1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_nested.h" 65 #include "hw/ppc/spapr_vio.h" 66 #include "hw/ppc/vof.h" 67 #include "hw/qdev-properties.h" 68 #include "hw/pci-host/spapr.h" 69 #include "hw/pci/msi.h" 70 71 #include "hw/pci/pci.h" 72 #include "hw/scsi/scsi.h" 73 #include "hw/virtio/virtio-scsi.h" 74 #include "hw/virtio/vhost-scsi-common.h" 75 76 #include "exec/ram_addr.h" 77 #include "hw/usb.h" 78 #include "qemu/config-file.h" 79 #include "qemu/error-report.h" 80 #include "trace.h" 81 #include "hw/nmi.h" 82 #include "hw/intc/intc.h" 83 84 #include "hw/ppc/spapr_cpu_core.h" 85 #include "hw/mem/memory-device.h" 86 #include "hw/ppc/spapr_tpm_proxy.h" 87 #include "hw/ppc/spapr_nvdimm.h" 88 #include "hw/ppc/spapr_numa.h" 89 #include "hw/ppc/pef.h" 90 91 #include "monitor/monitor.h" 92 93 #include <libfdt.h> 94 95 /* SLOF memory layout: 96 * 97 * SLOF raw image loaded at 0, copies its romfs right below the flat 98 * device-tree, then position SLOF itself 31M below that 99 * 100 * So we set FW_OVERHEAD to 40MB which should account for all of that 101 * and more 102 * 103 * We load our kernel at 4M, leaving space for SLOF initial image 104 */ 105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 106 #define FW_MAX_SIZE 0x400000 107 #define FW_FILE_NAME "slof.bin" 108 #define FW_FILE_NAME_VOF "vof.bin" 109 #define FW_OVERHEAD 0x2800000 110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 111 112 #define MIN_RMA_SLOF (128 * MiB) 113 114 #define PHANDLE_INTC 0x00001111 115 116 /* These two functions implement the VCPU id numbering: one to compute them 117 * all and one to identify thread 0 of a VCORE. Any change to the first one 118 * is likely to have an impact on the second one, so let's keep them close. 119 */ 120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 121 { 122 MachineState *ms = MACHINE(spapr); 123 unsigned int smp_threads = ms->smp.threads; 124 125 assert(spapr->vsmt); 126 return 127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 128 } 129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 130 PowerPCCPU *cpu) 131 { 132 assert(spapr->vsmt); 133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 134 } 135 136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 137 { 138 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 139 * and newer QEMUs don't even have them. In both cases, we don't want 140 * to send anything on the wire. 141 */ 142 return false; 143 } 144 145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 146 .name = "icp/server", 147 .version_id = 1, 148 .minimum_version_id = 1, 149 .needed = pre_2_10_vmstate_dummy_icp_needed, 150 .fields = (VMStateField[]) { 151 VMSTATE_UNUSED(4), /* uint32_t xirr */ 152 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 153 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 154 VMSTATE_END_OF_LIST() 155 }, 156 }; 157 158 static void pre_2_10_vmstate_register_dummy_icp(int i) 159 { 160 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 161 (void *)(uintptr_t) i); 162 } 163 164 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 165 { 166 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 167 (void *)(uintptr_t) i); 168 } 169 170 int spapr_max_server_number(SpaprMachineState *spapr) 171 { 172 MachineState *ms = MACHINE(spapr); 173 174 assert(spapr->vsmt); 175 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 176 } 177 178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 179 int smt_threads) 180 { 181 int i, ret = 0; 182 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 183 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 184 int index = spapr_get_vcpu_id(cpu); 185 186 if (cpu->compat_pvr) { 187 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 188 if (ret < 0) { 189 return ret; 190 } 191 } 192 193 /* Build interrupt servers and gservers properties */ 194 for (i = 0; i < smt_threads; i++) { 195 servers_prop[i] = cpu_to_be32(index + i); 196 /* Hack, direct the group queues back to cpu 0 */ 197 gservers_prop[i*2] = cpu_to_be32(index + i); 198 gservers_prop[i*2 + 1] = 0; 199 } 200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 201 servers_prop, sizeof(*servers_prop) * smt_threads); 202 if (ret < 0) { 203 return ret; 204 } 205 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 206 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 207 208 return ret; 209 } 210 211 static void spapr_dt_pa_features(SpaprMachineState *spapr, 212 PowerPCCPU *cpu, 213 void *fdt, int offset) 214 { 215 uint8_t pa_features_206[] = { 6, 0, 216 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 217 uint8_t pa_features_207[] = { 24, 0, 218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 219 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 222 uint8_t pa_features_300[] = { 66, 0, 223 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 224 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 225 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 226 /* 6: DS207 */ 227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 228 /* 16: Vector */ 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 230 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 232 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 234 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 235 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 236 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 238 /* 42: PM, 44: PC RA, 46: SC vec'd */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 240 /* 48: SIMD, 50: QP BFP, 52: String */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 242 /* 54: DecFP, 56: DecI, 58: SHA */ 243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 244 /* 60: NM atomic, 62: RNG */ 245 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 246 }; 247 uint8_t *pa_features = NULL; 248 size_t pa_size; 249 250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 251 pa_features = pa_features_206; 252 pa_size = sizeof(pa_features_206); 253 } 254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 255 pa_features = pa_features_207; 256 pa_size = sizeof(pa_features_207); 257 } 258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 259 pa_features = pa_features_300; 260 pa_size = sizeof(pa_features_300); 261 } 262 if (!pa_features) { 263 return; 264 } 265 266 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 267 /* 268 * Note: we keep CI large pages off by default because a 64K capable 269 * guest provisioned with large pages might otherwise try to map a qemu 270 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 271 * even if that qemu runs on a 4k host. 272 * We dd this bit back here if we are confident this is not an issue 273 */ 274 pa_features[3] |= 0x20; 275 } 276 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 277 pa_features[24] |= 0x80; /* Transactional memory support */ 278 } 279 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 280 /* Workaround for broken kernels that attempt (guest) radix 281 * mode when they can't handle it, if they see the radix bit set 282 * in pa-features. So hide it from them. */ 283 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 284 } 285 286 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 287 } 288 289 static hwaddr spapr_node0_size(MachineState *machine) 290 { 291 if (machine->numa_state->num_nodes) { 292 int i; 293 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 294 if (machine->numa_state->nodes[i].node_mem) { 295 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 296 machine->ram_size); 297 } 298 } 299 } 300 return machine->ram_size; 301 } 302 303 static void add_str(GString *s, const gchar *s1) 304 { 305 g_string_append_len(s, s1, strlen(s1) + 1); 306 } 307 308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 309 hwaddr start, hwaddr size) 310 { 311 char mem_name[32]; 312 uint64_t mem_reg_property[2]; 313 int off; 314 315 mem_reg_property[0] = cpu_to_be64(start); 316 mem_reg_property[1] = cpu_to_be64(size); 317 318 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 319 off = fdt_add_subnode(fdt, 0, mem_name); 320 _FDT(off); 321 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 322 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 323 sizeof(mem_reg_property)))); 324 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 325 return off; 326 } 327 328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 329 { 330 MemoryDeviceInfoList *info; 331 332 for (info = list; info; info = info->next) { 333 MemoryDeviceInfo *value = info->value; 334 335 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 336 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 337 338 if (addr >= pcdimm_info->addr && 339 addr < (pcdimm_info->addr + pcdimm_info->size)) { 340 return pcdimm_info->node; 341 } 342 } 343 } 344 345 return -1; 346 } 347 348 struct sPAPRDrconfCellV2 { 349 uint32_t seq_lmbs; 350 uint64_t base_addr; 351 uint32_t drc_index; 352 uint32_t aa_index; 353 uint32_t flags; 354 } QEMU_PACKED; 355 356 typedef struct DrconfCellQueue { 357 struct sPAPRDrconfCellV2 cell; 358 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 359 } DrconfCellQueue; 360 361 static DrconfCellQueue * 362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 363 uint32_t drc_index, uint32_t aa_index, 364 uint32_t flags) 365 { 366 DrconfCellQueue *elem; 367 368 elem = g_malloc0(sizeof(*elem)); 369 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 370 elem->cell.base_addr = cpu_to_be64(base_addr); 371 elem->cell.drc_index = cpu_to_be32(drc_index); 372 elem->cell.aa_index = cpu_to_be32(aa_index); 373 elem->cell.flags = cpu_to_be32(flags); 374 375 return elem; 376 } 377 378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 379 int offset, MemoryDeviceInfoList *dimms) 380 { 381 MachineState *machine = MACHINE(spapr); 382 uint8_t *int_buf, *cur_index; 383 int ret; 384 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 385 uint64_t addr, cur_addr, size; 386 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 387 uint64_t mem_end = machine->device_memory->base + 388 memory_region_size(&machine->device_memory->mr); 389 uint32_t node, buf_len, nr_entries = 0; 390 SpaprDrc *drc; 391 DrconfCellQueue *elem, *next; 392 MemoryDeviceInfoList *info; 393 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 394 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 395 396 /* Entry to cover RAM and the gap area */ 397 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 398 SPAPR_LMB_FLAGS_RESERVED | 399 SPAPR_LMB_FLAGS_DRC_INVALID); 400 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 401 nr_entries++; 402 403 cur_addr = machine->device_memory->base; 404 for (info = dimms; info; info = info->next) { 405 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 406 407 addr = di->addr; 408 size = di->size; 409 node = di->node; 410 411 /* 412 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 413 * area is marked hotpluggable in the next iteration for the bigger 414 * chunk including the NVDIMM occupied area. 415 */ 416 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 417 continue; 418 419 /* Entry for hot-pluggable area */ 420 if (cur_addr < addr) { 421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 422 g_assert(drc); 423 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 424 cur_addr, spapr_drc_index(drc), -1, 0); 425 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 426 nr_entries++; 427 } 428 429 /* Entry for DIMM */ 430 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 431 g_assert(drc); 432 elem = spapr_get_drconf_cell(size / lmb_size, addr, 433 spapr_drc_index(drc), node, 434 (SPAPR_LMB_FLAGS_ASSIGNED | 435 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 436 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 437 nr_entries++; 438 cur_addr = addr + size; 439 } 440 441 /* Entry for remaining hotpluggable area */ 442 if (cur_addr < mem_end) { 443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 444 g_assert(drc); 445 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 446 cur_addr, spapr_drc_index(drc), -1, 0); 447 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 448 nr_entries++; 449 } 450 451 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 452 int_buf = cur_index = g_malloc0(buf_len); 453 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 454 cur_index += sizeof(nr_entries); 455 456 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 457 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 458 cur_index += sizeof(elem->cell); 459 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 460 g_free(elem); 461 } 462 463 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 464 g_free(int_buf); 465 if (ret < 0) { 466 return -1; 467 } 468 return 0; 469 } 470 471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 472 int offset, MemoryDeviceInfoList *dimms) 473 { 474 MachineState *machine = MACHINE(spapr); 475 int i, ret; 476 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 477 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 478 uint32_t nr_lmbs = (machine->device_memory->base + 479 memory_region_size(&machine->device_memory->mr)) / 480 lmb_size; 481 uint32_t *int_buf, *cur_index, buf_len; 482 483 /* 484 * Allocate enough buffer size to fit in ibm,dynamic-memory 485 */ 486 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 487 cur_index = int_buf = g_malloc0(buf_len); 488 int_buf[0] = cpu_to_be32(nr_lmbs); 489 cur_index++; 490 for (i = 0; i < nr_lmbs; i++) { 491 uint64_t addr = i * lmb_size; 492 uint32_t *dynamic_memory = cur_index; 493 494 if (i >= device_lmb_start) { 495 SpaprDrc *drc; 496 497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 498 g_assert(drc); 499 500 dynamic_memory[0] = cpu_to_be32(addr >> 32); 501 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 502 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 503 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 504 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 505 if (memory_region_present(get_system_memory(), addr)) { 506 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 507 } else { 508 dynamic_memory[5] = cpu_to_be32(0); 509 } 510 } else { 511 /* 512 * LMB information for RMA, boot time RAM and gap b/n RAM and 513 * device memory region -- all these are marked as reserved 514 * and as having no valid DRC. 515 */ 516 dynamic_memory[0] = cpu_to_be32(addr >> 32); 517 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 518 dynamic_memory[2] = cpu_to_be32(0); 519 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 520 dynamic_memory[4] = cpu_to_be32(-1); 521 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 522 SPAPR_LMB_FLAGS_DRC_INVALID); 523 } 524 525 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 526 } 527 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 528 g_free(int_buf); 529 if (ret < 0) { 530 return -1; 531 } 532 return 0; 533 } 534 535 /* 536 * Adds ibm,dynamic-reconfiguration-memory node. 537 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 538 * of this device tree node. 539 */ 540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 541 void *fdt) 542 { 543 MachineState *machine = MACHINE(spapr); 544 int ret, offset; 545 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 546 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 547 cpu_to_be32(lmb_size & 0xffffffff)}; 548 MemoryDeviceInfoList *dimms = NULL; 549 550 /* Don't create the node if there is no device memory. */ 551 if (!machine->device_memory) { 552 return 0; 553 } 554 555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 556 557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 558 sizeof(prop_lmb_size)); 559 if (ret < 0) { 560 return ret; 561 } 562 563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 564 if (ret < 0) { 565 return ret; 566 } 567 568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 569 if (ret < 0) { 570 return ret; 571 } 572 573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 574 dimms = qmp_memory_device_list(); 575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 577 } else { 578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 579 } 580 qapi_free_MemoryDeviceInfoList(dimms); 581 582 if (ret < 0) { 583 return ret; 584 } 585 586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 587 588 return ret; 589 } 590 591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 592 { 593 MachineState *machine = MACHINE(spapr); 594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 595 hwaddr mem_start, node_size; 596 int i, nb_nodes = machine->numa_state->num_nodes; 597 NodeInfo *nodes = machine->numa_state->nodes; 598 599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 600 if (!nodes[i].node_mem) { 601 continue; 602 } 603 if (mem_start >= machine->ram_size) { 604 node_size = 0; 605 } else { 606 node_size = nodes[i].node_mem; 607 if (node_size > machine->ram_size - mem_start) { 608 node_size = machine->ram_size - mem_start; 609 } 610 } 611 if (!mem_start) { 612 /* spapr_machine_init() checks for rma_size <= node0_size 613 * already */ 614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 615 mem_start += spapr->rma_size; 616 node_size -= spapr->rma_size; 617 } 618 for ( ; node_size; ) { 619 hwaddr sizetmp = pow2floor(node_size); 620 621 /* mem_start != 0 here */ 622 if (ctzl(mem_start) < ctzl(sizetmp)) { 623 sizetmp = 1ULL << ctzl(mem_start); 624 } 625 626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 627 node_size -= sizetmp; 628 mem_start += sizetmp; 629 } 630 } 631 632 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 634 int ret; 635 636 g_assert(smc->dr_lmb_enabled); 637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 638 if (ret) { 639 return ret; 640 } 641 } 642 643 return 0; 644 } 645 646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 647 SpaprMachineState *spapr) 648 { 649 MachineState *ms = MACHINE(spapr); 650 PowerPCCPU *cpu = POWERPC_CPU(cs); 651 CPUPPCState *env = &cpu->env; 652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 653 int index = spapr_get_vcpu_id(cpu); 654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 655 0xffffffff, 0xffffffff}; 656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 657 : SPAPR_TIMEBASE_FREQ; 658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 659 uint32_t page_sizes_prop[64]; 660 size_t page_sizes_prop_size; 661 unsigned int smp_threads = ms->smp.threads; 662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 665 SpaprDrc *drc; 666 int drc_index; 667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 668 int i; 669 670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 671 if (drc) { 672 drc_index = spapr_drc_index(drc); 673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 674 } 675 676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 678 679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 681 env->dcache_line_size))); 682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 683 env->dcache_line_size))); 684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 685 env->icache_line_size))); 686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 687 env->icache_line_size))); 688 689 if (pcc->l1_dcache_size) { 690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 691 pcc->l1_dcache_size))); 692 } else { 693 warn_report("Unknown L1 dcache size for cpu"); 694 } 695 if (pcc->l1_icache_size) { 696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 697 pcc->l1_icache_size))); 698 } else { 699 warn_report("Unknown L1 icache size for cpu"); 700 } 701 702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 708 709 if (ppc_has_spr(cpu, SPR_PURR)) { 710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 711 } 712 if (ppc_has_spr(cpu, SPR_PURR)) { 713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 714 } 715 716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 718 segs, sizeof(segs)))); 719 } 720 721 /* Advertise VSX (vector extensions) if available 722 * 1 == VMX / Altivec available 723 * 2 == VSX available 724 * 725 * Only CPUs for which we create core types in spapr_cpu_core.c 726 * are possible, and all of those have VMX */ 727 if (env->insns_flags & PPC_ALTIVEC) { 728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 730 } else { 731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 732 } 733 } 734 735 /* Advertise DFP (Decimal Floating Point) if available 736 * 0 / no property == no DFP 737 * 1 == DFP available */ 738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 740 } 741 742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 743 sizeof(page_sizes_prop)); 744 if (page_sizes_prop_size) { 745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 746 page_sizes_prop, page_sizes_prop_size))); 747 } 748 749 spapr_dt_pa_features(spapr, cpu, fdt, offset); 750 751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 752 cs->cpu_index / vcpus_per_socket))); 753 754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 755 pft_size_prop, sizeof(pft_size_prop)))); 756 757 if (ms->numa_state->num_nodes > 1) { 758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 759 } 760 761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 762 763 if (pcc->radix_page_info) { 764 for (i = 0; i < pcc->radix_page_info->count; i++) { 765 radix_AP_encodings[i] = 766 cpu_to_be32(pcc->radix_page_info->entries[i]); 767 } 768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 769 radix_AP_encodings, 770 pcc->radix_page_info->count * 771 sizeof(radix_AP_encodings[0])))); 772 } 773 774 /* 775 * We set this property to let the guest know that it can use the large 776 * decrementer and its width in bits. 777 */ 778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 780 pcc->lrg_decr_bits))); 781 } 782 783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 784 { 785 CPUState **rev; 786 CPUState *cs; 787 int n_cpus; 788 int cpus_offset; 789 int i; 790 791 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 792 _FDT(cpus_offset); 793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 795 796 /* 797 * We walk the CPUs in reverse order to ensure that CPU DT nodes 798 * created by fdt_add_subnode() end up in the right order in FDT 799 * for the guest kernel the enumerate the CPUs correctly. 