xref: /openbmc/qemu/hw/ppc/spapr.c (revision 55bbc861)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
49 
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
53 
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
60 
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
65 
66 #include "exec/address-spaces.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
73 
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "qmp-commands.h"
78 
79 #include <libfdt.h>
80 
81 /* SLOF memory layout:
82  *
83  * SLOF raw image loaded at 0, copies its romfs right below the flat
84  * device-tree, then position SLOF itself 31M below that
85  *
86  * So we set FW_OVERHEAD to 40MB which should account for all of that
87  * and more
88  *
89  * We load our kernel at 4M, leaving space for SLOF initial image
90  */
91 #define FDT_MAX_SIZE            0x100000
92 #define RTAS_MAX_SIZE           0x10000
93 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE             0x400000
95 #define FW_FILE_NAME            "slof.bin"
96 #define FW_OVERHEAD             0x2800000
97 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
98 
99 #define MIN_RMA_SLOF            128UL
100 
101 #define PHANDLE_XICP            0x00001111
102 
103 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
104                                   const char *type_ics,
105                                   int nr_irqs, Error **errp)
106 {
107     Error *local_err = NULL;
108     Object *obj;
109 
110     obj = object_new(type_ics);
111     object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
112     object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
113                                    &error_abort);
114     object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
115     if (local_err) {
116         goto error;
117     }
118     object_property_set_bool(obj, true, "realized", &local_err);
119     if (local_err) {
120         goto error;
121     }
122 
123     return ICS_SIMPLE(obj);
124 
125 error:
126     error_propagate(errp, local_err);
127     return NULL;
128 }
129 
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133      * and newer QEMUs don't even have them. In both cases, we don't want
134      * to send anything on the wire.
135      */
136     return false;
137 }
138 
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140     .name = "icp/server",
141     .version_id = 1,
142     .minimum_version_id = 1,
143     .needed = pre_2_10_vmstate_dummy_icp_needed,
144     .fields = (VMStateField[]) {
145         VMSTATE_UNUSED(4), /* uint32_t xirr */
146         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147         VMSTATE_UNUSED(1), /* uint8_t mfrr */
148         VMSTATE_END_OF_LIST()
149     },
150 };
151 
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155                      (void *)(uintptr_t) i);
156 }
157 
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161                        (void *)(uintptr_t) i);
162 }
163 
164 static inline int xics_max_server_number(void)
165 {
166     return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
167 }
168 
169 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
170 {
171     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
172     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
173 
174     if (kvm_enabled()) {
175         if (machine_kernel_irqchip_allowed(machine) &&
176             !xics_kvm_init(spapr, errp)) {
177             spapr->icp_type = TYPE_KVM_ICP;
178             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
179         }
180         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
181             error_prepend(errp, "kernel_irqchip requested but unavailable: ");
182             return;
183         }
184     }
185 
186     if (!spapr->ics) {
187         xics_spapr_init(spapr);
188         spapr->icp_type = TYPE_ICP;
189         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
190         if (!spapr->ics) {
191             return;
192         }
193     }
194 
195     if (smc->pre_2_10_has_unused_icps) {
196         int i;
197 
198         for (i = 0; i < xics_max_server_number(); i++) {
199             /* Dummy entries get deregistered when real ICPState objects
200              * are registered during CPU core hotplug.
201              */
202             pre_2_10_vmstate_register_dummy_icp(i);
203         }
204     }
205 }
206 
207 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
208                                   int smt_threads)
209 {
210     int i, ret = 0;
211     uint32_t servers_prop[smt_threads];
212     uint32_t gservers_prop[smt_threads * 2];
213     int index = spapr_vcpu_id(cpu);
214 
215     if (cpu->compat_pvr) {
216         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
217         if (ret < 0) {
218             return ret;
219         }
220     }
221 
222     /* Build interrupt servers and gservers properties */
223     for (i = 0; i < smt_threads; i++) {
224         servers_prop[i] = cpu_to_be32(index + i);
225         /* Hack, direct the group queues back to cpu 0 */
226         gservers_prop[i*2] = cpu_to_be32(index + i);
227         gservers_prop[i*2 + 1] = 0;
228     }
229     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
230                       servers_prop, sizeof(servers_prop));
231     if (ret < 0) {
232         return ret;
233     }
234     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
235                       gservers_prop, sizeof(gservers_prop));
236 
237     return ret;
238 }
239 
240 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
241 {
242     int index = spapr_vcpu_id(cpu);
243     uint32_t associativity[] = {cpu_to_be32(0x5),
244                                 cpu_to_be32(0x0),
245                                 cpu_to_be32(0x0),
246                                 cpu_to_be32(0x0),
247                                 cpu_to_be32(cpu->node_id),
248                                 cpu_to_be32(index)};
249 
250     /* Advertise NUMA via ibm,associativity */
251     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
252                           sizeof(associativity));
253 }
254 
255 /* Populate the "ibm,pa-features" property */
256 static void spapr_populate_pa_features(PowerPCCPU *cpu, void *fdt, int offset,
257                                        bool legacy_guest)
258 {
259     CPUPPCState *env = &cpu->env;
260     uint8_t pa_features_206[] = { 6, 0,
261         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
262     uint8_t pa_features_207[] = { 24, 0,
263         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
264         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
265         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
266         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
267     uint8_t pa_features_300[] = { 66, 0,
268         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
269         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
270         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
271         /* 6: DS207 */
272         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
273         /* 16: Vector */
274         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
275         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
276         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
277         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
278         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
279         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
280         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
281         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
282         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
283         /* 42: PM, 44: PC RA, 46: SC vec'd */
284         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
285         /* 48: SIMD, 50: QP BFP, 52: String */
286         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
287         /* 54: DecFP, 56: DecI, 58: SHA */
288         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
289         /* 60: NM atomic, 62: RNG */
290         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
291     };
292     uint8_t *pa_features = NULL;
293     size_t pa_size;
294 
295     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
296         pa_features = pa_features_206;
297         pa_size = sizeof(pa_features_206);
298     }
299     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
300         pa_features = pa_features_207;
301         pa_size = sizeof(pa_features_207);
302     }
303     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
304         pa_features = pa_features_300;
305         pa_size = sizeof(pa_features_300);
306     }
307     if (!pa_features) {
308         return;
309     }
310 
311     if (env->ci_large_pages) {
312         /*
313          * Note: we keep CI large pages off by default because a 64K capable
314          * guest provisioned with large pages might otherwise try to map a qemu
315          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
316          * even if that qemu runs on a 4k host.
317          * We dd this bit back here if we are confident this is not an issue
318          */
319         pa_features[3] |= 0x20;
320     }
321     if (kvmppc_has_cap_htm() && pa_size > 24) {
322         pa_features[24] |= 0x80;    /* Transactional memory support */
323     }
324     if (legacy_guest && pa_size > 40) {
325         /* Workaround for broken kernels that attempt (guest) radix
326          * mode when they can't handle it, if they see the radix bit set
327          * in pa-features. So hide it from them. */
328         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
329     }
330 
331     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
332 }
333 
334 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
335 {
336     int ret = 0, offset, cpus_offset;
337     CPUState *cs;
338     char cpu_model[32];
339     int smt = kvmppc_smt_threads();
340     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
341 
342     CPU_FOREACH(cs) {
343         PowerPCCPU *cpu = POWERPC_CPU(cs);
344         DeviceClass *dc = DEVICE_GET_CLASS(cs);
345         int index = spapr_vcpu_id(cpu);
346         int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
347 
348         if ((index % smt) != 0) {
349             continue;
350         }
351 
352         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
353 
354         cpus_offset = fdt_path_offset(fdt, "/cpus");
355         if (cpus_offset < 0) {
356             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
357             if (cpus_offset < 0) {
358                 return cpus_offset;
359             }
360         }
361         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
362         if (offset < 0) {
363             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
364             if (offset < 0) {
365                 return offset;
366             }
367         }
368 
369         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
370                           pft_size_prop, sizeof(pft_size_prop));
371         if (ret < 0) {
372             return ret;
373         }
374 
375         if (nb_numa_nodes > 1) {
376             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
377             if (ret < 0) {
378                 return ret;
379             }
380         }
381 
382         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
383         if (ret < 0) {
384             return ret;
385         }
386 
387         spapr_populate_pa_features(cpu, fdt, offset,
388                                          spapr->cas_legacy_guest_workaround);
389     }
390     return ret;
391 }
392 
393 static hwaddr spapr_node0_size(MachineState *machine)
394 {
395     if (nb_numa_nodes) {
396         int i;
397         for (i = 0; i < nb_numa_nodes; ++i) {
398             if (numa_info[i].node_mem) {
399                 return MIN(pow2floor(numa_info[i].node_mem),
400                            machine->ram_size);
401             }
402         }
403     }
404     return machine->ram_size;
405 }
406 
407 static void add_str(GString *s, const gchar *s1)
408 {
409     g_string_append_len(s, s1, strlen(s1) + 1);
410 }
411 
412 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
413                                        hwaddr size)
414 {
415     uint32_t associativity[] = {
416         cpu_to_be32(0x4), /* length */
417         cpu_to_be32(0x0), cpu_to_be32(0x0),
418         cpu_to_be32(0x0), cpu_to_be32(nodeid)
419     };
420     char mem_name[32];
421     uint64_t mem_reg_property[2];
422     int off;
423 
424     mem_reg_property[0] = cpu_to_be64(start);
425     mem_reg_property[1] = cpu_to_be64(size);
426 
427     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
428     off = fdt_add_subnode(fdt, 0, mem_name);
429     _FDT(off);
430     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
431     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
432                       sizeof(mem_reg_property))));
433     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
434                       sizeof(associativity))));
435     return off;
436 }
437 
438 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
439 {
440     MachineState *machine = MACHINE(spapr);
441     hwaddr mem_start, node_size;
442     int i, nb_nodes = nb_numa_nodes;
443     NodeInfo *nodes = numa_info;
444     NodeInfo ramnode;
445 
446     /* No NUMA nodes, assume there is just one node with whole RAM */
447     if (!nb_numa_nodes) {
448         nb_nodes = 1;
449         ramnode.node_mem = machine->ram_size;
450         nodes = &ramnode;
451     }
452 
453     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
454         if (!nodes[i].node_mem) {
455             continue;
456         }
457         if (mem_start >= machine->ram_size) {
458             node_size = 0;
459         } else {
460             node_size = nodes[i].node_mem;
461             if (node_size > machine->ram_size - mem_start) {
462                 node_size = machine->ram_size - mem_start;
463             }
464         }
465         if (!mem_start) {
466             /* ppc_spapr_init() checks for rma_size <= node0_size already */
467             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
468             mem_start += spapr->rma_size;
469             node_size -= spapr->rma_size;
470         }
471         for ( ; node_size; ) {
472             hwaddr sizetmp = pow2floor(node_size);
473 
474             /* mem_start != 0 here */
475             if (ctzl(mem_start) < ctzl(sizetmp)) {
476                 sizetmp = 1ULL << ctzl(mem_start);
477             }
478 
479             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
480             node_size -= sizetmp;
481             mem_start += sizetmp;
482         }
483     }
484 
485     return 0;
486 }
487 
488 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
489                                   sPAPRMachineState *spapr)
490 {
491     PowerPCCPU *cpu = POWERPC_CPU(cs);
492     CPUPPCState *env = &cpu->env;
493     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
494     int index = spapr_vcpu_id(cpu);
495     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
496                        0xffffffff, 0xffffffff};
497     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
498         : SPAPR_TIMEBASE_FREQ;
499     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
500     uint32_t page_sizes_prop[64];
501     size_t page_sizes_prop_size;
502     uint32_t vcpus_per_socket = smp_threads * smp_cores;
503     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
504     int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
505     sPAPRDRConnector *drc;
506     int drc_index;
507     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
508     int i;
509 
510     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
511     if (drc) {
512         drc_index = spapr_drc_index(drc);
513         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
514     }
515 
516     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
517     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
518 
519     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
520     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
521                            env->dcache_line_size)));
522     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
523                            env->dcache_line_size)));
524     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
525                            env->icache_line_size)));
526     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
527                            env->icache_line_size)));
528 
529     if (pcc->l1_dcache_size) {
530         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
531                                pcc->l1_dcache_size)));
532     } else {
533         warn_report("Unknown L1 dcache size for cpu");
534     }
535     if (pcc->l1_icache_size) {
536         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
537                                pcc->l1_icache_size)));
538     } else {
539         warn_report("Unknown L1 icache size for cpu");
540     }
541 
542     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
543     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
544     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
545     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
546     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
547     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
548 
549     if (env->spr_cb[SPR_PURR].oea_read) {
550         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
551     }
552 
553     if (env->mmu_model & POWERPC_MMU_1TSEG) {
554         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
555                           segs, sizeof(segs))));
556     }
557 
558     /* Advertise VMX/VSX (vector extensions) if available
559      *   0 / no property == no vector extensions
560      *   1               == VMX / Altivec available
561      *   2               == VSX available */
562     if (env->insns_flags & PPC_ALTIVEC) {
563         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
564 
565         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
566     }
567 
568     /* Advertise DFP (Decimal Floating Point) if available
569      *   0 / no property == no DFP
570      *   1               == DFP available */
571     if (env->insns_flags2 & PPC2_DFP) {
572         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
573     }
574 
575     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
576                                                   sizeof(page_sizes_prop));
577     if (page_sizes_prop_size) {
578         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
579                           page_sizes_prop, page_sizes_prop_size)));
580     }
581 
582     spapr_populate_pa_features(cpu, fdt, offset, false);
583 
584     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
585                            cs->cpu_index / vcpus_per_socket)));
586 
587     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
588                       pft_size_prop, sizeof(pft_size_prop))));
589 
590     if (nb_numa_nodes > 1) {
591         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
592     }
593 
594     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
595 
596     if (pcc->radix_page_info) {
597         for (i = 0; i < pcc->radix_page_info->count; i++) {
598             radix_AP_encodings[i] =
599                 cpu_to_be32(pcc->radix_page_info->entries[i]);
600         }
601         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
602                           radix_AP_encodings,
603                           pcc->radix_page_info->count *
604                           sizeof(radix_AP_encodings[0]))));
605     }
606 }
607 
608 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
609 {
610     CPUState *cs;
611     int cpus_offset;
612     char *nodename;
613     int smt = kvmppc_smt_threads();
614 
615     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
616     _FDT(cpus_offset);
617     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
618     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
619 
620     /*
621      * We walk the CPUs in reverse order to ensure that CPU DT nodes
622      * created by fdt_add_subnode() end up in the right order in FDT
623      * for the guest kernel the enumerate the CPUs correctly.
