1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/numa.h" 33 #include "sysemu/qtest.h" 34 #include "hw/hw.h" 35 #include "qemu/log.h" 36 #include "hw/fw-path-provider.h" 37 #include "elf.h" 38 #include "net/net.h" 39 #include "sysemu/device_tree.h" 40 #include "sysemu/cpus.h" 41 #include "sysemu/hw_accel.h" 42 #include "kvm_ppc.h" 43 #include "migration/misc.h" 44 #include "migration/global_state.h" 45 #include "migration/register.h" 46 #include "mmu-hash64.h" 47 #include "mmu-book3s-v3.h" 48 #include "cpu-models.h" 49 #include "qom/cpu.h" 50 51 #include "hw/boards.h" 52 #include "hw/ppc/ppc.h" 53 #include "hw/loader.h" 54 55 #include "hw/ppc/fdt.h" 56 #include "hw/ppc/spapr.h" 57 #include "hw/ppc/spapr_vio.h" 58 #include "hw/pci-host/spapr.h" 59 #include "hw/pci/msi.h" 60 61 #include "hw/pci/pci.h" 62 #include "hw/scsi/scsi.h" 63 #include "hw/virtio/virtio-scsi.h" 64 #include "hw/virtio/vhost-scsi-common.h" 65 66 #include "exec/address-spaces.h" 67 #include "exec/ram_addr.h" 68 #include "hw/usb.h" 69 #include "qemu/config-file.h" 70 #include "qemu/error-report.h" 71 #include "trace.h" 72 #include "hw/nmi.h" 73 #include "hw/intc/intc.h" 74 75 #include "qemu/cutils.h" 76 #include "hw/ppc/spapr_cpu_core.h" 77 #include "hw/mem/memory-device.h" 78 79 #include <libfdt.h> 80 81 /* SLOF memory layout: 82 * 83 * SLOF raw image loaded at 0, copies its romfs right below the flat 84 * device-tree, then position SLOF itself 31M below that 85 * 86 * So we set FW_OVERHEAD to 40MB which should account for all of that 87 * and more 88 * 89 * We load our kernel at 4M, leaving space for SLOF initial image 90 */ 91 #define FDT_MAX_SIZE 0x100000 92 #define RTAS_MAX_SIZE 0x10000 93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 94 #define FW_MAX_SIZE 0x400000 95 #define FW_FILE_NAME "slof.bin" 96 #define FW_OVERHEAD 0x2800000 97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 98 99 #define MIN_RMA_SLOF 128UL 100 101 #define PHANDLE_INTC 0x00001111 102 103 /* These two functions implement the VCPU id numbering: one to compute them 104 * all and one to identify thread 0 of a VCORE. Any change to the first one 105 * is likely to have an impact on the second one, so let's keep them close. 106 */ 107 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 108 { 109 assert(spapr->vsmt); 110 return 111 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 112 } 113 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 114 PowerPCCPU *cpu) 115 { 116 assert(spapr->vsmt); 117 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 118 } 119 120 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 121 { 122 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 123 * and newer QEMUs don't even have them. In both cases, we don't want 124 * to send anything on the wire. 125 */ 126 return false; 127 } 128 129 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 130 .name = "icp/server", 131 .version_id = 1, 132 .minimum_version_id = 1, 133 .needed = pre_2_10_vmstate_dummy_icp_needed, 134 .fields = (VMStateField[]) { 135 VMSTATE_UNUSED(4), /* uint32_t xirr */ 136 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 137 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 138 VMSTATE_END_OF_LIST() 139 }, 140 }; 141 142 static void pre_2_10_vmstate_register_dummy_icp(int i) 143 { 144 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 145 (void *)(uintptr_t) i); 146 } 147 148 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 149 { 150 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 151 (void *)(uintptr_t) i); 152 } 153 154 int spapr_max_server_number(SpaprMachineState *spapr) 155 { 156 assert(spapr->vsmt); 157 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 158 } 159 160 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 161 int smt_threads) 162 { 163 int i, ret = 0; 164 uint32_t servers_prop[smt_threads]; 165 uint32_t gservers_prop[smt_threads * 2]; 166 int index = spapr_get_vcpu_id(cpu); 167 168 if (cpu->compat_pvr) { 169 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 170 if (ret < 0) { 171 return ret; 172 } 173 } 174 175 /* Build interrupt servers and gservers properties */ 176 for (i = 0; i < smt_threads; i++) { 177 servers_prop[i] = cpu_to_be32(index + i); 178 /* Hack, direct the group queues back to cpu 0 */ 179 gservers_prop[i*2] = cpu_to_be32(index + i); 180 gservers_prop[i*2 + 1] = 0; 181 } 182 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 183 servers_prop, sizeof(servers_prop)); 184 if (ret < 0) { 185 return ret; 186 } 187 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 188 gservers_prop, sizeof(gservers_prop)); 189 190 return ret; 191 } 192 193 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 194 { 195 int index = spapr_get_vcpu_id(cpu); 196 uint32_t associativity[] = {cpu_to_be32(0x5), 197 cpu_to_be32(0x0), 198 cpu_to_be32(0x0), 199 cpu_to_be32(0x0), 200 cpu_to_be32(cpu->node_id), 201 cpu_to_be32(index)}; 202 203 /* Advertise NUMA via ibm,associativity */ 204 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 205 sizeof(associativity)); 206 } 207 208 /* Populate the "ibm,pa-features" property */ 209 static void spapr_populate_pa_features(SpaprMachineState *spapr, 210 PowerPCCPU *cpu, 211 void *fdt, int offset, 212 bool legacy_guest) 213 { 214 uint8_t pa_features_206[] = { 6, 0, 215 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 216 uint8_t pa_features_207[] = { 24, 0, 217 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 218 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 219 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 220 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 221 uint8_t pa_features_300[] = { 66, 0, 222 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 223 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 224 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 225 /* 6: DS207 */ 226 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 227 /* 16: Vector */ 228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 229 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 231 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 233 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 234 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 235 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 237 /* 42: PM, 44: PC RA, 46: SC vec'd */ 238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 239 /* 48: SIMD, 50: QP BFP, 52: String */ 240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 241 /* 54: DecFP, 56: DecI, 58: SHA */ 242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 243 /* 60: NM atomic, 62: RNG */ 244 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 245 }; 246 uint8_t *pa_features = NULL; 247 size_t pa_size; 248 249 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 250 pa_features = pa_features_206; 251 pa_size = sizeof(pa_features_206); 252 } 253 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 254 pa_features = pa_features_207; 255 pa_size = sizeof(pa_features_207); 256 } 257 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 258 pa_features = pa_features_300; 259 pa_size = sizeof(pa_features_300); 260 } 261 if (!pa_features) { 262 return; 263 } 264 265 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 266 /* 267 * Note: we keep CI large pages off by default because a 64K capable 268 * guest provisioned with large pages might otherwise try to map a qemu 269 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 270 * even if that qemu runs on a 4k host. 271 * We dd this bit back here if we are confident this is not an issue 272 */ 273 pa_features[3] |= 0x20; 274 } 275 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 276 pa_features[24] |= 0x80; /* Transactional memory support */ 277 } 278 if (legacy_guest && pa_size > 40) { 279 /* Workaround for broken kernels that attempt (guest) radix 280 * mode when they can't handle it, if they see the radix bit set 281 * in pa-features. So hide it from them. */ 282 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 283 } 284 285 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 286 } 287 288 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 289 { 290 int ret = 0, offset, cpus_offset; 291 CPUState *cs; 292 char cpu_model[32]; 293 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 294 295 CPU_FOREACH(cs) { 296 PowerPCCPU *cpu = POWERPC_CPU(cs); 297 DeviceClass *dc = DEVICE_GET_CLASS(cs); 298 int index = spapr_get_vcpu_id(cpu); 299 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 300 301 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 302 continue; 303 } 304 305 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 306 307 cpus_offset = fdt_path_offset(fdt, "/cpus"); 308 if (cpus_offset < 0) { 309 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 310 if (cpus_offset < 0) { 311 return cpus_offset; 312 } 313 } 314 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 315 if (offset < 0) { 316 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 317 if (offset < 0) { 318 return offset; 319 } 320 } 321 322 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 323 pft_size_prop, sizeof(pft_size_prop)); 324 if (ret < 0) { 325 return ret; 326 } 327 328 if (nb_numa_nodes > 1) { 329 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 330 if (ret < 0) { 331 return ret; 332 } 333 } 334 335 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 336 if (ret < 0) { 337 return ret; 338 } 339 340 spapr_populate_pa_features(spapr, cpu, fdt, offset, 341 spapr->cas_legacy_guest_workaround); 342 } 343 return ret; 344 } 345 346 static hwaddr spapr_node0_size(MachineState *machine) 347 { 348 if (nb_numa_nodes) { 349 int i; 350 for (i = 0; i < nb_numa_nodes; ++i) { 351 if (numa_info[i].node_mem) { 352 return MIN(pow2floor(numa_info[i].node_mem), 353 machine->ram_size); 354 } 355 } 356 } 357 return machine->ram_size; 358 } 359 360 static void add_str(GString *s, const gchar *s1) 361 { 362 g_string_append_len(s, s1, strlen(s1) + 1); 363 } 364 365 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 366 hwaddr size) 367 { 368 uint32_t associativity[] = { 369 cpu_to_be32(0x4), /* length */ 370 cpu_to_be32(0x0), cpu_to_be32(0x0), 371 cpu_to_be32(0x0), cpu_to_be32(nodeid) 372 }; 373 char mem_name[32]; 374 uint64_t mem_reg_property[2]; 375 int off; 376 377 mem_reg_property[0] = cpu_to_be64(start); 378 mem_reg_property[1] = cpu_to_be64(size); 379 380 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 381 off = fdt_add_subnode(fdt, 0, mem_name); 382 _FDT(off); 383 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 384 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 385 sizeof(mem_reg_property)))); 386 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 387 sizeof(associativity)))); 388 return off; 389 } 390 391 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 392 { 393 MachineState *machine = MACHINE(spapr); 394 hwaddr mem_start, node_size; 395 int i, nb_nodes = nb_numa_nodes; 396 NodeInfo *nodes = numa_info; 397 NodeInfo ramnode; 398 399 /* No NUMA nodes, assume there is just one node with whole RAM */ 400 if (!nb_numa_nodes) { 401 nb_nodes = 1; 402 ramnode.node_mem = machine->ram_size; 403 nodes = &ramnode; 404 } 405 406 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 407 if (!nodes[i].node_mem) { 408 continue; 409 } 410 if (mem_start >= machine->ram_size) { 411 node_size = 0; 412 } else { 413 node_size = nodes[i].node_mem; 414 if (node_size > machine->ram_size - mem_start) { 415 node_size = machine->ram_size - mem_start; 416 } 417 } 418 if (!mem_start) { 419 /* spapr_machine_init() checks for rma_size <= node0_size 420 * already */ 421 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 422 mem_start += spapr->rma_size; 423 node_size -= spapr->rma_size; 424 } 425 for ( ; node_size; ) { 426 hwaddr sizetmp = pow2floor(node_size); 427 428 /* mem_start != 0 here */ 429 if (ctzl(mem_start) < ctzl(sizetmp)) { 430 sizetmp = 1ULL << ctzl(mem_start); 431 } 432 433 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 434 node_size -= sizetmp; 435 mem_start += sizetmp; 436 } 437 } 438 439 return 0; 440 } 441 442 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 443 SpaprMachineState *spapr) 444 { 445 PowerPCCPU *cpu = POWERPC_CPU(cs); 446 CPUPPCState *env = &cpu->env; 447 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 448 int index = spapr_get_vcpu_id(cpu); 449 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 450 0xffffffff, 0xffffffff}; 451 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 452 : SPAPR_TIMEBASE_FREQ; 453 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 454 uint32_t page_sizes_prop[64]; 455 size_t page_sizes_prop_size; 456 uint32_t vcpus_per_socket = smp_threads * smp_cores; 457 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 458 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 459 SpaprDrc *drc; 460 int drc_index; 461 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 462 int i; 463 464 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 465 if (drc) { 466 drc_index = spapr_drc_index(drc); 467 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 468 } 469 470 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 471 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 472 473 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 475 env->dcache_line_size))); 476 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 477 env->dcache_line_size))); 478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 479 env->icache_line_size))); 480 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 481 env->icache_line_size))); 482 483 if (pcc->l1_dcache_size) { 484 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 485 pcc->l1_dcache_size))); 486 } else { 487 warn_report("Unknown L1 dcache size for cpu"); 488 } 489 if (pcc->l1_icache_size) { 490 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 491 pcc->l1_icache_size))); 492 } else { 493 warn_report("Unknown L1 icache size for cpu"); 494 } 495 496 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 497 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 498 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 499 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 500 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 501 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 502 503 if (env->spr_cb[SPR_PURR].oea_read) { 504 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 505 } 506 if (env->spr_cb[SPR_SPURR].oea_read) { 507 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 508 } 509 510 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 511 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 512 segs, sizeof(segs)))); 513 } 514 515 /* Advertise VSX (vector extensions) if available 516 * 1 == VMX / Altivec available 517 * 2 == VSX available 518 * 519 * Only CPUs for which we create core types in spapr_cpu_core.c 520 * are possible, and all of those have VMX */ 521 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 522 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 523 } else { 524 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 525 } 526 527 /* Advertise DFP (Decimal Floating Point) if available 528 * 0 / no property == no DFP 529 * 1 == DFP available */ 530 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 531 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 532 } 533 534 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 535 sizeof(page_sizes_prop)); 536 if (page_sizes_prop_size) { 537 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 538 page_sizes_prop, page_sizes_prop_size))); 539 } 540 541 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 542 543 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 544 cs->cpu_index / vcpus_per_socket))); 545 546 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 547 pft_size_prop, sizeof(pft_size_prop)))); 548 549 if (nb_numa_nodes > 1) { 550 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 551 } 552 553 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 554 555 if (pcc->radix_page_info) { 556 for (i = 0; i < pcc->radix_page_info->count; i++) { 557 radix_AP_encodings[i] = 558 cpu_to_be32(pcc->radix_page_info->entries[i]); 559 } 560 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 561 radix_AP_encodings, 562 pcc->radix_page_info->count * 563 sizeof(radix_AP_encodings[0])))); 564 } 565 566 /* 567 * We set this property to let the guest know that it can use the large 568 * decrementer and its width in bits. 569 */ 570 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 571 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 572 pcc->lrg_decr_bits))); 573 } 574 575 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 576 { 577 CPUState **rev; 578 CPUState *cs; 579 int n_cpus; 580 int cpus_offset; 581 char *nodename; 582 int i; 583 584 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 585 _FDT(cpus_offset); 586 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 587 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 588 589 /* 590 * We walk the CPUs in reverse order to ensure that CPU DT nodes 591 * created by fdt_add_subnode() end up in the right order in FDT 592 * for the guest kernel the enumerate the CPUs correctly. 