1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "hw/hw.h" 33 #include "qemu/log.h" 34 #include "hw/fw-path-provider.h" 35 #include "elf.h" 36 #include "net/net.h" 37 #include "sysemu/device_tree.h" 38 #include "sysemu/block-backend.h" 39 #include "sysemu/cpus.h" 40 #include "sysemu/hw_accel.h" 41 #include "kvm_ppc.h" 42 #include "migration/misc.h" 43 #include "migration/global_state.h" 44 #include "migration/register.h" 45 #include "mmu-hash64.h" 46 #include "mmu-book3s-v3.h" 47 #include "cpu-models.h" 48 #include "qom/cpu.h" 49 50 #include "hw/boards.h" 51 #include "hw/ppc/ppc.h" 52 #include "hw/loader.h" 53 54 #include "hw/ppc/fdt.h" 55 #include "hw/ppc/spapr.h" 56 #include "hw/ppc/spapr_vio.h" 57 #include "hw/pci-host/spapr.h" 58 #include "hw/ppc/xics.h" 59 #include "hw/pci/msi.h" 60 61 #include "hw/pci/pci.h" 62 #include "hw/scsi/scsi.h" 63 #include "hw/virtio/virtio-scsi.h" 64 #include "hw/virtio/vhost-scsi-common.h" 65 66 #include "exec/address-spaces.h" 67 #include "hw/usb.h" 68 #include "qemu/config-file.h" 69 #include "qemu/error-report.h" 70 #include "trace.h" 71 #include "hw/nmi.h" 72 #include "hw/intc/intc.h" 73 74 #include "hw/compat.h" 75 #include "qemu/cutils.h" 76 #include "hw/ppc/spapr_cpu_core.h" 77 #include "qmp-commands.h" 78 79 #include <libfdt.h> 80 81 /* SLOF memory layout: 82 * 83 * SLOF raw image loaded at 0, copies its romfs right below the flat 84 * device-tree, then position SLOF itself 31M below that 85 * 86 * So we set FW_OVERHEAD to 40MB which should account for all of that 87 * and more 88 * 89 * We load our kernel at 4M, leaving space for SLOF initial image 90 */ 91 #define FDT_MAX_SIZE 0x100000 92 #define RTAS_MAX_SIZE 0x10000 93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 94 #define FW_MAX_SIZE 0x400000 95 #define FW_FILE_NAME "slof.bin" 96 #define FW_OVERHEAD 0x2800000 97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 98 99 #define MIN_RMA_SLOF 128UL 100 101 #define PHANDLE_XICP 0x00001111 102 103 static ICSState *spapr_ics_create(sPAPRMachineState *spapr, 104 const char *type_ics, 105 int nr_irqs, Error **errp) 106 { 107 Error *local_err = NULL; 108 Object *obj; 109 110 obj = object_new(type_ics); 111 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); 112 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr), 113 &error_abort); 114 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err); 115 if (local_err) { 116 goto error; 117 } 118 object_property_set_bool(obj, true, "realized", &local_err); 119 if (local_err) { 120 goto error; 121 } 122 123 return ICS_SIMPLE(obj); 124 125 error: 126 error_propagate(errp, local_err); 127 return NULL; 128 } 129 130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 131 { 132 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 133 * and newer QEMUs don't even have them. In both cases, we don't want 134 * to send anything on the wire. 135 */ 136 return false; 137 } 138 139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 140 .name = "icp/server", 141 .version_id = 1, 142 .minimum_version_id = 1, 143 .needed = pre_2_10_vmstate_dummy_icp_needed, 144 .fields = (VMStateField[]) { 145 VMSTATE_UNUSED(4), /* uint32_t xirr */ 146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 147 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 148 VMSTATE_END_OF_LIST() 149 }, 150 }; 151 152 static void pre_2_10_vmstate_register_dummy_icp(int i) 153 { 154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 155 (void *)(uintptr_t) i); 156 } 157 158 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 159 { 160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 161 (void *)(uintptr_t) i); 162 } 163 164 static inline int xics_max_server_number(void) 165 { 166 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads); 167 } 168 169 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp) 170 { 171 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 172 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 173 174 if (kvm_enabled()) { 175 if (machine_kernel_irqchip_allowed(machine) && 176 !xics_kvm_init(spapr, errp)) { 177 spapr->icp_type = TYPE_KVM_ICP; 178 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp); 179 } 180 if (machine_kernel_irqchip_required(machine) && !spapr->ics) { 181 error_prepend(errp, "kernel_irqchip requested but unavailable: "); 182 return; 183 } 184 } 185 186 if (!spapr->ics) { 187 xics_spapr_init(spapr); 188 spapr->icp_type = TYPE_ICP; 189 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp); 190 if (!spapr->ics) { 191 return; 192 } 193 } 194 195 if (smc->pre_2_10_has_unused_icps) { 196 int i; 197 198 for (i = 0; i < xics_max_server_number(); i++) { 199 /* Dummy entries get deregistered when real ICPState objects 200 * are registered during CPU core hotplug. 201 */ 202 pre_2_10_vmstate_register_dummy_icp(i); 203 } 204 } 205 } 206 207 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 208 int smt_threads) 209 { 210 int i, ret = 0; 211 uint32_t servers_prop[smt_threads]; 212 uint32_t gservers_prop[smt_threads * 2]; 213 int index = spapr_vcpu_id(cpu); 214 215 if (cpu->compat_pvr) { 216 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 217 if (ret < 0) { 218 return ret; 219 } 220 } 221 222 /* Build interrupt servers and gservers properties */ 223 for (i = 0; i < smt_threads; i++) { 224 servers_prop[i] = cpu_to_be32(index + i); 225 /* Hack, direct the group queues back to cpu 0 */ 226 gservers_prop[i*2] = cpu_to_be32(index + i); 227 gservers_prop[i*2 + 1] = 0; 228 } 229 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 230 servers_prop, sizeof(servers_prop)); 231 if (ret < 0) { 232 return ret; 233 } 234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 235 gservers_prop, sizeof(gservers_prop)); 236 237 return ret; 238 } 239 240 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 241 { 242 int index = spapr_vcpu_id(cpu); 243 uint32_t associativity[] = {cpu_to_be32(0x5), 244 cpu_to_be32(0x0), 245 cpu_to_be32(0x0), 246 cpu_to_be32(0x0), 247 cpu_to_be32(cpu->node_id), 248 cpu_to_be32(index)}; 249 250 /* Advertise NUMA via ibm,associativity */ 251 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 252 sizeof(associativity)); 253 } 254 255 /* Populate the "ibm,pa-features" property */ 256 static void spapr_populate_pa_features(PowerPCCPU *cpu, void *fdt, int offset, 257 bool legacy_guest) 258 { 259 CPUPPCState *env = &cpu->env; 260 uint8_t pa_features_206[] = { 6, 0, 261 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 262 uint8_t pa_features_207[] = { 24, 0, 263 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 264 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 265 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 266 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 267 uint8_t pa_features_300[] = { 66, 0, 268 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 269 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 270 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 271 /* 6: DS207 */ 272 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 273 /* 16: Vector */ 274 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 275 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 276 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 277 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 278 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 279 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 280 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 281 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 282 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 283 /* 42: PM, 44: PC RA, 46: SC vec'd */ 284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 285 /* 48: SIMD, 50: QP BFP, 52: String */ 286 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 287 /* 54: DecFP, 56: DecI, 58: SHA */ 288 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 289 /* 60: NM atomic, 62: RNG */ 290 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 291 }; 292 uint8_t *pa_features = NULL; 293 size_t pa_size; 294 295 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 296 pa_features = pa_features_206; 297 pa_size = sizeof(pa_features_206); 298 } 299 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 300 pa_features = pa_features_207; 301 pa_size = sizeof(pa_features_207); 302 } 303 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 304 pa_features = pa_features_300; 305 pa_size = sizeof(pa_features_300); 306 } 307 if (!pa_features) { 308 return; 309 } 310 311 if (env->ci_large_pages) { 312 /* 313 * Note: we keep CI large pages off by default because a 64K capable 314 * guest provisioned with large pages might otherwise try to map a qemu 315 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 316 * even if that qemu runs on a 4k host. 317 * We dd this bit back here if we are confident this is not an issue 318 */ 319 pa_features[3] |= 0x20; 320 } 321 if (kvmppc_has_cap_htm() && pa_size > 24) { 322 pa_features[24] |= 0x80; /* Transactional memory support */ 323 } 324 if (legacy_guest && pa_size > 40) { 325 /* Workaround for broken kernels that attempt (guest) radix 326 * mode when they can't handle it, if they see the radix bit set 327 * in pa-features. So hide it from them. */ 328 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 329 } 330 331 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 332 } 333 334 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 335 { 336 int ret = 0, offset, cpus_offset; 337 CPUState *cs; 338 char cpu_model[32]; 339 int smt = kvmppc_smt_threads(); 340 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 341 342 CPU_FOREACH(cs) { 343 PowerPCCPU *cpu = POWERPC_CPU(cs); 344 DeviceClass *dc = DEVICE_GET_CLASS(cs); 345 int index = spapr_vcpu_id(cpu); 346 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 347 348 if ((index % smt) != 0) { 349 continue; 350 } 351 352 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 353 354 cpus_offset = fdt_path_offset(fdt, "/cpus"); 355 if (cpus_offset < 0) { 356 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 357 if (cpus_offset < 0) { 358 return cpus_offset; 359 } 360 } 361 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 362 if (offset < 0) { 363 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 364 if (offset < 0) { 365 return offset; 366 } 367 } 368 369 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 370 pft_size_prop, sizeof(pft_size_prop)); 371 if (ret < 0) { 372 return ret; 373 } 374 375 if (nb_numa_nodes > 1) { 376 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 377 if (ret < 0) { 378 return ret; 379 } 380 } 381 382 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 383 if (ret < 0) { 384 return ret; 385 } 386 387 spapr_populate_pa_features(cpu, fdt, offset, 388 spapr->cas_legacy_guest_workaround); 389 } 390 return ret; 391 } 392 393 static hwaddr spapr_node0_size(MachineState *machine) 394 { 395 if (nb_numa_nodes) { 396 int i; 397 for (i = 0; i < nb_numa_nodes; ++i) { 398 if (numa_info[i].node_mem) { 399 return MIN(pow2floor(numa_info[i].node_mem), 400 machine->ram_size); 401 } 402 } 403 } 404 return machine->ram_size; 405 } 406 407 static void add_str(GString *s, const gchar *s1) 408 { 409 g_string_append_len(s, s1, strlen(s1) + 1); 410 } 411 412 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 413 hwaddr size) 414 { 415 uint32_t associativity[] = { 416 cpu_to_be32(0x4), /* length */ 417 cpu_to_be32(0x0), cpu_to_be32(0x0), 418 cpu_to_be32(0x0), cpu_to_be32(nodeid) 419 }; 420 char mem_name[32]; 421 uint64_t mem_reg_property[2]; 422 int off; 423 424 mem_reg_property[0] = cpu_to_be64(start); 425 mem_reg_property[1] = cpu_to_be64(size); 426 427 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 428 off = fdt_add_subnode(fdt, 0, mem_name); 429 _FDT(off); 430 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 431 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 432 sizeof(mem_reg_property)))); 433 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 434 sizeof(associativity)))); 435 return off; 436 } 437 438 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 439 { 440 MachineState *machine = MACHINE(spapr); 441 hwaddr mem_start, node_size; 442 int i, nb_nodes = nb_numa_nodes; 443 NodeInfo *nodes = numa_info; 444 NodeInfo ramnode; 445 446 /* No NUMA nodes, assume there is just one node with whole RAM */ 447 if (!nb_numa_nodes) { 448 nb_nodes = 1; 449 ramnode.node_mem = machine->ram_size; 450 nodes = &ramnode; 451 } 452 453 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 454 if (!nodes[i].node_mem) { 455 continue; 456 } 457 if (mem_start >= machine->ram_size) { 458 node_size = 0; 459 } else { 460 node_size = nodes[i].node_mem; 461 if (node_size > machine->ram_size - mem_start) { 462 node_size = machine->ram_size - mem_start; 463 } 464 } 465 if (!mem_start) { 466 /* ppc_spapr_init() checks for rma_size <= node0_size already */ 467 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 468 mem_start += spapr->rma_size; 469 node_size -= spapr->rma_size; 470 } 471 for ( ; node_size; ) { 472 hwaddr sizetmp = pow2floor(node_size); 473 474 /* mem_start != 0 here */ 475 if (ctzl(mem_start) < ctzl(sizetmp)) { 476 sizetmp = 1ULL << ctzl(mem_start); 477 } 478 479 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 480 node_size -= sizetmp; 481 mem_start += sizetmp; 482 } 483 } 484 485 return 0; 486 } 487 488 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 489 sPAPRMachineState *spapr) 490 { 491 PowerPCCPU *cpu = POWERPC_CPU(cs); 492 CPUPPCState *env = &cpu->env; 493 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 494 int index = spapr_vcpu_id(cpu); 495 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 496 0xffffffff, 0xffffffff}; 497 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 498 : SPAPR_TIMEBASE_FREQ; 499 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 500 uint32_t page_sizes_prop[64]; 501 size_t page_sizes_prop_size; 502 uint32_t vcpus_per_socket = smp_threads * smp_cores; 503 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 504 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 505 sPAPRDRConnector *drc; 506 int drc_index; 507 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 508 int i; 509 510 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 511 if (drc) { 512 drc_index = spapr_drc_index(drc); 513 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 514 } 515 516 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 517 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 518 519 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 520 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 521 env->dcache_line_size))); 522 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 523 env->dcache_line_size))); 524 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 525 env->icache_line_size))); 526 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 527 env->icache_line_size))); 528 529 if (pcc->l1_dcache_size) { 530 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 531 pcc->l1_dcache_size))); 532 } else { 533 warn_report("Unknown L1 dcache size for cpu"); 534 } 535 if (pcc->l1_icache_size) { 536 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 537 pcc->l1_icache_size))); 538 } else { 539 warn_report("Unknown L1 icache size for cpu"); 540 } 541 542 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 543 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 544 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); 545 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); 