xref: /openbmc/qemu/hw/ppc/spapr.c (revision 4e6b1384)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "hw/ppc/spapr_cpu_core.h"
80 #include "hw/mem/memory-device.h"
81 #include "hw/ppc/spapr_tpm_proxy.h"
82 
83 #include "monitor/monitor.h"
84 
85 #include <libfdt.h>
86 
87 /* SLOF memory layout:
88  *
89  * SLOF raw image loaded at 0, copies its romfs right below the flat
90  * device-tree, then position SLOF itself 31M below that
91  *
92  * So we set FW_OVERHEAD to 40MB which should account for all of that
93  * and more
94  *
95  * We load our kernel at 4M, leaving space for SLOF initial image
96  */
97 #define FDT_MAX_SIZE            0x100000
98 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
99 #define FW_MAX_SIZE             0x400000
100 #define FW_FILE_NAME            "slof.bin"
101 #define FW_OVERHEAD             0x2800000
102 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
103 
104 #define MIN_RMA_SLOF            128UL
105 
106 #define PHANDLE_INTC            0x00001111
107 
108 /* These two functions implement the VCPU id numbering: one to compute them
109  * all and one to identify thread 0 of a VCORE. Any change to the first one
110  * is likely to have an impact on the second one, so let's keep them close.
111  */
112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
113 {
114     MachineState *ms = MACHINE(spapr);
115     unsigned int smp_threads = ms->smp.threads;
116 
117     assert(spapr->vsmt);
118     return
119         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
120 }
121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
122                                       PowerPCCPU *cpu)
123 {
124     assert(spapr->vsmt);
125     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
126 }
127 
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
129 {
130     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131      * and newer QEMUs don't even have them. In both cases, we don't want
132      * to send anything on the wire.
133      */
134     return false;
135 }
136 
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138     .name = "icp/server",
139     .version_id = 1,
140     .minimum_version_id = 1,
141     .needed = pre_2_10_vmstate_dummy_icp_needed,
142     .fields = (VMStateField[]) {
143         VMSTATE_UNUSED(4), /* uint32_t xirr */
144         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145         VMSTATE_UNUSED(1), /* uint8_t mfrr */
146         VMSTATE_END_OF_LIST()
147     },
148 };
149 
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
151 {
152     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153                      (void *)(uintptr_t) i);
154 }
155 
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
157 {
158     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159                        (void *)(uintptr_t) i);
160 }
161 
162 int spapr_max_server_number(SpaprMachineState *spapr)
163 {
164     MachineState *ms = MACHINE(spapr);
165 
166     assert(spapr->vsmt);
167     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
168 }
169 
170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
171                                   int smt_threads)
172 {
173     int i, ret = 0;
174     uint32_t servers_prop[smt_threads];
175     uint32_t gservers_prop[smt_threads * 2];
176     int index = spapr_get_vcpu_id(cpu);
177 
178     if (cpu->compat_pvr) {
179         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
180         if (ret < 0) {
181             return ret;
182         }
183     }
184 
185     /* Build interrupt servers and gservers properties */
186     for (i = 0; i < smt_threads; i++) {
187         servers_prop[i] = cpu_to_be32(index + i);
188         /* Hack, direct the group queues back to cpu 0 */
189         gservers_prop[i*2] = cpu_to_be32(index + i);
190         gservers_prop[i*2 + 1] = 0;
191     }
192     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
193                       servers_prop, sizeof(servers_prop));
194     if (ret < 0) {
195         return ret;
196     }
197     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
198                       gservers_prop, sizeof(gservers_prop));
199 
200     return ret;
201 }
202 
203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
204 {
205     int index = spapr_get_vcpu_id(cpu);
206     uint32_t associativity[] = {cpu_to_be32(0x5),
207                                 cpu_to_be32(0x0),
208                                 cpu_to_be32(0x0),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(cpu->node_id),
211                                 cpu_to_be32(index)};
212 
213     /* Advertise NUMA via ibm,associativity */
214     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
215                           sizeof(associativity));
216 }
217 
218 /* Populate the "ibm,pa-features" property */
219 static void spapr_populate_pa_features(SpaprMachineState *spapr,
220                                        PowerPCCPU *cpu,
221                                        void *fdt, int offset)
222 {
223     uint8_t pa_features_206[] = { 6, 0,
224         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225     uint8_t pa_features_207[] = { 24, 0,
226         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230     uint8_t pa_features_300[] = { 66, 0,
231         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
234         /* 6: DS207 */
235         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
236         /* 16: Vector */
237         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246         /* 42: PM, 44: PC RA, 46: SC vec'd */
247         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248         /* 48: SIMD, 50: QP BFP, 52: String */
249         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250         /* 54: DecFP, 56: DecI, 58: SHA */
251         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252         /* 60: NM atomic, 62: RNG */
253         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
254     };
255     uint8_t *pa_features = NULL;
256     size_t pa_size;
257 
258     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
259         pa_features = pa_features_206;
260         pa_size = sizeof(pa_features_206);
261     }
262     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
263         pa_features = pa_features_207;
264         pa_size = sizeof(pa_features_207);
265     }
266     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
267         pa_features = pa_features_300;
268         pa_size = sizeof(pa_features_300);
269     }
270     if (!pa_features) {
271         return;
272     }
273 
274     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
275         /*
276          * Note: we keep CI large pages off by default because a 64K capable
277          * guest provisioned with large pages might otherwise try to map a qemu
278          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279          * even if that qemu runs on a 4k host.
