1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/numa.h" 33 #include "sysemu/qtest.h" 34 #include "sysemu/reset.h" 35 #include "hw/hw.h" 36 #include "qemu/log.h" 37 #include "hw/fw-path-provider.h" 38 #include "elf.h" 39 #include "net/net.h" 40 #include "sysemu/device_tree.h" 41 #include "sysemu/cpus.h" 42 #include "sysemu/hw_accel.h" 43 #include "kvm_ppc.h" 44 #include "migration/misc.h" 45 #include "migration/qemu-file-types.h" 46 #include "migration/global_state.h" 47 #include "migration/register.h" 48 #include "mmu-hash64.h" 49 #include "mmu-book3s-v3.h" 50 #include "cpu-models.h" 51 #include "qom/cpu.h" 52 53 #include "hw/boards.h" 54 #include "hw/ppc/ppc.h" 55 #include "hw/loader.h" 56 57 #include "hw/ppc/fdt.h" 58 #include "hw/ppc/spapr.h" 59 #include "hw/ppc/spapr_vio.h" 60 #include "hw/pci-host/spapr.h" 61 #include "hw/pci/msi.h" 62 63 #include "hw/pci/pci.h" 64 #include "hw/scsi/scsi.h" 65 #include "hw/virtio/virtio-scsi.h" 66 #include "hw/virtio/vhost-scsi-common.h" 67 68 #include "exec/address-spaces.h" 69 #include "exec/ram_addr.h" 70 #include "hw/usb.h" 71 #include "qemu/config-file.h" 72 #include "qemu/error-report.h" 73 #include "trace.h" 74 #include "hw/nmi.h" 75 #include "hw/intc/intc.h" 76 77 #include "qemu/cutils.h" 78 #include "hw/ppc/spapr_cpu_core.h" 79 #include "hw/mem/memory-device.h" 80 81 #include <libfdt.h> 82 83 /* SLOF memory layout: 84 * 85 * SLOF raw image loaded at 0, copies its romfs right below the flat 86 * device-tree, then position SLOF itself 31M below that 87 * 88 * So we set FW_OVERHEAD to 40MB which should account for all of that 89 * and more 90 * 91 * We load our kernel at 4M, leaving space for SLOF initial image 92 */ 93 #define FDT_MAX_SIZE 0x100000 94 #define RTAS_MAX_SIZE 0x10000 95 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 96 #define FW_MAX_SIZE 0x400000 97 #define FW_FILE_NAME "slof.bin" 98 #define FW_OVERHEAD 0x2800000 99 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 100 101 #define MIN_RMA_SLOF 128UL 102 103 #define PHANDLE_INTC 0x00001111 104 105 /* These two functions implement the VCPU id numbering: one to compute them 106 * all and one to identify thread 0 of a VCORE. Any change to the first one 107 * is likely to have an impact on the second one, so let's keep them close. 108 */ 109 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 110 { 111 MachineState *ms = MACHINE(spapr); 112 unsigned int smp_threads = ms->smp.threads; 113 114 assert(spapr->vsmt); 115 return 116 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 117 } 118 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 119 PowerPCCPU *cpu) 120 { 121 assert(spapr->vsmt); 122 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 123 } 124 125 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 126 { 127 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 128 * and newer QEMUs don't even have them. In both cases, we don't want 129 * to send anything on the wire. 130 */ 131 return false; 132 } 133 134 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 135 .name = "icp/server", 136 .version_id = 1, 137 .minimum_version_id = 1, 138 .needed = pre_2_10_vmstate_dummy_icp_needed, 139 .fields = (VMStateField[]) { 140 VMSTATE_UNUSED(4), /* uint32_t xirr */ 141 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 142 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 143 VMSTATE_END_OF_LIST() 144 }, 145 }; 146 147 static void pre_2_10_vmstate_register_dummy_icp(int i) 148 { 149 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 150 (void *)(uintptr_t) i); 151 } 152 153 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 154 { 155 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 156 (void *)(uintptr_t) i); 157 } 158 159 int spapr_max_server_number(SpaprMachineState *spapr) 160 { 161 MachineState *ms = MACHINE(spapr); 162 163 assert(spapr->vsmt); 164 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 165 } 166 167 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 168 int smt_threads) 169 { 170 int i, ret = 0; 171 uint32_t servers_prop[smt_threads]; 172 uint32_t gservers_prop[smt_threads * 2]; 173 int index = spapr_get_vcpu_id(cpu); 174 175 if (cpu->compat_pvr) { 176 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 177 if (ret < 0) { 178 return ret; 179 } 180 } 181 182 /* Build interrupt servers and gservers properties */ 183 for (i = 0; i < smt_threads; i++) { 184 servers_prop[i] = cpu_to_be32(index + i); 185 /* Hack, direct the group queues back to cpu 0 */ 186 gservers_prop[i*2] = cpu_to_be32(index + i); 187 gservers_prop[i*2 + 1] = 0; 188 } 189 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 190 servers_prop, sizeof(servers_prop)); 191 if (ret < 0) { 192 return ret; 193 } 194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 195 gservers_prop, sizeof(gservers_prop)); 196 197 return ret; 198 } 199 200 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 201 { 202 int index = spapr_get_vcpu_id(cpu); 203 uint32_t associativity[] = {cpu_to_be32(0x5), 204 cpu_to_be32(0x0), 205 cpu_to_be32(0x0), 206 cpu_to_be32(0x0), 207 cpu_to_be32(cpu->node_id), 208 cpu_to_be32(index)}; 209 210 /* Advertise NUMA via ibm,associativity */ 211 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 212 sizeof(associativity)); 213 } 214 215 /* Populate the "ibm,pa-features" property */ 216 static void spapr_populate_pa_features(SpaprMachineState *spapr, 217 PowerPCCPU *cpu, 218 void *fdt, int offset, 219 bool legacy_guest) 220 { 221 uint8_t pa_features_206[] = { 6, 0, 222 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 223 uint8_t pa_features_207[] = { 24, 0, 224 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 227 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 228 uint8_t pa_features_300[] = { 66, 0, 229 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 230 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 231 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 232 /* 6: DS207 */ 233 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 234 /* 16: Vector */ 235 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 236 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 237 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 238 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 240 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 241 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 242 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 244 /* 42: PM, 44: PC RA, 46: SC vec'd */ 245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 246 /* 48: SIMD, 50: QP BFP, 52: String */ 247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 248 /* 54: DecFP, 56: DecI, 58: SHA */ 249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 250 /* 60: NM atomic, 62: RNG */ 251 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 252 }; 253 uint8_t *pa_features = NULL; 254 size_t pa_size; 255 256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 257 pa_features = pa_features_206; 258 pa_size = sizeof(pa_features_206); 259 } 260 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 261 pa_features = pa_features_207; 262 pa_size = sizeof(pa_features_207); 263 } 264 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 265 pa_features = pa_features_300; 266 pa_size = sizeof(pa_features_300); 267 } 268 if (!pa_features) { 269 return; 270 } 271 272 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 273 /* 274 * Note: we keep CI large pages off by default because a 64K capable 275 * guest provisioned with large pages might otherwise try to map a qemu 276 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 277 * even if that qemu runs on a 4k host. 278 * We dd this bit back here if we are confident this is not an issue 279 */ 280 pa_features[3] |= 0x20; 281 } 282 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 283 pa_features[24] |= 0x80; /* Transactional memory support */ 284 } 285 if (legacy_guest && pa_size > 40) { 286 /* Workaround for broken kernels that attempt (guest) radix 287 * mode when they can't handle it, if they see the radix bit set 288 * in pa-features. So hide it from them. */ 289 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 290 } 291 292 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 293 } 294 295 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 296 { 297 MachineState *ms = MACHINE(spapr); 298 int ret = 0, offset, cpus_offset; 299 CPUState *cs; 300 char cpu_model[32]; 301 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 302 303 CPU_FOREACH(cs) { 304 PowerPCCPU *cpu = POWERPC_CPU(cs); 305 DeviceClass *dc = DEVICE_GET_CLASS(cs); 306 int index = spapr_get_vcpu_id(cpu); 307 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu)); 308 309 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 310 continue; 311 } 312 313 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 314 315 cpus_offset = fdt_path_offset(fdt, "/cpus"); 316 if (cpus_offset < 0) { 317 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 318 if (cpus_offset < 0) { 319 return cpus_offset; 320 } 321 } 322 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 323 if (offset < 0) { 324 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 325 if (offset < 0) { 326 return offset; 327 } 328 } 329 330 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 331 pft_size_prop, sizeof(pft_size_prop)); 332 if (ret < 0) { 333 return ret; 334 } 335 336 if (nb_numa_nodes > 1) { 337 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 338 if (ret < 0) { 339 return ret; 340 } 341 } 342 343 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 344 if (ret < 0) { 345 return ret; 346 } 347 348 spapr_populate_pa_features(spapr, cpu, fdt, offset, 349 spapr->cas_legacy_guest_workaround); 350 } 351 return ret; 352 } 353 354 static hwaddr spapr_node0_size(MachineState *machine) 355 { 356 if (nb_numa_nodes) { 357 int i; 358 for (i = 0; i < nb_numa_nodes; ++i) { 359 if (numa_info[i].node_mem) { 360 return MIN(pow2floor(numa_info[i].node_mem), 361 machine->ram_size); 362 } 363 } 364 } 365 return machine->ram_size; 366 } 367 368 static void add_str(GString *s, const gchar *s1) 369 { 370 g_string_append_len(s, s1, strlen(s1) + 1); 371 } 372 373 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 374 hwaddr size) 375 { 376 uint32_t associativity[] = { 377 cpu_to_be32(0x4), /* length */ 378 cpu_to_be32(0x0), cpu_to_be32(0x0), 379 cpu_to_be32(0x0), cpu_to_be32(nodeid) 380 }; 381 char mem_name[32]; 382 uint64_t mem_reg_property[2]; 383 int off; 384 385 mem_reg_property[0] = cpu_to_be64(start); 386 mem_reg_property[1] = cpu_to_be64(size); 387 388 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 389 off = fdt_add_subnode(fdt, 0, mem_name); 390 _FDT(off); 391 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 392 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 393 sizeof(mem_reg_property)))); 394 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 395 sizeof(associativity)))); 396 return off; 397 } 398 399 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 400 { 401 MachineState *machine = MACHINE(spapr); 402 hwaddr mem_start, node_size; 403 int i, nb_nodes = nb_numa_nodes; 404 NodeInfo *nodes = numa_info; 405 NodeInfo ramnode; 406 407 /* No NUMA nodes, assume there is just one node with whole RAM */ 408 if (!nb_numa_nodes) { 409 nb_nodes = 1; 410 ramnode.node_mem = machine->ram_size; 411 nodes = &ramnode; 412 } 413 414 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 415 if (!nodes[i].node_mem) { 416 continue; 417 } 418 if (mem_start >= machine->ram_size) { 419 node_size = 0; 420 } else { 421 node_size = nodes[i].node_mem; 422 if (node_size > machine->ram_size - mem_start) { 423 node_size = machine->ram_size - mem_start; 424 } 425 } 426 if (!mem_start) { 427 /* spapr_machine_init() checks for rma_size <= node0_size 428 * already */ 429 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 430 mem_start += spapr->rma_size; 431 node_size -= spapr->rma_size; 432 } 433 for ( ; node_size; ) { 434 hwaddr sizetmp = pow2floor(node_size); 435 436 /* mem_start != 0 here */ 437 if (ctzl(mem_start) < ctzl(sizetmp)) { 438 sizetmp = 1ULL << ctzl(mem_start); 439 } 440 441 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 442 node_size -= sizetmp; 443 mem_start += sizetmp; 444 } 445 } 446 447 return 0; 448 } 449 450 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 451 SpaprMachineState *spapr) 452 { 453 MachineState *ms = MACHINE(spapr); 454 PowerPCCPU *cpu = POWERPC_CPU(cs); 455 CPUPPCState *env = &cpu->env; 456 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 457 int index = spapr_get_vcpu_id(cpu); 458 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 459 0xffffffff, 0xffffffff}; 460 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 461 : SPAPR_TIMEBASE_FREQ; 462 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 463 uint32_t page_sizes_prop[64]; 464 size_t page_sizes_prop_size; 465 unsigned int smp_threads = ms->smp.threads; 466 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 467 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 468 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 469 SpaprDrc *drc; 470 int drc_index; 471 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 472 int i; 473 474 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 475 if (drc) { 476 drc_index = spapr_drc_index(drc); 477 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 478 } 479 480 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 481 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 482 483 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 484 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 485 env->dcache_line_size))); 486 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 487 env->dcache_line_size))); 488 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 489 env->icache_line_size))); 490 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 491 env->icache_line_size))); 492 493 if (pcc->l1_dcache_size) { 494 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 495 pcc->l1_dcache_size))); 496 } else { 497 warn_report("Unknown L1 dcache size for cpu"); 498 } 499 if (pcc->l1_icache_size) { 500 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 501 pcc->l1_icache_size))); 502 } else { 503 warn_report("Unknown L1 icache size for cpu"); 504 } 505 506 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 507 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 508 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 509 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 510 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 511 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 512 513 if (env->spr_cb[SPR_PURR].oea_read) { 514 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 515 } 516 if (env->spr_cb[SPR_SPURR].oea_read) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 518 } 519 520 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 521 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 522 segs, sizeof(segs)))); 523 } 524 525 /* Advertise VSX (vector extensions) if available 526 * 1 == VMX / Altivec available 527 * 2 == VSX available 528 * 529 * Only CPUs for which we create core types in spapr_cpu_core.c 530 * are possible, and all of those have VMX */ 531 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 532 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 533 } else { 534 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 535 } 536 537 /* Advertise DFP (Decimal Floating Point) if available 538 * 0 / no property == no DFP 539 * 1 == DFP available */ 540 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 541 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 542 } 543 544 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 545 sizeof(page_sizes_prop)); 546 if (page_sizes_prop_size) { 547 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 548 page_sizes_prop, page_sizes_prop_size))); 549 } 550 551 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 552 553 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 554 cs->cpu_index / vcpus_per_socket))); 555 556 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 557 pft_size_prop, sizeof(pft_size_prop)))); 558 559 if (nb_numa_nodes > 1) { 560 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 561 } 562 563 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 564 565 if (pcc->radix_page_info) { 566 for (i = 0; i < pcc->radix_page_info->count; i++) { 567 radix_AP_encodings[i] = 568 cpu_to_be32(pcc->radix_page_info->entries[i]); 569 } 570 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 571 radix_AP_encodings, 572 pcc->radix_page_info->count * 573 sizeof(radix_AP_encodings[0])))); 574 } 575 576 /* 577 * We set this property to let the guest know that it can use the large 578 * decrementer and its width in bits. 579 */ 580 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 581 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 582 pcc->lrg_decr_bits))); 583 } 584 585 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 586 { 587 CPUState **rev; 588 CPUState *cs; 589 int n_cpus; 590 int cpus_offset; 591 char *nodename; 592 int i; 593 594 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 595 _FDT(cpus_offset); 596 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 597 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 598 599 /* 600 * We walk the CPUs in reverse order to ensure that CPU DT nodes 601 * created by fdt_add_subnode() end up in the right order in FDT 602 * for the guest kernel the enumerate the CPUs correctly. 