800 * 801 * The CPU list cannot be traversed in reverse order, so we need 802 * to do extra work. 803 */ 804 n_cpus = 0; 805 rev = NULL; 806 CPU_FOREACH(cs) { 807 rev = g_renew(CPUState *, rev, n_cpus + 1); 808 rev[n_cpus++] = cs; 809 } 810 811 for (i = n_cpus - 1; i >= 0; i--) { 812 CPUState *cs = rev[i]; 813 PowerPCCPU *cpu = POWERPC_CPU(cs); 814 int index = spapr_get_vcpu_id(cpu); 815 DeviceClass *dc = DEVICE_GET_CLASS(cs); 816 g_autofree char *nodename = NULL; 817 int offset; 818 819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 820 continue; 821 } 822 823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 824 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 825 _FDT(offset); 826 spapr_dt_cpu(cs, fdt, offset, spapr); 827 } 828 829 g_free(rev); 830 } 831 832 static int spapr_dt_rng(void *fdt) 833 { 834 int node; 835 int ret; 836 837 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 838 if (node <= 0) { 839 return -1; 840 } 841 ret = fdt_setprop_string(fdt, node, "device_type", 842 "ibm,platform-facilities"); 843 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 844 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 845 846 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 847 if (node <= 0) { 848 return -1; 849 } 850 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 851 852 return ret ? -1 : 0; 853 } 854 855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 856 { 857 MachineState *ms = MACHINE(spapr); 858 int rtas; 859 GString *hypertas = g_string_sized_new(256); 860 GString *qemu_hypertas = g_string_sized_new(256); 861 uint32_t lrdr_capacity[] = { 862 0, 863 0, 864 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 865 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 866 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 867 }; 868 869 /* Do we have device memory? */ 870 if (MACHINE(spapr)->device_memory) { 871 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 872 memory_region_size(&MACHINE(spapr)->device_memory->mr); 873 874 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 875 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 876 } 877 878 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 879 880 /* hypertas */ 881 add_str(hypertas, "hcall-pft"); 882 add_str(hypertas, "hcall-term"); 883 add_str(hypertas, "hcall-dabr"); 884 add_str(hypertas, "hcall-interrupt"); 885 add_str(hypertas, "hcall-tce"); 886 add_str(hypertas, "hcall-vio"); 887 add_str(hypertas, "hcall-splpar"); 888 add_str(hypertas, "hcall-join"); 889 add_str(hypertas, "hcall-bulk"); 890 add_str(hypertas, "hcall-set-mode"); 891 add_str(hypertas, "hcall-sprg0"); 892 add_str(hypertas, "hcall-copy"); 893 add_str(hypertas, "hcall-debug"); 894 add_str(hypertas, "hcall-vphn"); 895 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 896 add_str(hypertas, "hcall-rpt-invalidate"); 897 } 898 899 add_str(qemu_hypertas, "hcall-memop1"); 900 901 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 902 add_str(hypertas, "hcall-multi-tce"); 903 } 904 905 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 906 add_str(hypertas, "hcall-hpt-resize"); 907 } 908 909 add_str(hypertas, "hcall-watchdog"); 910 911 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 912 hypertas->str, hypertas->len)); 913 g_string_free(hypertas, TRUE); 914 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 915 qemu_hypertas->str, qemu_hypertas->len)); 916 g_string_free(qemu_hypertas, TRUE); 917 918 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 919 920 /* 921 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 922 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 923 * 924 * The system reset requirements are driven by existing Linux and PowerVM 925 * implementation which (contrary to PAPR) saves r3 in the error log 926 * structure like machine check, so Linux expects to find the saved r3 927 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 928 * does not look at the error value). 929 * 930 * System reset interrupts are not subject to interlock like machine 931 * check, so this memory area could be corrupted if the sreset is 932 * interrupted by a machine check (or vice versa) if it was shared. To 933 * prevent this, system reset uses per-CPU areas for the sreset save 934 * area. A system reset that interrupts a system reset handler could 935 * still overwrite this area, but Linux doesn't try to recover in that 936 * case anyway. 937 * 938 * The extra 8 bytes is required because Linux's FWNMI error log check 939 * is off-by-one. 940 * 941 * RTAS_MIN_SIZE is required for the RTAS blob itself. 942 */ 943 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 944 RTAS_ERROR_LOG_MAX + 945 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 946 sizeof(uint64_t))); 947 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 948 RTAS_ERROR_LOG_MAX)); 949 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 950 RTAS_EVENT_SCAN_RATE)); 951 952 g_assert(msi_nonbroken); 953 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 954 955 /* 956 * According to PAPR, rtas ibm,os-term does not guarantee a return 957 * back to the guest cpu. 958 * 959 * While an additional ibm,extended-os-term property indicates 960 * that rtas call return will always occur. Set this property. 961 */ 962 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 963 964 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 965 lrdr_capacity, sizeof(lrdr_capacity))); 966 967 spapr_dt_rtas_tokens(fdt, rtas); 968 } 969 970 /* 971 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 972 * and the XIVE features that the guest may request and thus the valid 973 * values for bytes 23..26 of option vector 5: 974 */ 975 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 976 int chosen) 977 { 978 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 979 980 char val[2 * 4] = { 981 23, 0x00, /* XICS / XIVE mode */ 982 24, 0x00, /* Hash/Radix, filled in below. */ 983 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 984 26, 0x40, /* Radix options: GTSE == yes. */ 985 }; 986 987 if (spapr->irq->xics && spapr->irq->xive) { 988 val[1] = SPAPR_OV5_XIVE_BOTH; 989 } else if (spapr->irq->xive) { 990 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 991 } else { 992 assert(spapr->irq->xics); 993 val[1] = SPAPR_OV5_XIVE_LEGACY; 994 } 995 996 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 997 first_ppc_cpu->compat_pvr)) { 998 /* 999 * If we're in a pre POWER9 compat mode then the guest should 1000 * do hash and use the legacy interrupt mode 1001 */ 1002 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1003 val[3] = 0x00; /* Hash */ 1004 spapr_check_mmu_mode(false); 1005 } else if (kvm_enabled()) { 1006 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1007 val[3] = 0x80; /* OV5_MMU_BOTH */ 1008 } else if (kvmppc_has_cap_mmu_radix()) { 1009 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1010 } else { 1011 val[3] = 0x00; /* Hash */ 1012 } 1013 } else { 1014 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1015 val[3] = 0xC0; 1016 } 1017 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1018 val, sizeof(val))); 1019 } 1020 1021 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1022 { 1023 MachineState *machine = MACHINE(spapr); 1024 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1025 int chosen; 1026 1027 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1028 1029 if (reset) { 1030 const char *boot_device = spapr->boot_device; 1031 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1032 size_t cb = 0; 1033 g_autofree char *bootlist = get_boot_devices_list(&cb); 1034 1035 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1036 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1037 machine->kernel_cmdline)); 1038 } 1039 1040 if (spapr->initrd_size) { 1041 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1042 spapr->initrd_base)); 1043 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1044 spapr->initrd_base + spapr->initrd_size)); 1045 } 1046 1047 if (spapr->kernel_size) { 1048 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1049 cpu_to_be64(spapr->kernel_size) }; 1050 1051 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1052 &kprop, sizeof(kprop))); 1053 if (spapr->kernel_le) { 1054 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1055 } 1056 } 1057 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1058 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1059 } 1060 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1061 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1062 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1063 1064 if (cb && bootlist) { 1065 int i; 1066 1067 for (i = 0; i < cb; i++) { 1068 if (bootlist[i] == '\n') { 1069 bootlist[i] = ' '; 1070 } 1071 } 1072 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1073 } 1074 1075 if (boot_device && strlen(boot_device)) { 1076 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1077 } 1078 1079 if (spapr->want_stdout_path && stdout_path) { 1080 /* 1081 * "linux,stdout-path" and "stdout" properties are 1082 * deprecated by linux kernel. New platforms should only 1083 * use the "stdout-path" property. Set the new property 1084 * and continue using older property to remain compatible 1085 * with the existing firmware. 1086 */ 1087 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1088 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1089 } 1090 1091 /* 1092 * We can deal with BAR reallocation just fine, advertise it 1093 * to the guest 1094 */ 1095 if (smc->linux_pci_probe) { 1096 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1097 } 1098 1099 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1100 } 1101 1102 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); 1103 1104 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1105 } 1106 1107 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1108 { 1109 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1110 * KVM to work under pHyp with some guest co-operation */ 1111 int hypervisor; 1112 uint8_t hypercall[16]; 1113 1114 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1115 /* indicate KVM hypercall interface */ 1116 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1117 if (kvmppc_has_cap_fixup_hcalls()) { 1118 /* 1119 * Older KVM versions with older guest kernels were broken 1120 * with the magic page, don't allow the guest to map it. 1121 */ 1122 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1123 sizeof(hypercall))) { 1124 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1125 hypercall, sizeof(hypercall))); 1126 } 1127 } 1128 } 1129 1130 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1131 { 1132 MachineState *machine = MACHINE(spapr); 1133 MachineClass *mc = MACHINE_GET_CLASS(machine); 1134 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1135 uint32_t root_drc_type_mask = 0; 1136 int ret; 1137 void *fdt; 1138 SpaprPhbState *phb; 1139 char *buf; 1140 1141 fdt = g_malloc0(space); 1142 _FDT((fdt_create_empty_tree(fdt, space))); 1143 1144 /* Root node */ 1145 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1146 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1147 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1148 1149 /* Guest UUID & Name*/ 1150 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1151 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1152 if (qemu_uuid_set) { 1153 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1154 } 1155 g_free(buf); 1156 1157 if (qemu_get_vm_name()) { 1158 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1159 qemu_get_vm_name())); 1160 } 1161 1162 /* Host Model & Serial Number */ 1163 if (spapr->host_model) { 1164 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1165 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1166 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1167 g_free(buf); 1168 } 1169 1170 if (spapr->host_serial) { 1171 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1172 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1173 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1174 g_free(buf); 1175 } 1176 1177 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1178 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1179 1180 /* /interrupt controller */ 1181 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1182 1183 ret = spapr_dt_memory(spapr, fdt); 1184 if (ret < 0) { 1185 error_report("couldn't setup memory nodes in fdt"); 1186 exit(1); 1187 } 1188 1189 /* /vdevice */ 1190 spapr_dt_vdevice(spapr->vio_bus, fdt); 1191 1192 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1193 ret = spapr_dt_rng(fdt); 1194 if (ret < 0) { 1195 error_report("could not set up rng device in the fdt"); 1196 exit(1); 1197 } 1198 } 1199 1200 QLIST_FOREACH(phb, &spapr->phbs, list) { 1201 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1202 if (ret < 0) { 1203 error_report("couldn't setup PCI devices in fdt"); 1204 exit(1); 1205 } 1206 } 1207 1208 spapr_dt_cpus(fdt, spapr); 1209 1210 /* ibm,drc-indexes and friends */ 1211 if (smc->dr_lmb_enabled) { 1212 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1213 } 1214 if (smc->dr_phb_enabled) { 1215 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1216 } 1217 if (mc->nvdimm_supported) { 1218 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1219 } 1220 if (root_drc_type_mask) { 1221 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1222 } 1223 1224 if (mc->has_hotpluggable_cpus) { 1225 int offset = fdt_path_offset(fdt, "/cpus"); 1226 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1227 if (ret < 0) { 1228 error_report("Couldn't set up CPU DR device tree properties"); 1229 exit(1); 1230 } 1231 } 1232 1233 /* /event-sources */ 1234 spapr_dt_events(spapr, fdt); 1235 1236 /* /rtas */ 1237 spapr_dt_rtas(spapr, fdt); 1238 1239 /* /chosen */ 1240 spapr_dt_chosen(spapr, fdt, reset); 1241 1242 /* /hypervisor */ 1243 if (kvm_enabled()) { 1244 spapr_dt_hypervisor(spapr, fdt); 1245 } 1246 1247 /* Build memory reserve map */ 1248 if (reset) { 1249 if (spapr->kernel_size) { 1250 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1251 spapr->kernel_size))); 1252 } 1253 if (spapr->initrd_size) { 1254 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1255 spapr->initrd_size))); 1256 } 1257 } 1258 1259 /* NVDIMM devices */ 1260 if (mc->nvdimm_supported) { 1261 spapr_dt_persistent_memory(spapr, fdt); 1262 } 1263 1264 return fdt; 1265 } 1266 1267 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1268 { 1269 SpaprMachineState *spapr = opaque; 1270 1271 return (addr & 0x0fffffff) + spapr->kernel_addr; 1272 } 1273 1274 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1275 PowerPCCPU *cpu) 1276 { 1277 CPUPPCState *env = &cpu->env; 1278 1279 /* The TCG path should also be holding the BQL at this point */ 1280 g_assert(qemu_mutex_iothread_locked()); 1281 1282 g_assert(!vhyp_cpu_in_nested(cpu)); 1283 1284 if (FIELD_EX64(env->msr, MSR, PR)) { 1285 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1286 env->gpr[3] = H_PRIVILEGE; 1287 } else { 1288 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1289 } 1290 } 1291 1292 struct LPCRSyncState { 1293 target_ulong value; 1294 target_ulong mask; 1295 }; 1296 1297 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1298 { 1299 struct LPCRSyncState *s = arg.host_ptr; 1300 PowerPCCPU *cpu = POWERPC_CPU(cs); 1301 CPUPPCState *env = &cpu->env; 1302 target_ulong lpcr; 1303 1304 cpu_synchronize_state(cs); 1305 lpcr = env->spr[SPR_LPCR]; 1306 lpcr &= ~s->mask; 1307 lpcr |= s->value; 1308 ppc_store_lpcr(cpu, lpcr); 1309 } 1310 1311 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1312 { 1313 CPUState *cs; 1314 struct LPCRSyncState s = { 1315 .value = value, 1316 .mask = mask 1317 }; 1318 CPU_FOREACH(cs) { 1319 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1320 } 1321 } 1322 1323 /* May be used when the machine is not running */ 1324 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1325 { 1326 CPUState *cs; 1327 CPU_FOREACH(cs) { 1328 PowerPCCPU *cpu = POWERPC_CPU(cs); 1329 CPUPPCState *env = &cpu->env; 1330 target_ulong lpcr; 1331 1332 lpcr = env->spr[SPR_LPCR]; 1333 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1334 ppc_store_lpcr(cpu, lpcr); 1335 } 1336 } 1337 1338 1339 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1340 target_ulong lpid, ppc_v3_pate_t *entry) 1341 { 1342 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1343 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1344 1345 if (!spapr_cpu->in_nested) { 1346 assert(lpid == 0); 1347 1348 /* Copy PATE1:GR into PATE0:HR */ 1349 entry->dw0 = spapr->patb_entry & PATE0_HR; 1350 entry->dw1 = spapr->patb_entry; 1351 1352 } else { 1353 uint64_t patb, pats; 1354 1355 assert(lpid != 0); 1356 1357 patb = spapr->nested_ptcr & PTCR_PATB; 1358 pats = spapr->nested_ptcr & PTCR_PATS; 1359 1360 /* Check if partition table is properly aligned */ 1361 if (patb & MAKE_64BIT_MASK(0, pats + 12)) { 1362 return false; 1363 } 1364 1365 /* Calculate number of entries */ 1366 pats = 1ull << (pats + 12 - 4); 1367 if (pats <= lpid) { 1368 return false; 1369 } 1370 1371 /* Grab entry */ 1372 patb += 16 * lpid; 1373 entry->dw0 = ldq_phys(CPU(cpu)->as, patb); 1374 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8); 1375 } 1376 1377 return true; 1378 } 1379 1380 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1381 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1382 