546 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 547 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 548 549 if (env->spr_cb[SPR_PURR].oea_read) { 550 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 551 } 552 553 if (env->mmu_model & POWERPC_MMU_1TSEG) { 554 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 555 segs, sizeof(segs)))); 556 } 557 558 /* Advertise VMX/VSX (vector extensions) if available 559 * 0 / no property == no vector extensions 560 * 1 == VMX / Altivec available 561 * 2 == VSX available */ 562 if (env->insns_flags & PPC_ALTIVEC) { 563 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 564 565 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 566 } 567 568 /* Advertise DFP (Decimal Floating Point) if available 569 * 0 / no property == no DFP 570 * 1 == DFP available */ 571 if (env->insns_flags2 & PPC2_DFP) { 572 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 573 } 574 575 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, 576 sizeof(page_sizes_prop)); 577 if (page_sizes_prop_size) { 578 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 579 page_sizes_prop, page_sizes_prop_size))); 580 } 581 582 spapr_populate_pa_features(cpu, fdt, offset, false); 583 584 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 585 cs->cpu_index / vcpus_per_socket))); 586 587 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 588 pft_size_prop, sizeof(pft_size_prop)))); 589 590 if (nb_numa_nodes > 1) { 591 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 592 } 593 594 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 595 596 if (pcc->radix_page_info) { 597 for (i = 0; i < pcc->radix_page_info->count; i++) { 598 radix_AP_encodings[i] = 599 cpu_to_be32(pcc->radix_page_info->entries[i]); 600 } 601 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 602 radix_AP_encodings, 603 pcc->radix_page_info->count * 604 sizeof(radix_AP_encodings[0])))); 605 } 606 } 607 608 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 609 { 610 CPUState *cs; 611 int cpus_offset; 612 char *nodename; 613 int smt = kvmppc_smt_threads(); 614 615 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 616 _FDT(cpus_offset); 617 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 618 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 619 620 /* 621 * We walk the CPUs in reverse order to ensure that CPU DT nodes 622 * created by fdt_add_subnode() end up in the right order in FDT 623 * for the guest kernel the enumerate the CPUs correctly. 624 */ 625 CPU_FOREACH_REVERSE(cs) { 626 PowerPCCPU *cpu = POWERPC_CPU(cs); 627 int index = spapr_vcpu_id(cpu); 628 DeviceClass *dc = DEVICE_GET_CLASS(cs); 629 int offset; 630 631 if ((index % smt) != 0) { 632 continue; 633 } 634 635 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 636 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 637 g_free(nodename); 638 _FDT(offset); 639 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 640 } 641 642 } 643 644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 645 { 646 MemoryDeviceInfoList *info; 647 648 for (info = list; info; info = info->next) { 649 MemoryDeviceInfo *value = info->value; 650 651 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 652 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 653 654 if (pcdimm_info->addr >= addr && 655 addr < (pcdimm_info->addr + pcdimm_info->size)) { 656 return pcdimm_info->node; 657 } 658 } 659 } 660 661 return -1; 662 } 663 664 /* 665 * Adds ibm,dynamic-reconfiguration-memory node. 666 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 667 * of this device tree node. 668 */ 669 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 670 { 671 MachineState *machine = MACHINE(spapr); 672 int ret, i, offset; 673 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 674 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 675 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; 676 uint32_t nr_lmbs = (spapr->hotplug_memory.base + 677 memory_region_size(&spapr->hotplug_memory.mr)) / 678 lmb_size; 679 uint32_t *int_buf, *cur_index, buf_len; 680 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 681 MemoryDeviceInfoList *dimms = NULL; 682 683 /* 684 * Don't create the node if there is no hotpluggable memory 685 */ 686 if (machine->ram_size == machine->maxram_size) { 687 return 0; 688 } 689 690 /* 691 * Allocate enough buffer size to fit in ibm,dynamic-memory 692 * or ibm,associativity-lookup-arrays 693 */ 694 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) 695 * sizeof(uint32_t); 696 cur_index = int_buf = g_malloc0(buf_len); 697 698 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 699 700 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 701 sizeof(prop_lmb_size)); 702 if (ret < 0) { 703 goto out; 704 } 705 706 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 707 if (ret < 0) { 708 goto out; 709 } 710 711 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 712 if (ret < 0) { 713 goto out; 714 } 715 716 if (hotplug_lmb_start) { 717 MemoryDeviceInfoList **prev = &dimms; 718 qmp_pc_dimm_device_list(qdev_get_machine(), &prev); 719 } 720 721 /* ibm,dynamic-memory */ 722 int_buf[0] = cpu_to_be32(nr_lmbs); 723 cur_index++; 724 for (i = 0; i < nr_lmbs; i++) { 725 uint64_t addr = i * lmb_size; 726 uint32_t *dynamic_memory = cur_index; 727 728 if (i >= hotplug_lmb_start) { 729 sPAPRDRConnector *drc; 730 731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 732 g_assert(drc); 733 734 dynamic_memory[0] = cpu_to_be32(addr >> 32); 735 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 736 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 737 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 738 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 739 if (memory_region_present(get_system_memory(), addr)) { 740 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 741 } else { 742 dynamic_memory[5] = cpu_to_be32(0); 743 } 744 } else { 745 /* 746 * LMB information for RMA, boot time RAM and gap b/n RAM and 747 * hotplug memory region -- all these are marked as reserved 748 * and as having no valid DRC. 749 */ 750 dynamic_memory[0] = cpu_to_be32(addr >> 32); 751 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 752 dynamic_memory[2] = cpu_to_be32(0); 753 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 754 dynamic_memory[4] = cpu_to_be32(-1); 755 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 756 SPAPR_LMB_FLAGS_DRC_INVALID); 757 } 758 759 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 760 } 761 qapi_free_MemoryDeviceInfoList(dimms); 762 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 763 if (ret < 0) { 764 goto out; 765 } 766 767 /* ibm,associativity-lookup-arrays */ 768 cur_index = int_buf; 769 int_buf[0] = cpu_to_be32(nr_nodes); 770 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 771 cur_index += 2; 772 for (i = 0; i < nr_nodes; i++) { 773 uint32_t associativity[] = { 774 cpu_to_be32(0x0), 775 cpu_to_be32(0x0), 776 cpu_to_be32(0x0), 777 cpu_to_be32(i) 778 }; 779 memcpy(cur_index, associativity, sizeof(associativity)); 780 cur_index += 4; 781 } 782 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 783 (cur_index - int_buf) * sizeof(uint32_t)); 784 out: 785 g_free(int_buf); 786 return ret; 787 } 788 789 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 790 sPAPROptionVector *ov5_updates) 791 { 792 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 793 int ret = 0, offset; 794 795 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 796 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 797 g_assert(smc->dr_lmb_enabled); 798 ret = spapr_populate_drconf_memory(spapr, fdt); 799 if (ret) { 800 goto out; 801 } 802 } 803 804 offset = fdt_path_offset(fdt, "/chosen"); 805 if (offset < 0) { 806 offset = fdt_add_subnode(fdt, 0, "chosen"); 807 if (offset < 0) { 808 return offset; 809 } 810 } 811 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 812 "ibm,architecture-vec-5"); 813 814 out: 815 return ret; 816 } 817 818 static bool spapr_hotplugged_dev_before_cas(void) 819 { 820 Object *drc_container, *obj; 821 ObjectProperty *prop; 822 ObjectPropertyIterator iter; 823 824 drc_container = container_get(object_get_root(), "/dr-connector"); 825 object_property_iter_init(&iter, drc_container); 826 while ((prop = object_property_iter_next(&iter))) { 827 if (!strstart(prop->type, "link<", NULL)) { 828 continue; 829 } 830 obj = object_property_get_link(drc_container, prop->name, NULL); 831 if (spapr_drc_needed(obj)) { 832 return true; 833 } 834 } 835 return false; 836 } 837 838 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 839 target_ulong addr, target_ulong size, 840 sPAPROptionVector *ov5_updates) 841 { 842 void *fdt, *fdt_skel; 843 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 844 845 if (spapr_hotplugged_dev_before_cas()) { 846 return 1; 847 } 848 849 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 850 error_report("SLOF provided an unexpected CAS buffer size " 851 TARGET_FMT_lu " (min: %zu, max: %u)", 852 size, sizeof(hdr), FW_MAX_SIZE); 853 exit(EXIT_FAILURE); 854 } 855 856 size -= sizeof(hdr); 857 858 /* Create skeleton */ 859 fdt_skel = g_malloc0(size); 860 _FDT((fdt_create(fdt_skel, size))); 861 _FDT((fdt_begin_node(fdt_skel, ""))); 862 _FDT((fdt_end_node(fdt_skel))); 863 _FDT((fdt_finish(fdt_skel))); 864 fdt = g_malloc0(size); 865 _FDT((fdt_open_into(fdt_skel, fdt, size))); 866 g_free(fdt_skel); 867 868 /* Fixup cpu nodes */ 869 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 870 871 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 872 return -1; 873 } 874 875 /* Pack resulting tree */ 876 _FDT((fdt_pack(fdt))); 877 878 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 879 trace_spapr_cas_failed(size); 880 return -1; 881 } 882 883 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 884 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 885 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 886 g_free(fdt); 887 888 return 0; 889 } 890 891 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 892 { 893 int rtas; 894 GString *hypertas = g_string_sized_new(256); 895 GString *qemu_hypertas = g_string_sized_new(256); 896 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 897 uint64_t max_hotplug_addr = spapr->hotplug_memory.base + 898 memory_region_size(&spapr->hotplug_memory.mr); 899 uint32_t lrdr_capacity[] = { 900 cpu_to_be32(max_hotplug_addr >> 32), 901 cpu_to_be32(max_hotplug_addr & 0xffffffff), 902 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 903 cpu_to_be32(max_cpus / smp_threads), 904 }; 905 906 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 907 908 /* hypertas */ 909 add_str(hypertas, "hcall-pft"); 910 add_str(hypertas, "hcall-term"); 911 add_str(hypertas, "hcall-dabr"); 912 add_str(hypertas, "hcall-interrupt"); 913 add_str(hypertas, "hcall-tce"); 914 add_str(hypertas, "hcall-vio"); 915 add_str(hypertas, "hcall-splpar"); 916 add_str(hypertas, "hcall-bulk"); 917 add_str(hypertas, "hcall-set-mode"); 918 add_str(hypertas, "hcall-sprg0"); 919 add_str(hypertas, "hcall-copy"); 920 add_str(hypertas, "hcall-debug"); 921 add_str(qemu_hypertas, "hcall-memop1"); 922 923 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 924 add_str(hypertas, "hcall-multi-tce"); 925 } 926 927 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 928 add_str(hypertas, "hcall-hpt-resize"); 929 } 930 931 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 932 hypertas->str, hypertas->len)); 933 g_string_free(hypertas, TRUE); 934 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 935 qemu_hypertas->str, qemu_hypertas->len)); 936 g_string_free(qemu_hypertas, TRUE); 937 938 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 939 refpoints, sizeof(refpoints))); 940 941 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 942 RTAS_ERROR_LOG_MAX)); 943 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 944 RTAS_EVENT_SCAN_RATE)); 945 946 g_assert(msi_nonbroken); 947 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 948 949 /* 950 * According to PAPR, rtas ibm,os-term does not guarantee a return 951 * back to the guest cpu. 952 * 953 * While an additional ibm,extended-os-term property indicates 954 * that rtas call return will always occur. Set this property. 955 */ 956 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 957 958 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 959 lrdr_capacity, sizeof(lrdr_capacity))); 960 961 spapr_dt_rtas_tokens(fdt, rtas); 962 } 963 964 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features 965 * that the guest may request and thus the valid values for bytes 24..26 of 966 * option vector 5: */ 967 static void spapr_dt_ov5_platform_support(void *fdt, int chosen) 968 { 969 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 970 971 char val[2 * 4] = { 972 23, 0x00, /* Xive mode, filled in below. */ 973 24, 0x00, /* Hash/Radix, filled in below. */ 974 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 975 26, 0x40, /* Radix options: GTSE == yes. */ 976 }; 977 978 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 979 first_ppc_cpu->compat_pvr)) { 980 /* If we're in a pre POWER9 compat mode then the guest should do hash */ 981 val[3] = 0x00; /* Hash */ 982 } else if (kvm_enabled()) { 983 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 984 val[3] = 0x80; /* OV5_MMU_BOTH */ 985 } else if (kvmppc_has_cap_mmu_radix()) { 986 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 987 } else { 988 val[3] = 0x00; /* Hash */ 989 } 990 } else { 991 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 992 val[3] = 0xC0; 993 } 994 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 995 val, sizeof(val))); 996 } 997 998 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 999 { 1000 MachineState *machine = MACHINE(spapr); 1001 int chosen; 1002 const char *boot_device = machine->boot_order; 1003 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1004 size_t cb = 0; 1005 char *bootlist = get_boot_devices_list(&cb, true); 1006 1007 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1008 1009 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1010 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1011 spapr->initrd_base)); 1012 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1013 spapr->initrd_base + spapr->initrd_size)); 1014 1015 if (spapr->kernel_size) { 1016 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1017 cpu_to_be64(spapr->kernel_size) }; 1018 1019 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1020 &kprop, sizeof(kprop))); 1021 if (spapr->kernel_le) { 1022 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1023 } 1024 } 1025 if (boot_menu) { 1026 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1027 } 1028 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1029 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1030 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1031 1032 if (cb && bootlist) { 1033 int i; 1034 1035 for (i = 0; i < cb; i++) { 1036 if (bootlist[i] == '\n') { 1037 bootlist[i] = ' '; 1038 } 1039 } 1040 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1041 } 1042 1043 if (boot_device && strlen(boot_device)) { 1044 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1045 } 1046 1047 if (!spapr->has_graphics && stdout_path) { 1048 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1049 } 1050 1051 spapr_dt_ov5_platform_support(fdt, chosen); 1052 1053 g_free(stdout_path); 1054 g_free(bootlist); 1055 } 1056 1057 