280          * We dd this bit back here if we are confident this is not an issue
281          */
282         pa_features[3] |= 0x20;
283     }
284     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
285         pa_features[24] |= 0x80;    /* Transactional memory support */
286     }
287     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
288         /* Workaround for broken kernels that attempt (guest) radix
289          * mode when they can't handle it, if they see the radix bit set
290          * in pa-features. So hide it from them. */
291         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
292     }
293 
294     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
295 }
296 
297 static hwaddr spapr_node0_size(MachineState *machine)
298 {
299     if (machine->numa_state->num_nodes) {
300         int i;
301         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
302             if (machine->numa_state->nodes[i].node_mem) {
303                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
304                            machine->ram_size);
305             }
306         }
307     }
308     return machine->ram_size;
309 }
310 
311 static void add_str(GString *s, const gchar *s1)
312 {
313     g_string_append_len(s, s1, strlen(s1) + 1);
314 }
315 
316 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
317                                        hwaddr size)
318 {
319     uint32_t associativity[] = {
320         cpu_to_be32(0x4), /* length */
321         cpu_to_be32(0x0), cpu_to_be32(0x0),
322         cpu_to_be32(0x0), cpu_to_be32(nodeid)
323     };
324     char mem_name[32];
325     uint64_t mem_reg_property[2];
326     int off;
327 
328     mem_reg_property[0] = cpu_to_be64(start);
329     mem_reg_property[1] = cpu_to_be64(size);
330 
331     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
332     off = fdt_add_subnode(fdt, 0, mem_name);
333     _FDT(off);
334     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
335     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
336                       sizeof(mem_reg_property))));
337     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
338                       sizeof(associativity))));
339     return off;
340 }
341 
342 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
343 {
344     MachineState *machine = MACHINE(spapr);
345     hwaddr mem_start, node_size;
346     int i, nb_nodes = machine->numa_state->num_nodes;
347     NodeInfo *nodes = machine->numa_state->nodes;
348 
349     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
350         if (!nodes[i].node_mem) {
351             continue;
352         }
353         if (mem_start >= machine->ram_size) {
354             node_size = 0;
355         } else {
356             node_size = nodes[i].node_mem;
357             if (node_size > machine->ram_size - mem_start) {
358                 node_size = machine->ram_size - mem_start;
359             }
360         }
361         if (!mem_start) {
362             /* spapr_machine_init() checks for rma_size <= node0_size
363              * already */
364             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
365             mem_start += spapr->rma_size;
366             node_size -= spapr->rma_size;
367         }
368         for ( ; node_size; ) {
369             hwaddr sizetmp = pow2floor(node_size);
370 
371             /* mem_start != 0 here */
372             if (ctzl(mem_start) < ctzl(sizetmp)) {
373                 sizetmp = 1ULL << ctzl(mem_start);
374             }
375 
376             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
377             node_size -= sizetmp;
378             mem_start += sizetmp;
379         }
380     }
381 
382     return 0;
383 }
384 
385 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
386                                   SpaprMachineState *spapr)
387 {
388     MachineState *ms = MACHINE(spapr);
389     PowerPCCPU *cpu = POWERPC_CPU(cs);
390     CPUPPCState *env = &cpu->env;
391     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
392     int index = spapr_get_vcpu_id(cpu);
393     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
394                        0xffffffff, 0xffffffff};
395     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
396         : SPAPR_TIMEBASE_FREQ;
397     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
398     uint32_t page_sizes_prop[64];
399     size_t page_sizes_prop_size;
400     unsigned int smp_threads = ms->smp.threads;
401     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
402     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
403     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
404     SpaprDrc *drc;
405     int drc_index;
406     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
407     int i;
408 
409     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
410     if (drc) {
411         drc_index = spapr_drc_index(drc);
412         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
413     }
414 
415     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
416     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
417 
418     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
419     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
420                            env->dcache_line_size)));
421     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
422                            env->dcache_line_size)));
423     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
424                            env->icache_line_size)));
425     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
426                            env->icache_line_size)));
427 
428     if (pcc->l1_dcache_size) {
429         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
430                                pcc->l1_dcache_size)));
431     } else {
432         warn_report("Unknown L1 dcache size for cpu");
433     }
434     if (pcc->l1_icache_size) {
435         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
436                                pcc->l1_icache_size)));
437     } else {
438         warn_report("Unknown L1 icache size for cpu");
439     }
440 
441     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
442     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
443     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
444     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
445     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
446     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
447 
448     if (env->spr_cb[SPR_PURR].oea_read) {
449         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
450     }
451     if (env->spr_cb[SPR_SPURR].oea_read) {
452         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
453     }
454 
455     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
456         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
457                           segs, sizeof(segs))));
458     }
459 
460     /* Advertise VSX (vector extensions) if available
461      *   1               == VMX / Altivec available
462      *   2               == VSX available
463      *
464      * Only CPUs for which we create core types in spapr_cpu_core.c
465      * are possible, and all of those have VMX */
466     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
467         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
468     } else {
469         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
470     }
471 
472     /* Advertise DFP (Decimal Floating Point) if available
473      *   0 / no property == no DFP
474      *   1               == DFP available */
475     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
476         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
477     }
478 
479     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
480                                                       sizeof(page_sizes_prop));
481     if (page_sizes_prop_size) {
482         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
483                           page_sizes_prop, page_sizes_prop_size)));
484     }
485 
486     spapr_populate_pa_features(spapr, cpu, fdt, offset);
487 
488     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
489                            cs->cpu_index / vcpus_per_socket)));
490 
491     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
492                       pft_size_prop, sizeof(pft_size_prop))));
493 
494     if (ms->numa_state->num_nodes > 1) {
495         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
496     }
497 
498     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
499 
500     if (pcc->radix_page_info) {
501         for (i = 0; i < pcc->radix_page_info->count; i++) {
502             radix_AP_encodings[i] =
503                 cpu_to_be32(pcc->radix_page_info->entries[i]);
504         }
505         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
506                           radix_AP_encodings,
507                           pcc->radix_page_info->count *
508                           sizeof(radix_AP_encodings[0]))));
509     }
510 
511     /*
512      * We set this property to let the guest know that it can use the large
513      * decrementer and its width in bits.
