1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_nested.h" 65 #include "hw/ppc/spapr_vio.h" 66 #include "hw/ppc/vof.h" 67 #include "hw/qdev-properties.h" 68 #include "hw/pci-host/spapr.h" 69 #include "hw/pci/msi.h" 70 71 #include "hw/pci/pci.h" 72 #include "hw/scsi/scsi.h" 73 #include "hw/virtio/virtio-scsi.h" 74 #include "hw/virtio/vhost-scsi-common.h" 75 76 #include "exec/ram_addr.h" 77 #include "hw/usb.h" 78 #include "qemu/config-file.h" 79 #include "qemu/error-report.h" 80 #include "trace.h" 81 #include "hw/nmi.h" 82 #include "hw/intc/intc.h" 83 84 #include "hw/ppc/spapr_cpu_core.h" 85 #include "hw/mem/memory-device.h" 86 #include "hw/ppc/spapr_tpm_proxy.h" 87 #include "hw/ppc/spapr_nvdimm.h" 88 #include "hw/ppc/spapr_numa.h" 89 #include "hw/ppc/pef.h" 90 91 #include "monitor/monitor.h" 92 93 #include <libfdt.h> 94 95 /* SLOF memory layout: 96 * 97 * SLOF raw image loaded at 0, copies its romfs right below the flat 98 * device-tree, then position SLOF itself 31M below that 99 * 100 * So we set FW_OVERHEAD to 40MB which should account for all of that 101 * and more 102 * 103 * We load our kernel at 4M, leaving space for SLOF initial image 104 */ 105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 106 #define FW_MAX_SIZE 0x400000 107 #define FW_FILE_NAME "slof.bin" 108 #define FW_FILE_NAME_VOF "vof.bin" 109 #define FW_OVERHEAD 0x2800000 110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 111 112 #define MIN_RMA_SLOF (128 * MiB) 113 114 #define PHANDLE_INTC 0x00001111 115 116 /* These two functions implement the VCPU id numbering: one to compute them 117 * all and one to identify thread 0 of a VCORE. Any change to the first one 118 * is likely to have an impact on the second one, so let's keep them close. 119 */ 120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 121 { 122 MachineState *ms = MACHINE(spapr); 123 unsigned int smp_threads = ms->smp.threads; 124 125 assert(spapr->vsmt); 126 return 127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 128 } 129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 130 PowerPCCPU *cpu) 131 { 132 assert(spapr->vsmt); 133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 134 } 135 136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 137 { 138 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 139 * and newer QEMUs don't even have them. In both cases, we don't want 140 * to send anything on the wire. 141 */ 142 return false; 143 } 144 145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 146 .name = "icp/server", 147 .version_id = 1, 148 .minimum_version_id = 1, 149 .needed = pre_2_10_vmstate_dummy_icp_needed, 150 .fields = (VMStateField[]) { 151 VMSTATE_UNUSED(4), /* uint32_t xirr */ 152 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 153 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 154 VMSTATE_END_OF_LIST() 155 }, 156 }; 157 158 static void pre_2_10_vmstate_register_dummy_icp(int i) 159 { 160 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 161 (void *)(uintptr_t) i); 162 } 163 164 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 165 { 166 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 167 (void *)(uintptr_t) i); 168 } 169 170 int spapr_max_server_number(SpaprMachineState *spapr) 171 { 172 MachineState *ms = MACHINE(spapr); 173 174 assert(spapr->vsmt); 175 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 176 } 177 178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 179 int smt_threads) 180 { 181 int i, ret = 0; 182 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 183 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 184 int index = spapr_get_vcpu_id(cpu); 185 186 if (cpu->compat_pvr) { 187 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 188 if (ret < 0) { 189 return ret; 190 } 191 } 192 193 /* Build interrupt servers and gservers properties */ 194 for (i = 0; i < smt_threads; i++) { 195 servers_prop[i] = cpu_to_be32(index + i); 196 /* Hack, direct the group queues back to cpu 0 */ 197 gservers_prop[i*2] = cpu_to_be32(index + i); 198 gservers_prop[i*2 + 1] = 0; 199 } 200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 201 servers_prop, sizeof(*servers_prop) * smt_threads); 202 if (ret < 0) { 203 return ret; 204 } 205 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 206 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 207 208 return ret; 209 } 210 211 static void spapr_dt_pa_features(SpaprMachineState *spapr, 212 PowerPCCPU *cpu, 213 void *fdt, int offset) 214 { 215 uint8_t pa_features_206[] = { 6, 0, 216 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 217 uint8_t pa_features_207[] = { 24, 0, 218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 219 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 222 uint8_t pa_features_300[] = { 66, 0, 223 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 224 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 225 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 226 /* 6: DS207 */ 227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 228 /* 16: Vector */ 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 230 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 232 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 234 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 235 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 236 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 238 /* 42: PM, 44: PC RA, 46: SC vec'd */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 240 /* 48: SIMD, 50: QP BFP, 52: String */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 242 /* 54: DecFP, 56: DecI, 58: SHA */ 243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 244 /* 60: NM atomic, 62: RNG */ 245 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 246 }; 247 uint8_t *pa_features = NULL; 248 size_t pa_size; 249 250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 251 pa_features = pa_features_206; 252 pa_size = sizeof(pa_features_206); 253 } 254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 255 pa_features = pa_features_207; 256 pa_size = sizeof(pa_features_207); 257 } 258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 259 pa_features = pa_features_300; 260 pa_size = sizeof(pa_features_300); 261 } 262 if (!pa_features) { 263 return; 264 } 265 266 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 267 /* 268 * Note: we keep CI large pages off by default because a 64K capable 269 * guest provisioned with large pages might otherwise try to map a qemu 270 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 271 * even if that qemu runs on a 4k host. 272 * We dd this bit back here if we are confident this is not an issue 273 */ 274 pa_features[3] |= 0x20; 275 } 276 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 277 pa_features[24] |= 0x80; /* Transactional memory support */ 278 } 279 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 280 /* Workaround for broken kernels that attempt (guest) radix 281 * mode when they can't handle it, if they see the radix bit set 282 * in pa-features. So hide it from them. */ 283 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 284 } 285 286 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 287 } 288 289 static hwaddr spapr_node0_size(MachineState *machine) 290 { 291 if (machine->numa_state->num_nodes) { 292 int i; 293 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 294 if (machine->numa_state->nodes[i].node_mem) { 295 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 296 machine->ram_size); 297 } 298 } 299 } 300 return machine->ram_size; 301 } 302 303 static void add_str(GString *s, const gchar *s1) 304 { 305 g_string_append_len(s, s1, strlen(s1) + 1); 306 } 307 308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 309 hwaddr start, hwaddr size) 310 { 311 char mem_name[32]; 312 uint64_t mem_reg_property[2]; 313 int off; 314 315 mem_reg_property[0] = cpu_to_be64(start); 316 mem_reg_property[1] = cpu_to_be64(size); 317 318 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 319 off = fdt_add_subnode(fdt, 0, mem_name); 320 _FDT(off); 321 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 322 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 323 sizeof(mem_reg_property)))); 324 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 325 return off; 326 } 327 328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 329 { 330 MemoryDeviceInfoList *info; 331 332 for (info = list; info; info = info->next) { 333 MemoryDeviceInfo *value = info->value; 334 335 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 336 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 337 338 if (addr >= pcdimm_info->addr && 339 addr < (pcdimm_info->addr + pcdimm_info->size)) { 340 return pcdimm_info->node; 341 } 342 } 343 } 344 345 return -1; 346 } 347 348 struct sPAPRDrconfCellV2 { 349 uint32_t seq_lmbs; 350 uint64_t base_addr; 351 uint32_t drc_index; 352 uint32_t aa_index; 353 uint32_t flags; 354 } QEMU_PACKED; 355 356 typedef struct DrconfCellQueue { 357 struct sPAPRDrconfCellV2 cell; 358 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 359 } DrconfCellQueue; 360 361 static DrconfCellQueue * 362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 363 uint32_t drc_index, uint32_t aa_index, 364 uint32_t flags) 365 { 366 DrconfCellQueue *elem; 367 368 elem = g_malloc0(sizeof(*elem)); 369 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 370 elem->cell.base_addr = cpu_to_be64(base_addr); 371 elem->cell.drc_index = cpu_to_be32(drc_index); 372 elem->cell.aa_index = cpu_to_be32(aa_index); 373 elem->cell.flags = cpu_to_be32(flags); 374 375 return elem; 376 } 377 378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 379 int offset, MemoryDeviceInfoList *dimms) 380 { 381 MachineState *machine = MACHINE(spapr); 382 uint8_t *int_buf, *cur_index; 383 int ret; 384 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 385 uint64_t addr, cur_addr, size; 386 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 387 uint64_t mem_end = machine->device_memory->base + 388 memory_region_size(&machine->device_memory->mr); 389 uint32_t node, buf_len, nr_entries = 0; 390 SpaprDrc *drc; 391 DrconfCellQueue *elem, *next; 392 MemoryDeviceInfoList *info; 393 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 394 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 395 396 /* Entry to cover RAM and the gap area */ 397 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 398 SPAPR_LMB_FLAGS_RESERVED | 399 SPAPR_LMB_FLAGS_DRC_INVALID); 400 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 401 nr_entries++; 402 403 cur_addr = machine->device_memory->base; 404 for (info = dimms; info; info = info->next) { 405 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 406 407 addr = di->addr; 408 size = di->size; 409 node = di->node; 410 411 /* 412 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 413 * area is marked hotpluggable in the next iteration for the bigger 414 * chunk including the NVDIMM occupied area. 415 */ 416 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 417 continue; 418 419 /* Entry for hot-pluggable area */ 420 if (cur_addr < addr) { 421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 422 g_assert(drc); 423 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 424 cur_addr, spapr_drc_index(drc), -1, 0); 425 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 426 nr_entries++; 427 } 428 429 /* Entry for DIMM */ 430 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 431 g_assert(drc); 432 elem = spapr_get_drconf_cell(size / lmb_size, addr, 433 spapr_drc_index(drc), node, 434 (SPAPR_LMB_FLAGS_ASSIGNED | 435 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 436 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 437 nr_entries++; 438 cur_addr = addr + size; 439 } 440 441 /* Entry for remaining hotpluggable area */ 442 if (cur_addr < mem_end) { 443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 444 g_assert(drc); 445 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 446 cur_addr, spapr_drc_index(drc), -1, 0); 447 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 448 nr_entries++; 449 } 450 451 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 452 int_buf = cur_index = g_malloc0(buf_len); 453 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 454 cur_index += sizeof(nr_entries); 455 456 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 457 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 458 cur_index += sizeof(elem->cell); 459 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 460 g_free(elem); 461 } 462 463 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 464 g_free(int_buf); 465 if (ret < 0) { 466 return -1; 467 } 468 return 0; 469 } 470 471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 472 int offset, MemoryDeviceInfoList *dimms) 473 { 474 MachineState *machine = MACHINE(spapr); 475 int i, ret; 476 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 477 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 478 uint32_t nr_lmbs = (machine->device_memory->base + 479 memory_region_size(&machine->device_memory->mr)) / 480 lmb_size; 481 uint32_t *int_buf, *cur_index, buf_len; 482 483 /* 484 * Allocate enough buffer size to fit in ibm,dynamic-memory 485 */ 486 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 487 cur_index = int_buf = g_malloc0(buf_len); 488 int_buf[0] = cpu_to_be32(nr_lmbs); 489 cur_index++; 490 for (i = 0; i < nr_lmbs; i++) { 491 uint64_t addr = i * lmb_size; 492 uint32_t *dynamic_memory = cur_index; 493 494 if (i >= device_lmb_start) { 495 SpaprDrc *drc; 496 497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 498 g_assert(drc); 499 500 dynamic_memory[0] = cpu_to_be32(addr >> 32); 501 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 502 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 503 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 504 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 505 if (memory_region_present(get_system_memory(), addr)) { 506 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 507 } else { 508 dynamic_memory[5] = cpu_to_be32(0); 509 } 510 } else { 511 /* 512 * LMB information for RMA, boot time RAM and gap b/n RAM and 513 * device memory region -- all these are marked as reserved 514 * and as having no valid DRC. 515 */ 516 dynamic_memory[0] = cpu_to_be32(addr >> 32); 517 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 518 dynamic_memory[2] = cpu_to_be32(0); 519 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 520 dynamic_memory[4] = cpu_to_be32(-1); 521 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 522 SPAPR_LMB_FLAGS_DRC_INVALID); 523 } 524 525 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 526 } 527 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 528 g_free(int_buf); 529 if (ret < 0) { 530 return -1; 531 } 532 return 0; 533 } 534 535 /* 536 * Adds ibm,dynamic-reconfiguration-memory node. 537 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 538 * of this device tree node. 539 */ 540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 541 void *fdt) 542 { 543 MachineState *machine = MACHINE(spapr); 544 int ret, offset; 545 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 546 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 547 cpu_to_be32(lmb_size & 0xffffffff)}; 548 MemoryDeviceInfoList *dimms = NULL; 549 550 /* Don't create the node if there is no device memory. */ 551 if (!machine->device_memory) { 552 return 0; 553 } 554 555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 556 557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 558 sizeof(prop_lmb_size)); 559 if (ret < 0) { 560 return ret; 561 } 562 563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 564 if (ret < 0) { 565 return ret; 566 } 567 568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 569 if (ret < 0) { 570 return ret; 571 } 572 573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 574 dimms = qmp_memory_device_list(); 575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 577 } else { 578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 579 } 580 qapi_free_MemoryDeviceInfoList(dimms); 581 582 if (ret < 0) { 583 return ret; 584 } 585 586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 587 588 return ret; 589 } 590 591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 592 { 593 MachineState *machine = MACHINE(spapr); 594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 595 hwaddr mem_start, node_size; 596 int i, nb_nodes = machine->numa_state->num_nodes; 597 NodeInfo *nodes = machine->numa_state->nodes; 598 599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 600 if (!nodes[i].node_mem) { 601 continue; 602 } 603 if (mem_start >= machine->ram_size) { 604 node_size = 0; 605 } else { 606 node_size = nodes[i].node_mem; 607 if (node_size > machine->ram_size - mem_start) { 608 node_size = machine->ram_size - mem_start; 609 } 610 } 611 if (!mem_start) { 612 /* spapr_machine_init() checks for rma_size <= node0_size 613 * already */ 614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 615 mem_start += spapr->rma_size; 616 node_size -= spapr->rma_size; 617 } 618 for ( ; node_size; ) { 619 hwaddr sizetmp = pow2floor(node_size); 620 621 /* mem_start != 0 here */ 622 if (ctzl(mem_start) < ctzl(sizetmp)) { 623 sizetmp = 1ULL << ctzl(mem_start); 624 } 625 626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 627 node_size -= sizetmp; 628 mem_start += sizetmp; 629 } 630 } 631 632 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 634 int ret; 635 636 g_assert(smc->dr_lmb_enabled); 637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 638 if (ret) { 639 return ret; 640 } 641 } 642 643 return 0; 644 } 645 646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 647 SpaprMachineState *spapr) 648 { 649 MachineState *ms = MACHINE(spapr); 650 PowerPCCPU *cpu = POWERPC_CPU(cs); 651 CPUPPCState *env = &cpu->env; 652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 653 int index = spapr_get_vcpu_id(cpu); 654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 655 0xffffffff, 0xffffffff}; 656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 657 : SPAPR_TIMEBASE_FREQ; 658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 659 uint32_t page_sizes_prop[64]; 660 size_t page_sizes_prop_size; 661 unsigned int smp_threads = ms->smp.threads; 662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 665 SpaprDrc *drc; 666 int drc_index; 667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 668 int i; 669 670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 671 if (drc) { 672 drc_index = spapr_drc_index(drc); 673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 674 } 675 676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 678 679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 681 env->dcache_line_size))); 682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 683 env->dcache_line_size))); 684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 685 env->icache_line_size))); 686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 687 env->icache_line_size))); 688 689 if (pcc->l1_dcache_size) { 690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 691 pcc->l1_dcache_size))); 692 } else { 693 warn_report("Unknown L1 dcache size for cpu"); 694 } 695 if (pcc->l1_icache_size) { 696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 697 pcc->l1_icache_size))); 698 } else { 699 warn_report("Unknown L1 icache size for cpu"); 700 } 701 702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 708 709 if (ppc_has_spr(cpu, SPR_PURR)) { 710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 711 } 712 if (ppc_has_spr(cpu, SPR_PURR)) { 713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 714 } 715 716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 718 segs, sizeof(segs)))); 719 } 720 721 /* Advertise VSX (vector extensions) if available 722 * 1 == VMX / Altivec available 723 * 2 == VSX available 724 * 725 * Only CPUs for which we create core types in spapr_cpu_core.c 726 * are possible, and all of those have VMX */ 727 if (env->insns_flags & PPC_ALTIVEC) { 728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 730 } else { 731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 732 } 733 } 734 735 /* Advertise DFP (Decimal Floating Point) if available 736 * 0 / no property == no DFP 737 * 1 == DFP available */ 738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 740 } 741 742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 743 sizeof(page_sizes_prop)); 744 if (page_sizes_prop_size) { 745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 746 page_sizes_prop, page_sizes_prop_size))); 747 } 748 749 spapr_dt_pa_features(spapr, cpu, fdt, offset); 750 751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 752 cs->cpu_index / vcpus_per_socket))); 753 754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 755 pft_size_prop, sizeof(pft_size_prop)))); 756 757 if (ms->numa_state->num_nodes > 1) { 758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 759 } 760 761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 762 763 if (pcc->radix_page_info) { 764 for (i = 0; i < pcc->radix_page_info->count; i++) { 765 radix_AP_encodings[i] = 766 cpu_to_be32(pcc->radix_page_info->entries[i]); 767 } 768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 769 radix_AP_encodings, 770 pcc->radix_page_info->count * 771 sizeof(radix_AP_encodings[0])))); 772 } 773 774 /* 775 * We set this property to let the guest know that it can use the large 776 * decrementer and its width in bits. 777 */ 778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 780 pcc->lrg_decr_bits))); 781 } 782 783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 784 { 785 CPUState **rev; 786 CPUState *cs; 787 int n_cpus; 788 int cpus_offset; 789 int i; 790 791 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 792 _FDT(cpus_offset); 793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 795 796 /* 797 * We walk the CPUs in reverse order to ensure that CPU DT nodes 798 * created by fdt_add_subnode() end up in the right order in FDT 799 * for the guest kernel the enumerate the CPUs correctly. 