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 1058 { 1059 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1060 * KVM to work under pHyp with some guest co-operation */ 1061 int hypervisor; 1062 uint8_t hypercall[16]; 1063 1064 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1065 /* indicate KVM hypercall interface */ 1066 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1067 if (kvmppc_has_cap_fixup_hcalls()) { 1068 /* 1069 * Older KVM versions with older guest kernels were broken 1070 * with the magic page, don't allow the guest to map it. 1071 */ 1072 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1073 sizeof(hypercall))) { 1074 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1075 hypercall, sizeof(hypercall))); 1076 } 1077 } 1078 } 1079 1080 static void *spapr_build_fdt(sPAPRMachineState *spapr, 1081 hwaddr rtas_addr, 1082 hwaddr rtas_size) 1083 { 1084 MachineState *machine = MACHINE(spapr); 1085 MachineClass *mc = MACHINE_GET_CLASS(machine); 1086 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1087 int ret; 1088 void *fdt; 1089 sPAPRPHBState *phb; 1090 char *buf; 1091 1092 fdt = g_malloc0(FDT_MAX_SIZE); 1093 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1094 1095 /* Root node */ 1096 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1097 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1098 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1099 1100 /* 1101 * Add info to guest to indentify which host is it being run on 1102 * and what is the uuid of the guest 1103 */ 1104 if (kvmppc_get_host_model(&buf)) { 1105 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1106 g_free(buf); 1107 } 1108 if (kvmppc_get_host_serial(&buf)) { 1109 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1110 g_free(buf); 1111 } 1112 1113 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1114 1115 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1116 if (qemu_uuid_set) { 1117 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1118 } 1119 g_free(buf); 1120 1121 if (qemu_get_vm_name()) { 1122 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1123 qemu_get_vm_name())); 1124 } 1125 1126 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1127 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1128 1129 /* /interrupt controller */ 1130 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP); 1131 1132 ret = spapr_populate_memory(spapr, fdt); 1133 if (ret < 0) { 1134 error_report("couldn't setup memory nodes in fdt"); 1135 exit(1); 1136 } 1137 1138 /* /vdevice */ 1139 spapr_dt_vdevice(spapr->vio_bus, fdt); 1140 1141 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1142 ret = spapr_rng_populate_dt(fdt); 1143 if (ret < 0) { 1144 error_report("could not set up rng device in the fdt"); 1145 exit(1); 1146 } 1147 } 1148 1149 QLIST_FOREACH(phb, &spapr->phbs, list) { 1150 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 1151 if (ret < 0) { 1152 error_report("couldn't setup PCI devices in fdt"); 1153 exit(1); 1154 } 1155 } 1156 1157 /* cpus */ 1158 spapr_populate_cpus_dt_node(fdt, spapr); 1159 1160 if (smc->dr_lmb_enabled) { 1161 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1162 } 1163 1164 if (mc->has_hotpluggable_cpus) { 1165 int offset = fdt_path_offset(fdt, "/cpus"); 1166 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1167 SPAPR_DR_CONNECTOR_TYPE_CPU); 1168 if (ret < 0) { 1169 error_report("Couldn't set up CPU DR device tree properties"); 1170 exit(1); 1171 } 1172 } 1173 1174 /* /event-sources */ 1175 spapr_dt_events(spapr, fdt); 1176 1177 /* /rtas */ 1178 spapr_dt_rtas(spapr, fdt); 1179 1180 /* /chosen */ 1181 spapr_dt_chosen(spapr, fdt); 1182 1183 /* /hypervisor */ 1184 if (kvm_enabled()) { 1185 spapr_dt_hypervisor(spapr, fdt); 1186 } 1187 1188 /* Build memory reserve map */ 1189 if (spapr->kernel_size) { 1190 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1191 } 1192 if (spapr->initrd_size) { 1193 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1194 } 1195 1196 /* ibm,client-architecture-support updates */ 1197 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1198 if (ret < 0) { 1199 error_report("couldn't setup CAS properties fdt"); 1200 exit(1); 1201 } 1202 1203 return fdt; 1204 } 1205 1206 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1207 { 1208 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1209 } 1210 1211 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1212 PowerPCCPU *cpu) 1213 { 1214 CPUPPCState *env = &cpu->env; 1215 1216 /* The TCG path should also be holding the BQL at this point */ 1217 g_assert(qemu_mutex_iothread_locked()); 1218 1219 if (msr_pr) { 1220 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1221 env->gpr[3] = H_PRIVILEGE; 1222 } else { 1223 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1224 } 1225 } 1226 1227 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1228 { 1229 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1230 1231 return spapr->patb_entry; 1232 } 1233 1234 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1235 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1236 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1237 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1238 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1239 1240 /* 1241 * Get the fd to access the kernel htab, re-opening it if necessary 1242 */ 1243 static int get_htab_fd(sPAPRMachineState *spapr) 1244 { 1245 Error *local_err = NULL; 1246 1247 if (spapr->htab_fd >= 0) { 1248 return spapr->htab_fd; 1249 } 1250 1251 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1252 if (spapr->htab_fd < 0) { 1253 error_report_err(local_err); 1254 } 1255 1256 return spapr->htab_fd; 1257 } 1258 1259 void close_htab_fd(sPAPRMachineState *spapr) 1260 { 1261 if (spapr->htab_fd >= 0) { 1262 close(spapr->htab_fd); 1263 } 1264 spapr->htab_fd = -1; 1265 } 1266 1267 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1268 { 1269 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1270 1271 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1272 } 1273 1274 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1275 { 1276 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1277 1278 assert(kvm_enabled()); 1279 1280 if (!spapr->htab) { 1281 return 0; 1282 } 1283 1284 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1285 } 1286 1287 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1288 hwaddr ptex, int n) 1289 { 1290 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1291 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1292 1293 if (!spapr->htab) { 1294 /* 1295 * HTAB is controlled by KVM. Fetch into temporary buffer 1296 */ 1297 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1298 kvmppc_read_hptes(hptes, ptex, n); 1299 return hptes; 1300 } 1301 1302 /* 1303 * HTAB is controlled by QEMU. Just point to the internally 1304 * accessible PTEG. 1305 */ 1306 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1307 } 1308 1309 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1310 const ppc_hash_pte64_t *hptes, 1311 hwaddr ptex, int n) 1312 { 1313 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1314 1315 if (!spapr->htab) { 1316 g_free((void *)hptes); 1317 } 1318 1319 /* Nothing to do for qemu managed HPT */ 1320 } 1321 1322 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1323 uint64_t pte0, uint64_t pte1) 1324 { 1325 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1326 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1327 1328 if (!spapr->htab) { 1329 kvmppc_write_hpte(ptex, pte0, pte1); 1330 } else { 1331 stq_p(spapr->htab + offset, pte0); 1332 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1333 } 1334 } 1335 1336 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1337 { 1338 int shift; 1339 1340 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1341 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1342 * that's much more than is needed for Linux guests */ 1343 shift = ctz64(pow2ceil(ramsize)) - 7; 1344 shift = MAX(shift, 18); /* Minimum architected size */ 1345 shift = MIN(shift, 46); /* Maximum architected size */ 1346 return shift; 1347 } 1348 1349 void spapr_free_hpt(sPAPRMachineState *spapr) 1350 { 1351 g_free(spapr->htab); 1352 spapr->htab = NULL; 1353 spapr->htab_shift = 0; 1354 close_htab_fd(spapr); 1355 } 1356 1357 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1358 Error **errp) 1359 { 1360 long rc; 1361 1362 /* Clean up any HPT info from a previous boot */ 1363 spapr_free_hpt(spapr); 1364 1365 rc = kvmppc_reset_htab(shift); 1366 if (rc < 0) { 1367 /* kernel-side HPT needed, but couldn't allocate one */ 1368 error_setg_errno(errp, errno, 1369 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1370 shift); 1371 /* This is almost certainly fatal, but if the caller really 1372 * wants to carry on with shift == 0, it's welcome to try */ 1373 } else if (rc > 0) { 1374 /* kernel-side HPT allocated */ 1375 if (rc != shift) { 1376 error_setg(errp, 1377 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1378 shift, rc); 1379 } 1380 1381 spapr->htab_shift = shift; 1382 spapr->htab = NULL; 1383 } else { 1384 /* kernel-side HPT not needed, allocate in userspace instead */ 1385 size_t size = 1ULL << shift; 1386 int i; 1387 1388 spapr->htab = qemu_memalign(size, size); 1389 if (!spapr->htab) { 1390 error_setg_errno(errp, errno, 1391 "Could not allocate HPT of order %d", shift); 1392 return; 1393 } 1394 1395 memset(spapr->htab, 0, size); 1396 spapr->htab_shift = shift; 1397 1398 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1399 DIRTY_HPTE(HPTE(spapr->htab, i)); 1400 } 1401 } 1402 /* We're setting up a hash table, so that means we're not radix */ 1403 spapr->patb_entry = 0; 1404 } 1405 1406 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1407 { 1408 int hpt_shift; 1409 1410 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1411 || (spapr->cas_reboot 1412 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1413 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1414 } else { 1415 uint64_t current_ram_size; 1416 1417 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1418 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1419 } 1420 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1421 1422 if (spapr->vrma_adjust) { 1423 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1424 spapr->htab_shift); 1425 } 1426 } 1427 1428 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) 1429 { 1430 bool matched = false; 1431 1432 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 1433 matched = true; 1434 } 1435 1436 if (!matched) { 1437 error_report("Device %s is not supported by this machine yet.", 1438 qdev_fw_name(DEVICE(sbdev))); 1439 exit(1); 1440 } 1441 } 1442 1443 static int spapr_reset_drcs(Object *child, void *opaque) 1444 { 1445 sPAPRDRConnector *drc = 1446 (sPAPRDRConnector *) object_dynamic_cast(child, 1447 TYPE_SPAPR_DR_CONNECTOR); 1448 1449 if (drc) { 1450 spapr_drc_reset(drc); 1451 } 1452 1453 return 0; 1454 } 1455 1456 static void spapr_machine_reset(void) 1457 { 1458 MachineState *machine = MACHINE(qdev_get_machine()); 1459 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1460 PowerPCCPU *first_ppc_cpu; 1461 uint32_t rtas_limit; 1462 hwaddr rtas_addr, fdt_addr; 1463 void *fdt; 1464 int rc; 1465 1466 /* Check for unknown sysbus devices */ 1467 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); 1468 1469 first_ppc_cpu = POWERPC_CPU(first_cpu); 1470 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1471 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1472 spapr->max_compat_pvr)) { 1473 /* If using KVM with radix mode available, VCPUs can be started 1474 * without a HPT because KVM will start them in radix mode. 1475 * Set the GR bit in PATB so that we know there is no HPT. */ 1476 spapr->patb_entry = PATBE1_GR; 1477 } else { 1478 spapr_setup_hpt_and_vrma(spapr); 1479 } 1480 1481 qemu_devices_reset(); 1482 1483 /* DRC reset may cause a device to be unplugged. This will cause troubles 1484 * if this device is used by another device (eg, a running vhost backend 1485 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1486 * situations, we reset DRCs after all devices have been reset. 1487 */ 1488 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1489 1490 spapr_clear_pending_events(spapr); 1491 1492 /* 1493 * We place the device tree and RTAS just below either the top of the RMA, 1494 * or just below 2GB, whichever is lowere, so that it can be 1495 * processed with 32-bit real mode code if necessary 1496 */ 1497 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1498 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1499 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1500 1501 /* if this reset wasn't generated by CAS, we should reset our 1502 * negotiated options and start from scratch */ 1503 if (!spapr->cas_reboot) { 1504 spapr_ovec_cleanup(spapr->ov5_cas); 1505 spapr->ov5_cas = spapr_ovec_new(); 1506 1507 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1508 } 1509 1510 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1511 1512 spapr_load_rtas(spapr, fdt, rtas_addr); 1513 1514 rc = fdt_pack(fdt); 1515 1516 /* Should only fail if we've built a corrupted tree */ 1517 assert(rc == 0); 1518 1519 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1520 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1521 fdt_totalsize(fdt), FDT_MAX_SIZE); 1522 exit(1); 1523 } 1524 1525 /* Load the fdt */ 1526 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1527 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1528 g_free(fdt); 1529 1530 /* Set up the entry state */ 1531 first_ppc_cpu->env.gpr[3] = fdt_addr; 1532 first_ppc_cpu->env.gpr[5] = 0; 1533 first_cpu->halted = 0; 1534 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; 1535 1536 spapr->cas_reboot = false; 1537 } 1538 1539 static void spapr_create_nvram(sPAPRMachineState *spapr) 1540 { 1541 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1542 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1543 1544 if (dinfo) { 1545 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1546 &error_fatal); 1547 } 1548 1549 qdev_init_nofail(dev); 1550 1551 spapr->nvram = (struct sPAPRNVRAM *)dev; 1552 } 1553 1554 static void spapr_rtc_create(sPAPRMachineState *spapr) 1555 { 1556 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1557 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1558 &error_fatal); 1559 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1560 &error_fatal); 1561 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1562 "date", &error_fatal); 1563 } 1564 1565 /* Returns whether we want to use VGA or not */ 1566 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1567 { 1568 switch (vga_interface_type) { 1569 case VGA_NONE: 1570 return false; 1571 case VGA_DEVICE: 1572 return true; 1573 case VGA_STD: 1574 case VGA_VIRTIO: 1575 return pci_vga_init(pci_bus) != NULL; 1576 default: 1577 error_setg(errp, 1578 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1579 return false; 1580 } 1581 } 1582 1583 static int spapr_post_load(void *opaque, int version_id) 1584 { 1585 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1586 int err = 0; 1587 1588 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1589 CPUState *cs; 1590 CPU_FOREACH(cs) { 1591 PowerPCCPU *cpu = POWERPC_CPU(cs); 1592 icp_resend(ICP(cpu->intc)); 1593 } 1594 } 1595 1596 /* In earlier versions, there was no separate qdev for the PAPR 1597 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1598 * So when migrating from those versions, poke the incoming offset 1599 * value into the RTC device */ 1600 if (version_id < 3) { 1601 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1602 } 1603 1604 if (kvm_enabled() && spapr->patb_entry) { 1605 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1606 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1607 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1608 1609 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1610 if (err) { 1611 error_report("Process table config unsupported by the host"); 1612 return -EINVAL; 1613 } 1614 } 1615 1616 return err; 1617 } 1618 1619 static bool version_before_3(void *opaque, int version_id) 1620 { 1621 return version_id < 3; 1622 } 1623 1624 static bool spapr_pending_events_needed(void *opaque) 1625 { 1626 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1627 return !QTAILQ_EMPTY(&spapr->pending_events); 1628 } 1629 1630 static const VMStateDescription vmstate_spapr_event_entry = { 1631 .name = "spapr_event_log_entry", 1632 .version_id = 1, 1633 .minimum_version_id = 1, 1634 .fields = (VMStateField[]) { 1635 VMSTATE_UINT32(summary, sPAPREventLogEntry), 1636 VMSTATE_UINT32(extended_length, sPAPREventLogEntry), 1637 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, 1638 NULL, extended_length), 1639 VMSTATE_END_OF_LIST() 1640 }, 1641 }; 1642 1643 static const VMStateDescription vmstate_spapr_pending_events = { 1644 .name = "spapr_pending_events", 1645 .version_id = 1, 1646 .minimum_version_id = 1, 1647 .needed = spapr_pending_events_needed, 1648 .fields = (VMStateField[]) { 1649 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, 1650 vmstate_spapr_event_entry, sPAPREventLogEntry, next), 1651 VMSTATE_END_OF_LIST() 1652 }, 1653 }; 1654 1655 static bool spapr_ov5_cas_needed(void *opaque) 1656 { 1657 sPAPRMachineState *spapr = opaque; 1658 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1659 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1660 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1661 bool cas_needed; 1662 1663 /* Prior to the introduction of sPAPROptionVector, we had two option 1664 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1665 * Both of these options encode machine topology into the device-tree 1666 * in such a way that the now-booted OS should still be able to interact 1667 * appropriately with QEMU regardless of what options were actually 1668 * negotiatied on the source side. 1669 * 1670 * As such, we can avoid migrating the CAS-negotiated options if these 1671 * are the only options available on the current machine/platform. 1672 * Since these are the only options available for pseries-2.7 and 1673 * earlier, this allows us to maintain old->new/new->old migration 1674 * compatibility. 1675 * 1676 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1677 * via default pseries-2.8 machines and explicit command-line parameters. 1678 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1679 * of the actual CAS-negotiated values to continue working properly. For 1680 * example, availability of memory unplug depends on knowing whether 1681 * OV5_HP_EVT was negotiated via CAS. 1682 * 1683 * Thus, for any cases where the set of available CAS-negotiatable 1684 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1685 * include the CAS-negotiated options in the migration stream. 1686 */ 1687 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1688 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1689 1690 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1691 * the mask itself since in the future it's possible "legacy" bits may be 1692 * removed via machine options, which could generate a false positive 1693 * that breaks migration. 1694 */ 1695 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1696 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1697 1698 spapr_ovec_cleanup(ov5_mask); 1699 spapr_ovec_cleanup(ov5_legacy); 1700 spapr_ovec_cleanup(ov5_removed); 1701 1702 return cas_needed; 1703 } 1704 1705 static const VMStateDescription vmstate_spapr_ov5_cas = { 1706 .name = "spapr_option_vector_ov5_cas", 1707 .version_id = 1, 1708 .minimum_version_id = 1, 1709 .needed = spapr_ov5_cas_needed, 1710 .fields = (VMStateField[]) { 1711 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1712 vmstate_spapr_ovec, sPAPROptionVector), 1713 VMSTATE_END_OF_LIST() 1714 }, 1715 }; 1716 1717 static bool spapr_patb_entry_needed(void *opaque) 1718 { 1719 sPAPRMachineState *spapr = opaque; 1720 1721 return !!spapr->patb_entry; 1722 } 1723 1724 static const VMStateDescription vmstate_spapr_patb_entry = { 1725 .name = "spapr_patb_entry", 1726 .version_id = 1, 1727 .minimum_version_id = 1, 1728 .needed = spapr_patb_entry_needed, 1729 .fields = (VMStateField[]) { 1730 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1731 VMSTATE_END_OF_LIST() 1732 }, 1733 }; 1734 1735 static const VMStateDescription vmstate_spapr = { 1736 .name = "spapr", 1737 .version_id = 3, 1738 .minimum_version_id = 1, 1739 .post_load = spapr_post_load, 1740 .fields = (VMStateField[]) { 1741 /* used to be @next_irq */ 1742 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1743 1744 /* RTC offset */ 1745 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1746 1747 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1748 VMSTATE_END_OF_LIST() 1749 }, 1750 .subsections = (const VMStateDescription*[]) { 1751 &vmstate_spapr_ov5_cas, 1752 &vmstate_spapr_patb_entry, 1753 &vmstate_spapr_pending_events, 1754 NULL 1755 } 1756 }; 1757 1758 static int htab_save_setup(QEMUFile *f, void *opaque) 1759 { 1760 sPAPRMachineState *spapr = opaque; 1761 1762 /* "Iteration" header */ 1763 if (!spapr->htab_shift) { 1764 qemu_put_be32(f, -1); 1765 } else { 1766 qemu_put_be32(f, spapr->htab_shift); 1767 } 1768 1769 if (spapr->htab) { 1770 spapr->htab_save_index = 0; 1771 spapr->htab_first_pass = true; 1772 } else { 1773 if (spapr->htab_shift) { 1774 assert(kvm_enabled()); 1775 } 1776 } 1777 1778 1779 return 0; 1780 } 1781 1782 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, 1783 int chunkstart, int n_valid, int n_invalid) 1784 { 1785 qemu_put_be32(f, chunkstart); 1786 qemu_put_be16(f, n_valid); 1787 qemu_put_be16(f, n_invalid); 1788 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1789 HASH_PTE_SIZE_64 * n_valid); 1790 } 1791 1792 static void htab_save_end_marker(QEMUFile *f) 1793 { 1794 qemu_put_be32(f, 0); 1795 qemu_put_be16(f, 0); 1796 qemu_put_be16(f, 0); 1797 } 1798 1799 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1800 int64_t max_ns) 1801 { 1802 bool has_timeout = max_ns != -1; 1803 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1804 int index = spapr->htab_save_index; 1805 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1806 1807 assert(spapr->htab_first_pass); 1808 1809 do { 1810 int chunkstart; 1811 1812 /* Consume invalid HPTEs */ 1813 while ((index < htabslots) 1814 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1815 CLEAN_HPTE(HPTE(spapr->htab, index)); 1816 index++; 1817 } 1818 1819 /* Consume valid HPTEs */ 1820 chunkstart = index; 1821 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1822 && HPTE_VALID(HPTE(spapr->htab, index))) { 1823 CLEAN_HPTE(HPTE(spapr->htab, index)); 1824 index++; 1825 } 1826 1827 if (index > chunkstart) { 1828 int n_valid = index - chunkstart; 1829 1830 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 1831 1832 if (has_timeout && 1833 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1834 break; 1835 } 1836 } 1837 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 1838 1839 if (index >= htabslots) { 1840 assert(index == htabslots); 1841 index = 0; 1842 spapr->htab_first_pass = false; 1843 } 1844 spapr->htab_save_index = index; 1845 } 1846 1847 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 1848 int64_t max_ns) 1849 { 1850 bool final = max_ns < 0; 1851 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1852 int examined = 0, sent = 0; 1853 int index = spapr->htab_save_index; 1854 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1855 1856 assert(!spapr->htab_first_pass); 1857 1858 do { 1859 int chunkstart, invalidstart; 1860 1861 /* Consume non-dirty HPTEs */ 1862 while ((index < htabslots) 1863 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 1864 index++; 1865 examined++; 1866 } 1867 1868 chunkstart = index; 1869 /* Consume valid dirty HPTEs */ 1870 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1871 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1872 && HPTE_VALID(HPTE(spapr->htab, index))) { 1873 CLEAN_HPTE(HPTE(spapr->htab, index)); 1874 index++; 1875 examined++; 1876 } 1877 1878 invalidstart = index; 1879 /* Consume invalid dirty HPTEs */ 1880 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 1881 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1882 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1883 CLEAN_HPTE(HPTE(spapr->htab, index)); 1884 index++; 1885 examined++; 1886 } 1887 1888 if (index > chunkstart) { 1889 int n_valid = invalidstart - chunkstart; 1890 int n_invalid = index - invalidstart; 1891 1892 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 1893 sent += index - chunkstart; 1894 1895 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1896 break; 1897 } 1898 } 1899 1900 if (examined >= htabslots) { 1901 break; 1902 } 1903 1904 if (index >= htabslots) { 1905 assert(index == htabslots); 1906 index = 0; 1907 } 1908 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 1909 1910 if (index >= htabslots) { 1911 assert(index == htabslots); 1912 index = 0; 1913 } 1914 1915 spapr->htab_save_index = index; 1916 1917 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 1918 } 1919 1920 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 1921 #define MAX_KVM_BUF_SIZE 2048 1922 1923 static int htab_save_iterate(QEMUFile *f, void *opaque) 1924 { 1925 sPAPRMachineState *spapr = opaque; 1926 int fd; 1927 int rc = 0; 1928 1929 /* Iteration header */ 1930 if (!spapr->htab_shift) { 1931 qemu_put_be32(f, -1); 1932 return 1; 1933 } else { 1934 qemu_put_be32(f, 0); 1935 } 1936 1937 if (!spapr->htab) { 1938 assert(kvm_enabled()); 1939 1940 fd = get_htab_fd(spapr); 1941 if (fd < 0) { 1942 return fd; 1943 } 1944 1945 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 1946 if (rc < 0) { 1947 return rc; 1948 } 1949 } else if (spapr->htab_first_pass) { 1950 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 1951 } else { 1952 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 1953 } 1954 1955 htab_save_end_marker(f); 1956 1957 return rc; 1958 } 1959 1960 static int htab_save_complete(QEMUFile *f, void *opaque) 1961 { 1962 sPAPRMachineState *spapr = opaque; 1963 int fd; 1964 1965 /* Iteration header */ 1966 if (!spapr->htab_shift) { 1967 qemu_put_be32(f, -1); 1968 return 0; 1969 } else { 1970 qemu_put_be32(f, 0); 1971 } 1972 1973 if (!spapr->htab) { 1974 int rc; 1975 1976 assert(kvm_enabled()); 1977 1978 fd = get_htab_fd(spapr); 1979 if (fd < 0) { 1980 return fd; 1981 } 1982 1983 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 1984 if (rc < 0) { 1985 return rc; 1986 } 1987 } else { 1988 if (spapr->htab_first_pass) { 1989 htab_save_first_pass(f, spapr, -1); 1990 } 1991 htab_save_later_pass(f, spapr, -1); 1992 } 1993 1994 /* End marker */ 1995 htab_save_end_marker(f); 1996 1997 return 0; 1998 } 1999 2000 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2001 { 2002 sPAPRMachineState *spapr = opaque; 2003 uint32_t section_hdr; 2004 int fd = -1; 2005 Error *local_err = NULL; 2006 2007 if (version_id < 1 || version_id > 1) { 2008 error_report("htab_load() bad version"); 2009 return -EINVAL; 2010 } 2011 2012 section_hdr = qemu_get_be32(f); 2013 2014 if (section_hdr == -1) { 2015 spapr_free_hpt(spapr); 2016 return 0; 2017 } 2018 2019 if (section_hdr) { 2020 /* First section gives the htab size */ 2021 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2022 if (local_err) { 2023 error_report_err(local_err); 2024 return -EINVAL; 2025 } 2026 return 0; 2027 } 2028 2029 if (!spapr->htab) { 2030 assert(kvm_enabled()); 2031 2032 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2033 if (fd < 0) { 2034 error_report_err(local_err); 2035 return fd; 2036 } 2037 } 2038 2039 while (true) { 2040 uint32_t index; 2041 uint16_t n_valid, n_invalid; 2042 2043 index = qemu_get_be32(f); 2044 n_valid = qemu_get_be16(f); 2045 n_invalid = qemu_get_be16(f); 2046 2047 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2048 /* End of Stream */ 2049 break; 2050 } 2051 2052 if ((index + n_valid + n_invalid) > 2053 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2054 /* Bad index in stream */ 2055 error_report( 2056 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2057 index, n_valid, n_invalid, spapr->htab_shift); 2058 return -EINVAL; 2059 } 2060 2061 if (spapr->htab) { 2062 if (n_valid) { 2063 qemu_get_buffer(f, HPTE(spapr->htab, index), 2064 HASH_PTE_SIZE_64 * n_valid); 2065 } 2066 if (n_invalid) { 2067 memset(HPTE(spapr->htab, index + n_valid), 0, 2068 HASH_PTE_SIZE_64 * n_invalid); 2069 } 2070 } else { 2071 int rc; 2072 2073 assert(fd >= 0); 2074 2075 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2076 if (rc < 0) { 2077 return rc; 2078 } 2079 } 2080 } 2081 2082 if (!spapr->htab) { 2083 assert(fd >= 0); 2084 close(fd); 2085 } 2086 2087 return 0; 2088 } 2089 2090 static void htab_save_cleanup(void *opaque) 2091 { 2092 sPAPRMachineState *spapr = opaque; 2093 2094 close_htab_fd(spapr); 2095 } 2096 2097 static SaveVMHandlers savevm_htab_handlers = { 2098 .save_setup = htab_save_setup, 2099 .save_live_iterate = htab_save_iterate, 2100 .save_live_complete_precopy = htab_save_complete, 2101 .save_cleanup = htab_save_cleanup, 2102 .load_state = htab_load, 2103 }; 2104 2105 static void spapr_boot_set(void *opaque, const char *boot_device, 2106 Error **errp) 2107 { 2108 MachineState *machine = MACHINE(opaque); 2109 machine->boot_order = g_strdup(boot_device); 2110 } 2111 2112 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 2113 { 2114 MachineState *machine = MACHINE(spapr); 2115 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2116 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2117 int i; 2118 2119 for (i = 0; i < nr_lmbs; i++) { 2120 uint64_t addr; 2121 2122 addr = i * lmb_size + spapr->hotplug_memory.base; 2123 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2124 addr / lmb_size); 2125 } 2126 } 2127 2128 /* 2129 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2130 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2131 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2132 */ 2133 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2134 { 2135 int i; 2136 2137 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2138 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2139 " is not aligned to %llu MiB", 2140 machine->ram_size, 2141 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2142 return; 2143 } 2144 2145 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2146 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2147 " is not aligned to %llu MiB", 2148 machine->ram_size, 2149 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2150 return; 2151 } 2152 2153 for (i = 0; i < nb_numa_nodes; i++) { 2154 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2155 error_setg(errp, 2156 "Node %d memory size 0x%" PRIx64 2157 " is not aligned to %llu MiB", 2158 i, numa_info[i].node_mem, 2159 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2160 return; 2161 } 2162 } 2163 } 2164 2165 /* find cpu slot in machine->possible_cpus by core_id */ 2166 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2167 { 2168 int index = id / smp_threads; 2169 2170 if (index >= ms->possible_cpus->len) { 2171 return NULL; 2172 } 2173 if (idx) { 2174 *idx = index; 2175 } 2176 return &ms->possible_cpus->cpus[index]; 2177 } 2178 2179 static void spapr_init_cpus(sPAPRMachineState *spapr) 2180 { 2181 MachineState *machine = MACHINE(spapr); 2182 MachineClass *mc = MACHINE_GET_CLASS(machine); 2183 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2184 int smt = kvmppc_smt_threads(); 2185 const CPUArchIdList *possible_cpus; 2186 int boot_cores_nr = smp_cpus / smp_threads; 2187 int i; 2188 2189 if (!type) { 2190 error_report("Unable to find sPAPR CPU Core definition"); 2191 exit(1); 2192 } 2193 2194 possible_cpus = mc->possible_cpu_arch_ids(machine); 2195 if (mc->has_hotpluggable_cpus) { 2196 if (smp_cpus % smp_threads) { 2197 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2198 smp_cpus, smp_threads); 2199 exit(1); 2200 } 2201 if (max_cpus % smp_threads) { 2202 error_report("max_cpus (%u) must be multiple of threads (%u)", 2203 max_cpus, smp_threads); 2204 exit(1); 2205 } 2206 } else { 2207 if (max_cpus != smp_cpus) { 2208 error_report("This machine version does not support CPU hotplug"); 2209 exit(1); 2210 } 2211 boot_cores_nr = possible_cpus->len; 2212 } 2213 2214 for (i = 0; i < possible_cpus->len; i++) { 2215 int core_id = i * smp_threads; 2216 2217 if (mc->has_hotpluggable_cpus) { 2218 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2219 (core_id / smp_threads) * smt); 2220 } 2221 2222 if (i < boot_cores_nr) { 2223 Object *core = object_new(type); 2224 int nr_threads = smp_threads; 2225 2226 /* Handle the partially filled core for older machine types */ 2227 if ((i + 1) * smp_threads >= smp_cpus) { 2228 nr_threads = smp_cpus - i * smp_threads; 2229 } 2230 2231 object_property_set_int(core, nr_threads, "nr-threads", 2232 &error_fatal); 2233 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2234 &error_fatal); 2235 object_property_set_bool(core, true, "realized", &error_fatal); 2236 } 2237 } 2238 } 2239 2240 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) 2241 { 2242 Error *local_err = NULL; 2243 bool vsmt_user = !!spapr->vsmt; 2244 int kvm_smt = kvmppc_smt_threads(); 2245 int ret; 2246 2247 if (!kvm_enabled() && (smp_threads > 1)) { 2248 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2249 "on a pseries machine"); 2250 goto out; 2251 } 2252 if (!is_power_of_2(smp_threads)) { 2253 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2254 "machine because it must be a power of 2", smp_threads); 2255 goto out; 2256 } 2257 2258 /* Detemine the VSMT mode to use: */ 2259 if (vsmt_user) { 2260 if (spapr->vsmt < smp_threads) { 2261 error_setg(&local_err, "Cannot support VSMT mode %d" 2262 " because it must be >= threads/core (%d)", 2263 spapr->vsmt, smp_threads); 2264 goto out; 2265 } 2266 /* In this case, spapr->vsmt has been set by the command line */ 2267 } else { 2268 /* Choose a VSMT mode that may be higher than necessary but is 2269 * likely to be compatible with hosts that don't have VSMT. */ 2270 spapr->vsmt = MAX(kvm_smt, smp_threads); 2271 } 2272 2273 /* KVM: If necessary, set the SMT mode: */ 2274 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2275 ret = kvmppc_set_smt_threads(spapr->vsmt); 2276 if (ret) { 2277 error_setg(&local_err, 2278 "Failed to set KVM's VSMT mode to %d (errno %d)", 2279 spapr->vsmt, ret); 2280 if (!vsmt_user) { 2281 error_append_hint(&local_err, "On PPC, a VM with %d threads/" 2282 "core on a host with %d threads/core requires " 2283 " the use of VSMT mode %d.\n", 2284 smp_threads, kvm_smt, spapr->vsmt); 2285 } 2286 kvmppc_hint_smt_possible(&local_err); 2287 goto out; 2288 } 2289 } 2290 /* else TCG: nothing to do currently */ 2291 out: 2292 error_propagate(errp, local_err); 2293 } 2294 2295 /* pSeries LPAR / sPAPR hardware init */ 2296 static void spapr_machine_init(MachineState *machine) 2297 { 2298 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2299 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2300 const char *kernel_filename = machine->kernel_filename; 2301 const char *initrd_filename = machine->initrd_filename; 2302 PCIHostState *phb; 2303 int i; 2304 MemoryRegion *sysmem = get_system_memory(); 2305 MemoryRegion *ram = g_new(MemoryRegion, 1); 2306 MemoryRegion *rma_region; 2307 void *rma = NULL; 2308 hwaddr rma_alloc_size; 2309 hwaddr node0_size = spapr_node0_size(machine); 2310 long load_limit, fw_size; 2311 char *filename; 2312 Error *resize_hpt_err = NULL; 2313 2314 msi_nonbroken = true; 2315 2316 QLIST_INIT(&spapr->phbs); 2317 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2318 2319 /* Check HPT resizing availability */ 2320 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2321 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2322 /* 2323 * If the user explicitly requested a mode we should either 2324 * supply it, or fail completely (which we do below). But if 2325 * it's not set explicitly, we reset our mode to something 2326 * that works 2327 */ 2328 if (resize_hpt_err) { 2329 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2330 error_free(resize_hpt_err); 2331 resize_hpt_err = NULL; 2332 } else { 2333 spapr->resize_hpt = smc->resize_hpt_default; 2334 } 2335 } 2336 2337 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2338 2339 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2340 /* 2341 * User requested HPT resize, but this host can't supply it. Bail out 2342 */ 2343 error_report_err(resize_hpt_err); 2344 exit(1); 2345 } 2346 2347 /* Allocate RMA if necessary */ 2348 rma_alloc_size = kvmppc_alloc_rma(&rma); 2349 2350 if (rma_alloc_size == -1) { 2351 error_report("Unable to create RMA"); 2352 exit(1); 2353 } 2354 2355 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 2356 spapr->rma_size = rma_alloc_size; 2357 } else { 2358 spapr->rma_size = node0_size; 2359 2360 /* With KVM, we don't actually know whether KVM supports an 2361 * unbounded RMA (PR KVM) or is limited by the hash table size 2362 * (HV KVM using VRMA), so we always assume the latter 2363 * 2364 * In that case, we also limit the initial allocations for RTAS 2365 * etc... to 256M since we have no way to know what the VRMA size 2366 * is going to be as it depends on the size of the hash table 2367 * isn't determined yet. 2368 */ 2369 if (kvm_enabled()) { 2370 spapr->vrma_adjust = 1; 2371 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2372 } 2373 2374 /* Actually we don't support unbounded RMA anymore since we 2375 * added proper emulation of HV mode. The max we can get is 2376 * 16G which also happens to be what we configure for PAPR 2377 * mode so make sure we don't do anything bigger than that 2378 */ 2379 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2380 } 2381 2382 if (spapr->rma_size > node0_size) { 2383 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2384 spapr->rma_size); 2385 exit(1); 2386 } 2387 2388 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2389 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2390 2391 /* Set up Interrupt Controller before we create the VCPUs */ 2392 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal); 2393 2394 /* Set up containers for ibm,client-architecture-support negotiated options 2395 */ 2396 spapr->ov5 = spapr_ovec_new(); 2397 spapr->ov5_cas = spapr_ovec_new(); 2398 2399 if (smc->dr_lmb_enabled) { 2400 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2401 spapr_validate_node_memory(machine, &error_fatal); 2402 } 2403 2404 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2405 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) { 2406 /* KVM and TCG always allow GTSE with radix... */ 2407 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2408 } 2409 /* ... but not with hash (currently). */ 2410 2411 /* advertise support for dedicated HP event source to guests */ 2412 if (spapr->use_hotplug_event_source) { 2413 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2414 } 2415 2416 /* advertise support for HPT resizing */ 2417 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2418 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2419 } 2420 2421 /* init CPUs */ 2422 spapr_set_vsmt_mode(spapr, &error_fatal); 2423 2424 spapr_init_cpus(spapr); 2425 2426 if (kvm_enabled()) { 2427 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2428 kvmppc_enable_logical_ci_hcalls(); 2429 kvmppc_enable_set_mode_hcall(); 2430 2431 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2432 kvmppc_enable_clear_ref_mod_hcalls(); 2433 } 2434 2435 /* allocate RAM */ 2436 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2437 machine->ram_size); 2438 memory_region_add_subregion(sysmem, 0, ram); 2439 2440 if (rma_alloc_size && rma) { 2441 rma_region = g_new(MemoryRegion, 1); 2442 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", 2443 rma_alloc_size, rma); 2444 vmstate_register_ram_global(rma_region); 2445 memory_region_add_subregion(sysmem, 0, rma_region); 2446 } 2447 2448 /* initialize hotplug memory address space */ 2449 if (machine->ram_size < machine->maxram_size) { 2450 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; 2451 /* 2452 * Limit the number of hotpluggable memory slots to half the number 2453 * slots that KVM supports, leaving the other half for PCI and other 2454 * devices. However ensure that number of slots doesn't drop below 32. 2455 */ 2456 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2457 SPAPR_MAX_RAM_SLOTS; 2458 2459 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2460 max_memslots = SPAPR_MAX_RAM_SLOTS; 2461 } 2462 if (machine->ram_slots > max_memslots) { 2463 error_report("Specified number of memory slots %" 2464 PRIu64" exceeds max supported %d", 2465 machine->ram_slots, max_memslots); 2466 exit(1); 2467 } 2468 2469 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, 2470 SPAPR_HOTPLUG_MEM_ALIGN); 2471 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), 2472 "hotplug-memory", hotplug_mem_size); 2473 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, 2474 &spapr->hotplug_memory.mr); 2475 } 2476 2477 if (smc->dr_lmb_enabled) { 2478 spapr_create_lmb_dr_connectors(spapr); 2479 } 2480 2481 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2482 if (!filename) { 2483 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2484 exit(1); 2485 } 2486 spapr->rtas_size = get_image_size(filename); 2487 if (spapr->rtas_size < 0) { 2488 error_report("Could not get size of LPAR rtas '%s'", filename); 2489 exit(1); 2490 } 2491 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2492 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2493 error_report("Could not load LPAR rtas '%s'", filename); 2494 exit(1); 2495 } 2496 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2497 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2498 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2499 exit(1); 2500 } 2501 g_free(filename); 2502 2503 /* Set up RTAS event infrastructure */ 2504 spapr_events_init(spapr); 2505 2506 /* Set up the RTC RTAS interfaces */ 2507 spapr_rtc_create(spapr); 2508 2509 /* Set up VIO bus */ 2510 spapr->vio_bus = spapr_vio_bus_init(); 2511 2512 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 2513 if (serial_hds[i]) { 2514 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 2515 } 2516 } 2517 2518 /* We always have at least the nvram device on VIO */ 2519 spapr_create_nvram(spapr); 2520 2521 /* Set up PCI */ 2522 spapr_pci_rtas_init(); 2523 2524 phb = spapr_create_phb(spapr, 0); 2525 2526 for (i = 0; i < nb_nics; i++) { 2527 NICInfo *nd = &nd_table[i]; 2528 2529 if (!nd->model) { 2530 nd->model = g_strdup("ibmveth"); 2531 } 2532 2533 if (strcmp(nd->model, "ibmveth") == 0) { 2534 spapr_vlan_create(spapr->vio_bus, nd); 2535 } else { 2536 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2537 } 2538 } 2539 2540 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2541 spapr_vscsi_create(spapr->vio_bus); 2542 } 2543 2544 /* Graphics */ 2545 if (spapr_vga_init(phb->bus, &error_fatal)) { 2546 spapr->has_graphics = true; 2547 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2548 } 2549 2550 if (machine->usb) { 2551 if (smc->use_ohci_by_default) { 2552 pci_create_simple(phb->bus, -1, "pci-ohci"); 2553 } else { 2554 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2555 } 2556 2557 if (spapr->has_graphics) { 2558 USBBus *usb_bus = usb_bus_find(-1); 2559 2560 usb_create_simple(usb_bus, "usb-kbd"); 2561 usb_create_simple(usb_bus, "usb-mouse"); 2562 } 2563 } 2564 2565 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 2566 error_report( 2567 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2568 MIN_RMA_SLOF); 2569 exit(1); 2570 } 2571 2572 if (kernel_filename) { 2573 uint64_t lowaddr = 0; 2574 2575 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2576 NULL, NULL, &lowaddr, NULL, 1, 2577 PPC_ELF_MACHINE, 0, 0); 2578 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2579 spapr->kernel_size = load_elf(kernel_filename, 2580 translate_kernel_address, NULL, NULL, 2581 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2582 0, 0); 2583 spapr->kernel_le = spapr->kernel_size > 0; 2584 } 2585 if (spapr->kernel_size < 0) { 2586 error_report("error loading %s: %s", kernel_filename, 2587 load_elf_strerror(spapr->kernel_size)); 2588 exit(1); 2589 } 2590 2591 /* load initrd */ 2592 if (initrd_filename) { 2593 /* Try to locate the initrd in the gap between the kernel 2594 * and the firmware. Add a bit of space just in case 2595 */ 2596 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2597 + 0x1ffff) & ~0xffff; 2598 spapr->initrd_size = load_image_targphys(initrd_filename, 2599 spapr->initrd_base, 2600 load_limit 2601 - spapr->initrd_base); 2602 if (spapr->initrd_size < 0) { 2603 error_report("could not load initial ram disk '%s'", 2604 initrd_filename); 2605 exit(1); 2606 } 2607 } 2608 } 2609 2610 if (bios_name == NULL) { 2611 bios_name = FW_FILE_NAME; 2612 } 2613 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2614 if (!filename) { 2615 error_report("Could not find LPAR firmware '%s'", bios_name); 2616 exit(1); 2617 } 2618 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2619 if (fw_size <= 0) { 2620 error_report("Could not load LPAR firmware '%s'", filename); 2621 exit(1); 2622 } 2623 g_free(filename); 2624 2625 /* FIXME: Should register things through the MachineState's qdev 2626 * interface, this is a legacy from the sPAPREnvironment structure 2627 * which predated MachineState but had a similar function */ 2628 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2629 register_savevm_live(NULL, "spapr/htab", -1, 1, 2630 &savevm_htab_handlers, spapr); 2631 2632 qemu_register_boot_set(spapr_boot_set, spapr); 2633 2634 if (kvm_enabled()) { 2635 /* to stop and start vmclock */ 2636 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2637 &spapr->tb); 2638 2639 kvmppc_spapr_enable_inkernel_multitce(); 2640 } 2641 } 2642 2643 static int spapr_kvm_type(const char *vm_type) 2644 { 2645 if (!vm_type) { 2646 return 0; 2647 } 2648 2649 if (!strcmp(vm_type, "HV")) { 2650 return 1; 2651 } 2652 2653 if (!strcmp(vm_type, "PR")) { 2654 return 2; 2655 } 2656 2657 error_report("Unknown kvm-type specified '%s'", vm_type); 2658 exit(1); 2659 } 2660 2661 /* 2662 * Implementation of an interface to adjust firmware path 2663 * for the bootindex property handling. 