xref: /openbmc/qemu/hw/ppc/spapr.c (revision 5cc8767d)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/numa.h"
33 #include "sysemu/qtest.h"
34 #include "hw/hw.h"
35 #include "qemu/log.h"
36 #include "hw/fw-path-provider.h"
37 #include "elf.h"
38 #include "net/net.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/cpus.h"
41 #include "sysemu/hw_accel.h"
42 #include "kvm_ppc.h"
43 #include "migration/misc.h"
44 #include "migration/global_state.h"
45 #include "migration/register.h"
46 #include "mmu-hash64.h"
47 #include "mmu-book3s-v3.h"
48 #include "cpu-models.h"
49 #include "qom/cpu.h"
50 
51 #include "hw/boards.h"
52 #include "hw/ppc/ppc.h"
53 #include "hw/loader.h"
54 
55 #include "hw/ppc/fdt.h"
56 #include "hw/ppc/spapr.h"
57 #include "hw/ppc/spapr_vio.h"
58 #include "hw/pci-host/spapr.h"
59 #include "hw/pci/msi.h"
60 
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
65 
66 #include "exec/address-spaces.h"
67 #include "exec/ram_addr.h"
68 #include "hw/usb.h"
69 #include "qemu/config-file.h"
70 #include "qemu/error-report.h"
71 #include "trace.h"
72 #include "hw/nmi.h"
73 #include "hw/intc/intc.h"
74 
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "hw/mem/memory-device.h"
78 
79 #include <libfdt.h>
80 
81 /* SLOF memory layout:
82  *
83  * SLOF raw image loaded at 0, copies its romfs right below the flat
84  * device-tree, then position SLOF itself 31M below that
85  *
86  * So we set FW_OVERHEAD to 40MB which should account for all of that
87  * and more
88  *
89  * We load our kernel at 4M, leaving space for SLOF initial image
90  */
91 #define FDT_MAX_SIZE            0x100000
92 #define RTAS_MAX_SIZE           0x10000
93 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE             0x400000
95 #define FW_FILE_NAME            "slof.bin"
96 #define FW_OVERHEAD             0x2800000
97 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
98 
99 #define MIN_RMA_SLOF            128UL
100 
101 #define PHANDLE_INTC            0x00001111
102 
103 /* These two functions implement the VCPU id numbering: one to compute them
104  * all and one to identify thread 0 of a VCORE. Any change to the first one
105  * is likely to have an impact on the second one, so let's keep them close.
106  */
107 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
108 {
109     assert(spapr->vsmt);
110     return
111         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 }
113 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
114                                       PowerPCCPU *cpu)
115 {
116     assert(spapr->vsmt);
117     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
118 }
119 
120 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
121 {
122     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
123      * and newer QEMUs don't even have them. In both cases, we don't want
124      * to send anything on the wire.
125      */
126     return false;
127 }
128 
129 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
130     .name = "icp/server",
131     .version_id = 1,
132     .minimum_version_id = 1,
133     .needed = pre_2_10_vmstate_dummy_icp_needed,
134     .fields = (VMStateField[]) {
135         VMSTATE_UNUSED(4), /* uint32_t xirr */
136         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
137         VMSTATE_UNUSED(1), /* uint8_t mfrr */
138         VMSTATE_END_OF_LIST()
139     },
140 };
141 
142 static void pre_2_10_vmstate_register_dummy_icp(int i)
143 {
144     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
145                      (void *)(uintptr_t) i);
146 }
147 
148 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
149 {
150     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
151                        (void *)(uintptr_t) i);
152 }
153 
154 int spapr_max_server_number(SpaprMachineState *spapr)
155 {
156     assert(spapr->vsmt);
157     return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
158 }
159 
160 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
161                                   int smt_threads)
162 {
163     int i, ret = 0;
164     uint32_t servers_prop[smt_threads];
165     uint32_t gservers_prop[smt_threads * 2];
166     int index = spapr_get_vcpu_id(cpu);
167 
168     if (cpu->compat_pvr) {
169         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
170         if (ret < 0) {
171             return ret;
172         }
173     }
174 
175     /* Build interrupt servers and gservers properties */
176     for (i = 0; i < smt_threads; i++) {
177         servers_prop[i] = cpu_to_be32(index + i);
178         /* Hack, direct the group queues back to cpu 0 */
179         gservers_prop[i*2] = cpu_to_be32(index + i);
180         gservers_prop[i*2 + 1] = 0;
181     }
182     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
183                       servers_prop, sizeof(servers_prop));
184     if (ret < 0) {
185         return ret;
186     }
187     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
188                       gservers_prop, sizeof(gservers_prop));
189 
190     return ret;
191 }
192 
193 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
194 {
195     int index = spapr_get_vcpu_id(cpu);
196     uint32_t associativity[] = {cpu_to_be32(0x5),
197                                 cpu_to_be32(0x0),
198                                 cpu_to_be32(0x0),
199                                 cpu_to_be32(0x0),
200                                 cpu_to_be32(cpu->node_id),
201                                 cpu_to_be32(index)};
202 
203     /* Advertise NUMA via ibm,associativity */
204     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
205                           sizeof(associativity));
206 }
207 
208 /* Populate the "ibm,pa-features" property */
209 static void spapr_populate_pa_features(SpaprMachineState *spapr,
210                                        PowerPCCPU *cpu,
211                                        void *fdt, int offset,
212                                        bool legacy_guest)
213 {
214     uint8_t pa_features_206[] = { 6, 0,
215         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
216     uint8_t pa_features_207[] = { 24, 0,
217         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
218         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
219         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
220         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
221     uint8_t pa_features_300[] = { 66, 0,
222         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
223         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
224         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
225         /* 6: DS207 */
226         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
227         /* 16: Vector */
228         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
229         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
230         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
231         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
232         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
233         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
234         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
235         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
236         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
237         /* 42: PM, 44: PC RA, 46: SC vec'd */
238         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
239         /* 48: SIMD, 50: QP BFP, 52: String */
240         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
241         /* 54: DecFP, 56: DecI, 58: SHA */
242         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
243         /* 60: NM atomic, 62: RNG */
244         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245     };
246     uint8_t *pa_features = NULL;
247     size_t pa_size;
248 
249     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
250         pa_features = pa_features_206;
251         pa_size = sizeof(pa_features_206);
252     }
253     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
254         pa_features = pa_features_207;
255         pa_size = sizeof(pa_features_207);
256     }
257     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
258         pa_features = pa_features_300;
259         pa_size = sizeof(pa_features_300);
260     }
261     if (!pa_features) {
262         return;
263     }
264 
265     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
266         /*
267          * Note: we keep CI large pages off by default because a 64K capable
268          * guest provisioned with large pages might otherwise try to map a qemu
269          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
270          * even if that qemu runs on a 4k host.
271          * We dd this bit back here if we are confident this is not an issue
272          */
273         pa_features[3] |= 0x20;
274     }
275     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
276         pa_features[24] |= 0x80;    /* Transactional memory support */
277     }
278     if (legacy_guest && pa_size > 40) {
279         /* Workaround for broken kernels that attempt (guest) radix
280          * mode when they can't handle it, if they see the radix bit set
281          * in pa-features. So hide it from them. */
282         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
283     }
284 
285     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
286 }
287 
288 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
289 {
290     int ret = 0, offset, cpus_offset;
291     CPUState *cs;
292     char cpu_model[32];
293     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
294 
295     CPU_FOREACH(cs) {
296         PowerPCCPU *cpu = POWERPC_CPU(cs);
297         DeviceClass *dc = DEVICE_GET_CLASS(cs);
298         int index = spapr_get_vcpu_id(cpu);
299         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
300 
301         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
302             continue;
303         }
304 
305         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
306 
307         cpus_offset = fdt_path_offset(fdt, "/cpus");
308         if (cpus_offset < 0) {
309             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
310             if (cpus_offset < 0) {
311                 return cpus_offset;
312             }
313         }
314         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
315         if (offset < 0) {
316             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
317             if (offset < 0) {
318                 return offset;
319             }
320         }
321 
322         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
323                           pft_size_prop, sizeof(pft_size_prop));
324         if (ret < 0) {
325             return ret;
326         }
327 
328         if (nb_numa_nodes > 1) {
329             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
330             if (ret < 0) {
331                 return ret;
332             }
333         }
334 
335         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
336         if (ret < 0) {
337             return ret;
338         }
339 
340         spapr_populate_pa_features(spapr, cpu, fdt, offset,
341                                    spapr->cas_legacy_guest_workaround);
342     }
343     return ret;
344 }
345 
346 static hwaddr spapr_node0_size(MachineState *machine)
347 {
348     if (nb_numa_nodes) {
349         int i;
350         for (i = 0; i < nb_numa_nodes; ++i) {
351             if (numa_info[i].node_mem) {
352                 return MIN(pow2floor(numa_info[i].node_mem),
353                            machine->ram_size);
354             }
355         }
356     }
357     return machine->ram_size;
358 }
359 
360 static void add_str(GString *s, const gchar *s1)
361 {
362     g_string_append_len(s, s1, strlen(s1) + 1);
363 }
364 
365 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
366                                        hwaddr size)
367 {
368     uint32_t associativity[] = {
369         cpu_to_be32(0x4), /* length */
370         cpu_to_be32(0x0), cpu_to_be32(0x0),
371         cpu_to_be32(0x0), cpu_to_be32(nodeid)
372     };
373     char mem_name[32];
374     uint64_t mem_reg_property[2];
375     int off;
376 
377     mem_reg_property[0] = cpu_to_be64(start);
378     mem_reg_property[1] = cpu_to_be64(size);
379 
380     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
381     off = fdt_add_subnode(fdt, 0, mem_name);
382     _FDT(off);
383     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
384     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
385                       sizeof(mem_reg_property))));
386     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
387                       sizeof(associativity))));
388     return off;
389 }
390 
391 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
392 {
393     MachineState *machine = MACHINE(spapr);
394     hwaddr mem_start, node_size;
395     int i, nb_nodes = nb_numa_nodes;
396     NodeInfo *nodes = numa_info;
397     NodeInfo ramnode;
398 
399     /* No NUMA nodes, assume there is just one node with whole RAM */
400     if (!nb_numa_nodes) {
401         nb_nodes = 1;
402         ramnode.node_mem = machine->ram_size;
403         nodes = &ramnode;
404     }
405 
406     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
407         if (!nodes[i].node_mem) {
408             continue;
409         }
410         if (mem_start >= machine->ram_size) {
411             node_size = 0;
412         } else {
413             node_size = nodes[i].node_mem;
414             if (node_size > machine->ram_size - mem_start) {
415                 node_size = machine->ram_size - mem_start;
416             }
417         }
418         if (!mem_start) {
419             /* spapr_machine_init() checks for rma_size <= node0_size
420              * already */
421             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
422             mem_start += spapr->rma_size;
423             node_size -= spapr->rma_size;
424         }
425         for ( ; node_size; ) {
426             hwaddr sizetmp = pow2floor(node_size);
427 
428             /* mem_start != 0 here */
429             if (ctzl(mem_start) < ctzl(sizetmp)) {
430                 sizetmp = 1ULL << ctzl(mem_start);
431             }
432 
433             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
434             node_size -= sizetmp;
435             mem_start += sizetmp;
436         }
437     }
438 
439     return 0;
440 }
441 
442 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
443                                   SpaprMachineState *spapr)
444 {
445     PowerPCCPU *cpu = POWERPC_CPU(cs);
446     CPUPPCState *env = &cpu->env;
447     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
448     int index = spapr_get_vcpu_id(cpu);
449     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
450                        0xffffffff, 0xffffffff};
451     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
452         : SPAPR_TIMEBASE_FREQ;
453     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
454     uint32_t page_sizes_prop[64];
455     size_t page_sizes_prop_size;
456     uint32_t vcpus_per_socket = smp_threads * smp_cores;
457     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
458     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
459     SpaprDrc *drc;
460     int drc_index;
461     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
462     int i;
463 
464     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
465     if (drc) {
466         drc_index = spapr_drc_index(drc);
467         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
468     }
469 
470     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
471     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
472 
473     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
474     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
475                            env->dcache_line_size)));
476     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
477                            env->dcache_line_size)));
478     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
479                            env->icache_line_size)));
480     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
481                            env->icache_line_size)));
482 
483     if (pcc->l1_dcache_size) {
484         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
485                                pcc->l1_dcache_size)));
486     } else {
487         warn_report("Unknown L1 dcache size for cpu");
488     }
489     if (pcc->l1_icache_size) {
490         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
491                                pcc->l1_icache_size)));
492     } else {
493         warn_report("Unknown L1 icache size for cpu");
494     }
495 
496     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
497     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
498     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
499     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
500     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
501     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
502 
503     if (env->spr_cb[SPR_PURR].oea_read) {
504         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
505     }
506     if (env->spr_cb[SPR_SPURR].oea_read) {
507         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
508     }
509 
510     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
511         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
512                           segs, sizeof(segs))));
513     }
514 
515     /* Advertise VSX (vector extensions) if available
516      *   1               == VMX / Altivec available
517      *   2               == VSX available
518      *
519      * Only CPUs for which we create core types in spapr_cpu_core.c
520      * are possible, and all of those have VMX */
521     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
522         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
523     } else {
524         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
525     }
526 
527     /* Advertise DFP (Decimal Floating Point) if available
528      *   0 / no property == no DFP
529      *   1               == DFP available */
530     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
531         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
532     }
533 
534     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
535                                                       sizeof(page_sizes_prop));
536     if (page_sizes_prop_size) {
537         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
538                           page_sizes_prop, page_sizes_prop_size)));
539     }
540 
541     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
542 
543     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
544                            cs->cpu_index / vcpus_per_socket)));
545 
546     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
547                       pft_size_prop, sizeof(pft_size_prop))));
548 
549     if (nb_numa_nodes > 1) {
550         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
551     }
552 
553     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
554 
555     if (pcc->radix_page_info) {
556         for (i = 0; i < pcc->radix_page_info->count; i++) {
557             radix_AP_encodings[i] =
558                 cpu_to_be32(pcc->radix_page_info->entries[i]);
559         }
560         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
561                           radix_AP_encodings,
562                           pcc->radix_page_info->count *
563                           sizeof(radix_AP_encodings[0]))));
564     }
565 
566     /*
567      * We set this property to let the guest know that it can use the large
568      * decrementer and its width in bits.
569      */
570     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
571         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
572                               pcc->lrg_decr_bits)));
573 }
574 
575 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
576 {
577     CPUState **rev;
578     CPUState *cs;
579     int n_cpus;
580     int cpus_offset;
581     char *nodename;
582     int i;
583 
584     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
585     _FDT(cpus_offset);
586     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
587     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
588 
589     /*
590      * We walk the CPUs in reverse order to ensure that CPU DT nodes
591      * created by fdt_add_subnode() end up in the right order in FDT
592      * for the guest kernel the enumerate the CPUs correctly.
593      *
594      * The CPU list cannot be traversed in reverse order, so we need
595      * to do extra work.