603 * 604 * The CPU list cannot be traversed in reverse order, so we need 605 * to do extra work. 606 */ 607 n_cpus = 0; 608 rev = NULL; 609 CPU_FOREACH(cs) { 610 rev = g_renew(CPUState *, rev, n_cpus + 1); 611 rev[n_cpus++] = cs; 612 } 613 614 for (i = n_cpus - 1; i >= 0; i--) { 615 CPUState *cs = rev[i]; 616 PowerPCCPU *cpu = POWERPC_CPU(cs); 617 int index = spapr_get_vcpu_id(cpu); 618 DeviceClass *dc = DEVICE_GET_CLASS(cs); 619 int offset; 620 621 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 622 continue; 623 } 624 625 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 626 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 627 g_free(nodename); 628 _FDT(offset); 629 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 630 } 631 632 g_free(rev); 633 } 634 635 static int spapr_rng_populate_dt(void *fdt) 636 { 637 int node; 638 int ret; 639 640 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 641 if (node <= 0) { 642 return -1; 643 } 644 ret = fdt_setprop_string(fdt, node, "device_type", 645 "ibm,platform-facilities"); 646 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 647 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 648 649 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 650 if (node <= 0) { 651 return -1; 652 } 653 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 654 655 return ret ? -1 : 0; 656 } 657 658 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 659 { 660 MemoryDeviceInfoList *info; 661 662 for (info = list; info; info = info->next) { 663 MemoryDeviceInfo *value = info->value; 664 665 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 666 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 667 668 if (addr >= pcdimm_info->addr && 669 addr < (pcdimm_info->addr + pcdimm_info->size)) { 670 return pcdimm_info->node; 671 } 672 } 673 } 674 675 return -1; 676 } 677 678 struct sPAPRDrconfCellV2 { 679 uint32_t seq_lmbs; 680 uint64_t base_addr; 681 uint32_t drc_index; 682 uint32_t aa_index; 683 uint32_t flags; 684 } QEMU_PACKED; 685 686 typedef struct DrconfCellQueue { 687 struct sPAPRDrconfCellV2 cell; 688 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 689 } DrconfCellQueue; 690 691 static DrconfCellQueue * 692 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 693 uint32_t drc_index, uint32_t aa_index, 694 uint32_t flags) 695 { 696 DrconfCellQueue *elem; 697 698 elem = g_malloc0(sizeof(*elem)); 699 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 700 elem->cell.base_addr = cpu_to_be64(base_addr); 701 elem->cell.drc_index = cpu_to_be32(drc_index); 702 elem->cell.aa_index = cpu_to_be32(aa_index); 703 elem->cell.flags = cpu_to_be32(flags); 704 705 return elem; 706 } 707 708 /* ibm,dynamic-memory-v2 */ 709 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 710 int offset, MemoryDeviceInfoList *dimms) 711 { 712 MachineState *machine = MACHINE(spapr); 713 uint8_t *int_buf, *cur_index; 714 int ret; 715 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 716 uint64_t addr, cur_addr, size; 717 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 718 uint64_t mem_end = machine->device_memory->base + 719 memory_region_size(&machine->device_memory->mr); 720 uint32_t node, buf_len, nr_entries = 0; 721 SpaprDrc *drc; 722 DrconfCellQueue *elem, *next; 723 MemoryDeviceInfoList *info; 724 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 725 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 726 727 /* Entry to cover RAM and the gap area */ 728 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 729 SPAPR_LMB_FLAGS_RESERVED | 730 SPAPR_LMB_FLAGS_DRC_INVALID); 731 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 732 nr_entries++; 733 734 cur_addr = machine->device_memory->base; 735 for (info = dimms; info; info = info->next) { 736 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 737 738 addr = di->addr; 739 size = di->size; 740 node = di->node; 741 742 /* Entry for hot-pluggable area */ 743 if (cur_addr < addr) { 744 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 745 g_assert(drc); 746 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 747 cur_addr, spapr_drc_index(drc), -1, 0); 748 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 749 nr_entries++; 750 } 751 752 /* Entry for DIMM */ 753 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 754 g_assert(drc); 755 elem = spapr_get_drconf_cell(size / lmb_size, addr, 756 spapr_drc_index(drc), node, 757 SPAPR_LMB_FLAGS_ASSIGNED); 758 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 759 nr_entries++; 760 cur_addr = addr + size; 761 } 762 763 /* Entry for remaining hotpluggable area */ 764 if (cur_addr < mem_end) { 765 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 766 g_assert(drc); 767 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 768 cur_addr, spapr_drc_index(drc), -1, 0); 769 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 770 nr_entries++; 771 } 772 773 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 774 int_buf = cur_index = g_malloc0(buf_len); 775 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 776 cur_index += sizeof(nr_entries); 777 778 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 779 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 780 cur_index += sizeof(elem->cell); 781 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 782 g_free(elem); 783 } 784 785 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 786 g_free(int_buf); 787 if (ret < 0) { 788 return -1; 789 } 790 return 0; 791 } 792 793 /* ibm,dynamic-memory */ 794 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 795 int offset, MemoryDeviceInfoList *dimms) 796 { 797 MachineState *machine = MACHINE(spapr); 798 int i, ret; 799 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 800 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 801 uint32_t nr_lmbs = (machine->device_memory->base + 802 memory_region_size(&machine->device_memory->mr)) / 803 lmb_size; 804 uint32_t *int_buf, *cur_index, buf_len; 805 806 /* 807 * Allocate enough buffer size to fit in ibm,dynamic-memory 808 */ 809 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 810 cur_index = int_buf = g_malloc0(buf_len); 811 int_buf[0] = cpu_to_be32(nr_lmbs); 812 cur_index++; 813 for (i = 0; i < nr_lmbs; i++) { 814 uint64_t addr = i * lmb_size; 815 uint32_t *dynamic_memory = cur_index; 816 817 if (i >= device_lmb_start) { 818 SpaprDrc *drc; 819 820 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 821 g_assert(drc); 822 823 dynamic_memory[0] = cpu_to_be32(addr >> 32); 824 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 825 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 826 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 827 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 828 if (memory_region_present(get_system_memory(), addr)) { 829 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 830 } else { 831 dynamic_memory[5] = cpu_to_be32(0); 832 } 833 } else { 834 /* 835 * LMB information for RMA, boot time RAM and gap b/n RAM and 836 * device memory region -- all these are marked as reserved 837 * and as having no valid DRC. 838 */ 839 dynamic_memory[0] = cpu_to_be32(addr >> 32); 840 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 841 dynamic_memory[2] = cpu_to_be32(0); 842 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 843 dynamic_memory[4] = cpu_to_be32(-1); 844 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 845 SPAPR_LMB_FLAGS_DRC_INVALID); 846 } 847 848 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 849 } 850 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 851 g_free(int_buf); 852 if (ret < 0) { 853 return -1; 854 } 855 return 0; 856 } 857 858 /* 859 * Adds ibm,dynamic-reconfiguration-memory node. 860 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 861 * of this device tree node. 862 */ 863 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 864 { 865 MachineState *machine = MACHINE(spapr); 866 int ret, i, offset; 867 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 868 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 869 uint32_t *int_buf, *cur_index, buf_len; 870 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 871 MemoryDeviceInfoList *dimms = NULL; 872 873 /* 874 * Don't create the node if there is no device memory 875 */ 876 if (machine->ram_size == machine->maxram_size) { 877 return 0; 878 } 879 880 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 881 882 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 883 sizeof(prop_lmb_size)); 884 if (ret < 0) { 885 return ret; 886 } 887 888 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 889 if (ret < 0) { 890 return ret; 891 } 892 893 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 894 if (ret < 0) { 895 return ret; 896 } 897 898 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 899 dimms = qmp_memory_device_list(); 900 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 901 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 902 } else { 903 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 904 } 905 qapi_free_MemoryDeviceInfoList(dimms); 906 907 if (ret < 0) { 908 return ret; 909 } 910 911 /* ibm,associativity-lookup-arrays */ 912 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 913 cur_index = int_buf = g_malloc0(buf_len); 914 int_buf[0] = cpu_to_be32(nr_nodes); 915 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 916 cur_index += 2; 917 for (i = 0; i < nr_nodes; i++) { 918 uint32_t associativity[] = { 919 cpu_to_be32(0x0), 920 cpu_to_be32(0x0), 921 cpu_to_be32(0x0), 922 cpu_to_be32(i) 923 }; 924 memcpy(cur_index, associativity, sizeof(associativity)); 925 cur_index += 4; 926 } 927 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 928 (cur_index - int_buf) * sizeof(uint32_t)); 929 g_free(int_buf); 930 931 return ret; 932 } 933 934 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 935 SpaprOptionVector *ov5_updates) 936 { 937 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 938 int ret = 0, offset; 939 940 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 941 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 942 g_assert(smc->dr_lmb_enabled); 943 ret = spapr_populate_drconf_memory(spapr, fdt); 944 if (ret) { 945 goto out; 946 } 947 } 948 949 offset = fdt_path_offset(fdt, "/chosen"); 950 if (offset < 0) { 951 offset = fdt_add_subnode(fdt, 0, "chosen"); 952 if (offset < 0) { 953 return offset; 954 } 955 } 956 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 957 "ibm,architecture-vec-5"); 958 959 out: 960 return ret; 961 } 962 963 static bool spapr_hotplugged_dev_before_cas(void) 964 { 965 Object *drc_container, *obj; 966 ObjectProperty *prop; 967 ObjectPropertyIterator iter; 968 969 drc_container = container_get(object_get_root(), "/dr-connector"); 970 object_property_iter_init(&iter, drc_container); 971 while ((prop = object_property_iter_next(&iter))) { 972 if (!strstart(prop->type, "link<", NULL)) { 973 continue; 974 } 975 obj = object_property_get_link(drc_container, prop->name, NULL); 976 if (spapr_drc_needed(obj)) { 977 return true; 978 } 979 } 980 return false; 981 } 982 983 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 984 target_ulong addr, target_ulong size, 985 SpaprOptionVector *ov5_updates) 986 { 987 void *fdt, *fdt_skel; 988 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 989 990 if (spapr_hotplugged_dev_before_cas()) { 991 return 1; 992 } 993 994 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 995 error_report("SLOF provided an unexpected CAS buffer size " 996 TARGET_FMT_lu " (min: %zu, max: %u)", 997 size, sizeof(hdr), FW_MAX_SIZE); 998 exit(EXIT_FAILURE); 999 } 1000 1001 size -= sizeof(hdr); 1002 1003 /* Create skeleton */ 1004 fdt_skel = g_malloc0(size); 1005 _FDT((fdt_create(fdt_skel, size))); 1006 _FDT((fdt_finish_reservemap(fdt_skel))); 1007 _FDT((fdt_begin_node(fdt_skel, ""))); 1008 _FDT((fdt_end_node(fdt_skel))); 1009 _FDT((fdt_finish(fdt_skel))); 1010 fdt = g_malloc0(size); 1011 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1012 g_free(fdt_skel); 1013 1014 /* Fixup cpu nodes */ 1015 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1016 1017 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1018 return -1; 1019 } 1020 1021 /* Pack resulting tree */ 1022 _FDT((fdt_pack(fdt))); 1023 1024 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1025 trace_spapr_cas_failed(size); 1026 return -1; 1027 } 1028 1029 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1030 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1031 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1032 g_free(fdt); 1033 1034 return 0; 1035 } 1036 1037 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1038 { 1039 MachineState *ms = MACHINE(spapr); 1040 int rtas; 1041 GString *hypertas = g_string_sized_new(256); 1042 GString *qemu_hypertas = g_string_sized_new(256); 1043 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1044 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1045 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1046 uint32_t lrdr_capacity[] = { 1047 cpu_to_be32(max_device_addr >> 32), 1048 cpu_to_be32(max_device_addr & 0xffffffff), 1049 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1050 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 1051 }; 1052 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1053 uint32_t maxdomains[] = { 1054 cpu_to_be32(4), 1055 maxdomain, 1056 maxdomain, 1057 maxdomain, 1058 cpu_to_be32(spapr->gpu_numa_id), 1059 }; 1060 1061 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1062 1063 /* hypertas */ 1064 add_str(hypertas, "hcall-pft"); 1065 add_str(hypertas, "hcall-term"); 1066 add_str(hypertas, "hcall-dabr"); 1067 add_str(hypertas, "hcall-interrupt"); 1068 add_str(hypertas, "hcall-tce"); 1069 add_str(hypertas, "hcall-vio"); 1070 add_str(hypertas, "hcall-splpar"); 1071 add_str(hypertas, "hcall-bulk"); 1072 add_str(hypertas, "hcall-set-mode"); 1073 add_str(hypertas, "hcall-sprg0"); 1074 add_str(hypertas, "hcall-copy"); 1075 add_str(hypertas, "hcall-debug"); 1076 add_str(hypertas, "hcall-vphn"); 1077 add_str(qemu_hypertas, "hcall-memop1"); 1078 1079 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1080 add_str(hypertas, "hcall-multi-tce"); 1081 } 1082 1083 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1084 add_str(hypertas, "hcall-hpt-resize"); 1085 } 1086 1087 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1088 hypertas->str, hypertas->len)); 1089 g_string_free(hypertas, TRUE); 1090 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1091 qemu_hypertas->str, qemu_hypertas->len)); 1092 g_string_free(qemu_hypertas, TRUE); 1093 1094 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1095 refpoints, sizeof(refpoints))); 1096 1097 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1098 maxdomains, sizeof(maxdomains))); 1099 1100 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1101 RTAS_ERROR_LOG_MAX)); 1102 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1103 RTAS_EVENT_SCAN_RATE)); 1104 1105 g_assert(msi_nonbroken); 1106 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1107 1108 /* 1109 * According to PAPR, rtas ibm,os-term does not guarantee a return 1110 * back to the guest cpu. 1111 * 1112 * While an additional ibm,extended-os-term property indicates 1113 * that rtas call return will always occur. Set this property. 1114 */ 1115 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1116 1117 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1118 lrdr_capacity, sizeof(lrdr_capacity))); 1119 1120 spapr_dt_rtas_tokens(fdt, rtas); 1121 } 1122 1123 /* 1124 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1125 * and the XIVE features that the guest may request and thus the valid 1126 * values for bytes 23..26 of option vector 5: 1127 */ 1128 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1129 int chosen) 1130 { 1131 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1132 1133 char val[2 * 4] = { 1134 23, spapr->irq->ov5, /* Xive mode. */ 1135 24, 0x00, /* Hash/Radix, filled in below. */ 1136 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1137 26, 0x40, /* Radix options: GTSE == yes. */ 1138 }; 1139 1140 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1141 first_ppc_cpu->compat_pvr)) { 1142 /* 1143 * If we're in a pre POWER9 compat mode then the guest should 1144 * do hash and use the legacy interrupt mode 1145 */ 1146 val[1] = 0x00; /* XICS */ 1147 val[3] = 0x00; /* Hash */ 1148 } else if (kvm_enabled()) { 1149 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1150 val[3] = 0x80; /* OV5_MMU_BOTH */ 1151 } else if (kvmppc_has_cap_mmu_radix()) { 1152 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1153 } else { 1154 val[3] = 0x00; /* Hash */ 1155 } 1156 } else { 1157 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1158 val[3] = 0xC0; 1159 } 1160 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1161 val, sizeof(val))); 1162 } 1163 1164 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1165 { 1166 MachineState *machine = MACHINE(spapr); 1167 int chosen; 1168 const char *boot_device = machine->boot_order; 1169 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1170 size_t cb = 0; 1171 char *bootlist = get_boot_devices_list(&cb); 1172 1173 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1174 1175 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1176 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1177 spapr->initrd_base)); 1178 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1179 spapr->initrd_base + spapr->initrd_size)); 1180 1181 if (spapr->kernel_size) { 1182 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1183 cpu_to_be64(spapr->kernel_size) }; 1184 1185 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1186 &kprop, sizeof(kprop))); 1187 if (spapr->kernel_le) { 1188 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1189 } 1190 } 1191 if (boot_menu) { 1192 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1193 } 1194 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1195 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1196 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1197 1198 if (cb && bootlist) { 1199 int i; 1200 1201 for (i = 0; i < cb; i++) { 1202 if (bootlist[i] == '\n') { 1203 bootlist[i] = ' '; 1204 } 1205 } 1206 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1207 } 1208 1209 if (boot_device && strlen(boot_device)) { 1210 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1211 } 1212 1213 if (!spapr->has_graphics && stdout_path) { 1214 /* 1215 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1216 * kernel. New platforms should only use the "stdout-path" property. Set 1217 * the new property and continue using older property to remain 1218 * compatible with the existing firmware. 