800 * 801 * The CPU list cannot be traversed in reverse order, so we need 802 * to do extra work. 803 */ 804 n_cpus = 0; 805 rev = NULL; 806 CPU_FOREACH(cs) { 807 rev = g_renew(CPUState *, rev, n_cpus + 1); 808 rev[n_cpus++] = cs; 809 } 810 811 for (i = n_cpus - 1; i >= 0; i--) { 812 CPUState *cs = rev[i]; 813 PowerPCCPU *cpu = POWERPC_CPU(cs); 814 int index = spapr_get_vcpu_id(cpu); 815 DeviceClass *dc = DEVICE_GET_CLASS(cs); 816 g_autofree char *nodename = NULL; 817 int offset; 818 819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 820 continue; 821 } 822 823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 824 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 825 _FDT(offset); 826 spapr_dt_cpu(cs, fdt, offset, spapr); 827 } 828 829 g_free(rev); 830 } 831 832 static int spapr_dt_rng(void *fdt) 833 { 834 int node; 835 int ret; 836 837 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 838 if (node <= 0) { 839 return -1; 840 } 841 ret = fdt_setprop_string(fdt, node, "device_type", 842 "ibm,platform-facilities"); 843 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 844 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 845 846 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 847 if (node <= 0) { 848 return -1; 849 } 850 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 851 852 return ret ? -1 : 0; 853 } 854 855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 856 { 857 MachineState *ms = MACHINE(spapr); 858 int rtas; 859 GString *hypertas = g_string_sized_new(256); 860 GString *qemu_hypertas = g_string_sized_new(256); 861 uint32_t lrdr_capacity[] = { 862 0, 863 0, 864 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 865 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 866 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 867 }; 868 869 /* Do we have device memory? */ 870 if (MACHINE(spapr)->device_memory) { 871 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 872 memory_region_size(&MACHINE(spapr)->device_memory->mr); 873 874 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 875 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 876 } 877 878 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 879 880 /* hypertas */ 881 add_str(hypertas, "hcall-pft"); 882 add_str(hypertas, "hcall-term"); 883 add_str(hypertas, "hcall-dabr"); 884 add_str(hypertas, "hcall-interrupt"); 885 add_str(hypertas, "hcall-tce"); 886 add_str(hypertas, "hcall-vio"); 887 add_str(hypertas, "hcall-splpar"); 888 add_str(hypertas, "hcall-join"); 889 add_str(hypertas, "hcall-bulk"); 890 add_str(hypertas, "hcall-set-mode"); 891 add_str(hypertas, "hcall-sprg0"); 892 add_str(hypertas, "hcall-copy"); 893 add_str(hypertas, "hcall-debug"); 894 add_str(hypertas, "hcall-vphn"); 895 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 896 add_str(hypertas, "hcall-rpt-invalidate"); 897 } 898 899 add_str(qemu_hypertas, "hcall-memop1"); 900 901 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 902 add_str(hypertas, "hcall-multi-tce"); 903 } 904 905 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 906 add_str(hypertas, "hcall-hpt-resize"); 907 } 908 909 add_str(hypertas, "hcall-watchdog"); 910 911 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 912 hypertas->str, hypertas->len)); 913 g_string_free(hypertas, TRUE); 914 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 915 qemu_hypertas->str, qemu_hypertas->len)); 916 g_string_free(qemu_hypertas, TRUE); 917 918 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 919 920 /* 921 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 922 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 923 * 924 * The system reset requirements are driven by existing Linux and PowerVM 925 * implementation which (contrary to PAPR) saves r3 in the error log 926 * structure like machine check, so Linux expects to find the saved r3 927 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 928 * does not look at the error value). 929 * 930 * System reset interrupts are not subject to interlock like machine 931 * check, so this memory area could be corrupted if the sreset is 932 * interrupted by a machine check (or vice versa) if it was shared. To 933 * prevent this, system reset uses per-CPU areas for the sreset save 934 * area. A system reset that interrupts a system reset handler could 935 * still overwrite this area, but Linux doesn't try to recover in that 936 * case anyway. 937 * 938 * The extra 8 bytes is required because Linux's FWNMI error log check 939 * is off-by-one. 940 * 941 * RTAS_MIN_SIZE is required for the RTAS blob itself. 942 */ 943 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 944 RTAS_ERROR_LOG_MAX + 945 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 946 sizeof(uint64_t))); 947 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 948 RTAS_ERROR_LOG_MAX)); 949 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 950 RTAS_EVENT_SCAN_RATE)); 951 952 g_assert(msi_nonbroken); 953 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 954 955 /* 956 * According to PAPR, rtas ibm,os-term does not guarantee a return 957 * back to the guest cpu. 958 * 959 * While an additional ibm,extended-os-term property indicates 960 * that rtas call return will always occur. Set this property. 961 */ 962 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 963 964 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 965 lrdr_capacity, sizeof(lrdr_capacity))); 966 967 spapr_dt_rtas_tokens(fdt, rtas); 968 } 969 970 /* 971 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 972 * and the XIVE features that the guest may request and thus the valid 973 * values for bytes 23..26 of option vector 5: 974 */ 975 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 976 int chosen) 977 { 978 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 979 980 char val[2 * 4] = { 981 23, 0x00, /* XICS / XIVE mode */ 982 24, 0x00, /* Hash/Radix, filled in below. */ 983 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 984 26, 0x40, /* Radix options: GTSE == yes. */ 985 }; 986 987 if (spapr->irq->xics && spapr->irq->xive) { 988 val[1] = SPAPR_OV5_XIVE_BOTH; 989 } else if (spapr->irq->xive) { 990 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 991 } else { 992 assert(spapr->irq->xics); 993 val[1] = SPAPR_OV5_XIVE_LEGACY; 994 } 995 996 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 997 first_ppc_cpu->compat_pvr)) { 998 /* 999 * If we're in a pre POWER9 compat mode then the guest should 1000 * do hash and use the legacy interrupt mode 1001 */ 1002 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1003 val[3] = 0x00; /* Hash */ 1004 spapr_check_mmu_mode(false); 1005 } else if (kvm_enabled()) { 1006 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1007 val[3] = 0x80; /* OV5_MMU_BOTH */ 1008 } else if (kvmppc_has_cap_mmu_radix()) { 1009 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1010 } else { 1011 val[3] = 0x00; /* Hash */ 1012 } 1013 } else { 1014 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1015 val[3] = 0xC0; 1016 } 1017 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1018 val, sizeof(val))); 1019 } 1020 1021 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1022 { 1023 MachineState *machine = MACHINE(spapr); 1024 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1025 uint8_t rng_seed[32]; 1026 int chosen; 1027 1028 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1029 1030 if (reset) { 1031 const char *boot_device = spapr->boot_device; 1032 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1033 size_t cb = 0; 1034 g_autofree char *bootlist = get_boot_devices_list(&cb); 1035 1036 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1037 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1038 machine->kernel_cmdline)); 1039 } 1040 1041 if (spapr->initrd_size) { 1042 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1043 spapr->initrd_base)); 1044 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1045 spapr->initrd_base + spapr->initrd_size)); 1046 } 1047 1048 if (spapr->kernel_size) { 1049 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1050 cpu_to_be64(spapr->kernel_size) }; 1051 1052 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1053 &kprop, sizeof(kprop))); 1054 if (spapr->kernel_le) { 1055 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1056 } 1057 } 1058 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1059 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1060 } 1061 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1062 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1063 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1064 1065 if (cb && bootlist) { 1066 int i; 1067 1068 for (i = 0; i < cb; i++) { 1069 if (bootlist[i] == '\n') { 1070 bootlist[i] = ' '; 1071 } 1072 } 1073 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1074 } 1075 1076 if (boot_device && strlen(boot_device)) { 1077 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1078 } 1079 1080 if (spapr->want_stdout_path && stdout_path) { 1081 /* 1082 * "linux,stdout-path" and "stdout" properties are 1083 * deprecated by linux kernel. New platforms should only 1084 * use the "stdout-path" property. Set the new property 1085 * and continue using older property to remain compatible 1086 * with the existing firmware. 1087 */ 1088 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1089 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1090 } 1091 1092 /* 1093 * We can deal with BAR reallocation just fine, advertise it 1094 * to the guest 1095 */ 1096 if (smc->linux_pci_probe) { 1097 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1098 } 1099 1100 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1101 } 1102 1103 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed)); 1104 _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed))); 1105 1106 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1107 } 1108 1109 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1110 { 1111 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1112 * KVM to work under pHyp with some guest co-operation */ 1113 int hypervisor; 1114 uint8_t hypercall[16]; 1115 1116 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1117 /* indicate KVM hypercall interface */ 1118 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1119 if (kvmppc_has_cap_fixup_hcalls()) { 1120 /* 1121 * Older KVM versions with older guest kernels were broken 1122 * with the magic page, don't allow the guest to map it. 1123 */ 1124 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1125 sizeof(hypercall))) { 1126 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1127 hypercall, sizeof(hypercall))); 1128 } 1129 } 1130 } 1131 1132 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1133 { 1134 MachineState *machine = MACHINE(spapr); 1135 MachineClass *mc = MACHINE_GET_CLASS(machine); 1136 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1137 uint32_t root_drc_type_mask = 0; 1138 int ret; 1139 void *fdt; 1140 SpaprPhbState *phb; 1141 char *buf; 1142 1143 fdt = g_malloc0(space); 1144 _FDT((fdt_create_empty_tree(fdt, space))); 1145 1146 /* Root node */ 1147 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1148 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1149 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1150 1151 /* Guest UUID & Name*/ 1152 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1153 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1154 if (qemu_uuid_set) { 1155 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1156 } 1157 g_free(buf); 1158 1159 if (qemu_get_vm_name()) { 1160 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1161 qemu_get_vm_name())); 1162 } 1163 1164 /* Host Model & Serial Number */ 1165 if (spapr->host_model) { 1166 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1167 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1168 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1169 g_free(buf); 1170 } 1171 1172 if (spapr->host_serial) { 1173 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1174 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1175 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1176 g_free(buf); 1177 } 1178 1179 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1180 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1181 1182 /* /interrupt controller */ 1183 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1184 1185 ret = spapr_dt_memory(spapr, fdt); 1186 if (ret < 0) { 1187 error_report("couldn't setup memory nodes in fdt"); 1188 exit(1); 1189 } 1190 1191 /* /vdevice */ 1192 spapr_dt_vdevice(spapr->vio_bus, fdt); 1193 1194 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1195 ret = spapr_dt_rng(fdt); 1196 if (ret < 0) { 1197 error_report("could not set up rng device in the fdt"); 1198 exit(1); 1199 } 1200 } 1201 1202 QLIST_FOREACH(phb, &spapr->phbs, list) { 1203 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1204 if (ret < 0) { 1205 error_report("couldn't setup PCI devices in fdt"); 1206 exit(1); 1207 } 1208 } 1209 1210 spapr_dt_cpus(fdt, spapr); 1211 1212 /* ibm,drc-indexes and friends */ 1213 if (smc->dr_lmb_enabled) { 1214 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1215 } 1216 if (smc->dr_phb_enabled) { 1217 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1218 } 1219 if (mc->nvdimm_supported) { 1220 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1221 } 1222 if (root_drc_type_mask) { 1223 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1224 } 1225 1226 if (mc->has_hotpluggable_cpus) { 1227 int offset = fdt_path_offset(fdt, "/cpus"); 1228 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1229 if (ret < 0) { 1230 error_report("Couldn't set up CPU DR device tree properties"); 1231 exit(1); 1232 } 1233 } 1234 1235 /* /event-sources */ 1236 spapr_dt_events(spapr, fdt); 1237 1238 /* /rtas */ 1239 spapr_dt_rtas(spapr, fdt); 1240 1241 /* /chosen */ 1242 spapr_dt_chosen(spapr, fdt, reset); 1243 1244 /* /hypervisor */ 1245 if (kvm_enabled()) { 1246 spapr_dt_hypervisor(spapr, fdt); 1247 } 1248 1249 /* Build memory reserve map */ 1250 if (reset) { 1251 if (spapr->kernel_size) { 1252 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1253 spapr->kernel_size))); 1254 } 1255 if (spapr->initrd_size) { 1256 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1257 spapr->initrd_size))); 1258 } 1259 } 1260 1261 /* NVDIMM devices */ 1262 if (mc->nvdimm_supported) { 1263 spapr_dt_persistent_memory(spapr, fdt); 1264 } 1265 1266 return fdt; 1267 } 1268 1269 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1270 { 1271 SpaprMachineState *spapr = opaque; 1272 1273 return (addr & 0x0fffffff) + spapr->kernel_addr; 1274 } 1275 1276 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1277 PowerPCCPU *cpu) 1278 { 1279 CPUPPCState *env = &cpu->env; 1280 1281 /* The TCG path should also be holding the BQL at this point */ 1282 g_assert(qemu_mutex_iothread_locked()); 1283 1284 g_assert(!vhyp_cpu_in_nested(cpu)); 1285 1286 if (FIELD_EX64(env->msr, MSR, PR)) { 1287 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1288 env->gpr[3] = H_PRIVILEGE; 1289 } else { 1290 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1291 } 1292 } 1293 1294 struct LPCRSyncState { 1295 target_ulong value; 1296 target_ulong mask; 1297 }; 1298 1299 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1300 { 1301 struct LPCRSyncState *s = arg.host_ptr; 1302 PowerPCCPU *cpu = POWERPC_CPU(cs); 1303 CPUPPCState *env = &cpu->env; 1304 target_ulong lpcr; 1305 1306 cpu_synchronize_state(cs); 1307 lpcr = env->spr[SPR_LPCR]; 1308 lpcr &= ~s->mask; 1309 lpcr |= s->value; 1310 ppc_store_lpcr(cpu, lpcr); 1311 } 1312 1313 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1314 { 1315 CPUState *cs; 1316 struct LPCRSyncState s = { 1317 .value = value, 1318 .mask = mask 1319 }; 1320 CPU_FOREACH(cs) { 1321 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1322 } 1323 } 1324 1325 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1326 target_ulong lpid, ppc_v3_pate_t *entry) 1327 { 1328 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1329 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1330 1331 if (!spapr_cpu->in_nested) { 1332 assert(lpid == 0); 1333 1334 /* Copy PATE1:GR into PATE0:HR */ 1335 entry->dw0 = spapr->patb_entry & PATE0_HR; 1336 entry->dw1 = spapr->patb_entry; 1337 1338 } else { 1339 uint64_t patb, pats; 1340 1341 assert(lpid != 0); 1342 1343 patb = spapr->nested_ptcr & PTCR_PATB; 1344 pats = spapr->nested_ptcr & PTCR_PATS; 1345 1346 /* Check if partition table is properly aligned */ 1347 if (patb & MAKE_64BIT_MASK(0, pats + 12)) { 1348 return false; 1349 } 1350 1351 /* Calculate number of entries */ 1352 pats = 1ull << (pats + 12 - 4); 1353 if (pats <= lpid) { 1354 return false; 1355 } 1356 1357 /* Grab entry */ 1358 patb += 16 * lpid; 1359 entry->dw0 = ldq_phys(CPU(cpu)->as, patb); 1360 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8); 1361 } 1362 1363 return true; 1364 } 1365 1366 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1367 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1368 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1369 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1370 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1371 1372 /* 1373 * Get the fd to access the kernel htab, re-opening