596      */
597     n_cpus = 0;
598     rev = NULL;
599     CPU_FOREACH(cs) {
600         rev = g_renew(CPUState *, rev, n_cpus + 1);
601         rev[n_cpus++] = cs;
602     }
603 
604     for (i = n_cpus - 1; i >= 0; i--) {
605         CPUState *cs = rev[i];
606         PowerPCCPU *cpu = POWERPC_CPU(cs);
607         int index = spapr_get_vcpu_id(cpu);
608         DeviceClass *dc = DEVICE_GET_CLASS(cs);
609         int offset;
610 
611         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
612             continue;
613         }
614 
615         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
616         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
617         g_free(nodename);
618         _FDT(offset);
619         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
620     }
621 
622     g_free(rev);
623 }
624 
625 static int spapr_rng_populate_dt(void *fdt)
626 {
627     int node;
628     int ret;
629 
630     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
631     if (node <= 0) {
632         return -1;
633     }
634     ret = fdt_setprop_string(fdt, node, "device_type",
635                              "ibm,platform-facilities");
636     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
637     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
638 
639     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
640     if (node <= 0) {
641         return -1;
642     }
643     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
644 
645     return ret ? -1 : 0;
646 }
647 
648 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
649 {
650     MemoryDeviceInfoList *info;
651 
652     for (info = list; info; info = info->next) {
653         MemoryDeviceInfo *value = info->value;
654 
655         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
656             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
657 
658             if (addr >= pcdimm_info->addr &&
659                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
660                 return pcdimm_info->node;
661             }
662         }
663     }
664 
665     return -1;
666 }
667 
668 struct sPAPRDrconfCellV2 {
669      uint32_t seq_lmbs;
670      uint64_t base_addr;
671      uint32_t drc_index;
672      uint32_t aa_index;
673      uint32_t flags;
674 } QEMU_PACKED;
675 
676 typedef struct DrconfCellQueue {
677     struct sPAPRDrconfCellV2 cell;
678     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
679 } DrconfCellQueue;
680 
681 static DrconfCellQueue *
682 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
683                       uint32_t drc_index, uint32_t aa_index,
684                       uint32_t flags)
685 {
686     DrconfCellQueue *elem;
687 
688     elem = g_malloc0(sizeof(*elem));
689     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
690     elem->cell.base_addr = cpu_to_be64(base_addr);
691     elem->cell.drc_index = cpu_to_be32(drc_index);
692     elem->cell.aa_index = cpu_to_be32(aa_index);
693     elem->cell.flags = cpu_to_be32(flags);
694 
695     return elem;
696 }
697 
698 /* ibm,dynamic-memory-v2 */
699 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
700                                    int offset, MemoryDeviceInfoList *dimms)
701 {
702     MachineState *machine = MACHINE(spapr);
703     uint8_t *int_buf, *cur_index;
704     int ret;
705     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
706     uint64_t addr, cur_addr, size;
707     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
708     uint64_t mem_end = machine->device_memory->base +
709                        memory_region_size(&machine->device_memory->mr);
710     uint32_t node, buf_len, nr_entries = 0;
711     SpaprDrc *drc;
712     DrconfCellQueue *elem, *next;
713     MemoryDeviceInfoList *info;
714     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
715         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
716 
717     /* Entry to cover RAM and the gap area */
718     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
719                                  SPAPR_LMB_FLAGS_RESERVED |
720                                  SPAPR_LMB_FLAGS_DRC_INVALID);
721     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
722     nr_entries++;
723 
724     cur_addr = machine->device_memory->base;
725     for (info = dimms; info; info = info->next) {
726         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
727 
728         addr = di->addr;
729         size = di->size;
730         node = di->node;
731 
732         /* Entry for hot-pluggable area */
733         if (cur_addr < addr) {
734             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
735             g_assert(drc);
736             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
737                                          cur_addr, spapr_drc_index(drc), -1, 0);
738             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
739             nr_entries++;
740         }
741 
742         /* Entry for DIMM */
743         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
744         g_assert(drc);
745         elem = spapr_get_drconf_cell(size / lmb_size, addr,
746                                      spapr_drc_index(drc), node,
747                                      SPAPR_LMB_FLAGS_ASSIGNED);
748         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
749         nr_entries++;
750         cur_addr = addr + size;
751     }
752 
753     /* Entry for remaining hotpluggable area */
754     if (cur_addr < mem_end) {
755         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
756         g_assert(drc);
757         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
758                                      cur_addr, spapr_drc_index(drc), -1, 0);
759         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
760         nr_entries++;
761     }
762 
763     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
764     int_buf = cur_index = g_malloc0(buf_len);
765     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
766     cur_index += sizeof(nr_entries);
767 
768     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
769         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
770         cur_index += sizeof(elem->cell);
771         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
772         g_free(elem);
773     }
774 
775     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
776     g_free(int_buf);
777     if (ret < 0) {
778         return -1;
779     }
780     return 0;
781 }
782 
783 /* ibm,dynamic-memory */
784 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
785                                    int offset, MemoryDeviceInfoList *dimms)
786 {
787     MachineState *machine = MACHINE(spapr);
788     int i, ret;
789     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
790     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
791     uint32_t nr_lmbs = (machine->device_memory->base +
792                        memory_region_size(&machine->device_memory->mr)) /
793                        lmb_size;
794     uint32_t *int_buf, *cur_index, buf_len;
795 
796     /*
797      * Allocate enough buffer size to fit in ibm,dynamic-memory
798      */
799     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
800     cur_index = int_buf = g_malloc0(buf_len);
801     int_buf[0] = cpu_to_be32(nr_lmbs);
802     cur_index++;
803     for (i = 0; i < nr_lmbs; i++) {
804         uint64_t addr = i * lmb_size;
805         uint32_t *dynamic_memory = cur_index;
806 
807         if (i >= device_lmb_start) {
808             SpaprDrc *drc;
809 
810             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
811             g_assert(drc);
812 
813             dynamic_memory[0] = cpu_to_be32(addr >> 32);
814             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
815             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
816             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
817             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
818             if (memory_region_present(get_system_memory(), addr)) {
819                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
820             } else {
821                 dynamic_memory[5] = cpu_to_be32(0);
822             }
823         } else {
824             /*
825              * LMB information for RMA, boot time RAM and gap b/n RAM and
826              * device memory region -- all these are marked as reserved
827              * and as having no valid DRC.
828              */
829             dynamic_memory[0] = cpu_to_be32(addr >> 32);
830             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
831             dynamic_memory[2] = cpu_to_be32(0);
832             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
833             dynamic_memory[4] = cpu_to_be32(-1);
834             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
835                                             SPAPR_LMB_FLAGS_DRC_INVALID);
836         }
837 
838         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
839     }
840     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
841     g_free(int_buf);
842     if (ret < 0) {
843         return -1;
844     }
845     return 0;
846 }
847 
848 /*
849  * Adds ibm,dynamic-reconfiguration-memory node.
850  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
851  * of this device tree node.
852  */
853 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
854 {
855     MachineState *machine = MACHINE(spapr);
856     int ret, i, offset;
857     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
858     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
859     uint32_t *int_buf, *cur_index, buf_len;
860     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
861     MemoryDeviceInfoList *dimms = NULL;
862 
863     /*
864      * Don't create the node if there is no device memory
865      */
866     if (machine->ram_size == machine->maxram_size) {
867         return 0;
868     }
869 
870     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
871 
872     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
873                     sizeof(prop_lmb_size));
874     if (ret < 0) {
875         return ret;
876     }
877 
878     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
879     if (ret < 0) {
880         return ret;
881     }
882 
883     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
884     if (ret < 0) {
885         return ret;
886     }
887 
888     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
889     dimms = qmp_memory_device_list();
890     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
891         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
892     } else {
893         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
894     }
895     qapi_free_MemoryDeviceInfoList(dimms);
896 
897     if (ret < 0) {
898         return ret;
899     }
900 
901     /* ibm,associativity-lookup-arrays */
902     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
903     cur_index = int_buf = g_malloc0(buf_len);
904     int_buf[0] = cpu_to_be32(nr_nodes);
905     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
906     cur_index += 2;
907     for (i = 0; i < nr_nodes; i++) {
908         uint32_t associativity[] = {
909             cpu_to_be32(0x0),
910             cpu_to_be32(0x0),
911             cpu_to_be32(0x0),
912             cpu_to_be32(i)
913         };
914         memcpy(cur_index, associativity, sizeof(associativity));
915         cur_index += 4;
916     }
917     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
918             (cur_index - int_buf) * sizeof(uint32_t));
919     g_free(int_buf);
920 
921     return ret;
922 }
923 
924 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
925                                 SpaprOptionVector *ov5_updates)
926 {
927     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
928     int ret = 0, offset;
929 
930     /* Generate ibm,dynamic-reconfiguration-memory node if required */
931     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
932         g_assert(smc->dr_lmb_enabled);
933         ret = spapr_populate_drconf_memory(spapr, fdt);
934         if (ret) {
935             goto out;
936         }
937     }
938 
939     offset = fdt_path_offset(fdt, "/chosen");
940     if (offset < 0) {
941         offset = fdt_add_subnode(fdt, 0, "chosen");
942         if (offset < 0) {
943             return offset;
944         }
945     }
946     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
947                                  "ibm,architecture-vec-5");
948 
949 out:
950     return ret;
951 }
952 
953 static bool spapr_hotplugged_dev_before_cas(void)
954 {
955     Object *drc_container, *obj;
956     ObjectProperty *prop;
957     ObjectPropertyIterator iter;
958 
959     drc_container = container_get(object_get_root(), "/dr-connector");
960     object_property_iter_init(&iter, drc_container);
961     while ((prop = object_property_iter_next(&iter))) {
962         if (!strstart(prop->type, "link<", NULL)) {
963             continue;
964         }
965         obj = object_property_get_link(drc_container, prop->name, NULL);
966         if (spapr_drc_needed(obj)) {
967             return true;
968         }
969     }
970     return false;
971 }
972 
973 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
974                                  target_ulong addr, target_ulong size,
975                                  SpaprOptionVector *ov5_updates)
976 {
977     void *fdt, *fdt_skel;
978     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
979 
980     if (spapr_hotplugged_dev_before_cas()) {
981         return 1;
982     }
983 
984     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
985         error_report("SLOF provided an unexpected CAS buffer size "
986                      TARGET_FMT_lu " (min: %zu, max: %u)",
987                      size, sizeof(hdr), FW_MAX_SIZE);
988         exit(EXIT_FAILURE);
989     }
990 
991     size -= sizeof(hdr);
992 
993     /* Create skeleton */
994     fdt_skel = g_malloc0(size);
995     _FDT((fdt_create(fdt_skel, size)));
996     _FDT((fdt_finish_reservemap(fdt_skel)));
997     _FDT((fdt_begin_node(fdt_skel, "")));
998     _FDT((fdt_end_node(fdt_skel)));
999     _FDT((fdt_finish(fdt_skel)));
1000     fdt = g_malloc0(size);
1001     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1002     g_free(fdt_skel);
1003 
1004     /* Fixup cpu nodes */
1005     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1006 
1007     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1008         return -1;
1009     }
1010 
1011     /* Pack resulting tree */
1012     _FDT((fdt_pack(fdt)));
1013 
1014     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1015         trace_spapr_cas_failed(size);
1016         return -1;
1017     }
1018 
1019     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1020     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1021     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1022     g_free(fdt);
1023 
1024     return 0;
1025 }
1026 
1027 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1028 {
1029     int rtas;
1030     GString *hypertas = g_string_sized_new(256);
1031     GString *qemu_hypertas = g_string_sized_new(256);
1032     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1033     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1034         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1035     uint32_t lrdr_capacity[] = {
1036         cpu_to_be32(max_device_addr >> 32),
1037         cpu_to_be32(max_device_addr & 0xffffffff),
1038         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1039         cpu_to_be32(max_cpus / smp_threads),
1040     };
1041     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1042     uint32_t maxdomains[] = {
1043         cpu_to_be32(4),
1044         maxdomain,
1045         maxdomain,
1046         maxdomain,
1047         cpu_to_be32(spapr->gpu_numa_id),
1048     };
1049 
1050     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1051 
1052     /* hypertas */
1053     add_str(hypertas, "hcall-pft");
1054     add_str(hypertas, "hcall-term");
1055     add_str(hypertas, "hcall-dabr");
1056     add_str(hypertas, "hcall-interrupt");
1057     add_str(hypertas, "hcall-tce");
1058     add_str(hypertas, "hcall-vio");
1059     add_str(hypertas, "hcall-splpar");
1060     add_str(hypertas, "hcall-bulk");
1061     add_str(hypertas, "hcall-set-mode");
1062     add_str(hypertas, "hcall-sprg0");
1063     add_str(hypertas, "hcall-copy");
1064     add_str(hypertas, "hcall-debug");
1065     add_str(hypertas, "hcall-vphn");
1066     add_str(qemu_hypertas, "hcall-memop1");
1067 
1068     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1069         add_str(hypertas, "hcall-multi-tce");
1070     }
1071 
1072     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1073         add_str(hypertas, "hcall-hpt-resize");
1074     }
1075 
1076     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1077                      hypertas->str, hypertas->len));
1078     g_string_free(hypertas, TRUE);
1079     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1080                      qemu_hypertas->str, qemu_hypertas->len));
1081     g_string_free(qemu_hypertas, TRUE);
1082 
1083     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1084                      refpoints, sizeof(refpoints)));
1085 
1086     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1087                      maxdomains, sizeof(maxdomains)));
1088 
1089     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1090                           RTAS_ERROR_LOG_MAX));
1091     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1092                           RTAS_EVENT_SCAN_RATE));
1093 
1094     g_assert(msi_nonbroken);
1095     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1096 
1097     /*
1098      * According to PAPR, rtas ibm,os-term does not guarantee a return
1099      * back to the guest cpu.
1100      *
1101      * While an additional ibm,extended-os-term property indicates
1102      * that rtas call return will always occur. Set this property.
1103      */
1104     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1105 
1106     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1107                      lrdr_capacity, sizeof(lrdr_capacity)));
1108 
1109     spapr_dt_rtas_tokens(fdt, rtas);
1110 }
1111 
1112 /*
1113  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1114  * and the XIVE features that the guest may request and thus the valid
1115  * values for bytes 23..26 of option vector 5:
1116  */
1117 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1118                                           int chosen)
1119 {
1120     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1121 
1122     char val[2 * 4] = {
1123         23, spapr->irq->ov5, /* Xive mode. */
1124         24, 0x00, /* Hash/Radix, filled in below. */
1125         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1126         26, 0x40, /* Radix options: GTSE == yes. */
1127     };
1128 
1129     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1130                           first_ppc_cpu->compat_pvr)) {
1131         /*
1132          * If we're in a pre POWER9 compat mode then the guest should
1133          * do hash and use the legacy interrupt mode
1134          */
1135         val[1] = 0x00; /* XICS */
1136         val[3] = 0x00; /* Hash */
1137     } else if (kvm_enabled()) {
1138         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1139             val[3] = 0x80; /* OV5_MMU_BOTH */
1140         } else if (kvmppc_has_cap_mmu_radix()) {
1141             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1142         } else {
1143             val[3] = 0x00; /* Hash */
1144         }
1145     } else {
1146         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1147         val[3] = 0xC0;
1148     }
1149     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1150                      val, sizeof(val)));
1151 }
1152 
1153 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1154 {
1155     MachineState *machine = MACHINE(spapr);
1156     int chosen;
1157     const char *boot_device = machine->boot_order;
1158     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1159     size_t cb = 0;
1160     char *bootlist = get_boot_devices_list(&cb);
1161 
1162     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1163 
1164     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1165     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1166                           spapr->initrd_base));
1167     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1168                           spapr->initrd_base + spapr->initrd_size));
1169 
1170     if (spapr->kernel_size) {
1171         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1172                               cpu_to_be64(spapr->kernel_size) };
1173 
1174         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1175                          &kprop, sizeof(kprop)));
1176         if (spapr->kernel_le) {
1177             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1178         }
1179     }
1180     if (boot_menu) {
1181         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1182     }
1183     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1184     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1185     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1186 
1187     if (cb && bootlist) {
1188         int i;
1189 
1190         for (i = 0; i < cb; i++) {
1191             if (bootlist[i] == '\n') {
1192                 bootlist[i] = ' ';
1193             }
1194         }
1195         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1196     }
1197 
1198     if (boot_device && strlen(boot_device)) {
1199         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1200     }
1201 
1202     if (!spapr->has_graphics && stdout_path) {
1203         /*
1204          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1205          * kernel. New platforms should only use the "stdout-path" property. Set
1206          * the new property and continue using older property to remain
1207          * compatible with the existing firmware.
1208          */
1209         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1210         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1211     }
1212 
1213     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1214 
1215     g_free(stdout_path);
1216     g_free(bootlist);
1217 }
1218 
1219 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1220 {
1221     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1222      * KVM to work under pHyp with some guest co-operation */
1223     int hypervisor;
1224     uint8_t hypercall[16];
1225 
1226     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1227     /* indicate KVM hypercall interface */
1228     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1229     if (kvmppc_has_cap_fixup_hcalls()) {
1230         /*
1231          * Older KVM versions with older guest kernels were broken
1232          * with the magic page, don't allow the guest to map it.
