SLOF raw image loaded at 0, copies its romfs right below the flat
86  * device-tree, then position SLOF itself 31M below that
87  *
88  * So we set FW_OVERHEAD to 40MB which should account for all of that
89  * and more
90  *
91  * We load our kernel at 4M, leaving space for SLOF initial image
92  */
93 #define FDT_MAX_SIZE            0x100000
94 #define RTAS_MAX_SIZE           0x10000
95 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
96 #define FW_MAX_SIZE             0x400000
97 #define FW_FILE_NAME            "slof.bin"
98 #define FW_OVERHEAD             0x2800000
99 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
100 
101 #define MIN_RMA_SLOF            128UL
102 
103 #define PHANDLE_INTC            0x00001111
104 
105 /* These two functions implement the VCPU id numbering: one to compute them
106  * all and one to identify thread 0 of a VCORE. Any change to the first one
107  * is likely to have an impact on the second one, so let's keep them close.
108  */
109 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
110 {
111     MachineState *ms = MACHINE(spapr);
112     unsigned int smp_threads = ms->smp.threads;
113 
114     assert(spapr->vsmt);
115     return
116         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
117 }
118 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
119                                       PowerPCCPU *cpu)
120 {
121     assert(spapr->vsmt);
122     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
123 }
124 
125 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
126 {
127     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
128      * and newer QEMUs don't even have them. In both cases, we don't want
129      * to send anything on the wire.
130      */
131     return false;
132 }
133 
134 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
135     .name = "icp/server",
136     .version_id = 1,
137     .minimum_version_id = 1,
138     .needed = pre_2_10_vmstate_dummy_icp_needed,
139     .fields = (VMStateField[]) {
140         VMSTATE_UNUSED(4), /* uint32_t xirr */
141         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
142         VMSTATE_UNUSED(1), /* uint8_t mfrr */
143         VMSTATE_END_OF_LIST()
144     },
145 };
146 
147 static void pre_2_10_vmstate_register_dummy_icp(int i)
148 {
149     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
150                      (void *)(uintptr_t) i);
151 }
152 
153 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
154 {
155     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
156                        (void *)(uintptr_t) i);
157 }
158 
159 int spapr_max_server_number(SpaprMachineState *spapr)
160 {
161     MachineState *ms = MACHINE(spapr);
162 
163     assert(spapr->vsmt);
164     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
165 }
166 
167 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
168                                   int smt_threads)
169 {
170     int i, ret = 0;
171     uint32_t servers_prop[smt_threads];
172     uint32_t gservers_prop[smt_threads * 2];
173     int index = spapr_get_vcpu_id(cpu);
174 
175     if (cpu->compat_pvr) {
176         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
177         if (ret < 0) {
178             return ret;
179         }
180     }
181 
182     /* Build interrupt servers and gservers properties */
183     for (i = 0; i < smt_threads; i++) {
184         servers_prop[i] = cpu_to_be32(index + i);
185         /* Hack, direct the group queues back to cpu 0 */
186         gservers_prop[i*2] = cpu_to_be32(index + i);
187         gservers_prop[i*2 + 1] = 0;
188     }
189     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
190                       servers_prop, sizeof(servers_prop));
191     if (ret < 0) {
192         return ret;
193     }
194     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
195                       gservers_prop, sizeof(gservers_prop));
196 
197     return ret;
198 }
199 
200 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
201 {
202     int index = spapr_get_vcpu_id(cpu);
203     uint32_t associativity[] = {cpu_to_be32(0x5),
204                                 cpu_to_be32(0x0),
205                                 cpu_to_be32(0x0),
206                                 cpu_to_be32(0x0),
207                                 cpu_to_be32(cpu->node_id),
208                                 cpu_to_be32(index)};
209 
210     /* Advertise NUMA via ibm,associativity */
211     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
212                           sizeof(associativity));
213 }
214 
215 /* Populate the "ibm,pa-features" property */
216 static void spapr_populate_pa_features(SpaprMachineState *spapr,
217                                        PowerPCCPU *cpu,
218                                        void *fdt, int offset,
219                                        bool legacy_guest)
220 {
221     uint8_t pa_features_206[] = { 6, 0,
222         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
223     uint8_t pa_features_207[] = { 24, 0,
224         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
225         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
226         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
227         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
228     uint8_t pa_features_300[] = { 66, 0,
229         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
230         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
231         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
232         /* 6: DS207 */
233         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
234         /* 16: Vector */
235         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
236         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
237         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
238         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
240         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
241         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
242         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
243         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
244         /* 42: PM, 44: PC RA, 46: SC vec'd */
245         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
246         /* 48: SIMD, 50: QP BFP, 52: String */
247         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
248         /* 54: DecFP, 56: DecI, 58: SHA */
249         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
250         /* 60: NM atomic, 62: RNG */
251         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
252     };
253     uint8_t *pa_features = NULL;
254     size_t pa_size;
255 
256     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
257         pa_features = pa_features_206;
258         pa_size = sizeof(pa_features_206);
259     }
260     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
261         pa_features = pa_features_207;
262         pa_size = sizeof(pa_features_207);
263     }
264     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
265         pa_features = pa_features_300;
266         pa_size = sizeof(pa_features_300);
267     }
268     if (!pa_features) {
269         return;
270     }
271 
272     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
273         /*
274          * Note: we keep CI large pages off by default because a 64K capable
275          * guest provisioned with large pages might otherwise try to map a qemu
276          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
277          * even if that qemu runs on a 4k host.
278          * We dd this bit back here if we are confident this is not an issue
279          */
280         pa_features[3] |= 0x20;
281     }
282     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
283         pa_features[24] |= 0x80;    /* Transactional memory support */
284     }
285     if (legacy_guest && pa_size > 40) {
286         /* Workaround for broken kernels that attempt (guest) radix
287          * mode when they can't handle it, if they see the radix bit set
288          * in pa-features. So hide it from them. */
289         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
290     }
291 
292     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
293 }
294 
295 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
296 {
297     MachineState *ms = MACHINE(spapr);
298     int ret = 0, offset, cpus_offset;
299     CPUState *cs;
300     char cpu_model[32];
301     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
302 
303     CPU_FOREACH(cs) {
304         PowerPCCPU *cpu = POWERPC_CPU(cs);
305         DeviceClass *dc = DEVICE_GET_CLASS(cs);
306         int index = spapr_get_vcpu_id(cpu);
307         int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
308 
309         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
310             continue;
311         }
312 
313         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
314 
315         cpus_offset = fdt_path_offset(fdt, "/cpus");
316         if (cpus_offset < 0) {
317             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
318             if (cpus_offset < 0) {
319                 return cpus_offset;
320             }
321         }
322         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
323         if (offset < 0) {
324             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
325             if (offset < 0) {
326                 return offset;
327             }
328         }
329 
330         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
331                           pft_size_prop, sizeof(pft_size_prop));
332         if (ret < 0) {
333             return ret;
334         }
335 
336         if (nb_numa_nodes > 1) {
337             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
338             if (ret < 0) {
339                 return ret;
340             }
341         }
342 
343         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
344         if (ret < 0) {
345             return ret;
346         }
347 
348         spapr_populate_pa_features(spapr, cpu, fdt, offset,
349                                    spapr->cas_legacy_guest_workaround);
350     }
351     return ret;
352 }
353 
354 static hwaddr spapr_node0_size(MachineState *machine)
355 {
356     if (nb_numa_nodes) {
357         int i;
358         for (i = 0; i < nb_numa_nodes; ++i) {
359             if (numa_info[i].node_mem) {
360                 return MIN(pow2floor(numa_info[i].node_mem),
361                            machine->ram_size);
362             }
363         }
364     }
365     return machine->ram_size;
366 }
367 
368 static void add_str(GString *s, const gchar *s1)
369 {
370     g_string_append_len(s, s1, strlen(s1) + 1);
371 }
372 
373 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
374                                        hwaddr size)
375 {
376     uint32_t associativity[] = {
377         cpu_to_be32(0x4), /* length */
378         cpu_to_be32(0x0), cpu_to_be32(0x0),
379         cpu_to_be32(0x0), cpu_to_be32(nodeid)
380     };
381     char mem_name[32];
382     uint64_t mem_reg_property[2];
383     int off;
384 
385     mem_reg_property[0] = cpu_to_be64(start);
386     mem_reg_property[1] = cpu_to_be64(size);
387 
388     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
389     off = fdt_add_subnode(fdt, 0, mem_name);
390     _FDT(off);
391     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
392     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
393                       sizeof(mem_reg_property))));
394     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
395                       sizeof(associativity))));
396     return off;
397 }
398 
399 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
400 {
401     MachineState *machine = MACHINE(spapr);
402     hwaddr mem_start, node_size;
403     int i, nb_nodes = nb_numa_nodes;
404     NodeInfo *nodes = numa_info;
405     NodeInfo ramnode;
406 
407     /* No NUMA nodes, assume there is just one node with whole RAM */
408     if (!nb_numa_nodes) {
409         nb_nodes = 1;
410         ramnode.node_mem = machine->ram_size;
411         nodes = &ramnode;
412     }
413 
414     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
415         if (!nodes[i].node_mem) {
416             continue;
417         }
418         if (mem_start >= machine->ram_size) {
419             node_size = 0;
420         } else {
421             node_size = nodes[i].node_mem;
422             if (node_size > machine->ram_size - mem_start) {
423                 node_size = machine->ram_size - mem_start;
424             }
425         }
426         if (!mem_start) {
427             /* spapr_machine_init() checks for rma_size <= node0_size
428              * already */
429             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
430             mem_start += spapr->rma_size;
431             node_size -= spapr->rma_size;
432         }
433         for ( ; node_size; ) {
434             hwaddr sizetmp = pow2floor(node_size);
435 
436             /* mem_start != 0 here */
437             if (ctzl(mem_start) < ctzl(sizetmp)) {
438                 sizetmp = 1ULL << ctzl(mem_start);
439             }
440 
441             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
442             node_size -= sizetmp;
443             mem_start += sizetmp;
444         }
445     }
446 
447     return 0;
448 }
449 
450 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
451                                   SpaprMachineState *spapr)
452 {
453     MachineState *ms = MACHINE(spapr);
454     PowerPCCPU *cpu = POWERPC_CPU(cs);
455     CPUPPCState *env = &cpu->env;
456     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
457     int index = spapr_get_vcpu_id(cpu);
458     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
459                        0xffffffff, 0xffffffff};
460     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
461         : SPAPR_TIMEBASE_FREQ;
462     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
463     uint32_t page_sizes_prop[64];
464     size_t page_sizes_prop_size;
465     unsigned int smp_threads = ms->smp.threads;
466     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
467     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
468     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
469     SpaprDrc *drc;
470     int drc_index;
471     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
472     int i;
473 
474     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
475     if (drc) {
476         drc_index = spapr_drc_index(drc);
477         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
478     }
479 
480     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
481     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
482 
483     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
484     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
485                            env->dcache_line_size)));
486     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
487                            env->dcache_line_size)));
488     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
489                            env->icache_line_size)));
490     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
491                            env->icache_line_size)));
492 
493     if (pcc->l1_dcache_size) {
494         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
495                                pcc->l1_dcache_size)));
496     } else {
497         warn_report("Unknown L1 dcache size for cpu");
498     }
499     if (pcc->l1_icache_size) {
500         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
501                                pcc->l1_icache_size)));
502     } else {
503         warn_report("Unknown L1 icache size for cpu");
504     }
505 
506     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
507     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
508     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
509     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
510     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
511     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
512 
513     if (env->spr_cb[SPR_PURR].oea_read) {
514         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
515     }
516     if (env->spr_cb[SPR_SPURR].oea_read) {
517         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
518     }
519 
520     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
521         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
522                           segs, sizeof(segs))));
523     }
524 
525     /* Advertise VSX (vector extensions) if available
526      *   1               == VMX / Altivec available
527      *   2               == VSX available
528      *
529      * Only CPUs for which we create core types in spapr_cpu_core.c
530      * are possible, and all of those have VMX */
531     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
532         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
533     } else {
534         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
535     }
536 
537     /* Advertise DFP (Decimal Floating Point) if available
538      *   0 / no property == no DFP
539      *   1               == DFP available */
540     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
541         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
542     }
543 
544     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
545                                                       sizeof(page_sizes_prop));
546     if (page_sizes_prop_size) {
547         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
548                           page_sizes_prop, page_sizes_prop_size)));
549     }
550 
551     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
552 
553     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
554                            cs->cpu_index / vcpus_per_socket)));
555 
556     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
557                       pft_size_prop, sizeof(pft_size_prop))));
558 
559     if (nb_numa_nodes > 1) {
560         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
561     }
562 
563     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
564 
565     if (pcc->radix_page_info) {
566         for (i = 0; i < pcc->radix_page_info->count; i++) {
567             radix_AP_encodings[i] =
568                 cpu_to_be32(pcc->radix_page_info->entries[i]);
569         }
570         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
571                           radix_AP_encodings,
572                           pcc->radix_page_info->count *
573                           sizeof(radix_AP_encodings[0]))));
574     }
575 
576     /*
577      * We set this property to let the guest know that it can use the large
578      * decrementer and its width in bits.
579      */
580     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
581         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
582                               pcc->lrg_decr_bits)));
583 }
584 
585 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
586 {
587     CPUState **rev;
588     CPUState *cs;
589     int n_cpus;
590     int cpus_offset;
591     char *nodename;
592     int i;
593 
594     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
595     _FDT(cpus_offset);
596     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
597     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
598 
599     /*
600      * We walk the CPUs in reverse order to ensure that CPU DT nodes
601      * created by fdt_add_subnode() end up in the right order in FDT
602      * for the guest kernel the enumerate the CPUs correctly.
603      *
604      * The CPU list cannot be traversed in reverse order, so we need
605      * to do extra work.