it if necessary 1374 */ 1375 static int get_htab_fd(SpaprMachineState *spapr) 1376 { 1377 Error *local_err = NULL; 1378 1379 if (spapr->htab_fd >= 0) { 1380 return spapr->htab_fd; 1381 } 1382 1383 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1384 if (spapr->htab_fd < 0) { 1385 error_report_err(local_err); 1386 } 1387 1388 return spapr->htab_fd; 1389 } 1390 1391 void close_htab_fd(SpaprMachineState *spapr) 1392 { 1393 if (spapr->htab_fd >= 0) { 1394 close(spapr->htab_fd); 1395 } 1396 spapr->htab_fd = -1; 1397 } 1398 1399 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1400 { 1401 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1402 1403 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1404 } 1405 1406 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1407 { 1408 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1409 1410 assert(kvm_enabled()); 1411 1412 if (!spapr->htab) { 1413 return 0; 1414 } 1415 1416 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1417 } 1418 1419 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1420 hwaddr ptex, int n) 1421 { 1422 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1423 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1424 1425 if (!spapr->htab) { 1426 /* 1427 * HTAB is controlled by KVM. Fetch into temporary buffer 1428 */ 1429 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1430 kvmppc_read_hptes(hptes, ptex, n); 1431 return hptes; 1432 } 1433 1434 /* 1435 * HTAB is controlled by QEMU. Just point to the internally 1436 * accessible PTEG. 1437 */ 1438 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1439 } 1440 1441 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1442 const ppc_hash_pte64_t *hptes, 1443 hwaddr ptex, int n) 1444 { 1445 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1446 1447 if (!spapr->htab) { 1448 g_free((void *)hptes); 1449 } 1450 1451 /* Nothing to do for qemu managed HPT */ 1452 } 1453 1454 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1455 uint64_t pte0, uint64_t pte1) 1456 { 1457 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1458 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1459 1460 if (!spapr->htab) { 1461 kvmppc_write_hpte(ptex, pte0, pte1); 1462 } else { 1463 if (pte0 & HPTE64_V_VALID) { 1464 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1465 /* 1466 * When setting valid, we write PTE1 first. This ensures 1467 * proper synchronization with the reading code in 1468 * ppc_hash64_pteg_search() 1469 */ 1470 smp_wmb(); 1471 stq_p(spapr->htab + offset, pte0); 1472 } else { 1473 stq_p(spapr->htab + offset, pte0); 1474 /* 1475 * When clearing it we set PTE0 first. This ensures proper 1476 * synchronization with the reading code in 1477 * ppc_hash64_pteg_search() 1478 */ 1479 smp_wmb(); 1480 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1481 } 1482 } 1483 } 1484 1485 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1486 uint64_t pte1) 1487 { 1488 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1489 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1490 1491 if (!spapr->htab) { 1492 /* There should always be a hash table when this is called */ 1493 error_report("spapr_hpte_set_c called with no hash table !"); 1494 return; 1495 } 1496 1497 /* The HW performs a non-atomic byte update */ 1498 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1499 } 1500 1501 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1502 uint64_t pte1) 1503 { 1504 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1505 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1506 1507 if (!spapr->htab) { 1508 /* There should always be a hash table when this is called */ 1509 error_report("spapr_hpte_set_r called with no hash table !"); 1510 return; 1511 } 1512 1513 /* The HW performs a non-atomic byte update */ 1514 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1515 } 1516 1517 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1518 { 1519 int shift; 1520 1521 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1522 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1523 * that's much more than is needed for Linux guests */ 1524 shift = ctz64(pow2ceil(ramsize)) - 7; 1525 shift = MAX(shift, 18); /* Minimum architected size */ 1526 shift = MIN(shift, 46); /* Maximum architected size */ 1527 return shift; 1528 } 1529 1530 void spapr_free_hpt(SpaprMachineState *spapr) 1531 { 1532 qemu_vfree(spapr->htab); 1533 spapr->htab = NULL; 1534 spapr->htab_shift = 0; 1535 close_htab_fd(spapr); 1536 } 1537 1538 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1539 { 1540 ERRP_GUARD(); 1541 long rc; 1542 1543 /* Clean up any HPT info from a previous boot */ 1544 spapr_free_hpt(spapr); 1545 1546 rc = kvmppc_reset_htab(shift); 1547 1548 if (rc == -EOPNOTSUPP) { 1549 error_setg(errp, "HPT not supported in nested guests"); 1550 return -EOPNOTSUPP; 1551 } 1552 1553 if (rc < 0) { 1554 /* kernel-side HPT needed, but couldn't allocate one */ 1555 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1556 shift); 1557 error_append_hint(errp, "Try smaller maxmem?\n"); 1558 return -errno; 1559 } else if (rc > 0) { 1560 /* kernel-side HPT allocated */ 1561 if (rc != shift) { 1562 error_setg(errp, 1563 "Requested order %d HPT, but kernel allocated order %ld", 1564 shift, rc); 1565 error_append_hint(errp, "Try smaller maxmem?\n"); 1566 return -ENOSPC; 1567 } 1568 1569 spapr->htab_shift = shift; 1570 spapr->htab = NULL; 1571 } else { 1572 /* kernel-side HPT not needed, allocate in userspace instead */ 1573 size_t size = 1ULL << shift; 1574 int i; 1575 1576 spapr->htab = qemu_memalign(size, size); 1577 memset(spapr->htab, 0, size); 1578 spapr->htab_shift = shift; 1579 1580 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1581 DIRTY_HPTE(HPTE(spapr->htab, i)); 1582 } 1583 } 1584 /* We're setting up a hash table, so that means we're not radix */ 1585 spapr->patb_entry = 0; 1586 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1587 return 0; 1588 } 1589 1590 void spapr_setup_hpt(SpaprMachineState *spapr) 1591 { 1592 int hpt_shift; 1593 1594 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1595 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1596 } else { 1597 uint64_t current_ram_size; 1598 1599 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1600 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1601 } 1602 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1603 1604 if (kvm_enabled()) { 1605 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1606 1607 /* Check our RMA fits in the possible VRMA */ 1608 if (vrma_limit < spapr->rma_size) { 1609 error_report("Unable to create %" HWADDR_PRIu 1610 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1611 spapr->rma_size / MiB, vrma_limit / MiB); 1612 exit(EXIT_FAILURE); 1613 } 1614 } 1615 } 1616 1617 void spapr_check_mmu_mode(bool guest_radix) 1618 { 1619 if (guest_radix) { 1620 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1621 error_report("Guest requested unavailable MMU mode (radix)."); 1622 exit(EXIT_FAILURE); 1623 } 1624 } else { 1625 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1626 && !kvmppc_has_cap_mmu_hash_v3()) { 1627 error_report("Guest requested unavailable MMU mode (hash)."); 1628 exit(EXIT_FAILURE); 1629 } 1630 } 1631 } 1632 1633 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1634 { 1635 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1636 PowerPCCPU *first_ppc_cpu; 1637 hwaddr fdt_addr; 1638 void *fdt; 1639 int rc; 1640 1641 pef_kvm_reset(machine->cgs, &error_fatal); 1642 spapr_caps_apply(spapr); 1643 1644 first_ppc_cpu = POWERPC_CPU(first_cpu); 1645 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1646 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1647 spapr->max_compat_pvr)) { 1648 /* 1649 * If using KVM with radix mode available, VCPUs can be started 1650 * without a HPT because KVM will start them in radix mode. 1651 * Set the GR bit in PATE so that we know there is no HPT. 1652 */ 1653 spapr->patb_entry = PATE1_GR; 1654 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1655 } else { 1656 spapr_setup_hpt(spapr); 1657 } 1658 1659 qemu_devices_reset(reason); 1660 1661 spapr_ovec_cleanup(spapr->ov5_cas); 1662 spapr->ov5_cas = spapr_ovec_new(); 1663 1664 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1665 1666 /* 1667 * This is fixing some of the default configuration of the XIVE 1668 * devices. To be called after the reset of the machine devices. 1669 */ 1670 spapr_irq_reset(spapr, &error_fatal); 1671 1672 /* 1673 * There is no CAS under qtest. Simulate one to please the code that 1674 * depends on spapr->ov5_cas. This is especially needed to test device 1675 * unplug, so we do that before resetting the DRCs. 1676 */ 1677 if (qtest_enabled()) { 1678 spapr_ovec_cleanup(spapr->ov5_cas); 1679 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1680 } 1681 1682 spapr_nvdimm_finish_flushes(); 1683 1684 /* DRC reset may cause a device to be unplugged. This will cause troubles 1685 * if this device is used by another device (eg, a running vhost backend 1686 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1687 * situations, we reset DRCs after all devices have been reset. 1688 */ 1689 spapr_drc_reset_all(spapr); 1690 1691 spapr_clear_pending_events(spapr); 1692 1693 /* 1694 * We place the device tree just below either the top of the RMA, 1695 * or just below 2GB, whichever is lower, so that it can be 1696 * processed with 32-bit real mode code if necessary 1697 */ 1698 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1699 1700 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1701 if (spapr->vof) { 1702 spapr_vof_reset(spapr, fdt, &error_fatal); 1703 /* 1704 * Do not pack the FDT as the client may change properties. 1705 * VOF client does not expect the FDT so we do not load it to the VM. 1706 */ 1707 } else { 1708 rc = fdt_pack(fdt); 1709 /* Should only fail if we've built a corrupted tree */ 1710 assert(rc == 0); 1711 1712 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1713 0, fdt_addr, 0); 1714 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1715 } 1716 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1717 1718 g_free(spapr->fdt_blob); 1719 spapr->fdt_size = fdt_totalsize(fdt); 1720 spapr->fdt_initial_size = spapr->fdt_size; 1721 spapr->fdt_blob = fdt; 1722 1723 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1724 machine->fdt = fdt; 1725 1726 /* Set up the entry state */ 1727 first_ppc_cpu->env.gpr[5] = 0; 1728 1729 spapr->fwnmi_system_reset_addr = -1; 1730 spapr->fwnmi_machine_check_addr = -1; 1731 spapr->fwnmi_machine_check_interlock = -1; 1732 1733 /* Signal all vCPUs waiting on this condition */ 1734 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1735 1736 migrate_del_blocker(spapr->fwnmi_migration_blocker); 1737 } 1738 1739 static void spapr_create_nvram(SpaprMachineState *spapr) 1740 { 1741 DeviceState *dev = qdev_new("spapr-nvram"); 1742 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1743 1744 if (dinfo) { 1745 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1746 &error_fatal); 1747 } 1748 1749 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1750 1751 spapr->nvram = (struct SpaprNvram *)dev; 1752 } 1753 1754 static void spapr_rtc_create(SpaprMachineState *spapr) 1755 { 1756 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1757 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1758 &error_fatal, NULL); 1759 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1760 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1761 "date"); 1762 } 1763 1764 /* Returns whether we want to use VGA or not */ 1765 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1766 { 1767 vga_interface_created = true; 1768 switch (vga_interface_type) { 1769 case VGA_NONE: 1770 return false; 1771 case VGA_DEVICE: 1772 return true; 1773 case VGA_STD: 1774 case VGA_VIRTIO: 1775 case VGA_CIRRUS: 1776 return pci_vga_init(pci_bus) != NULL; 1777 default: 1778 error_setg(errp, 1779 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1780 return false; 1781 } 1782 } 1783 1784 static int spapr_pre_load(void *opaque) 1785 { 1786 int rc; 1787 1788 rc = spapr_caps_pre_load(opaque); 1789 if (rc) { 1790 return rc; 1791 } 1792 1793 return 0; 1794 } 1795 1796 static int spapr_post_load(void *opaque, int version_id) 1797 { 1798 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1799 int err = 0; 1800 1801 err = spapr_caps_post_migration(spapr); 1802 if (err) { 1803 return err; 1804 } 1805 1806 /* 1807 * In earlier versions, there was no separate qdev for the PAPR 1808 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1809 * So when migrating from those versions, poke the incoming offset 1810 * value into the RTC device 1811 */ 1812 if (version_id < 3) { 1813 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1814 if (err) { 1815 return err; 1816 } 1817 } 1818 1819 if (kvm_enabled() && spapr->patb_entry) { 1820 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1821 bool radix = !!(spapr->patb_entry & PATE1_GR); 1822 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1823 1824 /* 1825 * Update LPCR:HR and UPRT as they may not be set properly in 1826 * the stream 1827 */ 1828 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1829 LPCR_HR | LPCR_UPRT); 1830 1831 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1832 if (err) { 1833 error_report("Process table config unsupported by the host"); 1834 return -EINVAL; 1835 } 1836 } 1837 1838 err = spapr_irq_post_load(spapr, version_id); 1839 if (err) { 1840 return err; 1841 } 1842 1843 return err; 1844 } 1845 1846 static int spapr_pre_save(void *opaque) 1847 { 1848 int rc; 1849 1850 rc = spapr_caps_pre_save(opaque); 1851 if (rc) { 1852 return rc; 1853 } 1854 1855 return 0; 1856 } 1857 1858 static bool version_before_3(void *opaque, int version_id) 1859 { 1860 return version_id < 3; 1861 } 1862 1863 static bool spapr_pending_events_needed(void *opaque) 1864 { 1865 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1866 return !QTAILQ_EMPTY(&spapr->pending_events); 1867 } 1868 1869 static const VMStateDescription vmstate_spapr_event_entry = { 1870 .name = "spapr_event_log_entry", 1871 .version_id = 1, 1872 .minimum_version_id = 1, 1873 .fields = (VMStateField[]) { 1874 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1875 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1876 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1877 NULL, extended_length), 1878 VMSTATE_END_OF_LIST() 1879 }, 1880 }; 1881 1882 static const VMStateDescription vmstate_spapr_pending_events = { 1883 .name = "spapr_pending_events", 1884 .version_id = 1, 1885 .minimum_version_id = 1, 1886 .needed = spapr_pending_events_needed, 1887 .fields = (VMStateField[]) { 1888 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1889 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1890 VMSTATE_END_OF_LIST() 1891 }, 1892 }; 1893 1894 static bool spapr_ov5_cas_needed(void *opaque) 1895 { 1896 SpaprMachineState *spapr = opaque; 1897 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1898 bool cas_needed; 1899 1900 /* Prior to the introduction of SpaprOptionVector, we had two option 1901 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1902 * Both of these options encode machine topology into the device-tree 1903 * in such a way that the now-booted OS should still be able to interact 1904 * appropriately with QEMU regardless of what options were actually 1905 * negotiatied on the source side. 1906 * 1907 * As such, we can avoid migrating the CAS-negotiated options if these 1908 * are the only options available on the current machine/platform. 1909 * Since these are the only options available for pseries-2.7 and 1910 * earlier, this allows us to maintain old->new/new->old migration 1911 * compatibility. 1912 * 1913 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1914 * via default pseries-2.8 machines and explicit command-line parameters. 1915 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1916 * of the actual CAS-negotiated values to continue working properly. For 1917 * example, availability of memory unplug depends on knowing whether 1918 * OV5_HP_EVT was negotiated via CAS. 1919 * 1920 * Thus, for any cases where the set of available CAS-negotiatable 1921 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1922 * include the CAS-negotiated options in the migration stream, unless 1923 * if they affect boot time behaviour only. 1924 */ 1925 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1926 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1927 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1928 1929 /* We need extra information if we have any bits outside the mask 1930 * defined above */ 1931 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1932 1933 spapr_ovec_cleanup(ov5_mask); 1934 1935 return cas_needed; 1936 } 1937 1938 static const VMStateDescription vmstate_spapr_ov5_cas = { 1939 .name = "spapr_option_vector_ov5_cas", 1940 .version_id = 1, 1941 .minimum_version_id = 1, 1942 .needed = spapr_ov5_cas_needed, 1943 .fields = (VMStateField[]) { 1944 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1945 vmstate_spapr_ovec, SpaprOptionVector), 1946 VMSTATE_END_OF_LIST() 1947 }, 1948 }; 1949 1950 static bool spapr_patb_entry_needed(void *opaque) 1951 { 1952 SpaprMachineState *spapr = opaque; 1953 1954 return !!spapr->patb_entry; 1955 } 1956 1957 static const VMStateDescription vmstate_spapr_patb_entry = { 1958 .name = "spapr_patb_entry", 1959 .version_id = 1, 1960 .minimum_version_id = 1, 1961 .needed = spapr_patb_entry_needed, 1962 .fields = (VMStateField[]) { 1963 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1964 VMSTATE_END_OF_LIST() 1965 }, 1966 }; 1967 1968 static bool spapr_irq_map_needed(void *opaque) 1969 { 1970 SpaprMachineState *spapr = opaque; 1971 1972 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1973 } 1974 1975 static const VMStateDescription vmstate_spapr_irq_map = { 1976 .name = "spapr_irq_map", 1977 .version_id = 1, 1978 .minimum_version_id = 1, 1979 .needed = spapr_irq_map_needed, 1980 .fields = (VMStateField[]) { 1981 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 1982 VMSTATE_END_OF_LIST() 1983 }, 1984 }; 1985 1986 static bool spapr_dtb_needed(void *opaque) 1987 { 1988 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1989 1990 return smc->update_dt_enabled; 1991 } 1992 1993 static int spapr_dtb_pre_load(void *opaque) 1994 { 1995 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1996 1997 g_free(spapr->fdt_blob); 1998 spapr->fdt_blob = NULL; 1999 spapr->fdt_size = 0; 2000 2001 return 0; 2002 } 2003 2004 static const VMStateDescription vmstate_spapr_dtb = { 2005 .name = "spapr_dtb", 2006 .version_id = 1, 2007 .minimum_version_id = 1, 2008 .needed = spapr_dtb_needed, 2009 .pre_load = spapr_dtb_pre_load, 2010 .fields = (VMStateField[]) { 2011 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2012 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2013 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2014 fdt_size), 2015 VMSTATE_END_OF_LIST() 2016 }, 2017 }; 2018 2019 static bool spapr_fwnmi_needed(void *opaque) 2020 { 2021 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2022 2023 return spapr->fwnmi_machine_check_addr != -1; 2024 } 2025 2026 static int spapr_fwnmi_pre_save(void *opaque) 2027 { 2028 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2029 2030 /* 2031 * Check if machine check handling is in progress and print a 2032 * warning message. 