1233          */
1234         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1235                                   sizeof(hypercall))) {
1236             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1237                              hypercall, sizeof(hypercall)));
1238         }
1239     }
1240 }
1241 
1242 static void *spapr_build_fdt(SpaprMachineState *spapr)
1243 {
1244     MachineState *machine = MACHINE(spapr);
1245     MachineClass *mc = MACHINE_GET_CLASS(machine);
1246     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1247     int ret;
1248     void *fdt;
1249     SpaprPhbState *phb;
1250     char *buf;
1251 
1252     fdt = g_malloc0(FDT_MAX_SIZE);
1253     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1254 
1255     /* Root node */
1256     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1257     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1258     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1259 
1260     /* Guest UUID & Name*/
1261     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1262     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1263     if (qemu_uuid_set) {
1264         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1265     }
1266     g_free(buf);
1267 
1268     if (qemu_get_vm_name()) {
1269         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1270                                 qemu_get_vm_name()));
1271     }
1272 
1273     /* Host Model & Serial Number */
1274     if (spapr->host_model) {
1275         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1276     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1277         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1278         g_free(buf);
1279     }
1280 
1281     if (spapr->host_serial) {
1282         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1283     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1284         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1285         g_free(buf);
1286     }
1287 
1288     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1289     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1290 
1291     /* /interrupt controller */
1292     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1293                           PHANDLE_INTC);
1294 
1295     ret = spapr_populate_memory(spapr, fdt);
1296     if (ret < 0) {
1297         error_report("couldn't setup memory nodes in fdt");
1298         exit(1);
1299     }
1300 
1301     /* /vdevice */
1302     spapr_dt_vdevice(spapr->vio_bus, fdt);
1303 
1304     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1305         ret = spapr_rng_populate_dt(fdt);
1306         if (ret < 0) {
1307             error_report("could not set up rng device in the fdt");
1308             exit(1);
1309         }
1310     }
1311 
1312     QLIST_FOREACH(phb, &spapr->phbs, list) {
1313         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1314         if (ret < 0) {
1315             error_report("couldn't setup PCI devices in fdt");
1316             exit(1);
1317         }
1318     }
1319 
1320     /* cpus */
1321     spapr_populate_cpus_dt_node(fdt, spapr);
1322 
1323     if (smc->dr_lmb_enabled) {
1324         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1325     }
1326 
1327     if (mc->has_hotpluggable_cpus) {
1328         int offset = fdt_path_offset(fdt, "/cpus");
1329         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1330         if (ret < 0) {
1331             error_report("Couldn't set up CPU DR device tree properties");
1332             exit(1);
1333         }
1334     }
1335 
1336     /* /event-sources */
1337     spapr_dt_events(spapr, fdt);
1338 
1339     /* /rtas */
1340     spapr_dt_rtas(spapr, fdt);
1341 
1342     /* /chosen */
1343     spapr_dt_chosen(spapr, fdt);
1344 
1345     /* /hypervisor */
1346     if (kvm_enabled()) {
1347         spapr_dt_hypervisor(spapr, fdt);
1348     }
1349 
1350     /* Build memory reserve map */
1351     if (spapr->kernel_size) {
1352         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1353     }
1354     if (spapr->initrd_size) {
1355         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1356     }
1357 
1358     /* ibm,client-architecture-support updates */
1359     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1360     if (ret < 0) {
1361         error_report("couldn't setup CAS properties fdt");
1362         exit(1);
1363     }
1364 
1365     if (smc->dr_phb_enabled) {
1366         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1367         if (ret < 0) {
1368             error_report("Couldn't set up PHB DR device tree properties");
1369             exit(1);
1370         }
1371     }
1372 
1373     return fdt;
1374 }
1375 
1376 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1377 {
1378     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1379 }
1380 
1381 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1382                                     PowerPCCPU *cpu)
1383 {
1384     CPUPPCState *env = &cpu->env;
1385 
1386     /* The TCG path should also be holding the BQL at this point */
1387     g_assert(qemu_mutex_iothread_locked());
1388 
1389     if (msr_pr) {
1390         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1391         env->gpr[3] = H_PRIVILEGE;
1392     } else {
1393         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1394     }
1395 }
1396 
1397 struct LPCRSyncState {
1398     target_ulong value;
1399     target_ulong mask;
1400 };
1401 
1402 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1403 {
1404     struct LPCRSyncState *s = arg.host_ptr;
1405     PowerPCCPU *cpu = POWERPC_CPU(cs);
1406     CPUPPCState *env = &cpu->env;
1407     target_ulong lpcr;
1408 
1409     cpu_synchronize_state(cs);
1410     lpcr = env->spr[SPR_LPCR];
1411     lpcr &= ~s->mask;
1412     lpcr |= s->value;
1413     ppc_store_lpcr(cpu, lpcr);
1414 }
1415 
1416 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1417 {
1418     CPUState *cs;
1419     struct LPCRSyncState s = {
1420         .value = value,
1421         .mask = mask
1422     };
1423     CPU_FOREACH(cs) {
1424         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1425     }
1426 }
1427 
1428 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1429 {
1430     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1431 
1432     /* Copy PATE1:GR into PATE0:HR */
1433     entry->dw0 = spapr->patb_entry & PATE0_HR;
1434     entry->dw1 = spapr->patb_entry;
1435 }
1436 
1437 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1438 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1439 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1440 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1441 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1442 
1443 /*
1444  * Get the fd to access the kernel htab, re-opening it if necessary
1445  */
1446 static int get_htab_fd(SpaprMachineState *spapr)
1447 {
1448     Error *local_err = NULL;
1449 
1450     if (spapr->htab_fd >= 0) {
1451         return spapr->htab_fd;
1452     }
1453 
1454     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1455     if (spapr->htab_fd < 0) {
1456         error_report_err(local_err);
1457     }
1458 
1459     return spapr->htab_fd;
1460 }
1461 
1462 void close_htab_fd(SpaprMachineState *spapr)
1463 {
1464     if (spapr->htab_fd >= 0) {
1465         close(spapr->htab_fd);
1466     }
1467     spapr->htab_fd = -1;
1468 }
1469 
1470 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1471 {
1472     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1473 
1474     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1475 }
1476 
1477 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1478 {
1479     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1480 
1481     assert(kvm_enabled());
1482 
1483     if (!spapr->htab) {
1484         return 0;
1485     }
1486 
1487     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1488 }
1489 
1490 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1491                                                 hwaddr ptex, int n)
1492 {
1493     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1494     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1495 
1496     if (!spapr->htab) {
1497         /*
1498          * HTAB is controlled by KVM. Fetch into temporary buffer
1499          */
1500         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1501         kvmppc_read_hptes(hptes, ptex, n);
1502         return hptes;
1503     }
1504 
1505     /*
1506      * HTAB is controlled by QEMU. Just point to the internally
1507      * accessible PTEG.
1508      */
1509     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1510 }
1511 
1512 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1513                               const ppc_hash_pte64_t *hptes,
1514                               hwaddr ptex, int n)
1515 {
1516     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1517 
1518     if (!spapr->htab) {
1519         g_free((void *)hptes);
1520     }
1521 
1522     /* Nothing to do for qemu managed HPT */
1523 }
1524 
1525 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1526                       uint64_t pte0, uint64_t pte1)
1527 {
1528     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1529     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1530 
1531     if (!spapr->htab) {
1532         kvmppc_write_hpte(ptex, pte0, pte1);
1533     } else {
1534         if (pte0 & HPTE64_V_VALID) {
1535             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1536             /*
1537              * When setting valid, we write PTE1 first. This ensures
1538              * proper synchronization with the reading code in
1539              * ppc_hash64_pteg_search()
1540              */
1541             smp_wmb();
1542             stq_p(spapr->htab + offset, pte0);
1543         } else {
1544             stq_p(spapr->htab + offset, pte0);
1545             /*
1546              * When clearing it we set PTE0 first. This ensures proper
1547              * synchronization with the reading code in
1548              * ppc_hash64_pteg_search()
1549              */
1550             smp_wmb();
1551             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1552         }
1553     }
1554 }
1555 
1556 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1557                              uint64_t pte1)
1558 {
1559     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1560     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1561 
1562     if (!spapr->htab) {
1563         /* There should always be a hash table when this is called */
1564         error_report("spapr_hpte_set_c called with no hash table !");
1565         return;
1566     }
1567 
1568     /* The HW performs a non-atomic byte update */
1569     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1570 }
1571 
1572 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1573                              uint64_t pte1)
1574 {
1575     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1576     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1577 
1578     if (!spapr->htab) {
1579         /* There should always be a hash table when this is called */
1580         error_report("spapr_hpte_set_r called with no hash table !");
1581         return;
1582     }
1583 
1584     /* The HW performs a non-atomic byte update */
1585     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1586 }
1587 
1588 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1589 {
1590     int shift;
1591 
1592     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1593      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1594      * that's much more than is needed for Linux guests */
1595     shift = ctz64(pow2ceil(ramsize)) - 7;
1596     shift = MAX(shift, 18); /* Minimum architected size */
1597     shift = MIN(shift, 46); /* Maximum architected size */
1598     return shift;
1599 }
1600 
1601 void spapr_free_hpt(SpaprMachineState *spapr)
1602 {
1603     g_free(spapr->htab);
1604     spapr->htab = NULL;
1605     spapr->htab_shift = 0;
1606     close_htab_fd(spapr);
1607 }
1608 
1609 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1610                           Error **errp)
1611 {
1612     long rc;
1613 
1614     /* Clean up any HPT info from a previous boot */
1615     spapr_free_hpt(spapr);
1616 
1617     rc = kvmppc_reset_htab(shift);
1618     if (rc < 0) {
1619         /* kernel-side HPT needed, but couldn't allocate one */
1620         error_setg_errno(errp, errno,
1621                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1622                          shift);
1623         /* This is almost certainly fatal, but if the caller really
1624          * wants to carry on with shift == 0, it's welcome to try */
1625     } else if (rc > 0) {
1626         /* kernel-side HPT allocated */
1627         if (rc != shift) {
1628             error_setg(errp,
1629                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1630                        shift, rc);
1631         }
1632 
1633         spapr->htab_shift = shift;
1634         spapr->htab = NULL;
1635     } else {
1636         /* kernel-side HPT not needed, allocate in userspace instead */
1637         size_t size = 1ULL << shift;
1638         int i;
1639 
1640         spapr->htab = qemu_memalign(size, size);
1641         if (!spapr->htab) {
1642             error_setg_errno(errp, errno,
1643                              "Could not allocate HPT of order %d", shift);
1644             return;
1645         }
1646 
1647         memset(spapr->htab, 0, size);
1648         spapr->htab_shift = shift;
1649 
1650         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1651             DIRTY_HPTE(HPTE(spapr->htab, i));
1652         }
1653     }
1654     /* We're setting up a hash table, so that means we're not radix */
1655     spapr->patb_entry = 0;
1656     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1657 }
1658 
1659 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1660 {
1661     int hpt_shift;
1662 
1663     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1664         || (spapr->cas_reboot
1665             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1666         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1667     } else {
1668         uint64_t current_ram_size;
1669 
1670         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1671         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1672     }
1673     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1674 
1675     if (spapr->vrma_adjust) {
1676         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1677                                           spapr->htab_shift);
1678     }
1679 }
1680 
1681 static int spapr_reset_drcs(Object *child, void *opaque)
1682 {
1683     SpaprDrc *drc =
1684         (SpaprDrc *) object_dynamic_cast(child,
1685                                                  TYPE_SPAPR_DR_CONNECTOR);
1686 
1687     if (drc) {
1688         spapr_drc_reset(drc);
1689     }
1690 
1691     return 0;
1692 }
1693 
1694 static void spapr_machine_reset(MachineState *machine)
1695 {
1696     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1697     PowerPCCPU *first_ppc_cpu;
1698     uint32_t rtas_limit;
1699     hwaddr rtas_addr, fdt_addr;
1700     void *fdt;
1701     int rc;
1702 
1703     spapr_caps_apply(spapr);
1704 
1705     first_ppc_cpu = POWERPC_CPU(first_cpu);
1706     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1707         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1708                               spapr->max_compat_pvr)) {
1709         /*
1710          * If using KVM with radix mode available, VCPUs can be started
1711          * without a HPT because KVM will start them in radix mode.
1712          * Set the GR bit in PATE so that we know there is no HPT.
1713          */
1714         spapr->patb_entry = PATE1_GR;
1715         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1716     } else {
1717         spapr_setup_hpt_and_vrma(spapr);
1718     }
1719 
1720     /*
1721      * If this reset wasn't generated by CAS, we should reset our
1722      * negotiated options and start from scratch
1723      */
1724     if (!spapr->cas_reboot) {
1725         spapr_ovec_cleanup(spapr->ov5_cas);
1726         spapr->ov5_cas = spapr_ovec_new();
1727 
1728         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1729     }
1730 
1731     if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1732         spapr_irq_msi_reset(spapr);
1733     }
1734 
1735     /*
1736      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1737      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1738      * called from vPHB reset handler so we initialize the counter here.
1739      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1740      * must be equally distant from any other node.
1741      * The final value of spapr->gpu_numa_id is going to be written to
1742      * max-associativity-domains in spapr_build_fdt().
1743      */
1744     spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1745     qemu_devices_reset();
1746 
1747     /*
1748      * This is fixing some of the default configuration of the XIVE
1749      * devices. To be called after the reset of the machine devices.
1750      */
1751     spapr_irq_reset(spapr, &error_fatal);
1752 
1753     /*
1754      * There is no CAS under qtest. Simulate one to please the code that
1755      * depends on spapr->ov5_cas. This is especially needed to test device
1756      * unplug, so we do that before resetting the DRCs.
1757      */
1758     if (qtest_enabled()) {
1759         spapr_ovec_cleanup(spapr->ov5_cas);
1760         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1761     }
1762 
1763     /* DRC reset may cause a device to be unplugged. This will cause troubles
1764      * if this device is used by another device (eg, a running vhost backend
1765      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1766      * situations, we reset DRCs after all devices have been reset.