593 * 594 * The CPU list cannot be traversed in reverse order, so we need 595 * to do extra work. 596 */ 597 n_cpus = 0; 598 rev = NULL; 599 CPU_FOREACH(cs) { 600 rev = g_renew(CPUState *, rev, n_cpus + 1); 601 rev[n_cpus++] = cs; 602 } 603 604 for (i = n_cpus - 1; i >= 0; i--) { 605 CPUState *cs = rev[i]; 606 PowerPCCPU *cpu = POWERPC_CPU(cs); 607 int index = spapr_get_vcpu_id(cpu); 608 DeviceClass *dc = DEVICE_GET_CLASS(cs); 609 int offset; 610 611 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 612 continue; 613 } 614 615 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 616 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 617 g_free(nodename); 618 _FDT(offset); 619 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 620 } 621 622 g_free(rev); 623 } 624 625 static int spapr_rng_populate_dt(void *fdt) 626 { 627 int node; 628 int ret; 629 630 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 631 if (node <= 0) { 632 return -1; 633 } 634 ret = fdt_setprop_string(fdt, node, "device_type", 635 "ibm,platform-facilities"); 636 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 637 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 638 639 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 640 if (node <= 0) { 641 return -1; 642 } 643 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 644 645 return ret ? -1 : 0; 646 } 647 648 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 649 { 650 MemoryDeviceInfoList *info; 651 652 for (info = list; info; info = info->next) { 653 MemoryDeviceInfo *value = info->value; 654 655 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 656 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 657 658 if (addr >= pcdimm_info->addr && 659 addr < (pcdimm_info->addr + pcdimm_info->size)) { 660 return pcdimm_info->node; 661 } 662 } 663 } 664 665 return -1; 666 } 667 668 struct sPAPRDrconfCellV2 { 669 uint32_t seq_lmbs; 670 uint64_t base_addr; 671 uint32_t drc_index; 672 uint32_t aa_index; 673 uint32_t flags; 674 } QEMU_PACKED; 675 676 typedef struct DrconfCellQueue { 677 struct sPAPRDrconfCellV2 cell; 678 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 679 } DrconfCellQueue; 680 681 static DrconfCellQueue * 682 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 683 uint32_t drc_index, uint32_t aa_index, 684 uint32_t flags) 685 { 686 DrconfCellQueue *elem; 687 688 elem = g_malloc0(sizeof(*elem)); 689 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 690 elem->cell.base_addr = cpu_to_be64(base_addr); 691 elem->cell.drc_index = cpu_to_be32(drc_index); 692 elem->cell.aa_index = cpu_to_be32(aa_index); 693 elem->cell.flags = cpu_to_be32(flags); 694 695 return elem; 696 } 697 698 /* ibm,dynamic-memory-v2 */ 699 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 700 int offset, MemoryDeviceInfoList *dimms) 701 { 702 MachineState *machine = MACHINE(spapr); 703 uint8_t *int_buf, *cur_index; 704 int ret; 705 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 706 uint64_t addr, cur_addr, size; 707 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 708 uint64_t mem_end = machine->device_memory->base + 709 memory_region_size(&machine->device_memory->mr); 710 uint32_t node, buf_len, nr_entries = 0; 711 SpaprDrc *drc; 712 DrconfCellQueue *elem, *next; 713 MemoryDeviceInfoList *info; 714 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 715 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 716 717 /* Entry to cover RAM and the gap area */ 718 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 719 SPAPR_LMB_FLAGS_RESERVED | 720 SPAPR_LMB_FLAGS_DRC_INVALID); 721 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 722 nr_entries++; 723 724 cur_addr = machine->device_memory->base; 725 for (info = dimms; info; info = info->next) { 726 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 727 728 addr = di->addr; 729 size = di->size; 730 node = di->node; 731 732 /* Entry for hot-pluggable area */ 733 if (cur_addr < addr) { 734 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 735 g_assert(drc); 736 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 737 cur_addr, spapr_drc_index(drc), -1, 0); 738 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 739 nr_entries++; 740 } 741 742 /* Entry for DIMM */ 743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 744 g_assert(drc); 745 elem = spapr_get_drconf_cell(size / lmb_size, addr, 746 spapr_drc_index(drc), node, 747 SPAPR_LMB_FLAGS_ASSIGNED); 748 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 749 nr_entries++; 750 cur_addr = addr + size; 751 } 752 753 /* Entry for remaining hotpluggable area */ 754 if (cur_addr < mem_end) { 755 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 756 g_assert(drc); 757 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 758 cur_addr, spapr_drc_index(drc), -1, 0); 759 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 760 nr_entries++; 761 } 762 763 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 764 int_buf = cur_index = g_malloc0(buf_len); 765 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 766 cur_index += sizeof(nr_entries); 767 768 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 769 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 770 cur_index += sizeof(elem->cell); 771 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 772 g_free(elem); 773 } 774 775 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 776 g_free(int_buf); 777 if (ret < 0) { 778 return -1; 779 } 780 return 0; 781 } 782 783 /* ibm,dynamic-memory */ 784 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 785 int offset, MemoryDeviceInfoList *dimms) 786 { 787 MachineState *machine = MACHINE(spapr); 788 int i, ret; 789 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 790 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 791 uint32_t nr_lmbs = (machine->device_memory->base + 792 memory_region_size(&machine->device_memory->mr)) / 793 lmb_size; 794 uint32_t *int_buf, *cur_index, buf_len; 795 796 /* 797 * Allocate enough buffer size to fit in ibm,dynamic-memory 798 */ 799 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 800 cur_index = int_buf = g_malloc0(buf_len); 801 int_buf[0] = cpu_to_be32(nr_lmbs); 802 cur_index++; 803 for (i = 0; i < nr_lmbs; i++) { 804 uint64_t addr = i * lmb_size; 805 uint32_t *dynamic_memory = cur_index; 806 807 if (i >= device_lmb_start) { 808 SpaprDrc *drc; 809 810 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 811 g_assert(drc); 812 813 dynamic_memory[0] = cpu_to_be32(addr >> 32); 814 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 815 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 816 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 817 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 818 if (memory_region_present(get_system_memory(), addr)) { 819 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 820 } else { 821 dynamic_memory[5] = cpu_to_be32(0); 822 } 823 } else { 824 /* 825 * LMB information for RMA, boot time RAM and gap b/n RAM and 826 * device memory region -- all these are marked as reserved 827 * and as having no valid DRC. 828 */ 829 dynamic_memory[0] = cpu_to_be32(addr >> 32); 830 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 831 dynamic_memory[2] = cpu_to_be32(0); 832 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 833 dynamic_memory[4] = cpu_to_be32(-1); 834 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 835 SPAPR_LMB_FLAGS_DRC_INVALID); 836 } 837 838 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 839 } 840 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 841 g_free(int_buf); 842 if (ret < 0) { 843 return -1; 844 } 845 return 0; 846 } 847 848 /* 849 * Adds ibm,dynamic-reconfiguration-memory node. 850 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 851 * of this device tree node. 852 */ 853 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 854 { 855 MachineState *machine = MACHINE(spapr); 856 int ret, i, offset; 857 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 858 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 859 uint32_t *int_buf, *cur_index, buf_len; 860 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 861 MemoryDeviceInfoList *dimms = NULL; 862 863 /* 864 * Don't create the node if there is no device memory 865 */ 866 if (machine->ram_size == machine->maxram_size) { 867 return 0; 868 } 869 870 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 871 872 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 873 sizeof(prop_lmb_size)); 874 if (ret < 0) { 875 return ret; 876 } 877 878 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 879 if (ret < 0) { 880 return ret; 881 } 882 883 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 884 if (ret < 0) { 885 return ret; 886 } 887 888 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 889 dimms = qmp_memory_device_list(); 890 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 891 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 892 } else { 893 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 894 } 895 qapi_free_MemoryDeviceInfoList(dimms); 896 897 if (ret < 0) { 898 return ret; 899 } 900 901 /* ibm,associativity-lookup-arrays */ 902 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 903 cur_index = int_buf = g_malloc0(buf_len); 904 int_buf[0] = cpu_to_be32(nr_nodes); 905 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 906 cur_index += 2; 907 for (i = 0; i < nr_nodes; i++) { 908 uint32_t associativity[] = { 909 cpu_to_be32(0x0), 910 cpu_to_be32(0x0), 911 cpu_to_be32(0x0), 912 cpu_to_be32(i) 913 }; 914 memcpy(cur_index, associativity, sizeof(associativity)); 915 cur_index += 4; 916 } 917 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 918 (cur_index - int_buf) * sizeof(uint32_t)); 919 g_free(int_buf); 920 921 return ret; 922 } 923 924 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 925 SpaprOptionVector *ov5_updates) 926 { 927 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 928 int ret = 0, offset; 929 930 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 931 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 932 g_assert(smc->dr_lmb_enabled); 933 ret = spapr_populate_drconf_memory(spapr, fdt); 934 if (ret) { 935 goto out; 936 } 937 } 938 939 offset = fdt_path_offset(fdt, "/chosen"); 940 if (offset < 0) { 941 offset = fdt_add_subnode(fdt, 0, "chosen"); 942 if (offset < 0) { 943 return offset; 944 } 945 } 946 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 947 "ibm,architecture-vec-5"); 948 949 out: 950 return ret; 951 } 952 953 static bool spapr_hotplugged_dev_before_cas(void) 954 { 955 Object *drc_container, *obj; 956 ObjectProperty *prop; 957 ObjectPropertyIterator iter; 958 959 drc_container = container_get(object_get_root(), "/dr-connector"); 960 object_property_iter_init(&iter, drc_container); 961 while ((prop = object_property_iter_next(&iter))) { 962 if (!strstart(prop->type, "link<", NULL)) { 963 continue; 964 } 965 obj = object_property_get_link(drc_container, prop->name, NULL); 966 if (spapr_drc_needed(obj)) { 967 return true; 968 } 969 } 970 return false; 971 } 972 973 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 974 target_ulong addr, target_ulong size, 975 SpaprOptionVector *ov5_updates) 976 { 977 void *fdt, *fdt_skel; 978 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 979 980 if (spapr_hotplugged_dev_before_cas()) { 981 return 1; 982 } 983 984 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 985 error_report("SLOF provided an unexpected CAS buffer size " 986 TARGET_FMT_lu " (min: %zu, max: %u)", 987 size, sizeof(hdr), FW_MAX_SIZE); 988 exit(EXIT_FAILURE); 989 } 990 991 size -= sizeof(hdr); 992 993 /* Create skeleton */ 994 fdt_skel = g_malloc0(size); 995 _FDT((fdt_create(fdt_skel, size))); 996 _FDT((fdt_finish_reservemap(fdt_skel))); 997 _FDT((fdt_begin_node(fdt_skel, ""))); 998 _FDT((fdt_end_node(fdt_skel))); 999 _FDT((fdt_finish(fdt_skel))); 1000 fdt = g_malloc0(size); 1001 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1002 g_free(fdt_skel); 1003 1004 /* Fixup cpu nodes */ 1005 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1006 1007 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1008 return -1; 1009 } 1010 1011 /* Pack resulting tree */ 1012 _FDT((fdt_pack(fdt))); 1013 1014 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1015 trace_spapr_cas_failed(size); 1016 return -1; 1017 } 1018 1019 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1020 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1021 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1022 g_free(fdt); 1023 1024 return 0; 1025 } 1026 1027 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1028 { 1029 int rtas; 1030 GString *hypertas = g_string_sized_new(256); 1031 GString *qemu_hypertas = g_string_sized_new(256); 1032 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1033 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1034 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1035 uint32_t lrdr_capacity[] = { 1036 cpu_to_be32(max_device_addr >> 32), 1037 cpu_to_be32(max_device_addr & 0xffffffff), 1038 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1039 cpu_to_be32(max_cpus / smp_threads), 1040 }; 1041 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1042 uint32_t maxdomains[] = { 1043 cpu_to_be32(4), 1044 maxdomain, 1045 maxdomain, 1046 maxdomain, 1047 cpu_to_be32(spapr->gpu_numa_id), 1048 }; 1049 1050 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1051 1052 /* hypertas */ 1053 add_str(hypertas, "hcall-pft"); 1054 add_str(hypertas, "hcall-term"); 1055 add_str(hypertas, "hcall-dabr"); 1056 add_str(hypertas, "hcall-interrupt"); 1057 add_str(hypertas, "hcall-tce"); 1058 add_str(hypertas, "hcall-vio"); 1059 add_str(hypertas, "hcall-splpar"); 1060 add_str(hypertas, "hcall-bulk"); 1061 add_str(hypertas, "hcall-set-mode"); 1062 add_str(hypertas, "hcall-sprg0"); 1063 add_str(hypertas, "hcall-copy"); 1064 add_str(hypertas, "hcall-debug"); 1065 add_str(hypertas, "hcall-vphn"); 1066 add_str(qemu_hypertas, "hcall-memop1"); 1067 1068 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1069 add_str(hypertas, "hcall-multi-tce"); 1070 } 1071 1072 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1073 add_str(hypertas, "hcall-hpt-resize"); 1074 } 1075 1076 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1077 hypertas->str, hypertas->len)); 1078 g_string_free(hypertas, TRUE); 1079 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1080 qemu_hypertas->str, qemu_hypertas->len)); 1081 g_string_free(qemu_hypertas, TRUE); 1082 1083 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1084 refpoints, sizeof(refpoints))); 1085 1086 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1087 maxdomains, sizeof(maxdomains))); 1088 1089 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1090 RTAS_ERROR_LOG_MAX)); 1091 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1092 RTAS_EVENT_SCAN_RATE)); 1093 1094 g_assert(msi_nonbroken); 1095 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1096 1097 /* 1098 * According to PAPR, rtas ibm,os-term does not guarantee a return 1099 * back to the guest cpu. 1100 * 1101 * While an additional ibm,extended-os-term property indicates 1102 * that rtas call return will always occur. Set this property. 1103 */ 1104 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1105 1106 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1107 lrdr_capacity, sizeof(lrdr_capacity))); 1108 1109 spapr_dt_rtas_tokens(fdt, rtas); 1110 } 1111 1112 /* 1113 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1114 * and the XIVE features that the guest may request and thus the valid 1115 * values for bytes 23..26 of option vector 5: 1116 */ 1117 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1118 int chosen) 1119 { 1120 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1121 1122 char val[2 * 4] = { 1123 23, spapr->irq->ov5, /* Xive mode. */ 1124 24, 0x00, /* Hash/Radix, filled in below. */ 1125 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1126 26, 0x40, /* Radix options: GTSE == yes. */ 1127 }; 1128 1129 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1130 first_ppc_cpu->compat_pvr)) { 1131 /* 1132 * If we're in a pre POWER9 compat mode then the guest should 1133 * do hash and use the legacy interrupt mode 1134 */ 1135 val[1] = 0x00; /* XICS */ 1136 val[3] = 0x00; /* Hash */ 1137 } else if (kvm_enabled()) { 1138 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1139 val[3] = 0x80; /* OV5_MMU_BOTH */ 1140 } else if (kvmppc_has_cap_mmu_radix()) { 1141 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1142 } else { 1143 val[3] = 0x00; /* Hash */ 1144 } 1145 } else { 1146 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1147 val[3] = 0xC0; 1148 } 1149 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1150 val, sizeof(val))); 1151 } 1152 1153 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1154 { 1155 MachineState *machine = MACHINE(spapr); 1156 int chosen; 1157 const char *boot_device = machine->boot_order; 1158 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1159 size_t cb = 0; 1160 char *bootlist = get_boot_devices_list(&cb); 1161 1162 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1163 1164 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1165 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1166 spapr->initrd_base)); 1167 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1168 spapr->initrd_base + spapr->initrd_size)); 1169 1170 if (spapr->kernel_size) { 1171 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1172 cpu_to_be64(spapr->kernel_size) }; 1173 1174 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1175 &kprop, sizeof(kprop))); 1176 if (spapr->kernel_le) { 1177 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1178 } 1179 } 1180 if (boot_menu) { 1181 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1182 } 1183 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1184 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1185 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1186 1187 if (cb && bootlist) { 1188 int i; 1189 1190 for (i = 0; i < cb; i++) { 1191 if (bootlist[i] == '\n') { 1192 bootlist[i] = ' '; 1193 } 1194 } 1195 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1196 } 1197 1198 if (boot_device && strlen(boot_device)) { 1199 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1200 } 1201 1202 if (!spapr->has_graphics && stdout_path) { 1203 /* 1204 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1205 * kernel. New platforms should only use the "stdout-path" property. Set 1206 * the new property and continue using older property to remain 1207 * compatible with the existing firmware. 