1219 */ 1220 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1221 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1222 } 1223 1224 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1225 1226 g_free(stdout_path); 1227 g_free(bootlist); 1228 } 1229 1230 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1231 { 1232 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1233 * KVM to work under pHyp with some guest co-operation */ 1234 int hypervisor; 1235 uint8_t hypercall[16]; 1236 1237 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1238 /* indicate KVM hypercall interface */ 1239 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1240 if (kvmppc_has_cap_fixup_hcalls()) { 1241 /* 1242 * Older KVM versions with older guest kernels were broken 1243 * with the magic page, don't allow the guest to map it. 1244 */ 1245 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1246 sizeof(hypercall))) { 1247 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1248 hypercall, sizeof(hypercall))); 1249 } 1250 } 1251 } 1252 1253 static void *spapr_build_fdt(SpaprMachineState *spapr) 1254 { 1255 MachineState *machine = MACHINE(spapr); 1256 MachineClass *mc = MACHINE_GET_CLASS(machine); 1257 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1258 int ret; 1259 void *fdt; 1260 SpaprPhbState *phb; 1261 char *buf; 1262 1263 fdt = g_malloc0(FDT_MAX_SIZE); 1264 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1265 1266 /* Root node */ 1267 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1268 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1269 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1270 1271 /* Guest UUID & Name*/ 1272 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1273 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1274 if (qemu_uuid_set) { 1275 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1276 } 1277 g_free(buf); 1278 1279 if (qemu_get_vm_name()) { 1280 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1281 qemu_get_vm_name())); 1282 } 1283 1284 /* Host Model & Serial Number */ 1285 if (spapr->host_model) { 1286 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1287 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1288 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1289 g_free(buf); 1290 } 1291 1292 if (spapr->host_serial) { 1293 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1294 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1295 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1296 g_free(buf); 1297 } 1298 1299 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1300 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1301 1302 /* /interrupt controller */ 1303 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1304 PHANDLE_INTC); 1305 1306 ret = spapr_populate_memory(spapr, fdt); 1307 if (ret < 0) { 1308 error_report("couldn't setup memory nodes in fdt"); 1309 exit(1); 1310 } 1311 1312 /* /vdevice */ 1313 spapr_dt_vdevice(spapr->vio_bus, fdt); 1314 1315 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1316 ret = spapr_rng_populate_dt(fdt); 1317 if (ret < 0) { 1318 error_report("could not set up rng device in the fdt"); 1319 exit(1); 1320 } 1321 } 1322 1323 QLIST_FOREACH(phb, &spapr->phbs, list) { 1324 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1325 if (ret < 0) { 1326 error_report("couldn't setup PCI devices in fdt"); 1327 exit(1); 1328 } 1329 } 1330 1331 /* cpus */ 1332 spapr_populate_cpus_dt_node(fdt, spapr); 1333 1334 if (smc->dr_lmb_enabled) { 1335 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1336 } 1337 1338 if (mc->has_hotpluggable_cpus) { 1339 int offset = fdt_path_offset(fdt, "/cpus"); 1340 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1341 if (ret < 0) { 1342 error_report("Couldn't set up CPU DR device tree properties"); 1343 exit(1); 1344 } 1345 } 1346 1347 /* /event-sources */ 1348 spapr_dt_events(spapr, fdt); 1349 1350 /* /rtas */ 1351 spapr_dt_rtas(spapr, fdt); 1352 1353 /* /chosen */ 1354 spapr_dt_chosen(spapr, fdt); 1355 1356 /* /hypervisor */ 1357 if (kvm_enabled()) { 1358 spapr_dt_hypervisor(spapr, fdt); 1359 } 1360 1361 /* Build memory reserve map */ 1362 if (spapr->kernel_size) { 1363 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1364 } 1365 if (spapr->initrd_size) { 1366 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1367 } 1368 1369 /* ibm,client-architecture-support updates */ 1370 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1371 if (ret < 0) { 1372 error_report("couldn't setup CAS properties fdt"); 1373 exit(1); 1374 } 1375 1376 if (smc->dr_phb_enabled) { 1377 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1378 if (ret < 0) { 1379 error_report("Couldn't set up PHB DR device tree properties"); 1380 exit(1); 1381 } 1382 } 1383 1384 return fdt; 1385 } 1386 1387 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1388 { 1389 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1390 } 1391 1392 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1393 PowerPCCPU *cpu) 1394 { 1395 CPUPPCState *env = &cpu->env; 1396 1397 /* The TCG path should also be holding the BQL at this point */ 1398 g_assert(qemu_mutex_iothread_locked()); 1399 1400 if (msr_pr) { 1401 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1402 env->gpr[3] = H_PRIVILEGE; 1403 } else { 1404 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1405 } 1406 } 1407 1408 struct LPCRSyncState { 1409 target_ulong value; 1410 target_ulong mask; 1411 }; 1412 1413 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1414 { 1415 struct LPCRSyncState *s = arg.host_ptr; 1416 PowerPCCPU *cpu = POWERPC_CPU(cs); 1417 CPUPPCState *env = &cpu->env; 1418 target_ulong lpcr; 1419 1420 cpu_synchronize_state(cs); 1421 lpcr = env->spr[SPR_LPCR]; 1422 lpcr &= ~s->mask; 1423 lpcr |= s->value; 1424 ppc_store_lpcr(cpu, lpcr); 1425 } 1426 1427 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1428 { 1429 CPUState *cs; 1430 struct LPCRSyncState s = { 1431 .value = value, 1432 .mask = mask 1433 }; 1434 CPU_FOREACH(cs) { 1435 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1436 } 1437 } 1438 1439 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1440 { 1441 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1442 1443 /* Copy PATE1:GR into PATE0:HR */ 1444 entry->dw0 = spapr->patb_entry & PATE0_HR; 1445 entry->dw1 = spapr->patb_entry; 1446 } 1447 1448 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1449 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1450 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1451 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1452 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1453 1454 /* 1455 * Get the fd to access the kernel htab, re-opening it if necessary 1456 */ 1457 static int get_htab_fd(SpaprMachineState *spapr) 1458 { 1459 Error *local_err = NULL; 1460 1461 if (spapr->htab_fd >= 0) { 1462 return spapr->htab_fd; 1463 } 1464 1465 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1466 if (spapr->htab_fd < 0) { 1467 error_report_err(local_err); 1468 } 1469 1470 return spapr->htab_fd; 1471 } 1472 1473 void close_htab_fd(SpaprMachineState *spapr) 1474 { 1475 if (spapr->htab_fd >= 0) { 1476 close(spapr->htab_fd); 1477 } 1478 spapr->htab_fd = -1; 1479 } 1480 1481 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1482 { 1483 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1484 1485 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1486 } 1487 1488 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1489 { 1490 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1491 1492 assert(kvm_enabled()); 1493 1494 if (!spapr->htab) { 1495 return 0; 1496 } 1497 1498 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1499 } 1500 1501 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1502 hwaddr ptex, int n) 1503 { 1504 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1505 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1506 1507 if (!spapr->htab) { 1508 /* 1509 * HTAB is controlled by KVM. Fetch into temporary buffer 1510 */ 1511 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1512 kvmppc_read_hptes(hptes, ptex, n); 1513 return hptes; 1514 } 1515 1516 /* 1517 * HTAB is controlled by QEMU. Just point to the internally 1518 * accessible PTEG. 1519 */ 1520 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1521 } 1522 1523 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1524 const ppc_hash_pte64_t *hptes, 1525 hwaddr ptex, int n) 1526 { 1527 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1528 1529 if (!spapr->htab) { 1530 g_free((void *)hptes); 1531 } 1532 1533 /* Nothing to do for qemu managed HPT */ 1534 } 1535 1536 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1537 uint64_t pte0, uint64_t pte1) 1538 { 1539 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1540 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1541 1542 if (!spapr->htab) { 1543 kvmppc_write_hpte(ptex, pte0, pte1); 1544 } else { 1545 if (pte0 & HPTE64_V_VALID) { 1546 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1547 /* 1548 * When setting valid, we write PTE1 first. This ensures 1549 * proper synchronization with the reading code in 1550 * ppc_hash64_pteg_search() 1551 */ 1552 smp_wmb(); 1553 stq_p(spapr->htab + offset, pte0); 1554 } else { 1555 stq_p(spapr->htab + offset, pte0); 1556 /* 1557 * When clearing it we set PTE0 first. This ensures proper 1558 * synchronization with the reading code in 1559 * ppc_hash64_pteg_search() 1560 */ 1561 smp_wmb(); 1562 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1563 } 1564 } 1565 } 1566 1567 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1568 uint64_t pte1) 1569 { 1570 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1571 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1572 1573 if (!spapr->htab) { 1574 /* There should always be a hash table when this is called */ 1575 error_report("spapr_hpte_set_c called with no hash table !"); 1576 return; 1577 } 1578 1579 /* The HW performs a non-atomic byte update */ 1580 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1581 } 1582 1583 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1584 uint64_t pte1) 1585 { 1586 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1587 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1588 1589 if (!spapr->htab) { 1590 /* There should always be a hash table when this is called */ 1591 error_report("spapr_hpte_set_r called with no hash table !"); 1592 return; 1593 } 1594 1595 /* The HW performs a non-atomic byte update */ 1596 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1597 } 1598 1599 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1600 { 1601 int shift; 1602 1603 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1604 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1605 * that's much more than is needed for Linux guests */ 1606 shift = ctz64(pow2ceil(ramsize)) - 7; 1607 shift = MAX(shift, 18); /* Minimum architected size */ 1608 shift = MIN(shift, 46); /* Maximum architected size */ 1609 return shift; 1610 } 1611 1612 void spapr_free_hpt(SpaprMachineState *spapr) 1613 { 1614 g_free(spapr->htab); 1615 spapr->htab = NULL; 1616 spapr->htab_shift = 0; 1617 close_htab_fd(spapr); 1618 } 1619 1620 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1621 Error **errp) 1622 { 1623 long rc; 1624 1625 /* Clean up any HPT info from a previous boot */ 1626 spapr_free_hpt(spapr); 1627 1628 rc = kvmppc_reset_htab(shift); 1629 if (rc < 0) { 1630 /* kernel-side HPT needed, but couldn't allocate one */ 1631 error_setg_errno(errp, errno, 1632 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1633 shift); 1634 /* This is almost certainly fatal, but if the caller really 1635 * wants to carry on with shift == 0, it's welcome to try */ 1636 } else if (rc > 0) { 1637 /* kernel-side HPT allocated */ 1638 if (rc != shift) { 1639 error_setg(errp, 1640 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1641 shift, rc); 1642 } 1643 1644 spapr->htab_shift = shift; 1645 spapr->htab = NULL; 1646 } else { 1647 /* kernel-side HPT not needed, allocate in userspace instead */ 1648 size_t size = 1ULL << shift; 1649 int i; 1650 1651 spapr->htab = qemu_memalign(size, size); 1652 if (!spapr->htab) { 1653 error_setg_errno(errp, errno, 1654 "Could not allocate HPT of order %d", shift); 1655 return; 1656 } 1657 1658 memset(spapr->htab, 0, size); 1659 spapr->htab_shift = shift; 1660 1661 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1662 DIRTY_HPTE(HPTE(spapr->htab, i)); 1663 } 1664 } 1665 /* We're setting up a hash table, so that means we're not radix */ 1666 spapr->patb_entry = 0; 1667 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1668 } 1669 1670 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1671 { 1672 int hpt_shift; 1673 1674 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1675 || (spapr->cas_reboot 1676 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1677 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1678 } else { 1679 uint64_t current_ram_size; 1680 1681 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1682 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1683 } 1684 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1685 1686 if (spapr->vrma_adjust) { 1687 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1688 spapr->htab_shift); 1689 } 1690 } 1691 1692 static int spapr_reset_drcs(Object *child, void *opaque) 1693 { 1694 SpaprDrc *drc = 1695 (SpaprDrc *) object_dynamic_cast(child, 1696 TYPE_SPAPR_DR_CONNECTOR); 1697 1698 if (drc) { 1699 spapr_drc_reset(drc); 1700 } 1701 1702 return 0; 1703 } 1704 1705 static void spapr_machine_reset(MachineState *machine) 1706 { 1707 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1708 PowerPCCPU *first_ppc_cpu; 1709 uint32_t rtas_limit; 1710 hwaddr rtas_addr, fdt_addr; 1711 void *fdt; 1712 int rc; 1713 1714 spapr_caps_apply(spapr); 1715 1716 first_ppc_cpu = POWERPC_CPU(first_cpu); 1717 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1718 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1719 spapr->max_compat_pvr)) { 1720 /* 1721 * If using KVM with radix mode available, VCPUs can be started 1722 * without a HPT because KVM will start them in radix mode. 1723 * Set the GR bit in PATE so that we know there is no HPT. 1724 */ 1725 spapr->patb_entry = PATE1_GR; 1726 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1727 } else { 1728 spapr_setup_hpt_and_vrma(spapr); 1729 } 1730 1731 /* 1732 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1733 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1734 * called from vPHB reset handler so we initialize the counter here. 1735 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1736 * must be equally distant from any other node. 1737 * The final value of spapr->gpu_numa_id is going to be written to 1738 * max-associativity-domains in spapr_build_fdt(). 1739 */ 1740 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1741 qemu_devices_reset(); 1742 1743 /* 1744 * If this reset wasn't generated by CAS, we should reset our 1745 * negotiated options and start from scratch 1746 */ 1747 if (!spapr->cas_reboot) { 1748 spapr_ovec_cleanup(spapr->ov5_cas); 1749 spapr->ov5_cas = spapr_ovec_new(); 1750 1751 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1752 } 1753 1754 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1755 spapr_irq_msi_reset(spapr); 1756 } 1757 1758 /* 1759 * This is fixing some of the default configuration of the XIVE 1760 * devices. To be called after the reset of the machine devices. 1761 */ 1762 spapr_irq_reset(spapr, &error_fatal); 1763 1764 /* 1765 * There is no CAS under qtest. Simulate one to please the code that 1766 * depends on spapr->ov5_cas. This is especially needed to test device 1767 * unplug, so we do that before resetting the DRCs. 1768 */ 1769 if (qtest_enabled()) { 1770 spapr_ovec_cleanup(spapr->ov5_cas); 1771 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1772 } 1773 1774 /* DRC reset may cause a device to be unplugged. This will cause troubles 1775 * if this device is used by another device (eg, a running vhost backend 1776 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1777 * situations, we reset DRCs after all devices have been reset. 