624      */
625     CPU_FOREACH_REVERSE(cs) {
626         PowerPCCPU *cpu = POWERPC_CPU(cs);
627         int index = spapr_vcpu_id(cpu);
628         DeviceClass *dc = DEVICE_GET_CLASS(cs);
629         int offset;
630 
631         if ((index % smt) != 0) {
632             continue;
633         }
634 
635         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
636         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
637         g_free(nodename);
638         _FDT(offset);
639         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
640     }
641 
642 }
643 
644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
645 {
646     MemoryDeviceInfoList *info;
647 
648     for (info = list; info; info = info->next) {
649         MemoryDeviceInfo *value = info->value;
650 
651         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
652             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
653 
654             if (pcdimm_info->addr >= addr &&
655                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
656                 return pcdimm_info->node;
657             }
658         }
659     }
660 
661     return -1;
662 }
663 
664 /*
665  * Adds ibm,dynamic-reconfiguration-memory node.
666  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
667  * of this device tree node.
668  */
669 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
670 {
671     MachineState *machine = MACHINE(spapr);
672     int ret, i, offset;
673     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
674     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
675     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
676     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
677                        memory_region_size(&spapr->hotplug_memory.mr)) /
678                        lmb_size;
679     uint32_t *int_buf, *cur_index, buf_len;
680     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
681     MemoryDeviceInfoList *dimms = NULL;
682 
683     /*
684      * Don't create the node if there is no hotpluggable memory
685      */
686     if (machine->ram_size == machine->maxram_size) {
687         return 0;
688     }
689 
690     /*
691      * Allocate enough buffer size to fit in ibm,dynamic-memory
692      * or ibm,associativity-lookup-arrays
693      */
694     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
695               * sizeof(uint32_t);
696     cur_index = int_buf = g_malloc0(buf_len);
697 
698     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
699 
700     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
701                     sizeof(prop_lmb_size));
702     if (ret < 0) {
703         goto out;
704     }
705 
706     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
707     if (ret < 0) {
708         goto out;
709     }
710 
711     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
712     if (ret < 0) {
713         goto out;
714     }
715 
716     if (hotplug_lmb_start) {
717         MemoryDeviceInfoList **prev = &dimms;
718         qmp_pc_dimm_device_list(qdev_get_machine(), &prev);
719     }
720 
721     /* ibm,dynamic-memory */
722     int_buf[0] = cpu_to_be32(nr_lmbs);
723     cur_index++;
724     for (i = 0; i < nr_lmbs; i++) {
725         uint64_t addr = i * lmb_size;
726         uint32_t *dynamic_memory = cur_index;
727 
728         if (i >= hotplug_lmb_start) {
729             sPAPRDRConnector *drc;
730 
731             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
732             g_assert(drc);
733 
734             dynamic_memory[0] = cpu_to_be32(addr >> 32);
735             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
736             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
737             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
738             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
739             if (memory_region_present(get_system_memory(), addr)) {
740                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
741             } else {
742                 dynamic_memory[5] = cpu_to_be32(0);
743             }
744         } else {
745             /*
746              * LMB information for RMA, boot time RAM and gap b/n RAM and
747              * hotplug memory region -- all these are marked as reserved
748              * and as having no valid DRC.
749              */
750             dynamic_memory[0] = cpu_to_be32(addr >> 32);
751             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
752             dynamic_memory[2] = cpu_to_be32(0);
753             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
754             dynamic_memory[4] = cpu_to_be32(-1);
755             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
756                                             SPAPR_LMB_FLAGS_DRC_INVALID);
757         }
758 
759         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
760     }
761     qapi_free_MemoryDeviceInfoList(dimms);
762     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
763     if (ret < 0) {
764         goto out;
765     }
766 
767     /* ibm,associativity-lookup-arrays */
768     cur_index = int_buf;
769     int_buf[0] = cpu_to_be32(nr_nodes);
770     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
771     cur_index += 2;
772     for (i = 0; i < nr_nodes; i++) {
773         uint32_t associativity[] = {
774             cpu_to_be32(0x0),
775             cpu_to_be32(0x0),
776             cpu_to_be32(0x0),
777             cpu_to_be32(i)
778         };
779         memcpy(cur_index, associativity, sizeof(associativity));
780         cur_index += 4;
781     }
782     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
783             (cur_index - int_buf) * sizeof(uint32_t));
784 out:
785     g_free(int_buf);
786     return ret;
787 }
788 
789 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
790                                 sPAPROptionVector *ov5_updates)
791 {
792     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
793     int ret = 0, offset;
794 
795     /* Generate ibm,dynamic-reconfiguration-memory node if required */
796     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
797         g_assert(smc->dr_lmb_enabled);
798         ret = spapr_populate_drconf_memory(spapr, fdt);
799         if (ret) {
800             goto out;
801         }
802     }
803 
804     offset = fdt_path_offset(fdt, "/chosen");
805     if (offset < 0) {
806         offset = fdt_add_subnode(fdt, 0, "chosen");
807         if (offset < 0) {
808             return offset;
809         }
810     }
811     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
812                                  "ibm,architecture-vec-5");
813 
814 out:
815     return ret;
816 }
817 
818 static bool spapr_hotplugged_dev_before_cas(void)
819 {
820     Object *drc_container, *obj;
821     ObjectProperty *prop;
822     ObjectPropertyIterator iter;
823 
824     drc_container = container_get(object_get_root(), "/dr-connector");
825     object_property_iter_init(&iter, drc_container);
826     while ((prop = object_property_iter_next(&iter))) {
827         if (!strstart(prop->type, "link<", NULL)) {
828             continue;
829         }
830         obj = object_property_get_link(drc_container, prop->name, NULL);
831         if (spapr_drc_needed(obj)) {
832             return true;
833         }
834     }
835     return false;
836 }
837 
838 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
839                                  target_ulong addr, target_ulong size,
840                                  sPAPROptionVector *ov5_updates)
841 {
842     void *fdt, *fdt_skel;
843     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
844 
845     if (spapr_hotplugged_dev_before_cas()) {
846         return 1;
847     }
848 
849     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
850         error_report("SLOF provided an unexpected CAS buffer size "
851                      TARGET_FMT_lu " (min: %zu, max: %u)",
852                      size, sizeof(hdr), FW_MAX_SIZE);
853         exit(EXIT_FAILURE);
854     }
855 
856     size -= sizeof(hdr);
857 
858     /* Create skeleton */
859     fdt_skel = g_malloc0(size);
860     _FDT((fdt_create(fdt_skel, size)));
861     _FDT((fdt_begin_node(fdt_skel, "")));
862     _FDT((fdt_end_node(fdt_skel)));
863     _FDT((fdt_finish(fdt_skel)));
864     fdt = g_malloc0(size);
865     _FDT((fdt_open_into(fdt_skel, fdt, size)));
866     g_free(fdt_skel);
867 
868     /* Fixup cpu nodes */
869     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
870 
871     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
872         return -1;
873     }
874 
875     /* Pack resulting tree */
876     _FDT((fdt_pack(fdt)));
877 
878     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
879         trace_spapr_cas_failed(size);
880         return -1;
881     }
882 
883     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
884     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
885     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
886     g_free(fdt);
887 
888     return 0;
889 }
890 
891 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
892 {
893     int rtas;
894     GString *hypertas = g_string_sized_new(256);
895     GString *qemu_hypertas = g_string_sized_new(256);
896     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
897     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
898         memory_region_size(&spapr->hotplug_memory.mr);
899     uint32_t lrdr_capacity[] = {
900         cpu_to_be32(max_hotplug_addr >> 32),
901         cpu_to_be32(max_hotplug_addr & 0xffffffff),
902         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
903         cpu_to_be32(max_cpus / smp_threads),
904     };
905 
906     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
907 
908     /* hypertas */
909     add_str(hypertas, "hcall-pft");
910     add_str(hypertas, "hcall-term");
911     add_str(hypertas, "hcall-dabr");
912     add_str(hypertas, "hcall-interrupt");
913     add_str(hypertas, "hcall-tce");
914     add_str(hypertas, "hcall-vio");
915     add_str(hypertas, "hcall-splpar");
916     add_str(hypertas, "hcall-bulk");
917     add_str(hypertas, "hcall-set-mode");
918     add_str(hypertas, "hcall-sprg0");
919     add_str(hypertas, "hcall-copy");
920     add_str(hypertas, "hcall-debug");
921     add_str(qemu_hypertas, "hcall-memop1");
922 
923     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
924         add_str(hypertas, "hcall-multi-tce");
925     }
926 
927     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
928         add_str(hypertas, "hcall-hpt-resize");
929     }
930 
931     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
932                      hypertas->str, hypertas->len));
933     g_string_free(hypertas, TRUE);
934     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
935                      qemu_hypertas->str, qemu_hypertas->len));
936     g_string_free(qemu_hypertas, TRUE);
937 
938     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
939                      refpoints, sizeof(refpoints)));
940 
941     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
942                           RTAS_ERROR_LOG_MAX));
943     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
944                           RTAS_EVENT_SCAN_RATE));
945 
946     g_assert(msi_nonbroken);
947     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
948 
949     /*
950      * According to PAPR, rtas ibm,os-term does not guarantee a return
951      * back to the guest cpu.
952      *
953      * While an additional ibm,extended-os-term property indicates
954      * that rtas call return will always occur. Set this property.
955      */
956     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
957 
958     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
959                      lrdr_capacity, sizeof(lrdr_capacity)));
960 
961     spapr_dt_rtas_tokens(fdt, rtas);
962 }
963 
964 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
965  * that the guest may request and thus the valid values for bytes 24..26 of
966  * option vector 5: */
967 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
968 {
969     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
970 
971     char val[2 * 4] = {
972         23, 0x00, /* Xive mode, filled in below. */
973         24, 0x00, /* Hash/Radix, filled in below. */
974         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
975         26, 0x40, /* Radix options: GTSE == yes. */
976     };
977 
978     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
979                           first_ppc_cpu->compat_pvr)) {
980         /* If we're in a pre POWER9 compat mode then the guest should do hash */
981         val[3] = 0x00; /* Hash */
982     } else if (kvm_enabled()) {
983         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
984             val[3] = 0x80; /* OV5_MMU_BOTH */
985         } else if (kvmppc_has_cap_mmu_radix()) {
986             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
987         } else {
988             val[3] = 0x00; /* Hash */
989         }
990     } else {
991         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
992         val[3] = 0xC0;
993     }
994     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
995                      val, sizeof(val)));
996 }
997 
998 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
999 {
1000     MachineState *machine = MACHINE(spapr);
1001     int chosen;
1002     const char *boot_device = machine->boot_order;
1003     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1004     size_t cb = 0;
1005     char *bootlist = get_boot_devices_list(&cb, true);
1006 
1007     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1008 
1009     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1010     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1011                           spapr->initrd_base));
1012     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1013                           spapr->initrd_base + spapr->initrd_size));
1014 
1015     if (spapr->kernel_size) {
1016         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1017                               cpu_to_be64(spapr->kernel_size) };
1018 
1019         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1020                          &kprop, sizeof(kprop)));
1021         if (spapr->kernel_le) {
1022             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1023         }
1024     }
1025     if (boot_menu) {
1026         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1027     }
1028     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1029     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1030     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1031 
1032     if (cb && bootlist) {
1033         int i;
1034 
1035         for (i = 0; i < cb; i++) {
1036             if (bootlist[i] == '\n') {
1037                 bootlist[i] = ' ';
1038             }
1039         }
1040         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1041     }
1042 
1043     if (boot_device && strlen(boot_device)) {
1044         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1045     }
1046 
1047     if (!spapr->has_graphics && stdout_path) {
1048         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1049     }
1050 
1051     spapr_dt_ov5_platform_support(fdt, chosen);
1052 
1053     g_free(stdout_path);
1054     g_free(bootlist);
1055 }
1056 
1057 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1058 {
1059     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1060      * KVM to work under pHyp with some guest co-operation */
1061     int hypervisor;
1062     uint8_t hypercall[16];
1063 
1064     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1065     /* indicate KVM hypercall interface */
1066     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1067     if (kvmppc_has_cap_fixup_hcalls()) {
1068         /*
1069          * Older KVM versions with older guest kernels were broken
1070          * with the magic page, don't allow the guest to map it.