1208 */ 1209 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1210 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1211 } 1212 1213 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1214 1215 g_free(stdout_path); 1216 g_free(bootlist); 1217 } 1218 1219 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1220 { 1221 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1222 * KVM to work under pHyp with some guest co-operation */ 1223 int hypervisor; 1224 uint8_t hypercall[16]; 1225 1226 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1227 /* indicate KVM hypercall interface */ 1228 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1229 if (kvmppc_has_cap_fixup_hcalls()) { 1230 /* 1231 * Older KVM versions with older guest kernels were broken 1232 * with the magic page, don't allow the guest to map it. 1233 */ 1234 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1235 sizeof(hypercall))) { 1236 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1237 hypercall, sizeof(hypercall))); 1238 } 1239 } 1240 } 1241 1242 static void *spapr_build_fdt(SpaprMachineState *spapr) 1243 { 1244 MachineState *machine = MACHINE(spapr); 1245 MachineClass *mc = MACHINE_GET_CLASS(machine); 1246 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1247 int ret; 1248 void *fdt; 1249 SpaprPhbState *phb; 1250 char *buf; 1251 1252 fdt = g_malloc0(FDT_MAX_SIZE); 1253 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1254 1255 /* Root node */ 1256 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1257 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1258 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1259 1260 /* Guest UUID & Name*/ 1261 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1262 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1263 if (qemu_uuid_set) { 1264 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1265 } 1266 g_free(buf); 1267 1268 if (qemu_get_vm_name()) { 1269 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1270 qemu_get_vm_name())); 1271 } 1272 1273 /* Host Model & Serial Number */ 1274 if (spapr->host_model) { 1275 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1276 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1277 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1278 g_free(buf); 1279 } 1280 1281 if (spapr->host_serial) { 1282 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1283 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1284 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1285 g_free(buf); 1286 } 1287 1288 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1289 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1290 1291 /* /interrupt controller */ 1292 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1293 PHANDLE_INTC); 1294 1295 ret = spapr_populate_memory(spapr, fdt); 1296 if (ret < 0) { 1297 error_report("couldn't setup memory nodes in fdt"); 1298 exit(1); 1299 } 1300 1301 /* /vdevice */ 1302 spapr_dt_vdevice(spapr->vio_bus, fdt); 1303 1304 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1305 ret = spapr_rng_populate_dt(fdt); 1306 if (ret < 0) { 1307 error_report("could not set up rng device in the fdt"); 1308 exit(1); 1309 } 1310 } 1311 1312 QLIST_FOREACH(phb, &spapr->phbs, list) { 1313 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1314 if (ret < 0) { 1315 error_report("couldn't setup PCI devices in fdt"); 1316 exit(1); 1317 } 1318 } 1319 1320 /* cpus */ 1321 spapr_populate_cpus_dt_node(fdt, spapr); 1322 1323 if (smc->dr_lmb_enabled) { 1324 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1325 } 1326 1327 if (mc->has_hotpluggable_cpus) { 1328 int offset = fdt_path_offset(fdt, "/cpus"); 1329 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1330 if (ret < 0) { 1331 error_report("Couldn't set up CPU DR device tree properties"); 1332 exit(1); 1333 } 1334 } 1335 1336 /* /event-sources */ 1337 spapr_dt_events(spapr, fdt); 1338 1339 /* /rtas */ 1340 spapr_dt_rtas(spapr, fdt); 1341 1342 /* /chosen */ 1343 spapr_dt_chosen(spapr, fdt); 1344 1345 /* /hypervisor */ 1346 if (kvm_enabled()) { 1347 spapr_dt_hypervisor(spapr, fdt); 1348 } 1349 1350 /* Build memory reserve map */ 1351 if (spapr->kernel_size) { 1352 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1353 } 1354 if (spapr->initrd_size) { 1355 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1356 } 1357 1358 /* ibm,client-architecture-support updates */ 1359 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1360 if (ret < 0) { 1361 error_report("couldn't setup CAS properties fdt"); 1362 exit(1); 1363 } 1364 1365 if (smc->dr_phb_enabled) { 1366 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1367 if (ret < 0) { 1368 error_report("Couldn't set up PHB DR device tree properties"); 1369 exit(1); 1370 } 1371 } 1372 1373 return fdt; 1374 } 1375 1376 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1377 { 1378 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1379 } 1380 1381 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1382 PowerPCCPU *cpu) 1383 { 1384 CPUPPCState *env = &cpu->env; 1385 1386 /* The TCG path should also be holding the BQL at this point */ 1387 g_assert(qemu_mutex_iothread_locked()); 1388 1389 if (msr_pr) { 1390 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1391 env->gpr[3] = H_PRIVILEGE; 1392 } else { 1393 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1394 } 1395 } 1396 1397 struct LPCRSyncState { 1398 target_ulong value; 1399 target_ulong mask; 1400 }; 1401 1402 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1403 { 1404 struct LPCRSyncState *s = arg.host_ptr; 1405 PowerPCCPU *cpu = POWERPC_CPU(cs); 1406 CPUPPCState *env = &cpu->env; 1407 target_ulong lpcr; 1408 1409 cpu_synchronize_state(cs); 1410 lpcr = env->spr[SPR_LPCR]; 1411 lpcr &= ~s->mask; 1412 lpcr |= s->value; 1413 ppc_store_lpcr(cpu, lpcr); 1414 } 1415 1416 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1417 { 1418 CPUState *cs; 1419 struct LPCRSyncState s = { 1420 .value = value, 1421 .mask = mask 1422 }; 1423 CPU_FOREACH(cs) { 1424 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1425 } 1426 } 1427 1428 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1429 { 1430 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1431 1432 /* Copy PATE1:GR into PATE0:HR */ 1433 entry->dw0 = spapr->patb_entry & PATE0_HR; 1434 entry->dw1 = spapr->patb_entry; 1435 } 1436 1437 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1438 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1439 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1440 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1441 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1442 1443 /* 1444 * Get the fd to access the kernel htab, re-opening it if necessary 1445 */ 1446 static int get_htab_fd(SpaprMachineState *spapr) 1447 { 1448 Error *local_err = NULL; 1449 1450 if (spapr->htab_fd >= 0) { 1451 return spapr->htab_fd; 1452 } 1453 1454 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1455 if (spapr->htab_fd < 0) { 1456 error_report_err(local_err); 1457 } 1458 1459 return spapr->htab_fd; 1460 } 1461 1462 void close_htab_fd(SpaprMachineState *spapr) 1463 { 1464 if (spapr->htab_fd >= 0) { 1465 close(spapr->htab_fd); 1466 } 1467 spapr->htab_fd = -1; 1468 } 1469 1470 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1471 { 1472 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1473 1474 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1475 } 1476 1477 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1478 { 1479 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1480 1481 assert(kvm_enabled()); 1482 1483 if (!spapr->htab) { 1484 return 0; 1485 } 1486 1487 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1488 } 1489 1490 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1491 hwaddr ptex, int n) 1492 { 1493 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1494 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1495 1496 if (!spapr->htab) { 1497 /* 1498 * HTAB is controlled by KVM. Fetch into temporary buffer 1499 */ 1500 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1501 kvmppc_read_hptes(hptes, ptex, n); 1502 return hptes; 1503 } 1504 1505 /* 1506 * HTAB is controlled by QEMU. Just point to the internally 1507 * accessible PTEG. 1508 */ 1509 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1510 } 1511 1512 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1513 const ppc_hash_pte64_t *hptes, 1514 hwaddr ptex, int n) 1515 { 1516 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1517 1518 if (!spapr->htab) { 1519 g_free((void *)hptes); 1520 } 1521 1522 /* Nothing to do for qemu managed HPT */ 1523 } 1524 1525 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1526 uint64_t pte0, uint64_t pte1) 1527 { 1528 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1529 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1530 1531 if (!spapr->htab) { 1532 kvmppc_write_hpte(ptex, pte0, pte1); 1533 } else { 1534 if (pte0 & HPTE64_V_VALID) { 1535 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1536 /* 1537 * When setting valid, we write PTE1 first. This ensures 1538 * proper synchronization with the reading code in 1539 * ppc_hash64_pteg_search() 1540 */ 1541 smp_wmb(); 1542 stq_p(spapr->htab + offset, pte0); 1543 } else { 1544 stq_p(spapr->htab + offset, pte0); 1545 /* 1546 * When clearing it we set PTE0 first. This ensures proper 1547 * synchronization with the reading code in 1548 * ppc_hash64_pteg_search() 1549 */ 1550 smp_wmb(); 1551 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1552 } 1553 } 1554 } 1555 1556 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1557 uint64_t pte1) 1558 { 1559 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1560 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1561 1562 if (!spapr->htab) { 1563 /* There should always be a hash table when this is called */ 1564 error_report("spapr_hpte_set_c called with no hash table !"); 1565 return; 1566 } 1567 1568 /* The HW performs a non-atomic byte update */ 1569 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1570 } 1571 1572 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1573 uint64_t pte1) 1574 { 1575 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1576 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1577 1578 if (!spapr->htab) { 1579 /* There should always be a hash table when this is called */ 1580 error_report("spapr_hpte_set_r called with no hash table !"); 1581 return; 1582 } 1583 1584 /* The HW performs a non-atomic byte update */ 1585 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1586 } 1587 1588 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1589 { 1590 int shift; 1591 1592 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1593 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1594 * that's much more than is needed for Linux guests */ 1595 shift = ctz64(pow2ceil(ramsize)) - 7; 1596 shift = MAX(shift, 18); /* Minimum architected size */ 1597 shift = MIN(shift, 46); /* Maximum architected size */ 1598 return shift; 1599 } 1600 1601 void spapr_free_hpt(SpaprMachineState *spapr) 1602 { 1603 g_free(spapr->htab); 1604 spapr->htab = NULL; 1605 spapr->htab_shift = 0; 1606 close_htab_fd(spapr); 1607 } 1608 1609 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1610 Error **errp) 1611 { 1612 long rc; 1613 1614 /* Clean up any HPT info from a previous boot */ 1615 spapr_free_hpt(spapr); 1616 1617 rc = kvmppc_reset_htab(shift); 1618 if (rc < 0) { 1619 /* kernel-side HPT needed, but couldn't allocate one */ 1620 error_setg_errno(errp, errno, 1621 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1622 shift); 1623 /* This is almost certainly fatal, but if the caller really 1624 * wants to carry on with shift == 0, it's welcome to try */ 1625 } else if (rc > 0) { 1626 /* kernel-side HPT allocated */ 1627 if (rc != shift) { 1628 error_setg(errp, 1629 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1630 shift, rc); 1631 } 1632 1633 spapr->htab_shift = shift; 1634 spapr->htab = NULL; 1635 } else { 1636 /* kernel-side HPT not needed, allocate in userspace instead */ 1637 size_t size = 1ULL << shift; 1638 int i; 1639 1640 spapr->htab = qemu_memalign(size, size); 1641 if (!spapr->htab) { 1642 error_setg_errno(errp, errno, 1643 "Could not allocate HPT of order %d", shift); 1644 return; 1645 } 1646 1647 memset(spapr->htab, 0, size); 1648 spapr->htab_shift = shift; 1649 1650 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1651 DIRTY_HPTE(HPTE(spapr->htab, i)); 1652 } 1653 } 1654 /* We're setting up a hash table, so that means we're not radix */ 1655 spapr->patb_entry = 0; 1656 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1657 } 1658 1659 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1660 { 1661 int hpt_shift; 1662 1663 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1664 || (spapr->cas_reboot 1665 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1666 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1667 } else { 1668 uint64_t current_ram_size; 1669 1670 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1671 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1672 } 1673 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1674 1675 if (spapr->vrma_adjust) { 1676 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1677 spapr->htab_shift); 1678 } 1679 } 1680 1681 static int spapr_reset_drcs(Object *child, void *opaque) 1682 { 1683 SpaprDrc *drc = 1684 (SpaprDrc *) object_dynamic_cast(child, 1685 TYPE_SPAPR_DR_CONNECTOR); 1686 1687 if (drc) { 1688 spapr_drc_reset(drc); 1689 } 1690 1691 return 0; 1692 } 1693 1694 static void spapr_machine_reset(MachineState *machine) 1695 { 1696 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1697 PowerPCCPU *first_ppc_cpu; 1698 uint32_t rtas_limit; 1699 hwaddr rtas_addr, fdt_addr; 1700 void *fdt; 1701 int rc; 1702 1703 spapr_caps_apply(spapr); 1704 1705 first_ppc_cpu = POWERPC_CPU(first_cpu); 1706 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1707 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1708 spapr->max_compat_pvr)) { 1709 /* 1710 * If using KVM with radix mode available, VCPUs can be started 1711 * without a HPT because KVM will start them in radix mode. 1712 * Set the GR bit in PATE so that we know there is no HPT. 1713 */ 1714 spapr->patb_entry = PATE1_GR; 1715 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1716 } else { 1717 spapr_setup_hpt_and_vrma(spapr); 1718 } 1719 1720 /* 1721 * If this reset wasn't generated by CAS, we should reset our 1722 * negotiated options and start from scratch 1723 */ 1724 if (!spapr->cas_reboot) { 1725 spapr_ovec_cleanup(spapr->ov5_cas); 1726 spapr->ov5_cas = spapr_ovec_new(); 1727 1728 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1729 } 1730 1731 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1732 spapr_irq_msi_reset(spapr); 1733 } 1734 1735 /* 1736 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1737 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1738 * called from vPHB reset handler so we initialize the counter here. 1739 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1740 * must be equally distant from any other node. 1741 * The final value of spapr->gpu_numa_id is going to be written to 1742 * max-associativity-domains in spapr_build_fdt(). 1743 */ 1744 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1745 qemu_devices_reset(); 1746 1747 /* 1748 * This is fixing some of the default configuration of the XIVE 1749 * devices. To be called after the reset of the machine devices. 1750 */ 1751 spapr_irq_reset(spapr, &error_fatal); 1752 1753 /* 1754 * There is no CAS under qtest. Simulate one to please the code that 1755 * depends on spapr->ov5_cas. This is especially needed to test device 1756 * unplug, so we do that before resetting the DRCs. 1757 */ 1758 if (qtest_enabled()) { 1759 spapr_ovec_cleanup(spapr->ov5_cas); 1760 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1761 } 1762 1763 /* DRC reset may cause a device to be unplugged. This will cause troubles 1764 * if this device is used by another device (eg, a running vhost backend 1765 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1766 * situations, we reset DRCs after all devices have been reset. 