514      */
515     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
516         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
517                               pcc->lrg_decr_bits)));
518 }
519 
520 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
521 {
522     CPUState **rev;
523     CPUState *cs;
524     int n_cpus;
525     int cpus_offset;
526     char *nodename;
527     int i;
528 
529     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
530     _FDT(cpus_offset);
531     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
532     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
533 
534     /*
535      * We walk the CPUs in reverse order to ensure that CPU DT nodes
536      * created by fdt_add_subnode() end up in the right order in FDT
537      * for the guest kernel the enumerate the CPUs correctly.
538      *
539      * The CPU list cannot be traversed in reverse order, so we need
540      * to do extra work.
541      */
542     n_cpus = 0;
543     rev = NULL;
544     CPU_FOREACH(cs) {
545         rev = g_renew(CPUState *, rev, n_cpus + 1);
546         rev[n_cpus++] = cs;
547     }
548 
549     for (i = n_cpus - 1; i >= 0; i--) {
550         CPUState *cs = rev[i];
551         PowerPCCPU *cpu = POWERPC_CPU(cs);
552         int index = spapr_get_vcpu_id(cpu);
553         DeviceClass *dc = DEVICE_GET_CLASS(cs);
554         int offset;
555 
556         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
557             continue;
558         }
559 
560         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
561         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
562         g_free(nodename);
563         _FDT(offset);
564         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
565     }
566 
567     g_free(rev);
568 }
569 
570 static int spapr_rng_populate_dt(void *fdt)
571 {
572     int node;
573     int ret;
574 
575     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
576     if (node <= 0) {
577         return -1;
578     }
579     ret = fdt_setprop_string(fdt, node, "device_type",
580                              "ibm,platform-facilities");
581     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
582     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
583 
584     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
585     if (node <= 0) {
586         return -1;
587     }
588     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
589 
590     return ret ? -1 : 0;
591 }
592 
593 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
594 {
595     MemoryDeviceInfoList *info;
596 
597     for (info = list; info; info = info->next) {
598         MemoryDeviceInfo *value = info->value;
599 
600         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
601             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
602 
603             if (addr >= pcdimm_info->addr &&
604                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
605                 return pcdimm_info->node;
606             }
607         }
608     }
609 
610     return -1;
611 }
612 
613 struct sPAPRDrconfCellV2 {
614      uint32_t seq_lmbs;
615      uint64_t base_addr;
616      uint32_t drc_index;
617      uint32_t aa_index;
618      uint32_t flags;
619 } QEMU_PACKED;
620 
621 typedef struct DrconfCellQueue {
622     struct sPAPRDrconfCellV2 cell;
623     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
624 } DrconfCellQueue;
625 
626 static DrconfCellQueue *
627 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
628                       uint32_t drc_index, uint32_t aa_index,
629                       uint32_t flags)
630 {
631     DrconfCellQueue *elem;
632 
633     elem = g_malloc0(sizeof(*elem));
634     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
635     elem->cell.base_addr = cpu_to_be64(base_addr);
636     elem->cell.drc_index = cpu_to_be32(drc_index);
637     elem->cell.aa_index = cpu_to_be32(aa_index);
638     elem->cell.flags = cpu_to_be32(flags);
639 
640     return elem;
641 }
642 
643 /* ibm,dynamic-memory-v2 */
644 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
645                                    int offset, MemoryDeviceInfoList *dimms)
646 {
647     MachineState *machine = MACHINE(spapr);
648     uint8_t *int_buf, *cur_index;
649     int ret;
650     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
651     uint64_t addr, cur_addr, size;
652     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
653     uint64_t mem_end = machine->device_memory->base +
654                        memory_region_size(&machine->device_memory->mr);
655     uint32_t node, buf_len, nr_entries = 0;
656     SpaprDrc *drc;
657     DrconfCellQueue *elem, *next;
658     MemoryDeviceInfoList *info;
659     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
660         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
661 
662     /* Entry to cover RAM and the gap area */
663     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
664                                  SPAPR_LMB_FLAGS_RESERVED |
665                                  SPAPR_LMB_FLAGS_DRC_INVALID);
666     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
667     nr_entries++;
668 
669     cur_addr = machine->device_memory->base;
670     for (info = dimms; info; info = info->next) {
671         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
672 
673         addr = di->addr;
674         size = di->size;
675         node = di->node;
676 
677         /* Entry for hot-pluggable area */
678         if (cur_addr < addr) {
679             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
680             g_assert(drc);
681             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
682                                          cur_addr, spapr_drc_index(drc), -1, 0);
683             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
684             nr_entries++;
685         }
686 
687         /* Entry for DIMM */
688         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
689         g_assert(drc);
690         elem = spapr_get_drconf_cell(size / lmb_size, addr,
691                                      spapr_drc_index(drc), node,
692                                      SPAPR_LMB_FLAGS_ASSIGNED);
693         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
694         nr_entries++;
695         cur_addr = addr + size;
696     }
697 
698     /* Entry for remaining hotpluggable area */
699     if (cur_addr < mem_end) {
700         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
701         g_assert(drc);
702         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
703                                      cur_addr, spapr_drc_index(drc), -1, 0);
704         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
705         nr_entries++;
706     }
707 
708     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
709     int_buf = cur_index = g_malloc0(buf_len);
710     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
711     cur_index += sizeof(nr_entries);
712 
713     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
714         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