2664 */ 2665 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2666 DeviceState *dev) 2667 { 2668 #define CAST(type, obj, name) \ 2669 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2670 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2671 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2672 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2673 2674 if (d) { 2675 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2676 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2677 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2678 2679 if (spapr) { 2680 /* 2681 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2682 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2683 * in the top 16 bits of the 64-bit LUN 2684 */ 2685 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2686 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2687 (uint64_t)id << 48); 2688 } else if (virtio) { 2689 /* 2690 * We use SRP luns of the form 01000000 | (target << 8) | lun 2691 * in the top 32 bits of the 64-bit LUN 2692 * Note: the quote above is from SLOF and it is wrong, 2693 * the actual binding is: 2694 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2695 */ 2696 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2697 if (d->lun >= 256) { 2698 /* Use the LUN "flat space addressing method" */ 2699 id |= 0x4000; 2700 } 2701 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2702 (uint64_t)id << 32); 2703 } else if (usb) { 2704 /* 2705 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2706 * in the top 32 bits of the 64-bit LUN 2707 */ 2708 unsigned usb_port = atoi(usb->port->path); 2709 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2710 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2711 (uint64_t)id << 32); 2712 } 2713 } 2714 2715 /* 2716 * SLOF probes the USB devices, and if it recognizes that the device is a 2717 * storage device, it changes its name to "storage" instead of "usb-host", 2718 * and additionally adds a child node for the SCSI LUN, so the correct 2719 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2720 */ 2721 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2722 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2723 if (usb_host_dev_is_scsi_storage(usbdev)) { 2724 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2725 } 2726 } 2727 2728 if (phb) { 2729 /* Replace "pci" with "pci@800000020000000" */ 2730 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2731 } 2732 2733 if (vsc) { 2734 /* Same logic as virtio above */ 2735 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 2736 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 2737 } 2738 2739 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 2740 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 2741 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 2742 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 2743 } 2744 2745 return NULL; 2746 } 2747 2748 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2749 { 2750 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2751 2752 return g_strdup(spapr->kvm_type); 2753 } 2754 2755 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2756 { 2757 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2758 2759 g_free(spapr->kvm_type); 2760 spapr->kvm_type = g_strdup(value); 2761 } 2762 2763 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2764 { 2765 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2766 2767 return spapr->use_hotplug_event_source; 2768 } 2769 2770 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2771 Error **errp) 2772 { 2773 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2774 2775 spapr->use_hotplug_event_source = value; 2776 } 2777 2778 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 2779 { 2780 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2781 2782 switch (spapr->resize_hpt) { 2783 case SPAPR_RESIZE_HPT_DEFAULT: 2784 return g_strdup("default"); 2785 case SPAPR_RESIZE_HPT_DISABLED: 2786 return g_strdup("disabled"); 2787 case SPAPR_RESIZE_HPT_ENABLED: 2788 return g_strdup("enabled"); 2789 case SPAPR_RESIZE_HPT_REQUIRED: 2790 return g_strdup("required"); 2791 } 2792 g_assert_not_reached(); 2793 } 2794 2795 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 2796 { 2797 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2798 2799 if (strcmp(value, "default") == 0) { 2800 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 2801 } else if (strcmp(value, "disabled") == 0) { 2802 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2803 } else if (strcmp(value, "enabled") == 0) { 2804 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 2805 } else if (strcmp(value, "required") == 0) { 2806 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 2807 } else { 2808 error_setg(errp, "Bad value for \"resize-hpt\" property"); 2809 } 2810 } 2811 2812 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 2813 void *opaque, Error **errp) 2814 { 2815 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 2816 } 2817 2818 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 2819 void *opaque, Error **errp) 2820 { 2821 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 2822 } 2823 2824 static void spapr_instance_init(Object *obj) 2825 { 2826 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2827 2828 spapr->htab_fd = -1; 2829 spapr->use_hotplug_event_source = true; 2830 object_property_add_str(obj, "kvm-type", 2831 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 2832 object_property_set_description(obj, "kvm-type", 2833 "Specifies the KVM virtualization mode (HV, PR)", 2834 NULL); 2835 object_property_add_bool(obj, "modern-hotplug-events", 2836 spapr_get_modern_hotplug_events, 2837 spapr_set_modern_hotplug_events, 2838 NULL); 2839 object_property_set_description(obj, "modern-hotplug-events", 2840 "Use dedicated hotplug event mechanism in" 2841 " place of standard EPOW events when possible" 2842 " (required for memory hot-unplug support)", 2843 NULL); 2844 2845 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 2846 "Maximum permitted CPU compatibility mode", 2847 &error_fatal); 2848 2849 object_property_add_str(obj, "resize-hpt", 2850 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 2851 object_property_set_description(obj, "resize-hpt", 2852 "Resizing of the Hash Page Table (enabled, disabled, required)", 2853 NULL); 2854 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 2855 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 2856 object_property_set_description(obj, "vsmt", 2857 "Virtual SMT: KVM behaves as if this were" 2858 " the host's SMT mode", &error_abort); 2859 } 2860 2861 static void spapr_machine_finalizefn(Object *obj) 2862 { 2863 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2864 2865 g_free(spapr->kvm_type); 2866 } 2867 2868 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 2869 { 2870 cpu_synchronize_state(cs); 2871 ppc_cpu_do_system_reset(cs); 2872 } 2873 2874 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 2875 { 2876 CPUState *cs; 2877 2878 CPU_FOREACH(cs) { 2879 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 2880 } 2881 } 2882 2883 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2884 uint32_t node, bool dedicated_hp_event_source, 2885 Error **errp) 2886 { 2887 sPAPRDRConnector *drc; 2888 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 2889 int i, fdt_offset, fdt_size; 2890 void *fdt; 2891 uint64_t addr = addr_start; 2892 bool hotplugged = spapr_drc_hotplugged(dev); 2893 Error *local_err = NULL; 2894 2895 for (i = 0; i < nr_lmbs; i++) { 2896 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2897 addr / SPAPR_MEMORY_BLOCK_SIZE); 2898 g_assert(drc); 2899 2900 fdt = create_device_tree(&fdt_size); 2901 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 2902 SPAPR_MEMORY_BLOCK_SIZE); 2903 2904 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 2905 if (local_err) { 2906 while (addr > addr_start) { 2907 addr -= SPAPR_MEMORY_BLOCK_SIZE; 2908 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2909 addr / SPAPR_MEMORY_BLOCK_SIZE); 2910 spapr_drc_detach(drc); 2911 } 2912 g_free(fdt); 2913 error_propagate(errp, local_err); 2914 return; 2915 } 2916 if (!hotplugged) { 2917 spapr_drc_reset(drc); 2918 } 2919 addr += SPAPR_MEMORY_BLOCK_SIZE; 2920 } 2921 /* send hotplug notification to the 2922 * guest only in case of hotplugged memory 2923 */ 2924 if (hotplugged) { 2925 if (dedicated_hp_event_source) { 2926 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2927 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2928 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2929 nr_lmbs, 2930 spapr_drc_index(drc)); 2931 } else { 2932 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 2933 nr_lmbs); 2934 } 2935 } 2936 } 2937 2938 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2939 uint32_t node, Error **errp) 2940 { 2941 Error *local_err = NULL; 2942 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2943 PCDIMMDevice *dimm = PC_DIMM(dev); 2944 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2945 MemoryRegion *mr; 2946 uint64_t align, size, addr; 2947 2948 mr = ddc->get_memory_region(dimm, &local_err); 2949 if (local_err) { 2950 goto out; 2951 } 2952 align = memory_region_get_alignment(mr); 2953 size = memory_region_size(mr); 2954 2955 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); 2956 if (local_err) { 2957 goto out; 2958 } 2959 2960 addr = object_property_get_uint(OBJECT(dimm), 2961 PC_DIMM_ADDR_PROP, &local_err); 2962 if (local_err) { 2963 goto out_unplug; 2964 } 2965 2966 spapr_add_lmbs(dev, addr, size, node, 2967 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 2968 &local_err); 2969 if (local_err) { 2970 goto out_unplug; 2971 } 2972 2973 return; 2974 2975 out_unplug: 2976 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2977 out: 2978 error_propagate(errp, local_err); 2979 } 2980 2981 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2982 Error **errp) 2983 { 2984 PCDIMMDevice *dimm = PC_DIMM(dev); 2985 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2986 MemoryRegion *mr; 2987 uint64_t size; 2988 char *mem_dev; 2989 2990 mr = ddc->get_memory_region(dimm, errp); 2991 if (!mr) { 2992 return; 2993 } 2994 size = memory_region_size(mr); 2995 2996 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 2997 error_setg(errp, "Hotplugged memory size must be a multiple of " 2998 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2999 return; 3000 } 3001 3002 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); 3003 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { 3004 error_setg(errp, "Memory backend has bad page size. " 3005 "Use 'memory-backend-file' with correct mem-path."); 3006 goto out; 3007 } 3008 3009 out: 3010 g_free(mem_dev); 3011 } 3012 3013 struct sPAPRDIMMState { 3014 PCDIMMDevice *dimm; 3015 uint32_t nr_lmbs; 3016 QTAILQ_ENTRY(sPAPRDIMMState) next; 3017 }; 3018 3019 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 3020 PCDIMMDevice *dimm) 3021 { 3022 sPAPRDIMMState *dimm_state = NULL; 3023 3024 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3025 if (dimm_state->dimm == dimm) { 3026 break; 3027 } 3028 } 3029 return dimm_state; 3030 } 3031 3032 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 3033 uint32_t nr_lmbs, 3034 PCDIMMDevice *dimm) 3035 { 3036 sPAPRDIMMState *ds = NULL; 3037 3038 /* 3039 * If this request is for a DIMM whose removal had failed earlier 3040 * (due to guest's refusal to remove the LMBs), we would have this 3041 * dimm already in the pending_dimm_unplugs list. In that 3042 * case don't add again. 3043 */ 3044 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3045 if (!ds) { 3046 ds = g_malloc0(sizeof(sPAPRDIMMState)); 3047 ds->nr_lmbs = nr_lmbs; 3048 ds->dimm = dimm; 3049 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3050 } 3051 return ds; 3052 } 3053 3054 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 3055 sPAPRDIMMState *dimm_state) 3056 { 3057 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3058 g_free(dimm_state); 3059 } 3060 3061 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 3062 PCDIMMDevice *dimm) 3063 { 3064 sPAPRDRConnector *drc; 3065 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3066 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); 3067 uint64_t size = memory_region_size(mr); 3068 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3069 uint32_t avail_lmbs = 0; 3070 uint64_t addr_start, addr; 3071 int i; 3072 3073 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3074 &error_abort); 3075 3076 addr = addr_start; 3077 for (i = 0; i < nr_lmbs; i++) { 3078 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3079 addr / SPAPR_MEMORY_BLOCK_SIZE); 3080 g_assert(drc); 3081 if (drc->dev) { 3082 avail_lmbs++; 3083 } 3084 addr += SPAPR_MEMORY_BLOCK_SIZE; 3085 } 3086 3087 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3088 } 3089 3090 /* Callback to be called during DRC release. */ 3091 void spapr_lmb_release(DeviceState *dev) 3092 { 3093 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev)); 3094 PCDIMMDevice *dimm = PC_DIMM(dev); 3095 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3096 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); 3097 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3098 3099 /* This information will get lost if a migration occurs 3100 * during the unplug process. In this case recover it. */ 3101 if (ds == NULL) { 3102 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3103 g_assert(ds); 3104 /* The DRC being examined by the caller at least must be counted */ 3105 g_assert(ds->nr_lmbs); 3106 } 3107 3108 if (--ds->nr_lmbs) { 3109 return; 3110 } 3111 3112 /* 3113 * Now that all the LMBs have been removed by the guest, call the 3114 * pc-dimm unplug handler to cleanup up the pc-dimm device. 3115 */ 3116 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr); 3117 object_unparent(OBJECT(dev)); 3118 spapr_pending_dimm_unplugs_remove(spapr, ds); 3119 } 3120 3121 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3122 DeviceState *dev, Error **errp) 3123 { 3124 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3125 Error *local_err = NULL; 3126 PCDIMMDevice *dimm = PC_DIMM(dev); 3127 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3128 MemoryRegion *mr; 3129 uint32_t nr_lmbs; 3130 uint64_t size, addr_start, addr; 3131 int i; 3132 sPAPRDRConnector *drc; 3133 3134 mr = ddc->get_memory_region(dimm, &local_err); 3135 if (local_err) { 3136 goto out; 3137 } 3138 size = memory_region_size(mr); 3139 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3140 3141 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3142 &local_err); 3143 if (local_err) { 3144 goto out; 3145 } 3146 3147 /* 3148 * An existing pending dimm state for this DIMM means that there is an 3149 * unplug operation in progress, waiting for the spapr_lmb_release 3150 * callback to complete the job (BQL can't cover that far). In this case, 3151 * bail out to avoid detaching DRCs that were already released. 