1767 */ 1768 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1769 1770 spapr_clear_pending_events(spapr); 1771 1772 /* 1773 * We place the device tree and RTAS just below either the top of the RMA, 1774 * or just below 2GB, whichever is lower, so that it can be 1775 * processed with 32-bit real mode code if necessary 1776 */ 1777 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1778 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1779 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1780 1781 fdt = spapr_build_fdt(spapr); 1782 1783 spapr_load_rtas(spapr, fdt, rtas_addr); 1784 1785 rc = fdt_pack(fdt); 1786 1787 /* Should only fail if we've built a corrupted tree */ 1788 assert(rc == 0); 1789 1790 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1791 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1792 fdt_totalsize(fdt), FDT_MAX_SIZE); 1793 exit(1); 1794 } 1795 1796 /* Load the fdt */ 1797 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1798 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1799 g_free(spapr->fdt_blob); 1800 spapr->fdt_size = fdt_totalsize(fdt); 1801 spapr->fdt_initial_size = spapr->fdt_size; 1802 spapr->fdt_blob = fdt; 1803 1804 /* Set up the entry state */ 1805 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1806 first_ppc_cpu->env.gpr[5] = 0; 1807 1808 spapr->cas_reboot = false; 1809 } 1810 1811 static void spapr_create_nvram(SpaprMachineState *spapr) 1812 { 1813 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1814 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1815 1816 if (dinfo) { 1817 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1818 &error_fatal); 1819 } 1820 1821 qdev_init_nofail(dev); 1822 1823 spapr->nvram = (struct SpaprNvram *)dev; 1824 } 1825 1826 static void spapr_rtc_create(SpaprMachineState *spapr) 1827 { 1828 object_initialize_child(OBJECT(spapr), "rtc", 1829 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1830 &error_fatal, NULL); 1831 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1832 &error_fatal); 1833 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1834 "date", &error_fatal); 1835 } 1836 1837 /* Returns whether we want to use VGA or not */ 1838 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1839 { 1840 switch (vga_interface_type) { 1841 case VGA_NONE: 1842 return false; 1843 case VGA_DEVICE: 1844 return true; 1845 case VGA_STD: 1846 case VGA_VIRTIO: 1847 case VGA_CIRRUS: 1848 return pci_vga_init(pci_bus) != NULL; 1849 default: 1850 error_setg(errp, 1851 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1852 return false; 1853 } 1854 } 1855 1856 static int spapr_pre_load(void *opaque) 1857 { 1858 int rc; 1859 1860 rc = spapr_caps_pre_load(opaque); 1861 if (rc) { 1862 return rc; 1863 } 1864 1865 return 0; 1866 } 1867 1868 static int spapr_post_load(void *opaque, int version_id) 1869 { 1870 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1871 int err = 0; 1872 1873 err = spapr_caps_post_migration(spapr); 1874 if (err) { 1875 return err; 1876 } 1877 1878 /* 1879 * In earlier versions, there was no separate qdev for the PAPR 1880 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1881 * So when migrating from those versions, poke the incoming offset 1882 * value into the RTC device 1883 */ 1884 if (version_id < 3) { 1885 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1886 if (err) { 1887 return err; 1888 } 1889 } 1890 1891 if (kvm_enabled() && spapr->patb_entry) { 1892 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1893 bool radix = !!(spapr->patb_entry & PATE1_GR); 1894 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1895 1896 /* 1897 * Update LPCR:HR and UPRT as they may not be set properly in 1898 * the stream 1899 */ 1900 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1901 LPCR_HR | LPCR_UPRT); 1902 1903 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1904 if (err) { 1905 error_report("Process table config unsupported by the host"); 1906 return -EINVAL; 1907 } 1908 } 1909 1910 err = spapr_irq_post_load(spapr, version_id); 1911 if (err) { 1912 return err; 1913 } 1914 1915 return err; 1916 } 1917 1918 static int spapr_pre_save(void *opaque) 1919 { 1920 int rc; 1921 1922 rc = spapr_caps_pre_save(opaque); 1923 if (rc) { 1924 return rc; 1925 } 1926 1927 return 0; 1928 } 1929 1930 static bool version_before_3(void *opaque, int version_id) 1931 { 1932 return version_id < 3; 1933 } 1934 1935 static bool spapr_pending_events_needed(void *opaque) 1936 { 1937 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1938 return !QTAILQ_EMPTY(&spapr->pending_events); 1939 } 1940 1941 static const VMStateDescription vmstate_spapr_event_entry = { 1942 .name = "spapr_event_log_entry", 1943 .version_id = 1, 1944 .minimum_version_id = 1, 1945 .fields = (VMStateField[]) { 1946 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1947 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1948 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1949 NULL, extended_length), 1950 VMSTATE_END_OF_LIST() 1951 }, 1952 }; 1953 1954 static const VMStateDescription vmstate_spapr_pending_events = { 1955 .name = "spapr_pending_events", 1956 .version_id = 1, 1957 .minimum_version_id = 1, 1958 .needed = spapr_pending_events_needed, 1959 .fields = (VMStateField[]) { 1960 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1961 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1962 VMSTATE_END_OF_LIST() 1963 }, 1964 }; 1965 1966 static bool spapr_ov5_cas_needed(void *opaque) 1967 { 1968 SpaprMachineState *spapr = opaque; 1969 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1970 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1971 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1972 bool cas_needed; 1973 1974 /* Prior to the introduction of SpaprOptionVector, we had two option 1975 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1976 * Both of these options encode machine topology into the device-tree 1977 * in such a way that the now-booted OS should still be able to interact 1978 * appropriately with QEMU regardless of what options were actually 1979 * negotiatied on the source side. 1980 * 1981 * As such, we can avoid migrating the CAS-negotiated options if these 1982 * are the only options available on the current machine/platform. 1983 * Since these are the only options available for pseries-2.7 and 1984 * earlier, this allows us to maintain old->new/new->old migration 1985 * compatibility. 1986 * 1987 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1988 * via default pseries-2.8 machines and explicit command-line parameters. 1989 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1990 * of the actual CAS-negotiated values to continue working properly. For 1991 * example, availability of memory unplug depends on knowing whether 1992 * OV5_HP_EVT was negotiated via CAS. 1993 * 1994 * Thus, for any cases where the set of available CAS-negotiatable 1995 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1996 * include the CAS-negotiated options in the migration stream, unless 1997 * if they affect boot time behaviour only. 1998 */ 1999 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2000 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2001 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2002 2003 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2004 * the mask itself since in the future it's possible "legacy" bits may be 2005 * removed via machine options, which could generate a false positive 2006 * that breaks migration. 2007 */ 2008 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2009 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2010 2011 spapr_ovec_cleanup(ov5_mask); 2012 spapr_ovec_cleanup(ov5_legacy); 2013 spapr_ovec_cleanup(ov5_removed); 2014 2015 return cas_needed; 2016 } 2017 2018 static const VMStateDescription vmstate_spapr_ov5_cas = { 2019 .name = "spapr_option_vector_ov5_cas", 2020 .version_id = 1, 2021 .minimum_version_id = 1, 2022 .needed = spapr_ov5_cas_needed, 2023 .fields = (VMStateField[]) { 2024 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2025 vmstate_spapr_ovec, SpaprOptionVector), 2026 VMSTATE_END_OF_LIST() 2027 }, 2028 }; 2029 2030 static bool spapr_patb_entry_needed(void *opaque) 2031 { 2032 SpaprMachineState *spapr = opaque; 2033 2034 return !!spapr->patb_entry; 2035 } 2036 2037 static const VMStateDescription vmstate_spapr_patb_entry = { 2038 .name = "spapr_patb_entry", 2039 .version_id = 1, 2040 .minimum_version_id = 1, 2041 .needed = spapr_patb_entry_needed, 2042 .fields = (VMStateField[]) { 2043 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2044 VMSTATE_END_OF_LIST() 2045 }, 2046 }; 2047 2048 static bool spapr_irq_map_needed(void *opaque) 2049 { 2050 SpaprMachineState *spapr = opaque; 2051 2052 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2053 } 2054 2055 static const VMStateDescription vmstate_spapr_irq_map = { 2056 .name = "spapr_irq_map", 2057 .version_id = 1, 2058 .minimum_version_id = 1, 2059 .needed = spapr_irq_map_needed, 2060 .fields = (VMStateField[]) { 2061 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2062 VMSTATE_END_OF_LIST() 2063 }, 2064 }; 2065 2066 static bool spapr_dtb_needed(void *opaque) 2067 { 2068 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2069 2070 return smc->update_dt_enabled; 2071 } 2072 2073 static int spapr_dtb_pre_load(void *opaque) 2074 { 2075 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2076 2077 g_free(spapr->fdt_blob); 2078 spapr->fdt_blob = NULL; 2079 spapr->fdt_size = 0; 2080 2081 return 0; 2082 } 2083 2084 static const VMStateDescription vmstate_spapr_dtb = { 2085 .name = "spapr_dtb", 2086 .version_id = 1, 2087 .minimum_version_id = 1, 2088 .needed = spapr_dtb_needed, 2089 .pre_load = spapr_dtb_pre_load, 2090 .fields = (VMStateField[]) { 2091 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2092 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2093 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2094 fdt_size), 2095 VMSTATE_END_OF_LIST() 2096 }, 2097 }; 2098 2099 static const VMStateDescription vmstate_spapr = { 2100 .name = "spapr", 2101 .version_id = 3, 2102 .minimum_version_id = 1, 2103 .pre_load = spapr_pre_load, 2104 .post_load = spapr_post_load, 2105 .pre_save = spapr_pre_save, 2106 .fields = (VMStateField[]) { 2107 /* used to be @next_irq */ 2108 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2109 2110 /* RTC offset */ 2111 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2112 2113 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2114 VMSTATE_END_OF_LIST() 2115 }, 2116 .subsections = (const VMStateDescription*[]) { 2117 &vmstate_spapr_ov5_cas, 2118 &vmstate_spapr_patb_entry, 2119 &vmstate_spapr_pending_events, 2120 &vmstate_spapr_cap_htm, 2121 &vmstate_spapr_cap_vsx, 2122 &vmstate_spapr_cap_dfp, 2123 &vmstate_spapr_cap_cfpc, 2124 &vmstate_spapr_cap_sbbc, 2125 &vmstate_spapr_cap_ibs, 2126 &vmstate_spapr_cap_hpt_maxpagesize, 2127 &vmstate_spapr_irq_map, 2128 &vmstate_spapr_cap_nested_kvm_hv, 2129 &vmstate_spapr_dtb, 2130 &vmstate_spapr_cap_large_decr, 2131 &vmstate_spapr_cap_ccf_assist, 2132 NULL 2133 } 2134 }; 2135 2136 static int htab_save_setup(QEMUFile *f, void *opaque) 2137 { 2138 SpaprMachineState *spapr = opaque; 2139 2140 /* "Iteration" header */ 2141 if (!spapr->htab_shift) { 2142 qemu_put_be32(f, -1); 2143 } else { 2144 qemu_put_be32(f, spapr->htab_shift); 2145 } 2146 2147 if (spapr->htab) { 2148 spapr->htab_save_index = 0; 2149 spapr->htab_first_pass = true; 2150 } else { 2151 if (spapr->htab_shift) { 2152 assert(kvm_enabled()); 2153 } 2154 } 2155 2156 2157 return 0; 2158 } 2159 2160 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2161 int chunkstart, int n_valid, int n_invalid) 2162 { 2163 qemu_put_be32(f, chunkstart); 2164 qemu_put_be16(f, n_valid); 2165 qemu_put_be16(f, n_invalid); 2166 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2167 HASH_PTE_SIZE_64 * n_valid); 2168 } 2169 2170 static void htab_save_end_marker(QEMUFile *f) 2171 { 2172 qemu_put_be32(f, 0); 2173 qemu_put_be16(f, 0); 2174 qemu_put_be16(f, 0); 2175 } 2176 2177 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2178 int64_t max_ns) 2179 { 2180 bool has_timeout = max_ns != -1; 2181 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2182 int index = spapr->htab_save_index; 2183 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2184 2185 assert(spapr->htab_first_pass); 2186 2187 do { 2188 int chunkstart; 2189 2190 /* Consume invalid HPTEs */ 2191 while ((index < htabslots) 2192 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2193 CLEAN_HPTE(HPTE(spapr->htab, index)); 2194 index++; 2195 } 2196 2197 /* Consume valid HPTEs */ 2198 chunkstart = index; 2199 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2200 && HPTE_VALID(HPTE(spapr->htab, index))) { 2201 CLEAN_HPTE(HPTE(spapr->htab, index)); 2202 index++; 2203 } 2204 2205 if (index > chunkstart) { 2206 int n_valid = index - chunkstart; 2207 2208 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2209 2210 if (has_timeout && 2211 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2212 break; 2213 } 2214 } 2215 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2216 2217 if (index >= htabslots) { 2218 assert(index == htabslots); 2219 index = 0; 2220 spapr->htab_first_pass = false; 2221 } 2222 spapr->htab_save_index = index; 2223 } 2224 2225 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2226 int64_t max_ns) 2227 { 2228 bool final = max_ns < 0; 2229 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2230 int examined = 0, sent = 0; 2231 int index = spapr->htab_save_index; 2232 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2233 2234 assert(!spapr->htab_first_pass); 2235 2236 do { 2237 int chunkstart, invalidstart; 2238 2239 /* Consume non-dirty HPTEs */ 2240 while ((index < htabslots) 2241 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2242 index++; 2243 examined++; 2244 } 2245 2246 chunkstart = index; 2247 /* Consume valid dirty HPTEs */ 2248 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2249 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2250 && HPTE_VALID(HPTE(spapr->htab, index))) { 2251 CLEAN_HPTE(HPTE(spapr->htab, index)); 2252 index++; 2253 examined++; 2254 } 2255 2256 invalidstart = index; 2257 /* Consume invalid dirty HPTEs */ 2258 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2259 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2260 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2261 CLEAN_HPTE(HPTE(spapr->htab, index)); 2262 index++; 2263 examined++; 2264 } 2265 2266 if (index > chunkstart) { 2267 int n_valid = invalidstart - chunkstart; 2268 int n_invalid = index - invalidstart; 2269 2270 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2271 sent += index - chunkstart; 2272 2273 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2274 break; 2275 } 2276 } 2277 2278 if (examined >= htabslots) { 2279 break; 2280 } 2281 2282 if (index >= htabslots) { 2283 assert(index == htabslots); 2284 index = 0; 2285 } 2286 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2287 2288 if (index >= htabslots) { 2289 assert(index == htabslots); 2290 index = 0; 2291 } 2292 2293 spapr->htab_save_index = index; 2294 2295 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2296 } 2297 2298 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2299 #define MAX_KVM_BUF_SIZE 2048 2300 2301 static int htab_save_iterate(QEMUFile *f, void *opaque) 2302 { 2303 SpaprMachineState *spapr = opaque; 2304 int fd; 2305 int rc = 0; 2306 2307 /* Iteration header */ 2308 if (!spapr->htab_shift) { 2309 qemu_put_be32(f, -1); 2310 return 1; 2311 } else { 2312 qemu_put_be32(f, 0); 2313 } 2314 2315 if (!spapr->htab) { 2316 assert(kvm_enabled()); 2317 2318 fd = get_htab_fd(spapr); 2319 if (fd < 0) { 2320 return fd; 2321 } 2322 2323 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2324 if (rc < 0) { 2325 return rc; 2326 } 2327 } else if (spapr->htab_first_pass) { 2328 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2329 } else { 2330 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2331 } 2332 2333 htab_save_end_marker(f); 2334 2335 return rc; 2336 } 2337 2338 static int htab_save_complete(QEMUFile *f, void *opaque) 2339 { 2340 SpaprMachineState *spapr = opaque; 2341 int fd; 2342 2343 /* Iteration header */ 2344 if (!spapr->htab_shift) { 2345 qemu_put_be32(f, -1); 2346 return 0; 2347 } else { 2348 qemu_put_be32(f, 0); 2349 } 2350 2351 if (!spapr->htab) { 2352 int rc; 2353 2354 assert(kvm_enabled()); 2355 2356 fd = get_htab_fd(spapr); 2357 if (fd < 0) { 2358 return fd; 2359 } 2360 2361 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2362 if (rc < 0) { 2363 return rc; 2364 } 2365 } else { 2366 if (spapr->htab_first_pass) { 2367 htab_save_first_pass(f, spapr, -1); 2368 } 2369 htab_save_later_pass(f, spapr, -1); 2370 } 2371 2372 /* End marker */ 2373 htab_save_end_marker(f); 2374 2375 return 0; 2376 } 2377 2378 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2379 { 2380 SpaprMachineState *spapr = opaque; 2381 uint32_t section_hdr; 2382 int fd = -1; 2383 Error *local_err = NULL; 2384 2385 if (version_id < 1 || version_id > 1) { 2386 error_report("htab_load() bad version"); 2387 return -EINVAL; 2388 } 2389 2390 section_hdr = qemu_get_be32(f); 2391 2392 if (section_hdr == -1) { 2393 spapr_free_hpt(spapr); 2394 return 0; 2395 } 2396 2397 if (section_hdr) { 2398 /* First section gives the htab size */ 2399 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2400 if (local_err) { 2401 error_report_err(local_err); 2402 return -EINVAL; 2403 } 2404 return 0; 2405 } 2406 2407 if (!spapr->htab) { 2408 assert(kvm_enabled()); 2409 2410 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2411 if (fd < 0) { 2412 error_report_err(local_err); 2413 return fd; 2414 } 2415 } 2416 2417 while (true) { 2418 uint32_t index; 2419 uint16_t n_valid, n_invalid; 2420 2421 index = qemu_get_be32(f); 2422 n_valid = qemu_get_be16(f); 2423 n_invalid = qemu_get_be16(f); 2424 2425 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2426 /* End of Stream */ 2427 break; 2428 } 2429 2430 if ((index + n_valid + n_invalid) > 2431 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2432 /* Bad index in stream */ 2433 error_report( 2434 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2435 index, n_valid, n_invalid, spapr->htab_shift); 2436 return -EINVAL; 2437 } 2438 2439 if (spapr->htab) { 2440 if (n_valid) { 2441 qemu_get_buffer(f, HPTE(spapr->htab, index), 2442 HASH_PTE_SIZE_64 * n_valid); 2443 } 2444 if (n_invalid) { 2445 memset(HPTE(spapr->htab, index + n_valid), 0, 2446 HASH_PTE_SIZE_64 * n_invalid); 2447 } 2448 } else { 2449 int rc; 2450 2451 assert(fd >= 0); 2452 2453 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2454 if (rc < 0) { 2455 return rc; 2456 } 2457 } 2458 } 2459 2460 if (!spapr->htab) { 2461 assert(fd >= 0); 2462 close(fd); 2463 } 2464 2465 return 0; 2466 } 2467 2468 static void htab_save_cleanup(void *opaque) 2469 { 2470 SpaprMachineState *spapr = opaque; 2471 2472 close_htab_fd(spapr); 2473 } 2474 2475 static SaveVMHandlers savevm_htab_handlers = { 2476 .save_setup = htab_save_setup, 2477 .save_live_iterate = htab_save_iterate, 2478 .save_live_complete_precopy = htab_save_complete, 2479 .save_cleanup = htab_save_cleanup, 2480 .load_state = htab_load, 2481 }; 2482 2483 static void spapr_boot_set(void *opaque, const char *boot_device, 2484 Error **errp) 2485 { 2486 MachineState *machine = MACHINE(opaque); 2487 machine->boot_order = g_strdup(boot_device); 2488 } 2489 2490 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2491 { 2492 MachineState *machine = MACHINE(spapr); 2493 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2494 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2495 int i; 2496 2497 for (i = 0; i < nr_lmbs; i++) { 2498 uint64_t addr; 2499 2500 addr = i * lmb_size + machine->device_memory->base; 2501 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2502 addr / lmb_size); 2503 } 2504 } 2505 2506 /* 2507 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2508 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2509 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2510 */ 2511 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2512 { 2513 int i; 2514 2515 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2516 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2517 " is not aligned to %" PRIu64 " MiB", 2518 machine->ram_size, 2519 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2520 return; 2521 } 2522 2523 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2524 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2525 " is not aligned to %" PRIu64 " MiB", 2526 machine->ram_size, 2527 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2528 return; 2529 } 2530 2531 for (i = 0; i < nb_numa_nodes; i++) { 2532 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2533 error_setg(errp, 2534 "Node %d memory size 0x%" PRIx64 2535 " is not aligned to %" PRIu64 " MiB", 2536 i, numa_info[i].node_mem, 2537 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2538 return; 2539 } 2540 } 2541 } 2542 2543 /* find cpu slot in machine->possible_cpus by core_id */ 2544 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2545 { 2546 int index = id / smp_threads; 2547 2548 if (index >= ms->possible_cpus->len) { 2549 return NULL; 2550 } 2551 if (idx) { 2552 *idx = index; 2553 } 2554 return &ms->possible_cpus->cpus[index]; 2555 } 2556 2557 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2558 { 2559 Error *local_err = NULL; 2560 bool vsmt_user = !!spapr->vsmt; 2561 int kvm_smt = kvmppc_smt_threads(); 2562 int ret; 2563 2564 if (!kvm_enabled() && (smp_threads > 1)) { 2565 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2566 "on a pseries machine"); 2567 goto out; 2568 } 2569 if (!is_power_of_2(smp_threads)) { 2570 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2571 "machine because it must be a power of 2", smp_threads); 2572 goto out; 2573 } 2574 2575 /* Detemine the VSMT mode to use: */ 2576 if (vsmt_user) { 2577 if (spapr->vsmt < smp_threads) { 2578 error_setg(&local_err, "Cannot support VSMT mode %d" 2579 " because it must be >= threads/core (%d)", 2580 spapr->vsmt, smp_threads); 2581 goto out; 2582 } 2583 /* In this case, spapr->vsmt has been set by the command line */ 2584 } else { 2585 /* 2586 * Default VSMT value is tricky, because we need it to be as 2587 * consistent as possible (for migration), but this requires 2588 * changing it for at least some existing cases. We pick 8 as 2589 * the value that we'd get with KVM on POWER8, the 2590 * overwhelmingly common case in production systems. 2591 */ 2592 spapr->vsmt = MAX(8, smp_threads); 2593 } 2594 2595 /* KVM: If necessary, set the SMT mode: */ 2596 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2597 ret = kvmppc_set_smt_threads(spapr->vsmt); 2598 if (ret) { 2599 /* Looks like KVM isn't able to change VSMT mode */ 2600 error_setg(&local_err, 2601 "Failed to set KVM's VSMT mode to %d (errno %d)", 2602 spapr->vsmt, ret); 2603 /* We can live with that if the default one is big enough 2604 * for the number of threads, and a submultiple of the one 2605 * we want. In this case we'll waste some vcpu ids, but 2606 * behaviour will be correct */ 2607 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2608 warn_report_err(local_err); 2609 local_err = NULL; 2610 goto out; 2611 } else { 2612 if (!vsmt_user) { 2613 error_append_hint(&local_err, 2614 "On PPC, a VM with %d threads/core" 2615 " on a host with %d threads/core" 2616 " requires the use of VSMT mode %d.\n", 2617 smp_threads, kvm_smt, spapr->vsmt); 2618 } 2619 kvmppc_hint_smt_possible(&local_err); 2620 goto out; 2621 } 2622 } 2623 } 2624 /* else TCG: nothing to do currently */ 2625 out: 2626 error_propagate(errp, local_err); 2627 } 2628 2629 static void spapr_init_cpus(SpaprMachineState *spapr) 2630 { 2631 MachineState *machine = MACHINE(spapr); 2632 MachineClass *mc = MACHINE_GET_CLASS(machine); 2633 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2634 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2635 const CPUArchIdList *possible_cpus; 2636 int boot_cores_nr = smp_cpus / smp_threads; 2637 int i; 2638 2639 possible_cpus = mc->possible_cpu_arch_ids(machine); 2640 if (mc->has_hotpluggable_cpus) { 2641 if (smp_cpus % smp_threads) { 2642 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2643 smp_cpus, smp_threads); 2644 exit(1); 2645 } 2646 if (max_cpus % smp_threads) { 2647 error_report("max_cpus (%u) must be multiple of threads (%u)", 2648 max_cpus, smp_threads); 2649 exit(1); 2650 } 2651 } else { 2652 if (max_cpus != smp_cpus) { 2653 error_report("This machine version does not support CPU hotplug"); 2654 exit(1); 2655 } 2656 boot_cores_nr = possible_cpus->len; 2657 } 2658 2659 if (smc->pre_2_10_has_unused_icps) { 2660 int i; 2661 2662 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2663 /* Dummy entries get deregistered when real ICPState objects 2664 * are registered during CPU core hotplug. 2665 */ 2666 pre_2_10_vmstate_register_dummy_icp(i); 2667 } 2668 } 2669 2670 for (i = 0; i < possible_cpus->len; i++) { 2671 int core_id = i * smp_threads; 2672 2673 if (mc->has_hotpluggable_cpus) { 2674 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2675 spapr_vcpu_id(spapr, core_id)); 2676 } 2677 2678 if (i < boot_cores_nr) { 2679 Object *core = object_new(type); 2680 int nr_threads = smp_threads; 2681 2682 /* Handle the partially filled core for older machine types */ 2683 if ((i + 1) * smp_threads >= smp_cpus) { 2684 nr_threads = smp_cpus - i * smp_threads; 2685 } 2686 2687 object_property_set_int(core, nr_threads, "nr-threads", 2688 &error_fatal); 2689 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2690 &error_fatal); 2691 object_property_set_bool(core, true, "realized", &error_fatal); 2692 2693 object_unref(core); 2694 } 2695 } 2696 } 2697 2698 static PCIHostState *spapr_create_default_phb(void) 2699 { 2700 DeviceState *dev; 2701 2702 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2703 qdev_prop_set_uint32(dev, "index", 0); 2704 qdev_init_nofail(dev); 2705 2706 return PCI_HOST_BRIDGE(dev); 2707 } 2708 2709 /* pSeries LPAR / sPAPR hardware init */ 2710 static void spapr_machine_init(MachineState *machine) 2711 { 2712 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2713 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2714 const char *kernel_filename = machine->kernel_filename; 2715 const char *initrd_filename = machine->initrd_filename; 2716 PCIHostState *phb; 2717 int i; 2718 MemoryRegion *sysmem = get_system_memory(); 2719 MemoryRegion *ram = g_new(MemoryRegion, 1); 2720 hwaddr node0_size = spapr_node0_size(machine); 2721 long load_limit, fw_size; 2722 char *filename; 2723 Error *resize_hpt_err = NULL; 2724 2725 msi_nonbroken = true; 2726 2727 QLIST_INIT(&spapr->phbs); 2728 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2729 2730 /* Determine capabilities to run with */ 2731 spapr_caps_init(spapr); 2732 2733 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2734 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2735 /* 2736 * If the user explicitly requested a mode we should either 2737 * supply it, or fail completely (which we do below). But if 2738 * it's not set explicitly, we reset our mode to something 2739 * that works 2740 */ 2741 if (resize_hpt_err) { 2742 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2743 error_free(resize_hpt_err); 2744 resize_hpt_err = NULL; 2745 } else { 2746 spapr->resize_hpt = smc->resize_hpt_default; 2747 } 2748 } 2749 2750 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2751 2752 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2753 /* 2754 * User requested HPT resize, but this host can't supply it. Bail out 2755 */ 2756 error_report_err(resize_hpt_err); 2757 exit(1); 2758 } 2759 2760 spapr->rma_size = node0_size; 2761 2762 /* With KVM, we don't actually know whether KVM supports an 2763 * unbounded RMA (PR KVM) or is limited by the hash table size 2764 * (HV KVM using VRMA), so we always assume the latter 2765 * 2766 * In that case, we also limit the initial allocations for RTAS 2767 * etc... to 256M since we have no way to know what the VRMA size 2768 * is going to be as it depends on the size of the hash table 2769 * which isn't determined yet. 2770 */ 2771 if (kvm_enabled()) { 2772 spapr->vrma_adjust = 1; 2773 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2774 } 2775 2776 /* Actually we don't support unbounded RMA anymore since we added 2777 * proper emulation of HV mode. The max we can get is 16G which 2778 * also happens to be what we configure for PAPR mode so make sure 2779 * we don't do anything bigger than that 2780 */ 2781 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2782 2783 if (spapr->rma_size > node0_size) { 2784 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2785 spapr->rma_size); 2786 exit(1); 2787 } 2788 2789 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2790 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2791 2792 /* 2793 * VSMT must be set in order to be able to compute VCPU ids, ie to 2794 * call spapr_max_server_number() or spapr_vcpu_id(). 2795 */ 2796 spapr_set_vsmt_mode(spapr, &error_fatal); 2797 2798 /* Set up Interrupt Controller before we create the VCPUs */ 2799 spapr_irq_init(spapr, &error_fatal); 2800 2801 /* Set up containers for ibm,client-architecture-support negotiated options 2802 */ 2803 spapr->ov5 = spapr_ovec_new(); 2804 spapr->ov5_cas = spapr_ovec_new(); 2805 2806 if (smc->dr_lmb_enabled) { 2807 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2808 spapr_validate_node_memory(machine, &error_fatal); 2809 } 2810 2811 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2812 2813 /* advertise support for dedicated HP event source to guests */ 2814 if (spapr->use_hotplug_event_source) { 2815 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2816 } 2817 2818 /* advertise support for HPT resizing */ 2819 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2820 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2821 } 2822 2823 /* advertise support for ibm,dyamic-memory-v2 */ 2824 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2825 2826 /* advertise XIVE on POWER9 machines */ 2827 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2828 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2829 } 2830 2831 /* init CPUs */ 2832 spapr_init_cpus(spapr); 2833 2834 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2835 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2836 spapr->max_compat_pvr)) { 2837 /* KVM and TCG always allow GTSE with radix... */ 2838 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2839 } 2840 /* ... but not with hash (currently). */ 2841 2842 if (kvm_enabled()) { 2843 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2844 kvmppc_enable_logical_ci_hcalls(); 2845 kvmppc_enable_set_mode_hcall(); 2846 2847 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2848 kvmppc_enable_clear_ref_mod_hcalls(); 2849 2850 /* Enable H_PAGE_INIT */ 2851 kvmppc_enable_h_page_init(); 2852 } 2853 2854 /* allocate RAM */ 2855 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2856 machine->ram_size); 2857 memory_region_add_subregion(sysmem, 0, ram); 2858 2859 /* always allocate the device memory information */ 2860 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2861 2862 /* initialize hotplug memory address space */ 2863 if (machine->ram_size < machine->maxram_size) { 2864 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2865 /* 2866 * Limit the number of hotpluggable memory slots to half the number 2867 * slots that KVM supports, leaving the other half for PCI and other 2868 * devices. However ensure that number of slots doesn't drop below 32. 2869 */ 2870 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2871 SPAPR_MAX_RAM_SLOTS; 2872 2873 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2874 max_memslots = SPAPR_MAX_RAM_SLOTS; 2875 } 2876 if (machine->ram_slots > max_memslots) { 2877 error_report("Specified number of memory slots %" 2878 PRIu64" exceeds max supported %d", 2879 machine->ram_slots, max_memslots); 2880 exit(1); 2881 } 2882 2883 machine->device_memory->base = ROUND_UP(machine->ram_size, 2884 SPAPR_DEVICE_MEM_ALIGN); 2885 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2886 "device-memory", device_mem_size); 2887 memory_region_add_subregion(sysmem, machine->device_memory->base, 2888 &machine->device_memory->mr); 2889 } 2890 2891 if (smc->dr_lmb_enabled) { 2892 spapr_create_lmb_dr_connectors(spapr); 2893 } 2894 2895 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2896 if (!filename) { 2897 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2898 exit(1); 2899 } 2900 spapr->rtas_size = get_image_size(filename); 2901 if (spapr->rtas_size < 0) { 2902 error_report("Could not get size of LPAR rtas '%s'", filename); 2903 exit(1); 2904 } 2905 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2906 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2907 error_report("Could not load LPAR rtas '%s'", filename); 2908 exit(1); 2909 } 2910 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2911 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2912 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2913 exit(1); 2914 } 2915 g_free(filename); 2916 2917 /* Set up RTAS event infrastructure */ 2918 spapr_events_init(spapr); 2919 2920 /* Set up the RTC RTAS interfaces */ 2921 spapr_rtc_create(spapr); 2922 2923 /* Set up VIO bus */ 2924 spapr->vio_bus = spapr_vio_bus_init(); 2925 2926 for (i = 0; i < serial_max_hds(); i++) { 2927 if (serial_hd(i)) { 2928 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2929 } 2930 } 2931 2932 /* We always have at least the nvram device on VIO */ 2933 spapr_create_nvram(spapr); 2934 2935 /* 2936 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2937 * connectors (described in root DT node's "ibm,drc-types" property) 2938 * are pre-initialized here. additional child connectors (such as 2939 * connectors for a PHBs PCI slots) are added as needed during their 2940 * parent's realization. 2941 */ 2942 if (smc->dr_phb_enabled) { 2943 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2944 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2945 } 2946 } 2947 2948 /* Set up PCI */ 2949 spapr_pci_rtas_init(); 2950 2951 phb = spapr_create_default_phb(); 2952 2953 for (i = 0; i < nb_nics; i++) { 2954 NICInfo *nd = &nd_table[i]; 2955 2956 if (!nd->model) { 2957 nd->model = g_strdup("spapr-vlan"); 2958 } 2959 2960 if (g_str_equal(nd->model, "spapr-vlan") || 2961 g_str_equal(nd->model, "ibmveth")) { 2962 spapr_vlan_create(spapr->vio_bus, nd); 2963 } else { 2964 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2965 } 2966 } 2967 2968 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2969 spapr_vscsi_create(spapr->vio_bus); 2970 } 2971 2972 /* Graphics */ 2973 if (spapr_vga_init(phb->bus, &error_fatal)) { 2974 spapr->has_graphics = true; 2975 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2976 } 2977 2978 if (machine->usb) { 2979 if (smc->use_ohci_by_default) { 2980 pci_create_simple(phb->bus, -1, "pci-ohci"); 2981 } else { 2982 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2983 } 2984 2985 if (spapr->has_graphics) { 2986 USBBus *usb_bus = usb_bus_find(-1); 2987 2988 usb_create_simple(usb_bus, "usb-kbd"); 2989 usb_create_simple(usb_bus, "usb-mouse"); 2990 } 2991 } 2992 2993 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2994 error_report( 2995 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2996 MIN_RMA_SLOF); 2997 exit(1); 2998 } 2999 3000 if (kernel_filename) { 3001 uint64_t lowaddr = 0; 3002 3003 spapr->kernel_size = load_elf(kernel_filename, NULL, 3004 translate_kernel_address, NULL, 3005 NULL, &lowaddr, NULL, 1, 3006 PPC_ELF_MACHINE, 0, 0); 3007 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3008 spapr->kernel_size = load_elf(kernel_filename, NULL, 3009 translate_kernel_address, NULL, NULL, 3010 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3011 0, 0); 3012 spapr->kernel_le = spapr->kernel_size > 0; 3013 } 3014 if (spapr->kernel_size < 0) { 3015 error_report("error loading %s: %s", kernel_filename, 3016 load_elf_strerror(spapr->kernel_size)); 3017 exit(1); 3018 } 3019 3020 /* load initrd */ 3021 if (initrd_filename) { 3022 /* Try to locate the initrd in the gap between the kernel 3023 * and the firmware. Add a bit of space just in case 3024 */ 3025 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3026 + 0x1ffff) & ~0xffff; 3027 spapr->initrd_size = load_image_targphys(initrd_filename, 3028 spapr->initrd_base, 3029 load_limit 3030 - spapr->initrd_base); 3031 if (spapr->initrd_size < 0) { 3032 error_report("could not load initial ram disk '%s'", 3033 initrd_filename); 3034 exit(1); 3035 } 3036 } 3037 } 3038 3039 if (bios_name == NULL) { 3040 bios_name = FW_FILE_NAME; 3041 } 3042 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3043 if (!filename) { 3044 error_report("Could not find LPAR firmware '%s'", bios_name); 3045 exit(1); 3046 } 3047 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3048 if (fw_size <= 0) { 3049 error_report("Could not load LPAR firmware '%s'", filename); 3050 exit(1); 3051 } 3052 g_free(filename); 3053 3054 /* FIXME: Should register things through the MachineState's qdev 3055 * interface, this is a legacy from the sPAPREnvironment structure 3056 * which predated MachineState but had a similar function */ 3057 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3058 register_savevm_live(NULL, "spapr/htab", -1, 1, 3059 &savevm_htab_handlers, spapr); 3060 3061 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3062 &error_fatal); 3063 3064 qemu_register_boot_set(spapr_boot_set, spapr); 3065 3066 if (kvm_enabled()) { 3067 /* to stop and start vmclock */ 3068 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3069 &spapr->tb); 3070 3071 kvmppc_spapr_enable_inkernel_multitce(); 3072 } 3073 } 3074 3075 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3076 { 3077 if (!vm_type) { 3078 return 0; 3079 } 3080 3081 if (!strcmp(vm_type, "HV")) { 3082 return 1; 3083 } 3084 3085 if (!strcmp(vm_type, "PR")) { 3086 return 2; 3087 } 3088 3089 error_report("Unknown kvm-type specified '%s'", vm_type); 3090 exit(1); 3091 } 3092 3093 /* 3094 * Implementation of an interface to adjust firmware path 3095 * for the bootindex property handling. 