1778 */ 1779 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1780 1781 spapr_clear_pending_events(spapr); 1782 1783 /* 1784 * We place the device tree and RTAS just below either the top of the RMA, 1785 * or just below 2GB, whichever is lower, so that it can be 1786 * processed with 32-bit real mode code if necessary 1787 */ 1788 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1789 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1790 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1791 1792 fdt = spapr_build_fdt(spapr); 1793 1794 spapr_load_rtas(spapr, fdt, rtas_addr); 1795 1796 rc = fdt_pack(fdt); 1797 1798 /* Should only fail if we've built a corrupted tree */ 1799 assert(rc == 0); 1800 1801 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1802 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1803 fdt_totalsize(fdt), FDT_MAX_SIZE); 1804 exit(1); 1805 } 1806 1807 /* Load the fdt */ 1808 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1809 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1810 g_free(spapr->fdt_blob); 1811 spapr->fdt_size = fdt_totalsize(fdt); 1812 spapr->fdt_initial_size = spapr->fdt_size; 1813 spapr->fdt_blob = fdt; 1814 1815 /* Set up the entry state */ 1816 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1817 first_ppc_cpu->env.gpr[5] = 0; 1818 1819 spapr->cas_reboot = false; 1820 } 1821 1822 static void spapr_create_nvram(SpaprMachineState *spapr) 1823 { 1824 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1825 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1826 1827 if (dinfo) { 1828 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1829 &error_fatal); 1830 } 1831 1832 qdev_init_nofail(dev); 1833 1834 spapr->nvram = (struct SpaprNvram *)dev; 1835 } 1836 1837 static void spapr_rtc_create(SpaprMachineState *spapr) 1838 { 1839 object_initialize_child(OBJECT(spapr), "rtc", 1840 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1841 &error_fatal, NULL); 1842 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1843 &error_fatal); 1844 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1845 "date", &error_fatal); 1846 } 1847 1848 /* Returns whether we want to use VGA or not */ 1849 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1850 { 1851 switch (vga_interface_type) { 1852 case VGA_NONE: 1853 return false; 1854 case VGA_DEVICE: 1855 return true; 1856 case VGA_STD: 1857 case VGA_VIRTIO: 1858 case VGA_CIRRUS: 1859 return pci_vga_init(pci_bus) != NULL; 1860 default: 1861 error_setg(errp, 1862 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1863 return false; 1864 } 1865 } 1866 1867 static int spapr_pre_load(void *opaque) 1868 { 1869 int rc; 1870 1871 rc = spapr_caps_pre_load(opaque); 1872 if (rc) { 1873 return rc; 1874 } 1875 1876 return 0; 1877 } 1878 1879 static int spapr_post_load(void *opaque, int version_id) 1880 { 1881 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1882 int err = 0; 1883 1884 err = spapr_caps_post_migration(spapr); 1885 if (err) { 1886 return err; 1887 } 1888 1889 /* 1890 * In earlier versions, there was no separate qdev for the PAPR 1891 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1892 * So when migrating from those versions, poke the incoming offset 1893 * value into the RTC device 1894 */ 1895 if (version_id < 3) { 1896 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1897 if (err) { 1898 return err; 1899 } 1900 } 1901 1902 if (kvm_enabled() && spapr->patb_entry) { 1903 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1904 bool radix = !!(spapr->patb_entry & PATE1_GR); 1905 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1906 1907 /* 1908 * Update LPCR:HR and UPRT as they may not be set properly in 1909 * the stream 1910 */ 1911 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1912 LPCR_HR | LPCR_UPRT); 1913 1914 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1915 if (err) { 1916 error_report("Process table config unsupported by the host"); 1917 return -EINVAL; 1918 } 1919 } 1920 1921 err = spapr_irq_post_load(spapr, version_id); 1922 if (err) { 1923 return err; 1924 } 1925 1926 return err; 1927 } 1928 1929 static int spapr_pre_save(void *opaque) 1930 { 1931 int rc; 1932 1933 rc = spapr_caps_pre_save(opaque); 1934 if (rc) { 1935 return rc; 1936 } 1937 1938 return 0; 1939 } 1940 1941 static bool version_before_3(void *opaque, int version_id) 1942 { 1943 return version_id < 3; 1944 } 1945 1946 static bool spapr_pending_events_needed(void *opaque) 1947 { 1948 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1949 return !QTAILQ_EMPTY(&spapr->pending_events); 1950 } 1951 1952 static const VMStateDescription vmstate_spapr_event_entry = { 1953 .name = "spapr_event_log_entry", 1954 .version_id = 1, 1955 .minimum_version_id = 1, 1956 .fields = (VMStateField[]) { 1957 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1958 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1959 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1960 NULL, extended_length), 1961 VMSTATE_END_OF_LIST() 1962 }, 1963 }; 1964 1965 static const VMStateDescription vmstate_spapr_pending_events = { 1966 .name = "spapr_pending_events", 1967 .version_id = 1, 1968 .minimum_version_id = 1, 1969 .needed = spapr_pending_events_needed, 1970 .fields = (VMStateField[]) { 1971 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1972 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1973 VMSTATE_END_OF_LIST() 1974 }, 1975 }; 1976 1977 static bool spapr_ov5_cas_needed(void *opaque) 1978 { 1979 SpaprMachineState *spapr = opaque; 1980 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1981 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1982 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1983 bool cas_needed; 1984 1985 /* Prior to the introduction of SpaprOptionVector, we had two option 1986 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1987 * Both of these options encode machine topology into the device-tree 1988 * in such a way that the now-booted OS should still be able to interact 1989 * appropriately with QEMU regardless of what options were actually 1990 * negotiatied on the source side. 1991 * 1992 * As such, we can avoid migrating the CAS-negotiated options if these 1993 * are the only options available on the current machine/platform. 1994 * Since these are the only options available for pseries-2.7 and 1995 * earlier, this allows us to maintain old->new/new->old migration 1996 * compatibility. 1997 * 1998 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1999 * via default pseries-2.8 machines and explicit command-line parameters. 2000 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 2001 * of the actual CAS-negotiated values to continue working properly. For 2002 * example, availability of memory unplug depends on knowing whether 2003 * OV5_HP_EVT was negotiated via CAS. 2004 * 2005 * Thus, for any cases where the set of available CAS-negotiatable 2006 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2007 * include the CAS-negotiated options in the migration stream, unless 2008 * if they affect boot time behaviour only. 2009 */ 2010 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2011 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2012 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2013 2014 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2015 * the mask itself since in the future it's possible "legacy" bits may be 2016 * removed via machine options, which could generate a false positive 2017 * that breaks migration. 2018 */ 2019 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2020 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2021 2022 spapr_ovec_cleanup(ov5_mask); 2023 spapr_ovec_cleanup(ov5_legacy); 2024 spapr_ovec_cleanup(ov5_removed); 2025 2026 return cas_needed; 2027 } 2028 2029 static const VMStateDescription vmstate_spapr_ov5_cas = { 2030 .name = "spapr_option_vector_ov5_cas", 2031 .version_id = 1, 2032 .minimum_version_id = 1, 2033 .needed = spapr_ov5_cas_needed, 2034 .fields = (VMStateField[]) { 2035 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2036 vmstate_spapr_ovec, SpaprOptionVector), 2037 VMSTATE_END_OF_LIST() 2038 }, 2039 }; 2040 2041 static bool spapr_patb_entry_needed(void *opaque) 2042 { 2043 SpaprMachineState *spapr = opaque; 2044 2045 return !!spapr->patb_entry; 2046 } 2047 2048 static const VMStateDescription vmstate_spapr_patb_entry = { 2049 .name = "spapr_patb_entry", 2050 .version_id = 1, 2051 .minimum_version_id = 1, 2052 .needed = spapr_patb_entry_needed, 2053 .fields = (VMStateField[]) { 2054 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2055 VMSTATE_END_OF_LIST() 2056 }, 2057 }; 2058 2059 static bool spapr_irq_map_needed(void *opaque) 2060 { 2061 SpaprMachineState *spapr = opaque; 2062 2063 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2064 } 2065 2066 static const VMStateDescription vmstate_spapr_irq_map = { 2067 .name = "spapr_irq_map", 2068 .version_id = 1, 2069 .minimum_version_id = 1, 2070 .needed = spapr_irq_map_needed, 2071 .fields = (VMStateField[]) { 2072 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2073 VMSTATE_END_OF_LIST() 2074 }, 2075 }; 2076 2077 static bool spapr_dtb_needed(void *opaque) 2078 { 2079 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2080 2081 return smc->update_dt_enabled; 2082 } 2083 2084 static int spapr_dtb_pre_load(void *opaque) 2085 { 2086 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2087 2088 g_free(spapr->fdt_blob); 2089 spapr->fdt_blob = NULL; 2090 spapr->fdt_size = 0; 2091 2092 return 0; 2093 } 2094 2095 static const VMStateDescription vmstate_spapr_dtb = { 2096 .name = "spapr_dtb", 2097 .version_id = 1, 2098 .minimum_version_id = 1, 2099 .needed = spapr_dtb_needed, 2100 .pre_load = spapr_dtb_pre_load, 2101 .fields = (VMStateField[]) { 2102 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2103 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2104 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2105 fdt_size), 2106 VMSTATE_END_OF_LIST() 2107 }, 2108 }; 2109 2110 static const VMStateDescription vmstate_spapr = { 2111 .name = "spapr", 2112 .version_id = 3, 2113 .minimum_version_id = 1, 2114 .pre_load = spapr_pre_load, 2115 .post_load = spapr_post_load, 2116 .pre_save = spapr_pre_save, 2117 .fields = (VMStateField[]) { 2118 /* used to be @next_irq */ 2119 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2120 2121 /* RTC offset */ 2122 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2123 2124 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2125 VMSTATE_END_OF_LIST() 2126 }, 2127 .subsections = (const VMStateDescription*[]) { 2128 &vmstate_spapr_ov5_cas, 2129 &vmstate_spapr_patb_entry, 2130 &vmstate_spapr_pending_events, 2131 &vmstate_spapr_cap_htm, 2132 &vmstate_spapr_cap_vsx, 2133 &vmstate_spapr_cap_dfp, 2134 &vmstate_spapr_cap_cfpc, 2135 &vmstate_spapr_cap_sbbc, 2136 &vmstate_spapr_cap_ibs, 2137 &vmstate_spapr_cap_hpt_maxpagesize, 2138 &vmstate_spapr_irq_map, 2139 &vmstate_spapr_cap_nested_kvm_hv, 2140 &vmstate_spapr_dtb, 2141 &vmstate_spapr_cap_large_decr, 2142 &vmstate_spapr_cap_ccf_assist, 2143 NULL 2144 } 2145 }; 2146 2147 static int htab_save_setup(QEMUFile *f, void *opaque) 2148 { 2149 SpaprMachineState *spapr = opaque; 2150 2151 /* "Iteration" header */ 2152 if (!spapr->htab_shift) { 2153 qemu_put_be32(f, -1); 2154 } else { 2155 qemu_put_be32(f, spapr->htab_shift); 2156 } 2157 2158 if (spapr->htab) { 2159 spapr->htab_save_index = 0; 2160 spapr->htab_first_pass = true; 2161 } else { 2162 if (spapr->htab_shift) { 2163 assert(kvm_enabled()); 2164 } 2165 } 2166 2167 2168 return 0; 2169 } 2170 2171 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2172 int chunkstart, int n_valid, int n_invalid) 2173 { 2174 qemu_put_be32(f, chunkstart); 2175 qemu_put_be16(f, n_valid); 2176 qemu_put_be16(f, n_invalid); 2177 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2178 HASH_PTE_SIZE_64 * n_valid); 2179 } 2180 2181 static void htab_save_end_marker(QEMUFile *f) 2182 { 2183 qemu_put_be32(f, 0); 2184 qemu_put_be16(f, 0); 2185 qemu_put_be16(f, 0); 2186 } 2187 2188 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2189 int64_t max_ns) 2190 { 2191 bool has_timeout = max_ns != -1; 2192 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2193 int index = spapr->htab_save_index; 2194 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2195 2196 assert(spapr->htab_first_pass); 2197 2198 do { 2199 int chunkstart; 2200 2201 /* Consume invalid HPTEs */ 2202 while ((index < htabslots) 2203 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2204 CLEAN_HPTE(HPTE(spapr->htab, index)); 2205 index++; 2206 } 2207 2208 /* Consume valid HPTEs */ 2209 chunkstart = index; 2210 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2211 && HPTE_VALID(HPTE(spapr->htab, index))) { 2212 CLEAN_HPTE(HPTE(spapr->htab, index)); 2213 index++; 2214 } 2215 2216 if (index > chunkstart) { 2217 int n_valid = index - chunkstart; 2218 2219 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2220 2221 if (has_timeout && 2222 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2223 break; 2224 } 2225 } 2226 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2227 2228 if (index >= htabslots) { 2229 assert(index == htabslots); 2230 index = 0; 2231 spapr->htab_first_pass = false; 2232 } 2233 spapr->htab_save_index = index; 2234 } 2235 2236 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2237 int64_t max_ns) 2238 { 2239 bool final = max_ns < 0; 2240 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2241 int examined = 0, sent = 0; 2242 int index = spapr->htab_save_index; 2243 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2244 2245 assert(!spapr->htab_first_pass); 2246 2247 do { 2248 int chunkstart, invalidstart; 2249 2250 /* Consume non-dirty HPTEs */ 2251 while ((index < htabslots) 2252 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2253 index++; 2254 examined++; 2255 } 2256 2257 chunkstart = index; 2258 /* Consume valid dirty HPTEs */ 2259 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2260 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2261 && HPTE_VALID(HPTE(spapr->htab, index))) { 2262 CLEAN_HPTE(HPTE(spapr->htab, index)); 2263 index++; 2264 examined++; 2265 } 2266 2267 invalidstart = index; 2268 /* Consume invalid dirty HPTEs */ 2269 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2270 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2271 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2272 CLEAN_HPTE(HPTE(spapr->htab, index)); 2273 index++; 2274 examined++; 2275 } 2276 2277 if (index > chunkstart) { 2278 int n_valid = invalidstart - chunkstart; 2279 int n_invalid = index - invalidstart; 2280 2281 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2282 sent += index - chunkstart; 2283 2284 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2285 break; 2286 } 2287 } 2288 2289 if (examined >= htabslots) { 2290 break; 2291 } 2292 2293 if (index >= htabslots) { 2294 assert(index == htabslots); 2295 index = 0; 2296 } 2297 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2298 2299 if (index >= htabslots) { 2300 assert(index == htabslots); 2301 index = 0; 2302 } 2303 2304 spapr->htab_save_index = index; 2305 2306 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2307 } 2308 2309 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2310 #define MAX_KVM_BUF_SIZE 2048 2311 2312 static int htab_save_iterate(QEMUFile *f, void *opaque) 2313 { 2314 SpaprMachineState *spapr = opaque; 2315 int fd; 2316 int rc = 0; 2317 2318 /* Iteration header */ 2319 if (!spapr->htab_shift) { 2320 qemu_put_be32(f, -1); 2321 return 1; 2322 } else { 2323 qemu_put_be32(f, 0); 2324 } 2325 2326 if (!spapr->htab) { 2327 assert(kvm_enabled()); 2328 2329 fd = get_htab_fd(spapr); 2330 if (fd < 0) { 2331 return fd; 2332 } 2333 2334 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2335 if (rc < 0) { 2336 return rc; 2337 } 2338 } else if (spapr->htab_first_pass) { 2339 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2340 } else { 2341 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2342 } 2343 2344 htab_save_end_marker(f); 2345 2346 return rc; 2347 } 2348 2349 static int htab_save_complete(QEMUFile *f, void *opaque) 2350 { 2351 SpaprMachineState *spapr = opaque; 2352 int fd; 2353 2354 /* Iteration header */ 2355 if (!spapr->htab_shift) { 2356 qemu_put_be32(f, -1); 2357 return 0; 2358 } else { 2359 qemu_put_be32(f, 0); 2360 } 2361 2362 if (!spapr->htab) { 2363 int rc; 2364 2365 assert(kvm_enabled()); 2366 2367 fd = get_htab_fd(spapr); 2368 if (fd < 0) { 2369 return fd; 2370 } 2371 2372 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2373 if (rc < 0) { 2374 return rc; 2375 } 2376 } else { 2377 if (spapr->htab_first_pass) { 2378 htab_save_first_pass(f, spapr, -1); 2379 } 2380 htab_save_later_pass(f, spapr, -1); 2381 } 2382 2383 /* End marker */ 2384 htab_save_end_marker(f); 2385 2386 return 0; 2387 } 2388 2389 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2390 { 2391 SpaprMachineState *spapr = opaque; 2392 uint32_t section_hdr; 2393 int fd = -1; 2394 Error *local_err = NULL; 2395 2396 if (version_id < 1 || version_id > 1) { 2397 error_report("htab_load() bad version"); 2398 return -EINVAL; 2399 } 2400 2401 section_hdr = qemu_get_be32(f); 2402 2403 if (section_hdr == -1) { 2404 spapr_free_hpt(spapr); 2405 return 0; 2406 } 2407 2408 if (section_hdr) { 2409 /* First section gives the htab size */ 2410 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2411 if (local_err) { 2412 error_report_err(local_err); 2413 return -EINVAL; 2414 } 2415 return 0; 2416 } 2417 2418 if (!spapr->htab) { 2419 assert(kvm_enabled()); 2420 2421 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2422 if (fd < 0) { 2423 error_report_err(local_err); 2424 return fd; 2425 } 2426 } 2427 2428 while (true) { 2429 uint32_t index; 2430 uint16_t n_valid, n_invalid; 2431 2432 index = qemu_get_be32(f); 2433 n_valid = qemu_get_be16(f); 2434 n_invalid = qemu_get_be16(f); 2435 2436 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2437 /* End of Stream */ 2438 break; 2439 } 2440 2441 if ((index + n_valid + n_invalid) > 2442 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2443 /* Bad index in stream */ 2444 error_report( 2445 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2446 index, n_valid, n_invalid, spapr->htab_shift); 2447 return -EINVAL; 2448 } 2449 2450 if (spapr->htab) { 2451 if (n_valid) { 2452 qemu_get_buffer(f, HPTE(spapr->htab, index), 2453 HASH_PTE_SIZE_64 * n_valid); 2454 } 2455 if (n_invalid) { 2456 memset(HPTE(spapr->htab, index + n_valid), 0, 2457 HASH_PTE_SIZE_64 * n_invalid); 2458 } 2459 } else { 2460 int rc; 2461 2462 assert(fd >= 0); 2463 2464 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2465 if (rc < 0) { 2466 return rc; 2467 } 2468 } 2469 } 2470 2471 if (!spapr->htab) { 2472 assert(fd >= 0); 2473 close(fd); 2474 } 2475 2476 return 0; 2477 } 2478 2479 static void htab_save_cleanup(void *opaque) 2480 { 2481 SpaprMachineState *spapr = opaque; 2482 2483 close_htab_fd(spapr); 2484 } 2485 2486 static SaveVMHandlers savevm_htab_handlers = { 2487 .save_setup = htab_save_setup, 2488 .save_live_iterate = htab_save_iterate, 2489 .save_live_complete_precopy = htab_save_complete, 2490 .save_cleanup = htab_save_cleanup, 2491 .load_state = htab_load, 2492 }; 2493 2494 static void spapr_boot_set(void *opaque, const char *boot_device, 2495 Error **errp) 2496 { 2497 MachineState *machine = MACHINE(opaque); 2498 machine->boot_order = g_strdup(boot_device); 2499 } 2500 2501 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2502 { 2503 MachineState *machine = MACHINE(spapr); 2504 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2505 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2506 int i; 2507 2508 for (i = 0; i < nr_lmbs; i++) { 2509 uint64_t addr; 2510 2511 addr = i * lmb_size + machine->device_memory->base; 2512 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2513 addr / lmb_size); 2514 } 2515 } 2516 2517 /* 2518 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2519 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2520 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2521 */ 2522 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2523 { 2524 int i; 2525 2526 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2527 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2528 " is not aligned to %" PRIu64 " MiB", 2529 machine->ram_size, 2530 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2531 return; 2532 } 2533 2534 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2535 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2536 " is not aligned to %" PRIu64 " MiB", 2537 machine->ram_size, 2538 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2539 return; 2540 } 2541 2542 for (i = 0; i < nb_numa_nodes; i++) { 2543 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2544 error_setg(errp, 2545 "Node %d memory size 0x%" PRIx64 2546 " is not aligned to %" PRIu64 " MiB", 2547 i, numa_info[i].node_mem, 2548 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2549 return; 2550 } 2551 } 2552 } 2553 2554 /* find cpu slot in machine->possible_cpus by core_id */ 2555 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2556 { 2557 int index = id / ms->smp.threads; 2558 2559 if (index >= ms->possible_cpus->len) { 2560 return NULL; 2561 } 2562 if (idx) { 2563 *idx = index; 2564 } 2565 return &ms->possible_cpus->cpus[index]; 2566 } 2567 2568 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2569 { 2570 MachineState *ms = MACHINE(spapr); 2571 Error *local_err = NULL; 2572 bool vsmt_user = !!spapr->vsmt; 2573 int kvm_smt = kvmppc_smt_threads(); 2574 int ret; 2575 unsigned int smp_threads = ms->smp.threads; 2576 2577 if (!kvm_enabled() && (smp_threads > 1)) { 2578 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2579 "on a pseries machine"); 2580 goto out; 2581 } 2582 if (!is_power_of_2(smp_threads)) { 2583 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2584 "machine because it must be a power of 2", smp_threads); 2585 goto out; 2586 } 2587 2588 /* Detemine the VSMT mode to use: */ 2589 if (vsmt_user) { 2590 if (spapr->vsmt < smp_threads) { 2591 error_setg(&local_err, "Cannot support VSMT mode %d" 2592 " because it must be >= threads/core (%d)", 2593 spapr->vsmt, smp_threads); 2594 goto out; 2595 } 2596 /* In this case, spapr->vsmt has been set by the command line */ 2597 } else { 2598 /* 2599 * Default VSMT value is tricky, because we need it to be as 2600 * consistent as possible (for migration), but this requires 2601 * changing it for at least some existing cases. We pick 8 as 2602 * the value that we'd get with KVM on POWER8, the 2603 * overwhelmingly common case in production systems. 2604 */ 2605 spapr->vsmt = MAX(8, smp_threads); 2606 } 2607 2608 /* KVM: If necessary, set the SMT mode: */ 2609 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2610 ret = kvmppc_set_smt_threads(spapr->vsmt); 2611 if (ret) { 2612 /* Looks like KVM isn't able to change VSMT mode */ 2613 error_setg(&local_err, 2614 "Failed to set KVM's VSMT mode to %d (errno %d)", 2615 spapr->vsmt, ret); 2616 /* We can live with that if the default one is big enough 2617 * for the number of threads, and a submultiple of the one 2618 * we want. In this case we'll waste some vcpu ids, but 2619 * behaviour will be correct */ 2620 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2621 warn_report_err(local_err); 2622 local_err = NULL; 2623 goto out; 2624 } else { 2625 if (!vsmt_user) { 2626 error_append_hint(&local_err, 2627 "On PPC, a VM with %d threads/core" 2628 " on a host with %d threads/core" 2629 " requires the use of VSMT mode %d.\n", 2630 smp_threads, kvm_smt, spapr->vsmt); 2631 } 2632 kvmppc_hint_smt_possible(&local_err); 2633 goto out; 2634 } 2635 } 2636 } 2637 /* else TCG: nothing to do currently */ 2638 out: 2639 error_propagate(errp, local_err); 2640 } 2641 2642 static void spapr_init_cpus(SpaprMachineState *spapr) 2643 { 2644 MachineState *machine = MACHINE(spapr); 2645 MachineClass *mc = MACHINE_GET_CLASS(machine); 2646 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2647 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2648 const CPUArchIdList *possible_cpus; 2649 unsigned int smp_cpus = machine->smp.cpus; 2650 unsigned int smp_threads = machine->smp.threads; 2651 unsigned int max_cpus = machine->smp.max_cpus; 2652 int boot_cores_nr = smp_cpus / smp_threads; 2653 int i; 2654 2655 possible_cpus = mc->possible_cpu_arch_ids(machine); 2656 if (mc->has_hotpluggable_cpus) { 2657 if (smp_cpus % smp_threads) { 2658 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2659 smp_cpus, smp_threads); 2660 exit(1); 2661 } 2662 if (max_cpus % smp_threads) { 2663 error_report("max_cpus (%u) must be multiple of threads (%u)", 2664 max_cpus, smp_threads); 2665 exit(1); 2666 } 2667 } else { 2668 if (max_cpus != smp_cpus) { 2669 error_report("This machine version does not support CPU hotplug"); 2670 exit(1); 2671 } 2672 boot_cores_nr = possible_cpus->len; 2673 } 2674 2675 if (smc->pre_2_10_has_unused_icps) { 2676 int i; 2677 2678 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2679 /* Dummy entries get deregistered when real ICPState objects 2680 * are registered during CPU core hotplug. 2681 */ 2682 pre_2_10_vmstate_register_dummy_icp(i); 2683 } 2684 } 2685 2686 for (i = 0; i < possible_cpus->len; i++) { 2687 int core_id = i * smp_threads; 2688 2689 if (mc->has_hotpluggable_cpus) { 2690 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2691 spapr_vcpu_id(spapr, core_id)); 2692 } 2693 2694 if (i < boot_cores_nr) { 2695 Object *core = object_new(type); 2696 int nr_threads = smp_threads; 2697 2698 /* Handle the partially filled core for older machine types */ 2699 if ((i + 1) * smp_threads >= smp_cpus) { 2700 nr_threads = smp_cpus - i * smp_threads; 2701 } 2702 2703 object_property_set_int(core, nr_threads, "nr-threads", 2704 &error_fatal); 2705 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2706 &error_fatal); 2707 object_property_set_bool(core, true, "realized", &error_fatal); 2708 2709 object_unref(core); 2710 } 2711 } 2712 } 2713 2714 static PCIHostState *spapr_create_default_phb(void) 2715 { 2716 DeviceState *dev; 2717 2718 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2719 qdev_prop_set_uint32(dev, "index", 0); 2720 qdev_init_nofail(dev); 2721 2722 return PCI_HOST_BRIDGE(dev); 2723 } 2724 2725 /* pSeries LPAR / sPAPR hardware init */ 2726 static void spapr_machine_init(MachineState *machine) 2727 { 2728 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2729 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2730 const char *kernel_filename = machine->kernel_filename; 2731 const char *initrd_filename = machine->initrd_filename; 2732 PCIHostState *phb; 2733 int i; 2734 MemoryRegion *sysmem = get_system_memory(); 2735 MemoryRegion *ram = g_new(MemoryRegion, 1); 2736 hwaddr node0_size = spapr_node0_size(machine); 2737 long load_limit, fw_size; 2738 char *filename; 2739 Error *resize_hpt_err = NULL; 2740 2741 msi_nonbroken = true; 2742 2743 QLIST_INIT(&spapr->phbs); 2744 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2745 2746 /* Determine capabilities to run with */ 2747 spapr_caps_init(spapr); 2748 2749 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2750 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2751 /* 2752 * If the user explicitly requested a mode we should either 2753 * supply it, or fail completely (which we do below). But if 2754 * it's not set explicitly, we reset our mode to something 2755 * that works 2756 */ 2757 if (resize_hpt_err) { 2758 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2759 error_free(resize_hpt_err); 2760 resize_hpt_err = NULL; 2761 } else { 2762 spapr->resize_hpt = smc->resize_hpt_default; 2763 } 2764 } 2765 2766 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2767 2768 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2769 /* 2770 * User requested HPT resize, but this host can't supply it. Bail out 2771 */ 2772 error_report_err(resize_hpt_err); 2773 exit(1); 2774 } 2775 2776 spapr->rma_size = node0_size; 2777 2778 /* With KVM, we don't actually know whether KVM supports an 2779 * unbounded RMA (PR KVM) or is limited by the hash table size 2780 * (HV KVM using VRMA), so we always assume the latter 2781 * 2782 * In that case, we also limit the initial allocations for RTAS 2783 * etc... to 256M since we have no way to know what the VRMA size 2784 * is going to be as it depends on the size of the hash table 2785 * which isn't determined yet. 2786 */ 2787 if (kvm_enabled()) { 2788 spapr->vrma_adjust = 1; 2789 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2790 } 2791 2792 /* Actually we don't support unbounded RMA anymore since we added 2793 * proper emulation of HV mode. The max we can get is 16G which 2794 * also happens to be what we configure for PAPR mode so make sure 2795 * we don't do anything bigger than that 2796 */ 2797 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2798 2799 if (spapr->rma_size > node0_size) { 2800 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2801 spapr->rma_size); 2802 exit(1); 2803 } 2804 2805 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2806 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2807 2808 /* 2809 * VSMT must be set in order to be able to compute VCPU ids, ie to 2810 * call spapr_max_server_number() or spapr_vcpu_id(). 2811 */ 2812 spapr_set_vsmt_mode(spapr, &error_fatal); 2813 2814 /* Set up Interrupt Controller before we create the VCPUs */ 2815 spapr_irq_init(spapr, &error_fatal); 2816 2817 /* Set up containers for ibm,client-architecture-support negotiated options 2818 */ 2819 spapr->ov5 = spapr_ovec_new(); 2820 spapr->ov5_cas = spapr_ovec_new(); 2821 2822 if (smc->dr_lmb_enabled) { 2823 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2824 spapr_validate_node_memory(machine, &error_fatal); 2825 } 2826 2827 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2828 2829 /* advertise support for dedicated HP event source to guests */ 2830 if (spapr->use_hotplug_event_source) { 2831 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2832 } 2833 2834 /* advertise support for HPT resizing */ 2835 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2836 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2837 } 2838 2839 /* advertise support for ibm,dyamic-memory-v2 */ 2840 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2841 2842 /* advertise XIVE on POWER9 machines */ 2843 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2844 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2845 } 2846 2847 /* init CPUs */ 2848 spapr_init_cpus(spapr); 2849 2850 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2851 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2852 spapr->max_compat_pvr)) { 2853 /* KVM and TCG always allow GTSE with radix... */ 2854 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2855 } 2856 /* ... but not with hash (currently). */ 2857 2858 if (kvm_enabled()) { 2859 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2860 kvmppc_enable_logical_ci_hcalls(); 2861 kvmppc_enable_set_mode_hcall(); 2862 2863 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2864 kvmppc_enable_clear_ref_mod_hcalls(); 2865 2866 /* Enable H_PAGE_INIT */ 2867 kvmppc_enable_h_page_init(); 2868 } 2869 2870 /* allocate RAM */ 2871 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2872 machine->ram_size); 2873 memory_region_add_subregion(sysmem, 0, ram); 2874 2875 /* always allocate the device memory information */ 2876 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2877 2878 /* initialize hotplug memory address space */ 2879 if (machine->ram_size < machine->maxram_size) { 2880 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2881 /* 2882 * Limit the number of hotpluggable memory slots to half the number 2883 * slots that KVM supports, leaving the other half for PCI and other 2884 * devices. However ensure that number of slots doesn't drop below 32. 2885 */ 2886 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2887 SPAPR_MAX_RAM_SLOTS; 2888 2889 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2890 max_memslots = SPAPR_MAX_RAM_SLOTS; 2891 } 2892 if (machine->ram_slots > max_memslots) { 2893 error_report("Specified number of memory slots %" 2894 PRIu64" exceeds max supported %d", 2895 machine->ram_slots, max_memslots); 2896 exit(1); 2897 } 2898 2899 machine->device_memory->base = ROUND_UP(machine->ram_size, 2900 SPAPR_DEVICE_MEM_ALIGN); 2901 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2902 "device-memory", device_mem_size); 2903 memory_region_add_subregion(sysmem, machine->device_memory->base, 2904 &machine->device_memory->mr); 2905 } 2906 2907 if (smc->dr_lmb_enabled) { 2908 spapr_create_lmb_dr_connectors(spapr); 2909 } 2910 2911 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2912 if (!filename) { 2913 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2914 exit(1); 2915 } 2916 spapr->rtas_size = get_image_size(filename); 2917 if (spapr->rtas_size < 0) { 2918 error_report("Could not get size of LPAR rtas '%s'", filename); 2919 exit(1); 2920 } 2921 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2922 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2923 error_report("Could not load LPAR rtas '%s'", filename); 2924 exit(1); 2925 } 2926 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2927 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2928 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2929 exit(1); 2930 } 2931 g_free(filename); 2932 2933 /* Set up RTAS event infrastructure */ 2934 spapr_events_init(spapr); 2935 2936 /* Set up the RTC RTAS interfaces */ 2937 spapr_rtc_create(spapr); 2938 2939 /* Set up VIO bus */ 2940 spapr->vio_bus = spapr_vio_bus_init(); 2941 2942 for (i = 0; i < serial_max_hds(); i++) { 2943 if (serial_hd(i)) { 2944 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2945 } 2946 } 2947 2948 /* We always have at least the nvram device on VIO */ 2949 spapr_create_nvram(spapr); 2950 2951 /* 2952 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2953 * connectors (described in root DT node's "ibm,drc-types" property) 2954 * are pre-initialized here. additional child connectors (such as 2955 * connectors for a PHBs PCI slots) are added as needed during their 2956 * parent's realization. 2957 */ 2958 if (smc->dr_phb_enabled) { 2959 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2960 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2961 } 2962 } 2963 2964 /* Set up PCI */ 2965 spapr_pci_rtas_init(); 2966 2967 phb = spapr_create_default_phb(); 2968 2969 for (i = 0; i < nb_nics; i++) { 2970 NICInfo *nd = &nd_table[i]; 2971 2972 if (!nd->model) { 2973 nd->model = g_strdup("spapr-vlan"); 2974 } 2975 2976 if (g_str_equal(nd->model, "spapr-vlan") || 2977 g_str_equal(nd->model, "ibmveth")) { 2978 spapr_vlan_create(spapr->vio_bus, nd); 2979 } else { 2980 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2981 } 2982 } 2983 2984 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2985 spapr_vscsi_create(spapr->vio_bus); 2986 } 2987 2988 /* Graphics */ 2989 if (spapr_vga_init(phb->bus, &error_fatal)) { 2990 spapr->has_graphics = true; 2991 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2992 } 2993 2994 if (machine->usb) { 2995 if (smc->use_ohci_by_default) { 2996 pci_create_simple(phb->bus, -1, "pci-ohci"); 2997 } else { 2998 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2999 } 3000 3001 if (spapr->has_graphics) { 3002 USBBus *usb_bus = usb_bus_find(-1); 3003 3004 usb_create_simple(usb_bus, "usb-kbd"); 3005 usb_create_simple(usb_bus, "usb-mouse"); 3006 } 3007 } 3008 3009 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 3010 error_report( 3011 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 3012 MIN_RMA_SLOF); 3013 exit(1); 3014 } 3015 3016 if (kernel_filename) { 3017 uint64_t lowaddr = 0; 3018 3019 spapr->kernel_size = load_elf(kernel_filename, NULL, 3020 translate_kernel_address, NULL, 3021 NULL, &lowaddr, NULL, 1, 3022 PPC_ELF_MACHINE, 0, 0); 3023 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3024 spapr->kernel_size = load_elf(kernel_filename, NULL, 3025 translate_kernel_address, NULL, NULL, 3026 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3027 0, 0); 3028 spapr->kernel_le = spapr->kernel_size > 0; 3029 } 3030 if (spapr->kernel_size < 0) { 3031 error_report("error loading %s: %s", kernel_filename, 3032 load_elf_strerror(spapr->kernel_size)); 3033 exit(1); 3034 } 3035 3036 /* load initrd */ 3037 if (initrd_filename) { 3038 /* Try to locate the initrd in the gap between the kernel 3039 * and the firmware. Add a bit of space just in case 3040 */ 3041 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3042 + 0x1ffff) & ~0xffff; 3043 spapr->initrd_size = load_image_targphys(initrd_filename, 3044 spapr->initrd_base, 3045 load_limit 3046 - spapr->initrd_base); 3047 if (spapr->initrd_size < 0) { 3048 error_report("could not load initial ram disk '%s'", 3049 initrd_filename); 3050 exit(1); 3051 } 3052 } 3053 } 3054 3055 if (bios_name == NULL) { 3056 bios_name = FW_FILE_NAME; 3057 } 3058 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3059 if (!filename) { 3060 error_report("Could not find LPAR firmware '%s'", bios_name); 3061 exit(1); 3062 } 3063 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3064 if (fw_size <= 0) { 3065 error_report("Could not load LPAR firmware '%s'", filename); 3066 exit(1); 3067 } 3068 g_free(filename); 3069 3070 /* FIXME: Should register things through the MachineState's qdev 3071 * interface, this is a legacy from the sPAPREnvironment structure 3072 * which predated MachineState but had a similar function */ 3073 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3074 register_savevm_live(NULL, "spapr/htab", -1, 1, 3075 &savevm_htab_handlers, spapr); 3076 3077 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3078 &error_fatal); 3079 3080 qemu_register_boot_set(spapr_boot_set, spapr); 3081 3082 if (kvm_enabled()) { 3083 /* to stop and start vmclock */ 3084 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3085 &spapr->tb); 3086 3087 kvmppc_spapr_enable_inkernel_multitce(); 3088 } 3089 } 3090 3091 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3092 { 3093 if (!vm_type) { 3094 return 0; 3095 } 3096 3097 if (!strcmp(vm_type, "HV")) { 3098 return 1; 3099 } 3100 3101 if (!strcmp(vm_type, "PR")) { 3102 return 2; 3103 } 3104 3105 error_report("Unknown kvm-type specified '%s'", vm_type); 3106 exit(1); 3107 } 3108 3109 /* 3110 * Implementation of an interface to adjust firmware path 3111 * for the bootindex property handling. 