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1383 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1384 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1385 1386 /* 1387 * Get the fd to access the kernel htab, re-opening it if necessary 1388 */ 1389 static int get_htab_fd(SpaprMachineState *spapr) 1390 { 1391 Error *local_err = NULL; 1392 1393 if (spapr->htab_fd >= 0) { 1394 return spapr->htab_fd; 1395 } 1396 1397 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1398 if (spapr->htab_fd < 0) { 1399 error_report_err(local_err); 1400 } 1401 1402 return spapr->htab_fd; 1403 } 1404 1405 void close_htab_fd(SpaprMachineState *spapr) 1406 { 1407 if (spapr->htab_fd >= 0) { 1408 close(spapr->htab_fd); 1409 } 1410 spapr->htab_fd = -1; 1411 } 1412 1413 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1414 { 1415 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1416 1417 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1418 } 1419 1420 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1421 { 1422 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1423 1424 assert(kvm_enabled()); 1425 1426 if (!spapr->htab) { 1427 return 0; 1428 } 1429 1430 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1431 } 1432 1433 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1434 hwaddr ptex, int n) 1435 { 1436 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1437 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1438 1439 if (!spapr->htab) { 1440 /* 1441 * HTAB is controlled by KVM. Fetch into temporary buffer 1442 */ 1443 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1444 kvmppc_read_hptes(hptes, ptex, n); 1445 return hptes; 1446 } 1447 1448 /* 1449 * HTAB is controlled by QEMU. Just point to the internally 1450 * accessible PTEG. 1451 */ 1452 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1453 } 1454 1455 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1456 const ppc_hash_pte64_t *hptes, 1457 hwaddr ptex, int n) 1458 { 1459 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1460 1461 if (!spapr->htab) { 1462 g_free((void *)hptes); 1463 } 1464 1465 /* Nothing to do for qemu managed HPT */ 1466 } 1467 1468 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1469 uint64_t pte0, uint64_t pte1) 1470 { 1471 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1472 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1473 1474 if (!spapr->htab) { 1475 kvmppc_write_hpte(ptex, pte0, pte1); 1476 } else { 1477 if (pte0 & HPTE64_V_VALID) { 1478 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1479 /* 1480 * When setting valid, we write PTE1 first. This ensures 1481 * proper synchronization with the reading code in 1482 * ppc_hash64_pteg_search() 1483 */ 1484 smp_wmb(); 1485 stq_p(spapr->htab + offset, pte0); 1486 } else { 1487 stq_p(spapr->htab + offset, pte0); 1488 /* 1489 * When clearing it we set PTE0 first. This ensures proper 1490 * synchronization with the reading code in 1491 * ppc_hash64_pteg_search() 1492 */ 1493 smp_wmb(); 1494 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1495 } 1496 } 1497 } 1498 1499 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1500 uint64_t pte1) 1501 { 1502 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1503 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1504 1505 if (!spapr->htab) { 1506 /* There should always be a hash table when this is called */ 1507 error_report("spapr_hpte_set_c called with no hash table !"); 1508 return; 1509 } 1510 1511 /* The HW performs a non-atomic byte update */ 1512 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1513 } 1514 1515 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1516 uint64_t pte1) 1517 { 1518 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1519 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1520 1521 if (!spapr->htab) { 1522 /* There should always be a hash table when this is called */ 1523 error_report("spapr_hpte_set_r called with no hash table !"); 1524 return; 1525 } 1526 1527 /* The HW performs a non-atomic byte update */ 1528 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1529 } 1530 1531 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1532 { 1533 int shift; 1534 1535 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1536 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1537 * that's much more than is needed for Linux guests */ 1538 shift = ctz64(pow2ceil(ramsize)) - 7; 1539 shift = MAX(shift, 18); /* Minimum architected size */ 1540 shift = MIN(shift, 46); /* Maximum architected size */ 1541 return shift; 1542 } 1543 1544 void spapr_free_hpt(SpaprMachineState *spapr) 1545 { 1546 qemu_vfree(spapr->htab); 1547 spapr->htab = NULL; 1548 spapr->htab_shift = 0; 1549 close_htab_fd(spapr); 1550 } 1551 1552 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1553 { 1554 ERRP_GUARD(); 1555 long rc; 1556 1557 /* Clean up any HPT info from a previous boot */ 1558 spapr_free_hpt(spapr); 1559 1560 rc = kvmppc_reset_htab(shift); 1561 1562 if (rc == -EOPNOTSUPP) { 1563 error_setg(errp, "HPT not supported in nested guests"); 1564 return -EOPNOTSUPP; 1565 } 1566 1567 if (rc < 0) { 1568 /* kernel-side HPT needed, but couldn't allocate one */ 1569 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1570 shift); 1571 error_append_hint(errp, "Try smaller maxmem?\n"); 1572 return -errno; 1573 } else if (rc > 0) { 1574 /* kernel-side HPT allocated */ 1575 if (rc != shift) { 1576 error_setg(errp, 1577 "Requested order %d HPT, but kernel allocated order %ld", 1578 shift, rc); 1579 error_append_hint(errp, "Try smaller maxmem?\n"); 1580 return -ENOSPC; 1581 } 1582 1583 spapr->htab_shift = shift; 1584 spapr->htab = NULL; 1585 } else { 1586 /* kernel-side HPT not needed, allocate in userspace instead */ 1587 size_t size = 1ULL << shift; 1588 int i; 1589 1590 spapr->htab = qemu_memalign(size, size); 1591 memset(spapr->htab, 0, size); 1592 spapr->htab_shift = shift; 1593 1594 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1595 DIRTY_HPTE(HPTE(spapr->htab, i)); 1596 } 1597 } 1598 /* We're setting up a hash table, so that means we're not radix */ 1599 spapr->patb_entry = 0; 1600 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1601 return 0; 1602 } 1603 1604 void spapr_setup_hpt(SpaprMachineState *spapr) 1605 { 1606 int hpt_shift; 1607 1608 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1609 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1610 } else { 1611 uint64_t current_ram_size; 1612 1613 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1614 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1615 } 1616 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1617 1618 if (kvm_enabled()) { 1619 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1620 1621 /* Check our RMA fits in the possible VRMA */ 1622 if (vrma_limit < spapr->rma_size) { 1623 error_report("Unable to create %" HWADDR_PRIu 1624 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1625 spapr->rma_size / MiB, vrma_limit / MiB); 1626 exit(EXIT_FAILURE); 1627 } 1628 } 1629 } 1630 1631 void spapr_check_mmu_mode(bool guest_radix) 1632 { 1633 if (guest_radix) { 1634 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1635 error_report("Guest requested unavailable MMU mode (radix)."); 1636 exit(EXIT_FAILURE); 1637 } 1638 } else { 1639 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1640 && !kvmppc_has_cap_mmu_hash_v3()) { 1641 error_report("Guest requested unavailable MMU mode (hash)."); 1642 exit(EXIT_FAILURE); 1643 } 1644 } 1645 } 1646 1647 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1648 { 1649 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1650 PowerPCCPU *first_ppc_cpu; 1651 hwaddr fdt_addr; 1652 void *fdt; 1653 int rc; 1654 1655 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) { 1656 /* 1657 * Record-replay snapshot load must not consume random, this was 1658 * already replayed from initial machine reset. 1659 */ 1660 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); 1661 } 1662 1663 pef_kvm_reset(machine->cgs, &error_fatal); 1664 spapr_caps_apply(spapr); 1665 1666 first_ppc_cpu = POWERPC_CPU(first_cpu); 1667 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1668 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1669 spapr->max_compat_pvr)) { 1670 /* 1671 * If using KVM with radix mode available, VCPUs can be started 1672 * without a HPT because KVM will start them in radix mode. 1673 * Set the GR bit in PATE so that we know there is no HPT. 1674 */ 1675 spapr->patb_entry = PATE1_GR; 1676 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1677 } else { 1678 spapr_setup_hpt(spapr); 1679 } 1680 1681 qemu_devices_reset(reason); 1682 1683 spapr_ovec_cleanup(spapr->ov5_cas); 1684 spapr->ov5_cas = spapr_ovec_new(); 1685 1686 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1687 1688 /* 1689 * This is fixing some of the default configuration of the XIVE 1690 * devices. To be called after the reset of the machine devices. 1691 */ 1692 spapr_irq_reset(spapr, &error_fatal); 1693 1694 /* 1695 * There is no CAS under qtest. Simulate one to please the code that 1696 * depends on spapr->ov5_cas. This is especially needed to test device 1697 * unplug, so we do that before resetting the DRCs. 1698 */ 1699 if (qtest_enabled()) { 1700 spapr_ovec_cleanup(spapr->ov5_cas); 1701 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1702 } 1703 1704 spapr_nvdimm_finish_flushes(); 1705 1706 /* DRC reset may cause a device to be unplugged. This will cause troubles 1707 * if this device is used by another device (eg, a running vhost backend 1708 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1709 * situations, we reset DRCs after all devices have been reset. 1710 */ 1711 spapr_drc_reset_all(spapr); 1712 1713 spapr_clear_pending_events(spapr); 1714 1715 /* 1716 * We place the device tree just below either the top of the RMA, 1717 * or just below 2GB, whichever is lower, so that it can be 1718 * processed with 32-bit real mode code if necessary 1719 */ 1720 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1721 1722 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1723 if (spapr->vof) { 1724 spapr_vof_reset(spapr, fdt, &error_fatal); 1725 /* 1726 * Do not pack the FDT as the client may change properties. 1727 * VOF client does not expect the FDT so we do not load it to the VM. 1728 */ 1729 } else { 1730 rc = fdt_pack(fdt); 1731 /* Should only fail if we've built a corrupted tree */ 1732 assert(rc == 0); 1733 1734 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1735 0, fdt_addr, 0); 1736 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1737 } 1738 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1739 1740 g_free(spapr->fdt_blob); 1741 spapr->fdt_size = fdt_totalsize(fdt); 1742 spapr->fdt_initial_size = spapr->fdt_size; 1743 spapr->fdt_blob = fdt; 1744 1745 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1746 machine->fdt = fdt; 1747 1748 /* Set up the entry state */ 1749 first_ppc_cpu->env.gpr[5] = 0; 1750 1751 spapr->fwnmi_system_reset_addr = -1; 1752 spapr->fwnmi_machine_check_addr = -1; 1753 spapr->fwnmi_machine_check_interlock = -1; 1754 1755 /* Signal all vCPUs waiting on this condition */ 1756 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1757 1758 migrate_del_blocker(spapr->fwnmi_migration_blocker); 1759 } 1760 1761 static void spapr_create_nvram(SpaprMachineState *spapr) 1762 { 1763 DeviceState *dev = qdev_new("spapr-nvram"); 1764 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1765 1766 if (dinfo) { 1767 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1768 &error_fatal); 1769 } 1770 1771 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1772 1773 spapr->nvram = (struct SpaprNvram *)dev; 1774 } 1775 1776 static void spapr_rtc_create(SpaprMachineState *spapr) 1777 { 1778 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1779 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1780 &error_fatal, NULL); 1781 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1782 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1783 "date"); 1784 } 1785 1786 /* Returns whether we want to use VGA or not */ 1787 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1788 { 1789 vga_interface_created = true; 1790 switch (vga_interface_type) { 1791 case VGA_NONE: 1792 return false; 1793 case VGA_DEVICE: 1794 return true; 1795 case VGA_STD: 1796 case VGA_VIRTIO: 1797 case VGA_CIRRUS: 1798 return pci_vga_init(pci_bus) != NULL; 1799 default: 1800 error_setg(errp, 1801 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1802 return false; 1803 } 1804 } 1805 1806 static int spapr_pre_load(void *opaque) 1807 { 1808 int rc; 1809 1810 rc = spapr_caps_pre_load(opaque); 1811 if (rc) { 1812 return rc; 1813 } 1814 1815 return 0; 1816 } 1817 1818 static int spapr_post_load(void *opaque, int version_id) 1819 { 1820 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1821 int err = 0; 1822 1823 err = spapr_caps_post_migration(spapr); 1824 if (err) { 1825 return err; 1826 } 1827 1828 /* 1829 * In earlier versions, there was no separate qdev for the PAPR 1830 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1831 * So when migrating from those versions, poke the incoming offset 1832 * value into the RTC device 1833 */ 1834 if (version_id < 3) { 1835 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1836 if (err) { 1837 return err; 1838 } 1839 } 1840 1841 if (kvm_enabled() && spapr->patb_entry) { 1842 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1843 bool radix = !!(spapr->patb_entry & PATE1_GR); 1844 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1845 1846 /* 1847 * Update LPCR:HR and UPRT as they may not be set properly in 1848 * the stream 1849 */ 1850 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1851 LPCR_HR | LPCR_UPRT); 1852 1853 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1854 if (err) { 1855 error_report("Process table config unsupported by the host"); 1856 return -EINVAL; 1857 } 1858 } 1859 1860 err = spapr_irq_post_load(spapr, version_id); 1861 if (err) { 1862 return err; 1863 } 1864 1865 return err; 1866 } 1867 1868 static int spapr_pre_save(void *opaque) 1869 { 1870 int rc; 1871 1872 rc = spapr_caps_pre_save(opaque); 1873 if (rc) { 1874 return rc; 1875 } 1876 1877 return 0; 1878 } 1879 1880 static bool version_before_3(void *opaque, int version_id) 1881 { 1882 return version_id < 3; 1883 } 1884 1885 static bool spapr_pending_events_needed(void *opaque) 1886 { 1887 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1888 return !QTAILQ_EMPTY(&spapr->pending_events); 1889 } 1890 1891 static const VMStateDescription vmstate_spapr_event_entry = { 1892 .name = "spapr_event_log_entry", 1893 .version_id = 1, 1894 .minimum_version_id = 1, 1895 .fields = (VMStateField[]) { 1896 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1897 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1898 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1899 NULL, extended_length), 1900 VMSTATE_END_OF_LIST() 1901 }, 1902 }; 1903 1904 static const VMStateDescription vmstate_spapr_pending_events = { 1905 .name = "spapr_pending_events", 1906 .version_id = 1, 1907 .minimum_version_id = 1, 1908 .needed = spapr_pending_events_needed, 1909 .fields = (VMStateField[]) { 1910 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1911 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1912 VMSTATE_END_OF_LIST() 1913 }, 1914 }; 1915 1916 static bool spapr_ov5_cas_needed(void *opaque) 1917 { 1918 SpaprMachineState *spapr = opaque; 1919 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1920 bool cas_needed; 1921 1922 /* Prior to the introduction of SpaprOptionVector, we had two option 1923 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1924 * Both of these options encode machine topology into the device-tree 1925 * in such a way that the now-booted OS should still be able to interact 1926 * appropriately with QEMU regardless of what options were actually 1927 * negotiatied on the source side. 1928 * 1929 * As such, we can avoid migrating the CAS-negotiated options if these 1930 * are the only options available on the current machine/platform. 1931 * Since these are the only options available for pseries-2.7 and 1932 * earlier, this allows us to maintain old->new/new->old migration 1933 * compatibility. 1934 * 1935 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1936 * via default pseries-2.8 machines and explicit command-line parameters. 1937 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1938 * of the actual CAS-negotiated values to continue working properly. For 1939 * example, availability of memory unplug depends on knowing whether 1940 * OV5_HP_EVT was negotiated via CAS. 1941 * 1942 * Thus, for any cases where the set of available CAS-negotiatable 1943 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1944 * include the CAS-negotiated options in the migration stream, unless 1945 * if they affect boot time behaviour only. 1946 */ 1947 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1948 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1949 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1950 1951 /* We need extra information if we have any bits outside the mask 1952 * defined above */ 1953 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1954 1955 spapr_ovec_cleanup(ov5_mask); 1956 1957 return cas_needed; 1958 } 1959 1960 static const VMStateDescription vmstate_spapr_ov5_cas = { 1961 .name = "spapr_option_vector_ov5_cas", 1962 .version_id = 1, 1963 .minimum_version_id = 1, 1964 .needed = spapr_ov5_cas_needed, 1965 .fields = (VMStateField[]) { 1966 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1967 vmstate_spapr_ovec, SpaprOptionVector), 1968 VMSTATE_END_OF_LIST() 1969 }, 1970 }; 1971 1972 static bool spapr_patb_entry_needed(void *opaque) 1973 { 1974 SpaprMachineState *spapr = opaque; 1975 1976 return !!spapr->patb_entry; 1977 } 1978 1979 static const VMStateDescription vmstate_spapr_patb_entry = { 1980 .name = "spapr_patb_entry", 1981 .version_id = 1, 1982 .minimum_version_id = 1, 1983 .needed = spapr_patb_entry_needed, 1984 .fields = (VMStateField[]) { 1985 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1986 VMSTATE_END_OF_LIST() 1987 }, 1988 }; 1989 1990 static bool spapr_irq_map_needed(void *opaque) 1991 { 1992 SpaprMachineState *spapr = opaque; 1993 1994 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1995 } 1996 1997 static const VMStateDescription vmstate_spapr_irq_map = { 1998 .name = "spapr_irq_map", 1999 .version_id = 1, 2000 .minimum_version_id = 1, 2001 .needed = spapr_irq_map_needed, 2002 .fields = (VMStateField[]) { 2003 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2004 VMSTATE_END_OF_LIST() 2005 }, 2006 }; 2007 2008 static bool spapr_dtb_needed(void *opaque) 2009 { 2010 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2011 2012 return smc->update_dt_enabled; 2013 } 2014 2015 static int spapr_dtb_pre_load(void *opaque) 2016 { 2017 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2018 2019 g_free(spapr->fdt_blob); 2020 spapr->fdt_blob = NULL; 2021 spapr->fdt_size = 0; 2022 2023 return 0; 2024 } 2025 2026 static const VMStateDescription vmstate_spapr_dtb = { 2027 .name = "spapr_dtb", 2028 .version_id = 1, 2029 .minimum_version_id = 1, 2030 .needed = spapr_dtb_needed, 2031 .pre_load = spapr_dtb_pre_load, 2032 .fields = (VMStateField[]) { 2033 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2034 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2035 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2036 fdt_size), 2037 VMSTATE_END_OF_LIST() 2038 }, 2039 }; 2040 2041 static bool spapr_fwnmi_needed(void *opaque) 2042 { 2043 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2044 2045 return spapr->fwnmi_machine_check_addr != -1; 2046 } 2047 2048 static int spapr_fwnmi_pre_save(void *opaque) 2049 { 2050 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2051 2052 /* 2053 * Check if machine check handling is in progress and print a 2054 * warning message. 