1071          */
1072         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1073                                   sizeof(hypercall))) {
1074             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1075                              hypercall, sizeof(hypercall)));
1076         }
1077     }
1078 }
1079 
1080 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1081                              hwaddr rtas_addr,
1082                              hwaddr rtas_size)
1083 {
1084     MachineState *machine = MACHINE(spapr);
1085     MachineClass *mc = MACHINE_GET_CLASS(machine);
1086     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1087     int ret;
1088     void *fdt;
1089     sPAPRPHBState *phb;
1090     char *buf;
1091 
1092     fdt = g_malloc0(FDT_MAX_SIZE);
1093     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1094 
1095     /* Root node */
1096     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1097     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1098     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1099 
1100     /*
1101      * Add info to guest to indentify which host is it being run on
1102      * and what is the uuid of the guest
1103      */
1104     if (kvmppc_get_host_model(&buf)) {
1105         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1106         g_free(buf);
1107     }
1108     if (kvmppc_get_host_serial(&buf)) {
1109         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1110         g_free(buf);
1111     }
1112 
1113     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1114 
1115     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1116     if (qemu_uuid_set) {
1117         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1118     }
1119     g_free(buf);
1120 
1121     if (qemu_get_vm_name()) {
1122         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1123                                 qemu_get_vm_name()));
1124     }
1125 
1126     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1127     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1128 
1129     /* /interrupt controller */
1130     spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1131 
1132     ret = spapr_populate_memory(spapr, fdt);
1133     if (ret < 0) {
1134         error_report("couldn't setup memory nodes in fdt");
1135         exit(1);
1136     }
1137 
1138     /* /vdevice */
1139     spapr_dt_vdevice(spapr->vio_bus, fdt);
1140 
1141     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1142         ret = spapr_rng_populate_dt(fdt);
1143         if (ret < 0) {
1144             error_report("could not set up rng device in the fdt");
1145             exit(1);
1146         }
1147     }
1148 
1149     QLIST_FOREACH(phb, &spapr->phbs, list) {
1150         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1151         if (ret < 0) {
1152             error_report("couldn't setup PCI devices in fdt");
1153             exit(1);
1154         }
1155     }
1156 
1157     /* cpus */
1158     spapr_populate_cpus_dt_node(fdt, spapr);
1159 
1160     if (smc->dr_lmb_enabled) {
1161         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1162     }
1163 
1164     if (mc->has_hotpluggable_cpus) {
1165         int offset = fdt_path_offset(fdt, "/cpus");
1166         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1167                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1168         if (ret < 0) {
1169             error_report("Couldn't set up CPU DR device tree properties");
1170             exit(1);
1171         }
1172     }
1173 
1174     /* /event-sources */
1175     spapr_dt_events(spapr, fdt);
1176 
1177     /* /rtas */
1178     spapr_dt_rtas(spapr, fdt);
1179 
1180     /* /chosen */
1181     spapr_dt_chosen(spapr, fdt);
1182 
1183     /* /hypervisor */
1184     if (kvm_enabled()) {
1185         spapr_dt_hypervisor(spapr, fdt);
1186     }
1187 
1188     /* Build memory reserve map */
1189     if (spapr->kernel_size) {
1190         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1191     }
1192     if (spapr->initrd_size) {
1193         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1194     }
1195 
1196     /* ibm,client-architecture-support updates */
1197     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1198     if (ret < 0) {
1199         error_report("couldn't setup CAS properties fdt");
1200         exit(1);
1201     }
1202 
1203     return fdt;
1204 }
1205 
1206 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1207 {
1208     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1209 }
1210 
1211 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1212                                     PowerPCCPU *cpu)
1213 {
1214     CPUPPCState *env = &cpu->env;
1215 
1216     /* The TCG path should also be holding the BQL at this point */
1217     g_assert(qemu_mutex_iothread_locked());
1218 
1219     if (msr_pr) {
1220         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1221         env->gpr[3] = H_PRIVILEGE;
1222     } else {
1223         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1224     }
1225 }
1226 
1227 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1228 {
1229     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1230 
1231     return spapr->patb_entry;
1232 }
1233 
1234 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1235 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1236 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1237 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1238 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1239 
1240 /*
1241  * Get the fd to access the kernel htab, re-opening it if necessary
1242  */
1243 static int get_htab_fd(sPAPRMachineState *spapr)
1244 {
1245     Error *local_err = NULL;
1246 
1247     if (spapr->htab_fd >= 0) {
1248         return spapr->htab_fd;
1249     }
1250 
1251     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1252     if (spapr->htab_fd < 0) {
1253         error_report_err(local_err);
1254     }
1255 
1256     return spapr->htab_fd;
1257 }
1258 
1259 void close_htab_fd(sPAPRMachineState *spapr)
1260 {
1261     if (spapr->htab_fd >= 0) {
1262         close(spapr->htab_fd);
1263     }
1264     spapr->htab_fd = -1;
1265 }
1266 
1267 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1268 {
1269     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1270 
1271     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1272 }
1273 
1274 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1275 {
1276     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1277 
1278     assert(kvm_enabled());
1279 
1280     if (!spapr->htab) {
1281         return 0;
1282     }
1283 
1284     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1285 }
1286 
1287 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1288                                                 hwaddr ptex, int n)
1289 {
1290     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1291     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1292 
1293     if (!spapr->htab) {
1294         /*
1295          * HTAB is controlled by KVM. Fetch into temporary buffer
1296          */
1297         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1298         kvmppc_read_hptes(hptes, ptex, n);
1299         return hptes;
1300     }
1301 
1302     /*
1303      * HTAB is controlled by QEMU. Just point to the internally
1304      * accessible PTEG.
1305      */
1306     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1307 }
1308 
1309 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1310                               const ppc_hash_pte64_t *hptes,
1311                               hwaddr ptex, int n)
1312 {
1313     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1314 
1315     if (!spapr->htab) {
1316         g_free((void *)hptes);
1317     }
1318 
1319     /* Nothing to do for qemu managed HPT */
1320 }
1321 
1322 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1323                              uint64_t pte0, uint64_t pte1)
1324 {
1325     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1326     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1327 
1328     if (!spapr->htab) {
1329         kvmppc_write_hpte(ptex, pte0, pte1);
1330     } else {
1331         stq_p(spapr->htab + offset, pte0);
1332         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1333     }
1334 }
1335 
1336 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1337 {
1338     int shift;
1339 
1340     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1341      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1342      * that's much more than is needed for Linux guests */
1343     shift = ctz64(pow2ceil(ramsize)) - 7;
1344     shift = MAX(shift, 18); /* Minimum architected size */
1345     shift = MIN(shift, 46); /* Maximum architected size */
1346     return shift;
1347 }
1348 
1349 void spapr_free_hpt(sPAPRMachineState *spapr)
1350 {
1351     g_free(spapr->htab);
1352     spapr->htab = NULL;
1353     spapr->htab_shift = 0;
1354     close_htab_fd(spapr);
1355 }
1356 
1357 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1358                           Error **errp)
1359 {
1360     long rc;
1361 
1362     /* Clean up any HPT info from a previous boot */
1363     spapr_free_hpt(spapr);
1364 
1365     rc = kvmppc_reset_htab(shift);
1366     if (rc < 0) {
1367         /* kernel-side HPT needed, but couldn't allocate one */
1368         error_setg_errno(errp, errno,
1369                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1370                          shift);
1371         /* This is almost certainly fatal, but if the caller really
1372          * wants to carry on with shift == 0, it's welcome to try */
1373     } else if (rc > 0) {
1374         /* kernel-side HPT allocated */
1375         if (rc != shift) {
1376             error_setg(errp,
1377                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1378                        shift, rc);
1379         }
1380 
1381         spapr->htab_shift = shift;
1382         spapr->htab = NULL;
1383     } else {
1384         /* kernel-side HPT not needed, allocate in userspace instead */
1385         size_t size = 1ULL << shift;
1386         int i;
1387 
1388         spapr->htab = qemu_memalign(size, size);
1389         if (!spapr->htab) {
1390             error_setg_errno(errp, errno,
1391                              "Could not allocate HPT of order %d", shift);
1392             return;
1393         }
1394 
1395         memset(spapr->htab, 0, size);
1396         spapr->htab_shift = shift;
1397 
1398         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1399             DIRTY_HPTE(HPTE(spapr->htab, i));
1400         }
1401     }
1402     /* We're setting up a hash table, so that means we're not radix */
1403     spapr->patb_entry = 0;
1404 }
1405 
1406 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1407 {
1408     int hpt_shift;
1409 
1410     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1411         || (spapr->cas_reboot
1412             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1413         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1414     } else {
1415         uint64_t current_ram_size;
1416 
1417         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1418         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1419     }
1420     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1421 
1422     if (spapr->vrma_adjust) {
1423         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1424                                           spapr->htab_shift);
1425     }
1426 }
1427 
1428 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1429 {
1430     bool matched = false;
1431 
1432     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1433         matched = true;
1434     }
1435 
1436     if (!matched) {
1437         error_report("Device %s is not supported by this machine yet.",
1438                      qdev_fw_name(DEVICE(sbdev)));
1439         exit(1);
1440     }
1441 }
1442 
1443 static int spapr_reset_drcs(Object *child, void *opaque)
1444 {
1445     sPAPRDRConnector *drc =
1446         (sPAPRDRConnector *) object_dynamic_cast(child,
1447                                                  TYPE_SPAPR_DR_CONNECTOR);
1448 
1449     if (drc) {
1450         spapr_drc_reset(drc);
1451     }
1452 
1453     return 0;
1454 }
1455 
1456 static void spapr_machine_reset(void)
1457 {
1458     MachineState *machine = MACHINE(qdev_get_machine());
1459     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1460     PowerPCCPU *first_ppc_cpu;
1461     uint32_t rtas_limit;
1462     hwaddr rtas_addr, fdt_addr;
1463     void *fdt;
1464     int rc;
1465 
1466     /* Check for unknown sysbus devices */
1467     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1468 
1469     first_ppc_cpu = POWERPC_CPU(first_cpu);
1470     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1471         ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1472                          spapr->max_compat_pvr)) {
1473         /* If using KVM with radix mode available, VCPUs can be started
1474          * without a HPT because KVM will start them in radix mode.
1475          * Set the GR bit in PATB so that we know there is no HPT. */
1476         spapr->patb_entry = PATBE1_GR;
1477     } else {
1478         spapr_setup_hpt_and_vrma(spapr);
1479     }
1480 
1481     qemu_devices_reset();
1482 
1483     /* DRC reset may cause a device to be unplugged. This will cause troubles
1484      * if this device is used by another device (eg, a running vhost backend
1485      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1486      * situations, we reset DRCs after all devices have been reset.
1487      */
1488     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1489 
1490     spapr_clear_pending_events(spapr);
1491 
1492     /*
1493      * We place the device tree and RTAS just below either the top of the RMA,
1494      * or just below 2GB, whichever is lowere, so that it can be
1495      * processed with 32-bit real mode code if necessary
1496      */
1497     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1498     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1499     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1500 
1501     /* if this reset wasn't generated by CAS, we should reset our
1502      * negotiated options and start from scratch */
1503     if (!spapr->cas_reboot) {
1504         spapr_ovec_cleanup(spapr->ov5_cas);
1505         spapr->ov5_cas = spapr_ovec_new();
1506 
1507         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1508     }
1509 
1510     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1511 
1512     spapr_load_rtas(spapr, fdt, rtas_addr);
1513 
1514     rc = fdt_pack(fdt);
1515 
1516     /* Should only fail if we've built a corrupted tree */
1517     assert(rc == 0);
1518 
1519     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1520         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1521                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1522         exit(1);
1523     }
1524 
1525     /* Load the fdt */
1526     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1527     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1528     g_free(fdt);
1529 
1530     /* Set up the entry state */
1531     first_ppc_cpu->env.gpr[3] = fdt_addr;
1532     first_ppc_cpu->env.gpr[5] = 0;
1533     first_cpu->halted = 0;
1534     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1535 
1536     spapr->cas_reboot = false;
1537 }
1538 
1539 static void spapr_create_nvram(sPAPRMachineState *spapr)
1540 {
1541     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1542     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1543 
1544     if (dinfo) {
1545         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1546                             &error_fatal);
1547     }
1548 
1549     qdev_init_nofail(dev);
1550 
1551     spapr->nvram = (struct sPAPRNVRAM *)dev;
1552 }
1553 
1554 static void spapr_rtc_create(sPAPRMachineState *spapr)
1555 {
1556     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1557     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1558                               &error_fatal);
1559     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1560                               &error_fatal);
1561     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1562                               "date", &error_fatal);
1563 }
1564 
1565 /* Returns whether we want to use VGA or not */
1566 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1567 {
1568     switch (vga_interface_type) {
1569     case VGA_NONE:
1570         return false;
1571     case VGA_DEVICE:
1572         return true;
1573     case VGA_STD:
1574     case VGA_VIRTIO:
1575         return pci_vga_init(pci_bus) != NULL;
1576     default:
1577         error_setg(errp,
1578                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1579         return false;
1580     }
1581 }
1582 
1583 static int spapr_post_load(void *opaque, int version_id)
1584 {
1585     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1586     int err = 0;
1587 
1588     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1589         CPUState *cs;
1590         CPU_FOREACH(cs) {
1591             PowerPCCPU *cpu = POWERPC_CPU(cs);
1592             icp_resend(ICP(cpu->intc));
1593         }
1594     }
1595 
1596     /* In earlier versions, there was no separate qdev for the PAPR
1597      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1598      * So when migrating from those versions, poke the incoming offset
1599      * value into the RTC device */
1600     if (version_id < 3) {
1601         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1602     }
1603 
1604     if (kvm_enabled() && spapr->patb_entry) {
1605         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1606         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1607         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1608 
1609         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1610         if (err) {
1611             error_report("Process table config unsupported by the host");
1612             return -EINVAL;
1613         }
1614     }
1615 
1616     return err;
1617 }
1618 
1619 static bool version_before_3(void *opaque, int version_id)
1620 {
1621     return version_id < 3;
1622 }
1623 
1624 static bool spapr_pending_events_needed(void *opaque)
1625 {
1626     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1627     return !QTAILQ_EMPTY(&spapr->pending_events);
1628 }
1629 
1630 static const VMStateDescription vmstate_spapr_event_entry = {
1631     .name = "spapr_event_log_entry",
1632     .version_id = 1,
1633     .minimum_version_id = 1,
1634     .fields = (VMStateField[]) {
1635         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1636         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1637         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1638                                      NULL, extended_length),
1639         VMSTATE_END_OF_LIST()
1640     },
1641 };
1642 
1643 static const VMStateDescription vmstate_spapr_pending_events = {
1644     .name = "spapr_pending_events",
1645     .version_id = 1,
1646     .minimum_version_id = 1,
1647     .needed = spapr_pending_events_needed,
1648     .fields = (VMStateField[]) {
1649         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1650                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1651         VMSTATE_END_OF_LIST()
1652     },
1653 };
1654 
1655 static bool spapr_ov5_cas_needed(void *opaque)
1656 {
1657     sPAPRMachineState *spapr = opaque;
1658     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1659     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1660     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1661     bool cas_needed;
1662 
1663     /* Prior to the introduction of sPAPROptionVector, we had two option
1664      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1665      * Both of these options encode machine topology into the device-tree
1666      * in such a way that the now-booted OS should still be able to interact
1667      * appropriately with QEMU regardless of what options were actually
1668      * negotiatied on the source side.
1669      *
1670      * As such, we can avoid migrating the CAS-negotiated options if these
1671      * are the only options available on the current machine/platform.
1672      * Since these are the only options available for pseries-2.7 and
1673      * earlier, this allows us to maintain old->new/new->old migration
1674      * compatibility.
1675      *
1676      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1677      * via default pseries-2.8 machines and explicit command-line parameters.
1678      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1679      * of the actual CAS-negotiated values to continue working properly. For
1680      * example, availability of memory unplug depends on knowing whether
1681      * OV5_HP_EVT was negotiated via CAS.