606      */
607     n_cpus = 0;
608     rev = NULL;
609     CPU_FOREACH(cs) {
610         rev = g_renew(CPUState *, rev, n_cpus + 1);
611         rev[n_cpus++] = cs;
612     }
613 
614     for (i = n_cpus - 1; i >= 0; i--) {
615         CPUState *cs = rev[i];
616         PowerPCCPU *cpu = POWERPC_CPU(cs);
617         int index = spapr_get_vcpu_id(cpu);
618         DeviceClass *dc = DEVICE_GET_CLASS(cs);
619         int offset;
620 
621         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
622             continue;
623         }
624 
625         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
626         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
627         g_free(nodename);
628         _FDT(offset);
629         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
630     }
631 
632     g_free(rev);
633 }
634 
635 static int spapr_rng_populate_dt(void *fdt)
636 {
637     int node;
638     int ret;
639 
640     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
641     if (node <= 0) {
642         return -1;
643     }
644     ret = fdt_setprop_string(fdt, node, "device_type",
645                              "ibm,platform-facilities");
646     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
647     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
648 
649     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
650     if (node <= 0) {
651         return -1;
652     }
653     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
654 
655     return ret ? -1 : 0;
656 }
657 
658 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
659 {
660     MemoryDeviceInfoList *info;
661 
662     for (info = list; info; info = info->next) {
663         MemoryDeviceInfo *value = info->value;
664 
665         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
666             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
667 
668             if (addr >= pcdimm_info->addr &&
669                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
670                 return pcdimm_info->node;
671             }
672         }
673     }
674 
675     return -1;
676 }
677 
678 struct sPAPRDrconfCellV2 {
679      uint32_t seq_lmbs;
680      uint64_t base_addr;
681      uint32_t drc_index;
682      uint32_t aa_index;
683      uint32_t flags;
684 } QEMU_PACKED;
685 
686 typedef struct DrconfCellQueue {
687     struct sPAPRDrconfCellV2 cell;
688     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
689 } DrconfCellQueue;
690 
691 static DrconfCellQueue *
692 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
693                       uint32_t drc_index, uint32_t aa_index,
694                       uint32_t flags)
695 {
696     DrconfCellQueue *elem;
697 
698     elem = g_malloc0(sizeof(*elem));
699     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
700     elem->cell.base_addr = cpu_to_be64(base_addr);
701     elem->cell.drc_index = cpu_to_be32(drc_index);
702     elem->cell.aa_index = cpu_to_be32(aa_index);
703     elem->cell.flags = cpu_to_be32(flags);
704 
705     return elem;
706 }
707 
708 /* ibm,dynamic-memory-v2 */
709 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
710                                    int offset, MemoryDeviceInfoList *dimms)
711 {
712     MachineState *machine = MACHINE(spapr);
713     uint8_t *int_buf, *cur_index;
714     int ret;
715     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
716     uint64_t addr, cur_addr, size;
717     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
718     uint64_t mem_end = machine->device_memory->base +
719                        memory_region_size(&machine->device_memory->mr);
720     uint32_t node, buf_len, nr_entries = 0;
721     SpaprDrc *drc;
722     DrconfCellQueue *elem, *next;
723     MemoryDeviceInfoList *info;
724     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
725         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
726 
727     /* Entry to cover RAM and the gap area */
728     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
729                                  SPAPR_LMB_FLAGS_RESERVED |
730                                  SPAPR_LMB_FLAGS_DRC_INVALID);
731     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
732     nr_entries++;
733 
734     cur_addr = machine->device_memory->base;
735     for (info = dimms; info; info = info->next) {
736         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
737 
738         addr = di->addr;
739         size = di->size;
740         node = di->node;
741 
742         /* Entry for hot-pluggable area */
743         if (cur_addr < addr) {
744             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
745             g_assert(drc);
746             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
747                                          cur_addr, spapr_drc_index(drc), -1, 0);
748             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
749             nr_entries++;
750         }
751 
752         /* Entry for DIMM */
753         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
754         g_assert(drc);
755         elem = spapr_get_drconf_cell(size / lmb_size, addr,
756                                      spapr_drc_index(drc), node,
757                                      SPAPR_LMB_FLAGS_ASSIGNED);
758         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
759         nr_entries++;
760         cur_addr = addr + size;
761     }
762 
763     /* Entry for remaining hotpluggable area */
764     if (cur_addr < mem_end) {
765         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
766         g_assert(drc);
767         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
768                                      cur_addr, spapr_drc_index(drc), -1, 0);
769         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
770         nr_entries++;
771     }
772 
773     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
774     int_buf = cur_index = g_malloc0(buf_len);
775     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
776     cur_index += sizeof(nr_entries);
777 
778     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
779         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
780         cur_index += sizeof(elem->cell);
781         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
782         g_free(elem);
783     }
784 
785     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
786     g_free(int_buf);
787     if (ret < 0) {
788         return -1;
789     }
790     return 0;
791 }
792 
793 /* ibm,dynamic-memory */
794 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
795                                    int offset, MemoryDeviceInfoList *dimms)
796 {
797     MachineState *machine = MACHINE(spapr);
798     int i, ret;
799     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
800     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
801     uint32_t nr_lmbs = (machine->device_memory->base +
802                        memory_region_size(&machine->device_memory->mr)) /
803                        lmb_size;
804     uint32_t *int_buf, *cur_index, buf_len;
805 
806     /*
807      * Allocate enough buffer size to fit in ibm,dynamic-memory
808      */
809     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
810     cur_index = int_buf = g_malloc0(buf_len);
811     int_buf[0] = cpu_to_be32(nr_lmbs);
812     cur_index++;
813     for (i = 0; i < nr_lmbs; i++) {
814         uint64_t addr = i * lmb_size;
815         uint32_t *dynamic_memory = cur_index;
816 
817         if (i >= device_lmb_start) {
818             SpaprDrc *drc;
819 
820             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
821             g_assert(drc);
822 
823             dynamic_memory[0] = cpu_to_be32(addr >> 32);
824             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
825             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
826             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
827             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
828             if (memory_region_present(get_system_memory(), addr)) {
829                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
830             } else {
831                 dynamic_memory[5] = cpu_to_be32(0);
832             }
833         } else {
834             /*
835              * LMB information for RMA, boot time RAM and gap b/n RAM and
836              * device memory region -- all these are marked as reserved
837              * and as having no valid DRC.
838              */
839             dynamic_memory[0] = cpu_to_be32(addr >> 32);
840             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
841             dynamic_memory[2] = cpu_to_be32(0);
842             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
843             dynamic_memory[4] = cpu_to_be32(-1);
844             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
845                                             SPAPR_LMB_FLAGS_DRC_INVALID);
846         }
847 
848         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
849     }
850     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
851     g_free(int_buf);
852     if (ret < 0) {
853         return -1;
854     }
855     return 0;
856 }
857 
858 /*
859  * Adds ibm,dynamic-reconfiguration-memory node.
860  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
861  * of this device tree node.
862  */
863 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
864 {
865     MachineState *machine = MACHINE(spapr);
866     int ret, i, offset;
867     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
868     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
869     uint32_t *int_buf, *cur_index, buf_len;
870     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
871     MemoryDeviceInfoList *dimms = NULL;
872 
873     /*
874      * Don't create the node if there is no device memory
875      */
876     if (machine->ram_size == machine->maxram_size) {
877         return 0;
878     }
879 
880     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
881 
882     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
883                     sizeof(prop_lmb_size));
884     if (ret < 0) {
885         return ret;
886     }
887 
888     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
889     if (ret < 0) {
890         return ret;
891     }
892 
893     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
894     if (ret < 0) {
895         return ret;
896     }
897 
898     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
899     dimms = qmp_memory_device_list();
900     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
901         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
902     } else {
903         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
904     }
905     qapi_free_MemoryDeviceInfoList(dimms);
906 
907     if (ret < 0) {
908         return ret;
909     }
910 
911     /* ibm,associativity-lookup-arrays */
912     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
913     cur_index = int_buf = g_malloc0(buf_len);
914     int_buf[0] = cpu_to_be32(nr_nodes);
915     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
916     cur_index += 2;
917     for (i = 0; i < nr_nodes; i++) {
918         uint32_t associativity[] = {
919             cpu_to_be32(0x0),
920             cpu_to_be32(0x0),
921             cpu_to_be32(0x0),
922             cpu_to_be32(i)
923         };
924         memcpy(cur_index, associativity, sizeof(associativity));
925         cur_index += 4;
926     }
927     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
928             (cur_index - int_buf) * sizeof(uint32_t));
929     g_free(int_buf);
930 
931     return ret;
932 }
933 
934 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
935                                 SpaprOptionVector *ov5_updates)
936 {
937     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
938     int ret = 0, offset;
939 
940     /* Generate ibm,dynamic-reconfiguration-memory node if required */
941     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
942         g_assert(smc->dr_lmb_enabled);
943         ret = spapr_populate_drconf_memory(spapr, fdt);
944         if (ret) {
945             goto out;
946         }
947     }
948 
949     offset = fdt_path_offset(fdt, "/chosen");
950     if (offset < 0) {
951         offset = fdt_add_subnode(fdt, 0, "chosen");
952         if (offset < 0) {
953             return offset;
954         }
955     }
956     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
957                                  "ibm,architecture-vec-5");
958 
959 out:
960     return ret;
961 }
962 
963 static bool spapr_hotplugged_dev_before_cas(void)
964 {
965     Object *drc_container, *obj;
966     ObjectProperty *prop;
967     ObjectPropertyIterator iter;
968 
969     drc_container = container_get(object_get_root(), "/dr-connector");
970     object_property_iter_init(&iter, drc_container);
971     while ((prop = object_property_iter_next(&iter))) {
972         if (!strstart(prop->type, "link<", NULL)) {
973             continue;
974         }
975         obj = object_property_get_link(drc_container, prop->name, NULL);
976         if (spapr_drc_needed(obj)) {
977             return true;
978         }
979     }
980     return false;
981 }
982 
983 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
984                                  target_ulong addr, target_ulong size,
985                                  SpaprOptionVector *ov5_updates)
986 {
987     void *fdt, *fdt_skel;
988     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
989 
990     if (spapr_hotplugged_dev_before_cas()) {
991         return 1;
992     }
993 
994     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
995         error_report("SLOF provided an unexpected CAS buffer size "
996                      TARGET_FMT_lu " (min: %zu, max: %u)",
997                      size, sizeof(hdr), FW_MAX_SIZE);
998         exit(EXIT_FAILURE);
999     }
1000 
1001     size -= sizeof(hdr);
1002 
1003     /* Create skeleton */
1004     fdt_skel = g_malloc0(size);
1005     _FDT((fdt_create(fdt_skel, size)));
1006     _FDT((fdt_finish_reservemap(fdt_skel)));
1007     _FDT((fdt_begin_node(fdt_skel, "")));
1008     _FDT((fdt_end_node(fdt_skel)));
1009     _FDT((fdt_finish(fdt_skel)));
1010     fdt = g_malloc0(size);
1011     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1012     g_free(fdt_skel);
1013 
1014     /* Fixup cpu nodes */
1015     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1016 
1017     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1018         return -1;
1019     }
1020 
1021     /* Pack resulting tree */
1022     _FDT((fdt_pack(fdt)));
1023 
1024     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1025         trace_spapr_cas_failed(size);
1026         return -1;
1027     }
1028 
1029     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1030     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1031     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1032     g_free(fdt);
1033 
1034     return 0;
1035 }
1036 
1037 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1038 {
1039     MachineState *ms = MACHINE(spapr);
1040     int rtas;
1041     GString *hypertas = g_string_sized_new(256);
1042     GString *qemu_hypertas = g_string_sized_new(256);
1043     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1044     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1045         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1046     uint32_t lrdr_capacity[] = {
1047         cpu_to_be32(max_device_addr >> 32),
1048         cpu_to_be32(max_device_addr & 0xffffffff),
1049         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1050         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1051     };
1052     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1053     uint32_t maxdomains[] = {
1054         cpu_to_be32(4),
1055         maxdomain,
1056         maxdomain,
1057         maxdomain,
1058         cpu_to_be32(spapr->gpu_numa_id),
1059     };
1060 
1061     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1062 
1063     /* hypertas */
1064     add_str(hypertas, "hcall-pft");
1065     add_str(hypertas, "hcall-term");
1066     add_str(hypertas, "hcall-dabr");
1067     add_str(hypertas, "hcall-interrupt");
1068     add_str(hypertas, "hcall-tce");
1069     add_str(hypertas, "hcall-vio");
1070     add_str(hypertas, "hcall-splpar");
1071     add_str(hypertas, "hcall-bulk");
1072     add_str(hypertas, "hcall-set-mode");
1073     add_str(hypertas, "hcall-sprg0");
1074     add_str(hypertas, "hcall-copy");
1075     add_str(hypertas, "hcall-debug");
1076     add_str(hypertas, "hcall-vphn");
1077     add_str(qemu_hypertas, "hcall-memop1");
1078 
1079     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1080         add_str(hypertas, "hcall-multi-tce");
1081     }
1082 
1083     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1084         add_str(hypertas, "hcall-hpt-resize");
1085     }
1086 
1087     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1088                      hypertas->str, hypertas->len));
1089     g_string_free(hypertas, TRUE);
1090     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1091                      qemu_hypertas->str, qemu_hypertas->len));
1092     g_string_free(qemu_hypertas, TRUE);
1093 
1094     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1095                      refpoints, sizeof(refpoints)));
1096 
1097     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1098                      maxdomains, sizeof(maxdomains)));
1099 
1100     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1101                           RTAS_ERROR_LOG_MAX));
1102     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1103                           RTAS_EVENT_SCAN_RATE));
1104 
1105     g_assert(msi_nonbroken);
1106     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1107 
1108     /*
1109      * According to PAPR, rtas ibm,os-term does not guarantee a return
1110      * back to the guest cpu.
1111      *
1112      * While an additional ibm,extended-os-term property indicates
1113      * that rtas call return will always occur. Set this property.
1114      */
1115     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1116 
1117     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1118                      lrdr_capacity, sizeof(lrdr_capacity)));
1119 
1120     spapr_dt_rtas_tokens(fdt, rtas);
1121 }
1122 
1123 /*
1124  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1125  * and the XIVE features that the guest may request and thus the valid
1126  * values for bytes 23..26 of option vector 5:
1127  */
1128 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1129                                           int chosen)
1130 {
1131     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1132 
1133     char val[2 * 4] = {
1134         23, spapr->irq->ov5, /* Xive mode. */
1135         24, 0x00, /* Hash/Radix, filled in below. */
1136         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1137         26, 0x40, /* Radix options: GTSE == yes. */
1138     };
1139 
1140     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1141                           first_ppc_cpu->compat_pvr)) {
1142         /*
1143          * If we're in a pre POWER9 compat mode then the guest should
1144          * do hash and use the legacy interrupt mode
1145          */
1146         val[1] = 0x00; /* XICS */
1147         val[3] = 0x00; /* Hash */
1148     } else if (kvm_enabled()) {
1149         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1150             val[3] = 0x80; /* OV5_MMU_BOTH */
1151         } else if (kvmppc_has_cap_mmu_radix()) {
1152             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1153         } else {
1154             val[3] = 0x00; /* Hash */
1155         }
1156     } else {
1157         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1158         val[3] = 0xC0;
1159     }
1160     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1161                      val, sizeof(val)));
1162 }
1163 
1164 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1165 {
1166     MachineState *machine = MACHINE(spapr);
1167     int chosen;
1168     const char *boot_device = machine->boot_order;
1169     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1170     size_t cb = 0;
1171     char *bootlist = get_boot_devices_list(&cb);
1172 
1173     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1174 
1175     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1176     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1177                           spapr->initrd_base));
1178     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1179                           spapr->initrd_base + spapr->initrd_size));
1180 
1181     if (spapr->kernel_size) {
1182         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1183                               cpu_to_be64(spapr->kernel_size) };
1184 
1185         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1186                          &kprop, sizeof(kprop)));
1187         if (spapr->kernel_le) {
1188             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1189         }
1190     }
1191     if (boot_menu) {
1192         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1193     }
1194     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1195     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1196     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1197 
1198     if (cb && bootlist) {
1199         int i;
1200 
1201         for (i = 0; i < cb; i++) {
1202             if (bootlist[i] == '\n') {
1203                 bootlist[i] = ' ';
1204             }
1205         }
1206         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1207     }
1208 
1209     if (boot_device && strlen(boot_device)) {
1210         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1211     }
1212 
1213     if (!spapr->has_graphics && stdout_path) {
1214         /*
1215          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1216          * kernel. New platforms should only use the "stdout-path" property. Set
1217          * the new property and continue using older property to remain
1218          * compatible with the existing firmware.
1219          */
1220         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1221         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1222     }
1223 
1224     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1225 
1226     g_free(stdout_path);
1227     g_free(bootlist);
1228 }
1229 
1230 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1231 {
1232     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1233      * KVM to work under pHyp with some guest co-operation */
1234     int hypervisor;
1235     uint8_t hypercall[16];
1236 
1237     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1238     /* indicate KVM hypercall interface */
1239     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1240     if (kvmppc_has_cap_fixup_hcalls()) {
1241         /*
1242          * Older KVM versions with older guest kernels were broken
1243          * with the magic page, don't allow the guest to map it.