3152 */ 3153 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3154 error_setg(&local_err, 3155 "Memory unplug already in progress for device %s", 3156 dev->id); 3157 goto out; 3158 } 3159 3160 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3161 3162 addr = addr_start; 3163 for (i = 0; i < nr_lmbs; i++) { 3164 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3165 addr / SPAPR_MEMORY_BLOCK_SIZE); 3166 g_assert(drc); 3167 3168 spapr_drc_detach(drc); 3169 addr += SPAPR_MEMORY_BLOCK_SIZE; 3170 } 3171 3172 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3173 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3174 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3175 nr_lmbs, spapr_drc_index(drc)); 3176 out: 3177 error_propagate(errp, local_err); 3178 } 3179 3180 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 3181 sPAPRMachineState *spapr) 3182 { 3183 PowerPCCPU *cpu = POWERPC_CPU(cs); 3184 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3185 int id = spapr_vcpu_id(cpu); 3186 void *fdt; 3187 int offset, fdt_size; 3188 char *nodename; 3189 3190 fdt = create_device_tree(&fdt_size); 3191 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3192 offset = fdt_add_subnode(fdt, 0, nodename); 3193 3194 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3195 g_free(nodename); 3196 3197 *fdt_offset = offset; 3198 return fdt; 3199 } 3200 3201 /* Callback to be called during DRC release. */ 3202 void spapr_core_release(DeviceState *dev) 3203 { 3204 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev)); 3205 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3206 CPUCore *cc = CPU_CORE(dev); 3207 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3208 3209 if (smc->pre_2_10_has_unused_icps) { 3210 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3211 int i; 3212 3213 for (i = 0; i < cc->nr_threads; i++) { 3214 CPUState *cs = CPU(sc->threads[i]); 3215 3216 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3217 } 3218 } 3219 3220 assert(core_slot); 3221 core_slot->cpu = NULL; 3222 object_unparent(OBJECT(dev)); 3223 } 3224 3225 static 3226 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3227 Error **errp) 3228 { 3229 int index; 3230 sPAPRDRConnector *drc; 3231 CPUCore *cc = CPU_CORE(dev); 3232 int smt = kvmppc_smt_threads(); 3233 3234 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3235 error_setg(errp, "Unable to find CPU core with core-id: %d", 3236 cc->core_id); 3237 return; 3238 } 3239 if (index == 0) { 3240 error_setg(errp, "Boot CPU core may not be unplugged"); 3241 return; 3242 } 3243 3244 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); 3245 g_assert(drc); 3246 3247 spapr_drc_detach(drc); 3248 3249 spapr_hotplug_req_remove_by_index(drc); 3250 } 3251 3252 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3253 Error **errp) 3254 { 3255 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3256 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3257 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3258 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3259 CPUCore *cc = CPU_CORE(dev); 3260 CPUState *cs = CPU(core->threads[0]); 3261 sPAPRDRConnector *drc; 3262 Error *local_err = NULL; 3263 int smt = kvmppc_smt_threads(); 3264 CPUArchId *core_slot; 3265 int index; 3266 bool hotplugged = spapr_drc_hotplugged(dev); 3267 3268 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3269 if (!core_slot) { 3270 error_setg(errp, "Unable to find CPU core with core-id: %d", 3271 cc->core_id); 3272 return; 3273 } 3274 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); 3275 3276 g_assert(drc || !mc->has_hotpluggable_cpus); 3277 3278 if (drc) { 3279 void *fdt; 3280 int fdt_offset; 3281 3282 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 3283 3284 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3285 if (local_err) { 3286 g_free(fdt); 3287 error_propagate(errp, local_err); 3288 return; 3289 } 3290 3291 if (hotplugged) { 3292 /* 3293 * Send hotplug notification interrupt to the guest only 3294 * in case of hotplugged CPUs. 3295 */ 3296 spapr_hotplug_req_add_by_index(drc); 3297 } else { 3298 spapr_drc_reset(drc); 3299 } 3300 } 3301 3302 core_slot->cpu = OBJECT(dev); 3303 3304 if (smc->pre_2_10_has_unused_icps) { 3305 int i; 3306 3307 for (i = 0; i < cc->nr_threads; i++) { 3308 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev); 3309 3310 cs = CPU(sc->threads[i]); 3311 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3312 } 3313 } 3314 } 3315 3316 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3317 Error **errp) 3318 { 3319 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3320 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3321 Error *local_err = NULL; 3322 CPUCore *cc = CPU_CORE(dev); 3323 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3324 const char *type = object_get_typename(OBJECT(dev)); 3325 CPUArchId *core_slot; 3326 int index; 3327 3328 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3329 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3330 goto out; 3331 } 3332 3333 if (strcmp(base_core_type, type)) { 3334 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3335 goto out; 3336 } 3337 3338 if (cc->core_id % smp_threads) { 3339 error_setg(&local_err, "invalid core id %d", cc->core_id); 3340 goto out; 3341 } 3342 3343 /* 3344 * In general we should have homogeneous threads-per-core, but old 3345 * (pre hotplug support) machine types allow the last core to have 3346 * reduced threads as a compatibility hack for when we allowed 3347 * total vcpus not a multiple of threads-per-core. 3348 */ 3349 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3350 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3351 cc->nr_threads, smp_threads); 3352 goto out; 3353 } 3354 3355 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3356 if (!core_slot) { 3357 error_setg(&local_err, "core id %d out of range", cc->core_id); 3358 goto out; 3359 } 3360 3361 if (core_slot->cpu) { 3362 error_setg(&local_err, "core %d already populated", cc->core_id); 3363 goto out; 3364 } 3365 3366 numa_cpu_pre_plug(core_slot, dev, &local_err); 3367 3368 out: 3369 error_propagate(errp, local_err); 3370 } 3371 3372 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3373 DeviceState *dev, Error **errp) 3374 { 3375 MachineState *ms = MACHINE(hotplug_dev); 3376 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3377 3378 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3379 int node; 3380 3381 if (!smc->dr_lmb_enabled) { 3382 error_setg(errp, "Memory hotplug not supported for this machine"); 3383 return; 3384 } 3385 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 3386 if (*errp) { 3387 return; 3388 } 3389 if (node < 0 || node >= MAX_NODES) { 3390 error_setg(errp, "Invaild node %d", node); 3391 return; 3392 } 3393 3394 /* 3395 * Currently PowerPC kernel doesn't allow hot-adding memory to 3396 * memory-less node, but instead will silently add the memory 3397 * to the first node that has some memory. This causes two 3398 * unexpected behaviours for the user. 3399 * 3400 * - Memory gets hotplugged to a different node than what the user 3401 * specified. 3402 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs 3403 * to memory-less node, a reboot will set things accordingly 3404 * and the previously hotplugged memory now ends in the right node. 3405 * This appears as if some memory moved from one node to another. 3406 * 3407 * So until kernel starts supporting memory hotplug to memory-less 3408 * nodes, just prevent such attempts upfront in QEMU. 3409 */ 3410 if (nb_numa_nodes && !numa_info[node].node_mem) { 3411 error_setg(errp, "Can't hotplug memory to memory-less node %d", 3412 node); 3413 return; 3414 } 3415 3416 spapr_memory_plug(hotplug_dev, dev, node, errp); 3417 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3418 spapr_core_plug(hotplug_dev, dev, errp); 3419 } 3420 } 3421 3422 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3423 DeviceState *dev, Error **errp) 3424 { 3425 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3426 MachineClass *mc = MACHINE_GET_CLASS(sms); 3427 3428 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3429 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3430 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3431 } else { 3432 /* NOTE: this means there is a window after guest reset, prior to 3433 * CAS negotiation, where unplug requests will fail due to the 3434 * capability not being detected yet. This is a bit different than 3435 * the case with PCI unplug, where the events will be queued and 3436 * eventually handled by the guest after boot 3437 */ 3438 error_setg(errp, "Memory hot unplug not supported for this guest"); 3439 } 3440 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3441 if (!mc->has_hotpluggable_cpus) { 3442 error_setg(errp, "CPU hot unplug not supported on this machine"); 3443 return; 3444 } 3445 spapr_core_unplug_request(hotplug_dev, dev, errp); 3446 } 3447 } 3448 3449 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3450 DeviceState *dev, Error **errp) 3451 { 3452 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3453 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3454 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3455 spapr_core_pre_plug(hotplug_dev, dev, errp); 3456 } 3457 } 3458 3459 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3460 DeviceState *dev) 3461 { 3462 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3463 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3464 return HOTPLUG_HANDLER(machine); 3465 } 3466 return NULL; 3467 } 3468 3469 static CpuInstanceProperties 3470 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3471 { 3472 CPUArchId *core_slot; 3473 MachineClass *mc = MACHINE_GET_CLASS(machine); 3474 3475 /* make sure possible_cpu are intialized */ 3476 mc->possible_cpu_arch_ids(machine); 3477 /* get CPU core slot containing thread that matches cpu_index */ 3478 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3479 assert(core_slot); 3480 return core_slot->props; 3481 } 3482 3483 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 3484 { 3485 return idx / smp_cores % nb_numa_nodes; 3486 } 3487 3488 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3489 { 3490 int i; 3491 int spapr_max_cores = max_cpus / smp_threads; 3492 MachineClass *mc = MACHINE_GET_CLASS(machine); 3493 3494 if (!mc->has_hotpluggable_cpus) { 3495 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3496 } 3497 if (machine->possible_cpus) { 3498 assert(machine->possible_cpus->len == spapr_max_cores); 3499 return machine->possible_cpus; 3500 } 3501 3502 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3503 sizeof(CPUArchId) * spapr_max_cores); 3504 machine->possible_cpus->len = spapr_max_cores; 3505 for (i = 0; i < machine->possible_cpus->len; i++) { 3506 int core_id = i * smp_threads; 3507 3508 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3509 machine->possible_cpus->cpus[i].arch_id = core_id; 3510 machine->possible_cpus->cpus[i].props.has_core_id = true; 3511 machine->possible_cpus->cpus[i].props.core_id = core_id; 3512 } 3513 return machine->possible_cpus; 3514 } 3515 3516 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3517 uint64_t *buid, hwaddr *pio, 3518 hwaddr *mmio32, hwaddr *mmio64, 3519 unsigned n_dma, uint32_t *liobns, Error **errp) 3520 { 3521 /* 3522 * New-style PHB window placement. 3523 * 3524 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3525 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3526 * windows. 3527 * 3528 * Some guest kernels can't work with MMIO windows above 1<<46 3529 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3530 * 3531 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3532 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3533 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3534 * 1TiB 64-bit MMIO windows for each PHB. 3535 */ 3536 const uint64_t base_buid = 0x800000020000000ULL; 3537 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 3538 SPAPR_PCI_MEM64_WIN_SIZE - 1) 3539 int i; 3540 3541 /* Sanity check natural alignments */ 3542 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3543 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3544 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3545 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3546 /* Sanity check bounds */ 3547 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3548 SPAPR_PCI_MEM32_WIN_SIZE); 3549 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3550 SPAPR_PCI_MEM64_WIN_SIZE); 3551 3552 if (index >= SPAPR_MAX_PHBS) { 3553 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3554 SPAPR_MAX_PHBS - 1); 3555 return; 3556 } 3557 3558 *buid = base_buid + index; 3559 for (i = 0; i < n_dma; ++i) { 3560 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3561 } 3562 3563 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3564 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3565 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3566 } 3567 3568 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3569 { 3570 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3571 3572 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3573 } 3574 3575 static void spapr_ics_resend(XICSFabric *dev) 3576 { 3577 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3578 3579 ics_resend(spapr->ics); 3580 } 3581 3582 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 3583 { 3584 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 3585 3586 return cpu ? ICP(cpu->intc) : NULL; 3587 } 3588 3589 #define ICS_IRQ_FREE(ics, srcno) \ 3590 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK))) 3591 3592 static int ics_find_free_block(ICSState *ics, int num, int alignnum) 3593 { 3594 int first, i; 3595 3596 for (first = 0; first < ics->nr_irqs; first += alignnum) { 3597 if (num > (ics->nr_irqs - first)) { 3598 return -1; 3599 } 3600 for (i = first; i < first + num; ++i) { 3601 if (!ICS_IRQ_FREE(ics, i)) { 3602 break; 3603 } 3604 } 3605 if (i == (first + num)) { 3606 return first; 3607 } 3608 } 3609 3610 return -1; 3611 } 3612 3613 /* 3614 * Allocate the IRQ number and set the IRQ type, LSI or MSI 3615 */ 3616 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi) 3617 { 3618 ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi); 3619 } 3620 3621 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi, 3622 Error **errp) 3623 { 3624 ICSState *ics = spapr->ics; 3625 int irq; 3626 3627 if (!ics) { 3628 return -1; 3629 } 3630 if (irq_hint) { 3631 if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) { 3632 error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint); 3633 return -1; 3634 } 3635 irq = irq_hint; 3636 } else { 3637 irq = ics_find_free_block(ics, 1, 1); 3638 if (irq < 0) { 3639 error_setg(errp, "can't allocate IRQ: no IRQ left"); 3640 return -1; 3641 } 3642 irq += ics->offset; 3643 } 3644 3645 spapr_irq_set_lsi(spapr, irq, lsi); 3646 trace_spapr_irq_alloc(irq); 3647 3648 return irq; 3649 } 3650 3651 /* 3652 * Allocate block of consecutive IRQs, and return the number of the first IRQ in 3653 * the block. If align==true, aligns the first IRQ number to num. 3654 */ 3655 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi, 3656 bool align, Error **errp) 3657 { 3658 ICSState *ics = spapr->ics; 3659 int i, first = -1; 3660 3661 if (!ics) { 3662 return -1; 3663 } 3664 3665 /* 3666 * MSIMesage::data is used for storing VIRQ so 3667 * it has to be aligned to num to support multiple 3668 * MSI vectors. MSI-X is not affected by this. 3669 * The hint is used for the first IRQ, the rest should 3670 * be allocated continuously. 