2033 */ 2034 if (spapr->fwnmi_machine_check_interlock != -1) { 2035 warn_report("A machine check is being handled during migration. The" 2036 "handler may run and log hardware error on the destination"); 2037 } 2038 2039 return 0; 2040 } 2041 2042 static const VMStateDescription vmstate_spapr_fwnmi = { 2043 .name = "spapr_fwnmi", 2044 .version_id = 1, 2045 .minimum_version_id = 1, 2046 .needed = spapr_fwnmi_needed, 2047 .pre_save = spapr_fwnmi_pre_save, 2048 .fields = (VMStateField[]) { 2049 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2050 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2051 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2052 VMSTATE_END_OF_LIST() 2053 }, 2054 }; 2055 2056 static const VMStateDescription vmstate_spapr = { 2057 .name = "spapr", 2058 .version_id = 3, 2059 .minimum_version_id = 1, 2060 .pre_load = spapr_pre_load, 2061 .post_load = spapr_post_load, 2062 .pre_save = spapr_pre_save, 2063 .fields = (VMStateField[]) { 2064 /* used to be @next_irq */ 2065 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2066 2067 /* RTC offset */ 2068 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2069 2070 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2071 VMSTATE_END_OF_LIST() 2072 }, 2073 .subsections = (const VMStateDescription*[]) { 2074 &vmstate_spapr_ov5_cas, 2075 &vmstate_spapr_patb_entry, 2076 &vmstate_spapr_pending_events, 2077 &vmstate_spapr_cap_htm, 2078 &vmstate_spapr_cap_vsx, 2079 &vmstate_spapr_cap_dfp, 2080 &vmstate_spapr_cap_cfpc, 2081 &vmstate_spapr_cap_sbbc, 2082 &vmstate_spapr_cap_ibs, 2083 &vmstate_spapr_cap_hpt_maxpagesize, 2084 &vmstate_spapr_irq_map, 2085 &vmstate_spapr_cap_nested_kvm_hv, 2086 &vmstate_spapr_dtb, 2087 &vmstate_spapr_cap_large_decr, 2088 &vmstate_spapr_cap_ccf_assist, 2089 &vmstate_spapr_cap_fwnmi, 2090 &vmstate_spapr_fwnmi, 2091 &vmstate_spapr_cap_rpt_invalidate, 2092 NULL 2093 } 2094 }; 2095 2096 static int htab_save_setup(QEMUFile *f, void *opaque) 2097 { 2098 SpaprMachineState *spapr = opaque; 2099 2100 /* "Iteration" header */ 2101 if (!spapr->htab_shift) { 2102 qemu_put_be32(f, -1); 2103 } else { 2104 qemu_put_be32(f, spapr->htab_shift); 2105 } 2106 2107 if (spapr->htab) { 2108 spapr->htab_save_index = 0; 2109 spapr->htab_first_pass = true; 2110 } else { 2111 if (spapr->htab_shift) { 2112 assert(kvm_enabled()); 2113 } 2114 } 2115 2116 2117 return 0; 2118 } 2119 2120 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2121 int chunkstart, int n_valid, int n_invalid) 2122 { 2123 qemu_put_be32(f, chunkstart); 2124 qemu_put_be16(f, n_valid); 2125 qemu_put_be16(f, n_invalid); 2126 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2127 HASH_PTE_SIZE_64 * n_valid); 2128 } 2129 2130 static void htab_save_end_marker(QEMUFile *f) 2131 { 2132 qemu_put_be32(f, 0); 2133 qemu_put_be16(f, 0); 2134 qemu_put_be16(f, 0); 2135 } 2136 2137 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2138 int64_t max_ns) 2139 { 2140 bool has_timeout = max_ns != -1; 2141 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2142 int index = spapr->htab_save_index; 2143 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2144 2145 assert(spapr->htab_first_pass); 2146 2147 do { 2148 int chunkstart; 2149 2150 /* Consume invalid HPTEs */ 2151 while ((index < htabslots) 2152 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2153 CLEAN_HPTE(HPTE(spapr->htab, index)); 2154 index++; 2155 } 2156 2157 /* Consume valid HPTEs */ 2158 chunkstart = index; 2159 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2160 && HPTE_VALID(HPTE(spapr->htab, index))) { 2161 CLEAN_HPTE(HPTE(spapr->htab, index)); 2162 index++; 2163 } 2164 2165 if (index > chunkstart) { 2166 int n_valid = index - chunkstart; 2167 2168 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2169 2170 if (has_timeout && 2171 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2172 break; 2173 } 2174 } 2175 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2176 2177 if (index >= htabslots) { 2178 assert(index == htabslots); 2179 index = 0; 2180 spapr->htab_first_pass = false; 2181 } 2182 spapr->htab_save_index = index; 2183 } 2184 2185 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2186 int64_t max_ns) 2187 { 2188 bool final = max_ns < 0; 2189 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2190 int examined = 0, sent = 0; 2191 int index = spapr->htab_save_index; 2192 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2193 2194 assert(!spapr->htab_first_pass); 2195 2196 do { 2197 int chunkstart, invalidstart; 2198 2199 /* Consume non-dirty HPTEs */ 2200 while ((index < htabslots) 2201 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2202 index++; 2203 examined++; 2204 } 2205 2206 chunkstart = index; 2207 /* Consume valid dirty HPTEs */ 2208 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2209 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2210 && HPTE_VALID(HPTE(spapr->htab, index))) { 2211 CLEAN_HPTE(HPTE(spapr->htab, index)); 2212 index++; 2213 examined++; 2214 } 2215 2216 invalidstart = index; 2217 /* Consume invalid dirty HPTEs */ 2218 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2219 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2220 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2221 CLEAN_HPTE(HPTE(spapr->htab, index)); 2222 index++; 2223 examined++; 2224 } 2225 2226 if (index > chunkstart) { 2227 int n_valid = invalidstart - chunkstart; 2228 int n_invalid = index - invalidstart; 2229 2230 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2231 sent += index - chunkstart; 2232 2233 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2234 break; 2235 } 2236 } 2237 2238 if (examined >= htabslots) { 2239 break; 2240 } 2241 2242 if (index >= htabslots) { 2243 assert(index == htabslots); 2244 index = 0; 2245 } 2246 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2247 2248 if (index >= htabslots) { 2249 assert(index == htabslots); 2250 index = 0; 2251 } 2252 2253 spapr->htab_save_index = index; 2254 2255 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2256 } 2257 2258 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2259 #define MAX_KVM_BUF_SIZE 2048 2260 2261 static int htab_save_iterate(QEMUFile *f, void *opaque) 2262 { 2263 SpaprMachineState *spapr = opaque; 2264 int fd; 2265 int rc = 0; 2266 2267 /* Iteration header */ 2268 if (!spapr->htab_shift) { 2269 qemu_put_be32(f, -1); 2270 return 1; 2271 } else { 2272 qemu_put_be32(f, 0); 2273 } 2274 2275 if (!spapr->htab) { 2276 assert(kvm_enabled()); 2277 2278 fd = get_htab_fd(spapr); 2279 if (fd < 0) { 2280 return fd; 2281 } 2282 2283 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2284 if (rc < 0) { 2285 return rc; 2286 } 2287 } else if (spapr->htab_first_pass) { 2288 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2289 } else { 2290 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2291 } 2292 2293 htab_save_end_marker(f); 2294 2295 return rc; 2296 } 2297 2298 static int htab_save_complete(QEMUFile *f, void *opaque) 2299 { 2300 SpaprMachineState *spapr = opaque; 2301 int fd; 2302 2303 /* Iteration header */ 2304 if (!spapr->htab_shift) { 2305 qemu_put_be32(f, -1); 2306 return 0; 2307 } else { 2308 qemu_put_be32(f, 0); 2309 } 2310 2311 if (!spapr->htab) { 2312 int rc; 2313 2314 assert(kvm_enabled()); 2315 2316 fd = get_htab_fd(spapr); 2317 if (fd < 0) { 2318 return fd; 2319 } 2320 2321 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2322 if (rc < 0) { 2323 return rc; 2324 } 2325 } else { 2326 if (spapr->htab_first_pass) { 2327 htab_save_first_pass(f, spapr, -1); 2328 } 2329 htab_save_later_pass(f, spapr, -1); 2330 } 2331 2332 /* End marker */ 2333 htab_save_end_marker(f); 2334 2335 return 0; 2336 } 2337 2338 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2339 { 2340 SpaprMachineState *spapr = opaque; 2341 uint32_t section_hdr; 2342 int fd = -1; 2343 Error *local_err = NULL; 2344 2345 if (version_id < 1 || version_id > 1) { 2346 error_report("htab_load() bad version"); 2347 return -EINVAL; 2348 } 2349 2350 section_hdr = qemu_get_be32(f); 2351 2352 if (section_hdr == -1) { 2353 spapr_free_hpt(spapr); 2354 return 0; 2355 } 2356 2357 if (section_hdr) { 2358 int ret; 2359 2360 /* First section gives the htab size */ 2361 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2362 if (ret < 0) { 2363 error_report_err(local_err); 2364 return ret; 2365 } 2366 return 0; 2367 } 2368 2369 if (!spapr->htab) { 2370 assert(kvm_enabled()); 2371 2372 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2373 if (fd < 0) { 2374 error_report_err(local_err); 2375 return fd; 2376 } 2377 } 2378 2379 while (true) { 2380 uint32_t index; 2381 uint16_t n_valid, n_invalid; 2382 2383 index = qemu_get_be32(f); 2384 n_valid = qemu_get_be16(f); 2385 n_invalid = qemu_get_be16(f); 2386 2387 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2388 /* End of Stream */ 2389 break; 2390 } 2391 2392 if ((index + n_valid + n_invalid) > 2393 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2394 /* Bad index in stream */ 2395 error_report( 2396 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2397 index, n_valid, n_invalid, spapr->htab_shift); 2398 return -EINVAL; 2399 } 2400 2401 if (spapr->htab) { 2402 if (n_valid) { 2403 qemu_get_buffer(f, HPTE(spapr->htab, index), 2404 HASH_PTE_SIZE_64 * n_valid); 2405 } 2406 if (n_invalid) { 2407 memset(HPTE(spapr->htab, index + n_valid), 0, 2408 HASH_PTE_SIZE_64 * n_invalid); 2409 } 2410 } else { 2411 int rc; 2412 2413 assert(fd >= 0); 2414 2415 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2416 &local_err); 2417 if (rc < 0) { 2418 error_report_err(local_err); 2419 return rc; 2420 } 2421 } 2422 } 2423 2424 if (!spapr->htab) { 2425 assert(fd >= 0); 2426 close(fd); 2427 } 2428 2429 return 0; 2430 } 2431 2432 static void htab_save_cleanup(void *opaque) 2433 { 2434 SpaprMachineState *spapr = opaque; 2435 2436 close_htab_fd(spapr); 2437 } 2438 2439 static SaveVMHandlers savevm_htab_handlers = { 2440 .save_setup = htab_save_setup, 2441 .save_live_iterate = htab_save_iterate, 2442 .save_live_complete_precopy = htab_save_complete, 2443 .save_cleanup = htab_save_cleanup, 2444 .load_state = htab_load, 2445 }; 2446 2447 static void spapr_boot_set(void *opaque, const char *boot_device, 2448 Error **errp) 2449 { 2450 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2451 2452 g_free(spapr->boot_device); 2453 spapr->boot_device = g_strdup(boot_device); 2454 } 2455 2456 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2457 { 2458 MachineState *machine = MACHINE(spapr); 2459 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2460 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2461 int i; 2462 2463 g_assert(!nr_lmbs || machine->device_memory); 2464 for (i = 0; i < nr_lmbs; i++) { 2465 uint64_t addr; 2466 2467 addr = i * lmb_size + machine->device_memory->base; 2468 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2469 addr / lmb_size); 2470 } 2471 } 2472 2473 /* 2474 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2475 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2476 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2477 */ 2478 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2479 { 2480 int i; 2481 2482 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2483 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2484 " is not aligned to %" PRIu64 " MiB", 2485 machine->ram_size, 2486 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2487 return; 2488 } 2489 2490 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2491 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2492 " is not aligned to %" PRIu64 " MiB", 2493 machine->ram_size, 2494 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2495 return; 2496 } 2497 2498 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2499 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2500 error_setg(errp, 2501 "Node %d memory size 0x%" PRIx64 2502 " is not aligned to %" PRIu64 " MiB", 2503 i, machine->numa_state->nodes[i].node_mem, 2504 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2505 return; 2506 } 2507 } 2508 } 2509 2510 /* find cpu slot in machine->possible_cpus by core_id */ 2511 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2512 { 2513 int index = id / ms->smp.threads; 2514 2515 if (index >= ms->possible_cpus->len) { 2516 return NULL; 2517 } 2518 if (idx) { 2519 *idx = index; 2520 } 2521 return &ms->possible_cpus->cpus[index]; 2522 } 2523 2524 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2525 { 2526 MachineState *ms = MACHINE(spapr); 2527 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2528 Error *local_err = NULL; 2529 bool vsmt_user = !!spapr->vsmt; 2530 int kvm_smt = kvmppc_smt_threads(); 2531 int ret; 2532 unsigned int smp_threads = ms->smp.threads; 2533 2534 if (tcg_enabled()) { 2535 if (smp_threads > 1 && 2536 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2537 spapr->max_compat_pvr)) { 2538 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2539 return; 2540 } 2541 2542 if (smp_threads > 8) { 2543 error_setg(errp, "TCG cannot support more than 8 threads/core " 2544 "on a pseries machine"); 2545 return; 2546 } 2547 } 2548 if (!is_power_of_2(smp_threads)) { 2549 error_setg(errp, "Cannot support %d threads/core on a pseries " 2550 "machine because it must be a power of 2", smp_threads); 2551 return; 2552 } 2553 2554 /* Detemine the VSMT mode to use: */ 2555 if (vsmt_user) { 2556 if (spapr->vsmt < smp_threads) { 2557 error_setg(errp, "Cannot support VSMT mode %d" 2558 " because it must be >= threads/core (%d)", 2559 spapr->vsmt, smp_threads); 2560 return; 2561 } 2562 /* In this case, spapr->vsmt has been set by the command line */ 2563 } else if (!smc->smp_threads_vsmt) { 2564 /* 2565 * Default VSMT value is tricky, because we need it to be as 2566 * consistent as possible (for migration), but this requires 2567 * changing it for at least some existing cases. We pick 8 as 2568 * the value that we'd get with KVM on POWER8, the 2569 * overwhelmingly common case in production systems. 2570 */ 2571 spapr->vsmt = MAX(8, smp_threads); 2572 } else { 2573 spapr->vsmt = smp_threads; 2574 } 2575 2576 /* KVM: If necessary, set the SMT mode: */ 2577 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2578 ret = kvmppc_set_smt_threads(spapr->vsmt); 2579 if (ret) { 2580 /* Looks like KVM isn't able to change VSMT mode */ 2581 error_setg(&local_err, 2582 "Failed to set KVM's VSMT mode to %d (errno %d)", 2583 spapr->vsmt, ret); 2584 /* We can live with that if the default one is big enough 2585 * for the number of threads, and a submultiple of the one 2586 * we want. In this case we'll waste some vcpu ids, but 2587 * behaviour will be correct */ 2588 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2589 warn_report_err(local_err); 2590 } else { 2591 if (!vsmt_user) { 2592 error_append_hint(&local_err, 2593 "On PPC, a VM with %d threads/core" 2594 " on a host with %d threads/core" 2595 " requires the use of VSMT mode %d.\n", 2596 smp_threads, kvm_smt, spapr->vsmt); 2597 } 2598 kvmppc_error_append_smt_possible_hint(&local_err); 2599 error_propagate(errp, local_err); 2600 } 2601 } 2602 } 2603 /* else TCG: nothing to do currently */ 2604 } 2605 2606 static void spapr_init_cpus(SpaprMachineState *spapr) 2607 { 2608 MachineState *machine = MACHINE(spapr); 2609 MachineClass *mc = MACHINE_GET_CLASS(machine); 2610 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2611 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2612 const CPUArchIdList *possible_cpus; 2613 unsigned int smp_cpus = machine->smp.cpus; 2614 unsigned int smp_threads = machine->smp.threads; 2615 unsigned int max_cpus = machine->smp.max_cpus; 2616 int boot_cores_nr = smp_cpus / smp_threads; 2617 int i; 2618 2619 possible_cpus = mc->possible_cpu_arch_ids(machine); 2620 if (mc->has_hotpluggable_cpus) { 2621 if (smp_cpus % smp_threads) { 2622 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2623 smp_cpus, smp_threads); 2624 exit(1); 2625 } 2626 if (max_cpus % smp_threads) { 2627 error_report("max_cpus (%u) must be multiple of threads (%u)", 2628 max_cpus, smp_threads); 2629 exit(1); 2630 } 2631 } else { 2632 if (max_cpus != smp_cpus) { 2633 error_report("This machine version does not support CPU hotplug"); 2634 exit(1); 2635 } 2636 boot_cores_nr = possible_cpus->len; 2637 } 2638 2639 if (smc->pre_2_10_has_unused_icps) { 2640 int i; 2641 2642 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2643 /* Dummy entries get deregistered when real ICPState objects 2644 * are registered during CPU core hotplug. 2645 */ 2646 pre_2_10_vmstate_register_dummy_icp(i); 2647 } 2648 } 2649 2650 for (i = 0; i < possible_cpus->len; i++) { 2651 int core_id = i * smp_threads; 2652 2653 if (mc->has_hotpluggable_cpus) { 2654 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2655 spapr_vcpu_id(spapr, core_id)); 2656 } 2657 2658 if (i < boot_cores_nr) { 2659 Object *core = object_new(type); 2660 int nr_threads = smp_threads; 2661 2662 /* Handle the partially filled core for older machine types */ 2663 if ((i + 1) * smp_threads >= smp_cpus) { 2664 nr_threads = smp_cpus - i * smp_threads; 2665 } 2666 2667 object_property_set_int(core, "nr-threads", nr_threads, 2668 &error_fatal); 2669 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2670 &error_fatal); 2671 qdev_realize(DEVICE(core), NULL, &error_fatal); 2672 2673 object_unref(core); 2674 } 2675 } 2676 } 2677 2678 static PCIHostState *spapr_create_default_phb(void) 2679 { 2680 DeviceState *dev; 2681 2682 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2683 qdev_prop_set_uint32(dev, "index", 0); 2684 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2685 2686 return PCI_HOST_BRIDGE(dev); 2687 } 2688 2689 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2690 { 2691 MachineState *machine = MACHINE(spapr); 2692 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2693 hwaddr rma_size = machine->ram_size; 2694 hwaddr node0_size = spapr_node0_size(machine); 2695 2696 /* RMA has to fit in the first NUMA node */ 2697 rma_size = MIN(rma_size, node0_size); 2698 2699 /* 2700 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2701 * never exceed that 2702 */ 2703 rma_size = MIN(rma_size, 1 * TiB); 2704 2705 /* 2706 * Clamp the RMA size based on machine type. This is for 2707 * migration compatibility with older qemu versions, which limited 2708 * the RMA size for complicated and mostly bad reasons. 2709 */ 2710 if (smc->rma_limit) { 2711 rma_size = MIN(rma_size, smc->rma_limit); 2712 } 2713 2714 if (rma_size < MIN_RMA_SLOF) { 2715 error_setg(errp, 2716 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2717 "ldMiB guest RMA (Real Mode Area memory)", 2718 MIN_RMA_SLOF / MiB); 2719 return 0; 2720 } 2721 2722 return rma_size; 2723 } 2724 2725 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2726 { 2727 MachineState *machine = MACHINE(spapr); 2728 int i; 2729 2730 for (i = 0; i < machine->ram_slots; i++) { 2731 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2732 } 2733 } 2734 2735 /* pSeries LPAR / sPAPR hardware init */ 2736 static void spapr_machine_init(MachineState *machine) 2737 { 2738 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2739 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2740 MachineClass *mc = MACHINE_GET_CLASS(machine); 2741 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2742 const char *bios_name = machine->firmware ?: bios_default; 2743 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2744 const char *kernel_filename = machine->kernel_filename; 2745 const char *initrd_filename = machine->initrd_filename; 2746 PCIHostState *phb; 2747 bool has_vga; 2748 int i; 2749 MemoryRegion *sysmem = get_system_memory(); 2750 long load_limit, fw_size; 2751 Error *resize_hpt_err = NULL; 2752 2753 if (!filename) { 2754 error_report("Could not find LPAR firmware '%s'", bios_name); 2755 exit(1); 2756 } 2757 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2758 if (fw_size <= 0) { 2759 error_report("Could not load LPAR firmware '%s'", filename); 2760 exit(1); 2761 } 2762 2763 /* 2764 * if Secure VM (PEF) support is configured, then initialize it 2765 */ 2766 pef_kvm_init(machine->cgs, &error_fatal); 2767 2768 msi_nonbroken = true; 2769 2770 QLIST_INIT(&spapr->phbs); 2771 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2772 2773 /* Determine capabilities to run with */ 2774 spapr_caps_init(spapr); 2775 2776 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2777 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2778 /* 2779 * If the user explicitly requested a mode we should either 2780 * supply it, or fail completely (which we do below). But if 2781 * it's not set explicitly, we reset our mode to something 2782 * that works 2783 */ 2784 if (resize_hpt_err) { 2785 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2786 error_free(resize_hpt_err); 2787 resize_hpt_err = NULL; 2788 } else { 2789 spapr->resize_hpt = smc->resize_hpt_default; 2790 } 2791 } 2792 2793 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2794 2795 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2796 /* 2797 * User requested HPT resize, but this host can't supply it. Bail out 2798 */ 2799 error_report_err(resize_hpt_err); 2800 exit(1); 2801 } 2802 error_free(resize_hpt_err); 2803 2804 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2805 2806 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2807 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2808 2809 /* 2810 * VSMT must be set in order to be able to compute VCPU ids, ie to 2811 * call spapr_max_server_number() or spapr_vcpu_id(). 