715         cur_index += sizeof(elem->cell);
716         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
717         g_free(elem);
718     }
719 
720     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
721     g_free(int_buf);
722     if (ret < 0) {
723         return -1;
724     }
725     return 0;
726 }
727 
728 /* ibm,dynamic-memory */
729 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
730                                    int offset, MemoryDeviceInfoList *dimms)
731 {
732     MachineState *machine = MACHINE(spapr);
733     int i, ret;
734     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
735     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
736     uint32_t nr_lmbs = (machine->device_memory->base +
737                        memory_region_size(&machine->device_memory->mr)) /
738                        lmb_size;
739     uint32_t *int_buf, *cur_index, buf_len;
740 
741     /*
742      * Allocate enough buffer size to fit in ibm,dynamic-memory
743      */
744     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
745     cur_index = int_buf = g_malloc0(buf_len);
746     int_buf[0] = cpu_to_be32(nr_lmbs);
747     cur_index++;
748     for (i = 0; i < nr_lmbs; i++) {
749         uint64_t addr = i * lmb_size;
750         uint32_t *dynamic_memory = cur_index;
751 
752         if (i >= device_lmb_start) {
753             SpaprDrc *drc;
754 
755             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
756             g_assert(drc);
757 
758             dynamic_memory[0] = cpu_to_be32(addr >> 32);
759             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
760             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
761             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
762             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
763             if (memory_region_present(get_system_memory(), addr)) {
764                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
765             } else {
766                 dynamic_memory[5] = cpu_to_be32(0);
767             }
768         } else {
769             /*
770              * LMB information for RMA, boot time RAM and gap b/n RAM and
771              * device memory region -- all these are marked as reserved
772              * and as having no valid DRC.
773              */
774             dynamic_memory[0] = cpu_to_be32(addr >> 32);
775             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
776             dynamic_memory[2] = cpu_to_be32(0);
777             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
778             dynamic_memory[4] = cpu_to_be32(-1);
779             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
780                                             SPAPR_LMB_FLAGS_DRC_INVALID);
781         }
782 
783         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
784     }
785     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
786     g_free(int_buf);
787     if (ret < 0) {
788         return -1;
789     }
790     return 0;
791 }
792 
793 /*
794  * Adds ibm,dynamic-reconfiguration-memory node.
795  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
796  * of this device tree node.
797  */
798 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
799 {
800     MachineState *machine = MACHINE(spapr);
801     int nb_numa_nodes = machine->numa_state->num_nodes;
802     int ret, i, offset;
803     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
804     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
805     uint32_t *int_buf, *cur_index, buf_len;
806     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
807     MemoryDeviceInfoList *dimms = NULL;
808 
809     /*
810      * Don't create the node if there is no device memory
811      */
812     if (machine->ram_size == machine->maxram_size) {
813         return 0;
814     }
815 
816     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
817 
818     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
819                     sizeof(prop_lmb_size));
820     if (ret < 0) {
821         return ret;
822     }
823 
824     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
825     if (ret < 0) {
826         return ret;
827     }
828 
829     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
830     if (ret < 0) {
831         return ret;
832     }
833 
834     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
835     dimms = qmp_memory_device_list();
836     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
837         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
838     } else {
839         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
840     }
841     qapi_free_MemoryDeviceInfoList(dimms);
842 
843     if (ret < 0) {
844         return ret;
845     }
846 
847     /* ibm,associativity-lookup-arrays */
848     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
849     cur_index = int_buf = g_malloc0(buf_len);
850     int_buf[0] = cpu_to_be32(nr_nodes);
851     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
852     cur_index += 2;
853     for (i = 0; i < nr_nodes; i++) {
854         uint32_t associativity[] = {
855             cpu_to_be32(0x0),
856             cpu_to_be32(0x0),
857             cpu_to_be32(0x0),
858             cpu_to_be32(i)
859         };
860         memcpy(cur_index, associativity, sizeof(associativity));
861         cur_index += 4;
862     }
863     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
864             (cur_index - int_buf) * sizeof(uint32_t));
865     g_free(int_buf);
866 
867     return ret;
868 }
869 
870 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
871                                 SpaprOptionVector *ov5_updates)
872 {
873     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
874     int ret = 0, offset;
875 
876     /* Generate ibm,dynamic-reconfiguration-memory node if required */
877     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
878         g_assert(smc->dr_lmb_enabled);
879         ret = spapr_populate_drconf_memory(spapr, fdt);
880         if (ret) {
881             return ret;
882         }
883     }
884 
885     offset = fdt_path_offset(fdt, "/chosen");
886     if (offset < 0) {
887         offset = fdt_add_subnode(fdt, 0, "chosen");
888         if (offset < 0) {
889             return offset;
890         }
891     }
892     return spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
893                                   "ibm,architecture-vec-5");
894 }
895 
896 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
897 {
898     MachineState *ms = MACHINE(spapr);
899     int rtas;
900     GString *hypertas = g_string_sized_new(256);
901     GString *qemu_hypertas = g_string_sized_new(256);
902     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
903     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
904         memory_region_size(&MACHINE(spapr)->device_memory->mr);
905     uint32_t lrdr_capacity[] = {
906         cpu_to_be32(max_device_addr >> 32),
907         cpu_to_be32(max_device_addr & 0xffffffff),
908         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
909         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