3671 */ 3672 if (align) { 3673 assert((num == 1) || (num == 2) || (num == 4) || 3674 (num == 8) || (num == 16) || (num == 32)); 3675 first = ics_find_free_block(ics, num, num); 3676 } else { 3677 first = ics_find_free_block(ics, num, 1); 3678 } 3679 if (first < 0) { 3680 error_setg(errp, "can't find a free %d-IRQ block", num); 3681 return -1; 3682 } 3683 3684 first += ics->offset; 3685 for (i = first; i < first + num; ++i) { 3686 spapr_irq_set_lsi(spapr, i, lsi); 3687 } 3688 3689 trace_spapr_irq_alloc_block(first, num, lsi, align); 3690 3691 return first; 3692 } 3693 3694 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num) 3695 { 3696 ICSState *ics = spapr->ics; 3697 int srcno = irq - ics->offset; 3698 int i; 3699 3700 if (ics_valid_irq(ics, irq)) { 3701 trace_spapr_irq_free(0, irq, num); 3702 for (i = srcno; i < srcno + num; ++i) { 3703 if (ICS_IRQ_FREE(ics, i)) { 3704 trace_spapr_irq_free_warn(0, i + ics->offset); 3705 } 3706 memset(&ics->irqs[i], 0, sizeof(ICSIRQState)); 3707 } 3708 } 3709 } 3710 3711 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq) 3712 { 3713 ICSState *ics = spapr->ics; 3714 3715 if (ics_valid_irq(ics, irq)) { 3716 return ics->qirqs[irq - ics->offset]; 3717 } 3718 3719 return NULL; 3720 } 3721 3722 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3723 Monitor *mon) 3724 { 3725 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3726 CPUState *cs; 3727 3728 CPU_FOREACH(cs) { 3729 PowerPCCPU *cpu = POWERPC_CPU(cs); 3730 3731 icp_pic_print_info(ICP(cpu->intc), mon); 3732 } 3733 3734 ics_pic_print_info(spapr->ics, mon); 3735 } 3736 3737 int spapr_vcpu_id(PowerPCCPU *cpu) 3738 { 3739 CPUState *cs = CPU(cpu); 3740 3741 if (kvm_enabled()) { 3742 return kvm_arch_vcpu_id(cs); 3743 } else { 3744 return cs->cpu_index; 3745 } 3746 } 3747 3748 PowerPCCPU *spapr_find_cpu(int vcpu_id) 3749 { 3750 CPUState *cs; 3751 3752 CPU_FOREACH(cs) { 3753 PowerPCCPU *cpu = POWERPC_CPU(cs); 3754 3755 if (spapr_vcpu_id(cpu) == vcpu_id) { 3756 return cpu; 3757 } 3758 } 3759 3760 return NULL; 3761 } 3762 3763 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3764 { 3765 MachineClass *mc = MACHINE_CLASS(oc); 3766 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3767 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3768 NMIClass *nc = NMI_CLASS(oc); 3769 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3770 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3771 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3772 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3773 3774 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3775 3776 /* 3777 * We set up the default / latest behaviour here. The class_init 3778 * functions for the specific versioned machine types can override 3779 * these details for backwards compatibility 3780 */ 3781 mc->init = spapr_machine_init; 3782 mc->reset = spapr_machine_reset; 3783 mc->block_default_type = IF_SCSI; 3784 mc->max_cpus = 1024; 3785 mc->no_parallel = 1; 3786 mc->default_boot_order = ""; 3787 mc->default_ram_size = 512 * M_BYTE; 3788 mc->kvm_type = spapr_kvm_type; 3789 mc->has_dynamic_sysbus = true; 3790 mc->pci_allow_0_address = true; 3791 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3792 hc->pre_plug = spapr_machine_device_pre_plug; 3793 hc->plug = spapr_machine_device_plug; 3794 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 3795 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 3796 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3797 hc->unplug_request = spapr_machine_device_unplug_request; 3798 3799 smc->dr_lmb_enabled = true; 3800 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 3801 mc->has_hotpluggable_cpus = true; 3802 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 3803 fwc->get_dev_path = spapr_get_fw_dev_path; 3804 nc->nmi_monitor_handler = spapr_nmi; 3805 smc->phb_placement = spapr_phb_placement; 3806 vhc->hypercall = emulate_spapr_hypercall; 3807 vhc->hpt_mask = spapr_hpt_mask; 3808 vhc->map_hptes = spapr_map_hptes; 3809 vhc->unmap_hptes = spapr_unmap_hptes; 3810 vhc->store_hpte = spapr_store_hpte; 3811 vhc->get_patbe = spapr_get_patbe; 3812 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 3813 xic->ics_get = spapr_ics_get; 3814 xic->ics_resend = spapr_ics_resend; 3815 xic->icp_get = spapr_icp_get; 3816 ispc->print_info = spapr_pic_print_info; 3817 /* Force NUMA node memory size to be a multiple of 3818 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 3819 * in which LMBs are represented and hot-added 3820 */ 3821 mc->numa_mem_align_shift = 28; 3822 } 3823 3824 static const TypeInfo spapr_machine_info = { 3825 .name = TYPE_SPAPR_MACHINE, 3826 .parent = TYPE_MACHINE, 3827 .abstract = true, 3828 .instance_size = sizeof(sPAPRMachineState), 3829 .instance_init = spapr_instance_init, 3830 .instance_finalize = spapr_machine_finalizefn, 3831 .class_size = sizeof(sPAPRMachineClass), 3832 .class_init = spapr_machine_class_init, 3833 .interfaces = (InterfaceInfo[]) { 3834 { TYPE_FW_PATH_PROVIDER }, 3835 { TYPE_NMI }, 3836 { TYPE_HOTPLUG_HANDLER }, 3837 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 3838 { TYPE_XICS_FABRIC }, 3839 { TYPE_INTERRUPT_STATS_PROVIDER }, 3840 { } 3841 }, 3842 }; 3843 3844 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 3845 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 3846 void *data) \ 3847 { \ 3848 MachineClass *mc = MACHINE_CLASS(oc); \ 3849 spapr_machine_##suffix##_class_options(mc); \ 3850 if (latest) { \ 3851 mc->alias = "pseries"; \ 3852 mc->is_default = 1; \ 3853 } \ 3854 } \ 3855 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 3856 { \ 3857 MachineState *machine = MACHINE(obj); \ 3858 spapr_machine_##suffix##_instance_options(machine); \ 3859 } \ 3860 static const TypeInfo spapr_machine_##suffix##_info = { \ 3861 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 3862 .parent = TYPE_SPAPR_MACHINE, \ 3863 .class_init = spapr_machine_##suffix##_class_init, \ 3864 .instance_init = spapr_machine_##suffix##_instance_init, \ 3865 }; \ 3866 static void spapr_machine_register_##suffix(void) \ 3867 { \ 3868 type_register(&spapr_machine_##suffix##_info); \ 3869 } \ 3870 type_init(spapr_machine_register_##suffix) 3871 3872 /* 3873 * pseries-2.12 3874 */ 3875 static void spapr_machine_2_12_instance_options(MachineState *machine) 3876 { 3877 } 3878 3879 static void spapr_machine_2_12_class_options(MachineClass *mc) 3880 { 3881 /* Defaults for the latest behaviour inherited from the base class */ 3882 } 3883 3884 DEFINE_SPAPR_MACHINE(2_12, "2.12", true); 3885 3886 /* 3887 * pseries-2.11 3888 */ 3889 #define SPAPR_COMPAT_2_11 \ 3890 HW_COMPAT_2_11 3891 3892 static void spapr_machine_2_11_instance_options(MachineState *machine) 3893 { 3894 spapr_machine_2_12_instance_options(machine); 3895 } 3896 3897 static void spapr_machine_2_11_class_options(MachineClass *mc) 3898 { 3899 spapr_machine_2_12_class_options(mc); 3900 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11); 3901 } 3902 3903 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 3904 3905 /* 3906 * pseries-2.10 3907 */ 3908 #define SPAPR_COMPAT_2_10 \ 3909 HW_COMPAT_2_10 3910 3911 static void spapr_machine_2_10_instance_options(MachineState *machine) 3912 { 3913 spapr_machine_2_11_instance_options(machine); 3914 } 3915 3916 static void spapr_machine_2_10_class_options(MachineClass *mc) 3917 { 3918 spapr_machine_2_11_class_options(mc); 3919 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10); 3920 } 3921 3922 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 3923 3924 /* 3925 * pseries-2.9 3926 */ 3927 #define SPAPR_COMPAT_2_9 \ 3928 HW_COMPAT_2_9 \ 3929 { \ 3930 .driver = TYPE_POWERPC_CPU, \ 3931 .property = "pre-2.10-migration", \ 3932 .value = "on", \ 3933 }, \ 3934 3935 static void spapr_machine_2_9_instance_options(MachineState *machine) 3936 { 3937 spapr_machine_2_10_instance_options(machine); 3938 } 3939 3940 static void spapr_machine_2_9_class_options(MachineClass *mc) 3941 { 3942 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3943 3944 spapr_machine_2_10_class_options(mc); 3945 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); 3946 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 3947 smc->pre_2_10_has_unused_icps = true; 3948 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 3949 } 3950 3951 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 3952 3953 /* 3954 * pseries-2.8 3955 */ 3956 #define SPAPR_COMPAT_2_8 \ 3957 HW_COMPAT_2_8 \ 3958 { \ 3959 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3960 .property = "pcie-extended-configuration-space", \ 3961 .value = "off", \ 3962 }, 3963 3964 static void spapr_machine_2_8_instance_options(MachineState *machine) 3965 { 3966 spapr_machine_2_9_instance_options(machine); 3967 } 3968 3969 static void spapr_machine_2_8_class_options(MachineClass *mc) 3970 { 3971 spapr_machine_2_9_class_options(mc); 3972 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 3973 mc->numa_mem_align_shift = 23; 3974 } 3975 3976 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 3977 3978 /* 3979 * pseries-2.7 3980 */ 3981 #define SPAPR_COMPAT_2_7 \ 3982 HW_COMPAT_2_7 \ 3983 { \ 3984 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3985 .property = "mem_win_size", \ 3986 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 3987 }, \ 3988 { \ 3989 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3990 .property = "mem64_win_size", \ 3991 .value = "0", \ 3992 }, \ 3993 { \ 3994 .driver = TYPE_POWERPC_CPU, \ 3995 .property = "pre-2.8-migration", \ 3996 .value = "on", \ 3997 }, \ 3998 { \ 3999 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4000 .property = "pre-2.8-migration", \ 4001 .value = "on", \ 4002 }, 4003 4004 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 4005 uint64_t *buid, hwaddr *pio, 4006 hwaddr *mmio32, hwaddr *mmio64, 4007 unsigned n_dma, uint32_t *liobns, Error **errp) 4008 { 4009 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4010 const uint64_t base_buid = 0x800000020000000ULL; 4011 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4012 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4013 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4014 const uint32_t max_index = 255; 4015 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4016 4017 uint64_t ram_top = MACHINE(spapr)->ram_size; 4018 hwaddr phb0_base, phb_base; 4019 int i; 4020 4021 /* Do we have hotpluggable memory? */ 4022 if (MACHINE(spapr)->maxram_size > ram_top) { 4023 /* Can't just use maxram_size, because there may be an 4024 * alignment gap between normal and hotpluggable memory 4025 * regions */ 4026 ram_top = spapr->hotplug_memory.base + 4027 memory_region_size(&spapr->hotplug_memory.mr); 4028 } 4029 4030 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4031 4032 if (index > max_index) { 4033 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4034 max_index); 4035 return; 4036 } 4037 4038 *buid = base_buid + index; 4039 for (i = 0; i < n_dma; ++i) { 4040 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4041 } 4042 4043 phb_base = phb0_base + index * phb_spacing; 4044 *pio = phb_base + pio_offset; 4045 *mmio32 = phb_base + mmio_offset; 4046 /* 4047 * We don't set the 64-bit MMIO window, relying on the PHB's 4048 * fallback behaviour of automatically splitting a large "32-bit" 4049 * window into contiguous 32-bit and 64-bit windows 4050 */ 4051 } 4052 4053 static void spapr_machine_2_7_instance_options(MachineState *machine) 4054 { 4055 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 4056 4057 spapr_machine_2_8_instance_options(machine); 4058 spapr->use_hotplug_event_source = false; 4059 } 4060 4061 static void spapr_machine_2_7_class_options(MachineClass *mc) 4062 { 4063 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4064 4065 spapr_machine_2_8_class_options(mc); 4066 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4067 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 4068 smc->phb_placement = phb_placement_2_7; 4069 } 4070 4071 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4072 4073 /* 4074 * pseries-2.6 4075 */ 4076 #define SPAPR_COMPAT_2_6 \ 4077 HW_COMPAT_2_6 \ 4078 { \ 4079 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4080 .property = "ddw",\ 4081 .value = stringify(off),\ 4082 }, 4083 4084 static void spapr_machine_2_6_instance_options(MachineState *machine) 4085 { 4086 spapr_machine_2_7_instance_options(machine); 4087 } 4088 4089 static void spapr_machine_2_6_class_options(MachineClass *mc) 4090 { 4091 spapr_machine_2_7_class_options(mc); 4092 mc->has_hotpluggable_cpus = false; 4093 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 4094 } 4095 4096 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4097 4098 /* 4099 * pseries-2.5 4100 */ 4101 #define SPAPR_COMPAT_2_5 \ 4102 HW_COMPAT_2_5 \ 4103 { \ 4104 .driver = "spapr-vlan", \ 4105 .property = "use-rx-buffer-pools", \ 4106 .value = "off", \ 4107 }, 4108 4109 static void spapr_machine_2_5_instance_options(MachineState *machine) 4110 { 4111 spapr_machine_2_6_instance_options(machine); 4112 } 4113 4114 static void spapr_machine_2_5_class_options(MachineClass *mc) 4115 { 4116 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4117 4118 spapr_machine_2_6_class_options(mc); 4119 smc->use_ohci_by_default = true; 4120 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 4121 } 4122 4123 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4124 4125 /* 4126 * pseries-2.4 4127 */ 4128 #define SPAPR_COMPAT_2_4 \ 4129 HW_COMPAT_2_4 4130 4131 static void spapr_machine_2_4_instance_options(MachineState *machine) 4132 { 4133 spapr_machine_2_5_instance_options(machine); 4134 } 4135 4136 static void spapr_machine_2_4_class_options(MachineClass *mc) 4137 { 4138 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4139 4140 spapr_machine_2_5_class_options(mc); 4141 smc->dr_lmb_enabled = false; 4142 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 4143 } 4144 4145 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4146 4147 /* 4148 * pseries-2.3 4149 */ 4150 #define SPAPR_COMPAT_2_3 \ 4151 HW_COMPAT_2_3 \ 4152 {\ 4153 .driver = "spapr-pci-host-bridge",\ 4154 .property = "dynamic-reconfiguration",\ 4155 .value = "off",\ 4156 }, 4157 4158 static void spapr_machine_2_3_instance_options(MachineState *machine) 4159 { 4160 spapr_machine_2_4_instance_options(machine); 4161 } 4162 4163 static void spapr_machine_2_3_class_options(MachineClass *mc) 4164 { 4165 spapr_machine_2_4_class_options(mc); 4166 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 4167 } 4168 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4169 4170 /* 4171 * pseries-2.2 4172 */ 4173 4174 #define SPAPR_COMPAT_2_2 \ 4175 HW_COMPAT_2_2 \ 4176 {\ 4177 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4178 .property = "mem_win_size",\ 4179 .value = "0x20000000",\ 4180 }, 4181 4182 static void spapr_machine_2_2_instance_options(MachineState *machine) 4183 { 4184 spapr_machine_2_3_instance_options(machine); 4185 machine->suppress_vmdesc = true; 4186 } 4187 4188 static void spapr_machine_2_2_class_options(MachineClass *mc) 4189 { 4190 spapr_machine_2_3_class_options(mc); 4191 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 4192 } 4193 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4194 4195 /* 4196 * pseries-2.1 4197 */ 4198 #define SPAPR_COMPAT_2_1 \ 4199 HW_COMPAT_2_1 4200 4201 static void spapr_machine_2_1_instance_options(MachineState *machine) 4202 { 4203 spapr_machine_2_2_instance_options(machine); 4204 } 4205 4206 static void spapr_machine_2_1_class_options(MachineClass *mc) 4207 { 4208 spapr_machine_2_2_class_options(mc); 4209 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 4210 } 4211 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4212 4213 static void spapr_machine_register_types(void) 4214 { 4215 type_register_static(&spapr_machine_info); 4216 } 4217 4218 type_init(spapr_machine_register_types) 4219