3096 */ 3097 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3098 DeviceState *dev) 3099 { 3100 #define CAST(type, obj, name) \ 3101 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3102 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3103 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3104 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3105 3106 if (d) { 3107 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3108 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3109 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3110 3111 if (spapr) { 3112 /* 3113 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3114 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3115 * 0x8000 | (target << 8) | (bus << 5) | lun 3116 * (see the "Logical unit addressing format" table in SAM5) 3117 */ 3118 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3119 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3120 (uint64_t)id << 48); 3121 } else if (virtio) { 3122 /* 3123 * We use SRP luns of the form 01000000 | (target << 8) | lun 3124 * in the top 32 bits of the 64-bit LUN 3125 * Note: the quote above is from SLOF and it is wrong, 3126 * the actual binding is: 3127 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3128 */ 3129 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3130 if (d->lun >= 256) { 3131 /* Use the LUN "flat space addressing method" */ 3132 id |= 0x4000; 3133 } 3134 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3135 (uint64_t)id << 32); 3136 } else if (usb) { 3137 /* 3138 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3139 * in the top 32 bits of the 64-bit LUN 3140 */ 3141 unsigned usb_port = atoi(usb->port->path); 3142 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3143 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3144 (uint64_t)id << 32); 3145 } 3146 } 3147 3148 /* 3149 * SLOF probes the USB devices, and if it recognizes that the device is a 3150 * storage device, it changes its name to "storage" instead of "usb-host", 3151 * and additionally adds a child node for the SCSI LUN, so the correct 3152 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3153 */ 3154 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3155 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3156 if (usb_host_dev_is_scsi_storage(usbdev)) { 3157 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3158 } 3159 } 3160 3161 if (phb) { 3162 /* Replace "pci" with "pci@800000020000000" */ 3163 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3164 } 3165 3166 if (vsc) { 3167 /* Same logic as virtio above */ 3168 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3169 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3170 } 3171 3172 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3173 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3174 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3175 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3176 } 3177 3178 return NULL; 3179 } 3180 3181 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3182 { 3183 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3184 3185 return g_strdup(spapr->kvm_type); 3186 } 3187 3188 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3189 { 3190 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3191 3192 g_free(spapr->kvm_type); 3193 spapr->kvm_type = g_strdup(value); 3194 } 3195 3196 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3197 { 3198 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3199 3200 return spapr->use_hotplug_event_source; 3201 } 3202 3203 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3204 Error **errp) 3205 { 3206 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3207 3208 spapr->use_hotplug_event_source = value; 3209 } 3210 3211 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3212 { 3213 return true; 3214 } 3215 3216 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3217 { 3218 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3219 3220 switch (spapr->resize_hpt) { 3221 case SPAPR_RESIZE_HPT_DEFAULT: 3222 return g_strdup("default"); 3223 case SPAPR_RESIZE_HPT_DISABLED: 3224 return g_strdup("disabled"); 3225 case SPAPR_RESIZE_HPT_ENABLED: 3226 return g_strdup("enabled"); 3227 case SPAPR_RESIZE_HPT_REQUIRED: 3228 return g_strdup("required"); 3229 } 3230 g_assert_not_reached(); 3231 } 3232 3233 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3234 { 3235 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3236 3237 if (strcmp(value, "default") == 0) { 3238 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3239 } else if (strcmp(value, "disabled") == 0) { 3240 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3241 } else if (strcmp(value, "enabled") == 0) { 3242 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3243 } else if (strcmp(value, "required") == 0) { 3244 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3245 } else { 3246 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3247 } 3248 } 3249 3250 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3251 void *opaque, Error **errp) 3252 { 3253 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3254 } 3255 3256 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3257 void *opaque, Error **errp) 3258 { 3259 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3260 } 3261 3262 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3263 { 3264 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3265 3266 if (spapr->irq == &spapr_irq_xics_legacy) { 3267 return g_strdup("legacy"); 3268 } else if (spapr->irq == &spapr_irq_xics) { 3269 return g_strdup("xics"); 3270 } else if (spapr->irq == &spapr_irq_xive) { 3271 return g_strdup("xive"); 3272 } else if (spapr->irq == &spapr_irq_dual) { 3273 return g_strdup("dual"); 3274 } 3275 g_assert_not_reached(); 3276 } 3277 3278 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3279 { 3280 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3281 3282 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3283 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3284 return; 3285 } 3286 3287 /* The legacy IRQ backend can not be set */ 3288 if (strcmp(value, "xics") == 0) { 3289 spapr->irq = &spapr_irq_xics; 3290 } else if (strcmp(value, "xive") == 0) { 3291 spapr->irq = &spapr_irq_xive; 3292 } else if (strcmp(value, "dual") == 0) { 3293 spapr->irq = &spapr_irq_dual; 3294 } else { 3295 error_setg(errp, "Bad value for \"ic-mode\" property"); 3296 } 3297 } 3298 3299 static char *spapr_get_host_model(Object *obj, Error **errp) 3300 { 3301 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3302 3303 return g_strdup(spapr->host_model); 3304 } 3305 3306 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3307 { 3308 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3309 3310 g_free(spapr->host_model); 3311 spapr->host_model = g_strdup(value); 3312 } 3313 3314 static char *spapr_get_host_serial(Object *obj, Error **errp) 3315 { 3316 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3317 3318 return g_strdup(spapr->host_serial); 3319 } 3320 3321 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3322 { 3323 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3324 3325 g_free(spapr->host_serial); 3326 spapr->host_serial = g_strdup(value); 3327 } 3328 3329 static void spapr_instance_init(Object *obj) 3330 { 3331 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3332 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3333 3334 spapr->htab_fd = -1; 3335 spapr->use_hotplug_event_source = true; 3336 object_property_add_str(obj, "kvm-type", 3337 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3338 object_property_set_description(obj, "kvm-type", 3339 "Specifies the KVM virtualization mode (HV, PR)", 3340 NULL); 3341 object_property_add_bool(obj, "modern-hotplug-events", 3342 spapr_get_modern_hotplug_events, 3343 spapr_set_modern_hotplug_events, 3344 NULL); 3345 object_property_set_description(obj, "modern-hotplug-events", 3346 "Use dedicated hotplug event mechanism in" 3347 " place of standard EPOW events when possible" 3348 " (required for memory hot-unplug support)", 3349 NULL); 3350 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3351 "Maximum permitted CPU compatibility mode", 3352 &error_fatal); 3353 3354 object_property_add_str(obj, "resize-hpt", 3355 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3356 object_property_set_description(obj, "resize-hpt", 3357 "Resizing of the Hash Page Table (enabled, disabled, required)", 3358 NULL); 3359 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3360 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3361 object_property_set_description(obj, "vsmt", 3362 "Virtual SMT: KVM behaves as if this were" 3363 " the host's SMT mode", &error_abort); 3364 object_property_add_bool(obj, "vfio-no-msix-emulation", 3365 spapr_get_msix_emulation, NULL, NULL); 3366 3367 /* The machine class defines the default interrupt controller mode */ 3368 spapr->irq = smc->irq; 3369 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3370 spapr_set_ic_mode, NULL); 3371 object_property_set_description(obj, "ic-mode", 3372 "Specifies the interrupt controller mode (xics, xive, dual)", 3373 NULL); 3374 3375 object_property_add_str(obj, "host-model", 3376 spapr_get_host_model, spapr_set_host_model, 3377 &error_abort); 3378 object_property_set_description(obj, "host-model", 3379 "Host model to advertise in guest device tree", &error_abort); 3380 object_property_add_str(obj, "host-serial", 3381 spapr_get_host_serial, spapr_set_host_serial, 3382 &error_abort); 3383 object_property_set_description(obj, "host-serial", 3384 "Host serial number to advertise in guest device tree", &error_abort); 3385 } 3386 3387 static void spapr_machine_finalizefn(Object *obj) 3388 { 3389 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3390 3391 g_free(spapr->kvm_type); 3392 } 3393 3394 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3395 { 3396 cpu_synchronize_state(cs); 3397 ppc_cpu_do_system_reset(cs); 3398 } 3399 3400 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3401 { 3402 CPUState *cs; 3403 3404 CPU_FOREACH(cs) { 3405 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3406 } 3407 } 3408 3409 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3410 void *fdt, int *fdt_start_offset, Error **errp) 3411 { 3412 uint64_t addr; 3413 uint32_t node; 3414 3415 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3416 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3417 &error_abort); 3418 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3419 SPAPR_MEMORY_BLOCK_SIZE); 3420 return 0; 3421 } 3422 3423 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3424 bool dedicated_hp_event_source, Error **errp) 3425 { 3426 SpaprDrc *drc; 3427 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3428 int i; 3429 uint64_t addr = addr_start; 3430 bool hotplugged = spapr_drc_hotplugged(dev); 3431 Error *local_err = NULL; 3432 3433 for (i = 0; i < nr_lmbs; i++) { 3434 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3435 addr / SPAPR_MEMORY_BLOCK_SIZE); 3436 g_assert(drc); 3437 3438 spapr_drc_attach(drc, dev, &local_err); 3439 if (local_err) { 3440 while (addr > addr_start) { 3441 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3442 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3443 addr / SPAPR_MEMORY_BLOCK_SIZE); 3444 spapr_drc_detach(drc); 3445 } 3446 error_propagate(errp, local_err); 3447 return; 3448 } 3449 if (!hotplugged) { 3450 spapr_drc_reset(drc); 3451 } 3452 addr += SPAPR_MEMORY_BLOCK_SIZE; 3453 } 3454 /* send hotplug notification to the 3455 * guest only in case of hotplugged memory 3456 */ 3457 if (hotplugged) { 3458 if (dedicated_hp_event_source) { 3459 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3460 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3461 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3462 nr_lmbs, 3463 spapr_drc_index(drc)); 3464 } else { 3465 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3466 nr_lmbs); 3467 } 3468 } 3469 } 3470 3471 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3472 Error **errp) 3473 { 3474 Error *local_err = NULL; 3475 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3476 PCDIMMDevice *dimm = PC_DIMM(dev); 3477 uint64_t size, addr; 3478 3479 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3480 3481 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3482 if (local_err) { 3483 goto out; 3484 } 3485 3486 addr = object_property_get_uint(OBJECT(dimm), 3487 PC_DIMM_ADDR_PROP, &local_err); 3488 if (local_err) { 3489 goto out_unplug; 3490 } 3491 3492 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3493 &local_err); 3494 if (local_err) { 3495 goto out_unplug; 3496 } 3497 3498 return; 3499 3500 out_unplug: 3501 pc_dimm_unplug(dimm, MACHINE(ms)); 3502 out: 3503 error_propagate(errp, local_err); 3504 } 3505 3506 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3507 Error **errp) 3508 { 3509 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3510 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3511 PCDIMMDevice *dimm = PC_DIMM(dev); 3512 Error *local_err = NULL; 3513 uint64_t size; 3514 Object *memdev; 3515 hwaddr pagesize; 3516 3517 if (!smc->dr_lmb_enabled) { 3518 error_setg(errp, "Memory hotplug not supported for this machine"); 3519 return; 3520 } 3521 3522 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3523 if (local_err) { 3524 error_propagate(errp, local_err); 3525 return; 3526 } 3527 3528 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3529 error_setg(errp, "Hotplugged memory size must be a multiple of " 3530 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3531 return; 3532 } 3533 3534 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3535 &error_abort); 3536 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3537 spapr_check_pagesize(spapr, pagesize, &local_err); 3538 if (local_err) { 3539 error_propagate(errp, local_err); 3540 return; 3541 } 3542 3543 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3544 } 3545 3546 struct SpaprDimmState { 3547 PCDIMMDevice *dimm; 3548 uint32_t nr_lmbs; 3549 QTAILQ_ENTRY(SpaprDimmState) next; 3550 }; 3551 3552 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3553 PCDIMMDevice *dimm) 3554 { 3555 SpaprDimmState *dimm_state = NULL; 3556 3557 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3558 if (dimm_state->dimm == dimm) { 3559 break; 3560 } 3561 } 3562 return dimm_state; 3563 } 3564 3565 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3566 uint32_t nr_lmbs, 3567 PCDIMMDevice *dimm) 3568 { 3569 SpaprDimmState *ds = NULL; 3570 3571 /* 3572 * If this request is for a DIMM whose removal had failed earlier 3573 * (due to guest's refusal to remove the LMBs), we would have this 3574 * dimm already in the pending_dimm_unplugs list. In that 3575 * case don't add again. 3576 */ 3577 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3578 if (!ds) { 3579 ds = g_malloc0(sizeof(SpaprDimmState)); 3580 ds->nr_lmbs = nr_lmbs; 3581 ds->dimm = dimm; 3582 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3583 } 3584 return ds; 3585 } 3586 3587 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3588 SpaprDimmState *dimm_state) 3589 { 3590 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3591 g_free(dimm_state); 3592 } 3593 3594 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3595 PCDIMMDevice *dimm) 3596 { 3597 SpaprDrc *drc; 3598 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3599 &error_abort); 3600 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3601 uint32_t avail_lmbs = 0; 3602 uint64_t addr_start, addr; 3603 int i; 3604 3605 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3606 &error_abort); 3607 3608 addr = addr_start; 3609 for (i = 0; i < nr_lmbs; i++) { 3610 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3611 addr / SPAPR_MEMORY_BLOCK_SIZE); 3612 g_assert(drc); 3613 if (drc->dev) { 3614 avail_lmbs++; 3615 } 3616 addr += SPAPR_MEMORY_BLOCK_SIZE; 3617 } 3618 3619 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3620 } 3621 3622 /* Callback to be called during DRC release. */ 3623 void spapr_lmb_release(DeviceState *dev) 3624 { 3625 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3626 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3627 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3628 3629 /* This information will get lost if a migration occurs 3630 * during the unplug process. In this case recover it. */ 3631 if (ds == NULL) { 3632 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3633 g_assert(ds); 3634 /* The DRC being examined by the caller at least must be counted */ 3635 g_assert(ds->nr_lmbs); 3636 } 3637 3638 if (--ds->nr_lmbs) { 3639 return; 3640 } 3641 3642 /* 3643 * Now that all the LMBs have been removed by the guest, call the 3644 * unplug handler chain. This can never fail. 3645 */ 3646 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3647 object_unparent(OBJECT(dev)); 3648 } 3649 3650 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3651 { 3652 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3653 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3654 3655 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3656 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3657 spapr_pending_dimm_unplugs_remove(spapr, ds); 3658 } 3659 3660 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3661 DeviceState *dev, Error **errp) 3662 { 3663 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3664 Error *local_err = NULL; 3665 PCDIMMDevice *dimm = PC_DIMM(dev); 3666 uint32_t nr_lmbs; 3667 uint64_t size, addr_start, addr; 3668 int i; 3669 SpaprDrc *drc; 3670 3671 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3672 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3673 3674 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3675 &local_err); 3676 if (local_err) { 3677 goto out; 3678 } 3679 3680 /* 3681 * An existing pending dimm state for this DIMM means that there is an 3682 * unplug operation in progress, waiting for the spapr_lmb_release 3683 * callback to complete the job (BQL can't cover that far). In this case, 3684 * bail out to avoid detaching DRCs that were already released. 