2812 */ 2813 spapr_set_vsmt_mode(spapr, &error_fatal); 2814 2815 /* Set up Interrupt Controller before we create the VCPUs */ 2816 spapr_irq_init(spapr, &error_fatal); 2817 2818 /* Set up containers for ibm,client-architecture-support negotiated options 2819 */ 2820 spapr->ov5 = spapr_ovec_new(); 2821 spapr->ov5_cas = spapr_ovec_new(); 2822 2823 if (smc->dr_lmb_enabled) { 2824 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2825 spapr_validate_node_memory(machine, &error_fatal); 2826 } 2827 2828 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2829 2830 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2831 if (!smc->pre_6_2_numa_affinity) { 2832 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2833 } 2834 2835 /* advertise support for dedicated HP event source to guests */ 2836 if (spapr->use_hotplug_event_source) { 2837 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2838 } 2839 2840 /* advertise support for HPT resizing */ 2841 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2842 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2843 } 2844 2845 /* advertise support for ibm,dyamic-memory-v2 */ 2846 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2847 2848 /* advertise XIVE on POWER9 machines */ 2849 if (spapr->irq->xive) { 2850 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2851 } 2852 2853 /* init CPUs */ 2854 spapr_init_cpus(spapr); 2855 2856 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine); 2857 2858 /* Init numa_assoc_array */ 2859 spapr_numa_associativity_init(spapr, machine); 2860 2861 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2862 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2863 spapr->max_compat_pvr)) { 2864 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2865 /* KVM and TCG always allow GTSE with radix... */ 2866 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2867 } 2868 /* ... but not with hash (currently). */ 2869 2870 if (kvm_enabled()) { 2871 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2872 kvmppc_enable_logical_ci_hcalls(); 2873 kvmppc_enable_set_mode_hcall(); 2874 2875 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2876 kvmppc_enable_clear_ref_mod_hcalls(); 2877 2878 /* Enable H_PAGE_INIT */ 2879 kvmppc_enable_h_page_init(); 2880 } 2881 2882 /* map RAM */ 2883 memory_region_add_subregion(sysmem, 0, machine->ram); 2884 2885 /* initialize hotplug memory address space */ 2886 if (machine->ram_size < machine->maxram_size) { 2887 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2888 hwaddr device_mem_base; 2889 2890 /* 2891 * Limit the number of hotpluggable memory slots to half the number 2892 * slots that KVM supports, leaving the other half for PCI and other 2893 * devices. However ensure that number of slots doesn't drop below 32. 2894 */ 2895 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2896 SPAPR_MAX_RAM_SLOTS; 2897 2898 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2899 max_memslots = SPAPR_MAX_RAM_SLOTS; 2900 } 2901 if (machine->ram_slots > max_memslots) { 2902 error_report("Specified number of memory slots %" 2903 PRIu64" exceeds max supported %d", 2904 machine->ram_slots, max_memslots); 2905 exit(1); 2906 } 2907 2908 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2909 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2910 } 2911 2912 if (smc->dr_lmb_enabled) { 2913 spapr_create_lmb_dr_connectors(spapr); 2914 } 2915 2916 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) { 2917 /* Create the error string for live migration blocker */ 2918 error_setg(&spapr->fwnmi_migration_blocker, 2919 "A machine check is being handled during migration. The handler" 2920 "may run and log hardware error on the destination"); 2921 } 2922 2923 if (mc->nvdimm_supported) { 2924 spapr_create_nvdimm_dr_connectors(spapr); 2925 } 2926 2927 /* Set up RTAS event infrastructure */ 2928 spapr_events_init(spapr); 2929 2930 /* Set up the RTC RTAS interfaces */ 2931 spapr_rtc_create(spapr); 2932 2933 /* Set up VIO bus */ 2934 spapr->vio_bus = spapr_vio_bus_init(); 2935 2936 for (i = 0; serial_hd(i); i++) { 2937 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2938 } 2939 2940 /* We always have at least the nvram device on VIO */ 2941 spapr_create_nvram(spapr); 2942 2943 /* 2944 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2945 * connectors (described in root DT node's "ibm,drc-types" property) 2946 * are pre-initialized here. additional child connectors (such as 2947 * connectors for a PHBs PCI slots) are added as needed during their 2948 * parent's realization. 2949 */ 2950 if (smc->dr_phb_enabled) { 2951 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2952 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2953 } 2954 } 2955 2956 /* Set up PCI */ 2957 spapr_pci_rtas_init(); 2958 2959 phb = spapr_create_default_phb(); 2960 2961 for (i = 0; i < nb_nics; i++) { 2962 NICInfo *nd = &nd_table[i]; 2963 2964 if (!nd->model) { 2965 nd->model = g_strdup("spapr-vlan"); 2966 } 2967 2968 if (g_str_equal(nd->model, "spapr-vlan") || 2969 g_str_equal(nd->model, "ibmveth")) { 2970 spapr_vlan_create(spapr->vio_bus, nd); 2971 } else { 2972 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2973 } 2974 } 2975 2976 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2977 spapr_vscsi_create(spapr->vio_bus); 2978 } 2979 2980 /* Graphics */ 2981 has_vga = spapr_vga_init(phb->bus, &error_fatal); 2982 if (has_vga) { 2983 spapr->want_stdout_path = !machine->enable_graphics; 2984 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2985 } else { 2986 spapr->want_stdout_path = true; 2987 } 2988 2989 if (machine->usb) { 2990 if (smc->use_ohci_by_default) { 2991 pci_create_simple(phb->bus, -1, "pci-ohci"); 2992 } else { 2993 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2994 } 2995 2996 if (has_vga) { 2997 USBBus *usb_bus = usb_bus_find(-1); 2998 2999 usb_create_simple(usb_bus, "usb-kbd"); 3000 usb_create_simple(usb_bus, "usb-mouse"); 3001 } 3002 } 3003 3004 if (kernel_filename) { 3005 uint64_t loaded_addr = 0; 3006 3007 spapr->kernel_size = load_elf(kernel_filename, NULL, 3008 translate_kernel_address, spapr, 3009 NULL, &loaded_addr, NULL, NULL, 1, 3010 PPC_ELF_MACHINE, 0, 0); 3011 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3012 spapr->kernel_size = load_elf(kernel_filename, NULL, 3013 translate_kernel_address, spapr, 3014 NULL, &loaded_addr, NULL, NULL, 0, 3015 PPC_ELF_MACHINE, 0, 0); 3016 spapr->kernel_le = spapr->kernel_size > 0; 3017 } 3018 if (spapr->kernel_size < 0) { 3019 error_report("error loading %s: %s", kernel_filename, 3020 load_elf_strerror(spapr->kernel_size)); 3021 exit(1); 3022 } 3023 3024 if (spapr->kernel_addr != loaded_addr) { 3025 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3026 " to 0x%"PRIx64, 3027 spapr->kernel_addr, loaded_addr); 3028 spapr->kernel_addr = loaded_addr; 3029 } 3030 3031 /* load initrd */ 3032 if (initrd_filename) { 3033 /* Try to locate the initrd in the gap between the kernel 3034 * and the firmware. Add a bit of space just in case 3035 */ 3036 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3037 + 0x1ffff) & ~0xffff; 3038 spapr->initrd_size = load_image_targphys(initrd_filename, 3039 spapr->initrd_base, 3040 load_limit 3041 - spapr->initrd_base); 3042 if (spapr->initrd_size < 0) { 3043 error_report("could not load initial ram disk '%s'", 3044 initrd_filename); 3045 exit(1); 3046 } 3047 } 3048 } 3049 3050 /* FIXME: Should register things through the MachineState's qdev 3051 * interface, this is a legacy from the sPAPREnvironment structure 3052 * which predated MachineState but had a similar function */ 3053 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3054 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3055 &savevm_htab_handlers, spapr); 3056 3057 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3058 3059 qemu_register_boot_set(spapr_boot_set, spapr); 3060 3061 /* 3062 * Nothing needs to be done to resume a suspended guest because 3063 * suspending does not change the machine state, so no need for 3064 * a ->wakeup method. 3065 */ 3066 qemu_register_wakeup_support(); 3067 3068 if (kvm_enabled()) { 3069 /* to stop and start vmclock */ 3070 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3071 &spapr->tb); 3072 3073 kvmppc_spapr_enable_inkernel_multitce(); 3074 } 3075 3076 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3077 if (spapr->vof) { 3078 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3079 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3080 } 3081 3082 spapr_watchdog_init(spapr); 3083 } 3084 3085 #define DEFAULT_KVM_TYPE "auto" 3086 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3087 { 3088 /* 3089 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3090 * accomodate the 'HV' and 'PV' formats that exists in the 3091 * wild. The 'auto' mode is being introduced already as 3092 * lower-case, thus we don't need to bother checking for 3093 * "AUTO". 3094 */ 3095 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3096 return 0; 3097 } 3098 3099 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3100 return 1; 3101 } 3102 3103 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3104 return 2; 3105 } 3106 3107 error_report("Unknown kvm-type specified '%s'", vm_type); 3108 exit(1); 3109 } 3110 3111 /* 3112 * Implementation of an interface to adjust firmware path 3113 * for the bootindex property handling. 3114 */ 3115 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3116 DeviceState *dev) 3117 { 3118 #define CAST(type, obj, name) \ 3119 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3120 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3121 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3122 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3123 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3124 3125 if (d && bus) { 3126 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3127 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3128 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3129 3130 if (spapr) { 3131 /* 3132 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3133 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3134 * 0x8000 | (target << 8) | (bus << 5) | lun 3135 * (see the "Logical unit addressing format" table in SAM5) 3136 */ 3137 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3138 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3139 (uint64_t)id << 48); 3140 } else if (virtio) { 3141 /* 3142 * We use SRP luns of the form 01000000 | (target << 8) | lun 3143 * in the top 32 bits of the 64-bit LUN 3144 * Note: the quote above is from SLOF and it is wrong, 3145 * the actual binding is: 3146 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3147 */ 3148 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3149 if (d->lun >= 256) { 3150 /* Use the LUN "flat space addressing method" */ 3151 id |= 0x4000; 3152 } 3153 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3154 (uint64_t)id << 32); 3155 } else if (usb) { 3156 /* 3157 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3158 * in the top 32 bits of the 64-bit LUN 3159 */ 3160 unsigned usb_port = atoi(usb->port->path); 3161 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3162 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3163 (uint64_t)id << 32); 3164 } 3165 } 3166 3167 /* 3168 * SLOF probes the USB devices, and if it recognizes that the device is a 3169 * storage device, it changes its name to "storage" instead of "usb-host", 3170 * and additionally adds a child node for the SCSI LUN, so the correct 3171 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3172 */ 3173 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3174 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3175 if (usb_device_is_scsi_storage(usbdev)) { 3176 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3177 } 3178 } 3179 3180 if (phb) { 3181 /* Replace "pci" with "pci@800000020000000" */ 3182 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3183 } 3184 3185 if (vsc) { 3186 /* Same logic as virtio above */ 3187 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3188 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3189 } 3190 3191 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3192 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3193 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3194 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3195 } 3196 3197 if (pcidev) { 3198 return spapr_pci_fw_dev_name(pcidev); 3199 } 3200 3201 return NULL; 3202 } 3203 3204 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3205 { 3206 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3207 3208 return g_strdup(spapr->kvm_type); 3209 } 3210 3211 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3212 { 3213 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3214 3215 g_free(spapr->kvm_type); 3216 spapr->kvm_type = g_strdup(value); 3217 } 3218 3219 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3220 { 3221 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3222 3223 return spapr->use_hotplug_event_source; 3224 } 3225 3226 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3227 Error **errp) 3228 { 3229 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3230 3231 spapr->use_hotplug_event_source = value; 3232 } 3233 3234 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3235 { 3236 return true; 3237 } 3238 3239 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3240 { 3241 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3242 3243 switch (spapr->resize_hpt) { 3244 case SPAPR_RESIZE_HPT_DEFAULT: 3245 return g_strdup("default"); 3246 case SPAPR_RESIZE_HPT_DISABLED: 3247 return g_strdup("disabled"); 3248 case SPAPR_RESIZE_HPT_ENABLED: 3249 return g_strdup("enabled"); 3250 case SPAPR_RESIZE_HPT_REQUIRED: 3251 return g_strdup("required"); 3252 } 3253 g_assert_not_reached(); 3254 } 3255 3256 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3257 { 3258 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3259 3260 if (strcmp(value, "default") == 0) { 3261 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3262 } else if (strcmp(value, "disabled") == 0) { 3263 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3264 } else if (strcmp(value, "enabled") == 0) { 3265 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3266 } else if (strcmp(value, "required") == 0) { 3267 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3268 } else { 3269 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3270 } 3271 } 3272 3273 static bool spapr_get_vof(Object *obj, Error **errp) 3274 { 3275 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3276 3277 return spapr->vof != NULL; 3278 } 3279 3280 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3281 { 3282 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3283 3284 if (spapr->vof) { 3285 vof_cleanup(spapr->vof); 3286 g_free(spapr->vof); 3287 spapr->vof = NULL; 3288 } 3289 if (!value) { 3290 return; 3291 } 3292 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3293 } 3294 3295 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3296 { 3297 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3298 3299 if (spapr->irq == &spapr_irq_xics_legacy) { 3300 return g_strdup("legacy"); 3301 } else if (spapr->irq == &spapr_irq_xics) { 3302 return g_strdup("xics"); 3303 } else if (spapr->irq == &spapr_irq_xive) { 3304 return g_strdup("xive"); 3305 } else if (spapr->irq == &spapr_irq_dual) { 3306 return g_strdup("dual"); 3307 } 3308 g_assert_not_reached(); 3309 } 3310 3311 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3312 { 3313 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3314 3315 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3316 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3317 return; 3318 } 3319 3320 /* The legacy IRQ backend can not be set */ 3321 if (strcmp(value, "xics") == 0) { 3322 spapr->irq = &spapr_irq_xics; 3323 } else if (strcmp(value, "xive") == 0) { 3324 spapr->irq = &spapr_irq_xive; 3325 } else if (strcmp(value, "dual") == 0) { 3326 spapr->irq = &spapr_irq_dual; 3327 } else { 3328 error_setg(errp, "Bad value for \"ic-mode\" property"); 3329 } 3330 } 3331 3332 static char *spapr_get_host_model(Object *obj, Error **errp) 3333 { 3334 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3335 3336 return g_strdup(spapr->host_model); 3337 } 3338 3339 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3340 { 3341 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3342 3343 g_free(spapr->host_model); 3344 spapr->host_model = g_strdup(value); 3345 } 3346 3347 static char *spapr_get_host_serial(Object *obj, Error **errp) 3348 { 3349 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3350 3351 return g_strdup(spapr->host_serial); 3352 } 3353 3354 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3355 { 3356 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3357 3358 g_free(spapr->host_serial); 3359 spapr->host_serial = g_strdup(value); 3360 } 3361 3362 static void spapr_instance_init(Object *obj) 3363 { 3364 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3365 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3366 MachineState *ms = MACHINE(spapr); 3367 MachineClass *mc = MACHINE_GET_CLASS(ms); 3368 3369 /* 3370 * NVDIMM support went live in 5.1 without considering that, in 3371 * other archs, the user needs to enable NVDIMM support with the 3372 * 'nvdimm' machine option and the default behavior is NVDIMM 3373 * support disabled. It is too late to roll back to the standard 3374 * behavior without breaking 5.1 guests. 