1244          */
1245         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1246                                   sizeof(hypercall))) {
1247             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1248                              hypercall, sizeof(hypercall)));
1249         }
1250     }
1251 }
1252 
1253 static void *spapr_build_fdt(SpaprMachineState *spapr)
1254 {
1255     MachineState *machine = MACHINE(spapr);
1256     MachineClass *mc = MACHINE_GET_CLASS(machine);
1257     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1258     int ret;
1259     void *fdt;
1260     SpaprPhbState *phb;
1261     char *buf;
1262 
1263     fdt = g_malloc0(FDT_MAX_SIZE);
1264     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1265 
1266     /* Root node */
1267     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1268     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1269     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1270 
1271     /* Guest UUID & Name*/
1272     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1273     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1274     if (qemu_uuid_set) {
1275         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1276     }
1277     g_free(buf);
1278 
1279     if (qemu_get_vm_name()) {
1280         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1281                                 qemu_get_vm_name()));
1282     }
1283 
1284     /* Host Model & Serial Number */
1285     if (spapr->host_model) {
1286         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1287     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1288         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1289         g_free(buf);
1290     }
1291 
1292     if (spapr->host_serial) {
1293         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1294     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1295         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1296         g_free(buf);
1297     }
1298 
1299     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1300     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1301 
1302     /* /interrupt controller */
1303     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1304                           PHANDLE_INTC);
1305 
1306     ret = spapr_populate_memory(spapr, fdt);
1307     if (ret < 0) {
1308         error_report("couldn't setup memory nodes in fdt");
1309         exit(1);
1310     }
1311 
1312     /* /vdevice */
1313     spapr_dt_vdevice(spapr->vio_bus, fdt);
1314 
1315     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1316         ret = spapr_rng_populate_dt(fdt);
1317         if (ret < 0) {
1318             error_report("could not set up rng device in the fdt");
1319             exit(1);
1320         }
1321     }
1322 
1323     QLIST_FOREACH(phb, &spapr->phbs, list) {
1324         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1325         if (ret < 0) {
1326             error_report("couldn't setup PCI devices in fdt");
1327             exit(1);
1328         }
1329     }
1330 
1331     /* cpus */
1332     spapr_populate_cpus_dt_node(fdt, spapr);
1333 
1334     if (smc->dr_lmb_enabled) {
1335         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1336     }
1337 
1338     if (mc->has_hotpluggable_cpus) {
1339         int offset = fdt_path_offset(fdt, "/cpus");
1340         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1341         if (ret < 0) {
1342             error_report("Couldn't set up CPU DR device tree properties");
1343             exit(1);
1344         }
1345     }
1346 
1347     /* /event-sources */
1348     spapr_dt_events(spapr, fdt);
1349 
1350     /* /rtas */
1351     spapr_dt_rtas(spapr, fdt);
1352 
1353     /* /chosen */
1354     spapr_dt_chosen(spapr, fdt);
1355 
1356     /* /hypervisor */
1357     if (kvm_enabled()) {
1358         spapr_dt_hypervisor(spapr, fdt);
1359     }
1360 
1361     /* Build memory reserve map */
1362     if (spapr->kernel_size) {
1363         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1364     }
1365     if (spapr->initrd_size) {
1366         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1367     }
1368 
1369     /* ibm,client-architecture-support updates */
1370     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1371     if (ret < 0) {
1372         error_report("couldn't setup CAS properties fdt");
1373         exit(1);
1374     }
1375 
1376     if (smc->dr_phb_enabled) {
1377         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1378         if (ret < 0) {
1379             error_report("Couldn't set up PHB DR device tree properties");
1380             exit(1);
1381         }
1382     }
1383 
1384     return fdt;
1385 }
1386 
1387 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1388 {
1389     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1390 }
1391 
1392 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1393                                     PowerPCCPU *cpu)
1394 {
1395     CPUPPCState *env = &cpu->env;
1396 
1397     /* The TCG path should also be holding the BQL at this point */
1398     g_assert(qemu_mutex_iothread_locked());
1399 
1400     if (msr_pr) {
1401         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1402         env->gpr[3] = H_PRIVILEGE;
1403     } else {
1404         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1405     }
1406 }
1407 
1408 struct LPCRSyncState {
1409     target_ulong value;
1410     target_ulong mask;
1411 };
1412 
1413 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1414 {
1415     struct LPCRSyncState *s = arg.host_ptr;
1416     PowerPCCPU *cpu = POWERPC_CPU(cs);
1417     CPUPPCState *env = &cpu->env;
1418     target_ulong lpcr;
1419 
1420     cpu_synchronize_state(cs);
1421     lpcr = env->spr[SPR_LPCR];
1422     lpcr &= ~s->mask;
1423     lpcr |= s->value;
1424     ppc_store_lpcr(cpu, lpcr);
1425 }
1426 
1427 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1428 {
1429     CPUState *cs;
1430     struct LPCRSyncState s = {
1431         .value = value,
1432         .mask = mask
1433     };
1434     CPU_FOREACH(cs) {
1435         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1436     }
1437 }
1438 
1439 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1440 {
1441     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1442 
1443     /* Copy PATE1:GR into PATE0:HR */
1444     entry->dw0 = spapr->patb_entry & PATE0_HR;
1445     entry->dw1 = spapr->patb_entry;
1446 }
1447 
1448 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1449 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1450 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1451 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1452 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1453 
1454 /*
1455  * Get the fd to access the kernel htab, re-opening it if necessary
1456  */
1457 static int get_htab_fd(SpaprMachineState *spapr)
1458 {
1459     Error *local_err = NULL;
1460 
1461     if (spapr->htab_fd >= 0) {
1462         return spapr->htab_fd;
1463     }
1464 
1465     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1466     if (spapr->htab_fd < 0) {
1467         error_report_err(local_err);
1468     }
1469 
1470     return spapr->htab_fd;
1471 }
1472 
1473 void close_htab_fd(SpaprMachineState *spapr)
1474 {
1475     if (spapr->htab_fd >= 0) {
1476         close(spapr->htab_fd);
1477     }
1478     spapr->htab_fd = -1;
1479 }
1480 
1481 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1482 {
1483     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1484 
1485     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1486 }
1487 
1488 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1489 {
1490     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1491 
1492     assert(kvm_enabled());
1493 
1494     if (!spapr->htab) {
1495         return 0;
1496     }
1497 
1498     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1499 }
1500 
1501 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1502                                                 hwaddr ptex, int n)
1503 {
1504     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1505     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1506 
1507     if (!spapr->htab) {
1508         /*
1509          * HTAB is controlled by KVM. Fetch into temporary buffer
1510          */
1511         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1512         kvmppc_read_hptes(hptes, ptex, n);
1513         return hptes;
1514     }
1515 
1516     /*
1517      * HTAB is controlled by QEMU. Just point to the internally
1518      * accessible PTEG.
1519      */
1520     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1521 }
1522 
1523 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1524                               const ppc_hash_pte64_t *hptes,
1525                               hwaddr ptex, int n)
1526 {
1527     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1528 
1529     if (!spapr->htab) {
1530         g_free((void *)hptes);
1531     }
1532 
1533     /* Nothing to do for qemu managed HPT */
1534 }
1535 
1536 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1537                       uint64_t pte0, uint64_t pte1)
1538 {
1539     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1540     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1541 
1542     if (!spapr->htab) {
1543         kvmppc_write_hpte(ptex, pte0, pte1);
1544     } else {
1545         if (pte0 & HPTE64_V_VALID) {
1546             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1547             /*
1548              * When setting valid, we write PTE1 first. This ensures
1549              * proper synchronization with the reading code in
1550              * ppc_hash64_pteg_search()
1551              */
1552             smp_wmb();
1553             stq_p(spapr->htab + offset, pte0);
1554         } else {
1555             stq_p(spapr->htab + offset, pte0);
1556             /*
1557              * When clearing it we set PTE0 first. This ensures proper
1558              * synchronization with the reading code in
1559              * ppc_hash64_pteg_search()
1560              */
1561             smp_wmb();
1562             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1563         }
1564     }
1565 }
1566 
1567 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1568                              uint64_t pte1)
1569 {
1570     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1571     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1572 
1573     if (!spapr->htab) {
1574         /* There should always be a hash table when this is called */
1575         error_report("spapr_hpte_set_c called with no hash table !");
1576         return;
1577     }
1578 
1579     /* The HW performs a non-atomic byte update */
1580     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1581 }
1582 
1583 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1584                              uint64_t pte1)
1585 {
1586     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1587     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1588 
1589     if (!spapr->htab) {
1590         /* There should always be a hash table when this is called */
1591         error_report("spapr_hpte_set_r called with no hash table !");
1592         return;
1593     }
1594 
1595     /* The HW performs a non-atomic byte update */
1596     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1597 }
1598 
1599 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1600 {
1601     int shift;
1602 
1603     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1604      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1605      * that's much more than is needed for Linux guests */
1606     shift = ctz64(pow2ceil(ramsize)) - 7;
1607     shift = MAX(shift, 18); /* Minimum architected size */
1608     shift = MIN(shift, 46); /* Maximum architected size */
1609     return shift;
1610 }
1611 
1612 void spapr_free_hpt(SpaprMachineState *spapr)
1613 {
1614     g_free(spapr->htab);
1615     spapr->htab = NULL;
1616     spapr->htab_shift = 0;
1617     close_htab_fd(spapr);
1618 }
1619 
1620 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1621                           Error **errp)
1622 {
1623     long rc;
1624 
1625     /* Clean up any HPT info from a previous boot */
1626     spapr_free_hpt(spapr);
1627 
1628     rc = kvmppc_reset_htab(shift);
1629     if (rc < 0) {
1630         /* kernel-side HPT needed, but couldn't allocate one */
1631         error_setg_errno(errp, errno,
1632                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1633                          shift);
1634         /* This is almost certainly fatal, but if the caller really
1635          * wants to carry on with shift == 0, it's welcome to try */
1636     } else if (rc > 0) {
1637         /* kernel-side HPT allocated */
1638         if (rc != shift) {
1639             error_setg(errp,
1640                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1641                        shift, rc);
1642         }
1643 
1644         spapr->htab_shift = shift;
1645         spapr->htab = NULL;
1646     } else {
1647         /* kernel-side HPT not needed, allocate in userspace instead */
1648         size_t size = 1ULL << shift;
1649         int i;
1650 
1651         spapr->htab = qemu_memalign(size, size);
1652         if (!spapr->htab) {
1653             error_setg_errno(errp, errno,
1654                              "Could not allocate HPT of order %d", shift);
1655             return;
1656         }
1657 
1658         memset(spapr->htab, 0, size);
1659         spapr->htab_shift = shift;
1660 
1661         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1662             DIRTY_HPTE(HPTE(spapr->htab, i));
1663         }
1664     }
1665     /* We're setting up a hash table, so that means we're not radix */
1666     spapr->patb_entry = 0;
1667     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1668 }
1669 
1670 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1671 {
1672     int hpt_shift;
1673 
1674     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1675         || (spapr->cas_reboot
1676             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1677         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1678     } else {
1679         uint64_t current_ram_size;
1680 
1681         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1682         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1683     }
1684     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1685 
1686     if (spapr->vrma_adjust) {
1687         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1688                                           spapr->htab_shift);
1689     }
1690 }
1691 
1692 static int spapr_reset_drcs(Object *child, void *opaque)
1693 {
1694     SpaprDrc *drc =
1695         (SpaprDrc *) object_dynamic_cast(child,
1696                                                  TYPE_SPAPR_DR_CONNECTOR);
1697 
1698     if (drc) {
1699         spapr_drc_reset(drc);
1700     }
1701 
1702     return 0;
1703 }
1704 
1705 static void spapr_machine_reset(MachineState *machine)
1706 {
1707     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1708     PowerPCCPU *first_ppc_cpu;
1709     uint32_t rtas_limit;
1710     hwaddr rtas_addr, fdt_addr;
1711     void *fdt;
1712     int rc;
1713 
1714     spapr_caps_apply(spapr);
1715 
1716     first_ppc_cpu = POWERPC_CPU(first_cpu);
1717     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1718         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1719                               spapr->max_compat_pvr)) {
1720         /*
1721          * If using KVM with radix mode available, VCPUs can be started
1722          * without a HPT because KVM will start them in radix mode.
1723          * Set the GR bit in PATE so that we know there is no HPT.
1724          */
1725         spapr->patb_entry = PATE1_GR;
1726         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1727     } else {
1728         spapr_setup_hpt_and_vrma(spapr);
1729     }
1730 
1731     /*
1732      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1733      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1734      * called from vPHB reset handler so we initialize the counter here.
1735      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1736      * must be equally distant from any other node.
1737      * The final value of spapr->gpu_numa_id is going to be written to
1738      * max-associativity-domains in spapr_build_fdt().
1739      */
1740     spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1741     qemu_devices_reset();
1742 
1743     /*
1744      * If this reset wasn't generated by CAS, we should reset our
1745      * negotiated options and start from scratch
1746      */
1747     if (!spapr->cas_reboot) {
1748         spapr_ovec_cleanup(spapr->ov5_cas);
1749         spapr->ov5_cas = spapr_ovec_new();
1750 
1751         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1752     }
1753 
1754     if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1755         spapr_irq_msi_reset(spapr);
1756     }
1757 
1758     /*
1759      * This is fixing some of the default configuration of the XIVE
1760      * devices. To be called after the reset of the machine devices.
1761      */
1762     spapr_irq_reset(spapr, &error_fatal);
1763 
1764     /*
1765      * There is no CAS under qtest. Simulate one to please the code that
1766      * depends on spapr->ov5_cas. This is especially needed to test device
1767      * unplug, so we do that before resetting the DRCs.
1768      */
1769     if (qtest_enabled()) {
1770         spapr_ovec_cleanup(spapr->ov5_cas);
1771         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1772     }
1773 
1774     /* DRC reset may cause a device to be unplugged. This will cause troubles
1775      * if this device is used by another device (eg, a running vhost backend
1776      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1777      * situations, we reset DRCs after all devices have been reset.