2055 */ 2056 if (spapr->fwnmi_machine_check_interlock != -1) { 2057 warn_report("A machine check is being handled during migration. The" 2058 "handler may run and log hardware error on the destination"); 2059 } 2060 2061 return 0; 2062 } 2063 2064 static const VMStateDescription vmstate_spapr_fwnmi = { 2065 .name = "spapr_fwnmi", 2066 .version_id = 1, 2067 .minimum_version_id = 1, 2068 .needed = spapr_fwnmi_needed, 2069 .pre_save = spapr_fwnmi_pre_save, 2070 .fields = (VMStateField[]) { 2071 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2072 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2073 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2074 VMSTATE_END_OF_LIST() 2075 }, 2076 }; 2077 2078 static const VMStateDescription vmstate_spapr = { 2079 .name = "spapr", 2080 .version_id = 3, 2081 .minimum_version_id = 1, 2082 .pre_load = spapr_pre_load, 2083 .post_load = spapr_post_load, 2084 .pre_save = spapr_pre_save, 2085 .fields = (VMStateField[]) { 2086 /* used to be @next_irq */ 2087 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2088 2089 /* RTC offset */ 2090 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2091 2092 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2093 VMSTATE_END_OF_LIST() 2094 }, 2095 .subsections = (const VMStateDescription*[]) { 2096 &vmstate_spapr_ov5_cas, 2097 &vmstate_spapr_patb_entry, 2098 &vmstate_spapr_pending_events, 2099 &vmstate_spapr_cap_htm, 2100 &vmstate_spapr_cap_vsx, 2101 &vmstate_spapr_cap_dfp, 2102 &vmstate_spapr_cap_cfpc, 2103 &vmstate_spapr_cap_sbbc, 2104 &vmstate_spapr_cap_ibs, 2105 &vmstate_spapr_cap_hpt_maxpagesize, 2106 &vmstate_spapr_irq_map, 2107 &vmstate_spapr_cap_nested_kvm_hv, 2108 &vmstate_spapr_dtb, 2109 &vmstate_spapr_cap_large_decr, 2110 &vmstate_spapr_cap_ccf_assist, 2111 &vmstate_spapr_cap_fwnmi, 2112 &vmstate_spapr_fwnmi, 2113 &vmstate_spapr_cap_rpt_invalidate, 2114 NULL 2115 } 2116 }; 2117 2118 static int htab_save_setup(QEMUFile *f, void *opaque) 2119 { 2120 SpaprMachineState *spapr = opaque; 2121 2122 /* "Iteration" header */ 2123 if (!spapr->htab_shift) { 2124 qemu_put_be32(f, -1); 2125 } else { 2126 qemu_put_be32(f, spapr->htab_shift); 2127 } 2128 2129 if (spapr->htab) { 2130 spapr->htab_save_index = 0; 2131 spapr->htab_first_pass = true; 2132 } else { 2133 if (spapr->htab_shift) { 2134 assert(kvm_enabled()); 2135 } 2136 } 2137 2138 2139 return 0; 2140 } 2141 2142 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2143 int chunkstart, int n_valid, int n_invalid) 2144 { 2145 qemu_put_be32(f, chunkstart); 2146 qemu_put_be16(f, n_valid); 2147 qemu_put_be16(f, n_invalid); 2148 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2149 HASH_PTE_SIZE_64 * n_valid); 2150 } 2151 2152 static void htab_save_end_marker(QEMUFile *f) 2153 { 2154 qemu_put_be32(f, 0); 2155 qemu_put_be16(f, 0); 2156 qemu_put_be16(f, 0); 2157 } 2158 2159 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2160 int64_t max_ns) 2161 { 2162 bool has_timeout = max_ns != -1; 2163 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2164 int index = spapr->htab_save_index; 2165 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2166 2167 assert(spapr->htab_first_pass); 2168 2169 do { 2170 int chunkstart; 2171 2172 /* Consume invalid HPTEs */ 2173 while ((index < htabslots) 2174 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2175 CLEAN_HPTE(HPTE(spapr->htab, index)); 2176 index++; 2177 } 2178 2179 /* Consume valid HPTEs */ 2180 chunkstart = index; 2181 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2182 && HPTE_VALID(HPTE(spapr->htab, index))) { 2183 CLEAN_HPTE(HPTE(spapr->htab, index)); 2184 index++; 2185 } 2186 2187 if (index > chunkstart) { 2188 int n_valid = index - chunkstart; 2189 2190 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2191 2192 if (has_timeout && 2193 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2194 break; 2195 } 2196 } 2197 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2198 2199 if (index >= htabslots) { 2200 assert(index == htabslots); 2201 index = 0; 2202 spapr->htab_first_pass = false; 2203 } 2204 spapr->htab_save_index = index; 2205 } 2206 2207 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2208 int64_t max_ns) 2209 { 2210 bool final = max_ns < 0; 2211 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2212 int examined = 0, sent = 0; 2213 int index = spapr->htab_save_index; 2214 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2215 2216 assert(!spapr->htab_first_pass); 2217 2218 do { 2219 int chunkstart, invalidstart; 2220 2221 /* Consume non-dirty HPTEs */ 2222 while ((index < htabslots) 2223 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2224 index++; 2225 examined++; 2226 } 2227 2228 chunkstart = index; 2229 /* Consume valid dirty HPTEs */ 2230 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2231 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2232 && HPTE_VALID(HPTE(spapr->htab, index))) { 2233 CLEAN_HPTE(HPTE(spapr->htab, index)); 2234 index++; 2235 examined++; 2236 } 2237 2238 invalidstart = index; 2239 /* Consume invalid dirty HPTEs */ 2240 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2241 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2242 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2243 CLEAN_HPTE(HPTE(spapr->htab, index)); 2244 index++; 2245 examined++; 2246 } 2247 2248 if (index > chunkstart) { 2249 int n_valid = invalidstart - chunkstart; 2250 int n_invalid = index - invalidstart; 2251 2252 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2253 sent += index - chunkstart; 2254 2255 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2256 break; 2257 } 2258 } 2259 2260 if (examined >= htabslots) { 2261 break; 2262 } 2263 2264 if (index >= htabslots) { 2265 assert(index == htabslots); 2266 index = 0; 2267 } 2268 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2269 2270 if (index >= htabslots) { 2271 assert(index == htabslots); 2272 index = 0; 2273 } 2274 2275 spapr->htab_save_index = index; 2276 2277 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2278 } 2279 2280 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2281 #define MAX_KVM_BUF_SIZE 2048 2282 2283 static int htab_save_iterate(QEMUFile *f, void *opaque) 2284 { 2285 SpaprMachineState *spapr = opaque; 2286 int fd; 2287 int rc = 0; 2288 2289 /* Iteration header */ 2290 if (!spapr->htab_shift) { 2291 qemu_put_be32(f, -1); 2292 return 1; 2293 } else { 2294 qemu_put_be32(f, 0); 2295 } 2296 2297 if (!spapr->htab) { 2298 assert(kvm_enabled()); 2299 2300 fd = get_htab_fd(spapr); 2301 if (fd < 0) { 2302 return fd; 2303 } 2304 2305 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2306 if (rc < 0) { 2307 return rc; 2308 } 2309 } else if (spapr->htab_first_pass) { 2310 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2311 } else { 2312 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2313 } 2314 2315 htab_save_end_marker(f); 2316 2317 return rc; 2318 } 2319 2320 static int htab_save_complete(QEMUFile *f, void *opaque) 2321 { 2322 SpaprMachineState *spapr = opaque; 2323 int fd; 2324 2325 /* Iteration header */ 2326 if (!spapr->htab_shift) { 2327 qemu_put_be32(f, -1); 2328 return 0; 2329 } else { 2330 qemu_put_be32(f, 0); 2331 } 2332 2333 if (!spapr->htab) { 2334 int rc; 2335 2336 assert(kvm_enabled()); 2337 2338 fd = get_htab_fd(spapr); 2339 if (fd < 0) { 2340 return fd; 2341 } 2342 2343 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2344 if (rc < 0) { 2345 return rc; 2346 } 2347 } else { 2348 if (spapr->htab_first_pass) { 2349 htab_save_first_pass(f, spapr, -1); 2350 } 2351 htab_save_later_pass(f, spapr, -1); 2352 } 2353 2354 /* End marker */ 2355 htab_save_end_marker(f); 2356 2357 return 0; 2358 } 2359 2360 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2361 { 2362 SpaprMachineState *spapr = opaque; 2363 uint32_t section_hdr; 2364 int fd = -1; 2365 Error *local_err = NULL; 2366 2367 if (version_id < 1 || version_id > 1) { 2368 error_report("htab_load() bad version"); 2369 return -EINVAL; 2370 } 2371 2372 section_hdr = qemu_get_be32(f); 2373 2374 if (section_hdr == -1) { 2375 spapr_free_hpt(spapr); 2376 return 0; 2377 } 2378 2379 if (section_hdr) { 2380 int ret; 2381 2382 /* First section gives the htab size */ 2383 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2384 if (ret < 0) { 2385 error_report_err(local_err); 2386 return ret; 2387 } 2388 return 0; 2389 } 2390 2391 if (!spapr->htab) { 2392 assert(kvm_enabled()); 2393 2394 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2395 if (fd < 0) { 2396 error_report_err(local_err); 2397 return fd; 2398 } 2399 } 2400 2401 while (true) { 2402 uint32_t index; 2403 uint16_t n_valid, n_invalid; 2404 2405 index = qemu_get_be32(f); 2406 n_valid = qemu_get_be16(f); 2407 n_invalid = qemu_get_be16(f); 2408 2409 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2410 /* End of Stream */ 2411 break; 2412 } 2413 2414 if ((index + n_valid + n_invalid) > 2415 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2416 /* Bad index in stream */ 2417 error_report( 2418 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2419 index, n_valid, n_invalid, spapr->htab_shift); 2420 return -EINVAL; 2421 } 2422 2423 if (spapr->htab) { 2424 if (n_valid) { 2425 qemu_get_buffer(f, HPTE(spapr->htab, index), 2426 HASH_PTE_SIZE_64 * n_valid); 2427 } 2428 if (n_invalid) { 2429 memset(HPTE(spapr->htab, index + n_valid), 0, 2430 HASH_PTE_SIZE_64 * n_invalid); 2431 } 2432 } else { 2433 int rc; 2434 2435 assert(fd >= 0); 2436 2437 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2438 &local_err); 2439 if (rc < 0) { 2440 error_report_err(local_err); 2441 return rc; 2442 } 2443 } 2444 } 2445 2446 if (!spapr->htab) { 2447 assert(fd >= 0); 2448 close(fd); 2449 } 2450 2451 return 0; 2452 } 2453 2454 static void htab_save_cleanup(void *opaque) 2455 { 2456 SpaprMachineState *spapr = opaque; 2457 2458 close_htab_fd(spapr); 2459 } 2460 2461 static SaveVMHandlers savevm_htab_handlers = { 2462 .save_setup = htab_save_setup, 2463 .save_live_iterate = htab_save_iterate, 2464 .save_live_complete_precopy = htab_save_complete, 2465 .save_cleanup = htab_save_cleanup, 2466 .load_state = htab_load, 2467 }; 2468 2469 static void spapr_boot_set(void *opaque, const char *boot_device, 2470 Error **errp) 2471 { 2472 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2473 2474 g_free(spapr->boot_device); 2475 spapr->boot_device = g_strdup(boot_device); 2476 } 2477 2478 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2479 { 2480 MachineState *machine = MACHINE(spapr); 2481 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2482 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2483 int i; 2484 2485 g_assert(!nr_lmbs || machine->device_memory); 2486 for (i = 0; i < nr_lmbs; i++) { 2487 uint64_t addr; 2488 2489 addr = i * lmb_size + machine->device_memory->base; 2490 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2491 addr / lmb_size); 2492 } 2493 } 2494 2495 /* 2496 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2497 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2498 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2499 */ 2500 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2501 { 2502 int i; 2503 2504 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2505 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2506 " is not aligned to %" PRIu64 " MiB", 2507 machine->ram_size, 2508 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2509 return; 2510 } 2511 2512 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2513 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2514 " is not aligned to %" PRIu64 " MiB", 2515 machine->ram_size, 2516 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2517 return; 2518 } 2519 2520 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2521 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2522 error_setg(errp, 2523 "Node %d memory size 0x%" PRIx64 2524 " is not aligned to %" PRIu64 " MiB", 2525 i, machine->numa_state->nodes[i].node_mem, 2526 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2527 return; 2528 } 2529 } 2530 } 2531 2532 /* find cpu slot in machine->possible_cpus by core_id */ 2533 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2534 { 2535 int index = id / ms->smp.threads; 2536 2537 if (index >= ms->possible_cpus->len) { 2538 return NULL; 2539 } 2540 if (idx) { 2541 *idx = index; 2542 } 2543 return &ms->possible_cpus->cpus[index]; 2544 } 2545 2546 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2547 { 2548 MachineState *ms = MACHINE(spapr); 2549 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2550 Error *local_err = NULL; 2551 bool vsmt_user = !!spapr->vsmt; 2552 int kvm_smt = kvmppc_smt_threads(); 2553 int ret; 2554 unsigned int smp_threads = ms->smp.threads; 2555 2556 if (tcg_enabled()) { 2557 if (smp_threads > 1 && 2558 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2559 spapr->max_compat_pvr)) { 2560 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2561 return; 2562 } 2563 2564 if (smp_threads > 8) { 2565 error_setg(errp, "TCG cannot support more than 8 threads/core " 2566 "on a pseries machine"); 2567 return; 2568 } 2569 } 2570 if (!is_power_of_2(smp_threads)) { 2571 error_setg(errp, "Cannot support %d threads/core on a pseries " 2572 "machine because it must be a power of 2", smp_threads); 2573 return; 2574 } 2575 2576 /* Determine the VSMT mode to use: */ 2577 if (vsmt_user) { 2578 if (spapr->vsmt < smp_threads) { 2579 error_setg(errp, "Cannot support VSMT mode %d" 2580 " because it must be >= threads/core (%d)", 2581 spapr->vsmt, smp_threads); 2582 return; 2583 } 2584 /* In this case, spapr->vsmt has been set by the command line */ 2585 } else if (!smc->smp_threads_vsmt) { 2586 /* 2587 * Default VSMT value is tricky, because we need it to be as 2588 * consistent as possible (for migration), but this requires 2589 * changing it for at least some existing cases. We pick 8 as 2590 * the value that we'd get with KVM on POWER8, the 2591 * overwhelmingly common case in production systems. 2592 */ 2593 spapr->vsmt = MAX(8, smp_threads); 2594 } else { 2595 spapr->vsmt = smp_threads; 2596 } 2597 2598 /* KVM: If necessary, set the SMT mode: */ 2599 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2600 ret = kvmppc_set_smt_threads(spapr->vsmt); 2601 if (ret) { 2602 /* Looks like KVM isn't able to change VSMT mode */ 2603 error_setg(&local_err, 2604 "Failed to set KVM's VSMT mode to %d (errno %d)", 2605 spapr->vsmt, ret); 2606 /* We can live with that if the default one is big enough 2607 * for the number of threads, and a submultiple of the one 2608 * we want. In this case we'll waste some vcpu ids, but 2609 * behaviour will be correct */ 2610 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2611 warn_report_err(local_err); 2612 } else { 2613 if (!vsmt_user) { 2614 error_append_hint(&local_err, 2615 "On PPC, a VM with %d threads/core" 2616 " on a host with %d threads/core" 2617 " requires the use of VSMT mode %d.\n", 2618 smp_threads, kvm_smt, spapr->vsmt); 2619 } 2620 kvmppc_error_append_smt_possible_hint(&local_err); 2621 error_propagate(errp, local_err); 2622 } 2623 } 2624 } 2625 /* else TCG: nothing to do currently */ 2626 } 2627 2628 static void spapr_init_cpus(SpaprMachineState *spapr) 2629 { 2630 MachineState *machine = MACHINE(spapr); 2631 MachineClass *mc = MACHINE_GET_CLASS(machine); 2632 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2633 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2634 const CPUArchIdList *possible_cpus; 2635 unsigned int smp_cpus = machine->smp.cpus; 2636 unsigned int smp_threads = machine->smp.threads; 2637 unsigned int max_cpus = machine->smp.max_cpus; 2638 int boot_cores_nr = smp_cpus / smp_threads; 2639 int i; 2640 2641 possible_cpus = mc->possible_cpu_arch_ids(machine); 2642 if (mc->has_hotpluggable_cpus) { 2643 if (smp_cpus % smp_threads) { 2644 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2645 smp_cpus, smp_threads); 2646 exit(1); 2647 } 2648 if (max_cpus % smp_threads) { 2649 error_report("max_cpus (%u) must be multiple of threads (%u)", 2650 max_cpus, smp_threads); 2651 exit(1); 2652 } 2653 } else { 2654 if (max_cpus != smp_cpus) { 2655 error_report("This machine version does not support CPU hotplug"); 2656 exit(1); 2657 } 2658 boot_cores_nr = possible_cpus->len; 2659 } 2660 2661 if (smc->pre_2_10_has_unused_icps) { 2662 int i; 2663 2664 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2665 /* Dummy entries get deregistered when real ICPState objects 2666 * are registered during CPU core hotplug. 2667 */ 2668 pre_2_10_vmstate_register_dummy_icp(i); 2669 } 2670 } 2671 2672 for (i = 0; i < possible_cpus->len; i++) { 2673 int core_id = i * smp_threads; 2674 2675 if (mc->has_hotpluggable_cpus) { 2676 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2677 spapr_vcpu_id(spapr, core_id)); 2678 } 2679 2680 if (i < boot_cores_nr) { 2681 Object *core = object_new(type); 2682 int nr_threads = smp_threads; 2683 2684 /* Handle the partially filled core for older machine types */ 2685 if ((i + 1) * smp_threads >= smp_cpus) { 2686 nr_threads = smp_cpus - i * smp_threads; 2687 } 2688 2689 object_property_set_int(core, "nr-threads", nr_threads, 2690 &error_fatal); 2691 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2692 &error_fatal); 2693 qdev_realize(DEVICE(core), NULL, &error_fatal); 2694 2695 object_unref(core); 2696 } 2697 } 2698 } 2699 2700 static PCIHostState *spapr_create_default_phb(void) 2701 { 2702 DeviceState *dev; 2703 2704 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2705 qdev_prop_set_uint32(dev, "index", 0); 2706 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2707 2708 return PCI_HOST_BRIDGE(dev); 2709 } 2710 2711 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2712 { 2713 MachineState *machine = MACHINE(spapr); 2714 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2715 hwaddr rma_size = machine->ram_size; 2716 hwaddr node0_size = spapr_node0_size(machine); 2717 2718 /* RMA has to fit in the first NUMA node */ 2719 rma_size = MIN(rma_size, node0_size); 2720 2721 /* 2722 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2723 * never exceed that 2724 */ 2725 rma_size = MIN(rma_size, 1 * TiB); 2726 2727 /* 2728 * Clamp the RMA size based on machine type. This is for 2729 * migration compatibility with older qemu versions, which limited 2730 * the RMA size for complicated and mostly bad reasons. 