3685 */ 3686 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3687 error_setg(&local_err, 3688 "Memory unplug already in progress for device %s", 3689 dev->id); 3690 goto out; 3691 } 3692 3693 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3694 3695 addr = addr_start; 3696 for (i = 0; i < nr_lmbs; i++) { 3697 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3698 addr / SPAPR_MEMORY_BLOCK_SIZE); 3699 g_assert(drc); 3700 3701 spapr_drc_detach(drc); 3702 addr += SPAPR_MEMORY_BLOCK_SIZE; 3703 } 3704 3705 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3706 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3707 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3708 nr_lmbs, spapr_drc_index(drc)); 3709 out: 3710 error_propagate(errp, local_err); 3711 } 3712 3713 /* Callback to be called during DRC release. */ 3714 void spapr_core_release(DeviceState *dev) 3715 { 3716 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3717 3718 /* Call the unplug handler chain. This can never fail. */ 3719 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3720 object_unparent(OBJECT(dev)); 3721 } 3722 3723 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3724 { 3725 MachineState *ms = MACHINE(hotplug_dev); 3726 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3727 CPUCore *cc = CPU_CORE(dev); 3728 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3729 3730 if (smc->pre_2_10_has_unused_icps) { 3731 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3732 int i; 3733 3734 for (i = 0; i < cc->nr_threads; i++) { 3735 CPUState *cs = CPU(sc->threads[i]); 3736 3737 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3738 } 3739 } 3740 3741 assert(core_slot); 3742 core_slot->cpu = NULL; 3743 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3744 } 3745 3746 static 3747 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3748 Error **errp) 3749 { 3750 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3751 int index; 3752 SpaprDrc *drc; 3753 CPUCore *cc = CPU_CORE(dev); 3754 3755 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3756 error_setg(errp, "Unable to find CPU core with core-id: %d", 3757 cc->core_id); 3758 return; 3759 } 3760 if (index == 0) { 3761 error_setg(errp, "Boot CPU core may not be unplugged"); 3762 return; 3763 } 3764 3765 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3766 spapr_vcpu_id(spapr, cc->core_id)); 3767 g_assert(drc); 3768 3769 spapr_drc_detach(drc); 3770 3771 spapr_hotplug_req_remove_by_index(drc); 3772 } 3773 3774 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3775 void *fdt, int *fdt_start_offset, Error **errp) 3776 { 3777 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3778 CPUState *cs = CPU(core->threads[0]); 3779 PowerPCCPU *cpu = POWERPC_CPU(cs); 3780 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3781 int id = spapr_get_vcpu_id(cpu); 3782 char *nodename; 3783 int offset; 3784 3785 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3786 offset = fdt_add_subnode(fdt, 0, nodename); 3787 g_free(nodename); 3788 3789 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3790 3791 *fdt_start_offset = offset; 3792 return 0; 3793 } 3794 3795 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3796 Error **errp) 3797 { 3798 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3799 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3800 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3801 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3802 CPUCore *cc = CPU_CORE(dev); 3803 CPUState *cs; 3804 SpaprDrc *drc; 3805 Error *local_err = NULL; 3806 CPUArchId *core_slot; 3807 int index; 3808 bool hotplugged = spapr_drc_hotplugged(dev); 3809 3810 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3811 if (!core_slot) { 3812 error_setg(errp, "Unable to find CPU core with core-id: %d", 3813 cc->core_id); 3814 return; 3815 } 3816 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3817 spapr_vcpu_id(spapr, cc->core_id)); 3818 3819 g_assert(drc || !mc->has_hotpluggable_cpus); 3820 3821 if (drc) { 3822 spapr_drc_attach(drc, dev, &local_err); 3823 if (local_err) { 3824 error_propagate(errp, local_err); 3825 return; 3826 } 3827 3828 if (hotplugged) { 3829 /* 3830 * Send hotplug notification interrupt to the guest only 3831 * in case of hotplugged CPUs. 3832 */ 3833 spapr_hotplug_req_add_by_index(drc); 3834 } else { 3835 spapr_drc_reset(drc); 3836 } 3837 } 3838 3839 core_slot->cpu = OBJECT(dev); 3840 3841 if (smc->pre_2_10_has_unused_icps) { 3842 int i; 3843 3844 for (i = 0; i < cc->nr_threads; i++) { 3845 cs = CPU(core->threads[i]); 3846 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3847 } 3848 } 3849 } 3850 3851 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3852 Error **errp) 3853 { 3854 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3855 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3856 Error *local_err = NULL; 3857 CPUCore *cc = CPU_CORE(dev); 3858 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3859 const char *type = object_get_typename(OBJECT(dev)); 3860 CPUArchId *core_slot; 3861 int index; 3862 3863 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3864 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3865 goto out; 3866 } 3867 3868 if (strcmp(base_core_type, type)) { 3869 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3870 goto out; 3871 } 3872 3873 if (cc->core_id % smp_threads) { 3874 error_setg(&local_err, "invalid core id %d", cc->core_id); 3875 goto out; 3876 } 3877 3878 /* 3879 * In general we should have homogeneous threads-per-core, but old 3880 * (pre hotplug support) machine types allow the last core to have 3881 * reduced threads as a compatibility hack for when we allowed 3882 * total vcpus not a multiple of threads-per-core. 3883 */ 3884 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3885 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3886 cc->nr_threads, smp_threads); 3887 goto out; 3888 } 3889 3890 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3891 if (!core_slot) { 3892 error_setg(&local_err, "core id %d out of range", cc->core_id); 3893 goto out; 3894 } 3895 3896 if (core_slot->cpu) { 3897 error_setg(&local_err, "core %d already populated", cc->core_id); 3898 goto out; 3899 } 3900 3901 numa_cpu_pre_plug(core_slot, dev, &local_err); 3902 3903 out: 3904 error_propagate(errp, local_err); 3905 } 3906 3907 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3908 void *fdt, int *fdt_start_offset, Error **errp) 3909 { 3910 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3911 int intc_phandle; 3912 3913 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3914 if (intc_phandle <= 0) { 3915 return -1; 3916 } 3917 3918 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3919 fdt_start_offset)) { 3920 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3921 return -1; 3922 } 3923 3924 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3925 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3926 3927 return 0; 3928 } 3929 3930 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3931 Error **errp) 3932 { 3933 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3934 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3935 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3936 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3937 3938 if (dev->hotplugged && !smc->dr_phb_enabled) { 3939 error_setg(errp, "PHB hotplug not supported for this machine"); 3940 return; 3941 } 3942 3943 if (sphb->index == (uint32_t)-1) { 3944 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3945 return; 3946 } 3947 3948 /* 3949 * This will check that sphb->index doesn't exceed the maximum number of 3950 * PHBs for the current machine type. 3951 */ 3952 smc->phb_placement(spapr, sphb->index, 3953 &sphb->buid, &sphb->io_win_addr, 3954 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3955 windows_supported, sphb->dma_liobn, 3956 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3957 errp); 3958 } 3959 3960 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3961 Error **errp) 3962 { 3963 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3964 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3965 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3966 SpaprDrc *drc; 3967 bool hotplugged = spapr_drc_hotplugged(dev); 3968 Error *local_err = NULL; 3969 3970 if (!smc->dr_phb_enabled) { 3971 return; 3972 } 3973 3974 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3975 /* hotplug hooks should check it's enabled before getting this far */ 3976 assert(drc); 3977 3978 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3979 if (local_err) { 3980 error_propagate(errp, local_err); 3981 return; 3982 } 3983 3984 if (hotplugged) { 3985 spapr_hotplug_req_add_by_index(drc); 3986 } else { 3987 spapr_drc_reset(drc); 3988 } 3989 } 3990 3991 void spapr_phb_release(DeviceState *dev) 3992 { 3993 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3994 3995 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3996 object_unparent(OBJECT(dev)); 3997 } 3998 3999 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4000 { 4001 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4002 } 4003 4004 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4005 DeviceState *dev, Error **errp) 4006 { 4007 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4008 SpaprDrc *drc; 4009 4010 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4011 assert(drc); 4012 4013 if (!spapr_drc_unplug_requested(drc)) { 4014 spapr_drc_detach(drc); 4015 spapr_hotplug_req_remove_by_index(drc); 4016 } 4017 } 4018 4019 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4020 DeviceState *dev, Error **errp) 4021 { 4022 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4023 spapr_memory_plug(hotplug_dev, dev, errp); 4024 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4025 spapr_core_plug(hotplug_dev, dev, errp); 4026 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4027 spapr_phb_plug(hotplug_dev, dev, errp); 4028 } 4029 } 4030 4031 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4032 DeviceState *dev, Error **errp) 4033 { 4034 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4035 spapr_memory_unplug(hotplug_dev, dev); 4036 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4037 spapr_core_unplug(hotplug_dev, dev); 4038 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4039 spapr_phb_unplug(hotplug_dev, dev); 4040 } 4041 } 4042 4043 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4044 DeviceState *dev, Error **errp) 4045 { 4046 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4047 MachineClass *mc = MACHINE_GET_CLASS(sms); 4048 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4049 4050 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4051 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4052 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4053 } else { 4054 /* NOTE: this means there is a window after guest reset, prior to 4055 * CAS negotiation, where unplug requests will fail due to the 4056 * capability not being detected yet. This is a bit different than 4057 * the case with PCI unplug, where the events will be queued and 4058 * eventually handled by the guest after boot 4059 */ 4060 error_setg(errp, "Memory hot unplug not supported for this guest"); 4061 } 4062 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4063 if (!mc->has_hotpluggable_cpus) { 4064 error_setg(errp, "CPU hot unplug not supported on this machine"); 4065 return; 4066 } 4067 spapr_core_unplug_request(hotplug_dev, dev, errp); 4068 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4069 if (!smc->dr_phb_enabled) { 4070 error_setg(errp, "PHB hot unplug not supported on this machine"); 4071 return; 4072 } 4073 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4074 } 4075 } 4076 4077 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4078 DeviceState *dev, Error **errp) 4079 { 4080 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4081 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4083 spapr_core_pre_plug(hotplug_dev, dev, errp); 4084 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4085 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4086 } 4087 } 4088 4089 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4090 DeviceState *dev) 4091 { 4092 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4093 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4094 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4095 return HOTPLUG_HANDLER(machine); 4096 } 4097 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4098 PCIDevice *pcidev = PCI_DEVICE(dev); 4099 PCIBus *root = pci_device_root_bus(pcidev); 4100 SpaprPhbState *phb = 4101 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4102 TYPE_SPAPR_PCI_HOST_BRIDGE); 4103 4104 if (phb) { 4105 return HOTPLUG_HANDLER(phb); 4106 } 4107 } 4108 return NULL; 4109 } 4110 4111 static CpuInstanceProperties 4112 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4113 { 4114 CPUArchId *core_slot; 4115 MachineClass *mc = MACHINE_GET_CLASS(machine); 4116 4117 /* make sure possible_cpu are intialized */ 4118 mc->possible_cpu_arch_ids(machine); 4119 /* get CPU core slot containing thread that matches cpu_index */ 4120 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4121 assert(core_slot); 4122 return core_slot->props; 4123 } 4124 4125 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4126 { 4127 return idx / smp_cores % nb_numa_nodes; 4128 } 4129 4130 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4131 { 4132 int i; 4133 const char *core_type; 4134 int spapr_max_cores = max_cpus / smp_threads; 4135 MachineClass *mc = MACHINE_GET_CLASS(machine); 4136 4137 if (!mc->has_hotpluggable_cpus) { 4138 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4139 } 4140 if (machine->possible_cpus) { 4141 assert(machine->possible_cpus->len == spapr_max_cores); 4142 return machine->possible_cpus; 4143 } 4144 4145 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4146 if (!core_type) { 4147 error_report("Unable to find sPAPR CPU Core definition"); 4148 exit(1); 4149 } 4150 4151 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4152 sizeof(CPUArchId) * spapr_max_cores); 4153 machine->possible_cpus->len = spapr_max_cores; 4154 for (i = 0; i < machine->possible_cpus->len; i++) { 4155 int core_id = i * smp_threads; 4156 4157 machine->possible_cpus->cpus[i].type = core_type; 4158 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4159 machine->possible_cpus->cpus[i].arch_id = core_id; 4160 machine->possible_cpus->cpus[i].props.has_core_id = true; 4161 machine->possible_cpus->cpus[i].props.core_id = core_id; 4162 } 4163 return machine->possible_cpus; 4164 } 4165 4166 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4167 uint64_t *buid, hwaddr *pio, 4168 hwaddr *mmio32, hwaddr *mmio64, 4169 unsigned n_dma, uint32_t *liobns, 4170 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4171 { 4172 /* 4173 * New-style PHB window placement. 4174 * 4175 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4176 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4177 * windows. 