1767      */
1768     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1769 
1770     spapr_clear_pending_events(spapr);
1771 
1772     /*
1773      * We place the device tree and RTAS just below either the top of the RMA,
1774      * or just below 2GB, whichever is lower, so that it can be
1775      * processed with 32-bit real mode code if necessary
1776      */
1777     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1778     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1779     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1780 
1781     fdt = spapr_build_fdt(spapr);
1782 
1783     spapr_load_rtas(spapr, fdt, rtas_addr);
1784 
1785     rc = fdt_pack(fdt);
1786 
1787     /* Should only fail if we've built a corrupted tree */
1788     assert(rc == 0);
1789 
1790     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1791         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1792                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1793         exit(1);
1794     }
1795 
1796     /* Load the fdt */
1797     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1798     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1799     g_free(spapr->fdt_blob);
1800     spapr->fdt_size = fdt_totalsize(fdt);
1801     spapr->fdt_initial_size = spapr->fdt_size;
1802     spapr->fdt_blob = fdt;
1803 
1804     /* Set up the entry state */
1805     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1806     first_ppc_cpu->env.gpr[5] = 0;
1807 
1808     spapr->cas_reboot = false;
1809 }
1810 
1811 static void spapr_create_nvram(SpaprMachineState *spapr)
1812 {
1813     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1814     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1815 
1816     if (dinfo) {
1817         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1818                             &error_fatal);
1819     }
1820 
1821     qdev_init_nofail(dev);
1822 
1823     spapr->nvram = (struct SpaprNvram *)dev;
1824 }
1825 
1826 static void spapr_rtc_create(SpaprMachineState *spapr)
1827 {
1828     object_initialize_child(OBJECT(spapr), "rtc",
1829                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1830                             &error_fatal, NULL);
1831     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1832                               &error_fatal);
1833     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1834                               "date", &error_fatal);
1835 }
1836 
1837 /* Returns whether we want to use VGA or not */
1838 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1839 {
1840     switch (vga_interface_type) {
1841     case VGA_NONE:
1842         return false;
1843     case VGA_DEVICE:
1844         return true;
1845     case VGA_STD:
1846     case VGA_VIRTIO:
1847     case VGA_CIRRUS:
1848         return pci_vga_init(pci_bus) != NULL;
1849     default:
1850         error_setg(errp,
1851                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1852         return false;
1853     }
1854 }
1855 
1856 static int spapr_pre_load(void *opaque)
1857 {
1858     int rc;
1859 
1860     rc = spapr_caps_pre_load(opaque);
1861     if (rc) {
1862         return rc;
1863     }
1864 
1865     return 0;
1866 }
1867 
1868 static int spapr_post_load(void *opaque, int version_id)
1869 {
1870     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1871     int err = 0;
1872 
1873     err = spapr_caps_post_migration(spapr);
1874     if (err) {
1875         return err;
1876     }
1877 
1878     /*
1879      * In earlier versions, there was no separate qdev for the PAPR
1880      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1881      * So when migrating from those versions, poke the incoming offset
1882      * value into the RTC device
1883      */
1884     if (version_id < 3) {
1885         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1886         if (err) {
1887             return err;
1888         }
1889     }
1890 
1891     if (kvm_enabled() && spapr->patb_entry) {
1892         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1893         bool radix = !!(spapr->patb_entry & PATE1_GR);
1894         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1895 
1896         /*
1897          * Update LPCR:HR and UPRT as they may not be set properly in
1898          * the stream
1899          */
1900         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1901                             LPCR_HR | LPCR_UPRT);
1902 
1903         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1904         if (err) {
1905             error_report("Process table config unsupported by the host");
1906             return -EINVAL;
1907         }
1908     }
1909 
1910     err = spapr_irq_post_load(spapr, version_id);
1911     if (err) {
1912         return err;
1913     }
1914 
1915     return err;
1916 }
1917 
1918 static int spapr_pre_save(void *opaque)
1919 {
1920     int rc;
1921 
1922     rc = spapr_caps_pre_save(opaque);
1923     if (rc) {
1924         return rc;
1925     }
1926 
1927     return 0;
1928 }
1929 
1930 static bool version_before_3(void *opaque, int version_id)
1931 {
1932     return version_id < 3;
1933 }
1934 
1935 static bool spapr_pending_events_needed(void *opaque)
1936 {
1937     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1938     return !QTAILQ_EMPTY(&spapr->pending_events);
1939 }
1940 
1941 static const VMStateDescription vmstate_spapr_event_entry = {
1942     .name = "spapr_event_log_entry",
1943     .version_id = 1,
1944     .minimum_version_id = 1,
1945     .fields = (VMStateField[]) {
1946         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1947         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1948         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1949                                      NULL, extended_length),
1950         VMSTATE_END_OF_LIST()
1951     },
1952 };
1953 
1954 static const VMStateDescription vmstate_spapr_pending_events = {
1955     .name = "spapr_pending_events",
1956     .version_id = 1,
1957     .minimum_version_id = 1,
1958     .needed = spapr_pending_events_needed,
1959     .fields = (VMStateField[]) {
1960         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1961                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1962         VMSTATE_END_OF_LIST()
1963     },
1964 };
1965 
1966 static bool spapr_ov5_cas_needed(void *opaque)
1967 {
1968     SpaprMachineState *spapr = opaque;
1969     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1970     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1971     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1972     bool cas_needed;
1973 
1974     /* Prior to the introduction of SpaprOptionVector, we had two option
1975      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1976      * Both of these options encode machine topology into the device-tree
1977      * in such a way that the now-booted OS should still be able to interact
1978      * appropriately with QEMU regardless of what options were actually
1979      * negotiatied on the source side.
1980      *
1981      * As such, we can avoid migrating the CAS-negotiated options if these
1982      * are the only options available on the current machine/platform.
1983      * Since these are the only options available for pseries-2.7 and
1984      * earlier, this allows us to maintain old->new/new->old migration
1985      * compatibility.
1986      *
1987      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1988      * via default pseries-2.8 machines and explicit command-line parameters.
1989      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1990      * of the actual CAS-negotiated values to continue working properly. For
1991      * example, availability of memory unplug depends on knowing whether
1992      * OV5_HP_EVT was negotiated via CAS.
1993      *
1994      * Thus, for any cases where the set of available CAS-negotiatable
1995      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1996      * include the CAS-negotiated options in the migration stream, unless
1997      * if they affect boot time behaviour only.
1998      */
1999     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2000     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2001     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2002 
2003     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2004      * the mask itself since in the future it's possible "legacy" bits may be
2005      * removed via machine options, which could generate a false positive
2006      * that breaks migration.
2007      */
2008     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2009     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2010 
2011     spapr_ovec_cleanup(ov5_mask);
2012     spapr_ovec_cleanup(ov5_legacy);
2013     spapr_ovec_cleanup(ov5_removed);
2014 
2015     return cas_needed;
2016 }
2017 
2018 static const VMStateDescription vmstate_spapr_ov5_cas = {
2019     .name = "spapr_option_vector_ov5_cas",
2020     .version_id = 1,
2021     .minimum_version_id = 1,
2022     .needed = spapr_ov5_cas_needed,
2023     .fields = (VMStateField[]) {
2024         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2025                                  vmstate_spapr_ovec, SpaprOptionVector),
2026         VMSTATE_END_OF_LIST()
2027     },
2028 };
2029 
2030 static bool spapr_patb_entry_needed(void *opaque)
2031 {
2032     SpaprMachineState *spapr = opaque;
2033 
2034     return !!spapr->patb_entry;
2035 }
2036 
2037 static const VMStateDescription vmstate_spapr_patb_entry = {
2038     .name = "spapr_patb_entry",
2039     .version_id = 1,
2040     .minimum_version_id = 1,
2041     .needed = spapr_patb_entry_needed,
2042     .fields = (VMStateField[]) {
2043         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2044         VMSTATE_END_OF_LIST()
2045     },
2046 };
2047 
2048 static bool spapr_irq_map_needed(void *opaque)
2049 {
2050     SpaprMachineState *spapr = opaque;
2051 
2052     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2053 }
2054 
2055 static const VMStateDescription vmstate_spapr_irq_map = {
2056     .name = "spapr_irq_map",
2057     .version_id = 1,
2058     .minimum_version_id = 1,
2059     .needed = spapr_irq_map_needed,
2060     .fields = (VMStateField[]) {
2061         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2062         VMSTATE_END_OF_LIST()
2063     },
2064 };
2065 
2066 static bool spapr_dtb_needed(void *opaque)
2067 {
2068     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2069 
2070     return smc->update_dt_enabled;
2071 }
2072 
2073 static int spapr_dtb_pre_load(void *opaque)
2074 {
2075     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2076 
2077     g_free(spapr->fdt_blob);
2078     spapr->fdt_blob = NULL;
2079     spapr->fdt_size = 0;
2080 
2081     return 0;
2082 }
2083 
2084 static const VMStateDescription vmstate_spapr_dtb = {
2085     .name = "spapr_dtb",
2086     .version_id = 1,
2087     .minimum_version_id = 1,
2088     .needed = spapr_dtb_needed,
2089     .pre_load = spapr_dtb_pre_load,
2090     .fields = (VMStateField[]) {
2091         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2092         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2093         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2094                                      fdt_size),
2095         VMSTATE_END_OF_LIST()
2096     },
2097 };
2098 
2099 static const VMStateDescription vmstate_spapr = {
2100     .name = "spapr",
2101     .version_id = 3,
2102     .minimum_version_id = 1,
2103     .pre_load = spapr_pre_load,
2104     .post_load = spapr_post_load,
2105     .pre_save = spapr_pre_save,
2106     .fields = (VMStateField[]) {
2107         /* used to be @next_irq */
2108         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2109 
2110         /* RTC offset */
2111         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2112 
2113         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2114         VMSTATE_END_OF_LIST()
2115     },
2116     .subsections = (const VMStateDescription*[]) {
2117         &vmstate_spapr_ov5_cas,
2118         &vmstate_spapr_patb_entry,
2119         &vmstate_spapr_pending_events,
2120         &vmstate_spapr_cap_htm,
2121         &vmstate_spapr_cap_vsx,
2122         &vmstate_spapr_cap_dfp,
2123         &vmstate_spapr_cap_cfpc,
2124         &vmstate_spapr_cap_sbbc,
2125         &vmstate_spapr_cap_ibs,
2126         &vmstate_spapr_cap_hpt_maxpagesize,
2127         &vmstate_spapr_irq_map,
2128         &vmstate_spapr_cap_nested_kvm_hv,
2129         &vmstate_spapr_dtb,
2130         &vmstate_spapr_cap_large_decr,
2131         &vmstate_spapr_cap_ccf_assist,
2132         NULL
2133     }
2134 };
2135 
2136 static int htab_save_setup(QEMUFile *f, void *opaque)
2137 {
2138     SpaprMachineState *spapr = opaque;
2139 
2140     /* "Iteration" header */
2141     if (!spapr->htab_shift) {
2142         qemu_put_be32(f, -1);
2143     } else {
2144         qemu_put_be32(f, spapr->htab_shift);
2145     }
2146 
2147     if (spapr->htab) {
2148         spapr->htab_save_index = 0;
2149         spapr->htab_first_pass = true;
2150     } else {
2151         if (spapr->htab_shift) {
2152             assert(kvm_enabled());
2153         }
2154     }
2155 
2156 
2157     return 0;
2158 }
2159 
2160 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2161                             int chunkstart, int n_valid, int n_invalid)
2162 {
2163     qemu_put_be32(f, chunkstart);
2164     qemu_put_be16(f, n_valid);
2165     qemu_put_be16(f, n_invalid);
2166     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2167                     HASH_PTE_SIZE_64 * n_valid);
2168 }
2169 
2170 static void htab_save_end_marker(QEMUFile *f)
2171 {
2172     qemu_put_be32(f, 0);
2173     qemu_put_be16(f, 0);
2174     qemu_put_be16(f, 0);
2175 }
2176 
2177 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2178                                  int64_t max_ns)
2179 {
2180     bool has_timeout = max_ns != -1;
2181     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2182     int index = spapr->htab_save_index;
2183     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2184 
2185     assert(spapr->htab_first_pass);
2186 
2187     do {
2188         int chunkstart;
2189 
2190         /* Consume invalid HPTEs */
2191         while ((index < htabslots)
2192                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2193             CLEAN_HPTE(HPTE(spapr->htab, index));
2194             index++;
2195         }
2196 
2197         /* Consume valid HPTEs */
2198         chunkstart = index;
2199         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2200                && HPTE_VALID(HPTE(spapr->htab, index))) {
2201             CLEAN_HPTE(HPTE(spapr->htab, index));
2202             index++;
2203         }
2204 
2205         if (index > chunkstart) {
2206             int n_valid = index - chunkstart;
2207 
2208             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2209 
2210             if (has_timeout &&
2211                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2212                 break;
2213             }
2214         }
2215     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2216 
2217     if (index >= htabslots) {
2218         assert(index == htabslots);
2219         index = 0;
2220         spapr->htab_first_pass = false;
2221     }
2222     spapr->htab_save_index = index;
2223 }
2224 
2225 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2226                                 int64_t max_ns)
2227 {
2228     bool final = max_ns < 0;
2229     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2230     int examined = 0, sent = 0;
2231     int index = spapr->htab_save_index;
2232     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2233 
2234     assert(!spapr->htab_first_pass);
2235 
2236     do {
2237         int chunkstart, invalidstart;
2238 
2239         /* Consume non-dirty HPTEs */
2240         while ((index < htabslots)
2241                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2242             index++;
2243             examined++;
2244         }
2245 
2246         chunkstart = index;
2247         /* Consume valid dirty HPTEs */
2248         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2249                && HPTE_DIRTY(HPTE(spapr->htab, index))
2250                && HPTE_VALID(HPTE(spapr->htab, index))) {
2251             CLEAN_HPTE(HPTE(spapr->htab, index));
2252             index++;
2253             examined++;
2254         }
2255 
2256         invalidstart = index;
2257         /* Consume invalid dirty HPTEs */
2258         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2259                && HPTE_DIRTY(HPTE(spapr->htab, index))
2260                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2261             CLEAN_HPTE(HPTE(spapr->htab, index));
2262             index++;
2263             examined++;
2264         }
2265 
2266         if (index > chunkstart) {
2267             int n_valid = invalidstart - chunkstart;
2268             int n_invalid = index - invalidstart;
2269 
2270             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2271             sent += index - chunkstart;
2272 
2273             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2274                 break;
2275             }
2276         }
2277 
2278         if (examined >= htabslots) {
2279             break;
2280         }
2281 
2282         if (index >= htabslots) {
2283             assert(index == htabslots);
2284             index = 0;
2285         }
2286     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2287 
2288     if (index >= htabslots) {
2289         assert(index == htabslots);
2290         index = 0;
2291     }
2292 
2293     spapr->htab_save_index = index;
2294 
2295     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2296 }
2297 
2298 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2299 #define MAX_KVM_BUF_SIZE    2048
2300 
2301 static int htab_save_iterate(QEMUFile *f, void *opaque)
2302 {
2303     SpaprMachineState *spapr = opaque;
2304     int fd;
2305     int rc = 0;
2306 
2307     /* Iteration header */
2308     if (!spapr->htab_shift) {
2309         qemu_put_be32(f, -1);
2310         return 1;
2311     } else {
2312         qemu_put_be32(f, 0);
2313     }
2314 
2315     if (!spapr->htab) {
2316         assert(kvm_enabled());
2317 
2318         fd = get_htab_fd(spapr);
2319         if (fd < 0) {
2320             return fd;
2321         }
2322 
2323         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2324         if (rc < 0) {
2325             return rc;
2326         }
2327     } else  if (spapr->htab_first_pass) {
2328         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2329     } else {
2330         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2331     }
2332 
2333     htab_save_end_marker(f);
2334 
2335     return rc;
2336 }
2337 
2338 static int htab_save_complete(QEMUFile *f, void *opaque)
2339 {
2340     SpaprMachineState *spapr = opaque;
2341     int fd;
2342 
2343     /* Iteration header */
2344     if (!spapr->htab_shift) {
2345         qemu_put_be32(f, -1);
2346         return 0;
2347     } else {
2348         qemu_put_be32(f, 0);
2349     }
2350 
2351     if (!spapr->htab) {
2352         int rc;
2353 
2354         assert(kvm_enabled());
2355 
2356         fd = get_htab_fd(spapr);
2357         if (fd < 0) {
2358             return fd;
2359         }
2360 
2361         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2362         if (rc < 0) {
2363             return rc;
2364         }
2365     } else {
2366         if (spapr->htab_first_pass) {
2367             htab_save_first_pass(f, spapr, -1);
2368         }
2369         htab_save_later_pass(f, spapr, -1);
2370     }
2371 
2372     /* End marker */
2373     htab_save_end_marker(f);
2374 
2375     return 0;
2376 }
2377 
2378 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2379 {
2380     SpaprMachineState *spapr = opaque;
2381     uint32_t section_hdr;
2382     int fd = -1;
2383     Error *local_err = NULL;
2384 
2385     if (version_id < 1 || version_id > 1) {
2386         error_report("htab_load() bad version");
2387         return -EINVAL;
2388     }
2389 
2390     section_hdr = qemu_get_be32(f);
2391 
2392     if (section_hdr == -1) {
2393         spapr_free_hpt(spapr);
2394         return 0;
2395     }
2396 
2397     if (section_hdr) {