2731 */ 2732 if (smc->rma_limit) { 2733 rma_size = MIN(rma_size, smc->rma_limit); 2734 } 2735 2736 if (rma_size < MIN_RMA_SLOF) { 2737 error_setg(errp, 2738 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2739 "ldMiB guest RMA (Real Mode Area memory)", 2740 MIN_RMA_SLOF / MiB); 2741 return 0; 2742 } 2743 2744 return rma_size; 2745 } 2746 2747 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2748 { 2749 MachineState *machine = MACHINE(spapr); 2750 int i; 2751 2752 for (i = 0; i < machine->ram_slots; i++) { 2753 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2754 } 2755 } 2756 2757 /* pSeries LPAR / sPAPR hardware init */ 2758 static void spapr_machine_init(MachineState *machine) 2759 { 2760 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2761 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2762 MachineClass *mc = MACHINE_GET_CLASS(machine); 2763 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2764 const char *bios_name = machine->firmware ?: bios_default; 2765 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2766 const char *kernel_filename = machine->kernel_filename; 2767 const char *initrd_filename = machine->initrd_filename; 2768 PCIHostState *phb; 2769 bool has_vga; 2770 int i; 2771 MemoryRegion *sysmem = get_system_memory(); 2772 long load_limit, fw_size; 2773 Error *resize_hpt_err = NULL; 2774 2775 if (!filename) { 2776 error_report("Could not find LPAR firmware '%s'", bios_name); 2777 exit(1); 2778 } 2779 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2780 if (fw_size <= 0) { 2781 error_report("Could not load LPAR firmware '%s'", filename); 2782 exit(1); 2783 } 2784 2785 /* 2786 * if Secure VM (PEF) support is configured, then initialize it 2787 */ 2788 pef_kvm_init(machine->cgs, &error_fatal); 2789 2790 msi_nonbroken = true; 2791 2792 QLIST_INIT(&spapr->phbs); 2793 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2794 2795 /* Determine capabilities to run with */ 2796 spapr_caps_init(spapr); 2797 2798 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2799 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2800 /* 2801 * If the user explicitly requested a mode we should either 2802 * supply it, or fail completely (which we do below). But if 2803 * it's not set explicitly, we reset our mode to something 2804 * that works 2805 */ 2806 if (resize_hpt_err) { 2807 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2808 error_free(resize_hpt_err); 2809 resize_hpt_err = NULL; 2810 } else { 2811 spapr->resize_hpt = smc->resize_hpt_default; 2812 } 2813 } 2814 2815 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2816 2817 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2818 /* 2819 * User requested HPT resize, but this host can't supply it. Bail out 2820 */ 2821 error_report_err(resize_hpt_err); 2822 exit(1); 2823 } 2824 error_free(resize_hpt_err); 2825 2826 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2827 2828 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2829 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2830 2831 /* 2832 * VSMT must be set in order to be able to compute VCPU ids, ie to 2833 * call spapr_max_server_number() or spapr_vcpu_id(). 2834 */ 2835 spapr_set_vsmt_mode(spapr, &error_fatal); 2836 2837 /* Set up Interrupt Controller before we create the VCPUs */ 2838 spapr_irq_init(spapr, &error_fatal); 2839 2840 /* Set up containers for ibm,client-architecture-support negotiated options 2841 */ 2842 spapr->ov5 = spapr_ovec_new(); 2843 spapr->ov5_cas = spapr_ovec_new(); 2844 2845 if (smc->dr_lmb_enabled) { 2846 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2847 spapr_validate_node_memory(machine, &error_fatal); 2848 } 2849 2850 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2851 2852 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2853 if (!smc->pre_6_2_numa_affinity) { 2854 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2855 } 2856 2857 /* advertise support for dedicated HP event source to guests */ 2858 if (spapr->use_hotplug_event_source) { 2859 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2860 } 2861 2862 /* advertise support for HPT resizing */ 2863 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2864 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2865 } 2866 2867 /* advertise support for ibm,dyamic-memory-v2 */ 2868 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2869 2870 /* advertise XIVE on POWER9 machines */ 2871 if (spapr->irq->xive) { 2872 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2873 } 2874 2875 /* init CPUs */ 2876 spapr_init_cpus(spapr); 2877 2878 /* Init numa_assoc_array */ 2879 spapr_numa_associativity_init(spapr, machine); 2880 2881 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2882 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2883 spapr->max_compat_pvr)) { 2884 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2885 /* KVM and TCG always allow GTSE with radix... */ 2886 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2887 } 2888 /* ... but not with hash (currently). */ 2889 2890 if (kvm_enabled()) { 2891 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2892 kvmppc_enable_logical_ci_hcalls(); 2893 kvmppc_enable_set_mode_hcall(); 2894 2895 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2896 kvmppc_enable_clear_ref_mod_hcalls(); 2897 2898 /* Enable H_PAGE_INIT */ 2899 kvmppc_enable_h_page_init(); 2900 } 2901 2902 /* map RAM */ 2903 memory_region_add_subregion(sysmem, 0, machine->ram); 2904 2905 /* initialize hotplug memory address space */ 2906 if (machine->ram_size < machine->maxram_size) { 2907 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2908 hwaddr device_mem_base; 2909 2910 /* 2911 * Limit the number of hotpluggable memory slots to half the number 2912 * slots that KVM supports, leaving the other half for PCI and other 2913 * devices. However ensure that number of slots doesn't drop below 32. 2914 */ 2915 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2916 SPAPR_MAX_RAM_SLOTS; 2917 2918 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2919 max_memslots = SPAPR_MAX_RAM_SLOTS; 2920 } 2921 if (machine->ram_slots > max_memslots) { 2922 error_report("Specified number of memory slots %" 2923 PRIu64" exceeds max supported %d", 2924 machine->ram_slots, max_memslots); 2925 exit(1); 2926 } 2927 2928 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2929 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2930 } 2931 2932 if (smc->dr_lmb_enabled) { 2933 spapr_create_lmb_dr_connectors(spapr); 2934 } 2935 2936 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) { 2937 /* Create the error string for live migration blocker */ 2938 error_setg(&spapr->fwnmi_migration_blocker, 2939 "A machine check is being handled during migration. The handler" 2940 "may run and log hardware error on the destination"); 2941 } 2942 2943 if (mc->nvdimm_supported) { 2944 spapr_create_nvdimm_dr_connectors(spapr); 2945 } 2946 2947 /* Set up RTAS event infrastructure */ 2948 spapr_events_init(spapr); 2949 2950 /* Set up the RTC RTAS interfaces */ 2951 spapr_rtc_create(spapr); 2952 2953 /* Set up VIO bus */ 2954 spapr->vio_bus = spapr_vio_bus_init(); 2955 2956 for (i = 0; serial_hd(i); i++) { 2957 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2958 } 2959 2960 /* We always have at least the nvram device on VIO */ 2961 spapr_create_nvram(spapr); 2962 2963 /* 2964 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2965 * connectors (described in root DT node's "ibm,drc-types" property) 2966 * are pre-initialized here. additional child connectors (such as 2967 * connectors for a PHBs PCI slots) are added as needed during their 2968 * parent's realization. 2969 */ 2970 if (smc->dr_phb_enabled) { 2971 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2972 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2973 } 2974 } 2975 2976 /* Set up PCI */ 2977 spapr_pci_rtas_init(); 2978 2979 phb = spapr_create_default_phb(); 2980 2981 for (i = 0; i < nb_nics; i++) { 2982 NICInfo *nd = &nd_table[i]; 2983 2984 if (!nd->model) { 2985 nd->model = g_strdup("spapr-vlan"); 2986 } 2987 2988 if (g_str_equal(nd->model, "spapr-vlan") || 2989 g_str_equal(nd->model, "ibmveth")) { 2990 spapr_vlan_create(spapr->vio_bus, nd); 2991 } else { 2992 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2993 } 2994 } 2995 2996 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2997 spapr_vscsi_create(spapr->vio_bus); 2998 } 2999 3000 /* Graphics */ 3001 has_vga = spapr_vga_init(phb->bus, &error_fatal); 3002 if (has_vga) { 3003 spapr->want_stdout_path = !machine->enable_graphics; 3004 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3005 } else { 3006 spapr->want_stdout_path = true; 3007 } 3008 3009 if (machine->usb) { 3010 if (smc->use_ohci_by_default) { 3011 pci_create_simple(phb->bus, -1, "pci-ohci"); 3012 } else { 3013 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3014 } 3015 3016 if (has_vga) { 3017 USBBus *usb_bus = usb_bus_find(-1); 3018 3019 usb_create_simple(usb_bus, "usb-kbd"); 3020 usb_create_simple(usb_bus, "usb-mouse"); 3021 } 3022 } 3023 3024 if (kernel_filename) { 3025 uint64_t loaded_addr = 0; 3026 3027 spapr->kernel_size = load_elf(kernel_filename, NULL, 3028 translate_kernel_address, spapr, 3029 NULL, &loaded_addr, NULL, NULL, 1, 3030 PPC_ELF_MACHINE, 0, 0); 3031 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3032 spapr->kernel_size = load_elf(kernel_filename, NULL, 3033 translate_kernel_address, spapr, 3034 NULL, &loaded_addr, NULL, NULL, 0, 3035 PPC_ELF_MACHINE, 0, 0); 3036 spapr->kernel_le = spapr->kernel_size > 0; 3037 } 3038 if (spapr->kernel_size < 0) { 3039 error_report("error loading %s: %s", kernel_filename, 3040 load_elf_strerror(spapr->kernel_size)); 3041 exit(1); 3042 } 3043 3044 if (spapr->kernel_addr != loaded_addr) { 3045 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3046 " to 0x%"PRIx64, 3047 spapr->kernel_addr, loaded_addr); 3048 spapr->kernel_addr = loaded_addr; 3049 } 3050 3051 /* load initrd */ 3052 if (initrd_filename) { 3053 /* Try to locate the initrd in the gap between the kernel 3054 * and the firmware. Add a bit of space just in case 3055 */ 3056 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3057 + 0x1ffff) & ~0xffff; 3058 spapr->initrd_size = load_image_targphys(initrd_filename, 3059 spapr->initrd_base, 3060 load_limit 3061 - spapr->initrd_base); 3062 if (spapr->initrd_size < 0) { 3063 error_report("could not load initial ram disk '%s'", 3064 initrd_filename); 3065 exit(1); 3066 } 3067 } 3068 } 3069 3070 /* FIXME: Should register things through the MachineState's qdev 3071 * interface, this is a legacy from the sPAPREnvironment structure 3072 * which predated MachineState but had a similar function */ 3073 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3074 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3075 &savevm_htab_handlers, spapr); 3076 3077 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3078 3079 qemu_register_boot_set(spapr_boot_set, spapr); 3080 3081 /* 3082 * Nothing needs to be done to resume a suspended guest because 3083 * suspending does not change the machine state, so no need for 3084 * a ->wakeup method. 3085 */ 3086 qemu_register_wakeup_support(); 3087 3088 if (kvm_enabled()) { 3089 /* to stop and start vmclock */ 3090 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3091 &spapr->tb); 3092 3093 kvmppc_spapr_enable_inkernel_multitce(); 3094 } 3095 3096 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3097 if (spapr->vof) { 3098 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3099 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3100 } 3101 3102 spapr_watchdog_init(spapr); 3103 } 3104 3105 #define DEFAULT_KVM_TYPE "auto" 3106 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3107 { 3108 /* 3109 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3110 * accommodate the 'HV' and 'PV' formats that exists in the 3111 * wild. The 'auto' mode is being introduced already as 3112 * lower-case, thus we don't need to bother checking for 3113 * "AUTO". 3114 */ 3115 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3116 return 0; 3117 } 3118 3119 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3120 return 1; 3121 } 3122 3123 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3124 return 2; 3125 } 3126 3127 error_report("Unknown kvm-type specified '%s'", vm_type); 3128 return -1; 3129 } 3130 3131 /* 3132 * Implementation of an interface to adjust firmware path 3133 * for the bootindex property handling. 3134 */ 3135 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3136 DeviceState *dev) 3137 { 3138 #define CAST(type, obj, name) \ 3139 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3140 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3141 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3142 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3143 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3144 3145 if (d && bus) { 3146 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3147 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3148 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3149 3150 if (spapr) { 3151 /* 3152 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3153 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3154 * 0x8000 | (target << 8) | (bus << 5) | lun 3155 * (see the "Logical unit addressing format" table in SAM5) 3156 */ 3157 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3158 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3159 (uint64_t)id << 48); 3160 } else if (virtio) { 3161 /* 3162 * We use SRP luns of the form 01000000 | (target << 8) | lun 3163 * in the top 32 bits of the 64-bit LUN 3164 * Note: the quote above is from SLOF and it is wrong, 3165 * the actual binding is: 3166 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3167 */ 3168 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3169 if (d->lun >= 256) { 3170 /* Use the LUN "flat space addressing method" */ 3171 id |= 0x4000; 3172 } 3173 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3174 (uint64_t)id << 32); 3175 } else if (usb) { 3176 /* 3177 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3178 * in the top 32 bits of the 64-bit LUN 3179 */ 3180 unsigned usb_port = atoi(usb->port->path); 3181 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3182 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3183 (uint64_t)id << 32); 3184 } 3185 } 3186 3187 /* 3188 * SLOF probes the USB devices, and if it recognizes that the device is a 3189 * storage device, it changes its name to "storage" instead of "usb-host", 3190 * and additionally adds a child node for the SCSI LUN, so the correct 3191 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3192 */ 3193 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3194 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3195 if (usb_device_is_scsi_storage(usbdev)) { 3196 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3197 } 3198 } 3199 3200 if (phb) { 3201 /* Replace "pci" with "pci@800000020000000" */ 3202 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3203 } 3204 3205 if (vsc) { 3206 /* Same logic as virtio above */ 3207 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3208 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3209 } 3210 3211 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3212 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3213 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3214 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3215 } 3216 3217 if (pcidev) { 3218 return spapr_pci_fw_dev_name(pcidev); 3219 } 3220 3221 return NULL; 3222 } 3223 3224 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3225 { 3226 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3227 3228 return g_strdup(spapr->kvm_type); 3229 } 3230 3231 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3232 { 3233 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3234 3235 g_free(spapr->kvm_type); 3236 spapr->kvm_type = g_strdup(value); 3237 } 3238 3239 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3240 { 3241 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3242 3243 return spapr->use_hotplug_event_source; 3244 } 3245 3246 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3247 Error **errp) 3248 { 3249 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3250 3251 spapr->use_hotplug_event_source = value; 3252 } 3253 3254 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3255 { 3256 return true; 3257 } 3258 3259 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3260 { 3261 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3262 3263 switch (spapr->resize_hpt) { 3264 case SPAPR_RESIZE_HPT_DEFAULT: 3265 return g_strdup("default"); 3266 case SPAPR_RESIZE_HPT_DISABLED: 3267 return g_strdup("disabled"); 3268 case SPAPR_RESIZE_HPT_ENABLED: 3269 return g_strdup("enabled"); 3270 case SPAPR_RESIZE_HPT_REQUIRED: 3271 return g_strdup("required"); 3272 } 3273 g_assert_not_reached(); 3274 } 3275 3276 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3277 { 3278 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3279 3280 if (strcmp(value, "default") == 0) { 3281 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3282 } else if (strcmp(value, "disabled") == 0) { 3283 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3284 } else if (strcmp(value, "enabled") == 0) { 3285 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3286 } else if (strcmp(value, "required") == 0) { 3287 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3288 } else { 3289 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3290 } 3291 } 3292 3293 static bool spapr_get_vof(Object *obj, Error **errp) 3294 { 3295 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3296 3297 return spapr->vof != NULL; 3298 } 3299 3300 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3301 { 3302 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3303 3304 if (spapr->vof) { 3305 vof_cleanup(spapr->vof); 3306 g_free(spapr->vof); 3307 spapr->vof = NULL; 3308 } 3309 if (!value) { 3310 return; 3311 } 3312 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3313 } 3314 3315 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3316 { 3317 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3318 3319 if (spapr->irq == &spapr_irq_xics_legacy) { 3320 return g_strdup("legacy"); 3321 } else if (spapr->irq == &spapr_irq_xics) { 3322 return g_strdup("xics"); 3323 } else if (spapr->irq == &spapr_irq_xive) { 3324 return g_strdup("xive"); 3325 } else if (spapr->irq == &spapr_irq_dual) { 3326 return g_strdup("dual"); 3327 } 3328 g_assert_not_reached(); 3329 } 3330 3331 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3332 { 3333 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3334 3335 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3336 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3337 return; 3338 } 3339 3340 /* The legacy IRQ backend can not be set */ 3341 if (strcmp(value, "xics") == 0) { 3342 spapr->irq = &spapr_irq_xics; 3343 } else if (strcmp(value, "xive") == 0) { 3344 spapr->irq = &spapr_irq_xive; 3345 } else if (strcmp(value, "dual") == 0) { 3346 spapr->irq = &spapr_irq_dual; 3347 } else { 3348 error_setg(errp, "Bad value for \"ic-mode\" property"); 3349 } 3350 } 3351 3352 static char *spapr_get_host_model(Object *obj, Error **errp) 3353 { 3354 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3355 3356 return g_strdup(spapr->host_model); 3357 } 3358 3359 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3360 { 3361 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3362 3363 g_free(spapr->host_model); 3364 spapr->host_model = g_strdup(value); 3365 } 3366 3367 static char *spapr_get_host_serial(Object *obj, Error **errp) 3368 { 3369 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3370 3371 return g_strdup(spapr->host_serial); 3372 } 3373 3374 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3375 { 3376 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3377 3378 g_free(spapr->host_serial); 3379 spapr->host_serial = g_strdup(value); 3380 } 3381 3382 static void spapr_instance_init(Object *obj) 3383 { 3384 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3385 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3386 MachineState *ms = MACHINE(spapr); 3387 MachineClass *mc = MACHINE_GET_CLASS(ms); 3388 3389 /* 3390 * NVDIMM support went live in 5.1 without considering that, in 3391 * other archs, the user needs to enable NVDIMM support with the 3392 * 'nvdimm' machine option and the default behavior is NVDIMM 3393 * support disabled. It is too late to roll back to the standard 3394 * behavior without breaking 5.1 guests. 