3112 */ 3113 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3114 DeviceState *dev) 3115 { 3116 #define CAST(type, obj, name) \ 3117 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3118 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3119 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3120 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3121 3122 if (d) { 3123 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3124 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3125 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3126 3127 if (spapr) { 3128 /* 3129 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3130 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3131 * 0x8000 | (target << 8) | (bus << 5) | lun 3132 * (see the "Logical unit addressing format" table in SAM5) 3133 */ 3134 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3135 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3136 (uint64_t)id << 48); 3137 } else if (virtio) { 3138 /* 3139 * We use SRP luns of the form 01000000 | (target << 8) | lun 3140 * in the top 32 bits of the 64-bit LUN 3141 * Note: the quote above is from SLOF and it is wrong, 3142 * the actual binding is: 3143 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3144 */ 3145 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3146 if (d->lun >= 256) { 3147 /* Use the LUN "flat space addressing method" */ 3148 id |= 0x4000; 3149 } 3150 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3151 (uint64_t)id << 32); 3152 } else if (usb) { 3153 /* 3154 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3155 * in the top 32 bits of the 64-bit LUN 3156 */ 3157 unsigned usb_port = atoi(usb->port->path); 3158 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3159 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3160 (uint64_t)id << 32); 3161 } 3162 } 3163 3164 /* 3165 * SLOF probes the USB devices, and if it recognizes that the device is a 3166 * storage device, it changes its name to "storage" instead of "usb-host", 3167 * and additionally adds a child node for the SCSI LUN, so the correct 3168 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3169 */ 3170 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3171 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3172 if (usb_host_dev_is_scsi_storage(usbdev)) { 3173 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3174 } 3175 } 3176 3177 if (phb) { 3178 /* Replace "pci" with "pci@800000020000000" */ 3179 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3180 } 3181 3182 if (vsc) { 3183 /* Same logic as virtio above */ 3184 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3185 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3186 } 3187 3188 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3189 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3190 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3191 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3192 } 3193 3194 return NULL; 3195 } 3196 3197 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3198 { 3199 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3200 3201 return g_strdup(spapr->kvm_type); 3202 } 3203 3204 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3205 { 3206 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3207 3208 g_free(spapr->kvm_type); 3209 spapr->kvm_type = g_strdup(value); 3210 } 3211 3212 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3213 { 3214 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3215 3216 return spapr->use_hotplug_event_source; 3217 } 3218 3219 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3220 Error **errp) 3221 { 3222 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3223 3224 spapr->use_hotplug_event_source = value; 3225 } 3226 3227 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3228 { 3229 return true; 3230 } 3231 3232 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3233 { 3234 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3235 3236 switch (spapr->resize_hpt) { 3237 case SPAPR_RESIZE_HPT_DEFAULT: 3238 return g_strdup("default"); 3239 case SPAPR_RESIZE_HPT_DISABLED: 3240 return g_strdup("disabled"); 3241 case SPAPR_RESIZE_HPT_ENABLED: 3242 return g_strdup("enabled"); 3243 case SPAPR_RESIZE_HPT_REQUIRED: 3244 return g_strdup("required"); 3245 } 3246 g_assert_not_reached(); 3247 } 3248 3249 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3250 { 3251 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3252 3253 if (strcmp(value, "default") == 0) { 3254 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3255 } else if (strcmp(value, "disabled") == 0) { 3256 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3257 } else if (strcmp(value, "enabled") == 0) { 3258 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3259 } else if (strcmp(value, "required") == 0) { 3260 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3261 } else { 3262 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3263 } 3264 } 3265 3266 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3267 void *opaque, Error **errp) 3268 { 3269 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3270 } 3271 3272 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3273 void *opaque, Error **errp) 3274 { 3275 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3276 } 3277 3278 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3279 { 3280 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3281 3282 if (spapr->irq == &spapr_irq_xics_legacy) { 3283 return g_strdup("legacy"); 3284 } else if (spapr->irq == &spapr_irq_xics) { 3285 return g_strdup("xics"); 3286 } else if (spapr->irq == &spapr_irq_xive) { 3287 return g_strdup("xive"); 3288 } else if (spapr->irq == &spapr_irq_dual) { 3289 return g_strdup("dual"); 3290 } 3291 g_assert_not_reached(); 3292 } 3293 3294 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3295 { 3296 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3297 3298 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3299 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3300 return; 3301 } 3302 3303 /* The legacy IRQ backend can not be set */ 3304 if (strcmp(value, "xics") == 0) { 3305 spapr->irq = &spapr_irq_xics; 3306 } else if (strcmp(value, "xive") == 0) { 3307 spapr->irq = &spapr_irq_xive; 3308 } else if (strcmp(value, "dual") == 0) { 3309 spapr->irq = &spapr_irq_dual; 3310 } else { 3311 error_setg(errp, "Bad value for \"ic-mode\" property"); 3312 } 3313 } 3314 3315 static char *spapr_get_host_model(Object *obj, Error **errp) 3316 { 3317 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3318 3319 return g_strdup(spapr->host_model); 3320 } 3321 3322 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3323 { 3324 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3325 3326 g_free(spapr->host_model); 3327 spapr->host_model = g_strdup(value); 3328 } 3329 3330 static char *spapr_get_host_serial(Object *obj, Error **errp) 3331 { 3332 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3333 3334 return g_strdup(spapr->host_serial); 3335 } 3336 3337 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3338 { 3339 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3340 3341 g_free(spapr->host_serial); 3342 spapr->host_serial = g_strdup(value); 3343 } 3344 3345 static void spapr_instance_init(Object *obj) 3346 { 3347 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3348 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3349 3350 spapr->htab_fd = -1; 3351 spapr->use_hotplug_event_source = true; 3352 object_property_add_str(obj, "kvm-type", 3353 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3354 object_property_set_description(obj, "kvm-type", 3355 "Specifies the KVM virtualization mode (HV, PR)", 3356 NULL); 3357 object_property_add_bool(obj, "modern-hotplug-events", 3358 spapr_get_modern_hotplug_events, 3359 spapr_set_modern_hotplug_events, 3360 NULL); 3361 object_property_set_description(obj, "modern-hotplug-events", 3362 "Use dedicated hotplug event mechanism in" 3363 " place of standard EPOW events when possible" 3364 " (required for memory hot-unplug support)", 3365 NULL); 3366 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3367 "Maximum permitted CPU compatibility mode", 3368 &error_fatal); 3369 3370 object_property_add_str(obj, "resize-hpt", 3371 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3372 object_property_set_description(obj, "resize-hpt", 3373 "Resizing of the Hash Page Table (enabled, disabled, required)", 3374 NULL); 3375 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3376 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3377 object_property_set_description(obj, "vsmt", 3378 "Virtual SMT: KVM behaves as if this were" 3379 " the host's SMT mode", &error_abort); 3380 object_property_add_bool(obj, "vfio-no-msix-emulation", 3381 spapr_get_msix_emulation, NULL, NULL); 3382 3383 /* The machine class defines the default interrupt controller mode */ 3384 spapr->irq = smc->irq; 3385 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3386 spapr_set_ic_mode, NULL); 3387 object_property_set_description(obj, "ic-mode", 3388 "Specifies the interrupt controller mode (xics, xive, dual)", 3389 NULL); 3390 3391 object_property_add_str(obj, "host-model", 3392 spapr_get_host_model, spapr_set_host_model, 3393 &error_abort); 3394 object_property_set_description(obj, "host-model", 3395 "Host model to advertise in guest device tree", &error_abort); 3396 object_property_add_str(obj, "host-serial", 3397 spapr_get_host_serial, spapr_set_host_serial, 3398 &error_abort); 3399 object_property_set_description(obj, "host-serial", 3400 "Host serial number to advertise in guest device tree", &error_abort); 3401 } 3402 3403 static void spapr_machine_finalizefn(Object *obj) 3404 { 3405 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3406 3407 g_free(spapr->kvm_type); 3408 } 3409 3410 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3411 { 3412 cpu_synchronize_state(cs); 3413 ppc_cpu_do_system_reset(cs); 3414 } 3415 3416 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3417 { 3418 CPUState *cs; 3419 3420 CPU_FOREACH(cs) { 3421 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3422 } 3423 } 3424 3425 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3426 void *fdt, int *fdt_start_offset, Error **errp) 3427 { 3428 uint64_t addr; 3429 uint32_t node; 3430 3431 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3432 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3433 &error_abort); 3434 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3435 SPAPR_MEMORY_BLOCK_SIZE); 3436 return 0; 3437 } 3438 3439 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3440 bool dedicated_hp_event_source, Error **errp) 3441 { 3442 SpaprDrc *drc; 3443 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3444 int i; 3445 uint64_t addr = addr_start; 3446 bool hotplugged = spapr_drc_hotplugged(dev); 3447 Error *local_err = NULL; 3448 3449 for (i = 0; i < nr_lmbs; i++) { 3450 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3451 addr / SPAPR_MEMORY_BLOCK_SIZE); 3452 g_assert(drc); 3453 3454 spapr_drc_attach(drc, dev, &local_err); 3455 if (local_err) { 3456 while (addr > addr_start) { 3457 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3458 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3459 addr / SPAPR_MEMORY_BLOCK_SIZE); 3460 spapr_drc_detach(drc); 3461 } 3462 error_propagate(errp, local_err); 3463 return; 3464 } 3465 if (!hotplugged) { 3466 spapr_drc_reset(drc); 3467 } 3468 addr += SPAPR_MEMORY_BLOCK_SIZE; 3469 } 3470 /* send hotplug notification to the 3471 * guest only in case of hotplugged memory 3472 */ 3473 if (hotplugged) { 3474 if (dedicated_hp_event_source) { 3475 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3476 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3477 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3478 nr_lmbs, 3479 spapr_drc_index(drc)); 3480 } else { 3481 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3482 nr_lmbs); 3483 } 3484 } 3485 } 3486 3487 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3488 Error **errp) 3489 { 3490 Error *local_err = NULL; 3491 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3492 PCDIMMDevice *dimm = PC_DIMM(dev); 3493 uint64_t size, addr; 3494 3495 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3496 3497 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3498 if (local_err) { 3499 goto out; 3500 } 3501 3502 addr = object_property_get_uint(OBJECT(dimm), 3503 PC_DIMM_ADDR_PROP, &local_err); 3504 if (local_err) { 3505 goto out_unplug; 3506 } 3507 3508 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3509 &local_err); 3510 if (local_err) { 3511 goto out_unplug; 3512 } 3513 3514 return; 3515 3516 out_unplug: 3517 pc_dimm_unplug(dimm, MACHINE(ms)); 3518 out: 3519 error_propagate(errp, local_err); 3520 } 3521 3522 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3523 Error **errp) 3524 { 3525 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3526 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3527 PCDIMMDevice *dimm = PC_DIMM(dev); 3528 Error *local_err = NULL; 3529 uint64_t size; 3530 Object *memdev; 3531 hwaddr pagesize; 3532 3533 if (!smc->dr_lmb_enabled) { 3534 error_setg(errp, "Memory hotplug not supported for this machine"); 3535 return; 3536 } 3537 3538 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3539 if (local_err) { 3540 error_propagate(errp, local_err); 3541 return; 3542 } 3543 3544 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3545 error_setg(errp, "Hotplugged memory size must be a multiple of " 3546 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3547 return; 3548 } 3549 3550 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3551 &error_abort); 3552 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3553 spapr_check_pagesize(spapr, pagesize, &local_err); 3554 if (local_err) { 3555 error_propagate(errp, local_err); 3556 return; 3557 } 3558 3559 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3560 } 3561 3562 struct SpaprDimmState { 3563 PCDIMMDevice *dimm; 3564 uint32_t nr_lmbs; 3565 QTAILQ_ENTRY(SpaprDimmState) next; 3566 }; 3567 3568 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3569 PCDIMMDevice *dimm) 3570 { 3571 SpaprDimmState *dimm_state = NULL; 3572 3573 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3574 if (dimm_state->dimm == dimm) { 3575 break; 3576 } 3577 } 3578 return dimm_state; 3579 } 3580 3581 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3582 uint32_t nr_lmbs, 3583 PCDIMMDevice *dimm) 3584 { 3585 SpaprDimmState *ds = NULL; 3586 3587 /* 3588 * If this request is for a DIMM whose removal had failed earlier 3589 * (due to guest's refusal to remove the LMBs), we would have this 3590 * dimm already in the pending_dimm_unplugs list. In that 3591 * case don't add again. 3592 */ 3593 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3594 if (!ds) { 3595 ds = g_malloc0(sizeof(SpaprDimmState)); 3596 ds->nr_lmbs = nr_lmbs; 3597 ds->dimm = dimm; 3598 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3599 } 3600 return ds; 3601 } 3602 3603 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3604 SpaprDimmState *dimm_state) 3605 { 3606 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3607 g_free(dimm_state); 3608 } 3609 3610 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3611 PCDIMMDevice *dimm) 3612 { 3613 SpaprDrc *drc; 3614 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3615 &error_abort); 3616 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3617 uint32_t avail_lmbs = 0; 3618 uint64_t addr_start, addr; 3619 int i; 3620 3621 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3622 &error_abort); 3623 3624 addr = addr_start; 3625 for (i = 0; i < nr_lmbs; i++) { 3626 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3627 addr / SPAPR_MEMORY_BLOCK_SIZE); 3628 g_assert(drc); 3629 if (drc->dev) { 3630 avail_lmbs++; 3631 } 3632 addr += SPAPR_MEMORY_BLOCK_SIZE; 3633 } 3634 3635 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3636 } 3637 3638 /* Callback to be called during DRC release. */ 3639 void spapr_lmb_release(DeviceState *dev) 3640 { 3641 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3642 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3643 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3644 3645 /* This information will get lost if a migration occurs 3646 * during the unplug process. In this case recover it. */ 3647 if (ds == NULL) { 3648 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3649 g_assert(ds); 3650 /* The DRC being examined by the caller at least must be counted */ 3651 g_assert(ds->nr_lmbs); 3652 } 3653 3654 if (--ds->nr_lmbs) { 3655 return; 3656 } 3657 3658 /* 3659 * Now that all the LMBs have been removed by the guest, call the 3660 * unplug handler chain. This can never fail. 3661 */ 3662 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3663 object_unparent(OBJECT(dev)); 3664 } 3665 3666 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3667 { 3668 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3669 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3670 3671 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3672 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3673 spapr_pending_dimm_unplugs_remove(spapr, ds); 3674 } 3675 3676 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3677 DeviceState *dev, Error **errp) 3678 { 3679 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3680 Error *local_err = NULL; 3681 PCDIMMDevice *dimm = PC_DIMM(dev); 3682 uint32_t nr_lmbs; 3683 uint64_t size, addr_start, addr; 3684 int i; 3685 SpaprDrc *drc; 3686 3687 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3688 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3689 3690 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3691 &local_err); 3692 if (local_err) { 3693 goto out; 3694 } 3695 3696 /* 3697 * An existing pending dimm state for this DIMM means that there is an 3698 * unplug operation in progress, waiting for the spapr_lmb_release 3699 * callback to complete the job (BQL can't cover that far). In this case, 3700 * bail out to avoid detaching DRCs that were already released. 