3375 */ 3376 if (mc->nvdimm_supported) { 3377 ms->nvdimms_state->is_enabled = true; 3378 } 3379 3380 spapr->htab_fd = -1; 3381 spapr->use_hotplug_event_source = true; 3382 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3383 object_property_add_str(obj, "kvm-type", 3384 spapr_get_kvm_type, spapr_set_kvm_type); 3385 object_property_set_description(obj, "kvm-type", 3386 "Specifies the KVM virtualization mode (auto," 3387 " hv, pr). Defaults to 'auto'. This mode will use" 3388 " any available KVM module loaded in the host," 3389 " where kvm_hv takes precedence if both kvm_hv and" 3390 " kvm_pr are loaded."); 3391 object_property_add_bool(obj, "modern-hotplug-events", 3392 spapr_get_modern_hotplug_events, 3393 spapr_set_modern_hotplug_events); 3394 object_property_set_description(obj, "modern-hotplug-events", 3395 "Use dedicated hotplug event mechanism in" 3396 " place of standard EPOW events when possible" 3397 " (required for memory hot-unplug support)"); 3398 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3399 "Maximum permitted CPU compatibility mode"); 3400 3401 object_property_add_str(obj, "resize-hpt", 3402 spapr_get_resize_hpt, spapr_set_resize_hpt); 3403 object_property_set_description(obj, "resize-hpt", 3404 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3405 object_property_add_uint32_ptr(obj, "vsmt", 3406 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3407 object_property_set_description(obj, "vsmt", 3408 "Virtual SMT: KVM behaves as if this were" 3409 " the host's SMT mode"); 3410 3411 object_property_add_bool(obj, "vfio-no-msix-emulation", 3412 spapr_get_msix_emulation, NULL); 3413 3414 object_property_add_uint64_ptr(obj, "kernel-addr", 3415 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3416 object_property_set_description(obj, "kernel-addr", 3417 stringify(KERNEL_LOAD_ADDR) 3418 " for -kernel is the default"); 3419 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3420 3421 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3422 object_property_set_description(obj, "x-vof", 3423 "Enable Virtual Open Firmware (experimental)"); 3424 3425 /* The machine class defines the default interrupt controller mode */ 3426 spapr->irq = smc->irq; 3427 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3428 spapr_set_ic_mode); 3429 object_property_set_description(obj, "ic-mode", 3430 "Specifies the interrupt controller mode (xics, xive, dual)"); 3431 3432 object_property_add_str(obj, "host-model", 3433 spapr_get_host_model, spapr_set_host_model); 3434 object_property_set_description(obj, "host-model", 3435 "Host model to advertise in guest device tree"); 3436 object_property_add_str(obj, "host-serial", 3437 spapr_get_host_serial, spapr_set_host_serial); 3438 object_property_set_description(obj, "host-serial", 3439 "Host serial number to advertise in guest device tree"); 3440 } 3441 3442 static void spapr_machine_finalizefn(Object *obj) 3443 { 3444 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3445 3446 g_free(spapr->kvm_type); 3447 } 3448 3449 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3450 { 3451 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3452 PowerPCCPU *cpu = POWERPC_CPU(cs); 3453 CPUPPCState *env = &cpu->env; 3454 3455 cpu_synchronize_state(cs); 3456 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3457 if (spapr->fwnmi_system_reset_addr != -1) { 3458 uint64_t rtas_addr, addr; 3459 3460 /* get rtas addr from fdt */ 3461 rtas_addr = spapr_get_rtas_addr(); 3462 if (!rtas_addr) { 3463 qemu_system_guest_panicked(NULL); 3464 return; 3465 } 3466 3467 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3468 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3469 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3470 env->gpr[3] = addr; 3471 } 3472 ppc_cpu_do_system_reset(cs); 3473 if (spapr->fwnmi_system_reset_addr != -1) { 3474 env->nip = spapr->fwnmi_system_reset_addr; 3475 } 3476 } 3477 3478 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3479 { 3480 CPUState *cs; 3481 3482 CPU_FOREACH(cs) { 3483 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3484 } 3485 } 3486 3487 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3488 void *fdt, int *fdt_start_offset, Error **errp) 3489 { 3490 uint64_t addr; 3491 uint32_t node; 3492 3493 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3494 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3495 &error_abort); 3496 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3497 SPAPR_MEMORY_BLOCK_SIZE); 3498 return 0; 3499 } 3500 3501 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3502 bool dedicated_hp_event_source) 3503 { 3504 SpaprDrc *drc; 3505 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3506 int i; 3507 uint64_t addr = addr_start; 3508 bool hotplugged = spapr_drc_hotplugged(dev); 3509 3510 for (i = 0; i < nr_lmbs; i++) { 3511 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3512 addr / SPAPR_MEMORY_BLOCK_SIZE); 3513 g_assert(drc); 3514 3515 /* 3516 * memory_device_get_free_addr() provided a range of free addresses 3517 * that doesn't overlap with any existing mapping at pre-plug. The 3518 * corresponding LMB DRCs are thus assumed to be all attachable. 3519 */ 3520 spapr_drc_attach(drc, dev); 3521 if (!hotplugged) { 3522 spapr_drc_reset(drc); 3523 } 3524 addr += SPAPR_MEMORY_BLOCK_SIZE; 3525 } 3526 /* send hotplug notification to the 3527 * guest only in case of hotplugged memory 3528 */ 3529 if (hotplugged) { 3530 if (dedicated_hp_event_source) { 3531 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3532 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3533 g_assert(drc); 3534 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3535 nr_lmbs, 3536 spapr_drc_index(drc)); 3537 } else { 3538 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3539 nr_lmbs); 3540 } 3541 } 3542 } 3543 3544 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3545 { 3546 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3547 PCDIMMDevice *dimm = PC_DIMM(dev); 3548 uint64_t size, addr; 3549 int64_t slot; 3550 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3551 3552 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3553 3554 pc_dimm_plug(dimm, MACHINE(ms)); 3555 3556 if (!is_nvdimm) { 3557 addr = object_property_get_uint(OBJECT(dimm), 3558 PC_DIMM_ADDR_PROP, &error_abort); 3559 spapr_add_lmbs(dev, addr, size, 3560 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3561 } else { 3562 slot = object_property_get_int(OBJECT(dimm), 3563 PC_DIMM_SLOT_PROP, &error_abort); 3564 /* We should have valid slot number at this point */ 3565 g_assert(slot >= 0); 3566 spapr_add_nvdimm(dev, slot); 3567 } 3568 } 3569 3570 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3571 Error **errp) 3572 { 3573 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3574 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3575 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3576 PCDIMMDevice *dimm = PC_DIMM(dev); 3577 Error *local_err = NULL; 3578 uint64_t size; 3579 Object *memdev; 3580 hwaddr pagesize; 3581 3582 if (!smc->dr_lmb_enabled) { 3583 error_setg(errp, "Memory hotplug not supported for this machine"); 3584 return; 3585 } 3586 3587 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3588 if (local_err) { 3589 error_propagate(errp, local_err); 3590 return; 3591 } 3592 3593 if (is_nvdimm) { 3594 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3595 return; 3596 } 3597 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3598 error_setg(errp, "Hotplugged memory size must be a multiple of " 3599 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3600 return; 3601 } 3602 3603 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3604 &error_abort); 3605 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3606 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3607 return; 3608 } 3609 3610 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3611 } 3612 3613 struct SpaprDimmState { 3614 PCDIMMDevice *dimm; 3615 uint32_t nr_lmbs; 3616 QTAILQ_ENTRY(SpaprDimmState) next; 3617 }; 3618 3619 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3620 PCDIMMDevice *dimm) 3621 { 3622 SpaprDimmState *dimm_state = NULL; 3623 3624 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3625 if (dimm_state->dimm == dimm) { 3626 break; 3627 } 3628 } 3629 return dimm_state; 3630 } 3631 3632 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3633 uint32_t nr_lmbs, 3634 PCDIMMDevice *dimm) 3635 { 3636 SpaprDimmState *ds = NULL; 3637 3638 /* 3639 * If this request is for a DIMM whose removal had failed earlier 3640 * (due to guest's refusal to remove the LMBs), we would have this 3641 * dimm already in the pending_dimm_unplugs list. In that 3642 * case don't add again. 3643 */ 3644 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3645 if (!ds) { 3646 ds = g_new0(SpaprDimmState, 1); 3647 ds->nr_lmbs = nr_lmbs; 3648 ds->dimm = dimm; 3649 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3650 } 3651 return ds; 3652 } 3653 3654 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3655 SpaprDimmState *dimm_state) 3656 { 3657 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3658 g_free(dimm_state); 3659 } 3660 3661 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3662 PCDIMMDevice *dimm) 3663 { 3664 SpaprDrc *drc; 3665 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3666 &error_abort); 3667 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3668 uint32_t avail_lmbs = 0; 3669 uint64_t addr_start, addr; 3670 int i; 3671 3672 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3673 &error_abort); 3674 3675 addr = addr_start; 3676 for (i = 0; i < nr_lmbs; i++) { 3677 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3678 addr / SPAPR_MEMORY_BLOCK_SIZE); 3679 g_assert(drc); 3680 if (drc->dev) { 3681 avail_lmbs++; 3682 } 3683 addr += SPAPR_MEMORY_BLOCK_SIZE; 3684 } 3685 3686 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3687 } 3688 3689 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3690 { 3691 SpaprDimmState *ds; 3692 PCDIMMDevice *dimm; 3693 SpaprDrc *drc; 3694 uint32_t nr_lmbs; 3695 uint64_t size, addr_start, addr; 3696 g_autofree char *qapi_error = NULL; 3697 int i; 3698 3699 if (!dev) { 3700 return; 3701 } 3702 3703 dimm = PC_DIMM(dev); 3704 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3705 3706 /* 3707 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3708 * unplug state, but one of its DRC is marked as unplug_requested. 3709 * This is bad and weird enough to g_assert() out. 3710 */ 3711 g_assert(ds); 3712 3713 spapr_pending_dimm_unplugs_remove(spapr, ds); 3714 3715 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3716 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3717 3718 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3719 &error_abort); 3720 3721 addr = addr_start; 3722 for (i = 0; i < nr_lmbs; i++) { 3723 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3724 addr / SPAPR_MEMORY_BLOCK_SIZE); 3725 g_assert(drc); 3726 3727 drc->unplug_requested = false; 3728 addr += SPAPR_MEMORY_BLOCK_SIZE; 3729 } 3730 3731 /* 3732 * Tell QAPI that something happened and the memory 3733 * hotunplug wasn't successful. Keep sending 3734 * MEM_UNPLUG_ERROR even while sending 3735 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3736 * MEM_UNPLUG_ERROR is due. 3737 */ 3738 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3739 "for device %s", dev->id); 3740 3741 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3742 3743 qapi_event_send_device_unplug_guest_error(dev->id, 3744 dev->canonical_path); 3745 } 3746 3747 /* Callback to be called during DRC release. */ 3748 void spapr_lmb_release(DeviceState *dev) 3749 { 3750 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3751 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3752 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3753 3754 /* This information will get lost if a migration occurs 3755 * during the unplug process. In this case recover it. */ 3756 if (ds == NULL) { 3757 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3758 g_assert(ds); 3759 /* The DRC being examined by the caller at least must be counted */ 3760 g_assert(ds->nr_lmbs); 3761 } 3762 3763 if (--ds->nr_lmbs) { 3764 return; 3765 } 3766 3767 /* 3768 * Now that all the LMBs have been removed by the guest, call the 3769 * unplug handler chain. This can never fail. 3770 */ 3771 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3772 object_unparent(OBJECT(dev)); 3773 } 3774 3775 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3776 { 3777 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3778 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3779 3780 /* We really shouldn't get this far without anything to unplug */ 3781 g_assert(ds); 3782 3783 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3784 qdev_unrealize(dev); 3785 spapr_pending_dimm_unplugs_remove(spapr, ds); 3786 } 3787 3788 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3789 DeviceState *dev, Error **errp) 3790 { 3791 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3792 PCDIMMDevice *dimm = PC_DIMM(dev); 3793 uint32_t nr_lmbs; 3794 uint64_t size, addr_start, addr; 3795 int i; 3796 SpaprDrc *drc; 3797 3798 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3799 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3800 return; 3801 } 3802 3803 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3804 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3805 3806 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3807 &error_abort); 3808 3809 /* 3810 * An existing pending dimm state for this DIMM means that there is an 3811 * unplug operation in progress, waiting for the spapr_lmb_release 3812 * callback to complete the job (BQL can't cover that far). In this case, 3813 * bail out to avoid detaching DRCs that were already released. 3814 */ 3815 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3816 error_setg(errp, "Memory unplug already in progress for device %s", 3817 dev->id); 3818 return; 3819 } 3820 3821 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3822 3823 addr = addr_start; 3824 for (i = 0; i < nr_lmbs; i++) { 3825 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3826 addr / SPAPR_MEMORY_BLOCK_SIZE); 3827 g_assert(drc); 3828 3829 spapr_drc_unplug_request(drc); 3830 addr += SPAPR_MEMORY_BLOCK_SIZE; 3831 } 3832 3833 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3834 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3835 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3836 nr_lmbs, spapr_drc_index(drc)); 3837 } 3838 3839 /* Callback to be called during DRC release. */ 3840 void spapr_core_release(DeviceState *dev) 3841 { 3842 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3843 3844 /* Call the unplug handler chain. This can never fail. */ 3845 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3846 object_unparent(OBJECT(dev)); 3847 } 3848 3849 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3850 { 3851 MachineState *ms = MACHINE(hotplug_dev); 3852 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3853 CPUCore *cc = CPU_CORE(dev); 3854 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3855 3856 if (smc->pre_2_10_has_unused_icps) { 3857 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3858 int i; 3859 3860 for (i = 0; i < cc->nr_threads; i++) { 3861 CPUState *cs = CPU(sc->threads[i]); 3862 3863 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3864 } 3865 } 3866 3867 assert(core_slot); 3868 core_slot->cpu = NULL; 3869 qdev_unrealize(dev); 3870 } 3871 3872 static 3873 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3874 Error **errp) 3875 { 3876 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3877 int index; 3878 SpaprDrc *drc; 3879 CPUCore *cc = CPU_CORE(dev); 3880 3881 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3882 error_setg(errp, "Unable to find CPU core with core-id: %d", 3883 cc->core_id); 3884 return; 3885 } 3886 if (index == 0) { 3887 error_setg(errp, "Boot CPU core may not be unplugged"); 3888 return; 3889 } 3890 3891 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3892 spapr_vcpu_id(spapr, cc->core_id)); 3893 g_assert(drc); 3894 3895 if (!spapr_drc_unplug_requested(drc)) { 3896 spapr_drc_unplug_request(drc); 3897 } 3898 3899 /* 3900 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3901 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3902 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3903 * attempt (e.g. the kernel will refuse to remove the last online 3904 * CPU), we will never attempt it again because unplug_requested 3905 * will still be 'true' in that case. 3906 */ 3907 spapr_hotplug_req_remove_by_index(drc); 3908 } 3909 3910 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3911 void *fdt, int *fdt_start_offset, Error **errp) 3912 { 3913 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3914 CPUState *cs = CPU(core->threads[0]); 3915 PowerPCCPU *cpu = POWERPC_CPU(cs); 3916 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3917 int id = spapr_get_vcpu_id(cpu); 3918 g_autofree char *nodename = NULL; 3919 int offset; 3920 3921 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3922 offset = fdt_add_subnode(fdt, 0, nodename); 3923 3924 spapr_dt_cpu(cs, fdt, offset, spapr); 3925 3926 /* 3927 * spapr_dt_cpu() does not fill the 'name' property in the 3928 * CPU node. The function is called during boot process, before 3929 * and after CAS, and overwriting the 'name' property written 3930 * by SLOF is not allowed. 3931 * 3932 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3933 * CPUs more compatible with the coldplugged ones, which have 3934 * the 'name' property. Linux Kernel also relies on this 3935 * property to identify CPU nodes. 3936 */ 3937 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3938 3939 *fdt_start_offset = offset; 3940 return 0; 3941 } 3942 3943 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3944 { 3945 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3946 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3947 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3948 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3949 CPUCore *cc = CPU_CORE(dev); 3950 CPUState *cs; 3951 SpaprDrc *drc; 3952 CPUArchId *core_slot; 3953 int index; 3954 bool hotplugged = spapr_drc_hotplugged(dev); 3955 int i; 3956 3957 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3958 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3959 3960 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3961 spapr_vcpu_id(spapr, cc->core_id)); 3962 3963 g_assert(drc || !mc->has_hotpluggable_cpus); 3964 3965 if (drc) { 3966 /* 3967 * spapr_core_pre_plug() already buys us this is a brand new 3968 * core being plugged into a free slot. Nothing should already 3969 * be attached to the corresponding DRC. 3970 */ 3971 spapr_drc_attach(drc, dev); 3972 3973 if (hotplugged) { 3974 /* 3975 * Send hotplug notification interrupt to the guest only 3976 * in case of hotplugged CPUs. 3977 */ 3978 spapr_hotplug_req_add_by_index(drc); 3979 } else { 3980 spapr_drc_reset(drc); 3981 } 3982 } 3983 3984 core_slot->cpu = OBJECT(dev); 3985 3986 /* 3987 * Set compatibility mode to match the boot CPU, which was either set 3988 * by the machine reset code or by CAS. This really shouldn't fail at 3989 * this point. 