3395 */ 3396 if (mc->nvdimm_supported) { 3397 ms->nvdimms_state->is_enabled = true; 3398 } 3399 3400 spapr->htab_fd = -1; 3401 spapr->use_hotplug_event_source = true; 3402 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3403 object_property_add_str(obj, "kvm-type", 3404 spapr_get_kvm_type, spapr_set_kvm_type); 3405 object_property_set_description(obj, "kvm-type", 3406 "Specifies the KVM virtualization mode (auto," 3407 " hv, pr). Defaults to 'auto'. This mode will use" 3408 " any available KVM module loaded in the host," 3409 " where kvm_hv takes precedence if both kvm_hv and" 3410 " kvm_pr are loaded."); 3411 object_property_add_bool(obj, "modern-hotplug-events", 3412 spapr_get_modern_hotplug_events, 3413 spapr_set_modern_hotplug_events); 3414 object_property_set_description(obj, "modern-hotplug-events", 3415 "Use dedicated hotplug event mechanism in" 3416 " place of standard EPOW events when possible" 3417 " (required for memory hot-unplug support)"); 3418 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3419 "Maximum permitted CPU compatibility mode"); 3420 3421 object_property_add_str(obj, "resize-hpt", 3422 spapr_get_resize_hpt, spapr_set_resize_hpt); 3423 object_property_set_description(obj, "resize-hpt", 3424 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3425 object_property_add_uint32_ptr(obj, "vsmt", 3426 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3427 object_property_set_description(obj, "vsmt", 3428 "Virtual SMT: KVM behaves as if this were" 3429 " the host's SMT mode"); 3430 3431 object_property_add_bool(obj, "vfio-no-msix-emulation", 3432 spapr_get_msix_emulation, NULL); 3433 3434 object_property_add_uint64_ptr(obj, "kernel-addr", 3435 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3436 object_property_set_description(obj, "kernel-addr", 3437 stringify(KERNEL_LOAD_ADDR) 3438 " for -kernel is the default"); 3439 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3440 3441 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3442 object_property_set_description(obj, "x-vof", 3443 "Enable Virtual Open Firmware (experimental)"); 3444 3445 /* The machine class defines the default interrupt controller mode */ 3446 spapr->irq = smc->irq; 3447 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3448 spapr_set_ic_mode); 3449 object_property_set_description(obj, "ic-mode", 3450 "Specifies the interrupt controller mode (xics, xive, dual)"); 3451 3452 object_property_add_str(obj, "host-model", 3453 spapr_get_host_model, spapr_set_host_model); 3454 object_property_set_description(obj, "host-model", 3455 "Host model to advertise in guest device tree"); 3456 object_property_add_str(obj, "host-serial", 3457 spapr_get_host_serial, spapr_set_host_serial); 3458 object_property_set_description(obj, "host-serial", 3459 "Host serial number to advertise in guest device tree"); 3460 } 3461 3462 static void spapr_machine_finalizefn(Object *obj) 3463 { 3464 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3465 3466 g_free(spapr->kvm_type); 3467 } 3468 3469 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3470 { 3471 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3472 PowerPCCPU *cpu = POWERPC_CPU(cs); 3473 CPUPPCState *env = &cpu->env; 3474 3475 cpu_synchronize_state(cs); 3476 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3477 if (spapr->fwnmi_system_reset_addr != -1) { 3478 uint64_t rtas_addr, addr; 3479 3480 /* get rtas addr from fdt */ 3481 rtas_addr = spapr_get_rtas_addr(); 3482 if (!rtas_addr) { 3483 qemu_system_guest_panicked(NULL); 3484 return; 3485 } 3486 3487 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3488 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3489 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3490 env->gpr[3] = addr; 3491 } 3492 ppc_cpu_do_system_reset(cs); 3493 if (spapr->fwnmi_system_reset_addr != -1) { 3494 env->nip = spapr->fwnmi_system_reset_addr; 3495 } 3496 } 3497 3498 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3499 { 3500 CPUState *cs; 3501 3502 CPU_FOREACH(cs) { 3503 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3504 } 3505 } 3506 3507 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3508 void *fdt, int *fdt_start_offset, Error **errp) 3509 { 3510 uint64_t addr; 3511 uint32_t node; 3512 3513 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3514 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3515 &error_abort); 3516 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3517 SPAPR_MEMORY_BLOCK_SIZE); 3518 return 0; 3519 } 3520 3521 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3522 bool dedicated_hp_event_source) 3523 { 3524 SpaprDrc *drc; 3525 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3526 int i; 3527 uint64_t addr = addr_start; 3528 bool hotplugged = spapr_drc_hotplugged(dev); 3529 3530 for (i = 0; i < nr_lmbs; i++) { 3531 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3532 addr / SPAPR_MEMORY_BLOCK_SIZE); 3533 g_assert(drc); 3534 3535 /* 3536 * memory_device_get_free_addr() provided a range of free addresses 3537 * that doesn't overlap with any existing mapping at pre-plug. The 3538 * corresponding LMB DRCs are thus assumed to be all attachable. 3539 */ 3540 spapr_drc_attach(drc, dev); 3541 if (!hotplugged) { 3542 spapr_drc_reset(drc); 3543 } 3544 addr += SPAPR_MEMORY_BLOCK_SIZE; 3545 } 3546 /* send hotplug notification to the 3547 * guest only in case of hotplugged memory 3548 */ 3549 if (hotplugged) { 3550 if (dedicated_hp_event_source) { 3551 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3552 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3553 g_assert(drc); 3554 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3555 nr_lmbs, 3556 spapr_drc_index(drc)); 3557 } else { 3558 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3559 nr_lmbs); 3560 } 3561 } 3562 } 3563 3564 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3565 { 3566 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3567 PCDIMMDevice *dimm = PC_DIMM(dev); 3568 uint64_t size, addr; 3569 int64_t slot; 3570 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3571 3572 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3573 3574 pc_dimm_plug(dimm, MACHINE(ms)); 3575 3576 if (!is_nvdimm) { 3577 addr = object_property_get_uint(OBJECT(dimm), 3578 PC_DIMM_ADDR_PROP, &error_abort); 3579 spapr_add_lmbs(dev, addr, size, 3580 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3581 } else { 3582 slot = object_property_get_int(OBJECT(dimm), 3583 PC_DIMM_SLOT_PROP, &error_abort); 3584 /* We should have valid slot number at this point */ 3585 g_assert(slot >= 0); 3586 spapr_add_nvdimm(dev, slot); 3587 } 3588 } 3589 3590 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3591 Error **errp) 3592 { 3593 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3594 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3595 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3596 PCDIMMDevice *dimm = PC_DIMM(dev); 3597 Error *local_err = NULL; 3598 uint64_t size; 3599 Object *memdev; 3600 hwaddr pagesize; 3601 3602 if (!smc->dr_lmb_enabled) { 3603 error_setg(errp, "Memory hotplug not supported for this machine"); 3604 return; 3605 } 3606 3607 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3608 if (local_err) { 3609 error_propagate(errp, local_err); 3610 return; 3611 } 3612 3613 if (is_nvdimm) { 3614 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3615 return; 3616 } 3617 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3618 error_setg(errp, "Hotplugged memory size must be a multiple of " 3619 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3620 return; 3621 } 3622 3623 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3624 &error_abort); 3625 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3626 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3627 return; 3628 } 3629 3630 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3631 } 3632 3633 struct SpaprDimmState { 3634 PCDIMMDevice *dimm; 3635 uint32_t nr_lmbs; 3636 QTAILQ_ENTRY(SpaprDimmState) next; 3637 }; 3638 3639 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3640 PCDIMMDevice *dimm) 3641 { 3642 SpaprDimmState *dimm_state = NULL; 3643 3644 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3645 if (dimm_state->dimm == dimm) { 3646 break; 3647 } 3648 } 3649 return dimm_state; 3650 } 3651 3652 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3653 uint32_t nr_lmbs, 3654 PCDIMMDevice *dimm) 3655 { 3656 SpaprDimmState *ds = NULL; 3657 3658 /* 3659 * If this request is for a DIMM whose removal had failed earlier 3660 * (due to guest's refusal to remove the LMBs), we would have this 3661 * dimm already in the pending_dimm_unplugs list. In that 3662 * case don't add again. 3663 */ 3664 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3665 if (!ds) { 3666 ds = g_new0(SpaprDimmState, 1); 3667 ds->nr_lmbs = nr_lmbs; 3668 ds->dimm = dimm; 3669 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3670 } 3671 return ds; 3672 } 3673 3674 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3675 SpaprDimmState *dimm_state) 3676 { 3677 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3678 g_free(dimm_state); 3679 } 3680 3681 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3682 PCDIMMDevice *dimm) 3683 { 3684 SpaprDrc *drc; 3685 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3686 &error_abort); 3687 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3688 uint32_t avail_lmbs = 0; 3689 uint64_t addr_start, addr; 3690 int i; 3691 3692 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3693 &error_abort); 3694 3695 addr = addr_start; 3696 for (i = 0; i < nr_lmbs; i++) { 3697 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3698 addr / SPAPR_MEMORY_BLOCK_SIZE); 3699 g_assert(drc); 3700 if (drc->dev) { 3701 avail_lmbs++; 3702 } 3703 addr += SPAPR_MEMORY_BLOCK_SIZE; 3704 } 3705 3706 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3707 } 3708 3709 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3710 { 3711 SpaprDimmState *ds; 3712 PCDIMMDevice *dimm; 3713 SpaprDrc *drc; 3714 uint32_t nr_lmbs; 3715 uint64_t size, addr_start, addr; 3716 g_autofree char *qapi_error = NULL; 3717 int i; 3718 3719 if (!dev) { 3720 return; 3721 } 3722 3723 dimm = PC_DIMM(dev); 3724 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3725 3726 /* 3727 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3728 * unplug state, but one of its DRC is marked as unplug_requested. 3729 * This is bad and weird enough to g_assert() out. 3730 */ 3731 g_assert(ds); 3732 3733 spapr_pending_dimm_unplugs_remove(spapr, ds); 3734 3735 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3736 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3737 3738 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3739 &error_abort); 3740 3741 addr = addr_start; 3742 for (i = 0; i < nr_lmbs; i++) { 3743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3744 addr / SPAPR_MEMORY_BLOCK_SIZE); 3745 g_assert(drc); 3746 3747 drc->unplug_requested = false; 3748 addr += SPAPR_MEMORY_BLOCK_SIZE; 3749 } 3750 3751 /* 3752 * Tell QAPI that something happened and the memory 3753 * hotunplug wasn't successful. Keep sending 3754 * MEM_UNPLUG_ERROR even while sending 3755 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3756 * MEM_UNPLUG_ERROR is due. 3757 */ 3758 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3759 "for device %s", dev->id); 3760 3761 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3762 3763 qapi_event_send_device_unplug_guest_error(dev->id, 3764 dev->canonical_path); 3765 } 3766 3767 /* Callback to be called during DRC release. */ 3768 void spapr_lmb_release(DeviceState *dev) 3769 { 3770 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3771 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3772 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3773 3774 /* This information will get lost if a migration occurs 3775 * during the unplug process. In this case recover it. */ 3776 if (ds == NULL) { 3777 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3778 g_assert(ds); 3779 /* The DRC being examined by the caller at least must be counted */ 3780 g_assert(ds->nr_lmbs); 3781 } 3782 3783 if (--ds->nr_lmbs) { 3784 return; 3785 } 3786 3787 /* 3788 * Now that all the LMBs have been removed by the guest, call the 3789 * unplug handler chain. This can never fail. 3790 */ 3791 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3792 object_unparent(OBJECT(dev)); 3793 } 3794 3795 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3796 { 3797 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3798 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3799 3800 /* We really shouldn't get this far without anything to unplug */ 3801 g_assert(ds); 3802 3803 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3804 qdev_unrealize(dev); 3805 spapr_pending_dimm_unplugs_remove(spapr, ds); 3806 } 3807 3808 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3809 DeviceState *dev, Error **errp) 3810 { 3811 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3812 PCDIMMDevice *dimm = PC_DIMM(dev); 3813 uint32_t nr_lmbs; 3814 uint64_t size, addr_start, addr; 3815 int i; 3816 SpaprDrc *drc; 3817 3818 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3819 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3820 return; 3821 } 3822 3823 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3824 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3825 3826 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3827 &error_abort); 3828 3829 /* 3830 * An existing pending dimm state for this DIMM means that there is an 3831 * unplug operation in progress, waiting for the spapr_lmb_release 3832 * callback to complete the job (BQL can't cover that far). In this case, 3833 * bail out to avoid detaching DRCs that were already released. 3834 */ 3835 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3836 error_setg(errp, "Memory unplug already in progress for device %s", 3837 dev->id); 3838 return; 3839 } 3840 3841 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3842 3843 addr = addr_start; 3844 for (i = 0; i < nr_lmbs; i++) { 3845 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3846 addr / SPAPR_MEMORY_BLOCK_SIZE); 3847 g_assert(drc); 3848 3849 spapr_drc_unplug_request(drc); 3850 addr += SPAPR_MEMORY_BLOCK_SIZE; 3851 } 3852 3853 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3854 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3855 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3856 nr_lmbs, spapr_drc_index(drc)); 3857 } 3858 3859 /* Callback to be called during DRC release. */ 3860 void spapr_core_release(DeviceState *dev) 3861 { 3862 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3863 3864 /* Call the unplug handler chain. This can never fail. */ 3865 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3866 object_unparent(OBJECT(dev)); 3867 } 3868 3869 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3870 { 3871 MachineState *ms = MACHINE(hotplug_dev); 3872 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3873 CPUCore *cc = CPU_CORE(dev); 3874 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3875 3876 if (smc->pre_2_10_has_unused_icps) { 3877 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3878 int i; 3879 3880 for (i = 0; i < cc->nr_threads; i++) { 3881 CPUState *cs = CPU(sc->threads[i]); 3882 3883 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3884 } 3885 } 3886 3887 assert(core_slot); 3888 core_slot->cpu = NULL; 3889 qdev_unrealize(dev); 3890 } 3891 3892 static 3893 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3894 Error **errp) 3895 { 3896 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3897 int index; 3898 SpaprDrc *drc; 3899 CPUCore *cc = CPU_CORE(dev); 3900 3901 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3902 error_setg(errp, "Unable to find CPU core with core-id: %d", 3903 cc->core_id); 3904 return; 3905 } 3906 if (index == 0) { 3907 error_setg(errp, "Boot CPU core may not be unplugged"); 3908 return; 3909 } 3910 3911 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3912 spapr_vcpu_id(spapr, cc->core_id)); 3913 g_assert(drc); 3914 3915 if (!spapr_drc_unplug_requested(drc)) { 3916 spapr_drc_unplug_request(drc); 3917 } 3918 3919 /* 3920 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3921 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3922 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3923 * attempt (e.g. the kernel will refuse to remove the last online 3924 * CPU), we will never attempt it again because unplug_requested 3925 * will still be 'true' in that case. 3926 */ 3927 spapr_hotplug_req_remove_by_index(drc); 3928 } 3929 3930 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3931 void *fdt, int *fdt_start_offset, Error **errp) 3932 { 3933 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3934 CPUState *cs = CPU(core->threads[0]); 3935 PowerPCCPU *cpu = POWERPC_CPU(cs); 3936 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3937 int id = spapr_get_vcpu_id(cpu); 3938 g_autofree char *nodename = NULL; 3939 int offset; 3940 3941 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3942 offset = fdt_add_subnode(fdt, 0, nodename); 3943 3944 spapr_dt_cpu(cs, fdt, offset, spapr); 3945 3946 /* 3947 * spapr_dt_cpu() does not fill the 'name' property in the 3948 * CPU node. The function is called during boot process, before 3949 * and after CAS, and overwriting the 'name' property written 3950 * by SLOF is not allowed. 3951 * 3952 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3953 * CPUs more compatible with the coldplugged ones, which have 3954 * the 'name' property. Linux Kernel also relies on this 3955 * property to identify CPU nodes. 3956 */ 3957 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3958 3959 *fdt_start_offset = offset; 3960 return 0; 3961 } 3962 3963 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3964 { 3965 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3966 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3967 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3968 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3969 CPUCore *cc = CPU_CORE(dev); 3970 CPUState *cs; 3971 SpaprDrc *drc; 3972 CPUArchId *core_slot; 3973 int index; 3974 bool hotplugged = spapr_drc_hotplugged(dev); 3975 int i; 3976 3977 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3978 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3979 3980 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3981 spapr_vcpu_id(spapr, cc->core_id)); 3982 3983 g_assert(drc || !mc->has_hotpluggable_cpus); 3984 3985 if (drc) { 3986 /* 3987 * spapr_core_pre_plug() already buys us this is a brand new 3988 * core being plugged into a free slot. Nothing should already 3989 * be attached to the corresponding DRC. 3990 */ 3991 spapr_drc_attach(drc, dev); 3992 3993 if (hotplugged) { 3994 /* 3995 * Send hotplug notification interrupt to the guest only 3996 * in case of hotplugged CPUs. 3997 */ 3998 spapr_hotplug_req_add_by_index(drc); 3999 } else { 4000 spapr_drc_reset(drc); 4001 } 4002 } 4003 4004 core_slot->cpu = OBJECT(dev); 4005 4006 /* 4007 * Set compatibility mode to match the boot CPU, which was either set 4008 * by the machine reset code or by CAS. This really shouldn't fail at 4009 * this point. 