1682      *
1683      * Thus, for any cases where the set of available CAS-negotiatable
1684      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1685      * include the CAS-negotiated options in the migration stream.
1686      */
1687     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1688     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1689 
1690     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1691      * the mask itself since in the future it's possible "legacy" bits may be
1692      * removed via machine options, which could generate a false positive
1693      * that breaks migration.
1694      */
1695     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1696     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1697 
1698     spapr_ovec_cleanup(ov5_mask);
1699     spapr_ovec_cleanup(ov5_legacy);
1700     spapr_ovec_cleanup(ov5_removed);
1701 
1702     return cas_needed;
1703 }
1704 
1705 static const VMStateDescription vmstate_spapr_ov5_cas = {
1706     .name = "spapr_option_vector_ov5_cas",
1707     .version_id = 1,
1708     .minimum_version_id = 1,
1709     .needed = spapr_ov5_cas_needed,
1710     .fields = (VMStateField[]) {
1711         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1712                                  vmstate_spapr_ovec, sPAPROptionVector),
1713         VMSTATE_END_OF_LIST()
1714     },
1715 };
1716 
1717 static bool spapr_patb_entry_needed(void *opaque)
1718 {
1719     sPAPRMachineState *spapr = opaque;
1720 
1721     return !!spapr->patb_entry;
1722 }
1723 
1724 static const VMStateDescription vmstate_spapr_patb_entry = {
1725     .name = "spapr_patb_entry",
1726     .version_id = 1,
1727     .minimum_version_id = 1,
1728     .needed = spapr_patb_entry_needed,
1729     .fields = (VMStateField[]) {
1730         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1731         VMSTATE_END_OF_LIST()
1732     },
1733 };
1734 
1735 static const VMStateDescription vmstate_spapr = {
1736     .name = "spapr",
1737     .version_id = 3,
1738     .minimum_version_id = 1,
1739     .post_load = spapr_post_load,
1740     .fields = (VMStateField[]) {
1741         /* used to be @next_irq */
1742         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1743 
1744         /* RTC offset */
1745         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1746 
1747         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1748         VMSTATE_END_OF_LIST()
1749     },
1750     .subsections = (const VMStateDescription*[]) {
1751         &vmstate_spapr_ov5_cas,
1752         &vmstate_spapr_patb_entry,
1753         &vmstate_spapr_pending_events,
1754         NULL
1755     }
1756 };
1757 
1758 static int htab_save_setup(QEMUFile *f, void *opaque)
1759 {
1760     sPAPRMachineState *spapr = opaque;
1761 
1762     /* "Iteration" header */
1763     if (!spapr->htab_shift) {
1764         qemu_put_be32(f, -1);
1765     } else {
1766         qemu_put_be32(f, spapr->htab_shift);
1767     }
1768 
1769     if (spapr->htab) {
1770         spapr->htab_save_index = 0;
1771         spapr->htab_first_pass = true;
1772     } else {
1773         if (spapr->htab_shift) {
1774             assert(kvm_enabled());
1775         }
1776     }
1777 
1778 
1779     return 0;
1780 }
1781 
1782 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1783                             int chunkstart, int n_valid, int n_invalid)
1784 {
1785     qemu_put_be32(f, chunkstart);
1786     qemu_put_be16(f, n_valid);
1787     qemu_put_be16(f, n_invalid);
1788     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1789                     HASH_PTE_SIZE_64 * n_valid);
1790 }
1791 
1792 static void htab_save_end_marker(QEMUFile *f)
1793 {
1794     qemu_put_be32(f, 0);
1795     qemu_put_be16(f, 0);
1796     qemu_put_be16(f, 0);
1797 }
1798 
1799 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1800                                  int64_t max_ns)
1801 {
1802     bool has_timeout = max_ns != -1;
1803     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1804     int index = spapr->htab_save_index;
1805     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1806 
1807     assert(spapr->htab_first_pass);
1808 
1809     do {
1810         int chunkstart;
1811 
1812         /* Consume invalid HPTEs */
1813         while ((index < htabslots)
1814                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1815             CLEAN_HPTE(HPTE(spapr->htab, index));
1816             index++;
1817         }
1818 
1819         /* Consume valid HPTEs */
1820         chunkstart = index;
1821         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1822                && HPTE_VALID(HPTE(spapr->htab, index))) {
1823             CLEAN_HPTE(HPTE(spapr->htab, index));
1824             index++;
1825         }
1826 
1827         if (index > chunkstart) {
1828             int n_valid = index - chunkstart;
1829 
1830             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1831 
1832             if (has_timeout &&
1833                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1834                 break;
1835             }
1836         }
1837     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1838 
1839     if (index >= htabslots) {
1840         assert(index == htabslots);
1841         index = 0;
1842         spapr->htab_first_pass = false;
1843     }
1844     spapr->htab_save_index = index;
1845 }
1846 
1847 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1848                                 int64_t max_ns)
1849 {
1850     bool final = max_ns < 0;
1851     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1852     int examined = 0, sent = 0;
1853     int index = spapr->htab_save_index;
1854     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1855 
1856     assert(!spapr->htab_first_pass);
1857 
1858     do {
1859         int chunkstart, invalidstart;
1860 
1861         /* Consume non-dirty HPTEs */
1862         while ((index < htabslots)
1863                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1864             index++;
1865             examined++;
1866         }
1867 
1868         chunkstart = index;
1869         /* Consume valid dirty HPTEs */
1870         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1871                && HPTE_DIRTY(HPTE(spapr->htab, index))
1872                && HPTE_VALID(HPTE(spapr->htab, index))) {
1873             CLEAN_HPTE(HPTE(spapr->htab, index));
1874             index++;
1875             examined++;
1876         }
1877 
1878         invalidstart = index;
1879         /* Consume invalid dirty HPTEs */
1880         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1881                && HPTE_DIRTY(HPTE(spapr->htab, index))
1882                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1883             CLEAN_HPTE(HPTE(spapr->htab, index));
1884             index++;
1885             examined++;
1886         }
1887 
1888         if (index > chunkstart) {
1889             int n_valid = invalidstart - chunkstart;
1890             int n_invalid = index - invalidstart;
1891 
1892             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1893             sent += index - chunkstart;
1894 
1895             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1896                 break;
1897             }
1898         }
1899 
1900         if (examined >= htabslots) {
1901             break;
1902         }
1903 
1904         if (index >= htabslots) {
1905             assert(index == htabslots);
1906             index = 0;
1907         }
1908     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1909 
1910     if (index >= htabslots) {
1911         assert(index == htabslots);
1912         index = 0;
1913     }
1914 
1915     spapr->htab_save_index = index;
1916 
1917     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1918 }
1919 
1920 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1921 #define MAX_KVM_BUF_SIZE    2048
1922 
1923 static int htab_save_iterate(QEMUFile *f, void *opaque)
1924 {
1925     sPAPRMachineState *spapr = opaque;
1926     int fd;
1927     int rc = 0;
1928 
1929     /* Iteration header */
1930     if (!spapr->htab_shift) {
1931         qemu_put_be32(f, -1);
1932         return 1;
1933     } else {
1934         qemu_put_be32(f, 0);
1935     }
1936 
1937     if (!spapr->htab) {
1938         assert(kvm_enabled());
1939 
1940         fd = get_htab_fd(spapr);
1941         if (fd < 0) {
1942             return fd;
1943         }
1944 
1945         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1946         if (rc < 0) {
1947             return rc;
1948         }
1949     } else  if (spapr->htab_first_pass) {
1950         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1951     } else {
1952         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1953     }
1954 
1955     htab_save_end_marker(f);
1956 
1957     return rc;
1958 }
1959 
1960 static int htab_save_complete(QEMUFile *f, void *opaque)
1961 {
1962     sPAPRMachineState *spapr = opaque;
1963     int fd;
1964 
1965     /* Iteration header */
1966     if (!spapr->htab_shift) {
1967         qemu_put_be32(f, -1);
1968         return 0;
1969     } else {
1970         qemu_put_be32(f, 0);
1971     }
1972 
1973     if (!spapr->htab) {
1974         int rc;
1975 
1976         assert(kvm_enabled());
1977 
1978         fd = get_htab_fd(spapr);
1979         if (fd < 0) {
1980             return fd;
1981         }
1982 
1983         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1984         if (rc < 0) {
1985             return rc;
1986         }
1987     } else {
1988         if (spapr->htab_first_pass) {
1989             htab_save_first_pass(f, spapr, -1);
1990         }
1991         htab_save_later_pass(f, spapr, -1);
1992     }
1993 
1994     /* End marker */
1995     htab_save_end_marker(f);
1996 
1997     return 0;
1998 }
1999 
2000 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2001 {
2002     sPAPRMachineState *spapr = opaque;
2003     uint32_t section_hdr;
2004     int fd = -1;
2005     Error *local_err = NULL;
2006 
2007     if (version_id < 1 || version_id > 1) {
2008         error_report("htab_load() bad version");
2009         return -EINVAL;
2010     }
2011 
2012     section_hdr = qemu_get_be32(f);
2013 
2014     if (section_hdr == -1) {
2015         spapr_free_hpt(spapr);
2016         return 0;
2017     }
2018 
2019     if (section_hdr) {
2020         /* First section gives the htab size */
2021         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2022         if (local_err) {
2023             error_report_err(local_err);
2024             return -EINVAL;
2025         }
2026         return 0;
2027     }
2028 
2029     if (!spapr->htab) {
2030         assert(kvm_enabled());
2031 
2032         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2033         if (fd < 0) {
2034             error_report_err(local_err);
2035             return fd;
2036         }
2037     }
2038 
2039     while (true) {
2040         uint32_t index;
2041         uint16_t n_valid, n_invalid;
2042 
2043         index = qemu_get_be32(f);
2044         n_valid = qemu_get_be16(f);
2045         n_invalid = qemu_get_be16(f);
2046 
2047         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2048             /* End of Stream */
2049             break;
2050         }
2051 
2052         if ((index + n_valid + n_invalid) >
2053             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2054             /* Bad index in stream */
2055             error_report(
2056                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2057                 index, n_valid, n_invalid, spapr->htab_shift);
2058             return -EINVAL;
2059         }
2060 
2061         if (spapr->htab) {
2062             if (n_valid) {
2063                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2064                                 HASH_PTE_SIZE_64 * n_valid);
2065             }
2066             if (n_invalid) {
2067                 memset(HPTE(spapr->htab, index + n_valid), 0,
2068                        HASH_PTE_SIZE_64 * n_invalid);
2069             }
2070         } else {
2071             int rc;
2072 
2073             assert(fd >= 0);
2074 
2075             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2076             if (rc < 0) {
2077                 return rc;
2078             }
2079         }
2080     }
2081 
2082     if (!spapr->htab) {
2083         assert(fd >= 0);
2084         close(fd);
2085     }
2086 
2087     return 0;
2088 }
2089 
2090 static void htab_save_cleanup(void *opaque)
2091 {
2092     sPAPRMachineState *spapr = opaque;
2093 
2094     close_htab_fd(spapr);
2095 }
2096 
2097 static SaveVMHandlers savevm_htab_handlers = {
2098     .save_setup = htab_save_setup,
2099     .save_live_iterate = htab_save_iterate,
2100     .save_live_complete_precopy = htab_save_complete,
2101     .save_cleanup = htab_save_cleanup,
2102     .load_state = htab_load,
2103 };
2104 
2105 static void spapr_boot_set(void *opaque, const char *boot_device,
2106                            Error **errp)
2107 {
2108     MachineState *machine = MACHINE(opaque);
2109     machine->boot_order = g_strdup(boot_device);
2110 }
2111 
2112 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2113 {
2114     MachineState *machine = MACHINE(spapr);
2115     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2116     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2117     int i;
2118 
2119     for (i = 0; i < nr_lmbs; i++) {
2120         uint64_t addr;
2121 
2122         addr = i * lmb_size + spapr->hotplug_memory.base;
2123         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2124                                addr / lmb_size);
2125     }
2126 }
2127 
2128 /*
2129  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2130  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2131  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2132  */
2133 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2134 {
2135     int i;
2136 
2137     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2138         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2139                    " is not aligned to %llu MiB",
2140                    machine->ram_size,
2141                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2142         return;
2143     }
2144 
2145     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2146         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2147                    " is not aligned to %llu MiB",
2148                    machine->ram_size,
2149                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2150         return;
2151     }
2152 
2153     for (i = 0; i < nb_numa_nodes; i++) {
2154         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2155             error_setg(errp,
2156                        "Node %d memory size 0x%" PRIx64
2157                        " is not aligned to %llu MiB",
2158                        i, numa_info[i].node_mem,
2159                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2160             return;
2161         }
2162     }
2163 }
2164 
2165 /* find cpu slot in machine->possible_cpus by core_id */
2166 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2167 {
2168     int index = id / smp_threads;
2169 
2170     if (index >= ms->possible_cpus->len) {
2171         return NULL;
2172     }
2173     if (idx) {
2174         *idx = index;
2175     }
2176     return &ms->possible_cpus->cpus[index];
2177 }
2178 
2179 static void spapr_init_cpus(sPAPRMachineState *spapr)
2180 {
2181     MachineState *machine = MACHINE(spapr);
2182     MachineClass *mc = MACHINE_GET_CLASS(machine);
2183     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2184     int smt = kvmppc_smt_threads();
2185     const CPUArchIdList *possible_cpus;
2186     int boot_cores_nr = smp_cpus / smp_threads;
2187     int i;
2188 
2189     if (!type) {
2190         error_report("Unable to find sPAPR CPU Core definition");
2191         exit(1);
2192     }
2193 
2194     possible_cpus = mc->possible_cpu_arch_ids(machine);
2195     if (mc->has_hotpluggable_cpus) {
2196         if (smp_cpus % smp_threads) {
2197             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2198                          smp_cpus, smp_threads);
2199             exit(1);
2200         }
2201         if (max_cpus % smp_threads) {
2202             error_report("max_cpus (%u) must be multiple of threads (%u)",
2203                          max_cpus, smp_threads);
2204             exit(1);
2205         }
2206     } else {
2207         if (max_cpus != smp_cpus) {
2208             error_report("This machine version does not support CPU hotplug");
2209             exit(1);
2210         }
2211         boot_cores_nr = possible_cpus->len;
2212     }
2213 
2214     for (i = 0; i < possible_cpus->len; i++) {
2215         int core_id = i * smp_threads;
2216 
2217         if (mc->has_hotpluggable_cpus) {
2218             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2219                                    (core_id / smp_threads) * smt);
2220         }
2221 