1778      */
1779     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1780 
1781     spapr_clear_pending_events(spapr);
1782 
1783     /*
1784      * We place the device tree and RTAS just below either the top of the RMA,
1785      * or just below 2GB, whichever is lower, so that it can be
1786      * processed with 32-bit real mode code if necessary
1787      */
1788     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1789     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1790     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1791 
1792     fdt = spapr_build_fdt(spapr);
1793 
1794     spapr_load_rtas(spapr, fdt, rtas_addr);
1795 
1796     rc = fdt_pack(fdt);
1797 
1798     /* Should only fail if we've built a corrupted tree */
1799     assert(rc == 0);
1800 
1801     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1802         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1803                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1804         exit(1);
1805     }
1806 
1807     /* Load the fdt */
1808     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1809     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1810     g_free(spapr->fdt_blob);
1811     spapr->fdt_size = fdt_totalsize(fdt);
1812     spapr->fdt_initial_size = spapr->fdt_size;
1813     spapr->fdt_blob = fdt;
1814 
1815     /* Set up the entry state */
1816     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1817     first_ppc_cpu->env.gpr[5] = 0;
1818 
1819     spapr->cas_reboot = false;
1820 }
1821 
1822 static void spapr_create_nvram(SpaprMachineState *spapr)
1823 {
1824     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1825     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1826 
1827     if (dinfo) {
1828         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1829                             &error_fatal);
1830     }
1831 
1832     qdev_init_nofail(dev);
1833 
1834     spapr->nvram = (struct SpaprNvram *)dev;
1835 }
1836 
1837 static void spapr_rtc_create(SpaprMachineState *spapr)
1838 {
1839     object_initialize_child(OBJECT(spapr), "rtc",
1840                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1841                             &error_fatal, NULL);
1842     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1843                               &error_fatal);
1844     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1845                               "date", &error_fatal);
1846 }
1847 
1848 /* Returns whether we want to use VGA or not */
1849 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1850 {
1851     switch (vga_interface_type) {
1852     case VGA_NONE:
1853         return false;
1854     case VGA_DEVICE:
1855         return true;
1856     case VGA_STD:
1857     case VGA_VIRTIO:
1858     case VGA_CIRRUS:
1859         return pci_vga_init(pci_bus) != NULL;
1860     default:
1861         error_setg(errp,
1862                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1863         return false;
1864     }
1865 }
1866 
1867 static int spapr_pre_load(void *opaque)
1868 {
1869     int rc;
1870 
1871     rc = spapr_caps_pre_load(opaque);
1872     if (rc) {
1873         return rc;
1874     }
1875 
1876     return 0;
1877 }
1878 
1879 static int spapr_post_load(void *opaque, int version_id)
1880 {
1881     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1882     int err = 0;
1883 
1884     err = spapr_caps_post_migration(spapr);
1885     if (err) {
1886         return err;
1887     }
1888 
1889     /*
1890      * In earlier versions, there was no separate qdev for the PAPR
1891      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1892      * So when migrating from those versions, poke the incoming offset
1893      * value into the RTC device
1894      */
1895     if (version_id < 3) {
1896         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1897         if (err) {
1898             return err;
1899         }
1900     }
1901 
1902     if (kvm_enabled() && spapr->patb_entry) {
1903         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1904         bool radix = !!(spapr->patb_entry & PATE1_GR);
1905         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1906 
1907         /*
1908          * Update LPCR:HR and UPRT as they may not be set properly in
1909          * the stream
1910          */
1911         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1912                             LPCR_HR | LPCR_UPRT);
1913 
1914         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1915         if (err) {
1916             error_report("Process table config unsupported by the host");
1917             return -EINVAL;
1918         }
1919     }
1920 
1921     err = spapr_irq_post_load(spapr, version_id);
1922     if (err) {
1923         return err;
1924     }
1925 
1926     return err;
1927 }
1928 
1929 static int spapr_pre_save(void *opaque)
1930 {
1931     int rc;
1932 
1933     rc = spapr_caps_pre_save(opaque);
1934     if (rc) {
1935         return rc;
1936     }
1937 
1938     return 0;
1939 }
1940 
1941 static bool version_before_3(void *opaque, int version_id)
1942 {
1943     return version_id < 3;
1944 }
1945 
1946 static bool spapr_pending_events_needed(void *opaque)
1947 {
1948     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1949     return !QTAILQ_EMPTY(&spapr->pending_events);
1950 }
1951 
1952 static const VMStateDescription vmstate_spapr_event_entry = {
1953     .name = "spapr_event_log_entry",
1954     .version_id = 1,
1955     .minimum_version_id = 1,
1956     .fields = (VMStateField[]) {
1957         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1958         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1959         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1960                                      NULL, extended_length),
1961         VMSTATE_END_OF_LIST()
1962     },
1963 };
1964 
1965 static const VMStateDescription vmstate_spapr_pending_events = {
1966     .name = "spapr_pending_events",
1967     .version_id = 1,
1968     .minimum_version_id = 1,
1969     .needed = spapr_pending_events_needed,
1970     .fields = (VMStateField[]) {
1971         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1972                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1973         VMSTATE_END_OF_LIST()
1974     },
1975 };
1976 
1977 static bool spapr_ov5_cas_needed(void *opaque)
1978 {
1979     SpaprMachineState *spapr = opaque;
1980     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1981     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1982     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1983     bool cas_needed;
1984 
1985     /* Prior to the introduction of SpaprOptionVector, we had two option
1986      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1987      * Both of these options encode machine topology into the device-tree
1988      * in such a way that the now-booted OS should still be able to interact
1989      * appropriately with QEMU regardless of what options were actually
1990      * negotiatied on the source side.
1991      *
1992      * As such, we can avoid migrating the CAS-negotiated options if these
1993      * are the only options available on the current machine/platform.
1994      * Since these are the only options available for pseries-2.7 and
1995      * earlier, this allows us to maintain old->new/new->old migration
1996      * compatibility.
1997      *
1998      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1999      * via default pseries-2.8 machines and explicit command-line parameters.
2000      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2001      * of the actual CAS-negotiated values to continue working properly. For
2002      * example, availability of memory unplug depends on knowing whether
2003      * OV5_HP_EVT was negotiated via CAS.
2004      *
2005      * Thus, for any cases where the set of available CAS-negotiatable
2006      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2007      * include the CAS-negotiated options in the migration stream, unless
2008      * if they affect boot time behaviour only.
2009      */
2010     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2011     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2012     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2013 
2014     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2015      * the mask itself since in the future it's possible "legacy" bits may be
2016      * removed via machine options, which could generate a false positive
2017      * that breaks migration.
2018      */
2019     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2020     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2021 
2022     spapr_ovec_cleanup(ov5_mask);
2023     spapr_ovec_cleanup(ov5_legacy);
2024     spapr_ovec_cleanup(ov5_removed);
2025 
2026     return cas_needed;
2027 }
2028 
2029 static const VMStateDescription vmstate_spapr_ov5_cas = {
2030     .name = "spapr_option_vector_ov5_cas",
2031     .version_id = 1,
2032     .minimum_version_id = 1,
2033     .needed = spapr_ov5_cas_needed,
2034     .fields = (VMStateField[]) {
2035         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2036                                  vmstate_spapr_ovec, SpaprOptionVector),
2037         VMSTATE_END_OF_LIST()
2038     },
2039 };
2040 
2041 static bool spapr_patb_entry_needed(void *opaque)
2042 {
2043     SpaprMachineState *spapr = opaque;
2044 
2045     return !!spapr->patb_entry;
2046 }
2047 
2048 static const VMStateDescription vmstate_spapr_patb_entry = {
2049     .name = "spapr_patb_entry",
2050     .version_id = 1,
2051     .minimum_version_id = 1,
2052     .needed = spapr_patb_entry_needed,
2053     .fields = (VMStateField[]) {
2054         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2055         VMSTATE_END_OF_LIST()
2056     },
2057 };
2058 
2059 static bool spapr_irq_map_needed(void *opaque)
2060 {
2061     SpaprMachineState *spapr = opaque;
2062 
2063     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2064 }
2065 
2066 static const VMStateDescription vmstate_spapr_irq_map = {
2067     .name = "spapr_irq_map",
2068     .version_id = 1,
2069     .minimum_version_id = 1,
2070     .needed = spapr_irq_map_needed,
2071     .fields = (VMStateField[]) {
2072         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2073         VMSTATE_END_OF_LIST()
2074     },
2075 };
2076 
2077 static bool spapr_dtb_needed(void *opaque)
2078 {
2079     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2080 
2081     return smc->update_dt_enabled;
2082 }
2083 
2084 static int spapr_dtb_pre_load(void *opaque)
2085 {
2086     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2087 
2088     g_free(spapr->fdt_blob);
2089     spapr->fdt_blob = NULL;
2090     spapr->fdt_size = 0;
2091 
2092     return 0;
2093 }
2094 
2095 static const VMStateDescription vmstate_spapr_dtb = {
2096     .name = "spapr_dtb",
2097     .version_id = 1,
2098     .minimum_version_id = 1,
2099     .needed = spapr_dtb_needed,
2100     .pre_load = spapr_dtb_pre_load,
2101     .fields = (VMStateField[]) {
2102         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2103         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2104         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2105                                      fdt_size),
2106         VMSTATE_END_OF_LIST()
2107     },
2108 };
2109 
2110 static const VMStateDescription vmstate_spapr = {
2111     .name = "spapr",
2112     .version_id = 3,
2113     .minimum_version_id = 1,
2114     .pre_load = spapr_pre_load,
2115     .post_load = spapr_post_load,
2116     .pre_save = spapr_pre_save,
2117     .fields = (VMStateField[]) {
2118         /* used to be @next_irq */
2119         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2120 
2121         /* RTC offset */
2122         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2123 
2124         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2125         VMSTATE_END_OF_LIST()
2126     },
2127     .subsections = (const VMStateDescription*[]) {
2128         &vmstate_spapr_ov5_cas,
2129         &vmstate_spapr_patb_entry,
2130         &vmstate_spapr_pending_events,
2131         &vmstate_spapr_cap_htm,
2132         &vmstate_spapr_cap_vsx,
2133         &vmstate_spapr_cap_dfp,
2134         &vmstate_spapr_cap_cfpc,
2135         &vmstate_spapr_cap_sbbc,
2136         &vmstate_spapr_cap_ibs,
2137         &vmstate_spapr_cap_hpt_maxpagesize,
2138         &vmstate_spapr_irq_map,
2139         &vmstate_spapr_cap_nested_kvm_hv,
2140         &vmstate_spapr_dtb,
2141         &vmstate_spapr_cap_large_decr,
2142         &vmstate_spapr_cap_ccf_assist,
2143         NULL
2144     }
2145 };
2146 
2147 static int htab_save_setup(QEMUFile *f, void *opaque)
2148 {
2149     SpaprMachineState *spapr = opaque;
2150 
2151     /* "Iteration" header */
2152     if (!spapr->htab_shift) {
2153         qemu_put_be32(f, -1);
2154     } else {
2155         qemu_put_be32(f, spapr->htab_shift);
2156     }
2157 
2158     if (spapr->htab) {
2159         spapr->htab_save_index = 0;
2160         spapr->htab_first_pass = true;
2161     } else {
2162         if (spapr->htab_shift) {
2163             assert(kvm_enabled());
2164         }
2165     }
2166 
2167 
2168     return 0;
2169 }
2170 
2171 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2172                             int chunkstart, int n_valid, int n_invalid)
2173 {
2174     qemu_put_be32(f, chunkstart);
2175     qemu_put_be16(f, n_valid);
2176     qemu_put_be16(f, n_invalid);
2177     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2178                     HASH_PTE_SIZE_64 * n_valid);
2179 }
2180 
2181 static void htab_save_end_marker(QEMUFile *f)
2182 {
2183     qemu_put_be32(f, 0);
2184     qemu_put_be16(f, 0);
2185     qemu_put_be16(f, 0);
2186 }
2187 
2188 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2189                                  int64_t max_ns)
2190 {
2191     bool has_timeout = max_ns != -1;
2192     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2193     int index = spapr->htab_save_index;
2194     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2195 
2196     assert(spapr->htab_first_pass);
2197 
2198     do {
2199         int chunkstart;
2200 
2201         /* Consume invalid HPTEs */
2202         while ((index < htabslots)
2203                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2204             CLEAN_HPTE(HPTE(spapr->htab, index));
2205             index++;
2206         }
2207 
2208         /* Consume valid HPTEs */
2209         chunkstart = index;
2210         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2211                && HPTE_VALID(HPTE(spapr->htab, index))) {
2212             CLEAN_HPTE(HPTE(spapr->htab, index));
2213             index++;
2214         }
2215 
2216         if (index > chunkstart) {
2217             int n_valid = index - chunkstart;
2218 
2219             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2220 
2221             if (has_timeout &&
2222                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2223                 break;
2224             }
2225         }
2226     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2227 
2228     if (index >= htabslots) {
2229         assert(index == htabslots);
2230         index = 0;
2231         spapr->htab_first_pass = false;
2232     }
2233     spapr->htab_save_index = index;
2234 }
2235 
2236 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2237                                 int64_t max_ns)
2238 {
2239     bool final = max_ns < 0;
2240     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2241     int examined = 0, sent = 0;
2242     int index = spapr->htab_save_index;
2243     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2244 
2245     assert(!spapr->htab_first_pass);
2246 
2247     do {
2248         int chunkstart, invalidstart;
2249 
2250         /* Consume non-dirty HPTEs */
2251         while ((index < htabslots)
2252                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2253             index++;
2254             examined++;
2255         }
2256 
2257         chunkstart = index;
2258         /* Consume valid dirty HPTEs */
2259         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2260                && HPTE_DIRTY(HPTE(spapr->htab, index))
2261                && HPTE_VALID(HPTE(spapr->htab, index))) {
2262             CLEAN_HPTE(HPTE(spapr->htab, index));
2263             index++;
2264             examined++;
2265         }
2266 
2267         invalidstart = index;
2268         /* Consume invalid dirty HPTEs */
2269         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2270                && HPTE_DIRTY(HPTE(spapr->htab, index))
2271                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2272             CLEAN_HPTE(HPTE(spapr->htab, index));
2273             index++;
2274             examined++;
2275         }
2276 
2277         if (index > chunkstart) {
2278             int n_valid = invalidstart - chunkstart;
2279             int n_invalid = index - invalidstart;
2280 
2281             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2282             sent += index - chunkstart;
2283 
2284             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2285                 break;
2286             }
2287         }
2288 
2289         if (examined >= htabslots) {
2290             break;
2291         }
2292 
2293         if (index >= htabslots) {
2294             assert(index == htabslots);
2295             index = 0;
2296         }
2297     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2298 
2299     if (index >= htabslots) {
2300         assert(index == htabslots);
2301         index = 0;
2302     }
2303 
2304     spapr->htab_save_index = index;
2305 
2306     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2307 }
2308 
2309 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2310 #define MAX_KVM_BUF_SIZE    2048
2311 
2312 static int htab_save_iterate(QEMUFile *f, void *opaque)
2313 {
2314     SpaprMachineState *spapr = opaque;
2315     int fd;
2316     int rc = 0;
2317 
2318     /* Iteration header */
2319     if (!spapr->htab_shift) {
2320         qemu_put_be32(f, -1);
2321         return 1;
2322     } else {
2323         qemu_put_be32(f, 0);
2324     }
2325 
2326     if (!spapr->htab) {
2327         assert(kvm_enabled());
2328 
2329         fd = get_htab_fd(spapr);
2330         if (fd < 0) {
2331             return fd;
2332         }
2333 
2334         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2335         if (rc < 0) {
2336             return rc;
2337         }
2338     } else  if (spapr->htab_first_pass) {
2339         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2340     } else {
2341         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2342     }
2343 
2344     htab_save_end_marker(f);
2345 
2346     return rc;
2347 }
2348 
2349 static int htab_save_complete(QEMUFile *f, void *opaque)
2350 {
2351     SpaprMachineState *spapr = opaque;
2352     int fd;
2353 
2354     /* Iteration header */
2355     if (!spapr->htab_shift) {
2356         qemu_put_be32(f, -1);
2357         return 0;
2358     } else {
2359         qemu_put_be32(f, 0);
2360     }
2361 
2362     if (!spapr->htab) {
2363         int rc;
2364 
2365         assert(kvm_enabled());
2366 
2367         fd = get_htab_fd(spapr);
2368         if (fd < 0) {
2369             return fd;
2370         }
2371 
2372         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2373         if (rc < 0) {
2374             return rc;
2375         }
2376     } else {
2377         if (spapr->htab_first_pass) {
2378             htab_save_first_pass(f, spapr, -1);
2379         }
2380         htab_save_later_pass(f, spapr, -1);
2381     }
2382 
2383     /* End marker */
2384     htab_save_end_marker(f);
2385 
2386     return 0;
2387 }
2388 
2389 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2390 {
2391     SpaprMachineState *spapr = opaque;
2392     uint32_t section_hdr;
2393     int fd = -1;
2394     Error *local_err = NULL;
2395 
2396     if (version_id < 1 || version_id > 1) {
2397         error_report("htab_load() bad version");
2398         return -EINVAL;
2399     }
2400 
2401     section_hdr = qemu_get_be32(f);
2402 
2403     if (section_hdr == -1) {
2404         spapr_free_hpt(spapr);
2405         return 0;
2406     }
2407 
2408     if (section_hdr) {
2409         /* First section gives the htab size */
2410         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2411         if (local_err) {
2412             error_report_err(local_err);
2413             return -EINVAL;
2414         }
2415         return 0;
2416     }
2417 
2418     if (!spapr->htab) {
2419         assert(kvm_enabled());
2420 
2421         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2422         if (fd < 0) {
2423             error_report_err(local_err);
2424             return fd;
2425         }
2426     }
2427 
2428     while (true) {
2429         uint32_t index;
2430         uint16_t n_valid, n_invalid;
2431 
2432         index = qemu_get_be32(f);
2433         n_valid = qemu_get_be16(f);
2434         n_invalid = qemu_get_be16(f);
2435 
2436         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2437             /* End of Stream */
2438             break;
2439         }
2440 
2441         if ((index + n_valid + n_invalid) >
2442             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2443             /* Bad index in stream */
2444             error_report(
2445                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2446                 index, n_valid, n_invalid, spapr->htab_shift);
2447             return -EINVAL;
2448         }
2449 
2450         if (spapr->htab) {
2451             if (n_valid) {
2452                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2453                                 HASH_PTE_SIZE_64 * n_valid);
2454             }
2455             if (n_invalid) {
2456                 memset(HPTE(spapr->htab, index + n_valid), 0,
2457                        HASH_PTE_SIZE_64 * n_invalid);
2458             }
2459         } else {
2460             int rc;
2461 
2462             assert(fd >= 0);
2463 
2464             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2465             if (rc < 0) {
2466                 return rc;
2467             }
2468         }
2469     }
2470 
2471     if (!spapr->htab) {
2472         assert(fd >= 0);
2473         close(fd);
2474     }
2475 
2476     return 0;
2477 }
2478 
2479 static void htab_save_cleanup(void *opaque)
2480 {
2481     SpaprMachineState *spapr = opaque;
2482 
2483     close_htab_fd(spapr);
2484 }
2485 
2486 static SaveVMHandlers savevm_htab_handlers = {
2487     .save_setup = htab_save_setup,
2488     .save_live_iterate = htab_save_iterate,
2489     .save_live_complete_precopy = htab_save_complete,
2490     .save_cleanup = htab_save_cleanup,
2491     .load_state = htab_load,
2492 };
2493 
2494 static void spapr_boot_set(void *opaque, const char *boot_device,
2495                            Error **errp)
2496 {
2497     MachineState *machine = MACHINE(opaque);
2498     machine->boot_order = g_strdup(boot_device);
2499 }
2500 
2501 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2502 {
2503     MachineState *machine = MACHINE(spapr);
2504     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2505     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2506     int i;
2507 
2508     for (i = 0; i < nr_lmbs; i++) {
2509         uint64_t addr;
2510 
2511         addr = i * lmb_size + machine->device_memory->base;
2512         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2513                                addr / lmb_size);
2514     }
2515 }
2516 
2517 /*
2518  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2519  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2520  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2521  */
2522 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2523 {
2524     int i;
2525 
2526     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2527         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2528                    " is not aligned to %" PRIu64 " MiB",
2529                    machine->ram_size,
2530                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2531         return;
2532     }
2533 
2534     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2535         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2536                    " is not aligned to %" PRIu64 " MiB",
2537                    machine->ram_size,
2538                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2539         return;
2540     }
2541 
2542     for (i = 0; i < nb_numa_nodes; i++) {
2543         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2544             error_setg(errp,
2545                        "Node %d memory size 0x%" PRIx64
2546                        " is not aligned to %" PRIu64 " MiB",
2547                        i, numa_info[i].node_mem,
2548                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2549             return;
2550         }
2551     }
2552 }
2553 
2554 /* find cpu slot in machine->possible_cpus by core_id */
2555 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2556 {
2557     int index = id / ms->smp.threads;
2558 
2559     if (index >= ms->possible_cpus->len) {
2560         return NULL;
2561     }
2562     if (idx) {
2563         *idx = index;
2564     }
2565     return &ms->possible_cpus->cpus[index];
2566 }
2567 
2568 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2569 {
2570     MachineState *ms = MACHINE(spapr);
2571     Error *local_err = NULL;
2572     bool vsmt_user = !!spapr->vsmt;
2573     int kvm_smt = kvmppc_smt_threads();
2574     int ret;
2575     unsigned int smp_threads = ms->smp.threads;
2576 
2577     if (!kvm_enabled() && (smp_threads > 1)) {
2578         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2579                      "on a pseries machine");
2580         goto out;
2581     }
2582     if (!is_power_of_2(smp_threads)) {
2583         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2584                      "machine because it must be a power of 2", smp_threads);
2585         goto out;
2586     }
2587 
2588     /* Detemine the VSMT mode to use: */
2589     if (vsmt_user) {
2590         if (spapr->vsmt < smp_threads) {
2591             error_setg(&local_err, "Cannot support VSMT mode %d"
2592                          " because it must be >= threads/core (%d)",
2593                          spapr->vsmt, smp_threads);
2594             goto out;
2595         }
2596         /* In this case, spapr->vsmt has been set by the command line */
2597     } else {
2598         /*
2599          * Default VSMT value is tricky, because we need it to be as
2600          * consistent as possible (for migration), but this requires
2601          * changing it for at least some existing cases.  We pick 8 as
2602          * the value that we'd get with KVM on POWER8, the
2603          * overwhelmingly common case in production systems.