910     };
911     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
912     uint32_t maxdomains[] = {
913         cpu_to_be32(4),
914         maxdomain,
915         maxdomain,
916         maxdomain,
917         cpu_to_be32(spapr->gpu_numa_id),
918     };
919 
920     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
921 
922     /* hypertas */
923     add_str(hypertas, "hcall-pft");
924     add_str(hypertas, "hcall-term");
925     add_str(hypertas, "hcall-dabr");
926     add_str(hypertas, "hcall-interrupt");
927     add_str(hypertas, "hcall-tce");
928     add_str(hypertas, "hcall-vio");
929     add_str(hypertas, "hcall-splpar");
930     add_str(hypertas, "hcall-join");
931     add_str(hypertas, "hcall-bulk");
932     add_str(hypertas, "hcall-set-mode");
933     add_str(hypertas, "hcall-sprg0");
934     add_str(hypertas, "hcall-copy");
935     add_str(hypertas, "hcall-debug");
936     add_str(hypertas, "hcall-vphn");
937     add_str(qemu_hypertas, "hcall-memop1");
938 
939     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
940         add_str(hypertas, "hcall-multi-tce");
941     }
942 
943     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
944         add_str(hypertas, "hcall-hpt-resize");
945     }
946 
947     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
948                      hypertas->str, hypertas->len));
949     g_string_free(hypertas, TRUE);
950     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
951                      qemu_hypertas->str, qemu_hypertas->len));
952     g_string_free(qemu_hypertas, TRUE);
953 
954     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
955                      refpoints, sizeof(refpoints)));
956 
957     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
958                      maxdomains, sizeof(maxdomains)));
959 
960     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
961                           RTAS_ERROR_LOG_MAX));
962     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
963                           RTAS_EVENT_SCAN_RATE));
964 
965     g_assert(msi_nonbroken);
966     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
967 
968     /*
969      * According to PAPR, rtas ibm,os-term does not guarantee a return
970      * back to the guest cpu.
971      *
972      * While an additional ibm,extended-os-term property indicates
973      * that rtas call return will always occur. Set this property.
974      */
975     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
976 
977     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
978                      lrdr_capacity, sizeof(lrdr_capacity)));
979 
980     spapr_dt_rtas_tokens(fdt, rtas);
981 }
982 
983 /*
984  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
985  * and the XIVE features that the guest may request and thus the valid
986  * values for bytes 23..26 of option vector 5:
987  */
988 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
989                                           int chosen)
990 {
991     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
992 
993     char val[2 * 4] = {
994         23, 0x00, /* XICS / XIVE mode */
995         24, 0x00, /* Hash/Radix, filled in below. */
996         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
997         26, 0x40, /* Radix options: GTSE == yes. */
998     };
999 
1000     if (spapr->irq->xics && spapr->irq->xive) {
1001         val[1] = SPAPR_OV5_XIVE_BOTH;
1002     } else if (spapr->irq->xive) {
1003         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1004     } else {
1005         assert(spapr->irq->xics);
1006         val[1] = SPAPR_OV5_XIVE_LEGACY;
1007     }
1008 
1009     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1010                           first_ppc_cpu->compat_pvr)) {
1011         /*
1012          * If we're in a pre POWER9 compat mode then the guest should
1013          * do hash and use the legacy interrupt mode
1014          */
1015         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1016         val[3] = 0x00; /* Hash */
1017     } else if (kvm_enabled()) {
1018         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1019             val[3] = 0x80; /* OV5_MMU_BOTH */
1020         } else if (kvmppc_has_cap_mmu_radix()) {
1021             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1022         } else {
1023             val[3] = 0x00; /* Hash */
1024         }
1025     } else {
1026         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1027         val[3] = 0xC0;
1028     }
1029     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1030                      val, sizeof(val)));
1031 }
1032 
1033 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1034 {
1035     MachineState *machine = MACHINE(spapr);
1036     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1037     int chosen;
1038     const char *boot_device = machine->boot_order;
1039     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1040     size_t cb = 0;
1041     char *bootlist = get_boot_devices_list(&cb);
1042 
1043     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1044 
1045     if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1046         _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1047                                 machine->kernel_cmdline));
1048     }
1049     if (spapr->initrd_size) {
1050         _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1051                               spapr->initrd_base));
1052         _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1053                               spapr->initrd_base + spapr->initrd_size));
1054     }
1055 
1056     if (spapr->kernel_size) {
1057         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1058                               cpu_to_be64(spapr->kernel_size) };
1059 
1060         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1061                          &kprop, sizeof(kprop)));
1062         if (spapr->kernel_le) {
1063             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1064         }
1065     }
1066     if (boot_menu) {
1067         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1068     }
1069     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1070     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1071     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1072 
1073     if (cb && bootlist) {
1074         int i;
1075 
1076         for (i = 0; i < cb; i++) {
1077             if (bootlist[i] == '\n') {
1078                 bootlist[i] = ' ';
1079             }
1080         }
1081         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1082     }
1083 
1084     if (boot_device && strlen(boot_device)) {
1085         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1086     }
1087 
1088     if (!spapr->has_graphics && stdout_path) {
1089         /*
1090          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1091          * kernel. New platforms should only use the "stdout-path" property. Set
1092          * the new property and continue using older property to remain
1093          * compatible with the existing firmware.