2222         if (i < boot_cores_nr) {
2223             Object *core  = object_new(type);
2224             int nr_threads = smp_threads;
2225 
2226             /* Handle the partially filled core for older machine types */
2227             if ((i + 1) * smp_threads >= smp_cpus) {
2228                 nr_threads = smp_cpus - i * smp_threads;
2229             }
2230 
2231             object_property_set_int(core, nr_threads, "nr-threads",
2232                                     &error_fatal);
2233             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2234                                     &error_fatal);
2235             object_property_set_bool(core, true, "realized", &error_fatal);
2236         }
2237     }
2238 }
2239 
2240 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2241 {
2242     Error *local_err = NULL;
2243     bool vsmt_user = !!spapr->vsmt;
2244     int kvm_smt = kvmppc_smt_threads();
2245     int ret;
2246 
2247     if (!kvm_enabled() && (smp_threads > 1)) {
2248         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2249                      "on a pseries machine");
2250         goto out;
2251     }
2252     if (!is_power_of_2(smp_threads)) {
2253         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2254                      "machine because it must be a power of 2", smp_threads);
2255         goto out;
2256     }
2257 
2258     /* Detemine the VSMT mode to use: */
2259     if (vsmt_user) {
2260         if (spapr->vsmt < smp_threads) {
2261             error_setg(&local_err, "Cannot support VSMT mode %d"
2262                          " because it must be >= threads/core (%d)",
2263                          spapr->vsmt, smp_threads);
2264             goto out;
2265         }
2266         /* In this case, spapr->vsmt has been set by the command line */
2267     } else {
2268         /* Choose a VSMT mode that may be higher than necessary but is
2269          * likely to be compatible with hosts that don't have VSMT. */
2270         spapr->vsmt = MAX(kvm_smt, smp_threads);
2271     }
2272 
2273     /* KVM: If necessary, set the SMT mode: */
2274     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2275         ret = kvmppc_set_smt_threads(spapr->vsmt);
2276         if (ret) {
2277             error_setg(&local_err,
2278                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2279                        spapr->vsmt, ret);
2280             if (!vsmt_user) {
2281                 error_append_hint(&local_err, "On PPC, a VM with %d threads/"
2282                              "core on a host with %d threads/core requires "
2283                              " the use of VSMT mode %d.\n",
2284                              smp_threads, kvm_smt, spapr->vsmt);
2285             }
2286             kvmppc_hint_smt_possible(&local_err);
2287             goto out;
2288         }
2289     }
2290     /* else TCG: nothing to do currently */
2291 out:
2292     error_propagate(errp, local_err);
2293 }
2294 
2295 /* pSeries LPAR / sPAPR hardware init */
2296 static void spapr_machine_init(MachineState *machine)
2297 {
2298     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2299     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2300     const char *kernel_filename = machine->kernel_filename;
2301     const char *initrd_filename = machine->initrd_filename;
2302     PCIHostState *phb;
2303     int i;
2304     MemoryRegion *sysmem = get_system_memory();
2305     MemoryRegion *ram = g_new(MemoryRegion, 1);
2306     MemoryRegion *rma_region;
2307     void *rma = NULL;
2308     hwaddr rma_alloc_size;
2309     hwaddr node0_size = spapr_node0_size(machine);
2310     long load_limit, fw_size;
2311     char *filename;
2312     Error *resize_hpt_err = NULL;
2313 
2314     msi_nonbroken = true;
2315 
2316     QLIST_INIT(&spapr->phbs);
2317     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2318 
2319     /* Check HPT resizing availability */
2320     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2321     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2322         /*
2323          * If the user explicitly requested a mode we should either
2324          * supply it, or fail completely (which we do below).  But if
2325          * it's not set explicitly, we reset our mode to something
2326          * that works
2327          */
2328         if (resize_hpt_err) {
2329             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2330             error_free(resize_hpt_err);
2331             resize_hpt_err = NULL;
2332         } else {
2333             spapr->resize_hpt = smc->resize_hpt_default;
2334         }
2335     }
2336 
2337     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2338 
2339     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2340         /*
2341          * User requested HPT resize, but this host can't supply it.  Bail out
2342          */
2343         error_report_err(resize_hpt_err);
2344         exit(1);
2345     }
2346 
2347     /* Allocate RMA if necessary */
2348     rma_alloc_size = kvmppc_alloc_rma(&rma);
2349 
2350     if (rma_alloc_size == -1) {
2351         error_report("Unable to create RMA");
2352         exit(1);
2353     }
2354 
2355     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2356         spapr->rma_size = rma_alloc_size;
2357     } else {
2358         spapr->rma_size = node0_size;
2359 
2360         /* With KVM, we don't actually know whether KVM supports an
2361          * unbounded RMA (PR KVM) or is limited by the hash table size
2362          * (HV KVM using VRMA), so we always assume the latter
2363          *
2364          * In that case, we also limit the initial allocations for RTAS
2365          * etc... to 256M since we have no way to know what the VRMA size
2366          * is going to be as it depends on the size of the hash table
2367          * isn't determined yet.
2368          */
2369         if (kvm_enabled()) {
2370             spapr->vrma_adjust = 1;
2371             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2372         }
2373 
2374         /* Actually we don't support unbounded RMA anymore since we
2375          * added proper emulation of HV mode. The max we can get is
2376          * 16G which also happens to be what we configure for PAPR
2377          * mode so make sure we don't do anything bigger than that
2378          */
2379         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2380     }
2381 
2382     if (spapr->rma_size > node0_size) {
2383         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2384                      spapr->rma_size);
2385         exit(1);
2386     }
2387 
2388     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2389     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2390 
2391     /* Set up Interrupt Controller before we create the VCPUs */
2392     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2393 
2394     /* Set up containers for ibm,client-architecture-support negotiated options
2395      */
2396     spapr->ov5 = spapr_ovec_new();
2397     spapr->ov5_cas = spapr_ovec_new();
2398 
2399     if (smc->dr_lmb_enabled) {
2400         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2401         spapr_validate_node_memory(machine, &error_fatal);
2402     }
2403 
2404     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2405     if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2406         /* KVM and TCG always allow GTSE with radix... */
2407         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2408     }
2409     /* ... but not with hash (currently). */
2410 
2411     /* advertise support for dedicated HP event source to guests */
2412     if (spapr->use_hotplug_event_source) {
2413         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2414     }
2415 
2416     /* advertise support for HPT resizing */
2417     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2418         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2419     }
2420 
2421     /* init CPUs */
2422     spapr_set_vsmt_mode(spapr, &error_fatal);
2423 
2424     spapr_init_cpus(spapr);
2425 
2426     if (kvm_enabled()) {
2427         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2428         kvmppc_enable_logical_ci_hcalls();
2429         kvmppc_enable_set_mode_hcall();
2430 
2431         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2432         kvmppc_enable_clear_ref_mod_hcalls();
2433     }
2434 
2435     /* allocate RAM */
2436     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2437                                          machine->ram_size);
2438     memory_region_add_subregion(sysmem, 0, ram);
2439 
2440     if (rma_alloc_size && rma) {
2441         rma_region = g_new(MemoryRegion, 1);
2442         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2443                                    rma_alloc_size, rma);
2444         vmstate_register_ram_global(rma_region);
2445         memory_region_add_subregion(sysmem, 0, rma_region);
2446     }
2447 
2448     /* initialize hotplug memory address space */
2449     if (machine->ram_size < machine->maxram_size) {
2450         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2451         /*
2452          * Limit the number of hotpluggable memory slots to half the number
2453          * slots that KVM supports, leaving the other half for PCI and other
2454          * devices. However ensure that number of slots doesn't drop below 32.
2455          */
2456         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2457                            SPAPR_MAX_RAM_SLOTS;
2458 
2459         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2460             max_memslots = SPAPR_MAX_RAM_SLOTS;
2461         }
2462         if (machine->ram_slots > max_memslots) {
2463             error_report("Specified number of memory slots %"
2464                          PRIu64" exceeds max supported %d",
2465                          machine->ram_slots, max_memslots);
2466             exit(1);
2467         }
2468 
2469         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2470                                               SPAPR_HOTPLUG_MEM_ALIGN);
2471         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2472                            "hotplug-memory", hotplug_mem_size);
2473         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2474                                     &spapr->hotplug_memory.mr);
2475     }
2476 
2477     if (smc->dr_lmb_enabled) {
2478         spapr_create_lmb_dr_connectors(spapr);
2479     }
2480 
2481     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2482     if (!filename) {
2483         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2484         exit(1);
2485     }
2486     spapr->rtas_size = get_image_size(filename);
2487     if (spapr->rtas_size < 0) {
2488         error_report("Could not get size of LPAR rtas '%s'", filename);
2489         exit(1);
2490     }
2491     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2492     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2493         error_report("Could not load LPAR rtas '%s'", filename);
2494         exit(1);
2495     }
2496     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2497         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2498                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2499         exit(1);
2500     }
2501     g_free(filename);
2502 
2503     /* Set up RTAS event infrastructure */
2504     spapr_events_init(spapr);
2505 
2506     /* Set up the RTC RTAS interfaces */
2507     spapr_rtc_create(spapr);
2508 
2509     /* Set up VIO bus */
2510     spapr->vio_bus = spapr_vio_bus_init();
2511 
2512     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2513         if (serial_hds[i]) {
2514             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2515         }
2516     }
2517 
2518     /* We always have at least the nvram device on VIO */
2519     spapr_create_nvram(spapr);
2520 
2521     /* Set up PCI */
2522     spapr_pci_rtas_init();
2523 
2524     phb = spapr_create_phb(spapr, 0);
2525 
2526     for (i = 0; i < nb_nics; i++) {
2527         NICInfo *nd = &nd_table[i];
2528 
2529         if (!nd->model) {
2530             nd->model = g_strdup("ibmveth");
2531         }
2532 
2533         if (strcmp(nd->model, "ibmveth") == 0) {
2534             spapr_vlan_create(spapr->vio_bus, nd);
2535         } else {
2536             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2537         }
2538     }
2539 
2540     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2541         spapr_vscsi_create(spapr->vio_bus);
2542     }
2543 
2544     /* Graphics */
2545     if (spapr_vga_init(phb->bus, &error_fatal)) {
2546         spapr->has_graphics = true;
2547         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2548     }
2549 
2550     if (machine->usb) {
2551         if (smc->use_ohci_by_default) {
2552             pci_create_simple(phb->bus, -1, "pci-ohci");
2553         } else {
2554             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2555         }
2556 
2557         if (spapr->has_graphics) {
2558             USBBus *usb_bus = usb_bus_find(-1);
2559 
2560             usb_create_simple(usb_bus, "usb-kbd");
2561             usb_create_simple(usb_bus, "usb-mouse");
2562         }
2563     }
2564 
2565     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2566         error_report(
2567             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2568             MIN_RMA_SLOF);
2569         exit(1);
2570     }
2571 
2572     if (kernel_filename) {
2573         uint64_t lowaddr = 0;
2574 
2575         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2576                                       NULL, NULL, &lowaddr, NULL, 1,
2577                                       PPC_ELF_MACHINE, 0, 0);
2578         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2579             spapr->kernel_size = load_elf(kernel_filename,
2580                                           translate_kernel_address, NULL, NULL,
2581                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2582                                           0, 0);
2583             spapr->kernel_le = spapr->kernel_size > 0;
2584         }
2585         if (spapr->kernel_size < 0) {
2586             error_report("error loading %s: %s", kernel_filename,
2587                          load_elf_strerror(spapr->kernel_size));
2588             exit(1);
2589         }
2590 
2591         /* load initrd */
2592         if (initrd_filename) {
2593             /* Try to locate the initrd in the gap between the kernel
2594              * and the firmware. Add a bit of space just in case
2595              */
2596             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2597                                   + 0x1ffff) & ~0xffff;
2598             spapr->initrd_size = load_image_targphys(initrd_filename,
2599                                                      spapr->initrd_base,
2600                                                      load_limit
2601                                                      - spapr->initrd_base);
2602             if (spapr->initrd_size < 0) {
2603                 error_report("could not load initial ram disk '%s'",
2604                              initrd_filename);
2605                 exit(1);
2606             }
2607         }
2608     }
2609 
2610     if (bios_name == NULL) {
2611         bios_name = FW_FILE_NAME;
2612     }
2613     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2614     if (!filename) {
2615         error_report("Could not find LPAR firmware '%s'", bios_name);
2616         exit(1);
2617     }
2618     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2619     if (fw_size <= 0) {
2620         error_report("Could not load LPAR firmware '%s'", filename);
2621         exit(1);
2622     }
2623     g_free(filename);
2624 
2625     /* FIXME: Should register things through the MachineState's qdev
2626      * interface, this is a legacy from the sPAPREnvironment structure
2627      * which predated MachineState but had a similar function */
2628     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2629     register_savevm_live(NULL, "spapr/htab", -1, 1,
2630                          &savevm_htab_handlers, spapr);
2631 
2632     qemu_register_boot_set(spapr_boot_set, spapr);
2633 
2634     if (kvm_enabled()) {
2635         /* to stop and start vmclock */
2636         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2637                                          &spapr->tb);
2638 
2639         kvmppc_spapr_enable_inkernel_multitce();
2640     }
2641 }
2642 
2643 static int spapr_kvm_type(const char *vm_type)
2644 {
2645     if (!vm_type) {
2646         return 0;
2647     }
2648 
2649     if (!strcmp(vm_type, "HV")) {
2650         return 1;
2651     }
2652 
2653     if (!strcmp(vm_type, "PR")) {
2654         return 2;
2655     }
2656 
2657     error_report("Unknown kvm-type specified '%s'", vm_type);
2658     exit(1);
2659 }
2660 
2661 /*
2662  * Implementation of an interface to adjust firmware path
2663  * for the bootindex property handling.