2604          */
2605         spapr->vsmt = MAX(8, smp_threads);
2606     }
2607 
2608     /* KVM: If necessary, set the SMT mode: */
2609     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2610         ret = kvmppc_set_smt_threads(spapr->vsmt);
2611         if (ret) {
2612             /* Looks like KVM isn't able to change VSMT mode */
2613             error_setg(&local_err,
2614                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2615                        spapr->vsmt, ret);
2616             /* We can live with that if the default one is big enough
2617              * for the number of threads, and a submultiple of the one
2618              * we want.  In this case we'll waste some vcpu ids, but
2619              * behaviour will be correct */
2620             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2621                 warn_report_err(local_err);
2622                 local_err = NULL;
2623                 goto out;
2624             } else {
2625                 if (!vsmt_user) {
2626                     error_append_hint(&local_err,
2627                                       "On PPC, a VM with %d threads/core"
2628                                       " on a host with %d threads/core"
2629                                       " requires the use of VSMT mode %d.\n",
2630                                       smp_threads, kvm_smt, spapr->vsmt);
2631                 }
2632                 kvmppc_hint_smt_possible(&local_err);
2633                 goto out;
2634             }
2635         }
2636     }
2637     /* else TCG: nothing to do currently */
2638 out:
2639     error_propagate(errp, local_err);
2640 }
2641 
2642 static void spapr_init_cpus(SpaprMachineState *spapr)
2643 {
2644     MachineState *machine = MACHINE(spapr);
2645     MachineClass *mc = MACHINE_GET_CLASS(machine);
2646     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2647     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2648     const CPUArchIdList *possible_cpus;
2649     unsigned int smp_cpus = machine->smp.cpus;
2650     unsigned int smp_threads = machine->smp.threads;
2651     unsigned int max_cpus = machine->smp.max_cpus;
2652     int boot_cores_nr = smp_cpus / smp_threads;
2653     int i;
2654 
2655     possible_cpus = mc->possible_cpu_arch_ids(machine);
2656     if (mc->has_hotpluggable_cpus) {
2657         if (smp_cpus % smp_threads) {
2658             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2659                          smp_cpus, smp_threads);
2660             exit(1);
2661         }
2662         if (max_cpus % smp_threads) {
2663             error_report("max_cpus (%u) must be multiple of threads (%u)",
2664                          max_cpus, smp_threads);
2665             exit(1);
2666         }
2667     } else {
2668         if (max_cpus != smp_cpus) {
2669             error_report("This machine version does not support CPU hotplug");
2670             exit(1);
2671         }
2672         boot_cores_nr = possible_cpus->len;
2673     }
2674 
2675     if (smc->pre_2_10_has_unused_icps) {
2676         int i;
2677 
2678         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2679             /* Dummy entries get deregistered when real ICPState objects
2680              * are registered during CPU core hotplug.
2681              */
2682             pre_2_10_vmstate_register_dummy_icp(i);
2683         }
2684     }
2685 
2686     for (i = 0; i < possible_cpus->len; i++) {
2687         int core_id = i * smp_threads;
2688 
2689         if (mc->has_hotpluggable_cpus) {
2690             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2691                                    spapr_vcpu_id(spapr, core_id));
2692         }
2693 
2694         if (i < boot_cores_nr) {
2695             Object *core  = object_new(type);
2696             int nr_threads = smp_threads;
2697 
2698             /* Handle the partially filled core for older machine types */
2699             if ((i + 1) * smp_threads >= smp_cpus) {
2700                 nr_threads = smp_cpus - i * smp_threads;
2701             }
2702 
2703             object_property_set_int(core, nr_threads, "nr-threads",
2704                                     &error_fatal);
2705             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2706                                     &error_fatal);
2707             object_property_set_bool(core, true, "realized", &error_fatal);
2708 
2709             object_unref(core);
2710         }
2711     }
2712 }
2713 
2714 static PCIHostState *spapr_create_default_phb(void)
2715 {
2716     DeviceState *dev;
2717 
2718     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2719     qdev_prop_set_uint32(dev, "index", 0);
2720     qdev_init_nofail(dev);
2721 
2722     return PCI_HOST_BRIDGE(dev);
2723 }
2724 
2725 /* pSeries LPAR / sPAPR hardware init */
2726 static void spapr_machine_init(MachineState *machine)
2727 {
2728     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2729     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2730     const char *kernel_filename = machine->kernel_filename;
2731     const char *initrd_filename = machine->initrd_filename;
2732     PCIHostState *phb;
2733     int i;
2734     MemoryRegion *sysmem = get_system_memory();
2735     MemoryRegion *ram = g_new(MemoryRegion, 1);
2736     hwaddr node0_size = spapr_node0_size(machine);
2737     long load_limit, fw_size;
2738     char *filename;
2739     Error *resize_hpt_err = NULL;
2740 
2741     msi_nonbroken = true;
2742 
2743     QLIST_INIT(&spapr->phbs);
2744     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2745 
2746     /* Determine capabilities to run with */
2747     spapr_caps_init(spapr);
2748 
2749     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2750     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2751         /*
2752          * If the user explicitly requested a mode we should either
2753          * supply it, or fail completely (which we do below).  But if
2754          * it's not set explicitly, we reset our mode to something
2755          * that works
2756          */
2757         if (resize_hpt_err) {
2758             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2759             error_free(resize_hpt_err);
2760             resize_hpt_err = NULL;
2761         } else {
2762             spapr->resize_hpt = smc->resize_hpt_default;
2763         }
2764     }
2765 
2766     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2767 
2768     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2769         /*
2770          * User requested HPT resize, but this host can't supply it.  Bail out
2771          */
2772         error_report_err(resize_hpt_err);
2773         exit(1);
2774     }
2775 
2776     spapr->rma_size = node0_size;
2777 
2778     /* With KVM, we don't actually know whether KVM supports an
2779      * unbounded RMA (PR KVM) or is limited by the hash table size
2780      * (HV KVM using VRMA), so we always assume the latter
2781      *
2782      * In that case, we also limit the initial allocations for RTAS
2783      * etc... to 256M since we have no way to know what the VRMA size
2784      * is going to be as it depends on the size of the hash table
2785      * which isn't determined yet.
2786      */
2787     if (kvm_enabled()) {
2788         spapr->vrma_adjust = 1;
2789         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2790     }
2791 
2792     /* Actually we don't support unbounded RMA anymore since we added
2793      * proper emulation of HV mode. The max we can get is 16G which
2794      * also happens to be what we configure for PAPR mode so make sure
2795      * we don't do anything bigger than that
2796      */
2797     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2798 
2799     if (spapr->rma_size > node0_size) {
2800         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2801                      spapr->rma_size);
2802         exit(1);
2803     }
2804 
2805     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2806     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2807 
2808     /*
2809      * VSMT must be set in order to be able to compute VCPU ids, ie to
2810      * call spapr_max_server_number() or spapr_vcpu_id().
2811      */
2812     spapr_set_vsmt_mode(spapr, &error_fatal);
2813 
2814     /* Set up Interrupt Controller before we create the VCPUs */
2815     spapr_irq_init(spapr, &error_fatal);
2816 
2817     /* Set up containers for ibm,client-architecture-support negotiated options
2818      */
2819     spapr->ov5 = spapr_ovec_new();
2820     spapr->ov5_cas = spapr_ovec_new();
2821 
2822     if (smc->dr_lmb_enabled) {
2823         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2824         spapr_validate_node_memory(machine, &error_fatal);
2825     }
2826 
2827     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2828 
2829     /* advertise support for dedicated HP event source to guests */
2830     if (spapr->use_hotplug_event_source) {
2831         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2832     }
2833 
2834     /* advertise support for HPT resizing */
2835     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2836         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2837     }
2838 
2839     /* advertise support for ibm,dyamic-memory-v2 */
2840     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2841 
2842     /* advertise XIVE on POWER9 machines */
2843     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2844         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2845     }
2846 
2847     /* init CPUs */
2848     spapr_init_cpus(spapr);
2849 
2850     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2851         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2852                               spapr->max_compat_pvr)) {
2853         /* KVM and TCG always allow GTSE with radix... */
2854         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2855     }
2856     /* ... but not with hash (currently). */
2857 
2858     if (kvm_enabled()) {
2859         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2860         kvmppc_enable_logical_ci_hcalls();
2861         kvmppc_enable_set_mode_hcall();
2862 
2863         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2864         kvmppc_enable_clear_ref_mod_hcalls();
2865 
2866         /* Enable H_PAGE_INIT */
2867         kvmppc_enable_h_page_init();
2868     }
2869 
2870     /* allocate RAM */
2871     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2872                                          machine->ram_size);
2873     memory_region_add_subregion(sysmem, 0, ram);
2874 
2875     /* always allocate the device memory information */
2876     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2877 
2878     /* initialize hotplug memory address space */
2879     if (machine->ram_size < machine->maxram_size) {
2880         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2881         /*
2882          * Limit the number of hotpluggable memory slots to half the number
2883          * slots that KVM supports, leaving the other half for PCI and other
2884          * devices. However ensure that number of slots doesn't drop below 32.
2885          */
2886         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2887                            SPAPR_MAX_RAM_SLOTS;
2888 
2889         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2890             max_memslots = SPAPR_MAX_RAM_SLOTS;
2891         }
2892         if (machine->ram_slots > max_memslots) {
2893             error_report("Specified number of memory slots %"
2894                          PRIu64" exceeds max supported %d",
2895                          machine->ram_slots, max_memslots);
2896             exit(1);
2897         }
2898 
2899         machine->device_memory->base = ROUND_UP(machine->ram_size,
2900                                                 SPAPR_DEVICE_MEM_ALIGN);
2901         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2902                            "device-memory", device_mem_size);
2903         memory_region_add_subregion(sysmem, machine->device_memory->base,
2904                                     &machine->device_memory->mr);
2905     }
2906 
2907     if (smc->dr_lmb_enabled) {
2908         spapr_create_lmb_dr_connectors(spapr);
2909     }
2910 
2911     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2912     if (!filename) {
2913         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2914         exit(1);
2915     }
2916     spapr->rtas_size = get_image_size(filename);
2917     if (spapr->rtas_size < 0) {
2918         error_report("Could not get size of LPAR rtas '%s'", filename);
2919         exit(1);
2920     }
2921     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2922     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2923         error_report("Could not load LPAR rtas '%s'", filename);
2924         exit(1);
2925     }
2926     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2927         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2928                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2929         exit(1);
2930     }
2931     g_free(filename);
2932 
2933     /* Set up RTAS event infrastructure */
2934     spapr_events_init(spapr);
2935 
2936     /* Set up the RTC RTAS interfaces */
2937     spapr_rtc_create(spapr);
2938 
2939     /* Set up VIO bus */
2940     spapr->vio_bus = spapr_vio_bus_init();
2941 
2942     for (i = 0; i < serial_max_hds(); i++) {
2943         if (serial_hd(i)) {
2944             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2945         }
2946     }
2947 
2948     /* We always have at least the nvram device on VIO */
2949     spapr_create_nvram(spapr);
2950 
2951     /*
2952      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2953      * connectors (described in root DT node's "ibm,drc-types" property)
2954      * are pre-initialized here. additional child connectors (such as
2955      * connectors for a PHBs PCI slots) are added as needed during their
2956      * parent's realization.