2398         /* First section gives the htab size */
2399         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2400         if (local_err) {
2401             error_report_err(local_err);
2402             return -EINVAL;
2403         }
2404         return 0;
2405     }
2406 
2407     if (!spapr->htab) {
2408         assert(kvm_enabled());
2409 
2410         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2411         if (fd < 0) {
2412             error_report_err(local_err);
2413             return fd;
2414         }
2415     }
2416 
2417     while (true) {
2418         uint32_t index;
2419         uint16_t n_valid, n_invalid;
2420 
2421         index = qemu_get_be32(f);
2422         n_valid = qemu_get_be16(f);
2423         n_invalid = qemu_get_be16(f);
2424 
2425         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2426             /* End of Stream */
2427             break;
2428         }
2429 
2430         if ((index + n_valid + n_invalid) >
2431             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2432             /* Bad index in stream */
2433             error_report(
2434                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2435                 index, n_valid, n_invalid, spapr->htab_shift);
2436             return -EINVAL;
2437         }
2438 
2439         if (spapr->htab) {
2440             if (n_valid) {
2441                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2442                                 HASH_PTE_SIZE_64 * n_valid);
2443             }
2444             if (n_invalid) {
2445                 memset(HPTE(spapr->htab, index + n_valid), 0,
2446                        HASH_PTE_SIZE_64 * n_invalid);
2447             }
2448         } else {
2449             int rc;
2450 
2451             assert(fd >= 0);
2452 
2453             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2454             if (rc < 0) {
2455                 return rc;
2456             }
2457         }
2458     }
2459 
2460     if (!spapr->htab) {
2461         assert(fd >= 0);
2462         close(fd);
2463     }
2464 
2465     return 0;
2466 }
2467 
2468 static void htab_save_cleanup(void *opaque)
2469 {
2470     SpaprMachineState *spapr = opaque;
2471 
2472     close_htab_fd(spapr);
2473 }
2474 
2475 static SaveVMHandlers savevm_htab_handlers = {
2476     .save_setup = htab_save_setup,
2477     .save_live_iterate = htab_save_iterate,
2478     .save_live_complete_precopy = htab_save_complete,
2479     .save_cleanup = htab_save_cleanup,
2480     .load_state = htab_load,
2481 };
2482 
2483 static void spapr_boot_set(void *opaque, const char *boot_device,
2484                            Error **errp)
2485 {
2486     MachineState *machine = MACHINE(opaque);
2487     machine->boot_order = g_strdup(boot_device);
2488 }
2489 
2490 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2491 {
2492     MachineState *machine = MACHINE(spapr);
2493     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2494     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2495     int i;
2496 
2497     for (i = 0; i < nr_lmbs; i++) {
2498         uint64_t addr;
2499 
2500         addr = i * lmb_size + machine->device_memory->base;
2501         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2502                                addr / lmb_size);
2503     }
2504 }
2505 
2506 /*
2507  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2508  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2509  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2510  */
2511 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2512 {
2513     int i;
2514 
2515     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2516         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2517                    " is not aligned to %" PRIu64 " MiB",
2518                    machine->ram_size,
2519                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2520         return;
2521     }
2522 
2523     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2524         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2525                    " is not aligned to %" PRIu64 " MiB",
2526                    machine->ram_size,
2527                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2528         return;
2529     }
2530 
2531     for (i = 0; i < nb_numa_nodes; i++) {
2532         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2533             error_setg(errp,
2534                        "Node %d memory size 0x%" PRIx64
2535                        " is not aligned to %" PRIu64 " MiB",
2536                        i, numa_info[i].node_mem,
2537                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2538             return;
2539         }
2540     }
2541 }
2542 
2543 /* find cpu slot in machine->possible_cpus by core_id */
2544 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2545 {
2546     int index = id / smp_threads;
2547 
2548     if (index >= ms->possible_cpus->len) {
2549         return NULL;
2550     }
2551     if (idx) {
2552         *idx = index;
2553     }
2554     return &ms->possible_cpus->cpus[index];
2555 }
2556 
2557 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2558 {
2559     Error *local_err = NULL;
2560     bool vsmt_user = !!spapr->vsmt;
2561     int kvm_smt = kvmppc_smt_threads();
2562     int ret;
2563 
2564     if (!kvm_enabled() && (smp_threads > 1)) {
2565         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2566                      "on a pseries machine");
2567         goto out;
2568     }
2569     if (!is_power_of_2(smp_threads)) {
2570         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2571                      "machine because it must be a power of 2", smp_threads);
2572         goto out;
2573     }
2574 
2575     /* Detemine the VSMT mode to use: */
2576     if (vsmt_user) {
2577         if (spapr->vsmt < smp_threads) {
2578             error_setg(&local_err, "Cannot support VSMT mode %d"
2579                          " because it must be >= threads/core (%d)",
2580                          spapr->vsmt, smp_threads);
2581             goto out;
2582         }
2583         /* In this case, spapr->vsmt has been set by the command line */
2584     } else {
2585         /*
2586          * Default VSMT value is tricky, because we need it to be as
2587          * consistent as possible (for migration), but this requires
2588          * changing it for at least some existing cases.  We pick 8 as
2589          * the value that we'd get with KVM on POWER8, the
2590          * overwhelmingly common case in production systems.
2591          */
2592         spapr->vsmt = MAX(8, smp_threads);
2593     }
2594 
2595     /* KVM: If necessary, set the SMT mode: */
2596     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2597         ret = kvmppc_set_smt_threads(spapr->vsmt);
2598         if (ret) {
2599             /* Looks like KVM isn't able to change VSMT mode */
2600             error_setg(&local_err,
2601                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2602                        spapr->vsmt, ret);
2603             /* We can live with that if the default one is big enough
2604              * for the number of threads, and a submultiple of the one
2605              * we want.  In this case we'll waste some vcpu ids, but
2606              * behaviour will be correct */
2607             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2608                 warn_report_err(local_err);
2609                 local_err = NULL;
2610                 goto out;
2611             } else {
2612                 if (!vsmt_user) {
2613                     error_append_hint(&local_err,
2614                                       "On PPC, a VM with %d threads/core"
2615                                       " on a host with %d threads/core"
2616                                       " requires the use of VSMT mode %d.\n",
2617                                       smp_threads, kvm_smt, spapr->vsmt);
2618                 }
2619                 kvmppc_hint_smt_possible(&local_err);
2620                 goto out;
2621             }
2622         }
2623     }
2624     /* else TCG: nothing to do currently */
2625 out:
2626     error_propagate(errp, local_err);
2627 }
2628 
2629 static void spapr_init_cpus(SpaprMachineState *spapr)
2630 {
2631     MachineState *machine = MACHINE(spapr);
2632     MachineClass *mc = MACHINE_GET_CLASS(machine);
2633     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2634     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2635     const CPUArchIdList *possible_cpus;
2636     int boot_cores_nr = smp_cpus / smp_threads;
2637     int i;
2638 
2639     possible_cpus = mc->possible_cpu_arch_ids(machine);
2640     if (mc->has_hotpluggable_cpus) {
2641         if (smp_cpus % smp_threads) {
2642             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2643                          smp_cpus, smp_threads);
2644             exit(1);
2645         }
2646         if (max_cpus % smp_threads) {
2647             error_report("max_cpus (%u) must be multiple of threads (%u)",
2648                          max_cpus, smp_threads);
2649             exit(1);
2650         }
2651     } else {
2652         if (max_cpus != smp_cpus) {
2653             error_report("This machine version does not support CPU hotplug");
2654             exit(1);
2655         }
2656         boot_cores_nr = possible_cpus->len;
2657     }
2658 
2659     if (smc->pre_2_10_has_unused_icps) {
2660         int i;
2661 
2662         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2663             /* Dummy entries get deregistered when real ICPState objects
2664              * are registered during CPU core hotplug.
2665              */
2666             pre_2_10_vmstate_register_dummy_icp(i);
2667         }
2668     }
2669 
2670     for (i = 0; i < possible_cpus->len; i++) {
2671         int core_id = i * smp_threads;
2672 
2673         if (mc->has_hotpluggable_cpus) {
2674             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2675                                    spapr_vcpu_id(spapr, core_id));
2676         }
2677 
2678         if (i < boot_cores_nr) {
2679             Object *core  = object_new(type);
2680             int nr_threads = smp_threads;
2681 
2682             /* Handle the partially filled core for older machine types */
2683             if ((i + 1) * smp_threads >= smp_cpus) {
2684                 nr_threads = smp_cpus - i * smp_threads;
2685             }
2686 
2687             object_property_set_int(core, nr_threads, "nr-threads",
2688                                     &error_fatal);
2689             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2690                                     &error_fatal);
2691             object_property_set_bool(core, true, "realized", &error_fatal);
2692 
2693             object_unref(core);
2694         }
2695     }
2696 }
2697 
2698 static PCIHostState *spapr_create_default_phb(void)
2699 {
2700     DeviceState *dev;
2701 
2702     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2703     qdev_prop_set_uint32(dev, "index", 0);
2704     qdev_init_nofail(dev);
2705 
2706     return PCI_HOST_BRIDGE(dev);
2707 }
2708 
2709 /* pSeries LPAR / sPAPR hardware init */
2710 static void spapr_machine_init(MachineState *machine)
2711 {
2712     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2713     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2714     const char *kernel_filename = machine->kernel_filename;
2715     const char *initrd_filename = machine->initrd_filename;
2716     PCIHostState *phb;
2717     int i;
2718     MemoryRegion *sysmem = get_system_memory();
2719     MemoryRegion *ram = g_new(MemoryRegion, 1);
2720     hwaddr node0_size = spapr_node0_size(machine);
2721     long load_limit, fw_size;
2722     char *filename;
2723     Error *resize_hpt_err = NULL;
2724 
2725     msi_nonbroken = true;
2726 
2727     QLIST_INIT(&spapr->phbs);
2728     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2729 
2730     /* Determine capabilities to run with */
2731     spapr_caps_init(spapr);
2732 
2733     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2734     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2735         /*
2736          * If the user explicitly requested a mode we should either
2737          * supply it, or fail completely (which we do below).  But if
2738          * it's not set explicitly, we reset our mode to something
2739          * that works
2740          */
2741         if (resize_hpt_err) {
2742             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2743             error_free(resize_hpt_err);
2744             resize_hpt_err = NULL;
2745         } else {
2746             spapr->resize_hpt = smc->resize_hpt_default;
2747         }
2748     }
2749 
2750     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2751 
2752     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2753         /*
2754          * User requested HPT resize, but this host can't supply it.  Bail out
2755          */
2756         error_report_err(resize_hpt_err);
2757         exit(1);
2758     }
2759 
2760     spapr->rma_size = node0_size;
2761 
2762     /* With KVM, we don't actually know whether KVM supports an
2763      * unbounded RMA (PR KVM) or is limited by the hash table size
2764      * (HV KVM using VRMA), so we always assume the latter
2765      *
2766      * In that case, we also limit the initial allocations for RTAS
2767      * etc... to 256M since we have no way to know what the VRMA size
2768      * is going to be as it depends on the size of the hash table
2769      * which isn't determined yet.
2770      */
2771     if (kvm_enabled()) {
2772         spapr->vrma_adjust = 1;
2773         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2774     }
2775 
2776     /* Actually we don't support unbounded RMA anymore since we added
2777      * proper emulation of HV mode. The max we can get is 16G which
2778      * also happens to be what we configure for PAPR mode so make sure
2779      * we don't do anything bigger than that
2780      */
2781     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2782 
2783     if (spapr->rma_size > node0_size) {
2784         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2785                      spapr->rma_size);
2786         exit(1);
2787     }
2788 
2789     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2790     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2791 
2792     /*
2793      * VSMT must be set in order to be able to compute VCPU ids, ie to
2794      * call spapr_max_server_number() or spapr_vcpu_id().
2795      */
2796     spapr_set_vsmt_mode(spapr, &error_fatal);
2797 
2798     /* Set up Interrupt Controller before we create the VCPUs */
2799     spapr_irq_init(spapr, &error_fatal);
2800 
2801     /* Set up containers for ibm,client-architecture-support negotiated options
2802      */
2803     spapr->ov5 = spapr_ovec_new();
2804     spapr->ov5_cas = spapr_ovec_new();
2805 
2806     if (smc->dr_lmb_enabled) {
2807         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2808         spapr_validate_node_memory(machine, &error_fatal);
2809     }
2810 
2811     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2812 
2813     /* advertise support for dedicated HP event source to guests */
2814     if (spapr->use_hotplug_event_source) {
2815         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2816     }
2817 
2818     /* advertise support for HPT resizing */
2819     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2820         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2821     }
2822 
2823     /* advertise support for ibm,dyamic-memory-v2 */
2824     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2825 
2826     /* advertise XIVE on POWER9 machines */
2827     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2828         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2829     }
2830 
2831     /* init CPUs */
2832     spapr_init_cpus(spapr);
2833 
2834     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2835         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2836                               spapr->max_compat_pvr)) {
2837         /* KVM and TCG always allow GTSE with radix... */
2838         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2839     }
2840     /* ... but not with hash (currently). */
2841 
2842     if (kvm_enabled()) {
2843         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2844         kvmppc_enable_logical_ci_hcalls();
2845         kvmppc_enable_set_mode_hcall();
2846 
2847         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2848         kvmppc_enable_clear_ref_mod_hcalls();
2849 
2850         /* Enable H_PAGE_INIT */
2851         kvmppc_enable_h_page_init();
2852     }
2853 
2854     /* allocate RAM */
2855     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2856                                          machine->ram_size);
2857     memory_region_add_subregion(sysmem, 0, ram);
2858 
2859     /* always allocate the device memory information */
2860     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2861 
2862     /* initialize hotplug memory address space */
2863     if (machine->ram_size < machine->maxram_size) {
2864         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2865         /*
2866          * Limit the number of hotpluggable memory slots to half the number
2867          * slots that KVM supports, leaving the other half for PCI and other
2868          * devices. However ensure that number of slots doesn't drop below 32.
2869          */
2870         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2871                            SPAPR_MAX_RAM_SLOTS;
2872 
2873         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2874             max_memslots = SPAPR_MAX_RAM_SLOTS;
2875         }
2876         if (machine->ram_slots > max_memslots) {
2877             error_report("Specified number of memory slots %"
2878                          PRIu64" exceeds max supported %d",
2879                          machine->ram_slots, max_memslots);
2880             exit(1);
2881         }
2882 
2883         machine->device_memory->base = ROUND_UP(machine->ram_size,
2884                                                 SPAPR_DEVICE_MEM_ALIGN);
2885         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2886                            "device-memory", device_mem_size);
2887         memory_region_add_subregion(sysmem, machine->device_memory->base,
2888                                     &machine->device_memory->mr);
2889     }
2890 
2891     if (smc->dr_lmb_enabled) {
2892         spapr_create_lmb_dr_connectors(spapr);
2893     }
2894 
2895     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2896     if (!filename) {
2897         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2898         exit(1);
2899     }
2900     spapr->rtas_size = get_image_size(filename);
2901     if (spapr->rtas_size < 0) {
2902         error_report("Could not get size of LPAR rtas '%s'", filename);
2903         exit(1);
2904     }
2905     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2906     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2907         error_report("Could not load LPAR rtas '%s'", filename);
2908         exit(1);
2909     }
2910     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2911         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2912                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2913         exit(1);
2914     }
2915     g_free(filename);
2916 
2917     /* Set up RTAS event infrastructure */
2918     spapr_events_init(spapr);
2919 
2920     /* Set up the RTC RTAS interfaces */
2921     spapr_rtc_create(spapr);
2922 
2923     /* Set up VIO bus */
2924     spapr->vio_bus = spapr_vio_bus_init();
2925 
2926     for (i = 0; i < serial_max_hds(); i++) {
2927         if (serial_hd(i)) {
2928             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2929         }
2930     }
2931 
2932     /* We always have at least the nvram device on VIO */
2933     spapr_create_nvram(spapr);
2934 
2935     /*
2936      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2937      * connectors (described in root DT node's "ibm,drc-types" property)
2938      * are pre-initialized here. additional child connectors (such as
2939      * connectors for a PHBs PCI slots) are added as needed during their
2940      * parent's realization.