2664  */
2665 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2666                                    DeviceState *dev)
2667 {
2668 #define CAST(type, obj, name) \
2669     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2670     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2671     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2672     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2673 
2674     if (d) {
2675         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2676         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2677         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2678 
2679         if (spapr) {
2680             /*
2681              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2682              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2683              * in the top 16 bits of the 64-bit LUN
2684              */
2685             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2686             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2687                                    (uint64_t)id << 48);
2688         } else if (virtio) {
2689             /*
2690              * We use SRP luns of the form 01000000 | (target << 8) | lun
2691              * in the top 32 bits of the 64-bit LUN
2692              * Note: the quote above is from SLOF and it is wrong,
2693              * the actual binding is:
2694              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2695              */
2696             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2697             if (d->lun >= 256) {
2698                 /* Use the LUN "flat space addressing method" */
2699                 id |= 0x4000;
2700             }
2701             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2702                                    (uint64_t)id << 32);
2703         } else if (usb) {
2704             /*
2705              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2706              * in the top 32 bits of the 64-bit LUN
2707              */
2708             unsigned usb_port = atoi(usb->port->path);
2709             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2710             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2711                                    (uint64_t)id << 32);
2712         }
2713     }
2714 
2715     /*
2716      * SLOF probes the USB devices, and if it recognizes that the device is a
2717      * storage device, it changes its name to "storage" instead of "usb-host",
2718      * and additionally adds a child node for the SCSI LUN, so the correct
2719      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2720      */
2721     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2722         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2723         if (usb_host_dev_is_scsi_storage(usbdev)) {
2724             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2725         }
2726     }
2727 
2728     if (phb) {
2729         /* Replace "pci" with "pci@800000020000000" */
2730         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2731     }
2732 
2733     if (vsc) {
2734         /* Same logic as virtio above */
2735         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2736         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2737     }
2738 
2739     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2740         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2741         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2742         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2743     }
2744 
2745     return NULL;
2746 }
2747 
2748 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2749 {
2750     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2751 
2752     return g_strdup(spapr->kvm_type);
2753 }
2754 
2755 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2756 {
2757     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2758 
2759     g_free(spapr->kvm_type);
2760     spapr->kvm_type = g_strdup(value);
2761 }
2762 
2763 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2764 {
2765     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2766 
2767     return spapr->use_hotplug_event_source;
2768 }
2769 
2770 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2771                                             Error **errp)
2772 {
2773     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2774 
2775     spapr->use_hotplug_event_source = value;
2776 }
2777 
2778 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2779 {
2780     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2781 
2782     switch (spapr->resize_hpt) {
2783     case SPAPR_RESIZE_HPT_DEFAULT:
2784         return g_strdup("default");
2785     case SPAPR_RESIZE_HPT_DISABLED:
2786         return g_strdup("disabled");
2787     case SPAPR_RESIZE_HPT_ENABLED:
2788         return g_strdup("enabled");
2789     case SPAPR_RESIZE_HPT_REQUIRED:
2790         return g_strdup("required");
2791     }
2792     g_assert_not_reached();
2793 }
2794 
2795 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2796 {
2797     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2798 
2799     if (strcmp(value, "default") == 0) {
2800         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2801     } else if (strcmp(value, "disabled") == 0) {
2802         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2803     } else if (strcmp(value, "enabled") == 0) {
2804         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2805     } else if (strcmp(value, "required") == 0) {
2806         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2807     } else {
2808         error_setg(errp, "Bad value for \"resize-hpt\" property");
2809     }
2810 }
2811 
2812 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2813                                    void *opaque, Error **errp)
2814 {
2815     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2816 }
2817 
2818 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2819                                    void *opaque, Error **errp)
2820 {
2821     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2822 }
2823 
2824 static void spapr_instance_init(Object *obj)
2825 {
2826     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2827 
2828     spapr->htab_fd = -1;
2829     spapr->use_hotplug_event_source = true;
2830     object_property_add_str(obj, "kvm-type",
2831                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2832     object_property_set_description(obj, "kvm-type",
2833                                     "Specifies the KVM virtualization mode (HV, PR)",
2834                                     NULL);
2835     object_property_add_bool(obj, "modern-hotplug-events",
2836                             spapr_get_modern_hotplug_events,
2837                             spapr_set_modern_hotplug_events,
2838                             NULL);
2839     object_property_set_description(obj, "modern-hotplug-events",
2840                                     "Use dedicated hotplug event mechanism in"
2841                                     " place of standard EPOW events when possible"
2842                                     " (required for memory hot-unplug support)",
2843                                     NULL);
2844 
2845     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2846                             "Maximum permitted CPU compatibility mode",
2847                             &error_fatal);
2848 
2849     object_property_add_str(obj, "resize-hpt",
2850                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2851     object_property_set_description(obj, "resize-hpt",
2852                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
2853                                     NULL);
2854     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2855                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2856     object_property_set_description(obj, "vsmt",
2857                                     "Virtual SMT: KVM behaves as if this were"
2858                                     " the host's SMT mode", &error_abort);
2859 }
2860 
2861 static void spapr_machine_finalizefn(Object *obj)
2862 {
2863     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2864 
2865     g_free(spapr->kvm_type);
2866 }
2867 
2868 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2869 {
2870     cpu_synchronize_state(cs);
2871     ppc_cpu_do_system_reset(cs);
2872 }
2873 
2874 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2875 {
2876     CPUState *cs;
2877 
2878     CPU_FOREACH(cs) {
2879         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2880     }
2881 }
2882 
2883 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2884                            uint32_t node, bool dedicated_hp_event_source,
2885                            Error **errp)
2886 {
2887     sPAPRDRConnector *drc;
2888     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2889     int i, fdt_offset, fdt_size;
2890     void *fdt;
2891     uint64_t addr = addr_start;
2892     bool hotplugged = spapr_drc_hotplugged(dev);
2893     Error *local_err = NULL;
2894 
2895     for (i = 0; i < nr_lmbs; i++) {
2896         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2897                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2898         g_assert(drc);
2899 
2900         fdt = create_device_tree(&fdt_size);
2901         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2902                                                 SPAPR_MEMORY_BLOCK_SIZE);
2903 
2904         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2905         if (local_err) {
2906             while (addr > addr_start) {
2907                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2908                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2909                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
2910                 spapr_drc_detach(drc);
2911             }
2912             g_free(fdt);
2913             error_propagate(errp, local_err);
2914             return;
2915         }
2916         if (!hotplugged) {
2917             spapr_drc_reset(drc);
2918         }
2919         addr += SPAPR_MEMORY_BLOCK_SIZE;
2920     }
2921     /* send hotplug notification to the
2922      * guest only in case of hotplugged memory
2923      */
2924     if (hotplugged) {
2925         if (dedicated_hp_event_source) {
2926             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2927                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2928             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2929                                                    nr_lmbs,
2930                                                    spapr_drc_index(drc));
2931         } else {
2932             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2933                                            nr_lmbs);
2934         }
2935     }
2936 }
2937 
2938 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2939                               uint32_t node, Error **errp)
2940 {
2941     Error *local_err = NULL;
2942     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2943     PCDIMMDevice *dimm = PC_DIMM(dev);
2944     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2945     MemoryRegion *mr;
2946     uint64_t align, size, addr;
2947 
2948     mr = ddc->get_memory_region(dimm, &local_err);
2949     if (local_err) {
2950         goto out;
2951     }
2952     align = memory_region_get_alignment(mr);
2953     size = memory_region_size(mr);
2954 
2955     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2956     if (local_err) {
2957         goto out;
2958     }
2959 
2960     addr = object_property_get_uint(OBJECT(dimm),
2961                                     PC_DIMM_ADDR_PROP, &local_err);
2962     if (local_err) {
2963         goto out_unplug;
2964     }
2965 
2966     spapr_add_lmbs(dev, addr, size, node,
2967                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2968                    &local_err);
2969     if (local_err) {
2970         goto out_unplug;
2971     }
2972 
2973     return;
2974 
2975 out_unplug:
2976     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2977 out:
2978     error_propagate(errp, local_err);
2979 }
2980 
2981 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2982                                   Error **errp)
2983 {
2984     PCDIMMDevice *dimm = PC_DIMM(dev);
2985     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2986     MemoryRegion *mr;
2987     uint64_t size;
2988     char *mem_dev;
2989 
2990     mr = ddc->get_memory_region(dimm, errp);
2991     if (!mr) {
2992         return;
2993     }
2994     size = memory_region_size(mr);
2995 
2996     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2997         error_setg(errp, "Hotplugged memory size must be a multiple of "
2998                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2999         return;
3000     }
3001 
3002     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3003     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3004         error_setg(errp, "Memory backend has bad page size. "
3005                    "Use 'memory-backend-file' with correct mem-path.");
3006         goto out;
3007     }
3008 
3009 out:
3010     g_free(mem_dev);
3011 }
3012 
3013 struct sPAPRDIMMState {
3014     PCDIMMDevice *dimm;
3015     uint32_t nr_lmbs;
3016     QTAILQ_ENTRY(sPAPRDIMMState) next;
3017 };
3018 
3019 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3020                                                        PCDIMMDevice *dimm)
3021 {
3022     sPAPRDIMMState *dimm_state = NULL;
3023 
3024     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3025         if (dimm_state->dimm == dimm) {
3026             break;
3027         }
3028     }
3029     return dimm_state;
3030 }
3031 
3032 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3033                                                       uint32_t nr_lmbs,
3034                                                       PCDIMMDevice *dimm)
3035 {
3036     sPAPRDIMMState *ds = NULL;
3037 
3038     /*
3039      * If this request is for a DIMM whose removal had failed earlier
3040      * (due to guest's refusal to remove the LMBs), we would have this
3041      * dimm already in the pending_dimm_unplugs list. In that
3042      * case don't add again.
3043      */
3044     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3045     if (!ds) {
3046         ds = g_malloc0(sizeof(sPAPRDIMMState));
3047         ds->nr_lmbs = nr_lmbs;
3048         ds->dimm = dimm;
3049         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3050     }
3051     return ds;
3052 }
3053 
3054 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3055                                               sPAPRDIMMState *dimm_state)
3056 {
3057     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3058     g_free(dimm_state);
3059 }
3060 
3061 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3062                                                         PCDIMMDevice *dimm)
3063 {
3064     sPAPRDRConnector *drc;
3065     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3066     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3067     uint64_t size = memory_region_size(mr);
3068     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3069     uint32_t avail_lmbs = 0;
3070     uint64_t addr_start, addr;
3071     int i;
3072 
3073     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3074                                          &error_abort);
3075 
3076     addr = addr_start;
3077     for (i = 0; i < nr_lmbs; i++) {
3078         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3079                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3080         g_assert(drc);
3081         if (drc->dev) {
3082             avail_lmbs++;
3083         }
3084         addr += SPAPR_MEMORY_BLOCK_SIZE;
3085     }
3086 
3087     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3088 }
3089 
3090 /* Callback to be called during DRC release. */
3091 void spapr_lmb_release(DeviceState *dev)
3092 {
3093     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3094     PCDIMMDevice *dimm = PC_DIMM(dev);
3095     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3096     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3097     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3098 
3099     /* This information will get lost if a migration occurs
3100      * during the unplug process. In this case recover it. */
3101     if (ds == NULL) {
3102         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3103         g_assert(ds);
3104         /* The DRC being examined by the caller at least must be counted */
3105         g_assert(ds->nr_lmbs);
3106     }
3107 
3108     if (--ds->nr_lmbs) {
3109         return;
3110     }
3111 
3112     /*
3113      * Now that all the LMBs have been removed by the guest, call the
3114      * pc-dimm unplug handler to cleanup up the pc-dimm device.
3115      */
3116     pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3117     object_unparent(OBJECT(dev));
3118     spapr_pending_dimm_unplugs_remove(spapr, ds);
3119 }
3120 
3121 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3122                                         DeviceState *dev, Error **errp)
3123 {
3124     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3125     Error *local_err = NULL;
3126     PCDIMMDevice *dimm = PC_DIMM(dev);
3127     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3128     MemoryRegion *mr;
3129     uint32_t nr_lmbs;
3130     uint64_t size, addr_start, addr;
3131     int i;
3132     sPAPRDRConnector *drc;
3133 
3134     mr = ddc->get_memory_region(dimm, &local_err);
3135     if (local_err) {
3136         goto out;
3137     }
3138     size = memory_region_size(mr);
3139     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3140 
3141     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3142                                          &local_err);
3143     if (local_err) {
3144         goto out;
3145     }
3146 
3147     /*
3148      * An existing pending dimm state for this DIMM means that there is an
3149      * unplug operation in progress, waiting for the spapr_lmb_release
3150      * callback to complete the job (BQL can't cover that far). In this case,
3151      * bail out to avoid detaching DRCs that were already released.
3152      */
3153     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3154         error_setg(&local_err,
3155                    "Memory unplug already in progress for device %s",
3156                    dev->id);
3157         goto out;
3158     }
3159 
3160     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3161 
3162     addr = addr_start;
3163     for (i = 0; i < nr_lmbs; i++) {
3164         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3165                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3166         g_assert(drc);
3167 
3168         spapr_drc_detach(drc);
3169         addr += SPAPR_MEMORY_BLOCK_SIZE;
3170     }
3171 
3172     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3173                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3174     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3175                                               nr_lmbs, spapr_drc_index(drc));
3176 out:
3177     error_propagate(errp, local_err);
3178 }
3179 
3180 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3181                                            sPAPRMachineState *spapr)
3182 {
3183     PowerPCCPU *cpu = POWERPC_CPU(cs);
3184     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3185     int id = spapr_vcpu_id(cpu);
3186     void *fdt;
3187     int offset, fdt_size;
3188     char *nodename;
3189 
3190     fdt = create_device_tree(&fdt_size);
3191     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3192     offset = fdt_add_subnode(fdt, 0, nodename);
3193 
3194     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3195     g_free(nodename);
3196 
3197     *fdt_offset = offset;
3198     return fdt;
3199 }
3200 
3201 /* Callback to be called during DRC release. */
3202 void spapr_core_release(DeviceState *dev)
3203 {
3204     MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3205     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3206     CPUCore *cc = CPU_CORE(dev);
3207     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3208 
3209     if (smc->pre_2_10_has_unused_icps) {
3210         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3211         int i;
3212 
3213         for (i = 0; i < cc->nr_threads; i++) {
3214             CPUState *cs = CPU(sc->threads[i]);
3215 
3216             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3217         }
3218     }
3219 
3220     assert(core_slot);
3221     core_slot->cpu = NULL;
3222     object_unparent(OBJECT(dev));
3223 }
3224 
3225 static
3226 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3227                                Error **errp)
3228 {
3229     int index;
3230     sPAPRDRConnector *drc;
3231     CPUCore *cc = CPU_CORE(dev);
3232     int smt = kvmppc_smt_threads();
3233 
3234     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3235         error_setg(errp, "Unable to find CPU core with core-id: %d",
3236                    cc->core_id);
3237         return;
3238     }
3239     if (index == 0) {
3240         error_setg(errp, "Boot CPU core may not be unplugged");
3241         return;
3242     }
3243 
3244     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3245     g_assert(drc);
3246 
3247     spapr_drc_detach(drc);
3248 
3249     spapr_hotplug_req_remove_by_index(drc);
3250 }
3251 
3252 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3253                             Error **errp)
3254 {
3255     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3256     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3257     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3258     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3259     CPUCore *cc = CPU_CORE(dev);
3260     CPUState *cs = CPU(core->threads[0]);
3261     sPAPRDRConnector *drc;
3262     Error *local_err = NULL;
3263     int smt = kvmppc_smt_threads();
3264     CPUArchId *core_slot;
3265     int index;
3266     bool hotplugged = spapr_drc_hotplugged(dev);
3267 
3268     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3269     if (!core_slot) {
3270         error_setg(errp, "Unable to find CPU core with core-id: %d",
3271                    cc->core_id);
3272         return;
3273     }
3274     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3275 
3276     g_assert(drc || !mc->has_hotpluggable_cpus);
3277 
3278     if (drc) {
3279         void *fdt;
3280         int fdt_offset;
3281 
3282         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3283 
3284         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3285         if (local_err) {
3286             g_free(fdt);
3287             error_propagate(errp, local_err);
3288             return;
3289         }
3290 
3291         if (hotplugged) {
3292             /*
3293              * Send hotplug notification interrupt to the guest only
3294              * in case of hotplugged CPUs.