2957      */
2958     if (smc->dr_phb_enabled) {
2959         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2960             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2961         }
2962     }
2963 
2964     /* Set up PCI */
2965     spapr_pci_rtas_init();
2966 
2967     phb = spapr_create_default_phb();
2968 
2969     for (i = 0; i < nb_nics; i++) {
2970         NICInfo *nd = &nd_table[i];
2971 
2972         if (!nd->model) {
2973             nd->model = g_strdup("spapr-vlan");
2974         }
2975 
2976         if (g_str_equal(nd->model, "spapr-vlan") ||
2977             g_str_equal(nd->model, "ibmveth")) {
2978             spapr_vlan_create(spapr->vio_bus, nd);
2979         } else {
2980             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2981         }
2982     }
2983 
2984     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2985         spapr_vscsi_create(spapr->vio_bus);
2986     }
2987 
2988     /* Graphics */
2989     if (spapr_vga_init(phb->bus, &error_fatal)) {
2990         spapr->has_graphics = true;
2991         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2992     }
2993 
2994     if (machine->usb) {
2995         if (smc->use_ohci_by_default) {
2996             pci_create_simple(phb->bus, -1, "pci-ohci");
2997         } else {
2998             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2999         }
3000 
3001         if (spapr->has_graphics) {
3002             USBBus *usb_bus = usb_bus_find(-1);
3003 
3004             usb_create_simple(usb_bus, "usb-kbd");
3005             usb_create_simple(usb_bus, "usb-mouse");
3006         }
3007     }
3008 
3009     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3010         error_report(
3011             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3012             MIN_RMA_SLOF);
3013         exit(1);
3014     }
3015 
3016     if (kernel_filename) {
3017         uint64_t lowaddr = 0;
3018 
3019         spapr->kernel_size = load_elf(kernel_filename, NULL,
3020                                       translate_kernel_address, NULL,
3021                                       NULL, &lowaddr, NULL, 1,
3022                                       PPC_ELF_MACHINE, 0, 0);
3023         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3024             spapr->kernel_size = load_elf(kernel_filename, NULL,
3025                                           translate_kernel_address, NULL, NULL,
3026                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3027                                           0, 0);
3028             spapr->kernel_le = spapr->kernel_size > 0;
3029         }
3030         if (spapr->kernel_size < 0) {
3031             error_report("error loading %s: %s", kernel_filename,
3032                          load_elf_strerror(spapr->kernel_size));
3033             exit(1);
3034         }
3035 
3036         /* load initrd */
3037         if (initrd_filename) {
3038             /* Try to locate the initrd in the gap between the kernel
3039              * and the firmware. Add a bit of space just in case
3040              */
3041             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3042                                   + 0x1ffff) & ~0xffff;
3043             spapr->initrd_size = load_image_targphys(initrd_filename,
3044                                                      spapr->initrd_base,
3045                                                      load_limit
3046                                                      - spapr->initrd_base);
3047             if (spapr->initrd_size < 0) {
3048                 error_report("could not load initial ram disk '%s'",
3049                              initrd_filename);
3050                 exit(1);
3051             }
3052         }
3053     }
3054 
3055     if (bios_name == NULL) {
3056         bios_name = FW_FILE_NAME;
3057     }
3058     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3059     if (!filename) {
3060         error_report("Could not find LPAR firmware '%s'", bios_name);
3061         exit(1);
3062     }
3063     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3064     if (fw_size <= 0) {
3065         error_report("Could not load LPAR firmware '%s'", filename);
3066         exit(1);
3067     }
3068     g_free(filename);
3069 
3070     /* FIXME: Should register things through the MachineState's qdev
3071      * interface, this is a legacy from the sPAPREnvironment structure
3072      * which predated MachineState but had a similar function */
3073     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3074     register_savevm_live(NULL, "spapr/htab", -1, 1,
3075                          &savevm_htab_handlers, spapr);
3076 
3077     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3078                              &error_fatal);
3079 
3080     qemu_register_boot_set(spapr_boot_set, spapr);
3081 
3082     if (kvm_enabled()) {
3083         /* to stop and start vmclock */
3084         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3085                                          &spapr->tb);
3086 
3087         kvmppc_spapr_enable_inkernel_multitce();
3088     }
3089 }
3090 
3091 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3092 {
3093     if (!vm_type) {
3094         return 0;
3095     }
3096 
3097     if (!strcmp(vm_type, "HV")) {
3098         return 1;
3099     }
3100 
3101     if (!strcmp(vm_type, "PR")) {
3102         return 2;
3103     }
3104 
3105     error_report("Unknown kvm-type specified '%s'", vm_type);
3106     exit(1);
3107 }
3108 
3109 /*
3110  * Implementation of an interface to adjust firmware path
3111  * for the bootindex property handling.
3112  */
3113 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3114                                    DeviceState *dev)
3115 {
3116 #define CAST(type, obj, name) \
3117     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3118     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3119     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3120     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3121 
3122     if (d) {
3123         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3124         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3125         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3126 
3127         if (spapr) {
3128             /*
3129              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3130              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3131              * 0x8000 | (target << 8) | (bus << 5) | lun
3132              * (see the "Logical unit addressing format" table in SAM5)
3133              */
3134             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3135             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3136                                    (uint64_t)id << 48);
3137         } else if (virtio) {
3138             /*
3139              * We use SRP luns of the form 01000000 | (target << 8) | lun
3140              * in the top 32 bits of the 64-bit LUN
3141              * Note: the quote above is from SLOF and it is wrong,
3142              * the actual binding is:
3143              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3144              */
3145             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3146             if (d->lun >= 256) {
3147                 /* Use the LUN "flat space addressing method" */
3148                 id |= 0x4000;
3149             }
3150             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3151                                    (uint64_t)id << 32);
3152         } else if (usb) {
3153             /*
3154              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3155              * in the top 32 bits of the 64-bit LUN
3156              */
3157             unsigned usb_port = atoi(usb->port->path);
3158             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3159             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3160                                    (uint64_t)id << 32);
3161         }
3162     }
3163 
3164     /*
3165      * SLOF probes the USB devices, and if it recognizes that the device is a
3166      * storage device, it changes its name to "storage" instead of "usb-host",
3167      * and additionally adds a child node for the SCSI LUN, so the correct
3168      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3169      */
3170     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3171         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3172         if (usb_host_dev_is_scsi_storage(usbdev)) {
3173             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3174         }
3175     }
3176 
3177     if (phb) {
3178         /* Replace "pci" with "pci@800000020000000" */
3179         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3180     }
3181 
3182     if (vsc) {
3183         /* Same logic as virtio above */
3184         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3185         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3186     }
3187 
3188     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3189         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3190         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3191         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3192     }
3193 
3194     return NULL;
3195 }
3196 
3197 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3198 {
3199     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3200 
3201     return g_strdup(spapr->kvm_type);
3202 }
3203 
3204 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3205 {
3206     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207 
3208     g_free(spapr->kvm_type);
3209     spapr->kvm_type = g_strdup(value);
3210 }
3211 
3212 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3213 {
3214     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3215 
3216     return spapr->use_hotplug_event_source;
3217 }
3218 
3219 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3220                                             Error **errp)
3221 {
3222     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3223 
3224     spapr->use_hotplug_event_source = value;
3225 }
3226 
3227 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3228 {
3229     return true;
3230 }
3231 
3232 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3233 {
3234     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3235 
3236     switch (spapr->resize_hpt) {
3237     case SPAPR_RESIZE_HPT_DEFAULT:
3238         return g_strdup("default");
3239     case SPAPR_RESIZE_HPT_DISABLED:
3240         return g_strdup("disabled");
3241     case SPAPR_RESIZE_HPT_ENABLED:
3242         return g_strdup("enabled");
3243     case SPAPR_RESIZE_HPT_REQUIRED:
3244         return g_strdup("required");
3245     }
3246     g_assert_not_reached();
3247 }
3248 
3249 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3250 {
3251     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3252 
3253     if (strcmp(value, "default") == 0) {
3254         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3255     } else if (strcmp(value, "disabled") == 0) {
3256         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3257     } else if (strcmp(value, "enabled") == 0) {
3258         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3259     } else if (strcmp(value, "required") == 0) {
3260         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3261     } else {
3262         error_setg(errp, "Bad value for \"resize-hpt\" property");
3263     }
3264 }
3265 
3266 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3267                                    void *opaque, Error **errp)
3268 {
3269     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3270 }
3271 
3272 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3273                                    void *opaque, Error **errp)
3274 {
3275     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3276 }
3277 
3278 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3279 {
3280     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3281 
3282     if (spapr->irq == &spapr_irq_xics_legacy) {
3283         return g_strdup("legacy");
3284     } else if (spapr->irq == &spapr_irq_xics) {
3285         return g_strdup("xics");
3286     } else if (spapr->irq == &spapr_irq_xive) {
3287         return g_strdup("xive");
3288     } else if (spapr->irq == &spapr_irq_dual) {
3289         return g_strdup("dual");
3290     }
3291     g_assert_not_reached();
3292 }
3293 
3294 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3295 {
3296     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3297 
3298     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3299         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3300         return;
3301     }
3302 
3303     /* The legacy IRQ backend can not be set */
3304     if (strcmp(value, "xics") == 0) {
3305         spapr->irq = &spapr_irq_xics;
3306     } else if (strcmp(value, "xive") == 0) {
3307         spapr->irq = &spapr_irq_xive;
3308     } else if (strcmp(value, "dual") == 0) {
3309         spapr->irq = &spapr_irq_dual;
3310     } else {
3311         error_setg(errp, "Bad value for \"ic-mode\" property");
3312     }
3313 }
3314 
3315 static char *spapr_get_host_model(Object *obj, Error **errp)
3316 {
3317     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3318 
3319     return g_strdup(spapr->host_model);
3320 }
3321 
3322 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3323 {
3324     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3325 
3326     g_free(spapr->host_model);
3327     spapr->host_model = g_strdup(value);
3328 }
3329 
3330 static char *spapr_get_host_serial(Object *obj, Error **errp)
3331 {
3332     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3333 
3334     return g_strdup(spapr->host_serial);
3335 }
3336 
3337 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3338 {
3339     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3340 
3341     g_free(spapr->host_serial);
3342     spapr->host_serial = g_strdup(value);
3343 }
3344 
3345 static void spapr_instance_init(Object *obj)
3346 {
3347     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3348     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3349 
3350     spapr->htab_fd = -1;
3351     spapr->use_hotplug_event_source = true;
3352     object_property_add_str(obj, "kvm-type",
3353                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3354     object_property_set_description(obj, "kvm-type",
3355                                     "Specifies the KVM virtualization mode (HV, PR)",
3356                                     NULL);
3357     object_property_add_bool(obj, "modern-hotplug-events",
3358                             spapr_get_modern_hotplug_events,
3359                             spapr_set_modern_hotplug_events,
3360                             NULL);
3361     object_property_set_description(obj, "modern-hotplug-events",
3362                                     "Use dedicated hotplug event mechanism in"
3363                                     " place of standard EPOW events when possible"
3364                                     " (required for memory hot-unplug support)",
3365                                     NULL);
3366     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3367                             "Maximum permitted CPU compatibility mode",
3368                             &error_fatal);
3369 
3370     object_property_add_str(obj, "resize-hpt",
3371                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3372     object_property_set_description(obj, "resize-hpt",
3373                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3374                                     NULL);
3375     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3376                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3377     object_property_set_description(obj, "vsmt",
3378                                     "Virtual SMT: KVM behaves as if this were"
3379                                     " the host's SMT mode", &error_abort);
3380     object_property_add_bool(obj, "vfio-no-msix-emulation",
3381                              spapr_get_msix_emulation, NULL, NULL);
3382 
3383     /* The machine class defines the default interrupt controller mode */
3384     spapr->irq = smc->irq;
3385     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3386                             spapr_set_ic_mode, NULL);
3387     object_property_set_description(obj, "ic-mode",
3388                  "Specifies the interrupt controller mode (xics, xive, dual)",
3389                  NULL);
3390 
3391     object_property_add_str(obj, "host-model",
3392         spapr_get_host_model, spapr_set_host_model,
3393         &error_abort);
3394     object_property_set_description(obj, "host-model",
3395         "Host model to advertise in guest device tree", &error_abort);
3396     object_property_add_str(obj, "host-serial",
3397         spapr_get_host_serial, spapr_set_host_serial,
3398         &error_abort);
3399     object_property_set_description(obj, "host-serial",
3400         "Host serial number to advertise in guest device tree", &error_abort);
3401 }
3402 
3403 static void spapr_machine_finalizefn(Object *obj)
3404 {
3405     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3406 
3407     g_free(spapr->kvm_type);
3408 }
3409 
3410 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3411 {
3412     cpu_synchronize_state(cs);
3413     ppc_cpu_do_system_reset(cs);
3414 }
3415 
3416 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3417 {
3418     CPUState *cs;
3419 
3420     CPU_FOREACH(cs) {
3421         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3422     }
3423 }
3424 
3425 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3426                           void *fdt, int *fdt_start_offset, Error **errp)
3427 {
3428     uint64_t addr;
3429     uint32_t node;
3430 
3431     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3432     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3433                                     &error_abort);
3434     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3435                                                    SPAPR_MEMORY_BLOCK_SIZE);
3436     return 0;
3437 }
3438 
3439 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3440                            bool dedicated_hp_event_source, Error **errp)
3441 {
3442     SpaprDrc *drc;
3443     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3444     int i;
3445     uint64_t addr = addr_start;
3446     bool hotplugged = spapr_drc_hotplugged(dev);
3447     Error *local_err = NULL;
3448 
3449     for (i = 0; i < nr_lmbs; i++) {
3450         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3451                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3452         g_assert(drc);
3453 
3454         spapr_drc_attach(drc, dev, &local_err);
3455         if (local_err) {
3456             while (addr > addr_start) {
3457                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3458                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3459                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3460                 spapr_drc_detach(drc);
3461             }
3462             error_propagate(errp, local_err);
3463             return;
3464         }
3465         if (!hotplugged) {
3466             spapr_drc_reset(drc);
3467         }
3468         addr += SPAPR_MEMORY_BLOCK_SIZE;
3469     }
3470     /* send hotplug notification to the
3471      * guest only in case of hotplugged memory
3472      */
3473     if (hotplugged) {
3474         if (dedicated_hp_event_source) {
3475             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3476                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3477             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3478                                                    nr_lmbs,
3479                                                    spapr_drc_index(drc));
3480         } else {
3481             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3482                                            nr_lmbs);
3483         }
3484     }
3485 }
3486 
3487 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3488                               Error **errp)
3489 {
3490     Error *local_err = NULL;
3491     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3492     PCDIMMDevice *dimm = PC_DIMM(dev);
3493     uint64_t size, addr;
3494 
3495     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3496 
3497     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3498     if (local_err) {
3499         goto out;
3500     }
3501 
3502     addr = object_property_get_uint(OBJECT(dimm),
3503                                     PC_DIMM_ADDR_PROP, &local_err);
3504     if (local_err) {
3505         goto out_unplug;
3506     }
3507 
3508     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3509                    &local_err);
3510     if (local_err) {
3511         goto out_unplug;
3512     }
3513 
3514     return;
3515 
3516 out_unplug:
3517     pc_dimm_unplug(dimm, MACHINE(ms));
3518 out:
3519     error_propagate(errp, local_err);
3520 }
3521 
3522 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3523                                   Error **errp)
3524 {
3525     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3526     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3527     PCDIMMDevice *dimm = PC_DIMM(dev);
3528     Error *local_err = NULL;
3529     uint64_t size;
3530     Object *memdev;
3531     hwaddr pagesize;
3532 
3533     if (!smc->dr_lmb_enabled) {
3534         error_setg(errp, "Memory hotplug not supported for this machine");
3535         return;
3536     }
3537 
3538     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3539     if (local_err) {
3540         error_propagate(errp, local_err);
3541         return;
3542     }
3543 
3544     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3545         error_setg(errp, "Hotplugged memory size must be a multiple of "
3546                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3547         return;
3548     }
3549 
3550     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3551                                       &error_abort);
3552     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3553     spapr_check_pagesize(spapr, pagesize, &local_err);
3554     if (local_err) {
3555         error_propagate(errp, local_err);
3556         return;
3557     }
3558 
3559     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3560 }
3561 
3562 struct SpaprDimmState {
3563     PCDIMMDevice *dimm;
3564     uint32_t nr_lmbs;
3565     QTAILQ_ENTRY(SpaprDimmState) next;
3566 };
3567 
3568 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3569                                                        PCDIMMDevice *dimm)
3570 {
3571     SpaprDimmState *dimm_state = NULL;
3572 
3573     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3574         if (dimm_state->dimm == dimm) {
3575             break;
3576         }
3577     }
3578     return dimm_state;
3579 }
3580 
3581 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3582                                                       uint32_t nr_lmbs,
3583                                                       PCDIMMDevice *dimm)
3584 {
3585     SpaprDimmState *ds = NULL;
3586 
3587     /*
3588      * If this request is for a DIMM whose removal had failed earlier
3589      * (due to guest's refusal to remove the LMBs), we would have this
3590      * dimm already in the pending_dimm_unplugs list. In that
3591      * case don't add again.