1094          */
1095         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1096         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1097     }
1098 
1099     /* We can deal with BAR reallocation just fine, advertise it to the guest */
1100     if (smc->linux_pci_probe) {
1101         _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1102     }
1103 
1104     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1105 
1106     g_free(stdout_path);
1107     g_free(bootlist);
1108 }
1109 
1110 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1111 {
1112     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1113      * KVM to work under pHyp with some guest co-operation */
1114     int hypervisor;
1115     uint8_t hypercall[16];
1116 
1117     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1118     /* indicate KVM hypercall interface */
1119     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1120     if (kvmppc_has_cap_fixup_hcalls()) {
1121         /*
1122          * Older KVM versions with older guest kernels were broken
1123          * with the magic page, don't allow the guest to map it.
1124          */
1125         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1126                                   sizeof(hypercall))) {
1127             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1128                              hypercall, sizeof(hypercall)));
1129         }
1130     }
1131 }
1132 
1133 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1134 {
1135     MachineState *machine = MACHINE(spapr);
1136     MachineClass *mc = MACHINE_GET_CLASS(machine);
1137     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1138     int ret;
1139     void *fdt;
1140     SpaprPhbState *phb;
1141     char *buf;
1142 
1143     fdt = g_malloc0(space);
1144     _FDT((fdt_create_empty_tree(fdt, space)));
1145 
1146     /* Root node */
1147     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1148     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1149     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1150 
1151     /* Guest UUID & Name*/
1152     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1153     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1154     if (qemu_uuid_set) {
1155         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1156     }
1157     g_free(buf);
1158 
1159     if (qemu_get_vm_name()) {
1160         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1161                                 qemu_get_vm_name()));
1162     }
1163 
1164     /* Host Model & Serial Number */
1165     if (spapr->host_model) {
1166         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1167     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1168         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1169         g_free(buf);
1170     }
1171 
1172     if (spapr->host_serial) {
1173         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1174     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1175         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1176         g_free(buf);
1177     }
1178 
1179     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1180     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1181 
1182     /* /interrupt controller */
1183     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1184 
1185     ret = spapr_populate_memory(spapr, fdt);
1186     if (ret < 0) {
1187         error_report("couldn't setup memory nodes in fdt");
1188         exit(1);
1189     }
1190 
1191     /* /vdevice */
1192     spapr_dt_vdevice(spapr->vio_bus, fdt);
1193 
1194     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1195         ret = spapr_rng_populate_dt(fdt);
1196         if (ret < 0) {
1197             error_report("could not set up rng device in the fdt");
1198             exit(1);
1199         }
1200     }
1201 
1202     QLIST_FOREACH(phb, &spapr->phbs, list) {
1203         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1204         if (ret < 0) {
1205             error_report("couldn't setup PCI devices in fdt");
1206             exit(1);
1207         }
1208     }
1209 
1210     /* cpus */
1211     spapr_populate_cpus_dt_node(fdt, spapr);
1212 
1213     if (smc->dr_lmb_enabled) {
1214         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1215     }
1216 
1217     if (mc->has_hotpluggable_cpus) {
1218         int offset = fdt_path_offset(fdt, "/cpus");
1219         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1220         if (ret < 0) {
1221             error_report("Couldn't set up CPU DR device tree properties");
1222             exit(1);
1223         }
1224     }
1225 
1226     /* /event-sources */
1227     spapr_dt_events(spapr, fdt);
1228 
1229     /* /rtas */
1230     spapr_dt_rtas(spapr, fdt);
1231 
1232     /* /chosen */
1233     if (reset) {
1234         spapr_dt_chosen(spapr, fdt);
1235     }
1236 
1237     /* /hypervisor */
1238     if (kvm_enabled()) {
1239         spapr_dt_hypervisor(spapr, fdt);
1240     }
1241 
1242     /* Build memory reserve map */
1243     if (reset) {
1244         if (spapr->kernel_size) {
1245             _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1246         }
1247         if (spapr->initrd_size) {
1248             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1249                                   spapr->initrd_size)));
1250         }
1251     }
1252 
1253     /* ibm,client-architecture-support updates */
1254     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1255     if (ret < 0) {
1256         error_report("couldn't setup CAS properties fdt");
1257         exit(1);
1258     }
1259 
1260     if (smc->dr_phb_enabled) {
1261         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1262         if (ret < 0) {
1263             error_report("Couldn't set up PHB DR device tree properties");
1264             exit(1);
1265         }
1266     }
1267 
1268     return fdt;
1269 }
1270 
1271 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1272 {
1273     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1274 }
1275 
1276 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1277                                     PowerPCCPU *cpu)
1278 {
1279     CPUPPCState *env = &cpu->env;
1280 
1281     /* The TCG path should also be holding the BQL at this point */
1282     g_assert(qemu_mutex_iothread_locked());
1283 
1284     if (msr_pr) {
1285         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1286         env->gpr[3] = H_PRIVILEGE;