3990 */ 3991 if (hotplugged) { 3992 for (i = 0; i < cc->nr_threads; i++) { 3993 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3994 &error_abort); 3995 } 3996 } 3997 3998 if (smc->pre_2_10_has_unused_icps) { 3999 for (i = 0; i < cc->nr_threads; i++) { 4000 cs = CPU(core->threads[i]); 4001 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4002 } 4003 } 4004 } 4005 4006 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4007 Error **errp) 4008 { 4009 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4010 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4011 CPUCore *cc = CPU_CORE(dev); 4012 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4013 const char *type = object_get_typename(OBJECT(dev)); 4014 CPUArchId *core_slot; 4015 int index; 4016 unsigned int smp_threads = machine->smp.threads; 4017 4018 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4019 error_setg(errp, "CPU hotplug not supported for this machine"); 4020 return; 4021 } 4022 4023 if (strcmp(base_core_type, type)) { 4024 error_setg(errp, "CPU core type should be %s", base_core_type); 4025 return; 4026 } 4027 4028 if (cc->core_id % smp_threads) { 4029 error_setg(errp, "invalid core id %d", cc->core_id); 4030 return; 4031 } 4032 4033 /* 4034 * In general we should have homogeneous threads-per-core, but old 4035 * (pre hotplug support) machine types allow the last core to have 4036 * reduced threads as a compatibility hack for when we allowed 4037 * total vcpus not a multiple of threads-per-core. 4038 */ 4039 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4040 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4041 smp_threads); 4042 return; 4043 } 4044 4045 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4046 if (!core_slot) { 4047 error_setg(errp, "core id %d out of range", cc->core_id); 4048 return; 4049 } 4050 4051 if (core_slot->cpu) { 4052 error_setg(errp, "core %d already populated", cc->core_id); 4053 return; 4054 } 4055 4056 numa_cpu_pre_plug(core_slot, dev, errp); 4057 } 4058 4059 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4060 void *fdt, int *fdt_start_offset, Error **errp) 4061 { 4062 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4063 int intc_phandle; 4064 4065 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4066 if (intc_phandle <= 0) { 4067 return -1; 4068 } 4069 4070 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4071 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4072 return -1; 4073 } 4074 4075 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4076 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4077 4078 return 0; 4079 } 4080 4081 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4082 Error **errp) 4083 { 4084 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4085 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4086 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4087 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4088 SpaprDrc *drc; 4089 4090 if (dev->hotplugged && !smc->dr_phb_enabled) { 4091 error_setg(errp, "PHB hotplug not supported for this machine"); 4092 return false; 4093 } 4094 4095 if (sphb->index == (uint32_t)-1) { 4096 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4097 return false; 4098 } 4099 4100 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4101 if (drc && drc->dev) { 4102 error_setg(errp, "PHB %d already attached", sphb->index); 4103 return false; 4104 } 4105 4106 /* 4107 * This will check that sphb->index doesn't exceed the maximum number of 4108 * PHBs for the current machine type. 4109 */ 4110 return 4111 smc->phb_placement(spapr, sphb->index, 4112 &sphb->buid, &sphb->io_win_addr, 4113 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4114 windows_supported, sphb->dma_liobn, 4115 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 4116 errp); 4117 } 4118 4119 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4120 { 4121 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4122 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4123 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4124 SpaprDrc *drc; 4125 bool hotplugged = spapr_drc_hotplugged(dev); 4126 4127 if (!smc->dr_phb_enabled) { 4128 return; 4129 } 4130 4131 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4132 /* hotplug hooks should check it's enabled before getting this far */ 4133 assert(drc); 4134 4135 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4136 spapr_drc_attach(drc, dev); 4137 4138 if (hotplugged) { 4139 spapr_hotplug_req_add_by_index(drc); 4140 } else { 4141 spapr_drc_reset(drc); 4142 } 4143 } 4144 4145 void spapr_phb_release(DeviceState *dev) 4146 { 4147 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4148 4149 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4150 object_unparent(OBJECT(dev)); 4151 } 4152 4153 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4154 { 4155 qdev_unrealize(dev); 4156 } 4157 4158 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4159 DeviceState *dev, Error **errp) 4160 { 4161 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4162 SpaprDrc *drc; 4163 4164 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4165 assert(drc); 4166 4167 if (!spapr_drc_unplug_requested(drc)) { 4168 spapr_drc_unplug_request(drc); 4169 spapr_hotplug_req_remove_by_index(drc); 4170 } else { 4171 error_setg(errp, 4172 "PCI Host Bridge unplug already in progress for device %s", 4173 dev->id); 4174 } 4175 } 4176 4177 static 4178 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4179 Error **errp) 4180 { 4181 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4182 4183 if (spapr->tpm_proxy != NULL) { 4184 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4185 return false; 4186 } 4187 4188 return true; 4189 } 4190 4191 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4192 { 4193 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4194 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4195 4196 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4197 g_assert(spapr->tpm_proxy == NULL); 4198 4199 spapr->tpm_proxy = tpm_proxy; 4200 } 4201 4202 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4203 { 4204 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4205 4206 qdev_unrealize(dev); 4207 object_unparent(OBJECT(dev)); 4208 spapr->tpm_proxy = NULL; 4209 } 4210 4211 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4212 DeviceState *dev, Error **errp) 4213 { 4214 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4215 spapr_memory_plug(hotplug_dev, dev); 4216 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4217 spapr_core_plug(hotplug_dev, dev); 4218 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4219 spapr_phb_plug(hotplug_dev, dev); 4220 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4221 spapr_tpm_proxy_plug(hotplug_dev, dev); 4222 } 4223 } 4224 4225 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4226 DeviceState *dev, Error **errp) 4227 { 4228 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4229 spapr_memory_unplug(hotplug_dev, dev); 4230 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4231 spapr_core_unplug(hotplug_dev, dev); 4232 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4233 spapr_phb_unplug(hotplug_dev, dev); 4234 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4235 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4236 } 4237 } 4238 4239 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4240 { 4241 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4242 /* 4243 * CAS will process all pending unplug requests. 4244 * 4245 * HACK: a guest could theoretically have cleared all bits in OV5, 4246 * but none of the guests we care for do. 4247 */ 4248 spapr_ovec_empty(spapr->ov5_cas); 4249 } 4250 4251 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4252 DeviceState *dev, Error **errp) 4253 { 4254 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4255 MachineClass *mc = MACHINE_GET_CLASS(sms); 4256 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4257 4258 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4259 if (spapr_memory_hot_unplug_supported(sms)) { 4260 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4261 } else { 4262 error_setg(errp, "Memory hot unplug not supported for this guest"); 4263 } 4264 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4265 if (!mc->has_hotpluggable_cpus) { 4266 error_setg(errp, "CPU hot unplug not supported on this machine"); 4267 return; 4268 } 4269 spapr_core_unplug_request(hotplug_dev, dev, errp); 4270 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4271 if (!smc->dr_phb_enabled) { 4272 error_setg(errp, "PHB hot unplug not supported on this machine"); 4273 return; 4274 } 4275 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4276 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4277 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4278 } 4279 } 4280 4281 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4282 DeviceState *dev, Error **errp) 4283 { 4284 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4285 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4286 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4287 spapr_core_pre_plug(hotplug_dev, dev, errp); 4288 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4289 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4290 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4291 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4292 } 4293 } 4294 4295 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4296 DeviceState *dev) 4297 { 4298 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4299 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4300 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4301 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4302 return HOTPLUG_HANDLER(machine); 4303 } 4304 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4305 PCIDevice *pcidev = PCI_DEVICE(dev); 4306 PCIBus *root = pci_device_root_bus(pcidev); 4307 SpaprPhbState *phb = 4308 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4309 TYPE_SPAPR_PCI_HOST_BRIDGE); 4310 4311 if (phb) { 4312 return HOTPLUG_HANDLER(phb); 4313 } 4314 } 4315 return NULL; 4316 } 4317 4318 static CpuInstanceProperties 4319 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4320 { 4321 CPUArchId *core_slot; 4322 MachineClass *mc = MACHINE_GET_CLASS(machine); 4323 4324 /* make sure possible_cpu are intialized */ 4325 mc->possible_cpu_arch_ids(machine); 4326 /* get CPU core slot containing thread that matches cpu_index */ 4327 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4328 assert(core_slot); 4329 return core_slot->props; 4330 } 4331 4332 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4333 { 4334 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4335 } 4336 4337 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4338 { 4339 int i; 4340 unsigned int smp_threads = machine->smp.threads; 4341 unsigned int smp_cpus = machine->smp.cpus; 4342 const char *core_type; 4343 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4344 MachineClass *mc = MACHINE_GET_CLASS(machine); 4345 4346 if (!mc->has_hotpluggable_cpus) { 4347 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4348 } 4349 if (machine->possible_cpus) { 4350 assert(machine->possible_cpus->len == spapr_max_cores); 4351 return machine->possible_cpus; 4352 } 4353 4354 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4355 if (!core_type) { 4356 error_report("Unable to find sPAPR CPU Core definition"); 4357 exit(1); 4358 } 4359 4360 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4361 sizeof(CPUArchId) * spapr_max_cores); 4362 machine->possible_cpus->len = spapr_max_cores; 4363 for (i = 0; i < machine->possible_cpus->len; i++) { 4364 int core_id = i * smp_threads; 4365 4366 machine->possible_cpus->cpus[i].type = core_type; 4367 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4368 machine->possible_cpus->cpus[i].arch_id = core_id; 4369 machine->possible_cpus->cpus[i].props.has_core_id = true; 4370 machine->possible_cpus->cpus[i].props.core_id = core_id; 4371 } 4372 return machine->possible_cpus; 4373 } 4374 4375 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4376 uint64_t *buid, hwaddr *pio, 4377 hwaddr *mmio32, hwaddr *mmio64, 4378 unsigned n_dma, uint32_t *liobns, 4379 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4380 { 4381 /* 4382 * New-style PHB window placement. 4383 * 4384 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4385 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4386 * windows. 4387 * 4388 * Some guest kernels can't work with MMIO windows above 1<<46 4389 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4390 * 4391 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4392 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4393 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4394 * 1TiB 64-bit MMIO windows for each PHB. 4395 */ 4396 const uint64_t base_buid = 0x800000020000000ULL; 4397 int i; 4398 4399 /* Sanity check natural alignments */ 4400 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4401 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4402 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4403 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4404 /* Sanity check bounds */ 4405 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4406 SPAPR_PCI_MEM32_WIN_SIZE); 4407 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4408 SPAPR_PCI_MEM64_WIN_SIZE); 4409 4410 if (index >= SPAPR_MAX_PHBS) { 4411 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4412 SPAPR_MAX_PHBS - 1); 4413 return false; 4414 } 4415 4416 *buid = base_buid + index; 4417 for (i = 0; i < n_dma; ++i) { 4418 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4419 } 4420 4421 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4422 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4423 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4424 4425 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4426 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4427 return true; 4428 } 4429 4430 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4431 { 4432 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4433 4434 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4435 } 4436 4437 static void spapr_ics_resend(XICSFabric *dev) 4438 { 4439 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4440 4441 ics_resend(spapr->ics); 4442 } 4443 4444 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4445 { 4446 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4447 4448 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4449 } 4450 4451 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4452 Monitor *mon) 4453 { 4454 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4455 4456 spapr_irq_print_info(spapr, mon); 4457 monitor_printf(mon, "irqchip: %s\n", 4458 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4459 } 4460 4461 /* 4462 * This is a XIVE only operation 4463 */ 4464 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4465 uint8_t nvt_blk, uint32_t nvt_idx, 4466 bool cam_ignore, uint8_t priority, 4467 uint32_t logic_serv, XiveTCTXMatch *match) 4468 { 4469 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4470 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4471 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4472 int count; 4473 4474 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4475 priority, logic_serv, match); 4476 if (count < 0) { 4477 return count; 4478 } 4479 4480 /* 4481 * When we implement the save and restore of the thread interrupt 4482 * contexts in the enter/exit CPU handlers of the machine and the 4483 * escalations in QEMU, we should be able to handle non dispatched 4484 * vCPUs. 4485 * 4486 * Until this is done, the sPAPR machine should find at least one 4487 * matching context always. 4488 */ 4489 if (count == 0) { 4490 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4491 nvt_blk, nvt_idx); 4492 } 4493 4494 return count; 4495 } 4496 4497 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4498 { 4499 return cpu->vcpu_id; 4500 } 4501 4502 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4503 { 4504 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4505 MachineState *ms = MACHINE(spapr); 4506 int vcpu_id; 4507 4508 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4509 4510 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4511 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4512 error_append_hint(errp, "Adjust the number of cpus to %d " 4513 "or try to raise the number of threads per core\n", 4514 vcpu_id * ms->smp.threads / spapr->vsmt); 4515 return false; 4516 } 4517 4518 cpu->vcpu_id = vcpu_id; 4519 return true; 4520 } 4521 4522 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4523 { 4524 CPUState *cs; 4525 4526 CPU_FOREACH(cs) { 4527 PowerPCCPU *cpu = POWERPC_CPU(cs); 4528 4529 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4530 return cpu; 4531 } 4532 } 4533 4534 return NULL; 4535 } 4536 4537 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4538 { 4539 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4540 4541 return spapr_cpu->in_nested; 4542 } 4543 4544 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4545 { 4546 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4547 4548 /* These are only called by TCG, KVM maintains dispatch state */ 4549 4550 spapr_cpu->prod = false; 4551 if (spapr_cpu->vpa_addr) { 4552 CPUState *cs = CPU(cpu); 4553 uint32_t dispatch; 4554 4555 dispatch = ldl_be_phys(cs->as, 4556 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4557 dispatch++; 4558 if ((dispatch & 1) != 0) { 4559 qemu_log_mask(LOG_GUEST_ERROR, 4560 "VPA: incorrect dispatch counter value for " 4561 "dispatched partition %u, correcting.\n", dispatch); 4562 dispatch++; 4563 } 4564 stl_be_phys(cs->as, 4565 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4566 } 4567 } 4568 4569 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4570 { 4571 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4572 4573 if (spapr_cpu->vpa_addr) { 4574 CPUState *cs = CPU(cpu); 4575 uint32_t dispatch; 4576 4577 dispatch = ldl_be_phys(cs->as, 4578 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4579 dispatch++; 4580 if ((dispatch & 1) != 1) { 4581 qemu_log_mask(LOG_GUEST_ERROR, 4582 "VPA: incorrect dispatch counter value for " 4583 "preempted partition %u, correcting.\n", dispatch); 4584 dispatch++; 4585 } 4586 stl_be_phys(cs->as, 4587 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4588 } 4589 } 4590 4591 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4592 { 4593 MachineClass *mc = MACHINE_CLASS(oc); 4594 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4595 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4596 NMIClass *nc = NMI_CLASS(oc); 4597 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4598 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4599 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4600 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4601 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4602 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4603 4604 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4605 mc->ignore_boot_device_suffixes = true; 4606 4607 /* 4608 * We set up the default / latest behaviour here. The class_init 4609 * functions for the specific versioned machine types can override 4610 * these details for backwards compatibility 4611 */ 4612 mc->init = spapr_machine_init; 4613 mc->reset = spapr_machine_reset; 4614 mc->block_default_type = IF_SCSI; 4615 4616 /* 4617 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values 4618 * should be limited by the host capability instead of hardcoded. 4619 * max_cpus for KVM guests will be checked in kvm_init(), and TCG 4620 * guests are welcome to have as many CPUs as the host are capable 4621 * of emulate. 