3592      */
3593     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3594     if (!ds) {
3595         ds = g_malloc0(sizeof(SpaprDimmState));
3596         ds->nr_lmbs = nr_lmbs;
3597         ds->dimm = dimm;
3598         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3599     }
3600     return ds;
3601 }
3602 
3603 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3604                                               SpaprDimmState *dimm_state)
3605 {
3606     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3607     g_free(dimm_state);
3608 }
3609 
3610 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3611                                                         PCDIMMDevice *dimm)
3612 {
3613     SpaprDrc *drc;
3614     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3615                                                   &error_abort);
3616     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3617     uint32_t avail_lmbs = 0;
3618     uint64_t addr_start, addr;
3619     int i;
3620 
3621     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3622                                          &error_abort);
3623 
3624     addr = addr_start;
3625     for (i = 0; i < nr_lmbs; i++) {
3626         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3627                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3628         g_assert(drc);
3629         if (drc->dev) {
3630             avail_lmbs++;
3631         }
3632         addr += SPAPR_MEMORY_BLOCK_SIZE;
3633     }
3634 
3635     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3636 }
3637 
3638 /* Callback to be called during DRC release. */
3639 void spapr_lmb_release(DeviceState *dev)
3640 {
3641     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3642     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3643     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3644 
3645     /* This information will get lost if a migration occurs
3646      * during the unplug process. In this case recover it. */
3647     if (ds == NULL) {
3648         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3649         g_assert(ds);
3650         /* The DRC being examined by the caller at least must be counted */
3651         g_assert(ds->nr_lmbs);
3652     }
3653 
3654     if (--ds->nr_lmbs) {
3655         return;
3656     }
3657 
3658     /*
3659      * Now that all the LMBs have been removed by the guest, call the
3660      * unplug handler chain. This can never fail.
3661      */
3662     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3663     object_unparent(OBJECT(dev));
3664 }
3665 
3666 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3667 {
3668     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3669     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3670 
3671     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3672     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3673     spapr_pending_dimm_unplugs_remove(spapr, ds);
3674 }
3675 
3676 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3677                                         DeviceState *dev, Error **errp)
3678 {
3679     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3680     Error *local_err = NULL;
3681     PCDIMMDevice *dimm = PC_DIMM(dev);
3682     uint32_t nr_lmbs;
3683     uint64_t size, addr_start, addr;
3684     int i;
3685     SpaprDrc *drc;
3686 
3687     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3688     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3689 
3690     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3691                                          &local_err);
3692     if (local_err) {
3693         goto out;
3694     }
3695 
3696     /*
3697      * An existing pending dimm state for this DIMM means that there is an
3698      * unplug operation in progress, waiting for the spapr_lmb_release
3699      * callback to complete the job (BQL can't cover that far). In this case,
3700      * bail out to avoid detaching DRCs that were already released.
3701      */
3702     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3703         error_setg(&local_err,
3704                    "Memory unplug already in progress for device %s",
3705                    dev->id);
3706         goto out;
3707     }
3708 
3709     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3710 
3711     addr = addr_start;
3712     for (i = 0; i < nr_lmbs; i++) {
3713         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3714                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3715         g_assert(drc);
3716 
3717         spapr_drc_detach(drc);
3718         addr += SPAPR_MEMORY_BLOCK_SIZE;
3719     }
3720 
3721     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3722                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3723     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3724                                               nr_lmbs, spapr_drc_index(drc));
3725 out:
3726     error_propagate(errp, local_err);
3727 }
3728 
3729 /* Callback to be called during DRC release. */
3730 void spapr_core_release(DeviceState *dev)
3731 {
3732     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3733 
3734     /* Call the unplug handler chain. This can never fail. */
3735     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3736     object_unparent(OBJECT(dev));
3737 }
3738 
3739 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3740 {
3741     MachineState *ms = MACHINE(hotplug_dev);
3742     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3743     CPUCore *cc = CPU_CORE(dev);
3744     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3745 
3746     if (smc->pre_2_10_has_unused_icps) {
3747         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3748         int i;
3749 
3750         for (i = 0; i < cc->nr_threads; i++) {
3751             CPUState *cs = CPU(sc->threads[i]);
3752 
3753             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3754         }
3755     }
3756 
3757     assert(core_slot);
3758     core_slot->cpu = NULL;
3759     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3760 }
3761 
3762 static
3763 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3764                                Error **errp)
3765 {
3766     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3767     int index;
3768     SpaprDrc *drc;
3769     CPUCore *cc = CPU_CORE(dev);
3770 
3771     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3772         error_setg(errp, "Unable to find CPU core with core-id: %d",
3773                    cc->core_id);
3774         return;
3775     }
3776     if (index == 0) {
3777         error_setg(errp, "Boot CPU core may not be unplugged");
3778         return;
3779     }
3780 
3781     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3782                           spapr_vcpu_id(spapr, cc->core_id));
3783     g_assert(drc);
3784 
3785     spapr_drc_detach(drc);
3786 
3787     spapr_hotplug_req_remove_by_index(drc);
3788 }
3789 
3790 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3791                            void *fdt, int *fdt_start_offset, Error **errp)
3792 {
3793     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3794     CPUState *cs = CPU(core->threads[0]);
3795     PowerPCCPU *cpu = POWERPC_CPU(cs);
3796     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3797     int id = spapr_get_vcpu_id(cpu);
3798     char *nodename;
3799     int offset;
3800 
3801     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3802     offset = fdt_add_subnode(fdt, 0, nodename);
3803     g_free(nodename);
3804 
3805     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3806 
3807     *fdt_start_offset = offset;
3808     return 0;
3809 }
3810 
3811 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3812                             Error **errp)
3813 {
3814     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3815     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3816     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3817     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3818     CPUCore *cc = CPU_CORE(dev);
3819     CPUState *cs;
3820     SpaprDrc *drc;
3821     Error *local_err = NULL;
3822     CPUArchId *core_slot;
3823     int index;
3824     bool hotplugged = spapr_drc_hotplugged(dev);
3825 
3826     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3827     if (!core_slot) {
3828         error_setg(errp, "Unable to find CPU core with core-id: %d",
3829                    cc->core_id);
3830         return;
3831     }
3832     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3833                           spapr_vcpu_id(spapr, cc->core_id));
3834 
3835     g_assert(drc || !mc->has_hotpluggable_cpus);
3836 
3837     if (drc) {
3838         spapr_drc_attach(drc, dev, &local_err);
3839         if (local_err) {
3840             error_propagate(errp, local_err);
3841             return;
3842         }
3843 
3844         if (hotplugged) {
3845             /*
3846              * Send hotplug notification interrupt to the guest only
3847              * in case of hotplugged CPUs.
3848              */
3849             spapr_hotplug_req_add_by_index(drc);
3850         } else {
3851             spapr_drc_reset(drc);
3852         }
3853     }
3854 
3855     core_slot->cpu = OBJECT(dev);
3856 
3857     if (smc->pre_2_10_has_unused_icps) {
3858         int i;
3859 
3860         for (i = 0; i < cc->nr_threads; i++) {
3861             cs = CPU(core->threads[i]);
3862             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3863         }
3864     }
3865 }
3866 
3867 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3868                                 Error **errp)
3869 {
3870     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3871     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3872     Error *local_err = NULL;
3873     CPUCore *cc = CPU_CORE(dev);
3874     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3875     const char *type = object_get_typename(OBJECT(dev));
3876     CPUArchId *core_slot;
3877     int index;
3878     unsigned int smp_threads = machine->smp.threads;
3879 
3880     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3881         error_setg(&local_err, "CPU hotplug not supported for this machine");
3882         goto out;
3883     }
3884 
3885     if (strcmp(base_core_type, type)) {
3886         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3887         goto out;
3888     }
3889 
3890     if (cc->core_id % smp_threads) {
3891         error_setg(&local_err, "invalid core id %d", cc->core_id);
3892         goto out;
3893     }
3894 
3895     /*
3896      * In general we should have homogeneous threads-per-core, but old
3897      * (pre hotplug support) machine types allow the last core to have
3898      * reduced threads as a compatibility hack for when we allowed
3899      * total vcpus not a multiple of threads-per-core.
3900      */
3901     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3902         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3903                    cc->nr_threads, smp_threads);
3904         goto out;
3905     }
3906 
3907     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3908     if (!core_slot) {
3909         error_setg(&local_err, "core id %d out of range", cc->core_id);
3910         goto out;
3911     }
3912 
3913     if (core_slot->cpu) {
3914         error_setg(&local_err, "core %d already populated", cc->core_id);
3915         goto out;
3916     }
3917 
3918     numa_cpu_pre_plug(core_slot, dev, &local_err);
3919 
3920 out:
3921     error_propagate(errp, local_err);
3922 }
3923 
3924 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3925                           void *fdt, int *fdt_start_offset, Error **errp)
3926 {
3927     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3928     int intc_phandle;
3929 
3930     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3931     if (intc_phandle <= 0) {
3932         return -1;
3933     }
3934 
3935     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3936                      fdt_start_offset)) {
3937         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3938         return -1;
3939     }
3940 
3941     /* generally SLOF creates these, for hotplug it's up to QEMU */
3942     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3943 
3944     return 0;
3945 }
3946 
3947 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3948                                Error **errp)
3949 {
3950     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3951     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3952     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3953     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3954 
3955     if (dev->hotplugged && !smc->dr_phb_enabled) {
3956         error_setg(errp, "PHB hotplug not supported for this machine");
3957         return;
3958     }
3959 
3960     if (sphb->index == (uint32_t)-1) {
3961         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3962         return;
3963     }
3964 
3965     /*
3966      * This will check that sphb->index doesn't exceed the maximum number of
3967      * PHBs for the current machine type.
3968      */
3969     smc->phb_placement(spapr, sphb->index,
3970                        &sphb->buid, &sphb->io_win_addr,
3971                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3972                        windows_supported, sphb->dma_liobn,
3973                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3974                        errp);
3975 }
3976 
3977 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3978                            Error **errp)
3979 {
3980     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3981     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3982     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3983     SpaprDrc *drc;
3984     bool hotplugged = spapr_drc_hotplugged(dev);
3985     Error *local_err = NULL;
3986 
3987     if (!smc->dr_phb_enabled) {
3988         return;
3989     }
3990 
3991     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3992     /* hotplug hooks should check it's enabled before getting this far */
3993     assert(drc);
3994 
3995     spapr_drc_attach(drc, DEVICE(dev), &local_err);
3996     if (local_err) {
3997         error_propagate(errp, local_err);
3998         return;
3999     }
4000 
4001     if (hotplugged) {
4002         spapr_hotplug_req_add_by_index(drc);
4003     } else {
4004         spapr_drc_reset(drc);
4005     }
4006 }
4007 
4008 void spapr_phb_release(DeviceState *dev)
4009 {
4010     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4011 
4012     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4013     object_unparent(OBJECT(dev));
4014 }
4015 
4016 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4017 {
4018     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4019 }
4020 
4021 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4022                                      DeviceState *dev, Error **errp)
4023 {
4024     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4025     SpaprDrc *drc;
4026 
4027     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4028     assert(drc);
4029 
4030     if (!spapr_drc_unplug_requested(drc)) {
4031         spapr_drc_detach(drc);
4032         spapr_hotplug_req_remove_by_index(drc);
4033     }
4034 }
4035 
4036 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4037                                       DeviceState *dev, Error **errp)
4038 {
4039     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4040         spapr_memory_plug(hotplug_dev, dev, errp);
4041     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4042         spapr_core_plug(hotplug_dev, dev, errp);
4043     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4044         spapr_phb_plug(hotplug_dev, dev, errp);
4045     }
4046 }
4047 
4048 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4049                                         DeviceState *dev, Error **errp)
4050 {
4051     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4052         spapr_memory_unplug(hotplug_dev, dev);
4053     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4054         spapr_core_unplug(hotplug_dev, dev);
4055     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4056         spapr_phb_unplug(hotplug_dev, dev);
4057     }
4058 }
4059 
4060 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4061                                                 DeviceState *dev, Error **errp)
4062 {
4063     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4064     MachineClass *mc = MACHINE_GET_CLASS(sms);
4065     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4066 
4067     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4068         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4069             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4070         } else {
4071             /* NOTE: this means there is a window after guest reset, prior to
4072              * CAS negotiation, where unplug requests will fail due to the
4073              * capability not being detected yet. This is a bit different than
4074              * the case with PCI unplug, where the events will be queued and
4075              * eventually handled by the guest after boot
4076              */
4077             error_setg(errp, "Memory hot unplug not supported for this guest");
4078         }
4079     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4080         if (!mc->has_hotpluggable_cpus) {
4081             error_setg(errp, "CPU hot unplug not supported on this machine");
4082             return;
4083         }
4084         spapr_core_unplug_request(hotplug_dev, dev, errp);
4085     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4086         if (!smc->dr_phb_enabled) {
4087             error_setg(errp, "PHB hot unplug not supported on this machine");
4088             return;
4089         }
4090         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4091     }
4092 }
4093 
4094 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4095                                           DeviceState *dev, Error **errp)
4096 {
4097     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4098         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4099     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4100         spapr_core_pre_plug(hotplug_dev, dev, errp);
4101     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4102         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4103     }
4104 }
4105 
4106 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4107                                                  DeviceState *dev)
4108 {
4109     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4110         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4111         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4112         return HOTPLUG_HANDLER(machine);
4113     }
4114     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4115         PCIDevice *pcidev = PCI_DEVICE(dev);
4116         PCIBus *root = pci_device_root_bus(pcidev);
4117         SpaprPhbState *phb =
4118             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4119                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4120 
4121         if (phb) {
4122             return HOTPLUG_HANDLER(phb);
4123         }
4124     }
4125     return NULL;
4126 }
4127 
4128 static CpuInstanceProperties
4129 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4130 {
4131     CPUArchId *core_slot;
4132     MachineClass *mc = MACHINE_GET_CLASS(machine);
4133 
4134     /* make sure possible_cpu are intialized */
4135     mc->possible_cpu_arch_ids(machine);
4136     /* get CPU core slot containing thread that matches cpu_index */
4137     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4138     assert(core_slot);
4139     return core_slot->props;
4140 }
4141 
4142 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4143 {
4144     return idx / ms->smp.cores % nb_numa_nodes;
4145 }
4146 
4147 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4148 {
4149     int i;
4150     unsigned int smp_threads = machine->smp.threads;
4151     unsigned int smp_cpus = machine->smp.cpus;
4152     const char *core_type;
4153     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4154     MachineClass *mc = MACHINE_GET_CLASS(machine);
4155 
4156     if (!mc->has_hotpluggable_cpus) {
4157         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4158     }
4159     if (machine->possible_cpus) {
4160         assert(machine->possible_cpus->len == spapr_max_cores);
4161         return machine->possible_cpus;
4162     }
4163 
4164     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4165     if (!core_type) {
4166         error_report("Unable to find sPAPR CPU Core definition");
4167         exit(1);
4168     }
4169 
4170     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4171                              sizeof(CPUArchId) * spapr_max_cores);
4172     machine->possible_cpus->len = spapr_max_cores;
4173     for (i = 0; i < machine->possible_cpus->len; i++) {
4174         int core_id = i * smp_threads;
4175 
4176         machine->possible_cpus->cpus[i].type = core_type;
4177         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4178         machine->possible_cpus->cpus[i].arch_id = core_id;
4179         machine->possible_cpus->cpus[i].props.has_core_id = true;
4180         machine->possible_cpus->cpus[i].props.core_id = core_id;
4181     }
4182     return machine->possible_cpus;
4183 }
4184 
4185 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4186                                 uint64_t *buid, hwaddr *pio,
4187                                 hwaddr *mmio32, hwaddr *mmio64,
4188                                 unsigned n_dma, uint32_t *liobns,
4189                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4190 {
4191     /*
4192      * New-style PHB window placement.