4010 */ 4011 if (hotplugged) { 4012 for (i = 0; i < cc->nr_threads; i++) { 4013 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 4014 &error_abort); 4015 } 4016 } 4017 4018 if (smc->pre_2_10_has_unused_icps) { 4019 for (i = 0; i < cc->nr_threads; i++) { 4020 cs = CPU(core->threads[i]); 4021 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4022 } 4023 } 4024 } 4025 4026 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4027 Error **errp) 4028 { 4029 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4030 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4031 CPUCore *cc = CPU_CORE(dev); 4032 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4033 const char *type = object_get_typename(OBJECT(dev)); 4034 CPUArchId *core_slot; 4035 int index; 4036 unsigned int smp_threads = machine->smp.threads; 4037 4038 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4039 error_setg(errp, "CPU hotplug not supported for this machine"); 4040 return; 4041 } 4042 4043 if (strcmp(base_core_type, type)) { 4044 error_setg(errp, "CPU core type should be %s", base_core_type); 4045 return; 4046 } 4047 4048 if (cc->core_id % smp_threads) { 4049 error_setg(errp, "invalid core id %d", cc->core_id); 4050 return; 4051 } 4052 4053 /* 4054 * In general we should have homogeneous threads-per-core, but old 4055 * (pre hotplug support) machine types allow the last core to have 4056 * reduced threads as a compatibility hack for when we allowed 4057 * total vcpus not a multiple of threads-per-core. 4058 */ 4059 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4060 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4061 smp_threads); 4062 return; 4063 } 4064 4065 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4066 if (!core_slot) { 4067 error_setg(errp, "core id %d out of range", cc->core_id); 4068 return; 4069 } 4070 4071 if (core_slot->cpu) { 4072 error_setg(errp, "core %d already populated", cc->core_id); 4073 return; 4074 } 4075 4076 numa_cpu_pre_plug(core_slot, dev, errp); 4077 } 4078 4079 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4080 void *fdt, int *fdt_start_offset, Error **errp) 4081 { 4082 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4083 int intc_phandle; 4084 4085 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4086 if (intc_phandle <= 0) { 4087 return -1; 4088 } 4089 4090 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4091 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4092 return -1; 4093 } 4094 4095 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4096 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4097 4098 return 0; 4099 } 4100 4101 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4102 Error **errp) 4103 { 4104 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4105 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4106 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4107 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4108 SpaprDrc *drc; 4109 4110 if (dev->hotplugged && !smc->dr_phb_enabled) { 4111 error_setg(errp, "PHB hotplug not supported for this machine"); 4112 return false; 4113 } 4114 4115 if (sphb->index == (uint32_t)-1) { 4116 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4117 return false; 4118 } 4119 4120 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4121 if (drc && drc->dev) { 4122 error_setg(errp, "PHB %d already attached", sphb->index); 4123 return false; 4124 } 4125 4126 /* 4127 * This will check that sphb->index doesn't exceed the maximum number of 4128 * PHBs for the current machine type. 4129 */ 4130 return 4131 smc->phb_placement(spapr, sphb->index, 4132 &sphb->buid, &sphb->io_win_addr, 4133 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4134 windows_supported, sphb->dma_liobn, 4135 errp); 4136 } 4137 4138 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4139 { 4140 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4141 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4142 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4143 SpaprDrc *drc; 4144 bool hotplugged = spapr_drc_hotplugged(dev); 4145 4146 if (!smc->dr_phb_enabled) { 4147 return; 4148 } 4149 4150 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4151 /* hotplug hooks should check it's enabled before getting this far */ 4152 assert(drc); 4153 4154 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4155 spapr_drc_attach(drc, dev); 4156 4157 if (hotplugged) { 4158 spapr_hotplug_req_add_by_index(drc); 4159 } else { 4160 spapr_drc_reset(drc); 4161 } 4162 } 4163 4164 void spapr_phb_release(DeviceState *dev) 4165 { 4166 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4167 4168 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4169 object_unparent(OBJECT(dev)); 4170 } 4171 4172 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4173 { 4174 qdev_unrealize(dev); 4175 } 4176 4177 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4178 DeviceState *dev, Error **errp) 4179 { 4180 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4181 SpaprDrc *drc; 4182 4183 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4184 assert(drc); 4185 4186 if (!spapr_drc_unplug_requested(drc)) { 4187 spapr_drc_unplug_request(drc); 4188 spapr_hotplug_req_remove_by_index(drc); 4189 } else { 4190 error_setg(errp, 4191 "PCI Host Bridge unplug already in progress for device %s", 4192 dev->id); 4193 } 4194 } 4195 4196 static 4197 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4198 Error **errp) 4199 { 4200 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4201 4202 if (spapr->tpm_proxy != NULL) { 4203 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4204 return false; 4205 } 4206 4207 return true; 4208 } 4209 4210 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4211 { 4212 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4213 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4214 4215 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4216 g_assert(spapr->tpm_proxy == NULL); 4217 4218 spapr->tpm_proxy = tpm_proxy; 4219 } 4220 4221 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4222 { 4223 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4224 4225 qdev_unrealize(dev); 4226 object_unparent(OBJECT(dev)); 4227 spapr->tpm_proxy = NULL; 4228 } 4229 4230 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4231 DeviceState *dev, Error **errp) 4232 { 4233 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4234 spapr_memory_plug(hotplug_dev, dev); 4235 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4236 spapr_core_plug(hotplug_dev, dev); 4237 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4238 spapr_phb_plug(hotplug_dev, dev); 4239 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4240 spapr_tpm_proxy_plug(hotplug_dev, dev); 4241 } 4242 } 4243 4244 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4245 DeviceState *dev, Error **errp) 4246 { 4247 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4248 spapr_memory_unplug(hotplug_dev, dev); 4249 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4250 spapr_core_unplug(hotplug_dev, dev); 4251 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4252 spapr_phb_unplug(hotplug_dev, dev); 4253 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4254 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4255 } 4256 } 4257 4258 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4259 { 4260 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4261 /* 4262 * CAS will process all pending unplug requests. 4263 * 4264 * HACK: a guest could theoretically have cleared all bits in OV5, 4265 * but none of the guests we care for do. 4266 */ 4267 spapr_ovec_empty(spapr->ov5_cas); 4268 } 4269 4270 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4271 DeviceState *dev, Error **errp) 4272 { 4273 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4274 MachineClass *mc = MACHINE_GET_CLASS(sms); 4275 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4276 4277 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4278 if (spapr_memory_hot_unplug_supported(sms)) { 4279 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4280 } else { 4281 error_setg(errp, "Memory hot unplug not supported for this guest"); 4282 } 4283 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4284 if (!mc->has_hotpluggable_cpus) { 4285 error_setg(errp, "CPU hot unplug not supported on this machine"); 4286 return; 4287 } 4288 spapr_core_unplug_request(hotplug_dev, dev, errp); 4289 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4290 if (!smc->dr_phb_enabled) { 4291 error_setg(errp, "PHB hot unplug not supported on this machine"); 4292 return; 4293 } 4294 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4295 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4296 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4297 } 4298 } 4299 4300 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4301 DeviceState *dev, Error **errp) 4302 { 4303 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4304 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4305 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4306 spapr_core_pre_plug(hotplug_dev, dev, errp); 4307 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4308 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4309 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4310 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4311 } 4312 } 4313 4314 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4315 DeviceState *dev) 4316 { 4317 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4318 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4319 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4320 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4321 return HOTPLUG_HANDLER(machine); 4322 } 4323 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4324 PCIDevice *pcidev = PCI_DEVICE(dev); 4325 PCIBus *root = pci_device_root_bus(pcidev); 4326 SpaprPhbState *phb = 4327 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4328 TYPE_SPAPR_PCI_HOST_BRIDGE); 4329 4330 if (phb) { 4331 return HOTPLUG_HANDLER(phb); 4332 } 4333 } 4334 return NULL; 4335 } 4336 4337 static CpuInstanceProperties 4338 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4339 { 4340 CPUArchId *core_slot; 4341 MachineClass *mc = MACHINE_GET_CLASS(machine); 4342 4343 /* make sure possible_cpu are initialized */ 4344 mc->possible_cpu_arch_ids(machine); 4345 /* get CPU core slot containing thread that matches cpu_index */ 4346 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4347 assert(core_slot); 4348 return core_slot->props; 4349 } 4350 4351 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4352 { 4353 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4354 } 4355 4356 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4357 { 4358 int i; 4359 unsigned int smp_threads = machine->smp.threads; 4360 unsigned int smp_cpus = machine->smp.cpus; 4361 const char *core_type; 4362 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4363 MachineClass *mc = MACHINE_GET_CLASS(machine); 4364 4365 if (!mc->has_hotpluggable_cpus) { 4366 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4367 } 4368 if (machine->possible_cpus) { 4369 assert(machine->possible_cpus->len == spapr_max_cores); 4370 return machine->possible_cpus; 4371 } 4372 4373 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4374 if (!core_type) { 4375 error_report("Unable to find sPAPR CPU Core definition"); 4376 exit(1); 4377 } 4378 4379 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4380 sizeof(CPUArchId) * spapr_max_cores); 4381 machine->possible_cpus->len = spapr_max_cores; 4382 for (i = 0; i < machine->possible_cpus->len; i++) { 4383 int core_id = i * smp_threads; 4384 4385 machine->possible_cpus->cpus[i].type = core_type; 4386 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4387 machine->possible_cpus->cpus[i].arch_id = core_id; 4388 machine->possible_cpus->cpus[i].props.has_core_id = true; 4389 machine->possible_cpus->cpus[i].props.core_id = core_id; 4390 } 4391 return machine->possible_cpus; 4392 } 4393 4394 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4395 uint64_t *buid, hwaddr *pio, 4396 hwaddr *mmio32, hwaddr *mmio64, 4397 unsigned n_dma, uint32_t *liobns, Error **errp) 4398 { 4399 /* 4400 * New-style PHB window placement. 4401 * 4402 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4403 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4404 * windows. 4405 * 4406 * Some guest kernels can't work with MMIO windows above 1<<46 4407 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4408 * 4409 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4410 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4411 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4412 * 1TiB 64-bit MMIO windows for each PHB. 4413 */ 4414 const uint64_t base_buid = 0x800000020000000ULL; 4415 int i; 4416 4417 /* Sanity check natural alignments */ 4418 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4419 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4420 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4421 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4422 /* Sanity check bounds */ 4423 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4424 SPAPR_PCI_MEM32_WIN_SIZE); 4425 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4426 SPAPR_PCI_MEM64_WIN_SIZE); 4427 4428 if (index >= SPAPR_MAX_PHBS) { 4429 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4430 SPAPR_MAX_PHBS - 1); 4431 return false; 4432 } 4433 4434 *buid = base_buid + index; 4435 for (i = 0; i < n_dma; ++i) { 4436 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4437 } 4438 4439 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4440 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4441 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4442 return true; 4443 } 4444 4445 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4446 { 4447 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4448 4449 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4450 } 4451 4452 static void spapr_ics_resend(XICSFabric *dev) 4453 { 4454 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4455 4456 ics_resend(spapr->ics); 4457 } 4458 4459 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4460 { 4461 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4462 4463 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4464 } 4465 4466 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4467 Monitor *mon) 4468 { 4469 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4470 4471 spapr_irq_print_info(spapr, mon); 4472 monitor_printf(mon, "irqchip: %s\n", 4473 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4474 } 4475 4476 /* 4477 * This is a XIVE only operation 4478 */ 4479 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4480 uint8_t nvt_blk, uint32_t nvt_idx, 4481 bool cam_ignore, uint8_t priority, 4482 uint32_t logic_serv, XiveTCTXMatch *match) 4483 { 4484 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4485 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4486 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4487 int count; 4488 4489 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4490 priority, logic_serv, match); 4491 if (count < 0) { 4492 return count; 4493 } 4494 4495 /* 4496 * When we implement the save and restore of the thread interrupt 4497 * contexts in the enter/exit CPU handlers of the machine and the 4498 * escalations in QEMU, we should be able to handle non dispatched 4499 * vCPUs. 4500 * 4501 * Until this is done, the sPAPR machine should find at least one 4502 * matching context always. 4503 */ 4504 if (count == 0) { 4505 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4506 nvt_blk, nvt_idx); 4507 } 4508 4509 return count; 4510 } 4511 4512 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4513 { 4514 return cpu->vcpu_id; 4515 } 4516 4517 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4518 { 4519 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4520 MachineState *ms = MACHINE(spapr); 4521 int vcpu_id; 4522 4523 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4524 4525 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4526 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4527 error_append_hint(errp, "Adjust the number of cpus to %d " 4528 "or try to raise the number of threads per core\n", 4529 vcpu_id * ms->smp.threads / spapr->vsmt); 4530 return false; 4531 } 4532 4533 cpu->vcpu_id = vcpu_id; 4534 return true; 4535 } 4536 4537 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4538 { 4539 CPUState *cs; 4540 4541 CPU_FOREACH(cs) { 4542 PowerPCCPU *cpu = POWERPC_CPU(cs); 4543 4544 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4545 return cpu; 4546 } 4547 } 4548 4549 return NULL; 4550 } 4551 4552 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4553 { 4554 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4555 4556 return spapr_cpu->in_nested; 4557 } 4558 4559 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4560 { 4561 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4562 4563 /* These are only called by TCG, KVM maintains dispatch state */ 4564 4565 spapr_cpu->prod = false; 4566 if (spapr_cpu->vpa_addr) { 4567 CPUState *cs = CPU(cpu); 4568 uint32_t dispatch; 4569 4570 dispatch = ldl_be_phys(cs->as, 4571 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4572 dispatch++; 4573 if ((dispatch & 1) != 0) { 4574 qemu_log_mask(LOG_GUEST_ERROR, 4575 "VPA: incorrect dispatch counter value for " 4576 "dispatched partition %u, correcting.\n", dispatch); 4577 dispatch++; 4578 } 4579 stl_be_phys(cs->as, 4580 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4581 } 4582 } 4583 4584 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4585 { 4586 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4587 4588 if (spapr_cpu->vpa_addr) { 4589 CPUState *cs = CPU(cpu); 4590 uint32_t dispatch; 4591 4592 dispatch = ldl_be_phys(cs->as, 4593 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4594 dispatch++; 4595 if ((dispatch & 1) != 1) { 4596 qemu_log_mask(LOG_GUEST_ERROR, 4597 "VPA: incorrect dispatch counter value for " 4598 "preempted partition %u, correcting.\n", dispatch); 4599 dispatch++; 4600 } 4601 stl_be_phys(cs->as, 4602 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4603 } 4604 } 4605 4606 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4607 { 4608 MachineClass *mc = MACHINE_CLASS(oc); 4609 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4610 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4611 NMIClass *nc = NMI_CLASS(oc); 4612 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4613 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4614 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4615 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4616 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4617 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4618 4619 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4620 mc->ignore_boot_device_suffixes = true; 4621 4622 /* 4623 * We set up the default / latest behaviour here. The class_init 4624 * functions for the specific versioned machine types can override 4625 * these details for backwards compatibility 4626 */ 4627 mc->init = spapr_machine_init; 4628 mc->reset = spapr_machine_reset; 4629 mc->block_default_type = IF_SCSI; 4630 4631 /* 4632 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values 4633 * should be limited by the host capability instead of hardcoded. 4634 * max_cpus for KVM guests will be checked in kvm_init(), and TCG 4635 * guests are welcome to have as many CPUs as the host are capable 4636 * of emulate. 