1287     } else {
1288         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1289     }
1290 }
1291 
1292 struct LPCRSyncState {
1293     target_ulong value;
1294     target_ulong mask;
1295 };
1296 
1297 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1298 {
1299     struct LPCRSyncState *s = arg.host_ptr;
1300     PowerPCCPU *cpu = POWERPC_CPU(cs);
1301     CPUPPCState *env = &cpu->env;
1302     target_ulong lpcr;
1303 
1304     cpu_synchronize_state(cs);
1305     lpcr = env->spr[SPR_LPCR];
1306     lpcr &= ~s->mask;
1307     lpcr |= s->value;
1308     ppc_store_lpcr(cpu, lpcr);
1309 }
1310 
1311 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1312 {
1313     CPUState *cs;
1314     struct LPCRSyncState s = {
1315         .value = value,
1316         .mask = mask
1317     };
1318     CPU_FOREACH(cs) {
1319         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1320     }
1321 }
1322 
1323 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1324 {
1325     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1326 
1327     /* Copy PATE1:GR into PATE0:HR */
1328     entry->dw0 = spapr->patb_entry & PATE0_HR;
1329     entry->dw1 = spapr->patb_entry;
1330 }
1331 
1332 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1333 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1334 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1335 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1336 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1337 
1338 /*
1339  * Get the fd to access the kernel htab, re-opening it if necessary
1340  */
1341 static int get_htab_fd(SpaprMachineState *spapr)
1342 {
1343     Error *local_err = NULL;
1344 
1345     if (spapr->htab_fd >= 0) {
1346         return spapr->htab_fd;
1347     }
1348 
1349     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1350     if (spapr->htab_fd < 0) {
1351         error_report_err(local_err);
1352     }
1353 
1354     return spapr->htab_fd;
1355 }
1356 
1357 void close_htab_fd(SpaprMachineState *spapr)
1358 {
1359     if (spapr->htab_fd >= 0) {
1360         close(spapr->htab_fd);
1361     }
1362     spapr->htab_fd = -1;
1363 }
1364 
1365 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1366 {
1367     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1368 
1369     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1370 }
1371 
1372 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1373 {
1374     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1375 
1376     assert(kvm_enabled());
1377 
1378     if (!spapr->htab) {
1379         return 0;
1380     }
1381 
1382     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1383 }
1384 
1385 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1386                                                 hwaddr ptex, int n)
1387 {
1388     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1389     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1390 
1391     if (!spapr->htab) {
1392         /*
1393          * HTAB is controlled by KVM. Fetch into temporary buffer
1394          */
1395         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1396         kvmppc_read_hptes(hptes, ptex, n);
1397         return hptes;
1398     }
1399 
1400     /*
1401      * HTAB is controlled by QEMU. Just point to the internally
1402      * accessible PTEG.
1403      */
1404     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1405 }
1406 
1407 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1408                               const ppc_hash_pte64_t *hptes,
1409                               hwaddr ptex, int n)
1410 {
1411     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1412 
1413     if (!spapr->htab) {
1414         g_free((void *)hptes);
1415     }
1416 
1417     /* Nothing to do for qemu managed HPT */
1418 }
1419 
1420 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1421                       uint64_t pte0, uint64_t pte1)
1422 {
1423     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1424     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1425 
1426     if (!spapr->htab) {
1427         kvmppc_write_hpte(ptex, pte0, pte1);
1428     } else {
1429         if (pte0 & HPTE64_V_VALID) {
1430             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1431             /*
1432              * When setting valid, we write PTE1 first. This ensures
1433              * proper synchronization with the reading code in
1434              * ppc_hash64_pteg_search()
1435              */
1436             smp_wmb();
1437             stq_p(spapr->htab + offset, pte0);
1438         } else {
1439             stq_p(spapr->htab + offset, pte0);
1440             /*
1441              * When clearing it we set PTE0 first. This ensures proper
1442              * synchronization with the reading code in
1443              * ppc_hash64_pteg_search()
1444              */
1445             smp_wmb();
1446             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1447         }
1448     }
1449 }
1450 
1451 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1452                              uint64_t pte1)
1453 {
1454     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1455     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1456 
1457     if (!spapr->htab) {
1458         /* There should always be a hash table when this is called */
1459         error_report("spapr_hpte_set_c called with no hash table !");
1460         return;
1461     }
1462 
1463     /* The HW performs a non-atomic byte update */
1464     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1465 }
1466 
1467 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1468                              uint64_t pte1)
1469 {
1470     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1471     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1472 
1473     if (!spapr->htab) {
1474         /* There should always be a hash table when this is called */
1475         error_report("spapr_hpte_set_r called with no hash table !");
1476         return;
1477     }
1478 
1479     /* The HW performs a non-atomic byte update */
1480     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1481 }
1482 
1483 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1484 {
1485     int shift;
1486 
1487     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1488      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1489      * that's much more than is needed for Linux guests */
1490     shift = ctz64(pow2ceil(ramsize)) - 7;