4193      *
4194      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4195      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4196      * windows.
4197      *
4198      * Some guest kernels can't work with MMIO windows above 1<<46
4199      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4200      *
4201      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4202      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4203      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4204      * 1TiB 64-bit MMIO windows for each PHB.
4205      */
4206     const uint64_t base_buid = 0x800000020000000ULL;
4207     int i;
4208 
4209     /* Sanity check natural alignments */
4210     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4211     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4212     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4213     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4214     /* Sanity check bounds */
4215     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4216                       SPAPR_PCI_MEM32_WIN_SIZE);
4217     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4218                       SPAPR_PCI_MEM64_WIN_SIZE);
4219 
4220     if (index >= SPAPR_MAX_PHBS) {
4221         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4222                    SPAPR_MAX_PHBS - 1);
4223         return;
4224     }
4225 
4226     *buid = base_buid + index;
4227     for (i = 0; i < n_dma; ++i) {
4228         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4229     }
4230 
4231     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4232     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4233     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4234 
4235     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4236     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4237 }
4238 
4239 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4240 {
4241     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4242 
4243     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4244 }
4245 
4246 static void spapr_ics_resend(XICSFabric *dev)
4247 {
4248     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4249 
4250     ics_resend(spapr->ics);
4251 }
4252 
4253 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4254 {
4255     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4256 
4257     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4258 }
4259 
4260 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4261                                  Monitor *mon)
4262 {
4263     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4264 
4265     spapr->irq->print_info(spapr, mon);
4266 }
4267 
4268 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4269 {
4270     return cpu->vcpu_id;
4271 }
4272 
4273 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4274 {
4275     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4276     MachineState *ms = MACHINE(spapr);
4277     int vcpu_id;
4278 
4279     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4280 
4281     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4282         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4283         error_append_hint(errp, "Adjust the number of cpus to %d "
4284                           "or try to raise the number of threads per core\n",
4285                           vcpu_id * ms->smp.threads / spapr->vsmt);
4286         return;
4287     }
4288 
4289     cpu->vcpu_id = vcpu_id;
4290 }
4291 
4292 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4293 {
4294     CPUState *cs;
4295 
4296     CPU_FOREACH(cs) {
4297         PowerPCCPU *cpu = POWERPC_CPU(cs);
4298 
4299         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4300             return cpu;
4301         }
4302     }
4303 
4304     return NULL;
4305 }
4306 
4307 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4308 {
4309     MachineClass *mc = MACHINE_CLASS(oc);
4310     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4311     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4312     NMIClass *nc = NMI_CLASS(oc);
4313     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4314     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4315     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4316     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4317 
4318     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4319     mc->ignore_boot_device_suffixes = true;
4320 
4321     /*
4322      * We set up the default / latest behaviour here.  The class_init
4323      * functions for the specific versioned machine types can override
4324      * these details for backwards compatibility
4325      */
4326     mc->init = spapr_machine_init;
4327     mc->reset = spapr_machine_reset;
4328     mc->block_default_type = IF_SCSI;
4329     mc->max_cpus = 1024;
4330     mc->no_parallel = 1;
4331     mc->default_boot_order = "";
4332     mc->default_ram_size = 512 * MiB;
4333     mc->default_display = "std";
4334     mc->kvm_type = spapr_kvm_type;
4335     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4336     mc->pci_allow_0_address = true;
4337     assert(!mc->get_hotplug_handler);
4338     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4339     hc->pre_plug = spapr_machine_device_pre_plug;
4340     hc->plug = spapr_machine_device_plug;
4341     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4342     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4343     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4344     hc->unplug_request = spapr_machine_device_unplug_request;
4345     hc->unplug = spapr_machine_device_unplug;
4346 
4347     smc->dr_lmb_enabled = true;
4348     smc->update_dt_enabled = true;
4349     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4350     mc->has_hotpluggable_cpus = true;
4351     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4352     fwc->get_dev_path = spapr_get_fw_dev_path;
4353     nc->nmi_monitor_handler = spapr_nmi;
4354     smc->phb_placement = spapr_phb_placement;
4355     vhc->hypercall = emulate_spapr_hypercall;
4356     vhc->hpt_mask = spapr_hpt_mask;
4357     vhc->map_hptes = spapr_map_hptes;
4358     vhc->unmap_hptes = spapr_unmap_hptes;
4359     vhc->hpte_set_c = spapr_hpte_set_c;
4360     vhc->hpte_set_r = spapr_hpte_set_r;
4361     vhc->get_pate = spapr_get_pate;
4362     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4363     xic->ics_get = spapr_ics_get;
4364     xic->ics_resend = spapr_ics_resend;
4365     xic->icp_get = spapr_icp_get;
4366     ispc->print_info = spapr_pic_print_info;
4367     /* Force NUMA node memory size to be a multiple of
4368      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4369      * in which LMBs are represented and hot-added
4370      */
4371     mc->numa_mem_align_shift = 28;
4372     mc->numa_mem_supported = true;
4373 
4374     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4375     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4376     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4377     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4378     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4379     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4380     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4381     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4382     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4383     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4384     spapr_caps_add_properties(smc, &error_abort);
4385     smc->irq = &spapr_irq_dual;
4386     smc->dr_phb_enabled = true;
4387 }
4388 
4389 static const TypeInfo spapr_machine_info = {
4390     .name          = TYPE_SPAPR_MACHINE,
4391     .parent        = TYPE_MACHINE,
4392     .abstract      = true,
4393     .instance_size = sizeof(SpaprMachineState),
4394     .instance_init = spapr_instance_init,
4395     .instance_finalize = spapr_machine_finalizefn,
4396     .class_size    = sizeof(SpaprMachineClass),
4397     .class_init    = spapr_machine_class_init,
4398     .interfaces = (InterfaceInfo[]) {
4399         { TYPE_FW_PATH_PROVIDER },
4400         { TYPE_NMI },
4401         { TYPE_HOTPLUG_HANDLER },
4402         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4403         { TYPE_XICS_FABRIC },
4404         { TYPE_INTERRUPT_STATS_PROVIDER },
4405         { }
4406     },
4407 };
4408 
4409 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4410     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4411                                                     void *data)      \
4412     {                                                                \
4413         MachineClass *mc = MACHINE_CLASS(oc);                        \
4414         spapr_machine_##suffix##_class_options(mc);                  \
4415         if (latest) {                                                \
4416             mc->alias = "pseries";                                   \
4417             mc->is_default = 1;                                      \
4418         }                                                            \
4419     }                                                                \
4420     static const TypeInfo spapr_machine_##suffix##_info = {          \
4421         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4422         .parent = TYPE_SPAPR_MACHINE,                                \
4423         .class_init = spapr_machine_##suffix##_class_init,           \
4424     };                                                               \
4425     static void spapr_machine_register_##suffix(void)                \
4426     {                                                                \
4427         type_register(&spapr_machine_##suffix##_info);               \
4428     }                                                                \
4429     type_init(spapr_machine_register_##suffix)
4430 
4431 /*
4432  * pseries-4.1
4433  */
4434 static void spapr_machine_4_1_class_options(MachineClass *mc)
4435 {
4436     /* Defaults for the latest behaviour inherited from the base class */
4437 }
4438 
4439 DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
4440 
4441 /*
4442  * pseries-4.0
4443  */
4444 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4445                               uint64_t *buid, hwaddr *pio,
4446                               hwaddr *mmio32, hwaddr *mmio64,
4447                               unsigned n_dma, uint32_t *liobns,
4448                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4449 {
4450     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4451                         nv2gpa, nv2atsd, errp);
4452     *nv2gpa = 0;
4453     *nv2atsd = 0;
4454 }
4455 
4456 static void spapr_machine_4_0_class_options(MachineClass *mc)
4457 {
4458     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4459 
4460     spapr_machine_4_1_class_options(mc);
4461     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4462     smc->phb_placement = phb_placement_4_0;
4463     smc->irq = &spapr_irq_xics;
4464     smc->pre_4_1_migration = true;
4465 }
4466 
4467 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4468 
4469 /*
4470  * pseries-3.1
4471  */
4472 static void spapr_machine_3_1_class_options(MachineClass *mc)
4473 {
4474     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4475 
4476     spapr_machine_4_0_class_options(mc);
4477     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4478 
4479     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4480     smc->update_dt_enabled = false;
4481     smc->dr_phb_enabled = false;
4482     smc->broken_host_serial_model = true;
4483     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4484     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4485     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4486     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4487 }
4488 
4489 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4490 
4491 /*
4492  * pseries-3.0
4493  */
4494 
4495 static void spapr_machine_3_0_class_options(MachineClass *mc)
4496 {
4497     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4498 
4499     spapr_machine_3_1_class_options(mc);
4500     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4501 
4502     smc->legacy_irq_allocation = true;
4503     smc->irq = &spapr_irq_xics_legacy;
4504 }
4505 
4506 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4507 
4508 /*
4509  * pseries-2.12
4510  */
4511 static void spapr_machine_2_12_class_options(MachineClass *mc)
4512 {
4513     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4514     static GlobalProperty compat[] = {
4515         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4516         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4517     };
4518 
4519     spapr_machine_3_0_class_options(mc);
4520     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4521     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4522 
4523     /* We depend on kvm_enabled() to choose a default value for the
4524      * hpt-max-page-size capability. Of course we can't do it here
4525      * because this is too early and the HW accelerator isn't initialzed
4526      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4527      */
4528     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4529 }
4530 
4531 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4532 
4533 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4534 {
4535     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4536 
4537     spapr_machine_2_12_class_options(mc);
4538     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4539     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4540     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4541 }
4542 
4543 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4544 
4545 /*
4546  * pseries-2.11
4547  */
4548 
4549 static void spapr_machine_2_11_class_options(MachineClass *mc)
4550 {
4551     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4552 
4553     spapr_machine_2_12_class_options(mc);
4554     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4555     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4556 }
4557 
4558 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4559 
4560 /*
4561  * pseries-2.10
4562  */
4563 
4564 static void spapr_machine_2_10_class_options(MachineClass *mc)
4565 {
4566     spapr_machine_2_11_class_options(mc);
4567     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4568 }
4569 
4570 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4571 
4572 /*
4573  * pseries-2.9
4574  */
4575 
4576 static void spapr_machine_2_9_class_options(MachineClass *mc)
4577 {
4578     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4579     static GlobalProperty compat[] = {
4580         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4581     };
4582 
4583     spapr_machine_2_10_class_options(mc);
4584     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4585     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4586     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4587     smc->pre_2_10_has_unused_icps = true;
4588     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4589 }
4590 
4591 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4592 
4593 /*
4594  * pseries-2.8
4595  */
4596 
4597 static void spapr_machine_2_8_class_options(MachineClass *mc)
4598 {
4599     static GlobalProperty compat[] = {
4600         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4601     };
4602 
4603     spapr_machine_2_9_class_options(mc);
4604     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4605     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4606     mc->numa_mem_align_shift = 23;
4607 }
4608 
4609 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4610 
4611 /*
4612  * pseries-2.7
4613  */
4614 
4615 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4616                               uint64_t *buid, hwaddr *pio,
4617                               hwaddr *mmio32, hwaddr *mmio64,
4618                               unsigned n_dma, uint32_t *liobns,
4619                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4620 {
4621     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4622     const uint64_t base_buid = 0x800000020000000ULL;
4623     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4624     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4625     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4626     const uint32_t max_index = 255;
4627     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4628 
4629     uint64_t ram_top = MACHINE(spapr)->ram_size;
4630     hwaddr phb0_base, phb_base;
4631     int i;
4632 
4633     /* Do we have device memory? */
4634     if (MACHINE(spapr)->maxram_size > ram_top) {
4635         /* Can't just use maxram_size, because there may be an
4636          * alignment gap between normal and device memory regions
4637          */
4638         ram_top = MACHINE(spapr)->device_memory->base +
4639             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4640     }
4641 
4642     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4643 
4644     if (index > max_index) {
4645         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4646                    max_index);
4647         return;
4648     }
4649 
4650     *buid = base_buid + index;
4651     for (i = 0; i < n_dma; ++i) {
4652         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4653     }
4654 
4655     phb_base = phb0_base + index * phb_spacing;
4656     *pio = phb_base + pio_offset;
4657     *mmio32 = phb_base + mmio_offset;
4658     /*
4659      * We don't set the 64-bit MMIO window, relying on the PHB's
4660      * fallback behaviour of automatically splitting a large "32-bit"
4661      * window into contiguous 32-bit and 64-bit windows
4662      */
4663 
4664     *nv2gpa = 0;
4665     *nv2atsd = 0;
4666 }
4667 
4668 static void spapr_machine_2_7_class_options(MachineClass *mc)
4669 {
4670     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4671     static GlobalProperty compat[] = {
4672         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4673         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4674         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4675         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4676     };
4677 
4678     spapr_machine_2_8_class_options(mc);
4679     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4680     mc->default_machine_opts = "modern-hotplug-events=off";
4681     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4682     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4683     smc->phb_placement = phb_placement_2_7;
4684 }
4685 
4686 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4687 
4688 /*
4689  * pseries-2.6
4690  */
4691 
4692 static void spapr_machine_2_6_class_options(MachineClass *mc)
4693 {
4694     static GlobalProperty compat[] = {
4695         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4696     };
4697 
4698     spapr_machine_2_7_class_options(mc);
4699     mc->has_hotpluggable_cpus = false;
4700     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4701     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4702 }
4703 
4704 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4705 
4706 /*
4707  * pseries-2.5
4708  */
4709 
4710 static void spapr_machine_2_5_class_options(MachineClass *mc)
4711 {
4712     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4713     static GlobalProperty compat[] = {
4714         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4715     };
4716 
4717     spapr_machine_2_6_class_options(mc);
4718     smc->use_ohci_by_default = true;
4719     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4720     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4721 }
4722 
4723 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4724 
4725 /*
4726  * pseries-2.4
4727  */
4728 
4729 static void spapr_machine_2_4_class_options(MachineClass *mc)
4730 {
4731     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4732 
4733     spapr_machine_2_5_class_options(mc);
4734     smc->dr_lmb_enabled = false;
4735     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4736 }
4737 
4738 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4739 
4740 /*
4741  * pseries-2.3
4742  */
4743 
4744 static void spapr_machine_2_3_class_options(MachineClass *mc)
4745 {
4746     static GlobalProperty compat[] = {
4747         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4748     };
4749     spapr_machine_2_4_class_options(mc);
4750     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4751     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4752 }
4753 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4754 
4755 /*
4756  * pseries-2.2
4757  */
4758 
4759 static void spapr_machine_2_2_class_options(MachineClass *mc)
4760 {
4761     static GlobalProperty compat[] = {
4762         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4763     };
4764 
4765     spapr_machine_2_3_class_options(mc);
4766     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4767     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4768     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4769 }
4770 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4771 
4772 /*
4773  * pseries-2.1
4774  */
4775 
4776 static void spapr_machine_2_1_class_options(MachineClass *mc)
4777 {
4778     spapr_machine_2_2_class_options(mc);
4779     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4780 }
4781 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4782 
4783 static void spapr_machine_register_types(void)
4784 {
4785     type_register_static(&spapr_machine_info);
4786 }
4787 
4788 type_init(spapr_machine_register_types)
4789