3701 */ 3702 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3703 error_setg(&local_err, 3704 "Memory unplug already in progress for device %s", 3705 dev->id); 3706 goto out; 3707 } 3708 3709 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3710 3711 addr = addr_start; 3712 for (i = 0; i < nr_lmbs; i++) { 3713 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3714 addr / SPAPR_MEMORY_BLOCK_SIZE); 3715 g_assert(drc); 3716 3717 spapr_drc_detach(drc); 3718 addr += SPAPR_MEMORY_BLOCK_SIZE; 3719 } 3720 3721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3722 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3723 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3724 nr_lmbs, spapr_drc_index(drc)); 3725 out: 3726 error_propagate(errp, local_err); 3727 } 3728 3729 /* Callback to be called during DRC release. */ 3730 void spapr_core_release(DeviceState *dev) 3731 { 3732 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3733 3734 /* Call the unplug handler chain. This can never fail. */ 3735 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3736 object_unparent(OBJECT(dev)); 3737 } 3738 3739 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3740 { 3741 MachineState *ms = MACHINE(hotplug_dev); 3742 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3743 CPUCore *cc = CPU_CORE(dev); 3744 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3745 3746 if (smc->pre_2_10_has_unused_icps) { 3747 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3748 int i; 3749 3750 for (i = 0; i < cc->nr_threads; i++) { 3751 CPUState *cs = CPU(sc->threads[i]); 3752 3753 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3754 } 3755 } 3756 3757 assert(core_slot); 3758 core_slot->cpu = NULL; 3759 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3760 } 3761 3762 static 3763 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3764 Error **errp) 3765 { 3766 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3767 int index; 3768 SpaprDrc *drc; 3769 CPUCore *cc = CPU_CORE(dev); 3770 3771 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3772 error_setg(errp, "Unable to find CPU core with core-id: %d", 3773 cc->core_id); 3774 return; 3775 } 3776 if (index == 0) { 3777 error_setg(errp, "Boot CPU core may not be unplugged"); 3778 return; 3779 } 3780 3781 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3782 spapr_vcpu_id(spapr, cc->core_id)); 3783 g_assert(drc); 3784 3785 spapr_drc_detach(drc); 3786 3787 spapr_hotplug_req_remove_by_index(drc); 3788 } 3789 3790 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3791 void *fdt, int *fdt_start_offset, Error **errp) 3792 { 3793 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3794 CPUState *cs = CPU(core->threads[0]); 3795 PowerPCCPU *cpu = POWERPC_CPU(cs); 3796 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3797 int id = spapr_get_vcpu_id(cpu); 3798 char *nodename; 3799 int offset; 3800 3801 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3802 offset = fdt_add_subnode(fdt, 0, nodename); 3803 g_free(nodename); 3804 3805 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3806 3807 *fdt_start_offset = offset; 3808 return 0; 3809 } 3810 3811 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3812 Error **errp) 3813 { 3814 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3815 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3816 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3817 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3818 CPUCore *cc = CPU_CORE(dev); 3819 CPUState *cs; 3820 SpaprDrc *drc; 3821 Error *local_err = NULL; 3822 CPUArchId *core_slot; 3823 int index; 3824 bool hotplugged = spapr_drc_hotplugged(dev); 3825 3826 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3827 if (!core_slot) { 3828 error_setg(errp, "Unable to find CPU core with core-id: %d", 3829 cc->core_id); 3830 return; 3831 } 3832 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3833 spapr_vcpu_id(spapr, cc->core_id)); 3834 3835 g_assert(drc || !mc->has_hotpluggable_cpus); 3836 3837 if (drc) { 3838 spapr_drc_attach(drc, dev, &local_err); 3839 if (local_err) { 3840 error_propagate(errp, local_err); 3841 return; 3842 } 3843 3844 if (hotplugged) { 3845 /* 3846 * Send hotplug notification interrupt to the guest only 3847 * in case of hotplugged CPUs. 3848 */ 3849 spapr_hotplug_req_add_by_index(drc); 3850 } else { 3851 spapr_drc_reset(drc); 3852 } 3853 } 3854 3855 core_slot->cpu = OBJECT(dev); 3856 3857 if (smc->pre_2_10_has_unused_icps) { 3858 int i; 3859 3860 for (i = 0; i < cc->nr_threads; i++) { 3861 cs = CPU(core->threads[i]); 3862 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3863 } 3864 } 3865 } 3866 3867 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3868 Error **errp) 3869 { 3870 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3871 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3872 Error *local_err = NULL; 3873 CPUCore *cc = CPU_CORE(dev); 3874 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3875 const char *type = object_get_typename(OBJECT(dev)); 3876 CPUArchId *core_slot; 3877 int index; 3878 unsigned int smp_threads = machine->smp.threads; 3879 3880 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3881 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3882 goto out; 3883 } 3884 3885 if (strcmp(base_core_type, type)) { 3886 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3887 goto out; 3888 } 3889 3890 if (cc->core_id % smp_threads) { 3891 error_setg(&local_err, "invalid core id %d", cc->core_id); 3892 goto out; 3893 } 3894 3895 /* 3896 * In general we should have homogeneous threads-per-core, but old 3897 * (pre hotplug support) machine types allow the last core to have 3898 * reduced threads as a compatibility hack for when we allowed 3899 * total vcpus not a multiple of threads-per-core. 3900 */ 3901 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3902 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3903 cc->nr_threads, smp_threads); 3904 goto out; 3905 } 3906 3907 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3908 if (!core_slot) { 3909 error_setg(&local_err, "core id %d out of range", cc->core_id); 3910 goto out; 3911 } 3912 3913 if (core_slot->cpu) { 3914 error_setg(&local_err, "core %d already populated", cc->core_id); 3915 goto out; 3916 } 3917 3918 numa_cpu_pre_plug(core_slot, dev, &local_err); 3919 3920 out: 3921 error_propagate(errp, local_err); 3922 } 3923 3924 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3925 void *fdt, int *fdt_start_offset, Error **errp) 3926 { 3927 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3928 int intc_phandle; 3929 3930 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3931 if (intc_phandle <= 0) { 3932 return -1; 3933 } 3934 3935 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3936 fdt_start_offset)) { 3937 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3938 return -1; 3939 } 3940 3941 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3942 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3943 3944 return 0; 3945 } 3946 3947 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3948 Error **errp) 3949 { 3950 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3951 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3952 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3953 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3954 3955 if (dev->hotplugged && !smc->dr_phb_enabled) { 3956 error_setg(errp, "PHB hotplug not supported for this machine"); 3957 return; 3958 } 3959 3960 if (sphb->index == (uint32_t)-1) { 3961 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3962 return; 3963 } 3964 3965 /* 3966 * This will check that sphb->index doesn't exceed the maximum number of 3967 * PHBs for the current machine type. 3968 */ 3969 smc->phb_placement(spapr, sphb->index, 3970 &sphb->buid, &sphb->io_win_addr, 3971 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3972 windows_supported, sphb->dma_liobn, 3973 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3974 errp); 3975 } 3976 3977 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3978 Error **errp) 3979 { 3980 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3981 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3982 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3983 SpaprDrc *drc; 3984 bool hotplugged = spapr_drc_hotplugged(dev); 3985 Error *local_err = NULL; 3986 3987 if (!smc->dr_phb_enabled) { 3988 return; 3989 } 3990 3991 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3992 /* hotplug hooks should check it's enabled before getting this far */ 3993 assert(drc); 3994 3995 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3996 if (local_err) { 3997 error_propagate(errp, local_err); 3998 return; 3999 } 4000 4001 if (hotplugged) { 4002 spapr_hotplug_req_add_by_index(drc); 4003 } else { 4004 spapr_drc_reset(drc); 4005 } 4006 } 4007 4008 void spapr_phb_release(DeviceState *dev) 4009 { 4010 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4011 4012 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4013 object_unparent(OBJECT(dev)); 4014 } 4015 4016 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4017 { 4018 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4019 } 4020 4021 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4022 DeviceState *dev, Error **errp) 4023 { 4024 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4025 SpaprDrc *drc; 4026 4027 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4028 assert(drc); 4029 4030 if (!spapr_drc_unplug_requested(drc)) { 4031 spapr_drc_detach(drc); 4032 spapr_hotplug_req_remove_by_index(drc); 4033 } 4034 } 4035 4036 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4037 DeviceState *dev, Error **errp) 4038 { 4039 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4040 spapr_memory_plug(hotplug_dev, dev, errp); 4041 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4042 spapr_core_plug(hotplug_dev, dev, errp); 4043 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4044 spapr_phb_plug(hotplug_dev, dev, errp); 4045 } 4046 } 4047 4048 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4049 DeviceState *dev, Error **errp) 4050 { 4051 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4052 spapr_memory_unplug(hotplug_dev, dev); 4053 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4054 spapr_core_unplug(hotplug_dev, dev); 4055 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4056 spapr_phb_unplug(hotplug_dev, dev); 4057 } 4058 } 4059 4060 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4061 DeviceState *dev, Error **errp) 4062 { 4063 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4064 MachineClass *mc = MACHINE_GET_CLASS(sms); 4065 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4066 4067 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4068 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4069 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4070 } else { 4071 /* NOTE: this means there is a window after guest reset, prior to 4072 * CAS negotiation, where unplug requests will fail due to the 4073 * capability not being detected yet. This is a bit different than 4074 * the case with PCI unplug, where the events will be queued and 4075 * eventually handled by the guest after boot 4076 */ 4077 error_setg(errp, "Memory hot unplug not supported for this guest"); 4078 } 4079 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4080 if (!mc->has_hotpluggable_cpus) { 4081 error_setg(errp, "CPU hot unplug not supported on this machine"); 4082 return; 4083 } 4084 spapr_core_unplug_request(hotplug_dev, dev, errp); 4085 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4086 if (!smc->dr_phb_enabled) { 4087 error_setg(errp, "PHB hot unplug not supported on this machine"); 4088 return; 4089 } 4090 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4091 } 4092 } 4093 4094 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4095 DeviceState *dev, Error **errp) 4096 { 4097 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4098 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4099 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4100 spapr_core_pre_plug(hotplug_dev, dev, errp); 4101 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4102 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4103 } 4104 } 4105 4106 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4107 DeviceState *dev) 4108 { 4109 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4110 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4111 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4112 return HOTPLUG_HANDLER(machine); 4113 } 4114 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4115 PCIDevice *pcidev = PCI_DEVICE(dev); 4116 PCIBus *root = pci_device_root_bus(pcidev); 4117 SpaprPhbState *phb = 4118 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4119 TYPE_SPAPR_PCI_HOST_BRIDGE); 4120 4121 if (phb) { 4122 return HOTPLUG_HANDLER(phb); 4123 } 4124 } 4125 return NULL; 4126 } 4127 4128 static CpuInstanceProperties 4129 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4130 { 4131 CPUArchId *core_slot; 4132 MachineClass *mc = MACHINE_GET_CLASS(machine); 4133 4134 /* make sure possible_cpu are intialized */ 4135 mc->possible_cpu_arch_ids(machine); 4136 /* get CPU core slot containing thread that matches cpu_index */ 4137 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4138 assert(core_slot); 4139 return core_slot->props; 4140 } 4141 4142 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4143 { 4144 return idx / ms->smp.cores % nb_numa_nodes; 4145 } 4146 4147 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4148 { 4149 int i; 4150 unsigned int smp_threads = machine->smp.threads; 4151 unsigned int smp_cpus = machine->smp.cpus; 4152 const char *core_type; 4153 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4154 MachineClass *mc = MACHINE_GET_CLASS(machine); 4155 4156 if (!mc->has_hotpluggable_cpus) { 4157 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4158 } 4159 if (machine->possible_cpus) { 4160 assert(machine->possible_cpus->len == spapr_max_cores); 4161 return machine->possible_cpus; 4162 } 4163 4164 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4165 if (!core_type) { 4166 error_report("Unable to find sPAPR CPU Core definition"); 4167 exit(1); 4168 } 4169 4170 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4171 sizeof(CPUArchId) * spapr_max_cores); 4172 machine->possible_cpus->len = spapr_max_cores; 4173 for (i = 0; i < machine->possible_cpus->len; i++) { 4174 int core_id = i * smp_threads; 4175 4176 machine->possible_cpus->cpus[i].type = core_type; 4177 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4178 machine->possible_cpus->cpus[i].arch_id = core_id; 4179 machine->possible_cpus->cpus[i].props.has_core_id = true; 4180 machine->possible_cpus->cpus[i].props.core_id = core_id; 4181 } 4182 return machine->possible_cpus; 4183 } 4184 4185 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4186 uint64_t *buid, hwaddr *pio, 4187 hwaddr *mmio32, hwaddr *mmio64, 4188 unsigned n_dma, uint32_t *liobns, 4189 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4190 { 4191 /* 4192 * New-style PHB window placement. 4193 * 4194 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4195 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4196 * windows. 