4637 */ 4638 mc->max_cpus = INT32_MAX; 4639 4640 mc->no_parallel = 1; 4641 mc->default_boot_order = ""; 4642 mc->default_ram_size = 512 * MiB; 4643 mc->default_ram_id = "ppc_spapr.ram"; 4644 mc->default_display = "std"; 4645 mc->kvm_type = spapr_kvm_type; 4646 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4647 mc->pci_allow_0_address = true; 4648 assert(!mc->get_hotplug_handler); 4649 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4650 hc->pre_plug = spapr_machine_device_pre_plug; 4651 hc->plug = spapr_machine_device_plug; 4652 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4653 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4654 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4655 hc->unplug_request = spapr_machine_device_unplug_request; 4656 hc->unplug = spapr_machine_device_unplug; 4657 4658 smc->dr_lmb_enabled = true; 4659 smc->update_dt_enabled = true; 4660 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); 4661 mc->has_hotpluggable_cpus = true; 4662 mc->nvdimm_supported = true; 4663 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4664 fwc->get_dev_path = spapr_get_fw_dev_path; 4665 nc->nmi_monitor_handler = spapr_nmi; 4666 smc->phb_placement = spapr_phb_placement; 4667 vhc->cpu_in_nested = spapr_cpu_in_nested; 4668 vhc->deliver_hv_excp = spapr_exit_nested; 4669 vhc->hypercall = emulate_spapr_hypercall; 4670 vhc->hpt_mask = spapr_hpt_mask; 4671 vhc->map_hptes = spapr_map_hptes; 4672 vhc->unmap_hptes = spapr_unmap_hptes; 4673 vhc->hpte_set_c = spapr_hpte_set_c; 4674 vhc->hpte_set_r = spapr_hpte_set_r; 4675 vhc->get_pate = spapr_get_pate; 4676 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4677 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4678 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4679 xic->ics_get = spapr_ics_get; 4680 xic->ics_resend = spapr_ics_resend; 4681 xic->icp_get = spapr_icp_get; 4682 ispc->print_info = spapr_pic_print_info; 4683 /* Force NUMA node memory size to be a multiple of 4684 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4685 * in which LMBs are represented and hot-added 4686 */ 4687 mc->numa_mem_align_shift = 28; 4688 mc->auto_enable_numa = true; 4689 4690 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4691 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4692 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4693 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4694 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4695 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4696 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4697 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4698 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4699 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4700 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4701 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4702 4703 /* 4704 * This cap specifies whether the AIL 3 mode for 4705 * H_SET_RESOURCE is supported. The default is modified 4706 * by default_caps_with_cpu(). 4707 */ 4708 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4709 spapr_caps_add_properties(smc); 4710 smc->irq = &spapr_irq_dual; 4711 smc->dr_phb_enabled = true; 4712 smc->linux_pci_probe = true; 4713 smc->smp_threads_vsmt = true; 4714 smc->nr_xirqs = SPAPR_NR_XIRQS; 4715 xfc->match_nvt = spapr_match_nvt; 4716 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4717 vmc->quiesce = spapr_vof_quiesce; 4718 vmc->setprop = spapr_vof_setprop; 4719 } 4720 4721 static const TypeInfo spapr_machine_info = { 4722 .name = TYPE_SPAPR_MACHINE, 4723 .parent = TYPE_MACHINE, 4724 .abstract = true, 4725 .instance_size = sizeof(SpaprMachineState), 4726 .instance_init = spapr_instance_init, 4727 .instance_finalize = spapr_machine_finalizefn, 4728 .class_size = sizeof(SpaprMachineClass), 4729 .class_init = spapr_machine_class_init, 4730 .interfaces = (InterfaceInfo[]) { 4731 { TYPE_FW_PATH_PROVIDER }, 4732 { TYPE_NMI }, 4733 { TYPE_HOTPLUG_HANDLER }, 4734 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4735 { TYPE_XICS_FABRIC }, 4736 { TYPE_INTERRUPT_STATS_PROVIDER }, 4737 { TYPE_XIVE_FABRIC }, 4738 { TYPE_VOF_MACHINE_IF }, 4739 { } 4740 }, 4741 }; 4742 4743 static void spapr_machine_latest_class_options(MachineClass *mc) 4744 { 4745 mc->alias = "pseries"; 4746 mc->is_default = true; 4747 } 4748 4749 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4750 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4751 void *data) \ 4752 { \ 4753 MachineClass *mc = MACHINE_CLASS(oc); \ 4754 spapr_machine_##suffix##_class_options(mc); \ 4755 if (latest) { \ 4756 spapr_machine_latest_class_options(mc); \ 4757 } \ 4758 } \ 4759 static const TypeInfo spapr_machine_##suffix##_info = { \ 4760 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4761 .parent = TYPE_SPAPR_MACHINE, \ 4762 .class_init = spapr_machine_##suffix##_class_init, \ 4763 }; \ 4764 static void spapr_machine_register_##suffix(void) \ 4765 { \ 4766 type_register(&spapr_machine_##suffix##_info); \ 4767 } \ 4768 type_init(spapr_machine_register_##suffix) 4769 4770 /* 4771 * pseries-8.2 4772 */ 4773 static void spapr_machine_8_2_class_options(MachineClass *mc) 4774 { 4775 /* Defaults for the latest behaviour inherited from the base class */ 4776 } 4777 4778 DEFINE_SPAPR_MACHINE(8_2, "8.2", true); 4779 4780 /* 4781 * pseries-8.1 4782 */ 4783 static void spapr_machine_8_1_class_options(MachineClass *mc) 4784 { 4785 spapr_machine_8_2_class_options(mc); 4786 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4787 } 4788 4789 DEFINE_SPAPR_MACHINE(8_1, "8.1", false); 4790 4791 /* 4792 * pseries-8.0 4793 */ 4794 static void spapr_machine_8_0_class_options(MachineClass *mc) 4795 { 4796 spapr_machine_8_1_class_options(mc); 4797 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4798 } 4799 4800 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4801 4802 /* 4803 * pseries-7.2 4804 */ 4805 static void spapr_machine_7_2_class_options(MachineClass *mc) 4806 { 4807 spapr_machine_8_0_class_options(mc); 4808 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4809 } 4810 4811 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4812 4813 /* 4814 * pseries-7.1 4815 */ 4816 static void spapr_machine_7_1_class_options(MachineClass *mc) 4817 { 4818 spapr_machine_7_2_class_options(mc); 4819 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4820 } 4821 4822 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4823 4824 /* 4825 * pseries-7.0 4826 */ 4827 static void spapr_machine_7_0_class_options(MachineClass *mc) 4828 { 4829 spapr_machine_7_1_class_options(mc); 4830 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4831 } 4832 4833 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4834 4835 /* 4836 * pseries-6.2 4837 */ 4838 static void spapr_machine_6_2_class_options(MachineClass *mc) 4839 { 4840 spapr_machine_7_0_class_options(mc); 4841 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4842 } 4843 4844 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4845 4846 /* 4847 * pseries-6.1 4848 */ 4849 static void spapr_machine_6_1_class_options(MachineClass *mc) 4850 { 4851 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4852 4853 spapr_machine_6_2_class_options(mc); 4854 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4855 smc->pre_6_2_numa_affinity = true; 4856 mc->smp_props.prefer_sockets = true; 4857 } 4858 4859 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4860 4861 /* 4862 * pseries-6.0 4863 */ 4864 static void spapr_machine_6_0_class_options(MachineClass *mc) 4865 { 4866 spapr_machine_6_1_class_options(mc); 4867 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4868 } 4869 4870 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4871 4872 /* 4873 * pseries-5.2 4874 */ 4875 static void spapr_machine_5_2_class_options(MachineClass *mc) 4876 { 4877 spapr_machine_6_0_class_options(mc); 4878 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4879 } 4880 4881 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4882 4883 /* 4884 * pseries-5.1 4885 */ 4886 static void spapr_machine_5_1_class_options(MachineClass *mc) 4887 { 4888 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4889 4890 spapr_machine_5_2_class_options(mc); 4891 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4892 smc->pre_5_2_numa_associativity = true; 4893 } 4894 4895 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4896 4897 /* 4898 * pseries-5.0 4899 */ 4900 static void spapr_machine_5_0_class_options(MachineClass *mc) 4901 { 4902 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4903 static GlobalProperty compat[] = { 4904 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4905 }; 4906 4907 spapr_machine_5_1_class_options(mc); 4908 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4909 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4910 mc->numa_mem_supported = true; 4911 smc->pre_5_1_assoc_refpoints = true; 4912 } 4913 4914 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4915 4916 /* 4917 * pseries-4.2 4918 */ 4919 static void spapr_machine_4_2_class_options(MachineClass *mc) 4920 { 4921 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4922 4923 spapr_machine_5_0_class_options(mc); 4924 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4925 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4926 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4927 smc->rma_limit = 16 * GiB; 4928 mc->nvdimm_supported = false; 4929 } 4930 4931 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4932 4933 /* 4934 * pseries-4.1 4935 */ 4936 static void spapr_machine_4_1_class_options(MachineClass *mc) 4937 { 4938 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4939 static GlobalProperty compat[] = { 4940 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4941 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4942 }; 4943 4944 spapr_machine_4_2_class_options(mc); 4945 smc->linux_pci_probe = false; 4946 smc->smp_threads_vsmt = false; 4947 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4948 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4949 } 4950 4951 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4952 4953 /* 4954 * pseries-4.0 4955 */ 4956 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4957 uint64_t *buid, hwaddr *pio, 4958 hwaddr *mmio32, hwaddr *mmio64, 4959 unsigned n_dma, uint32_t *liobns, Error **errp) 4960 { 4961 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4962 liobns, errp)) { 4963 return false; 4964 } 4965 return true; 4966 } 4967 static void spapr_machine_4_0_class_options(MachineClass *mc) 4968 { 4969 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4970 4971 spapr_machine_4_1_class_options(mc); 4972 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4973 smc->phb_placement = phb_placement_4_0; 4974 smc->irq = &spapr_irq_xics; 4975 smc->pre_4_1_migration = true; 4976 } 4977 4978 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4979 4980 /* 4981 * pseries-3.1 4982 */ 4983 static void spapr_machine_3_1_class_options(MachineClass *mc) 4984 { 4985 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4986 4987 spapr_machine_4_0_class_options(mc); 4988 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4989 4990 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4991 smc->update_dt_enabled = false; 4992 smc->dr_phb_enabled = false; 4993 smc->broken_host_serial_model = true; 4994 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4995 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4996 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4997 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4998 } 4999 5000 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 5001 5002 /* 5003 * pseries-3.0 5004 */ 5005 5006 static void spapr_machine_3_0_class_options(MachineClass *mc) 5007 { 5008 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5009 5010 spapr_machine_3_1_class_options(mc); 5011 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5012 5013 smc->legacy_irq_allocation = true; 5014 smc->nr_xirqs = 0x400; 5015 smc->irq = &spapr_irq_xics_legacy; 5016 } 5017 5018 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 5019 5020 /* 5021 * pseries-2.12 5022 */ 5023 static void spapr_machine_2_12_class_options(MachineClass *mc) 5024 { 5025 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5026 static GlobalProperty compat[] = { 5027 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5028 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5029 }; 5030 5031 spapr_machine_3_0_class_options(mc); 5032 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5033 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5034 5035 /* We depend on kvm_enabled() to choose a default value for the 5036 * hpt-max-page-size capability. Of course we can't do it here 5037 * because this is too early and the HW accelerator isn't initialized 5038 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5039 */ 5040 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5041 } 5042 5043 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5044 5045 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5046 { 5047 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5048 5049 spapr_machine_2_12_class_options(mc); 5050 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5051 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5052 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5053 } 5054 5055 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5056 5057 /* 5058 * pseries-2.11 5059 */ 5060 5061 static void spapr_machine_2_11_class_options(MachineClass *mc) 5062 { 5063 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5064 5065 spapr_machine_2_12_class_options(mc); 5066 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5067 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5068 } 5069 5070 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5071 5072 /* 5073 * pseries-2.10 5074 */ 5075 5076 static void spapr_machine_2_10_class_options(MachineClass *mc) 5077 { 5078 spapr_machine_2_11_class_options(mc); 5079 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5080 } 5081 5082 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5083 5084 /* 5085 * pseries-2.9 5086 */ 5087 5088 static void spapr_machine_2_9_class_options(MachineClass *mc) 5089 { 5090 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5091 static GlobalProperty compat[] = { 5092 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5093 }; 5094 5095 spapr_machine_2_10_class_options(mc); 5096 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5097 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5098 smc->pre_2_10_has_unused_icps = true; 5099 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5100 } 5101 5102 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5103 5104 /* 5105 * pseries-2.8 5106 */ 5107 5108 static void spapr_machine_2_8_class_options(MachineClass *mc) 5109 { 5110 static GlobalProperty compat[] = { 5111 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5112 }; 5113 5114 spapr_machine_2_9_class_options(mc); 5115 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5116 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5117 mc->numa_mem_align_shift = 23; 5118 } 5119 5120 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5121 5122 /* 5123 * pseries-2.7 5124 */ 5125 5126 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5127 uint64_t *buid, hwaddr *pio, 5128 hwaddr *mmio32, hwaddr *mmio64, 5129 unsigned n_dma, uint32_t *liobns, Error **errp) 5130 { 5131 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5132 const uint64_t base_buid = 0x800000020000000ULL; 5133 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5134 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5135 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5136 const uint32_t max_index = 255; 5137 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5138 5139 uint64_t ram_top = MACHINE(spapr)->ram_size; 5140 hwaddr phb0_base, phb_base; 5141 int i; 5142 5143 /* Do we have device memory? */ 5144 if (MACHINE(spapr)->device_memory) { 5145 /* Can't just use maxram_size, because there may be an 5146 * alignment gap between normal and device memory regions 5147 */ 5148 ram_top = MACHINE(spapr)->device_memory->base + 5149 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5150 } 5151 5152 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5153 5154 if (index > max_index) { 5155 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5156 max_index); 5157 return false; 5158 } 5159 5160 *buid = base_buid + index; 5161 for (i = 0; i < n_dma; ++i) { 5162 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5163 } 5164 5165 phb_base = phb0_base + index * phb_spacing; 5166 *pio = phb_base + pio_offset; 5167 *mmio32 = phb_base + mmio_offset; 5168 /* 5169 * We don't set the 64-bit MMIO window, relying on the PHB's 5170 * fallback behaviour of automatically splitting a large "32-bit" 5171 * window into contiguous 32-bit and 64-bit windows 5172 */ 5173 5174 return true; 5175 } 5176 5177 static void spapr_machine_2_7_class_options(MachineClass *mc) 5178 { 5179 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5180 static GlobalProperty compat[] = { 5181 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5182 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5183 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5184 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5185 }; 5186 5187 spapr_machine_2_8_class_options(mc); 5188 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5189 mc->default_machine_opts = "modern-hotplug-events=off"; 5190 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5191 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5192 smc->phb_placement = phb_placement_2_7; 5193 } 5194 5195 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5196 5197 /* 5198 * pseries-2.6 5199 */ 5200 5201 static void spapr_machine_2_6_class_options(MachineClass *mc) 5202 { 5203 static GlobalProperty compat[] = { 5204 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5205 }; 5206 5207 spapr_machine_2_7_class_options(mc); 5208 mc->has_hotpluggable_cpus = false; 5209 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5210 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5211 } 5212 5213 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5214 5215 /* 5216 * pseries-2.5 5217 */ 5218 5219 static void spapr_machine_2_5_class_options(MachineClass *mc) 5220 { 5221 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5222 static GlobalProperty compat[] = { 5223 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5224 }; 5225 5226 spapr_machine_2_6_class_options(mc); 5227 smc->use_ohci_by_default = true; 5228 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5229 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5230 } 5231 5232 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5233 5234 /* 5235 * pseries-2.4 5236 */ 5237 5238 static void spapr_machine_2_4_class_options(MachineClass *mc) 5239 { 5240 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5241 5242 spapr_machine_2_5_class_options(mc); 5243 smc->dr_lmb_enabled = false; 5244 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5245 } 5246 5247 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5248 5249 /* 5250 * pseries-2.3 5251 */ 5252 5253 static void spapr_machine_2_3_class_options(MachineClass *mc) 5254 { 5255 static GlobalProperty compat[] = { 5256 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5257 }; 5258 spapr_machine_2_4_class_options(mc); 5259 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5260 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5261 } 5262 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5263 5264 /* 5265 * pseries-2.2 5266 */ 5267 5268 static void spapr_machine_2_2_class_options(MachineClass *mc) 5269 { 5270 static GlobalProperty compat[] = { 5271 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5272 }; 5273 5274 spapr_machine_2_3_class_options(mc); 5275 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5276 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5277 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5278 } 5279 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5280 5281 /* 5282 * pseries-2.1 5283 */ 5284 5285 static void spapr_machine_2_1_class_options(MachineClass *mc) 5286 { 5287 spapr_machine_2_2_class_options(mc); 5288 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5289 } 5290 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5291 5292 static void spapr_machine_register_types(void) 5293 { 5294 type_register_static(&spapr_machine_info); 5295 } 5296 5297 type_init(spapr_machine_register_types) 5298