2941      */
2942     if (smc->dr_phb_enabled) {
2943         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2944             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2945         }
2946     }
2947 
2948     /* Set up PCI */
2949     spapr_pci_rtas_init();
2950 
2951     phb = spapr_create_default_phb();
2952 
2953     for (i = 0; i < nb_nics; i++) {
2954         NICInfo *nd = &nd_table[i];
2955 
2956         if (!nd->model) {
2957             nd->model = g_strdup("spapr-vlan");
2958         }
2959 
2960         if (g_str_equal(nd->model, "spapr-vlan") ||
2961             g_str_equal(nd->model, "ibmveth")) {
2962             spapr_vlan_create(spapr->vio_bus, nd);
2963         } else {
2964             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2965         }
2966     }
2967 
2968     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2969         spapr_vscsi_create(spapr->vio_bus);
2970     }
2971 
2972     /* Graphics */
2973     if (spapr_vga_init(phb->bus, &error_fatal)) {
2974         spapr->has_graphics = true;
2975         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2976     }
2977 
2978     if (machine->usb) {
2979         if (smc->use_ohci_by_default) {
2980             pci_create_simple(phb->bus, -1, "pci-ohci");
2981         } else {
2982             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2983         }
2984 
2985         if (spapr->has_graphics) {
2986             USBBus *usb_bus = usb_bus_find(-1);
2987 
2988             usb_create_simple(usb_bus, "usb-kbd");
2989             usb_create_simple(usb_bus, "usb-mouse");
2990         }
2991     }
2992 
2993     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2994         error_report(
2995             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2996             MIN_RMA_SLOF);
2997         exit(1);
2998     }
2999 
3000     if (kernel_filename) {
3001         uint64_t lowaddr = 0;
3002 
3003         spapr->kernel_size = load_elf(kernel_filename, NULL,
3004                                       translate_kernel_address, NULL,
3005                                       NULL, &lowaddr, NULL, 1,
3006                                       PPC_ELF_MACHINE, 0, 0);
3007         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3008             spapr->kernel_size = load_elf(kernel_filename, NULL,
3009                                           translate_kernel_address, NULL, NULL,
3010                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3011                                           0, 0);
3012             spapr->kernel_le = spapr->kernel_size > 0;
3013         }
3014         if (spapr->kernel_size < 0) {
3015             error_report("error loading %s: %s", kernel_filename,
3016                          load_elf_strerror(spapr->kernel_size));
3017             exit(1);
3018         }
3019 
3020         /* load initrd */
3021         if (initrd_filename) {
3022             /* Try to locate the initrd in the gap between the kernel
3023              * and the firmware. Add a bit of space just in case
3024              */
3025             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3026                                   + 0x1ffff) & ~0xffff;
3027             spapr->initrd_size = load_image_targphys(initrd_filename,
3028                                                      spapr->initrd_base,
3029                                                      load_limit
3030                                                      - spapr->initrd_base);
3031             if (spapr->initrd_size < 0) {
3032                 error_report("could not load initial ram disk '%s'",
3033                              initrd_filename);
3034                 exit(1);
3035             }
3036         }
3037     }
3038 
3039     if (bios_name == NULL) {
3040         bios_name = FW_FILE_NAME;
3041     }
3042     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3043     if (!filename) {
3044         error_report("Could not find LPAR firmware '%s'", bios_name);
3045         exit(1);
3046     }
3047     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3048     if (fw_size <= 0) {
3049         error_report("Could not load LPAR firmware '%s'", filename);
3050         exit(1);
3051     }
3052     g_free(filename);
3053 
3054     /* FIXME: Should register things through the MachineState's qdev
3055      * interface, this is a legacy from the sPAPREnvironment structure
3056      * which predated MachineState but had a similar function */
3057     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3058     register_savevm_live(NULL, "spapr/htab", -1, 1,
3059                          &savevm_htab_handlers, spapr);
3060 
3061     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3062                              &error_fatal);
3063 
3064     qemu_register_boot_set(spapr_boot_set, spapr);
3065 
3066     if (kvm_enabled()) {
3067         /* to stop and start vmclock */
3068         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3069                                          &spapr->tb);
3070 
3071         kvmppc_spapr_enable_inkernel_multitce();
3072     }
3073 }
3074 
3075 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3076 {
3077     if (!vm_type) {
3078         return 0;
3079     }
3080 
3081     if (!strcmp(vm_type, "HV")) {
3082         return 1;
3083     }
3084 
3085     if (!strcmp(vm_type, "PR")) {
3086         return 2;
3087     }
3088 
3089     error_report("Unknown kvm-type specified '%s'", vm_type);
3090     exit(1);
3091 }
3092 
3093 /*
3094  * Implementation of an interface to adjust firmware path
3095  * for the bootindex property handling.
3096  */
3097 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3098                                    DeviceState *dev)
3099 {
3100 #define CAST(type, obj, name) \
3101     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3102     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3103     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3104     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3105 
3106     if (d) {
3107         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3108         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3109         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3110 
3111         if (spapr) {
3112             /*
3113              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3114              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3115              * 0x8000 | (target << 8) | (bus << 5) | lun
3116              * (see the "Logical unit addressing format" table in SAM5)
3117              */
3118             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3119             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3120                                    (uint64_t)id << 48);
3121         } else if (virtio) {
3122             /*
3123              * We use SRP luns of the form 01000000 | (target << 8) | lun
3124              * in the top 32 bits of the 64-bit LUN
3125              * Note: the quote above is from SLOF and it is wrong,
3126              * the actual binding is:
3127              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3128              */
3129             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3130             if (d->lun >= 256) {
3131                 /* Use the LUN "flat space addressing method" */
3132                 id |= 0x4000;
3133             }
3134             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3135                                    (uint64_t)id << 32);
3136         } else if (usb) {
3137             /*
3138              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3139              * in the top 32 bits of the 64-bit LUN
3140              */
3141             unsigned usb_port = atoi(usb->port->path);
3142             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3143             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3144                                    (uint64_t)id << 32);
3145         }
3146     }
3147 
3148     /*
3149      * SLOF probes the USB devices, and if it recognizes that the device is a
3150      * storage device, it changes its name to "storage" instead of "usb-host",
3151      * and additionally adds a child node for the SCSI LUN, so the correct
3152      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3153      */
3154     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3155         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3156         if (usb_host_dev_is_scsi_storage(usbdev)) {
3157             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3158         }
3159     }
3160 
3161     if (phb) {
3162         /* Replace "pci" with "pci@800000020000000" */
3163         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3164     }
3165 
3166     if (vsc) {
3167         /* Same logic as virtio above */
3168         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3169         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3170     }
3171 
3172     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3173         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3174         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3175         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3176     }
3177 
3178     return NULL;
3179 }
3180 
3181 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3182 {
3183     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3184 
3185     return g_strdup(spapr->kvm_type);
3186 }
3187 
3188 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3189 {
3190     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3191 
3192     g_free(spapr->kvm_type);
3193     spapr->kvm_type = g_strdup(value);
3194 }
3195 
3196 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3197 {
3198     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3199 
3200     return spapr->use_hotplug_event_source;
3201 }
3202 
3203 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3204                                             Error **errp)
3205 {
3206     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207 
3208     spapr->use_hotplug_event_source = value;
3209 }
3210 
3211 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3212 {
3213     return true;
3214 }
3215 
3216 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3217 {
3218     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219 
3220     switch (spapr->resize_hpt) {
3221     case SPAPR_RESIZE_HPT_DEFAULT:
3222         return g_strdup("default");
3223     case SPAPR_RESIZE_HPT_DISABLED:
3224         return g_strdup("disabled");
3225     case SPAPR_RESIZE_HPT_ENABLED:
3226         return g_strdup("enabled");
3227     case SPAPR_RESIZE_HPT_REQUIRED:
3228         return g_strdup("required");
3229     }
3230     g_assert_not_reached();
3231 }
3232 
3233 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3234 {
3235     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3236 
3237     if (strcmp(value, "default") == 0) {
3238         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3239     } else if (strcmp(value, "disabled") == 0) {
3240         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3241     } else if (strcmp(value, "enabled") == 0) {
3242         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3243     } else if (strcmp(value, "required") == 0) {
3244         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3245     } else {
3246         error_setg(errp, "Bad value for \"resize-hpt\" property");
3247     }
3248 }
3249 
3250 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3251                                    void *opaque, Error **errp)
3252 {
3253     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3254 }
3255 
3256 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3257                                    void *opaque, Error **errp)
3258 {
3259     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3260 }
3261 
3262 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3263 {
3264     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3265 
3266     if (spapr->irq == &spapr_irq_xics_legacy) {
3267         return g_strdup("legacy");
3268     } else if (spapr->irq == &spapr_irq_xics) {
3269         return g_strdup("xics");
3270     } else if (spapr->irq == &spapr_irq_xive) {
3271         return g_strdup("xive");
3272     } else if (spapr->irq == &spapr_irq_dual) {
3273         return g_strdup("dual");
3274     }
3275     g_assert_not_reached();
3276 }
3277 
3278 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3279 {
3280     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3281 
3282     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3283         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3284         return;
3285     }
3286 
3287     /* The legacy IRQ backend can not be set */
3288     if (strcmp(value, "xics") == 0) {
3289         spapr->irq = &spapr_irq_xics;
3290     } else if (strcmp(value, "xive") == 0) {
3291         spapr->irq = &spapr_irq_xive;
3292     } else if (strcmp(value, "dual") == 0) {
3293         spapr->irq = &spapr_irq_dual;
3294     } else {
3295         error_setg(errp, "Bad value for \"ic-mode\" property");
3296     }
3297 }
3298 
3299 static char *spapr_get_host_model(Object *obj, Error **errp)
3300 {
3301     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3302 
3303     return g_strdup(spapr->host_model);
3304 }
3305 
3306 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3307 {
3308     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3309 
3310     g_free(spapr->host_model);
3311     spapr->host_model = g_strdup(value);
3312 }
3313 
3314 static char *spapr_get_host_serial(Object *obj, Error **errp)
3315 {
3316     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3317 
3318     return g_strdup(spapr->host_serial);
3319 }
3320 
3321 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3322 {
3323     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3324 
3325     g_free(spapr->host_serial);
3326     spapr->host_serial = g_strdup(value);
3327 }
3328 
3329 static void spapr_instance_init(Object *obj)
3330 {
3331     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3332     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3333 
3334     spapr->htab_fd = -1;
3335     spapr->use_hotplug_event_source = true;
3336     object_property_add_str(obj, "kvm-type",
3337                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3338     object_property_set_description(obj, "kvm-type",
3339                                     "Specifies the KVM virtualization mode (HV, PR)",
3340                                     NULL);
3341     object_property_add_bool(obj, "modern-hotplug-events",
3342                             spapr_get_modern_hotplug_events,
3343                             spapr_set_modern_hotplug_events,
3344                             NULL);
3345     object_property_set_description(obj, "modern-hotplug-events",
3346                                     "Use dedicated hotplug event mechanism in"
3347                                     " place of standard EPOW events when possible"
3348                                     " (required for memory hot-unplug support)",
3349                                     NULL);
3350     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3351                             "Maximum permitted CPU compatibility mode",
3352                             &error_fatal);
3353 
3354     object_property_add_str(obj, "resize-hpt",
3355                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3356     object_property_set_description(obj, "resize-hpt",
3357                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3358                                     NULL);
3359     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3360                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3361     object_property_set_description(obj, "vsmt",
3362                                     "Virtual SMT: KVM behaves as if this were"
3363                                     " the host's SMT mode", &error_abort);
3364     object_property_add_bool(obj, "vfio-no-msix-emulation",
3365                              spapr_get_msix_emulation, NULL, NULL);
3366 
3367     /* The machine class defines the default interrupt controller mode */
3368     spapr->irq = smc->irq;
3369     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3370                             spapr_set_ic_mode, NULL);
3371     object_property_set_description(obj, "ic-mode",
3372                  "Specifies the interrupt controller mode (xics, xive, dual)",
3373                  NULL);
3374 
3375     object_property_add_str(obj, "host-model",
3376         spapr_get_host_model, spapr_set_host_model,
3377         &error_abort);
3378     object_property_set_description(obj, "host-model",
3379         "Host model to advertise in guest device tree", &error_abort);
3380     object_property_add_str(obj, "host-serial",
3381         spapr_get_host_serial, spapr_set_host_serial,
3382         &error_abort);
3383     object_property_set_description(obj, "host-serial",
3384         "Host serial number to advertise in guest device tree", &error_abort);
3385 }
3386 
3387 static void spapr_machine_finalizefn(Object *obj)
3388 {
3389     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3390 
3391     g_free(spapr->kvm_type);
3392 }
3393 
3394 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3395 {
3396     cpu_synchronize_state(cs);
3397     ppc_cpu_do_system_reset(cs);
3398 }
3399 
3400 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3401 {
3402     CPUState *cs;
3403 
3404     CPU_FOREACH(cs) {
3405         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3406     }
3407 }
3408 
3409 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3410                           void *fdt, int *fdt_start_offset, Error **errp)
3411 {
3412     uint64_t addr;
3413     uint32_t node;
3414 
3415     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3416     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3417                                     &error_abort);
3418     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3419                                                    SPAPR_MEMORY_BLOCK_SIZE);
3420     return 0;
3421 }
3422 
3423 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3424                            bool dedicated_hp_event_source, Error **errp)
3425 {
3426     SpaprDrc *drc;
3427     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3428     int i;
3429     uint64_t addr = addr_start;
3430     bool hotplugged = spapr_drc_hotplugged(dev);
3431     Error *local_err = NULL;
3432 
3433     for (i = 0; i < nr_lmbs; i++) {
3434         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3435                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3436         g_assert(drc);
3437 
3438         spapr_drc_attach(drc, dev, &local_err);
3439         if (local_err) {
3440             while (addr > addr_start) {
3441                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3442                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3443                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3444                 spapr_drc_detach(drc);
3445             }
3446             error_propagate(errp, local_err);
3447             return;
3448         }
3449         if (!hotplugged) {
3450             spapr_drc_reset(drc);
3451         }
3452         addr += SPAPR_MEMORY_BLOCK_SIZE;
3453     }
3454     /* send hotplug notification to the
3455      * guest only in case of hotplugged memory
3456      */
3457     if (hotplugged) {
3458         if (dedicated_hp_event_source) {
3459             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3460                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3461             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3462                                                    nr_lmbs,
3463                                                    spapr_drc_index(drc));
3464         } else {
3465             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3466                                            nr_lmbs);
3467         }
3468     }
3469 }
3470 
3471 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3472                               Error **errp)
3473 {
3474     Error *local_err = NULL;
3475     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3476     PCDIMMDevice *dimm = PC_DIMM(dev);
3477     uint64_t size, addr;
3478 
3479     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3480 
3481     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3482     if (local_err) {
3483         goto out;
3484     }
3485 
3486     addr = object_property_get_uint(OBJECT(dimm),
3487                                     PC_DIMM_ADDR_PROP, &local_err);
3488     if (local_err) {
3489         goto out_unplug;
3490     }
3491 
3492     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3493                    &local_err);
3494     if (local_err) {
3495         goto out_unplug;
3496     }
3497 
3498     return;
3499 
3500 out_unplug:
3501     pc_dimm_unplug(dimm, MACHINE(ms));
3502 out:
3503     error_propagate(errp, local_err);
3504 }
3505 
3506 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3507                                   Error **errp)
3508 {
3509     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3510     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3511     PCDIMMDevice *dimm = PC_DIMM(dev);
3512     Error *local_err = NULL;
3513     uint64_t size;
3514     Object *memdev;
3515     hwaddr pagesize;
3516 
3517     if (!smc->dr_lmb_enabled) {
3518         error_setg(errp, "Memory hotplug not supported for this machine");
3519         return;
3520     }
3521 
3522     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3523     if (local_err) {
3524         error_propagate(errp, local_err);
3525         return;
3526     }
3527 
3528     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3529         error_setg(errp, "Hotplugged memory size must be a multiple of "
3530                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3531         return;
3532     }
3533 
3534     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3535                                       &error_abort);
3536     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3537     spapr_check_pagesize(spapr, pagesize, &local_err);
3538     if (local_err) {
3539         error_propagate(errp, local_err);
3540         return;
3541     }
3542 
3543     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3544 }
3545 
3546 struct SpaprDimmState {
3547     PCDIMMDevice *dimm;
3548     uint32_t nr_lmbs;
3549     QTAILQ_ENTRY(SpaprDimmState) next;
3550 };
3551 
3552 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3553                                                        PCDIMMDevice *dimm)
3554 {
3555     SpaprDimmState *dimm_state = NULL;
3556 
3557     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3558         if (dimm_state->dimm == dimm) {
3559             break;
3560         }
3561     }
3562     return dimm_state;
3563 }
3564 
3565 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3566                                                       uint32_t nr_lmbs,
3567                                                       PCDIMMDevice *dimm)
3568 {
3569     SpaprDimmState *ds = NULL;
3570 
3571     /*
3572      * If this request is for a DIMM whose removal had failed earlier
3573      * (due to guest's refusal to remove the LMBs), we would have this
3574      * dimm already in the pending_dimm_unplugs list. In that
3575      * case don't add again.