3295              */
3296             spapr_hotplug_req_add_by_index(drc);
3297         } else {
3298             spapr_drc_reset(drc);
3299         }
3300     }
3301 
3302     core_slot->cpu = OBJECT(dev);
3303 
3304     if (smc->pre_2_10_has_unused_icps) {
3305         int i;
3306 
3307         for (i = 0; i < cc->nr_threads; i++) {
3308             sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3309 
3310             cs = CPU(sc->threads[i]);
3311             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3312         }
3313     }
3314 }
3315 
3316 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3317                                 Error **errp)
3318 {
3319     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3320     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3321     Error *local_err = NULL;
3322     CPUCore *cc = CPU_CORE(dev);
3323     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3324     const char *type = object_get_typename(OBJECT(dev));
3325     CPUArchId *core_slot;
3326     int index;
3327 
3328     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3329         error_setg(&local_err, "CPU hotplug not supported for this machine");
3330         goto out;
3331     }
3332 
3333     if (strcmp(base_core_type, type)) {
3334         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3335         goto out;
3336     }
3337 
3338     if (cc->core_id % smp_threads) {
3339         error_setg(&local_err, "invalid core id %d", cc->core_id);
3340         goto out;
3341     }
3342 
3343     /*
3344      * In general we should have homogeneous threads-per-core, but old
3345      * (pre hotplug support) machine types allow the last core to have
3346      * reduced threads as a compatibility hack for when we allowed
3347      * total vcpus not a multiple of threads-per-core.
3348      */
3349     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3350         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3351                    cc->nr_threads, smp_threads);
3352         goto out;
3353     }
3354 
3355     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3356     if (!core_slot) {
3357         error_setg(&local_err, "core id %d out of range", cc->core_id);
3358         goto out;
3359     }
3360 
3361     if (core_slot->cpu) {
3362         error_setg(&local_err, "core %d already populated", cc->core_id);
3363         goto out;
3364     }
3365 
3366     numa_cpu_pre_plug(core_slot, dev, &local_err);
3367 
3368 out:
3369     error_propagate(errp, local_err);
3370 }
3371 
3372 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3373                                       DeviceState *dev, Error **errp)
3374 {
3375     MachineState *ms = MACHINE(hotplug_dev);
3376     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3377 
3378     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3379         int node;
3380 
3381         if (!smc->dr_lmb_enabled) {
3382             error_setg(errp, "Memory hotplug not supported for this machine");
3383             return;
3384         }
3385         node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3386         if (*errp) {
3387             return;
3388         }
3389         if (node < 0 || node >= MAX_NODES) {
3390             error_setg(errp, "Invaild node %d", node);
3391             return;
3392         }
3393 
3394         /*
3395          * Currently PowerPC kernel doesn't allow hot-adding memory to
3396          * memory-less node, but instead will silently add the memory
3397          * to the first node that has some memory. This causes two
3398          * unexpected behaviours for the user.
3399          *
3400          * - Memory gets hotplugged to a different node than what the user
3401          *   specified.
3402          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3403          *   to memory-less node, a reboot will set things accordingly
3404          *   and the previously hotplugged memory now ends in the right node.
3405          *   This appears as if some memory moved from one node to another.
3406          *
3407          * So until kernel starts supporting memory hotplug to memory-less
3408          * nodes, just prevent such attempts upfront in QEMU.
3409          */
3410         if (nb_numa_nodes && !numa_info[node].node_mem) {
3411             error_setg(errp, "Can't hotplug memory to memory-less node %d",
3412                        node);
3413             return;
3414         }
3415 
3416         spapr_memory_plug(hotplug_dev, dev, node, errp);
3417     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3418         spapr_core_plug(hotplug_dev, dev, errp);
3419     }
3420 }
3421 
3422 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3423                                                 DeviceState *dev, Error **errp)
3424 {
3425     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3426     MachineClass *mc = MACHINE_GET_CLASS(sms);
3427 
3428     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3429         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3430             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3431         } else {
3432             /* NOTE: this means there is a window after guest reset, prior to
3433              * CAS negotiation, where unplug requests will fail due to the
3434              * capability not being detected yet. This is a bit different than
3435              * the case with PCI unplug, where the events will be queued and
3436              * eventually handled by the guest after boot
3437              */
3438             error_setg(errp, "Memory hot unplug not supported for this guest");
3439         }
3440     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3441         if (!mc->has_hotpluggable_cpus) {
3442             error_setg(errp, "CPU hot unplug not supported on this machine");
3443             return;
3444         }
3445         spapr_core_unplug_request(hotplug_dev, dev, errp);
3446     }
3447 }
3448 
3449 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3450                                           DeviceState *dev, Error **errp)
3451 {
3452     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3453         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3454     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3455         spapr_core_pre_plug(hotplug_dev, dev, errp);
3456     }
3457 }
3458 
3459 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3460                                                  DeviceState *dev)
3461 {
3462     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3463         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3464         return HOTPLUG_HANDLER(machine);
3465     }
3466     return NULL;
3467 }
3468 
3469 static CpuInstanceProperties
3470 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3471 {
3472     CPUArchId *core_slot;
3473     MachineClass *mc = MACHINE_GET_CLASS(machine);
3474 
3475     /* make sure possible_cpu are intialized */
3476     mc->possible_cpu_arch_ids(machine);
3477     /* get CPU core slot containing thread that matches cpu_index */
3478     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3479     assert(core_slot);
3480     return core_slot->props;
3481 }
3482 
3483 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3484 {
3485     return idx / smp_cores % nb_numa_nodes;
3486 }
3487 
3488 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3489 {
3490     int i;
3491     int spapr_max_cores = max_cpus / smp_threads;
3492     MachineClass *mc = MACHINE_GET_CLASS(machine);
3493 
3494     if (!mc->has_hotpluggable_cpus) {
3495         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3496     }
3497     if (machine->possible_cpus) {
3498         assert(machine->possible_cpus->len == spapr_max_cores);
3499         return machine->possible_cpus;
3500     }
3501 
3502     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3503                              sizeof(CPUArchId) * spapr_max_cores);
3504     machine->possible_cpus->len = spapr_max_cores;
3505     for (i = 0; i < machine->possible_cpus->len; i++) {
3506         int core_id = i * smp_threads;
3507 
3508         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3509         machine->possible_cpus->cpus[i].arch_id = core_id;
3510         machine->possible_cpus->cpus[i].props.has_core_id = true;
3511         machine->possible_cpus->cpus[i].props.core_id = core_id;
3512     }
3513     return machine->possible_cpus;
3514 }
3515 
3516 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3517                                 uint64_t *buid, hwaddr *pio,
3518                                 hwaddr *mmio32, hwaddr *mmio64,
3519                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3520 {
3521     /*
3522      * New-style PHB window placement.
3523      *
3524      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3525      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3526      * windows.
3527      *
3528      * Some guest kernels can't work with MMIO windows above 1<<46
3529      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3530      *
3531      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3532      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3533      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3534      * 1TiB 64-bit MMIO windows for each PHB.
3535      */
3536     const uint64_t base_buid = 0x800000020000000ULL;
3537 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3538                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3539     int i;
3540 
3541     /* Sanity check natural alignments */
3542     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3543     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3544     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3545     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3546     /* Sanity check bounds */
3547     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3548                       SPAPR_PCI_MEM32_WIN_SIZE);
3549     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3550                       SPAPR_PCI_MEM64_WIN_SIZE);
3551 
3552     if (index >= SPAPR_MAX_PHBS) {
3553         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3554                    SPAPR_MAX_PHBS - 1);
3555         return;
3556     }
3557 
3558     *buid = base_buid + index;
3559     for (i = 0; i < n_dma; ++i) {
3560         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3561     }
3562 
3563     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3564     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3565     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3566 }
3567 
3568 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3569 {
3570     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3571 
3572     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3573 }
3574 
3575 static void spapr_ics_resend(XICSFabric *dev)
3576 {
3577     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3578 
3579     ics_resend(spapr->ics);
3580 }
3581 
3582 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3583 {
3584     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3585 
3586     return cpu ? ICP(cpu->intc) : NULL;
3587 }
3588 
3589 #define ICS_IRQ_FREE(ics, srcno)   \
3590     (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3591 
3592 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3593 {
3594     int first, i;
3595 
3596     for (first = 0; first < ics->nr_irqs; first += alignnum) {
3597         if (num > (ics->nr_irqs - first)) {
3598             return -1;
3599         }
3600         for (i = first; i < first + num; ++i) {
3601             if (!ICS_IRQ_FREE(ics, i)) {
3602                 break;
3603             }
3604         }
3605         if (i == (first + num)) {
3606             return first;
3607         }
3608     }
3609 
3610     return -1;
3611 }
3612 
3613 /*
3614  * Allocate the IRQ number and set the IRQ type, LSI or MSI
3615  */
3616 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3617 {
3618     ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3619 }
3620 
3621 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3622                     Error **errp)
3623 {
3624     ICSState *ics = spapr->ics;
3625     int irq;
3626 
3627     if (!ics) {
3628         return -1;
3629     }
3630     if (irq_hint) {
3631         if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3632             error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3633             return -1;
3634         }
3635         irq = irq_hint;
3636     } else {
3637         irq = ics_find_free_block(ics, 1, 1);
3638         if (irq < 0) {
3639             error_setg(errp, "can't allocate IRQ: no IRQ left");
3640             return -1;
3641         }
3642         irq += ics->offset;
3643     }
3644 
3645     spapr_irq_set_lsi(spapr, irq, lsi);
3646     trace_spapr_irq_alloc(irq);
3647 
3648     return irq;
3649 }
3650 
3651 /*
3652  * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3653  * the block. If align==true, aligns the first IRQ number to num.
3654  */
3655 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3656                           bool align, Error **errp)
3657 {
3658     ICSState *ics = spapr->ics;
3659     int i, first = -1;
3660 
3661     if (!ics) {
3662         return -1;
3663     }
3664 
3665     /*
3666      * MSIMesage::data is used for storing VIRQ so
3667      * it has to be aligned to num to support multiple
3668      * MSI vectors. MSI-X is not affected by this.
3669      * The hint is used for the first IRQ, the rest should
3670      * be allocated continuously.