4622 */ 4623 mc->max_cpus = INT32_MAX; 4624 4625 mc->no_parallel = 1; 4626 mc->default_boot_order = ""; 4627 mc->default_ram_size = 512 * MiB; 4628 mc->default_ram_id = "ppc_spapr.ram"; 4629 mc->default_display = "std"; 4630 mc->kvm_type = spapr_kvm_type; 4631 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4632 mc->pci_allow_0_address = true; 4633 assert(!mc->get_hotplug_handler); 4634 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4635 hc->pre_plug = spapr_machine_device_pre_plug; 4636 hc->plug = spapr_machine_device_plug; 4637 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4638 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4639 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4640 hc->unplug_request = spapr_machine_device_unplug_request; 4641 hc->unplug = spapr_machine_device_unplug; 4642 4643 smc->dr_lmb_enabled = true; 4644 smc->update_dt_enabled = true; 4645 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); 4646 mc->has_hotpluggable_cpus = true; 4647 mc->nvdimm_supported = true; 4648 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4649 fwc->get_dev_path = spapr_get_fw_dev_path; 4650 nc->nmi_monitor_handler = spapr_nmi; 4651 smc->phb_placement = spapr_phb_placement; 4652 vhc->cpu_in_nested = spapr_cpu_in_nested; 4653 vhc->deliver_hv_excp = spapr_exit_nested; 4654 vhc->hypercall = emulate_spapr_hypercall; 4655 vhc->hpt_mask = spapr_hpt_mask; 4656 vhc->map_hptes = spapr_map_hptes; 4657 vhc->unmap_hptes = spapr_unmap_hptes; 4658 vhc->hpte_set_c = spapr_hpte_set_c; 4659 vhc->hpte_set_r = spapr_hpte_set_r; 4660 vhc->get_pate = spapr_get_pate; 4661 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4662 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4663 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4664 xic->ics_get = spapr_ics_get; 4665 xic->ics_resend = spapr_ics_resend; 4666 xic->icp_get = spapr_icp_get; 4667 ispc->print_info = spapr_pic_print_info; 4668 /* Force NUMA node memory size to be a multiple of 4669 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4670 * in which LMBs are represented and hot-added 4671 */ 4672 mc->numa_mem_align_shift = 28; 4673 mc->auto_enable_numa = true; 4674 4675 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4676 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4677 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4678 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4679 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4680 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4681 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4682 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4683 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4684 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4685 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4686 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4687 4688 /* 4689 * This cap specifies whether the AIL 3 mode for 4690 * H_SET_RESOURCE is supported. The default is modified 4691 * by default_caps_with_cpu(). 4692 */ 4693 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4694 spapr_caps_add_properties(smc); 4695 smc->irq = &spapr_irq_dual; 4696 smc->dr_phb_enabled = true; 4697 smc->linux_pci_probe = true; 4698 smc->smp_threads_vsmt = true; 4699 smc->nr_xirqs = SPAPR_NR_XIRQS; 4700 xfc->match_nvt = spapr_match_nvt; 4701 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4702 vmc->quiesce = spapr_vof_quiesce; 4703 vmc->setprop = spapr_vof_setprop; 4704 } 4705 4706 static const TypeInfo spapr_machine_info = { 4707 .name = TYPE_SPAPR_MACHINE, 4708 .parent = TYPE_MACHINE, 4709 .abstract = true, 4710 .instance_size = sizeof(SpaprMachineState), 4711 .instance_init = spapr_instance_init, 4712 .instance_finalize = spapr_machine_finalizefn, 4713 .class_size = sizeof(SpaprMachineClass), 4714 .class_init = spapr_machine_class_init, 4715 .interfaces = (InterfaceInfo[]) { 4716 { TYPE_FW_PATH_PROVIDER }, 4717 { TYPE_NMI }, 4718 { TYPE_HOTPLUG_HANDLER }, 4719 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4720 { TYPE_XICS_FABRIC }, 4721 { TYPE_INTERRUPT_STATS_PROVIDER }, 4722 { TYPE_XIVE_FABRIC }, 4723 { TYPE_VOF_MACHINE_IF }, 4724 { } 4725 }, 4726 }; 4727 4728 static void spapr_machine_latest_class_options(MachineClass *mc) 4729 { 4730 mc->alias = "pseries"; 4731 mc->is_default = true; 4732 } 4733 4734 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4735 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4736 void *data) \ 4737 { \ 4738 MachineClass *mc = MACHINE_CLASS(oc); \ 4739 spapr_machine_##suffix##_class_options(mc); \ 4740 if (latest) { \ 4741 spapr_machine_latest_class_options(mc); \ 4742 } \ 4743 } \ 4744 static const TypeInfo spapr_machine_##suffix##_info = { \ 4745 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4746 .parent = TYPE_SPAPR_MACHINE, \ 4747 .class_init = spapr_machine_##suffix##_class_init, \ 4748 }; \ 4749 static void spapr_machine_register_##suffix(void) \ 4750 { \ 4751 type_register(&spapr_machine_##suffix##_info); \ 4752 } \ 4753 type_init(spapr_machine_register_##suffix) 4754 4755 /* 4756 * pseries-8.1 4757 */ 4758 static void spapr_machine_8_1_class_options(MachineClass *mc) 4759 { 4760 /* Defaults for the latest behaviour inherited from the base class */ 4761 } 4762 4763 DEFINE_SPAPR_MACHINE(8_1, "8.1", true); 4764 4765 /* 4766 * pseries-8.0 4767 */ 4768 static void spapr_machine_8_0_class_options(MachineClass *mc) 4769 { 4770 spapr_machine_8_1_class_options(mc); 4771 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4772 } 4773 4774 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4775 4776 /* 4777 * pseries-7.2 4778 */ 4779 static void spapr_machine_7_2_class_options(MachineClass *mc) 4780 { 4781 spapr_machine_8_0_class_options(mc); 4782 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4783 } 4784 4785 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4786 4787 /* 4788 * pseries-7.1 4789 */ 4790 static void spapr_machine_7_1_class_options(MachineClass *mc) 4791 { 4792 spapr_machine_7_2_class_options(mc); 4793 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4794 } 4795 4796 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4797 4798 /* 4799 * pseries-7.0 4800 */ 4801 static void spapr_machine_7_0_class_options(MachineClass *mc) 4802 { 4803 spapr_machine_7_1_class_options(mc); 4804 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4805 } 4806 4807 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4808 4809 /* 4810 * pseries-6.2 4811 */ 4812 static void spapr_machine_6_2_class_options(MachineClass *mc) 4813 { 4814 spapr_machine_7_0_class_options(mc); 4815 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4816 } 4817 4818 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4819 4820 /* 4821 * pseries-6.1 4822 */ 4823 static void spapr_machine_6_1_class_options(MachineClass *mc) 4824 { 4825 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4826 4827 spapr_machine_6_2_class_options(mc); 4828 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4829 smc->pre_6_2_numa_affinity = true; 4830 mc->smp_props.prefer_sockets = true; 4831 } 4832 4833 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4834 4835 /* 4836 * pseries-6.0 4837 */ 4838 static void spapr_machine_6_0_class_options(MachineClass *mc) 4839 { 4840 spapr_machine_6_1_class_options(mc); 4841 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4842 } 4843 4844 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4845 4846 /* 4847 * pseries-5.2 4848 */ 4849 static void spapr_machine_5_2_class_options(MachineClass *mc) 4850 { 4851 spapr_machine_6_0_class_options(mc); 4852 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4853 } 4854 4855 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4856 4857 /* 4858 * pseries-5.1 4859 */ 4860 static void spapr_machine_5_1_class_options(MachineClass *mc) 4861 { 4862 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4863 4864 spapr_machine_5_2_class_options(mc); 4865 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4866 smc->pre_5_2_numa_associativity = true; 4867 } 4868 4869 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4870 4871 /* 4872 * pseries-5.0 4873 */ 4874 static void spapr_machine_5_0_class_options(MachineClass *mc) 4875 { 4876 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4877 static GlobalProperty compat[] = { 4878 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4879 }; 4880 4881 spapr_machine_5_1_class_options(mc); 4882 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4883 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4884 mc->numa_mem_supported = true; 4885 smc->pre_5_1_assoc_refpoints = true; 4886 } 4887 4888 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4889 4890 /* 4891 * pseries-4.2 4892 */ 4893 static void spapr_machine_4_2_class_options(MachineClass *mc) 4894 { 4895 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4896 4897 spapr_machine_5_0_class_options(mc); 4898 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4899 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4900 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4901 smc->rma_limit = 16 * GiB; 4902 mc->nvdimm_supported = false; 4903 } 4904 4905 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4906 4907 /* 4908 * pseries-4.1 4909 */ 4910 static void spapr_machine_4_1_class_options(MachineClass *mc) 4911 { 4912 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4913 static GlobalProperty compat[] = { 4914 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4915 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4916 }; 4917 4918 spapr_machine_4_2_class_options(mc); 4919 smc->linux_pci_probe = false; 4920 smc->smp_threads_vsmt = false; 4921 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4922 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4923 } 4924 4925 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4926 4927 /* 4928 * pseries-4.0 4929 */ 4930 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4931 uint64_t *buid, hwaddr *pio, 4932 hwaddr *mmio32, hwaddr *mmio64, 4933 unsigned n_dma, uint32_t *liobns, 4934 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4935 { 4936 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4937 liobns, nv2gpa, nv2atsd, errp)) { 4938 return false; 4939 } 4940 4941 *nv2gpa = 0; 4942 *nv2atsd = 0; 4943 return true; 4944 } 4945 static void spapr_machine_4_0_class_options(MachineClass *mc) 4946 { 4947 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4948 4949 spapr_machine_4_1_class_options(mc); 4950 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4951 smc->phb_placement = phb_placement_4_0; 4952 smc->irq = &spapr_irq_xics; 4953 smc->pre_4_1_migration = true; 4954 } 4955 4956 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4957 4958 /* 4959 * pseries-3.1 4960 */ 4961 static void spapr_machine_3_1_class_options(MachineClass *mc) 4962 { 4963 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4964 4965 spapr_machine_4_0_class_options(mc); 4966 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4967 4968 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4969 smc->update_dt_enabled = false; 4970 smc->dr_phb_enabled = false; 4971 smc->broken_host_serial_model = true; 4972 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4973 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4974 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4975 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4976 } 4977 4978 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4979 4980 /* 4981 * pseries-3.0 4982 */ 4983 4984 static void spapr_machine_3_0_class_options(MachineClass *mc) 4985 { 4986 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4987 4988 spapr_machine_3_1_class_options(mc); 4989 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4990 4991 smc->legacy_irq_allocation = true; 4992 smc->nr_xirqs = 0x400; 4993 smc->irq = &spapr_irq_xics_legacy; 4994 } 4995 4996 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4997 4998 /* 4999 * pseries-2.12 5000 */ 5001 static void spapr_machine_2_12_class_options(MachineClass *mc) 5002 { 5003 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5004 static GlobalProperty compat[] = { 5005 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5006 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5007 }; 5008 5009 spapr_machine_3_0_class_options(mc); 5010 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5011 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5012 5013 /* We depend on kvm_enabled() to choose a default value for the 5014 * hpt-max-page-size capability. Of course we can't do it here 5015 * because this is too early and the HW accelerator isn't initialzed 5016 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5017 */ 5018 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5019 } 5020 5021 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5022 5023 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5024 { 5025 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5026 5027 spapr_machine_2_12_class_options(mc); 5028 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5029 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5030 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5031 } 5032 5033 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5034 5035 /* 5036 * pseries-2.11 5037 */ 5038 5039 static void spapr_machine_2_11_class_options(MachineClass *mc) 5040 { 5041 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5042 5043 spapr_machine_2_12_class_options(mc); 5044 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5045 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5046 } 5047 5048 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5049 5050 /* 5051 * pseries-2.10 5052 */ 5053 5054 static void spapr_machine_2_10_class_options(MachineClass *mc) 5055 { 5056 spapr_machine_2_11_class_options(mc); 5057 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5058 } 5059 5060 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5061 5062 /* 5063 * pseries-2.9 5064 */ 5065 5066 static void spapr_machine_2_9_class_options(MachineClass *mc) 5067 { 5068 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5069 static GlobalProperty compat[] = { 5070 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5071 }; 5072 5073 spapr_machine_2_10_class_options(mc); 5074 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5075 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5076 smc->pre_2_10_has_unused_icps = true; 5077 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5078 } 5079 5080 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5081 5082 /* 5083 * pseries-2.8 5084 */ 5085 5086 static void spapr_machine_2_8_class_options(MachineClass *mc) 5087 { 5088 static GlobalProperty compat[] = { 5089 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5090 }; 5091 5092 spapr_machine_2_9_class_options(mc); 5093 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5094 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5095 mc->numa_mem_align_shift = 23; 5096 } 5097 5098 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5099 5100 /* 5101 * pseries-2.7 5102 */ 5103 5104 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5105 uint64_t *buid, hwaddr *pio, 5106 hwaddr *mmio32, hwaddr *mmio64, 5107 unsigned n_dma, uint32_t *liobns, 5108 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 5109 { 5110 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5111 const uint64_t base_buid = 0x800000020000000ULL; 5112 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5113 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5114 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5115 const uint32_t max_index = 255; 5116 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5117 5118 uint64_t ram_top = MACHINE(spapr)->ram_size; 5119 hwaddr phb0_base, phb_base; 5120 int i; 5121 5122 /* Do we have device memory? */ 5123 if (MACHINE(spapr)->device_memory) { 5124 /* Can't just use maxram_size, because there may be an 5125 * alignment gap between normal and device memory regions 5126 */ 5127 ram_top = MACHINE(spapr)->device_memory->base + 5128 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5129 } 5130 5131 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5132 5133 if (index > max_index) { 5134 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5135 max_index); 5136 return false; 5137 } 5138 5139 *buid = base_buid + index; 5140 for (i = 0; i < n_dma; ++i) { 5141 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5142 } 5143 5144 phb_base = phb0_base + index * phb_spacing; 5145 *pio = phb_base + pio_offset; 5146 *mmio32 = phb_base + mmio_offset; 5147 /* 5148 * We don't set the 64-bit MMIO window, relying on the PHB's 5149 * fallback behaviour of automatically splitting a large "32-bit" 5150 * window into contiguous 32-bit and 64-bit windows 5151 */ 5152 5153 *nv2gpa = 0; 5154 *nv2atsd = 0; 5155 return true; 5156 } 5157 5158 static void spapr_machine_2_7_class_options(MachineClass *mc) 5159 { 5160 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5161 static GlobalProperty compat[] = { 5162 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5163 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5164 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5165 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5166 }; 5167 5168 spapr_machine_2_8_class_options(mc); 5169 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5170 mc->default_machine_opts = "modern-hotplug-events=off"; 5171 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5172 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5173 smc->phb_placement = phb_placement_2_7; 5174 } 5175 5176 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5177 5178 /* 5179 * pseries-2.6 5180 */ 5181 5182 static void spapr_machine_2_6_class_options(MachineClass *mc) 5183 { 5184 static GlobalProperty compat[] = { 5185 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5186 }; 5187 5188 spapr_machine_2_7_class_options(mc); 5189 mc->has_hotpluggable_cpus = false; 5190 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5191 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5192 } 5193 5194 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5195 5196 /* 5197 * pseries-2.5 5198 */ 5199 5200 static void spapr_machine_2_5_class_options(MachineClass *mc) 5201 { 5202 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5203 static GlobalProperty compat[] = { 5204 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5205 }; 5206 5207 spapr_machine_2_6_class_options(mc); 5208 smc->use_ohci_by_default = true; 5209 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5210 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5211 } 5212 5213 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5214 5215 /* 5216 * pseries-2.4 5217 */ 5218 5219 static void spapr_machine_2_4_class_options(MachineClass *mc) 5220 { 5221 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5222 5223 spapr_machine_2_5_class_options(mc); 5224 smc->dr_lmb_enabled = false; 5225 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5226 } 5227 5228 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5229 5230 /* 5231 * pseries-2.3 5232 */ 5233 5234 static void spapr_machine_2_3_class_options(MachineClass *mc) 5235 { 5236 static GlobalProperty compat[] = { 5237 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5238 }; 5239 spapr_machine_2_4_class_options(mc); 5240 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5241 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5242 } 5243 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5244 5245 /* 5246 * pseries-2.2 5247 */ 5248 5249 static void spapr_machine_2_2_class_options(MachineClass *mc) 5250 { 5251 static GlobalProperty compat[] = { 5252 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5253 }; 5254 5255 spapr_machine_2_3_class_options(mc); 5256 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5257 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5258 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5259 } 5260 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5261 5262 /* 5263 * pseries-2.1 5264 */ 5265 5266 static void spapr_machine_2_1_class_options(MachineClass *mc) 5267 { 5268 spapr_machine_2_2_class_options(mc); 5269 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5270 } 5271 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5272 5273 static void spapr_machine_register_types(void) 5274 { 5275 type_register_static(&spapr_machine_info); 5276 } 5277 5278 type_init(spapr_machine_register_types) 5279