4178 * 4179 * Some guest kernels can't work with MMIO windows above 1<<46 4180 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4181 * 4182 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4183 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4184 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4185 * 1TiB 64-bit MMIO windows for each PHB. 4186 */ 4187 const uint64_t base_buid = 0x800000020000000ULL; 4188 int i; 4189 4190 /* Sanity check natural alignments */ 4191 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4192 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4193 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4194 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4195 /* Sanity check bounds */ 4196 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4197 SPAPR_PCI_MEM32_WIN_SIZE); 4198 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4199 SPAPR_PCI_MEM64_WIN_SIZE); 4200 4201 if (index >= SPAPR_MAX_PHBS) { 4202 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4203 SPAPR_MAX_PHBS - 1); 4204 return; 4205 } 4206 4207 *buid = base_buid + index; 4208 for (i = 0; i < n_dma; ++i) { 4209 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4210 } 4211 4212 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4213 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4214 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4215 4216 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4217 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4218 } 4219 4220 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4221 { 4222 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4223 4224 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4225 } 4226 4227 static void spapr_ics_resend(XICSFabric *dev) 4228 { 4229 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4230 4231 ics_resend(spapr->ics); 4232 } 4233 4234 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4235 { 4236 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4237 4238 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4239 } 4240 4241 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4242 Monitor *mon) 4243 { 4244 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4245 4246 spapr->irq->print_info(spapr, mon); 4247 } 4248 4249 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4250 { 4251 return cpu->vcpu_id; 4252 } 4253 4254 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4255 { 4256 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4257 int vcpu_id; 4258 4259 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4260 4261 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4262 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4263 error_append_hint(errp, "Adjust the number of cpus to %d " 4264 "or try to raise the number of threads per core\n", 4265 vcpu_id * smp_threads / spapr->vsmt); 4266 return; 4267 } 4268 4269 cpu->vcpu_id = vcpu_id; 4270 } 4271 4272 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4273 { 4274 CPUState *cs; 4275 4276 CPU_FOREACH(cs) { 4277 PowerPCCPU *cpu = POWERPC_CPU(cs); 4278 4279 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4280 return cpu; 4281 } 4282 } 4283 4284 return NULL; 4285 } 4286 4287 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4288 { 4289 MachineClass *mc = MACHINE_CLASS(oc); 4290 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4291 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4292 NMIClass *nc = NMI_CLASS(oc); 4293 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4294 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4295 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4296 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4297 4298 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4299 mc->ignore_boot_device_suffixes = true; 4300 4301 /* 4302 * We set up the default / latest behaviour here. The class_init 4303 * functions for the specific versioned machine types can override 4304 * these details for backwards compatibility 4305 */ 4306 mc->init = spapr_machine_init; 4307 mc->reset = spapr_machine_reset; 4308 mc->block_default_type = IF_SCSI; 4309 mc->max_cpus = 1024; 4310 mc->no_parallel = 1; 4311 mc->default_boot_order = ""; 4312 mc->default_ram_size = 512 * MiB; 4313 mc->default_display = "std"; 4314 mc->kvm_type = spapr_kvm_type; 4315 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4316 mc->pci_allow_0_address = true; 4317 assert(!mc->get_hotplug_handler); 4318 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4319 hc->pre_plug = spapr_machine_device_pre_plug; 4320 hc->plug = spapr_machine_device_plug; 4321 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4322 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4323 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4324 hc->unplug_request = spapr_machine_device_unplug_request; 4325 hc->unplug = spapr_machine_device_unplug; 4326 4327 smc->dr_lmb_enabled = true; 4328 smc->update_dt_enabled = true; 4329 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4330 mc->has_hotpluggable_cpus = true; 4331 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4332 fwc->get_dev_path = spapr_get_fw_dev_path; 4333 nc->nmi_monitor_handler = spapr_nmi; 4334 smc->phb_placement = spapr_phb_placement; 4335 vhc->hypercall = emulate_spapr_hypercall; 4336 vhc->hpt_mask = spapr_hpt_mask; 4337 vhc->map_hptes = spapr_map_hptes; 4338 vhc->unmap_hptes = spapr_unmap_hptes; 4339 vhc->hpte_set_c = spapr_hpte_set_c; 4340 vhc->hpte_set_r = spapr_hpte_set_r; 4341 vhc->get_pate = spapr_get_pate; 4342 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4343 xic->ics_get = spapr_ics_get; 4344 xic->ics_resend = spapr_ics_resend; 4345 xic->icp_get = spapr_icp_get; 4346 ispc->print_info = spapr_pic_print_info; 4347 /* Force NUMA node memory size to be a multiple of 4348 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4349 * in which LMBs are represented and hot-added 4350 */ 4351 mc->numa_mem_align_shift = 28; 4352 4353 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4354 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4355 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4356 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4357 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4358 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4359 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4360 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4361 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4362 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4363 spapr_caps_add_properties(smc, &error_abort); 4364 smc->irq = &spapr_irq_dual; 4365 smc->dr_phb_enabled = true; 4366 } 4367 4368 static const TypeInfo spapr_machine_info = { 4369 .name = TYPE_SPAPR_MACHINE, 4370 .parent = TYPE_MACHINE, 4371 .abstract = true, 4372 .instance_size = sizeof(SpaprMachineState), 4373 .instance_init = spapr_instance_init, 4374 .instance_finalize = spapr_machine_finalizefn, 4375 .class_size = sizeof(SpaprMachineClass), 4376 .class_init = spapr_machine_class_init, 4377 .interfaces = (InterfaceInfo[]) { 4378 { TYPE_FW_PATH_PROVIDER }, 4379 { TYPE_NMI }, 4380 { TYPE_HOTPLUG_HANDLER }, 4381 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4382 { TYPE_XICS_FABRIC }, 4383 { TYPE_INTERRUPT_STATS_PROVIDER }, 4384 { } 4385 }, 4386 }; 4387 4388 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4389 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4390 void *data) \ 4391 { \ 4392 MachineClass *mc = MACHINE_CLASS(oc); \ 4393 spapr_machine_##suffix##_class_options(mc); \ 4394 if (latest) { \ 4395 mc->alias = "pseries"; \ 4396 mc->is_default = 1; \ 4397 } \ 4398 } \ 4399 static const TypeInfo spapr_machine_##suffix##_info = { \ 4400 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4401 .parent = TYPE_SPAPR_MACHINE, \ 4402 .class_init = spapr_machine_##suffix##_class_init, \ 4403 }; \ 4404 static void spapr_machine_register_##suffix(void) \ 4405 { \ 4406 type_register(&spapr_machine_##suffix##_info); \ 4407 } \ 4408 type_init(spapr_machine_register_##suffix) 4409 4410 /* 4411 * pseries-4.1 4412 */ 4413 static void spapr_machine_4_1_class_options(MachineClass *mc) 4414 { 4415 /* Defaults for the latest behaviour inherited from the base class */ 4416 } 4417 4418 DEFINE_SPAPR_MACHINE(4_1, "4.1", true); 4419 4420 /* 4421 * pseries-4.0 4422 */ 4423 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4424 uint64_t *buid, hwaddr *pio, 4425 hwaddr *mmio32, hwaddr *mmio64, 4426 unsigned n_dma, uint32_t *liobns, 4427 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4428 { 4429 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4430 nv2gpa, nv2atsd, errp); 4431 *nv2gpa = 0; 4432 *nv2atsd = 0; 4433 } 4434 4435 static void spapr_machine_4_0_class_options(MachineClass *mc) 4436 { 4437 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4438 4439 spapr_machine_4_1_class_options(mc); 4440 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4441 smc->phb_placement = phb_placement_4_0; 4442 smc->irq = &spapr_irq_xics; 4443 smc->pre_4_1_migration = true; 4444 } 4445 4446 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4447 4448 /* 4449 * pseries-3.1 4450 */ 4451 static void spapr_machine_3_1_class_options(MachineClass *mc) 4452 { 4453 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4454 4455 spapr_machine_4_0_class_options(mc); 4456 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4457 4458 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4459 smc->update_dt_enabled = false; 4460 smc->dr_phb_enabled = false; 4461 smc->broken_host_serial_model = true; 4462 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4463 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4464 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4465 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4466 } 4467 4468 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4469 4470 /* 4471 * pseries-3.0 4472 */ 4473 4474 static void spapr_machine_3_0_class_options(MachineClass *mc) 4475 { 4476 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4477 4478 spapr_machine_3_1_class_options(mc); 4479 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4480 4481 smc->legacy_irq_allocation = true; 4482 smc->irq = &spapr_irq_xics_legacy; 4483 } 4484 4485 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4486 4487 /* 4488 * pseries-2.12 4489 */ 4490 static void spapr_machine_2_12_class_options(MachineClass *mc) 4491 { 4492 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4493 static GlobalProperty compat[] = { 4494 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4495 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4496 }; 4497 4498 spapr_machine_3_0_class_options(mc); 4499 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4500 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4501 4502 /* We depend on kvm_enabled() to choose a default value for the 4503 * hpt-max-page-size capability. Of course we can't do it here 4504 * because this is too early and the HW accelerator isn't initialzed 4505 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4506 */ 4507 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4508 } 4509 4510 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4511 4512 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4513 { 4514 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4515 4516 spapr_machine_2_12_class_options(mc); 4517 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4518 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4519 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4520 } 4521 4522 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4523 4524 /* 4525 * pseries-2.11 4526 */ 4527 4528 static void spapr_machine_2_11_class_options(MachineClass *mc) 4529 { 4530 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4531 4532 spapr_machine_2_12_class_options(mc); 4533 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4534 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4535 } 4536 4537 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4538 4539 /* 4540 * pseries-2.10 4541 */ 4542 4543 static void spapr_machine_2_10_class_options(MachineClass *mc) 4544 { 4545 spapr_machine_2_11_class_options(mc); 4546 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4547 } 4548 4549 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4550 4551 /* 4552 * pseries-2.9 4553 */ 4554 4555 static void spapr_machine_2_9_class_options(MachineClass *mc) 4556 { 4557 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4558 static GlobalProperty compat[] = { 4559 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4560 }; 4561 4562 spapr_machine_2_10_class_options(mc); 4563 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4564 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4565 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4566 smc->pre_2_10_has_unused_icps = true; 4567 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4568 } 4569 4570 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4571 4572 /* 4573 * pseries-2.8 4574 */ 4575 4576 static void spapr_machine_2_8_class_options(MachineClass *mc) 4577 { 4578 static GlobalProperty compat[] = { 4579 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4580 }; 4581 4582 spapr_machine_2_9_class_options(mc); 4583 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4584 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4585 mc->numa_mem_align_shift = 23; 4586 } 4587 4588 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4589 4590 /* 4591 * pseries-2.7 4592 */ 4593 4594 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4595 uint64_t *buid, hwaddr *pio, 4596 hwaddr *mmio32, hwaddr *mmio64, 4597 unsigned n_dma, uint32_t *liobns, 4598 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4599 { 4600 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4601 const uint64_t base_buid = 0x800000020000000ULL; 4602 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4603 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4604 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4605 const uint32_t max_index = 255; 4606 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4607 4608 uint64_t ram_top = MACHINE(spapr)->ram_size; 4609 hwaddr phb0_base, phb_base; 4610 int i; 4611 4612 /* Do we have device memory? */ 4613 if (MACHINE(spapr)->maxram_size > ram_top) { 4614 /* Can't just use maxram_size, because there may be an 4615 * alignment gap between normal and device memory regions 4616 */ 4617 ram_top = MACHINE(spapr)->device_memory->base + 4618 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4619 } 4620 4621 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4622 4623 if (index > max_index) { 4624 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4625 max_index); 4626 return; 4627 } 4628 4629 *buid = base_buid + index; 4630 for (i = 0; i < n_dma; ++i) { 4631 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4632 } 4633 4634 phb_base = phb0_base + index * phb_spacing; 4635 *pio = phb_base + pio_offset; 4636 *mmio32 = phb_base + mmio_offset; 4637 /* 4638 * We don't set the 64-bit MMIO window, relying on the PHB's 4639 * fallback behaviour of automatically splitting a large "32-bit" 4640 * window into contiguous 32-bit and 64-bit windows 4641 */ 4642 4643 *nv2gpa = 0; 4644 *nv2atsd = 0; 4645 } 4646 4647 static void spapr_machine_2_7_class_options(MachineClass *mc) 4648 { 4649 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4650 static GlobalProperty compat[] = { 4651 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4652 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4653 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4654 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4655 }; 4656 4657 spapr_machine_2_8_class_options(mc); 4658 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4659 mc->default_machine_opts = "modern-hotplug-events=off"; 4660 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4661 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4662 smc->phb_placement = phb_placement_2_7; 4663 } 4664 4665 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4666 4667 /* 4668 * pseries-2.6 4669 */ 4670 4671 static void spapr_machine_2_6_class_options(MachineClass *mc) 4672 { 4673 static GlobalProperty compat[] = { 4674 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4675 }; 4676 4677 spapr_machine_2_7_class_options(mc); 4678 mc->has_hotpluggable_cpus = false; 4679 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4680 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4681 } 4682 4683 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4684 4685 /* 4686 * pseries-2.5 4687 */ 4688 4689 static void spapr_machine_2_5_class_options(MachineClass *mc) 4690 { 4691 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4692 static GlobalProperty compat[] = { 4693 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4694 }; 4695 4696 spapr_machine_2_6_class_options(mc); 4697 smc->use_ohci_by_default = true; 4698 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4699 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4700 } 4701 4702 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4703 4704 /* 4705 * pseries-2.4 4706 */ 4707 4708 static void spapr_machine_2_4_class_options(MachineClass *mc) 4709 { 4710 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4711 4712 spapr_machine_2_5_class_options(mc); 4713 smc->dr_lmb_enabled = false; 4714 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4715 } 4716 4717 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4718 4719 /* 4720 * pseries-2.3 4721 */ 4722 4723 static void spapr_machine_2_3_class_options(MachineClass *mc) 4724 { 4725 static GlobalProperty compat[] = { 4726 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4727 }; 4728 spapr_machine_2_4_class_options(mc); 4729 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4730 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4731 } 4732 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4733 4734 /* 4735 * pseries-2.2 4736 */ 4737 4738 static void spapr_machine_2_2_class_options(MachineClass *mc) 4739 { 4740 static GlobalProperty compat[] = { 4741 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4742 }; 4743 4744 spapr_machine_2_3_class_options(mc); 4745 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4746 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4747 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4748 } 4749 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4750 4751 /* 4752 * pseries-2.1 4753 */ 4754 4755 static void spapr_machine_2_1_class_options(MachineClass *mc) 4756 { 4757 spapr_machine_2_2_class_options(mc); 4758 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4759 } 4760 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4761 4762 static void spapr_machine_register_types(void) 4763 { 4764 type_register_static(&spapr_machine_info); 4765 } 4766 4767 type_init(spapr_machine_register_types) 4768