3671      */
3672     if (align) {
3673         assert((num == 1) || (num == 2) || (num == 4) ||
3674                (num == 8) || (num == 16) || (num == 32));
3675         first = ics_find_free_block(ics, num, num);
3676     } else {
3677         first = ics_find_free_block(ics, num, 1);
3678     }
3679     if (first < 0) {
3680         error_setg(errp, "can't find a free %d-IRQ block", num);
3681         return -1;
3682     }
3683 
3684     first += ics->offset;
3685     for (i = first; i < first + num; ++i) {
3686         spapr_irq_set_lsi(spapr, i, lsi);
3687     }
3688 
3689     trace_spapr_irq_alloc_block(first, num, lsi, align);
3690 
3691     return first;
3692 }
3693 
3694 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3695 {
3696     ICSState *ics = spapr->ics;
3697     int srcno = irq - ics->offset;
3698     int i;
3699 
3700     if (ics_valid_irq(ics, irq)) {
3701         trace_spapr_irq_free(0, irq, num);
3702         for (i = srcno; i < srcno + num; ++i) {
3703             if (ICS_IRQ_FREE(ics, i)) {
3704                 trace_spapr_irq_free_warn(0, i + ics->offset);
3705             }
3706             memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3707         }
3708     }
3709 }
3710 
3711 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3712 {
3713     ICSState *ics = spapr->ics;
3714 
3715     if (ics_valid_irq(ics, irq)) {
3716         return ics->qirqs[irq - ics->offset];
3717     }
3718 
3719     return NULL;
3720 }
3721 
3722 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3723                                  Monitor *mon)
3724 {
3725     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3726     CPUState *cs;
3727 
3728     CPU_FOREACH(cs) {
3729         PowerPCCPU *cpu = POWERPC_CPU(cs);
3730 
3731         icp_pic_print_info(ICP(cpu->intc), mon);
3732     }
3733 
3734     ics_pic_print_info(spapr->ics, mon);
3735 }
3736 
3737 int spapr_vcpu_id(PowerPCCPU *cpu)
3738 {
3739     CPUState *cs = CPU(cpu);
3740 
3741     if (kvm_enabled()) {
3742         return kvm_arch_vcpu_id(cs);
3743     } else {
3744         return cs->cpu_index;
3745     }
3746 }
3747 
3748 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3749 {
3750     CPUState *cs;
3751 
3752     CPU_FOREACH(cs) {
3753         PowerPCCPU *cpu = POWERPC_CPU(cs);
3754 
3755         if (spapr_vcpu_id(cpu) == vcpu_id) {
3756             return cpu;
3757         }
3758     }
3759 
3760     return NULL;
3761 }
3762 
3763 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3764 {
3765     MachineClass *mc = MACHINE_CLASS(oc);
3766     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3767     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3768     NMIClass *nc = NMI_CLASS(oc);
3769     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3770     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3771     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3772     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3773 
3774     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3775 
3776     /*
3777      * We set up the default / latest behaviour here.  The class_init
3778      * functions for the specific versioned machine types can override
3779      * these details for backwards compatibility
3780      */
3781     mc->init = spapr_machine_init;
3782     mc->reset = spapr_machine_reset;
3783     mc->block_default_type = IF_SCSI;
3784     mc->max_cpus = 1024;
3785     mc->no_parallel = 1;
3786     mc->default_boot_order = "";
3787     mc->default_ram_size = 512 * M_BYTE;
3788     mc->kvm_type = spapr_kvm_type;
3789     mc->has_dynamic_sysbus = true;
3790     mc->pci_allow_0_address = true;
3791     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3792     hc->pre_plug = spapr_machine_device_pre_plug;
3793     hc->plug = spapr_machine_device_plug;
3794     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3795     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3796     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3797     hc->unplug_request = spapr_machine_device_unplug_request;
3798 
3799     smc->dr_lmb_enabled = true;
3800     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3801     mc->has_hotpluggable_cpus = true;
3802     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3803     fwc->get_dev_path = spapr_get_fw_dev_path;
3804     nc->nmi_monitor_handler = spapr_nmi;
3805     smc->phb_placement = spapr_phb_placement;
3806     vhc->hypercall = emulate_spapr_hypercall;
3807     vhc->hpt_mask = spapr_hpt_mask;
3808     vhc->map_hptes = spapr_map_hptes;
3809     vhc->unmap_hptes = spapr_unmap_hptes;
3810     vhc->store_hpte = spapr_store_hpte;
3811     vhc->get_patbe = spapr_get_patbe;
3812     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3813     xic->ics_get = spapr_ics_get;
3814     xic->ics_resend = spapr_ics_resend;
3815     xic->icp_get = spapr_icp_get;
3816     ispc->print_info = spapr_pic_print_info;
3817     /* Force NUMA node memory size to be a multiple of
3818      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3819      * in which LMBs are represented and hot-added
3820      */
3821     mc->numa_mem_align_shift = 28;
3822 }
3823 
3824 static const TypeInfo spapr_machine_info = {
3825     .name          = TYPE_SPAPR_MACHINE,
3826     .parent        = TYPE_MACHINE,
3827     .abstract      = true,
3828     .instance_size = sizeof(sPAPRMachineState),
3829     .instance_init = spapr_instance_init,
3830     .instance_finalize = spapr_machine_finalizefn,
3831     .class_size    = sizeof(sPAPRMachineClass),
3832     .class_init    = spapr_machine_class_init,
3833     .interfaces = (InterfaceInfo[]) {
3834         { TYPE_FW_PATH_PROVIDER },
3835         { TYPE_NMI },
3836         { TYPE_HOTPLUG_HANDLER },
3837         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3838         { TYPE_XICS_FABRIC },
3839         { TYPE_INTERRUPT_STATS_PROVIDER },
3840         { }
3841     },
3842 };
3843 
3844 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3845     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3846                                                     void *data)      \
3847     {                                                                \
3848         MachineClass *mc = MACHINE_CLASS(oc);                        \
3849         spapr_machine_##suffix##_class_options(mc);                  \
3850         if (latest) {                                                \
3851             mc->alias = "pseries";                                   \
3852             mc->is_default = 1;                                      \
3853         }                                                            \
3854     }                                                                \
3855     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3856     {                                                                \
3857         MachineState *machine = MACHINE(obj);                        \
3858         spapr_machine_##suffix##_instance_options(machine);          \
3859     }                                                                \
3860     static const TypeInfo spapr_machine_##suffix##_info = {          \
3861         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3862         .parent = TYPE_SPAPR_MACHINE,                                \
3863         .class_init = spapr_machine_##suffix##_class_init,           \
3864         .instance_init = spapr_machine_##suffix##_instance_init,     \
3865     };                                                               \
3866     static void spapr_machine_register_##suffix(void)                \
3867     {                                                                \
3868         type_register(&spapr_machine_##suffix##_info);               \
3869     }                                                                \
3870     type_init(spapr_machine_register_##suffix)
3871 
3872 /*
3873  * pseries-2.12
3874  */
3875 static void spapr_machine_2_12_instance_options(MachineState *machine)
3876 {
3877 }
3878 
3879 static void spapr_machine_2_12_class_options(MachineClass *mc)
3880 {
3881     /* Defaults for the latest behaviour inherited from the base class */
3882 }
3883 
3884 DEFINE_SPAPR_MACHINE(2_12, "2.12", true);
3885 
3886 /*
3887  * pseries-2.11
3888  */
3889 #define SPAPR_COMPAT_2_11                                              \
3890     HW_COMPAT_2_11
3891 
3892 static void spapr_machine_2_11_instance_options(MachineState *machine)
3893 {
3894     spapr_machine_2_12_instance_options(machine);
3895 }
3896 
3897 static void spapr_machine_2_11_class_options(MachineClass *mc)
3898 {
3899     spapr_machine_2_12_class_options(mc);
3900     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
3901 }
3902 
3903 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
3904 
3905 /*
3906  * pseries-2.10
3907  */
3908 #define SPAPR_COMPAT_2_10                                              \
3909     HW_COMPAT_2_10
3910 
3911 static void spapr_machine_2_10_instance_options(MachineState *machine)
3912 {
3913     spapr_machine_2_11_instance_options(machine);
3914 }
3915 
3916 static void spapr_machine_2_10_class_options(MachineClass *mc)
3917 {
3918     spapr_machine_2_11_class_options(mc);
3919     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3920 }
3921 
3922 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3923 
3924 /*
3925  * pseries-2.9
3926  */
3927 #define SPAPR_COMPAT_2_9                                               \
3928     HW_COMPAT_2_9                                                      \
3929     {                                                                  \
3930         .driver = TYPE_POWERPC_CPU,                                    \
3931         .property = "pre-2.10-migration",                              \
3932         .value    = "on",                                              \
3933     },                                                                 \
3934 
3935 static void spapr_machine_2_9_instance_options(MachineState *machine)
3936 {
3937     spapr_machine_2_10_instance_options(machine);
3938 }
3939 
3940 static void spapr_machine_2_9_class_options(MachineClass *mc)
3941 {
3942     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3943 
3944     spapr_machine_2_10_class_options(mc);
3945     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3946     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3947     smc->pre_2_10_has_unused_icps = true;
3948     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3949 }
3950 
3951 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3952 
3953 /*
3954  * pseries-2.8
3955  */
3956 #define SPAPR_COMPAT_2_8                                        \
3957     HW_COMPAT_2_8                                               \
3958     {                                                           \
3959         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3960         .property = "pcie-extended-configuration-space",        \
3961         .value    = "off",                                      \
3962     },
3963 
3964 static void spapr_machine_2_8_instance_options(MachineState *machine)
3965 {
3966     spapr_machine_2_9_instance_options(machine);
3967 }
3968 
3969 static void spapr_machine_2_8_class_options(MachineClass *mc)
3970 {
3971     spapr_machine_2_9_class_options(mc);
3972     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3973     mc->numa_mem_align_shift = 23;
3974 }
3975 
3976 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3977 
3978 /*
3979  * pseries-2.7
3980  */
3981 #define SPAPR_COMPAT_2_7                            \
3982     HW_COMPAT_2_7                                   \
3983     {                                               \
3984         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3985         .property = "mem_win_size",                 \
3986         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3987     },                                              \
3988     {                                               \
3989         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3990         .property = "mem64_win_size",               \
3991         .value    = "0",                            \
3992     },                                              \
3993     {                                               \
3994         .driver = TYPE_POWERPC_CPU,                 \
3995         .property = "pre-2.8-migration",            \
3996         .value    = "on",                           \
3997     },                                              \
3998     {                                               \
3999         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
4000         .property = "pre-2.8-migration",            \
4001         .value    = "on",                           \
4002     },
4003 
4004 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4005                               uint64_t *buid, hwaddr *pio,
4006                               hwaddr *mmio32, hwaddr *mmio64,
4007                               unsigned n_dma, uint32_t *liobns, Error **errp)
4008 {
4009     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4010     const uint64_t base_buid = 0x800000020000000ULL;
4011     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4012     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4013     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4014     const uint32_t max_index = 255;
4015     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4016 
4017     uint64_t ram_top = MACHINE(spapr)->ram_size;
4018     hwaddr phb0_base, phb_base;
4019     int i;
4020 
4021     /* Do we have hotpluggable memory? */
4022     if (MACHINE(spapr)->maxram_size > ram_top) {
4023         /* Can't just use maxram_size, because there may be an
4024          * alignment gap between normal and hotpluggable memory
4025          * regions */
4026         ram_top = spapr->hotplug_memory.base +
4027             memory_region_size(&spapr->hotplug_memory.mr);
4028     }
4029 
4030     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4031 
4032     if (index > max_index) {
4033         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4034                    max_index);
4035         return;
4036     }
4037 
4038     *buid = base_buid + index;
4039     for (i = 0; i < n_dma; ++i) {
4040         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4041     }
4042 
4043     phb_base = phb0_base + index * phb_spacing;
4044     *pio = phb_base + pio_offset;
4045     *mmio32 = phb_base + mmio_offset;
4046     /*
4047      * We don't set the 64-bit MMIO window, relying on the PHB's
4048      * fallback behaviour of automatically splitting a large "32-bit"
4049      * window into contiguous 32-bit and 64-bit windows
4050      */
4051 }
4052 
4053 static void spapr_machine_2_7_instance_options(MachineState *machine)
4054 {
4055     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4056 
4057     spapr_machine_2_8_instance_options(machine);
4058     spapr->use_hotplug_event_source = false;
4059 }
4060 
4061 static void spapr_machine_2_7_class_options(MachineClass *mc)
4062 {
4063     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4064 
4065     spapr_machine_2_8_class_options(mc);
4066     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4067     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4068     smc->phb_placement = phb_placement_2_7;
4069 }
4070 
4071 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4072 
4073 /*
4074  * pseries-2.6
4075  */
4076 #define SPAPR_COMPAT_2_6 \
4077     HW_COMPAT_2_6 \
4078     { \
4079         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4080         .property = "ddw",\
4081         .value    = stringify(off),\
4082     },
4083 
4084 static void spapr_machine_2_6_instance_options(MachineState *machine)
4085 {
4086     spapr_machine_2_7_instance_options(machine);
4087 }
4088 
4089 static void spapr_machine_2_6_class_options(MachineClass *mc)
4090 {
4091     spapr_machine_2_7_class_options(mc);
4092     mc->has_hotpluggable_cpus = false;
4093     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4094 }
4095 
4096 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4097 
4098 /*
4099  * pseries-2.5
4100  */
4101 #define SPAPR_COMPAT_2_5 \
4102     HW_COMPAT_2_5 \
4103     { \
4104         .driver   = "spapr-vlan", \
4105         .property = "use-rx-buffer-pools", \
4106         .value    = "off", \
4107     },
4108 
4109 static void spapr_machine_2_5_instance_options(MachineState *machine)
4110 {
4111     spapr_machine_2_6_instance_options(machine);
4112 }
4113 
4114 static void spapr_machine_2_5_class_options(MachineClass *mc)
4115 {
4116     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4117 
4118     spapr_machine_2_6_class_options(mc);
4119     smc->use_ohci_by_default = true;
4120     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4121 }
4122 
4123 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4124 
4125 /*
4126  * pseries-2.4
4127  */
4128 #define SPAPR_COMPAT_2_4 \
4129         HW_COMPAT_2_4
4130 
4131 static void spapr_machine_2_4_instance_options(MachineState *machine)
4132 {
4133     spapr_machine_2_5_instance_options(machine);
4134 }
4135 
4136 static void spapr_machine_2_4_class_options(MachineClass *mc)
4137 {
4138     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4139 
4140     spapr_machine_2_5_class_options(mc);
4141     smc->dr_lmb_enabled = false;
4142     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4143 }
4144 
4145 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4146 
4147 /*
4148  * pseries-2.3
4149  */
4150 #define SPAPR_COMPAT_2_3 \
4151         HW_COMPAT_2_3 \
4152         {\
4153             .driver   = "spapr-pci-host-bridge",\
4154             .property = "dynamic-reconfiguration",\
4155             .value    = "off",\
4156         },
4157 
4158 static void spapr_machine_2_3_instance_options(MachineState *machine)
4159 {
4160     spapr_machine_2_4_instance_options(machine);
4161 }
4162 
4163 static void spapr_machine_2_3_class_options(MachineClass *mc)
4164 {
4165     spapr_machine_2_4_class_options(mc);
4166     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4167 }
4168 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4169 
4170 /*
4171  * pseries-2.2
4172  */
4173 
4174 #define SPAPR_COMPAT_2_2 \
4175         HW_COMPAT_2_2 \
4176         {\
4177             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4178             .property = "mem_win_size",\
4179             .value    = "0x20000000",\
4180         },
4181 
4182 static void spapr_machine_2_2_instance_options(MachineState *machine)
4183 {
4184     spapr_machine_2_3_instance_options(machine);
4185     machine->suppress_vmdesc = true;
4186 }
4187 
4188 static void spapr_machine_2_2_class_options(MachineClass *mc)
4189 {
4190     spapr_machine_2_3_class_options(mc);
4191     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4192 }
4193 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4194 
4195 /*
4196  * pseries-2.1
4197  */
4198 #define SPAPR_COMPAT_2_1 \
4199         HW_COMPAT_2_1
4200 
4201 static void spapr_machine_2_1_instance_options(MachineState *machine)
4202 {
4203     spapr_machine_2_2_instance_options(machine);
4204 }
4205 
4206 static void spapr_machine_2_1_class_options(MachineClass *mc)
4207 {
4208     spapr_machine_2_2_class_options(mc);
4209     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4210 }
4211 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4212 
4213 static void spapr_machine_register_types(void)
4214 {
4215     type_register_static(&spapr_machine_info);
4216 }
4217 
4218 type_init(spapr_machine_register_types)
4219