3576      */
3577     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3578     if (!ds) {
3579         ds = g_malloc0(sizeof(SpaprDimmState));
3580         ds->nr_lmbs = nr_lmbs;
3581         ds->dimm = dimm;
3582         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3583     }
3584     return ds;
3585 }
3586 
3587 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3588                                               SpaprDimmState *dimm_state)
3589 {
3590     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3591     g_free(dimm_state);
3592 }
3593 
3594 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3595                                                         PCDIMMDevice *dimm)
3596 {
3597     SpaprDrc *drc;
3598     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3599                                                   &error_abort);
3600     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3601     uint32_t avail_lmbs = 0;
3602     uint64_t addr_start, addr;
3603     int i;
3604 
3605     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3606                                          &error_abort);
3607 
3608     addr = addr_start;
3609     for (i = 0; i < nr_lmbs; i++) {
3610         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3611                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3612         g_assert(drc);
3613         if (drc->dev) {
3614             avail_lmbs++;
3615         }
3616         addr += SPAPR_MEMORY_BLOCK_SIZE;
3617     }
3618 
3619     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3620 }
3621 
3622 /* Callback to be called during DRC release. */
3623 void spapr_lmb_release(DeviceState *dev)
3624 {
3625     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3626     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3627     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3628 
3629     /* This information will get lost if a migration occurs
3630      * during the unplug process. In this case recover it. */
3631     if (ds == NULL) {
3632         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3633         g_assert(ds);
3634         /* The DRC being examined by the caller at least must be counted */
3635         g_assert(ds->nr_lmbs);
3636     }
3637 
3638     if (--ds->nr_lmbs) {
3639         return;
3640     }
3641 
3642     /*
3643      * Now that all the LMBs have been removed by the guest, call the
3644      * unplug handler chain. This can never fail.
3645      */
3646     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3647     object_unparent(OBJECT(dev));
3648 }
3649 
3650 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3651 {
3652     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3653     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3654 
3655     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3656     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3657     spapr_pending_dimm_unplugs_remove(spapr, ds);
3658 }
3659 
3660 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3661                                         DeviceState *dev, Error **errp)
3662 {
3663     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3664     Error *local_err = NULL;
3665     PCDIMMDevice *dimm = PC_DIMM(dev);
3666     uint32_t nr_lmbs;
3667     uint64_t size, addr_start, addr;
3668     int i;
3669     SpaprDrc *drc;
3670 
3671     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3672     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3673 
3674     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3675                                          &local_err);
3676     if (local_err) {
3677         goto out;
3678     }
3679 
3680     /*
3681      * An existing pending dimm state for this DIMM means that there is an
3682      * unplug operation in progress, waiting for the spapr_lmb_release
3683      * callback to complete the job (BQL can't cover that far). In this case,
3684      * bail out to avoid detaching DRCs that were already released.
3685      */
3686     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3687         error_setg(&local_err,
3688                    "Memory unplug already in progress for device %s",
3689                    dev->id);
3690         goto out;
3691     }
3692 
3693     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3694 
3695     addr = addr_start;
3696     for (i = 0; i < nr_lmbs; i++) {
3697         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3698                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3699         g_assert(drc);
3700 
3701         spapr_drc_detach(drc);
3702         addr += SPAPR_MEMORY_BLOCK_SIZE;
3703     }
3704 
3705     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3706                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3707     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3708                                               nr_lmbs, spapr_drc_index(drc));
3709 out:
3710     error_propagate(errp, local_err);
3711 }
3712 
3713 /* Callback to be called during DRC release. */
3714 void spapr_core_release(DeviceState *dev)
3715 {
3716     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3717 
3718     /* Call the unplug handler chain. This can never fail. */
3719     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3720     object_unparent(OBJECT(dev));
3721 }
3722 
3723 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3724 {
3725     MachineState *ms = MACHINE(hotplug_dev);
3726     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3727     CPUCore *cc = CPU_CORE(dev);
3728     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3729 
3730     if (smc->pre_2_10_has_unused_icps) {
3731         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3732         int i;
3733 
3734         for (i = 0; i < cc->nr_threads; i++) {
3735             CPUState *cs = CPU(sc->threads[i]);
3736 
3737             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3738         }
3739     }
3740 
3741     assert(core_slot);
3742     core_slot->cpu = NULL;
3743     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3744 }
3745 
3746 static
3747 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3748                                Error **errp)
3749 {
3750     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3751     int index;
3752     SpaprDrc *drc;
3753     CPUCore *cc = CPU_CORE(dev);
3754 
3755     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3756         error_setg(errp, "Unable to find CPU core with core-id: %d",
3757                    cc->core_id);
3758         return;
3759     }
3760     if (index == 0) {
3761         error_setg(errp, "Boot CPU core may not be unplugged");
3762         return;
3763     }
3764 
3765     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3766                           spapr_vcpu_id(spapr, cc->core_id));
3767     g_assert(drc);
3768 
3769     spapr_drc_detach(drc);
3770 
3771     spapr_hotplug_req_remove_by_index(drc);
3772 }
3773 
3774 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3775                            void *fdt, int *fdt_start_offset, Error **errp)
3776 {
3777     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3778     CPUState *cs = CPU(core->threads[0]);
3779     PowerPCCPU *cpu = POWERPC_CPU(cs);
3780     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3781     int id = spapr_get_vcpu_id(cpu);
3782     char *nodename;
3783     int offset;
3784 
3785     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3786     offset = fdt_add_subnode(fdt, 0, nodename);
3787     g_free(nodename);
3788 
3789     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3790 
3791     *fdt_start_offset = offset;
3792     return 0;
3793 }
3794 
3795 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3796                             Error **errp)
3797 {
3798     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3799     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3800     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3801     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3802     CPUCore *cc = CPU_CORE(dev);
3803     CPUState *cs;
3804     SpaprDrc *drc;
3805     Error *local_err = NULL;
3806     CPUArchId *core_slot;
3807     int index;
3808     bool hotplugged = spapr_drc_hotplugged(dev);
3809 
3810     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3811     if (!core_slot) {
3812         error_setg(errp, "Unable to find CPU core with core-id: %d",
3813                    cc->core_id);
3814         return;
3815     }
3816     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3817                           spapr_vcpu_id(spapr, cc->core_id));
3818 
3819     g_assert(drc || !mc->has_hotpluggable_cpus);
3820 
3821     if (drc) {
3822         spapr_drc_attach(drc, dev, &local_err);
3823         if (local_err) {
3824             error_propagate(errp, local_err);
3825             return;
3826         }
3827 
3828         if (hotplugged) {
3829             /*
3830              * Send hotplug notification interrupt to the guest only
3831              * in case of hotplugged CPUs.
3832              */
3833             spapr_hotplug_req_add_by_index(drc);
3834         } else {
3835             spapr_drc_reset(drc);
3836         }
3837     }
3838 
3839     core_slot->cpu = OBJECT(dev);
3840 
3841     if (smc->pre_2_10_has_unused_icps) {
3842         int i;
3843 
3844         for (i = 0; i < cc->nr_threads; i++) {
3845             cs = CPU(core->threads[i]);
3846             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3847         }
3848     }
3849 }
3850 
3851 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3852                                 Error **errp)
3853 {
3854     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3855     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3856     Error *local_err = NULL;
3857     CPUCore *cc = CPU_CORE(dev);
3858     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3859     const char *type = object_get_typename(OBJECT(dev));
3860     CPUArchId *core_slot;
3861     int index;
3862 
3863     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3864         error_setg(&local_err, "CPU hotplug not supported for this machine");
3865         goto out;
3866     }
3867 
3868     if (strcmp(base_core_type, type)) {
3869         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3870         goto out;
3871     }
3872 
3873     if (cc->core_id % smp_threads) {
3874         error_setg(&local_err, "invalid core id %d", cc->core_id);
3875         goto out;
3876     }
3877 
3878     /*
3879      * In general we should have homogeneous threads-per-core, but old
3880      * (pre hotplug support) machine types allow the last core to have
3881      * reduced threads as a compatibility hack for when we allowed
3882      * total vcpus not a multiple of threads-per-core.
3883      */
3884     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3885         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3886                    cc->nr_threads, smp_threads);
3887         goto out;
3888     }
3889 
3890     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3891     if (!core_slot) {
3892         error_setg(&local_err, "core id %d out of range", cc->core_id);
3893         goto out;
3894     }
3895 
3896     if (core_slot->cpu) {
3897         error_setg(&local_err, "core %d already populated", cc->core_id);
3898         goto out;
3899     }
3900 
3901     numa_cpu_pre_plug(core_slot, dev, &local_err);
3902 
3903 out:
3904     error_propagate(errp, local_err);
3905 }
3906 
3907 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3908                           void *fdt, int *fdt_start_offset, Error **errp)
3909 {
3910     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3911     int intc_phandle;
3912 
3913     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3914     if (intc_phandle <= 0) {
3915         return -1;
3916     }
3917 
3918     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3919                      fdt_start_offset)) {
3920         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3921         return -1;
3922     }
3923 
3924     /* generally SLOF creates these, for hotplug it's up to QEMU */
3925     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3926 
3927     return 0;
3928 }
3929 
3930 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3931                                Error **errp)
3932 {
3933     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3934     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3935     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3936     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3937 
3938     if (dev->hotplugged && !smc->dr_phb_enabled) {
3939         error_setg(errp, "PHB hotplug not supported for this machine");
3940         return;
3941     }
3942 
3943     if (sphb->index == (uint32_t)-1) {
3944         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3945         return;
3946     }
3947 
3948     /*
3949      * This will check that sphb->index doesn't exceed the maximum number of
3950      * PHBs for the current machine type.
3951      */
3952     smc->phb_placement(spapr, sphb->index,
3953                        &sphb->buid, &sphb->io_win_addr,
3954                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3955                        windows_supported, sphb->dma_liobn,
3956                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3957                        errp);
3958 }
3959 
3960 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3961                            Error **errp)
3962 {
3963     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3964     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3965     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3966     SpaprDrc *drc;
3967     bool hotplugged = spapr_drc_hotplugged(dev);
3968     Error *local_err = NULL;
3969 
3970     if (!smc->dr_phb_enabled) {
3971         return;
3972     }
3973 
3974     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3975     /* hotplug hooks should check it's enabled before getting this far */
3976     assert(drc);
3977 
3978     spapr_drc_attach(drc, DEVICE(dev), &local_err);
3979     if (local_err) {
3980         error_propagate(errp, local_err);
3981         return;
3982     }
3983 
3984     if (hotplugged) {
3985         spapr_hotplug_req_add_by_index(drc);
3986     } else {
3987         spapr_drc_reset(drc);
3988     }
3989 }
3990 
3991 void spapr_phb_release(DeviceState *dev)
3992 {
3993     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3994 
3995     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3996     object_unparent(OBJECT(dev));
3997 }
3998 
3999 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4000 {
4001     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4002 }
4003 
4004 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4005                                      DeviceState *dev, Error **errp)
4006 {
4007     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4008     SpaprDrc *drc;
4009 
4010     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4011     assert(drc);
4012 
4013     if (!spapr_drc_unplug_requested(drc)) {
4014         spapr_drc_detach(drc);
4015         spapr_hotplug_req_remove_by_index(drc);
4016     }
4017 }
4018 
4019 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4020                                       DeviceState *dev, Error **errp)
4021 {
4022     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4023         spapr_memory_plug(hotplug_dev, dev, errp);
4024     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4025         spapr_core_plug(hotplug_dev, dev, errp);
4026     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4027         spapr_phb_plug(hotplug_dev, dev, errp);
4028     }
4029 }
4030 
4031 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4032                                         DeviceState *dev, Error **errp)
4033 {
4034     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4035         spapr_memory_unplug(hotplug_dev, dev);
4036     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4037         spapr_core_unplug(hotplug_dev, dev);
4038     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4039         spapr_phb_unplug(hotplug_dev, dev);
4040     }
4041 }
4042 
4043 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4044                                                 DeviceState *dev, Error **errp)
4045 {
4046     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4047     MachineClass *mc = MACHINE_GET_CLASS(sms);
4048     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4049 
4050     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4051         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4052             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4053         } else {
4054             /* NOTE: this means there is a window after guest reset, prior to
4055              * CAS negotiation, where unplug requests will fail due to the
4056              * capability not being detected yet. This is a bit different than
4057              * the case with PCI unplug, where the events will be queued and
4058              * eventually handled by the guest after boot
4059              */
4060             error_setg(errp, "Memory hot unplug not supported for this guest");
4061         }
4062     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4063         if (!mc->has_hotpluggable_cpus) {
4064             error_setg(errp, "CPU hot unplug not supported on this machine");
4065             return;
4066         }
4067         spapr_core_unplug_request(hotplug_dev, dev, errp);
4068     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4069         if (!smc->dr_phb_enabled) {
4070             error_setg(errp, "PHB hot unplug not supported on this machine");
4071             return;
4072         }
4073         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4074     }
4075 }
4076 
4077 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4078                                           DeviceState *dev, Error **errp)
4079 {
4080     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4081         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4082     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4083         spapr_core_pre_plug(hotplug_dev, dev, errp);
4084     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4085         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4086     }
4087 }
4088 
4089 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4090                                                  DeviceState *dev)
4091 {
4092     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4093         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4094         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4095         return HOTPLUG_HANDLER(machine);
4096     }
4097     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4098         PCIDevice *pcidev = PCI_DEVICE(dev);
4099         PCIBus *root = pci_device_root_bus(pcidev);
4100         SpaprPhbState *phb =
4101             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4102                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4103 
4104         if (phb) {
4105             return HOTPLUG_HANDLER(phb);
4106         }
4107     }
4108     return NULL;
4109 }
4110 
4111 static CpuInstanceProperties
4112 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4113 {
4114     CPUArchId *core_slot;
4115     MachineClass *mc = MACHINE_GET_CLASS(machine);
4116 
4117     /* make sure possible_cpu are intialized */
4118     mc->possible_cpu_arch_ids(machine);
4119     /* get CPU core slot containing thread that matches cpu_index */
4120     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4121     assert(core_slot);
4122     return core_slot->props;
4123 }
4124 
4125 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4126 {
4127     return idx / smp_cores % nb_numa_nodes;
4128 }
4129 
4130 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4131 {
4132     int i;
4133     const char *core_type;
4134     int spapr_max_cores = max_cpus / smp_threads;
4135     MachineClass *mc = MACHINE_GET_CLASS(machine);
4136 
4137     if (!mc->has_hotpluggable_cpus) {
4138         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4139     }
4140     if (machine->possible_cpus) {
4141         assert(machine->possible_cpus->len == spapr_max_cores);
4142         return machine->possible_cpus;
4143     }
4144 
4145     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4146     if (!core_type) {
4147         error_report("Unable to find sPAPR CPU Core definition");
4148         exit(1);
4149     }
4150 
4151     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4152                              sizeof(CPUArchId) * spapr_max_cores);
4153     machine->possible_cpus->len = spapr_max_cores;
4154     for (i = 0; i < machine->possible_cpus->len; i++) {
4155         int core_id = i * smp_threads;
4156 
4157         machine->possible_cpus->cpus[i].type = core_type;
4158         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4159         machine->possible_cpus->cpus[i].arch_id = core_id;
4160         machine->possible_cpus->cpus[i].props.has_core_id = true;
4161         machine->possible_cpus->cpus[i].props.core_id = core_id;
4162     }
4163     return machine->possible_cpus;
4164 }
4165 
4166 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4167                                 uint64_t *buid, hwaddr *pio,
4168                                 hwaddr *mmio32, hwaddr *mmio64,
4169                                 unsigned n_dma, uint32_t *liobns,
4170                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4171 {
4172     /*
4173      * New-style PHB window placement.