4197 * 4198 * Some guest kernels can't work with MMIO windows above 1<<46 4199 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4200 * 4201 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4202 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4203 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4204 * 1TiB 64-bit MMIO windows for each PHB. 4205 */ 4206 const uint64_t base_buid = 0x800000020000000ULL; 4207 int i; 4208 4209 /* Sanity check natural alignments */ 4210 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4211 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4212 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4213 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4214 /* Sanity check bounds */ 4215 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4216 SPAPR_PCI_MEM32_WIN_SIZE); 4217 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4218 SPAPR_PCI_MEM64_WIN_SIZE); 4219 4220 if (index >= SPAPR_MAX_PHBS) { 4221 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4222 SPAPR_MAX_PHBS - 1); 4223 return; 4224 } 4225 4226 *buid = base_buid + index; 4227 for (i = 0; i < n_dma; ++i) { 4228 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4229 } 4230 4231 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4232 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4233 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4234 4235 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4236 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4237 } 4238 4239 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4240 { 4241 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4242 4243 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4244 } 4245 4246 static void spapr_ics_resend(XICSFabric *dev) 4247 { 4248 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4249 4250 ics_resend(spapr->ics); 4251 } 4252 4253 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4254 { 4255 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4256 4257 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4258 } 4259 4260 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4261 Monitor *mon) 4262 { 4263 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4264 4265 spapr->irq->print_info(spapr, mon); 4266 } 4267 4268 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4269 { 4270 return cpu->vcpu_id; 4271 } 4272 4273 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4274 { 4275 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4276 MachineState *ms = MACHINE(spapr); 4277 int vcpu_id; 4278 4279 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4280 4281 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4282 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4283 error_append_hint(errp, "Adjust the number of cpus to %d " 4284 "or try to raise the number of threads per core\n", 4285 vcpu_id * ms->smp.threads / spapr->vsmt); 4286 return; 4287 } 4288 4289 cpu->vcpu_id = vcpu_id; 4290 } 4291 4292 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4293 { 4294 CPUState *cs; 4295 4296 CPU_FOREACH(cs) { 4297 PowerPCCPU *cpu = POWERPC_CPU(cs); 4298 4299 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4300 return cpu; 4301 } 4302 } 4303 4304 return NULL; 4305 } 4306 4307 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4308 { 4309 MachineClass *mc = MACHINE_CLASS(oc); 4310 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4311 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4312 NMIClass *nc = NMI_CLASS(oc); 4313 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4314 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4315 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4316 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4317 4318 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4319 mc->ignore_boot_device_suffixes = true; 4320 4321 /* 4322 * We set up the default / latest behaviour here. The class_init 4323 * functions for the specific versioned machine types can override 4324 * these details for backwards compatibility 4325 */ 4326 mc->init = spapr_machine_init; 4327 mc->reset = spapr_machine_reset; 4328 mc->block_default_type = IF_SCSI; 4329 mc->max_cpus = 1024; 4330 mc->no_parallel = 1; 4331 mc->default_boot_order = ""; 4332 mc->default_ram_size = 512 * MiB; 4333 mc->default_display = "std"; 4334 mc->kvm_type = spapr_kvm_type; 4335 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4336 mc->pci_allow_0_address = true; 4337 assert(!mc->get_hotplug_handler); 4338 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4339 hc->pre_plug = spapr_machine_device_pre_plug; 4340 hc->plug = spapr_machine_device_plug; 4341 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4342 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4343 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4344 hc->unplug_request = spapr_machine_device_unplug_request; 4345 hc->unplug = spapr_machine_device_unplug; 4346 4347 smc->dr_lmb_enabled = true; 4348 smc->update_dt_enabled = true; 4349 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4350 mc->has_hotpluggable_cpus = true; 4351 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4352 fwc->get_dev_path = spapr_get_fw_dev_path; 4353 nc->nmi_monitor_handler = spapr_nmi; 4354 smc->phb_placement = spapr_phb_placement; 4355 vhc->hypercall = emulate_spapr_hypercall; 4356 vhc->hpt_mask = spapr_hpt_mask; 4357 vhc->map_hptes = spapr_map_hptes; 4358 vhc->unmap_hptes = spapr_unmap_hptes; 4359 vhc->hpte_set_c = spapr_hpte_set_c; 4360 vhc->hpte_set_r = spapr_hpte_set_r; 4361 vhc->get_pate = spapr_get_pate; 4362 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4363 xic->ics_get = spapr_ics_get; 4364 xic->ics_resend = spapr_ics_resend; 4365 xic->icp_get = spapr_icp_get; 4366 ispc->print_info = spapr_pic_print_info; 4367 /* Force NUMA node memory size to be a multiple of 4368 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4369 * in which LMBs are represented and hot-added 4370 */ 4371 mc->numa_mem_align_shift = 28; 4372 mc->numa_mem_supported = true; 4373 4374 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4375 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4376 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4377 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4378 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4379 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4380 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4381 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4382 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4383 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4384 spapr_caps_add_properties(smc, &error_abort); 4385 smc->irq = &spapr_irq_dual; 4386 smc->dr_phb_enabled = true; 4387 } 4388 4389 static const TypeInfo spapr_machine_info = { 4390 .name = TYPE_SPAPR_MACHINE, 4391 .parent = TYPE_MACHINE, 4392 .abstract = true, 4393 .instance_size = sizeof(SpaprMachineState), 4394 .instance_init = spapr_instance_init, 4395 .instance_finalize = spapr_machine_finalizefn, 4396 .class_size = sizeof(SpaprMachineClass), 4397 .class_init = spapr_machine_class_init, 4398 .interfaces = (InterfaceInfo[]) { 4399 { TYPE_FW_PATH_PROVIDER }, 4400 { TYPE_NMI }, 4401 { TYPE_HOTPLUG_HANDLER }, 4402 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4403 { TYPE_XICS_FABRIC }, 4404 { TYPE_INTERRUPT_STATS_PROVIDER }, 4405 { } 4406 }, 4407 }; 4408 4409 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4410 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4411 void *data) \ 4412 { \ 4413 MachineClass *mc = MACHINE_CLASS(oc); \ 4414 spapr_machine_##suffix##_class_options(mc); \ 4415 if (latest) { \ 4416 mc->alias = "pseries"; \ 4417 mc->is_default = 1; \ 4418 } \ 4419 } \ 4420 static const TypeInfo spapr_machine_##suffix##_info = { \ 4421 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4422 .parent = TYPE_SPAPR_MACHINE, \ 4423 .class_init = spapr_machine_##suffix##_class_init, \ 4424 }; \ 4425 static void spapr_machine_register_##suffix(void) \ 4426 { \ 4427 type_register(&spapr_machine_##suffix##_info); \ 4428 } \ 4429 type_init(spapr_machine_register_##suffix) 4430 4431 /* 4432 * pseries-4.1 4433 */ 4434 static void spapr_machine_4_1_class_options(MachineClass *mc) 4435 { 4436 /* Defaults for the latest behaviour inherited from the base class */ 4437 } 4438 4439 DEFINE_SPAPR_MACHINE(4_1, "4.1", true); 4440 4441 /* 4442 * pseries-4.0 4443 */ 4444 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4445 uint64_t *buid, hwaddr *pio, 4446 hwaddr *mmio32, hwaddr *mmio64, 4447 unsigned n_dma, uint32_t *liobns, 4448 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4449 { 4450 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4451 nv2gpa, nv2atsd, errp); 4452 *nv2gpa = 0; 4453 *nv2atsd = 0; 4454 } 4455 4456 static void spapr_machine_4_0_class_options(MachineClass *mc) 4457 { 4458 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4459 4460 spapr_machine_4_1_class_options(mc); 4461 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4462 smc->phb_placement = phb_placement_4_0; 4463 smc->irq = &spapr_irq_xics; 4464 smc->pre_4_1_migration = true; 4465 } 4466 4467 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4468 4469 /* 4470 * pseries-3.1 4471 */ 4472 static void spapr_machine_3_1_class_options(MachineClass *mc) 4473 { 4474 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4475 4476 spapr_machine_4_0_class_options(mc); 4477 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4478 4479 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4480 smc->update_dt_enabled = false; 4481 smc->dr_phb_enabled = false; 4482 smc->broken_host_serial_model = true; 4483 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4484 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4485 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4486 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4487 } 4488 4489 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4490 4491 /* 4492 * pseries-3.0 4493 */ 4494 4495 static void spapr_machine_3_0_class_options(MachineClass *mc) 4496 { 4497 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4498 4499 spapr_machine_3_1_class_options(mc); 4500 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4501 4502 smc->legacy_irq_allocation = true; 4503 smc->irq = &spapr_irq_xics_legacy; 4504 } 4505 4506 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4507 4508 /* 4509 * pseries-2.12 4510 */ 4511 static void spapr_machine_2_12_class_options(MachineClass *mc) 4512 { 4513 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4514 static GlobalProperty compat[] = { 4515 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4516 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4517 }; 4518 4519 spapr_machine_3_0_class_options(mc); 4520 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4521 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4522 4523 /* We depend on kvm_enabled() to choose a default value for the 4524 * hpt-max-page-size capability. Of course we can't do it here 4525 * because this is too early and the HW accelerator isn't initialzed 4526 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4527 */ 4528 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4529 } 4530 4531 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4532 4533 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4534 { 4535 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4536 4537 spapr_machine_2_12_class_options(mc); 4538 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4539 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4540 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4541 } 4542 4543 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4544 4545 /* 4546 * pseries-2.11 4547 */ 4548 4549 static void spapr_machine_2_11_class_options(MachineClass *mc) 4550 { 4551 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4552 4553 spapr_machine_2_12_class_options(mc); 4554 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4555 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4556 } 4557 4558 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4559 4560 /* 4561 * pseries-2.10 4562 */ 4563 4564 static void spapr_machine_2_10_class_options(MachineClass *mc) 4565 { 4566 spapr_machine_2_11_class_options(mc); 4567 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4568 } 4569 4570 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4571 4572 /* 4573 * pseries-2.9 4574 */ 4575 4576 static void spapr_machine_2_9_class_options(MachineClass *mc) 4577 { 4578 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4579 static GlobalProperty compat[] = { 4580 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4581 }; 4582 4583 spapr_machine_2_10_class_options(mc); 4584 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4585 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4586 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4587 smc->pre_2_10_has_unused_icps = true; 4588 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4589 } 4590 4591 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4592 4593 /* 4594 * pseries-2.8 4595 */ 4596 4597 static void spapr_machine_2_8_class_options(MachineClass *mc) 4598 { 4599 static GlobalProperty compat[] = { 4600 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4601 }; 4602 4603 spapr_machine_2_9_class_options(mc); 4604 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4605 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4606 mc->numa_mem_align_shift = 23; 4607 } 4608 4609 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4610 4611 /* 4612 * pseries-2.7 4613 */ 4614 4615 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4616 uint64_t *buid, hwaddr *pio, 4617 hwaddr *mmio32, hwaddr *mmio64, 4618 unsigned n_dma, uint32_t *liobns, 4619 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4620 { 4621 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4622 const uint64_t base_buid = 0x800000020000000ULL; 4623 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4624 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4625 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4626 const uint32_t max_index = 255; 4627 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4628 4629 uint64_t ram_top = MACHINE(spapr)->ram_size; 4630 hwaddr phb0_base, phb_base; 4631 int i; 4632 4633 /* Do we have device memory? */ 4634 if (MACHINE(spapr)->maxram_size > ram_top) { 4635 /* Can't just use maxram_size, because there may be an 4636 * alignment gap between normal and device memory regions 4637 */ 4638 ram_top = MACHINE(spapr)->device_memory->base + 4639 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4640 } 4641 4642 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4643 4644 if (index > max_index) { 4645 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4646 max_index); 4647 return; 4648 } 4649 4650 *buid = base_buid + index; 4651 for (i = 0; i < n_dma; ++i) { 4652 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4653 } 4654 4655 phb_base = phb0_base + index * phb_spacing; 4656 *pio = phb_base + pio_offset; 4657 *mmio32 = phb_base + mmio_offset; 4658 /* 4659 * We don't set the 64-bit MMIO window, relying on the PHB's 4660 * fallback behaviour of automatically splitting a large "32-bit" 4661 * window into contiguous 32-bit and 64-bit windows 4662 */ 4663 4664 *nv2gpa = 0; 4665 *nv2atsd = 0; 4666 } 4667 4668 static void spapr_machine_2_7_class_options(MachineClass *mc) 4669 { 4670 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4671 static GlobalProperty compat[] = { 4672 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4673 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4674 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4675 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4676 }; 4677 4678 spapr_machine_2_8_class_options(mc); 4679 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4680 mc->default_machine_opts = "modern-hotplug-events=off"; 4681 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4682 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4683 smc->phb_placement = phb_placement_2_7; 4684 } 4685 4686 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4687 4688 /* 4689 * pseries-2.6 4690 */ 4691 4692 static void spapr_machine_2_6_class_options(MachineClass *mc) 4693 { 4694 static GlobalProperty compat[] = { 4695 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4696 }; 4697 4698 spapr_machine_2_7_class_options(mc); 4699 mc->has_hotpluggable_cpus = false; 4700 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4701 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4702 } 4703 4704 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4705 4706 /* 4707 * pseries-2.5 4708 */ 4709 4710 static void spapr_machine_2_5_class_options(MachineClass *mc) 4711 { 4712 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4713 static GlobalProperty compat[] = { 4714 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4715 }; 4716 4717 spapr_machine_2_6_class_options(mc); 4718 smc->use_ohci_by_default = true; 4719 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4720 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4721 } 4722 4723 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4724 4725 /* 4726 * pseries-2.4 4727 */ 4728 4729 static void spapr_machine_2_4_class_options(MachineClass *mc) 4730 { 4731 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4732 4733 spapr_machine_2_5_class_options(mc); 4734 smc->dr_lmb_enabled = false; 4735 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4736 } 4737 4738 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4739 4740 /* 4741 * pseries-2.3 4742 */ 4743 4744 static void spapr_machine_2_3_class_options(MachineClass *mc) 4745 { 4746 static GlobalProperty compat[] = { 4747 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4748 }; 4749 spapr_machine_2_4_class_options(mc); 4750 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4751 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4752 } 4753 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4754 4755 /* 4756 * pseries-2.2 4757 */ 4758 4759 static void spapr_machine_2_2_class_options(MachineClass *mc) 4760 { 4761 static GlobalProperty compat[] = { 4762 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4763 }; 4764 4765 spapr_machine_2_3_class_options(mc); 4766 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4767 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4768 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4769 } 4770 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4771 4772 /* 4773 * pseries-2.1 4774 */ 4775 4776 static void spapr_machine_2_1_class_options(MachineClass *mc) 4777 { 4778 spapr_machine_2_2_class_options(mc); 4779 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4780 } 4781 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4782 4783 static void spapr_machine_register_types(void) 4784 { 4785 type_register_static(&spapr_machine_info); 4786 } 4787 4788 type_init(spapr_machine_register_types) 4789