4174      *
4175      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4176      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4177      * windows.
4178      *
4179      * Some guest kernels can't work with MMIO windows above 1<<46
4180      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4181      *
4182      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4183      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4184      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4185      * 1TiB 64-bit MMIO windows for each PHB.
4186      */
4187     const uint64_t base_buid = 0x800000020000000ULL;
4188     int i;
4189 
4190     /* Sanity check natural alignments */
4191     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4192     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4193     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4194     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4195     /* Sanity check bounds */
4196     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4197                       SPAPR_PCI_MEM32_WIN_SIZE);
4198     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4199                       SPAPR_PCI_MEM64_WIN_SIZE);
4200 
4201     if (index >= SPAPR_MAX_PHBS) {
4202         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4203                    SPAPR_MAX_PHBS - 1);
4204         return;
4205     }
4206 
4207     *buid = base_buid + index;
4208     for (i = 0; i < n_dma; ++i) {
4209         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4210     }
4211 
4212     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4213     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4214     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4215 
4216     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4217     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4218 }
4219 
4220 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4221 {
4222     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4223 
4224     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4225 }
4226 
4227 static void spapr_ics_resend(XICSFabric *dev)
4228 {
4229     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4230 
4231     ics_resend(spapr->ics);
4232 }
4233 
4234 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4235 {
4236     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4237 
4238     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4239 }
4240 
4241 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4242                                  Monitor *mon)
4243 {
4244     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4245 
4246     spapr->irq->print_info(spapr, mon);
4247 }
4248 
4249 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4250 {
4251     return cpu->vcpu_id;
4252 }
4253 
4254 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4255 {
4256     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4257     int vcpu_id;
4258 
4259     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4260 
4261     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4262         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4263         error_append_hint(errp, "Adjust the number of cpus to %d "
4264                           "or try to raise the number of threads per core\n",
4265                           vcpu_id * smp_threads / spapr->vsmt);
4266         return;
4267     }
4268 
4269     cpu->vcpu_id = vcpu_id;
4270 }
4271 
4272 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4273 {
4274     CPUState *cs;
4275 
4276     CPU_FOREACH(cs) {
4277         PowerPCCPU *cpu = POWERPC_CPU(cs);
4278 
4279         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4280             return cpu;
4281         }
4282     }
4283 
4284     return NULL;
4285 }
4286 
4287 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4288 {
4289     MachineClass *mc = MACHINE_CLASS(oc);
4290     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4291     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4292     NMIClass *nc = NMI_CLASS(oc);
4293     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4294     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4295     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4296     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4297 
4298     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4299     mc->ignore_boot_device_suffixes = true;
4300 
4301     /*
4302      * We set up the default / latest behaviour here.  The class_init
4303      * functions for the specific versioned machine types can override
4304      * these details for backwards compatibility
4305      */
4306     mc->init = spapr_machine_init;
4307     mc->reset = spapr_machine_reset;
4308     mc->block_default_type = IF_SCSI;
4309     mc->max_cpus = 1024;
4310     mc->no_parallel = 1;
4311     mc->default_boot_order = "";
4312     mc->default_ram_size = 512 * MiB;
4313     mc->default_display = "std";
4314     mc->kvm_type = spapr_kvm_type;
4315     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4316     mc->pci_allow_0_address = true;
4317     assert(!mc->get_hotplug_handler);
4318     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4319     hc->pre_plug = spapr_machine_device_pre_plug;
4320     hc->plug = spapr_machine_device_plug;
4321     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4322     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4323     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4324     hc->unplug_request = spapr_machine_device_unplug_request;
4325     hc->unplug = spapr_machine_device_unplug;
4326 
4327     smc->dr_lmb_enabled = true;
4328     smc->update_dt_enabled = true;
4329     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4330     mc->has_hotpluggable_cpus = true;
4331     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4332     fwc->get_dev_path = spapr_get_fw_dev_path;
4333     nc->nmi_monitor_handler = spapr_nmi;
4334     smc->phb_placement = spapr_phb_placement;
4335     vhc->hypercall = emulate_spapr_hypercall;
4336     vhc->hpt_mask = spapr_hpt_mask;
4337     vhc->map_hptes = spapr_map_hptes;
4338     vhc->unmap_hptes = spapr_unmap_hptes;
4339     vhc->hpte_set_c = spapr_hpte_set_c;
4340     vhc->hpte_set_r = spapr_hpte_set_r;
4341     vhc->get_pate = spapr_get_pate;
4342     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4343     xic->ics_get = spapr_ics_get;
4344     xic->ics_resend = spapr_ics_resend;
4345     xic->icp_get = spapr_icp_get;
4346     ispc->print_info = spapr_pic_print_info;
4347     /* Force NUMA node memory size to be a multiple of
4348      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4349      * in which LMBs are represented and hot-added
4350      */
4351     mc->numa_mem_align_shift = 28;
4352 
4353     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4354     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4355     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4356     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4357     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4358     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4359     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4360     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4361     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4362     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4363     spapr_caps_add_properties(smc, &error_abort);
4364     smc->irq = &spapr_irq_dual;
4365     smc->dr_phb_enabled = true;
4366 }
4367 
4368 static const TypeInfo spapr_machine_info = {
4369     .name          = TYPE_SPAPR_MACHINE,
4370     .parent        = TYPE_MACHINE,
4371     .abstract      = true,
4372     .instance_size = sizeof(SpaprMachineState),
4373     .instance_init = spapr_instance_init,
4374     .instance_finalize = spapr_machine_finalizefn,
4375     .class_size    = sizeof(SpaprMachineClass),
4376     .class_init    = spapr_machine_class_init,
4377     .interfaces = (InterfaceInfo[]) {
4378         { TYPE_FW_PATH_PROVIDER },
4379         { TYPE_NMI },
4380         { TYPE_HOTPLUG_HANDLER },
4381         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4382         { TYPE_XICS_FABRIC },
4383         { TYPE_INTERRUPT_STATS_PROVIDER },
4384         { }
4385     },
4386 };
4387 
4388 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4389     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4390                                                     void *data)      \
4391     {                                                                \
4392         MachineClass *mc = MACHINE_CLASS(oc);                        \
4393         spapr_machine_##suffix##_class_options(mc);                  \
4394         if (latest) {                                                \
4395             mc->alias = "pseries";                                   \
4396             mc->is_default = 1;                                      \
4397         }                                                            \
4398     }                                                                \
4399     static const TypeInfo spapr_machine_##suffix##_info = {          \
4400         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4401         .parent = TYPE_SPAPR_MACHINE,                                \
4402         .class_init = spapr_machine_##suffix##_class_init,           \
4403     };                                                               \
4404     static void spapr_machine_register_##suffix(void)                \
4405     {                                                                \
4406         type_register(&spapr_machine_##suffix##_info);               \
4407     }                                                                \
4408     type_init(spapr_machine_register_##suffix)
4409 
4410 /*
4411  * pseries-4.1
4412  */
4413 static void spapr_machine_4_1_class_options(MachineClass *mc)
4414 {
4415     /* Defaults for the latest behaviour inherited from the base class */
4416 }
4417 
4418 DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
4419 
4420 /*
4421  * pseries-4.0
4422  */
4423 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4424                               uint64_t *buid, hwaddr *pio,
4425                               hwaddr *mmio32, hwaddr *mmio64,
4426                               unsigned n_dma, uint32_t *liobns,
4427                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4428 {
4429     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4430                         nv2gpa, nv2atsd, errp);
4431     *nv2gpa = 0;
4432     *nv2atsd = 0;
4433 }
4434 
4435 static void spapr_machine_4_0_class_options(MachineClass *mc)
4436 {
4437     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4438 
4439     spapr_machine_4_1_class_options(mc);
4440     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4441     smc->phb_placement = phb_placement_4_0;
4442     smc->irq = &spapr_irq_xics;
4443     smc->pre_4_1_migration = true;
4444 }
4445 
4446 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4447 
4448 /*
4449  * pseries-3.1
4450  */
4451 static void spapr_machine_3_1_class_options(MachineClass *mc)
4452 {
4453     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4454 
4455     spapr_machine_4_0_class_options(mc);
4456     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4457 
4458     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4459     smc->update_dt_enabled = false;
4460     smc->dr_phb_enabled = false;
4461     smc->broken_host_serial_model = true;
4462     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4463     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4464     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4465     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4466 }
4467 
4468 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4469 
4470 /*
4471  * pseries-3.0
4472  */
4473 
4474 static void spapr_machine_3_0_class_options(MachineClass *mc)
4475 {
4476     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4477 
4478     spapr_machine_3_1_class_options(mc);
4479     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4480 
4481     smc->legacy_irq_allocation = true;
4482     smc->irq = &spapr_irq_xics_legacy;
4483 }
4484 
4485 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4486 
4487 /*
4488  * pseries-2.12
4489  */
4490 static void spapr_machine_2_12_class_options(MachineClass *mc)
4491 {
4492     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4493     static GlobalProperty compat[] = {
4494         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4495         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4496     };
4497 
4498     spapr_machine_3_0_class_options(mc);
4499     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4500     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4501 
4502     /* We depend on kvm_enabled() to choose a default value for the
4503      * hpt-max-page-size capability. Of course we can't do it here
4504      * because this is too early and the HW accelerator isn't initialzed
4505      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4506      */
4507     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4508 }
4509 
4510 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4511 
4512 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4513 {
4514     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4515 
4516     spapr_machine_2_12_class_options(mc);
4517     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4518     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4519     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4520 }
4521 
4522 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4523 
4524 /*
4525  * pseries-2.11
4526  */
4527 
4528 static void spapr_machine_2_11_class_options(MachineClass *mc)
4529 {
4530     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4531 
4532     spapr_machine_2_12_class_options(mc);
4533     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4534     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4535 }
4536 
4537 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4538 
4539 /*
4540  * pseries-2.10
4541  */
4542 
4543 static void spapr_machine_2_10_class_options(MachineClass *mc)
4544 {
4545     spapr_machine_2_11_class_options(mc);
4546     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4547 }
4548 
4549 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4550 
4551 /*
4552  * pseries-2.9
4553  */
4554 
4555 static void spapr_machine_2_9_class_options(MachineClass *mc)
4556 {
4557     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4558     static GlobalProperty compat[] = {
4559         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4560     };
4561 
4562     spapr_machine_2_10_class_options(mc);
4563     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4564     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4565     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4566     smc->pre_2_10_has_unused_icps = true;
4567     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4568 }
4569 
4570 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4571 
4572 /*
4573  * pseries-2.8
4574  */
4575 
4576 static void spapr_machine_2_8_class_options(MachineClass *mc)
4577 {
4578     static GlobalProperty compat[] = {
4579         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4580     };
4581 
4582     spapr_machine_2_9_class_options(mc);
4583     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4584     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4585     mc->numa_mem_align_shift = 23;
4586 }
4587 
4588 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4589 
4590 /*
4591  * pseries-2.7
4592  */
4593 
4594 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4595                               uint64_t *buid, hwaddr *pio,
4596                               hwaddr *mmio32, hwaddr *mmio64,
4597                               unsigned n_dma, uint32_t *liobns,
4598                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4599 {
4600     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4601     const uint64_t base_buid = 0x800000020000000ULL;
4602     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4603     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4604     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4605     const uint32_t max_index = 255;
4606     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4607 
4608     uint64_t ram_top = MACHINE(spapr)->ram_size;
4609     hwaddr phb0_base, phb_base;
4610     int i;
4611 
4612     /* Do we have device memory? */
4613     if (MACHINE(spapr)->maxram_size > ram_top) {
4614         /* Can't just use maxram_size, because there may be an
4615          * alignment gap between normal and device memory regions
4616          */
4617         ram_top = MACHINE(spapr)->device_memory->base +
4618             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4619     }
4620 
4621     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4622 
4623     if (index > max_index) {
4624         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4625                    max_index);
4626         return;
4627     }
4628 
4629     *buid = base_buid + index;
4630     for (i = 0; i < n_dma; ++i) {
4631         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4632     }
4633 
4634     phb_base = phb0_base + index * phb_spacing;
4635     *pio = phb_base + pio_offset;
4636     *mmio32 = phb_base + mmio_offset;
4637     /*
4638      * We don't set the 64-bit MMIO window, relying on the PHB's
4639      * fallback behaviour of automatically splitting a large "32-bit"
4640      * window into contiguous 32-bit and 64-bit windows
4641      */
4642 
4643     *nv2gpa = 0;
4644     *nv2atsd = 0;
4645 }
4646 
4647 static void spapr_machine_2_7_class_options(MachineClass *mc)
4648 {
4649     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4650     static GlobalProperty compat[] = {
4651         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4652         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4653         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4654         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4655     };
4656 
4657     spapr_machine_2_8_class_options(mc);
4658     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4659     mc->default_machine_opts = "modern-hotplug-events=off";
4660     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4661     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4662     smc->phb_placement = phb_placement_2_7;
4663 }
4664 
4665 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4666 
4667 /*
4668  * pseries-2.6
4669  */
4670 
4671 static void spapr_machine_2_6_class_options(MachineClass *mc)
4672 {
4673     static GlobalProperty compat[] = {
4674         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4675     };
4676 
4677     spapr_machine_2_7_class_options(mc);
4678     mc->has_hotpluggable_cpus = false;
4679     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4680     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4681 }
4682 
4683 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4684 
4685 /*
4686  * pseries-2.5
4687  */
4688 
4689 static void spapr_machine_2_5_class_options(MachineClass *mc)
4690 {
4691     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4692     static GlobalProperty compat[] = {
4693         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4694     };
4695 
4696     spapr_machine_2_6_class_options(mc);
4697     smc->use_ohci_by_default = true;
4698     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4699     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4700 }
4701 
4702 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4703 
4704 /*
4705  * pseries-2.4
4706  */
4707 
4708 static void spapr_machine_2_4_class_options(MachineClass *mc)
4709 {
4710     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4711 
4712     spapr_machine_2_5_class_options(mc);
4713     smc->dr_lmb_enabled = false;
4714     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4715 }
4716 
4717 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4718 
4719 /*
4720  * pseries-2.3
4721  */
4722 
4723 static void spapr_machine_2_3_class_options(MachineClass *mc)
4724 {
4725     static GlobalProperty compat[] = {
4726         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4727     };
4728     spapr_machine_2_4_class_options(mc);
4729     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4730     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4731 }
4732 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4733 
4734 /*
4735  * pseries-2.2
4736  */
4737 
4738 static void spapr_machine_2_2_class_options(MachineClass *mc)
4739 {
4740     static GlobalProperty compat[] = {
4741         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4742     };
4743 
4744     spapr_machine_2_3_class_options(mc);
4745     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4746     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4747     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4748 }
4749 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4750 
4751 /*
4752  * pseries-2.1
4753  */
4754 
4755 static void spapr_machine_2_1_class_options(MachineClass *mc)
4756 {
4757     spapr_machine_2_2_class_options(mc);
4758     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4759 }
4760 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4761 
4762 static void spapr_machine_register_types(void)
4763 {
4764     type_register_static(&spapr_machine_info);
4765 }
4766 
4767 type_init(spapr_machine_register_types)
4768