1491     shift = MAX(shift, 18); /* Minimum architected size */
1492     shift = MIN(shift, 46); /* Maximum architected size */
1493     return shift;
1494 }
1495 
1496 void spapr_free_hpt(SpaprMachineState *spapr)
1497 {
1498     g_free(spapr->htab);
1499     spapr->htab = NULL;
1500     spapr->htab_shift = 0;
1501     close_htab_fd(spapr);
1502 }
1503 
1504 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1505                           Error **errp)
1506 {
1507     long rc;
1508 
1509     /* Clean up any HPT info from a previous boot */
1510     spapr_free_hpt(spapr);
1511 
1512     rc = kvmppc_reset_htab(shift);
1513     if (rc < 0) {
1514         /* kernel-side HPT needed, but couldn't allocate one */
1515         error_setg_errno(errp, errno,
1516                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1517                          shift);
1518         /* This is almost certainly fatal, but if the caller really
1519          * wants to carry on with shift == 0, it's welcome to try */
1520     } else if (rc > 0) {
1521         /* kernel-side HPT allocated */
1522         if (rc != shift) {
1523             error_setg(errp,
1524                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1525                        shift, rc);
1526         }
1527 
1528         spapr->htab_shift = shift;
1529         spapr->htab = NULL;
1530     } else {
1531         /* kernel-side HPT not needed, allocate in userspace instead */
1532         size_t size = 1ULL << shift;
1533         int i;
1534 
1535         spapr->htab = qemu_memalign(size, size);
1536         if (!spapr->htab) {
1537             error_setg_errno(errp, errno,
1538                              "Could not allocate HPT of order %d", shift);
1539             return;
1540         }
1541 
1542         memset(spapr->htab, 0, size);
1543         spapr->htab_shift = shift;
1544 
1545         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1546             DIRTY_HPTE(HPTE(spapr->htab, i));
1547         }
1548     }
1549     /* We're setting up a hash table, so that means we're not radix */
1550     spapr->patb_entry = 0;
1551     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1552 }
1553 
1554 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1555 {
1556     int hpt_shift;
1557 
1558     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1559         || (spapr->cas_reboot
1560             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1561         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1562     } else {
1563         uint64_t current_ram_size;
1564 
1565         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1566         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1567     }
1568     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1569 
1570     if (spapr->vrma_adjust) {
1571         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1572                                           spapr->htab_shift);
1573     }
1574 }
1575 
1576 static int spapr_reset_drcs(Object *child, void *opaque)
1577 {
1578     SpaprDrc *drc =
1579         (SpaprDrc *) object_dynamic_cast(child,
1580                                                  TYPE_SPAPR_DR_CONNECTOR);
1581 
1582     if (drc) {
1583         spapr_drc_reset(drc);
1584     }
1585 
1586     return 0;
1587 }
1588 
1589 static void spapr_machine_reset(MachineState *machine)
1590 {
1591     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1592     PowerPCCPU *first_ppc_cpu;
1593     hwaddr fdt_addr;
1594     void *fdt;
1595     int rc;
1596 
1597     kvmppc_svm_off(&error_fatal);
1598     spapr_caps_apply(spapr);
1599 
1600     first_ppc_cpu = POWERPC_CPU(first_cpu);
1601     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1602         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1603                               spapr->max_compat_pvr)) {
1604         /*
1605          * If using KVM with radix mode available, VCPUs can be started
1606          * without a HPT because KVM will start them in radix mode.
1607          * Set the GR bit in PATE so that we know there is no HPT.
1608          */
1609         spapr->patb_entry = PATE1_GR;
1610         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1611     } else {
1612         spapr_setup_hpt_and_vrma(spapr);
1613     }
1614 
1615     qemu_devices_reset();
1616 
1617     /*
1618      * If this reset wasn't generated by CAS, we should reset our
1619      * negotiated options and start from scratch
1620      */
1621     if (!spapr->cas_reboot) {
1622         spapr_ovec_cleanup(spapr->ov5_cas);
1623         spapr->ov5_cas = spapr_ovec_new();
1624 
1625         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1626     }
1627 
1628     /*
1629      * This is fixing some of the default configuration of the XIVE
1630      * devices. To be called after the reset of the machine devices.
1631      */
1632     spapr_irq_reset(spapr, &error_fatal);
1633 
1634     /*
1635      * There is no CAS under qtest. Simulate one to please the code that
1636      * depends on spapr->ov5_cas. This is especially needed to test device
1637      * unplug, so we do that before resetting the DRCs.
1638      */
1639     if (qtest_enabled()) {
1640         spapr_ovec_cleanup(spapr->ov5_cas);
1641         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1642     }
1643 
1644     /* DRC reset may cause a device to be unplugged. This will cause troubles
1645      * if this device is used by another device (eg, a running vhost backend
1646      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1647      * situations, we reset DRCs after all devices have been reset.
1648      */
1649     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1650 
1651     spapr_clear_pending_events(spapr);
1652 
1653     /*
1654      * We place the device tree and RTAS just below either the top of the RMA,
1655      * or just below 2GB, whichever is lower, so that it can be
1656      * processed with 32-bit real mode code if necessary
1657      */
1658     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1659 
1660     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1661 
1662     rc = fdt_pack(fdt);
1663 
1664     /* Should only fail if we've built a corrupted tree */
1665     assert(rc == 0);
1666 
1667     /* Load the fdt */
1668     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1669     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1670     g_free(spapr->fdt_blob);
1671     spapr->fdt_size = fdt_totalsize(fdt);
1672     spapr->fdt_initial_size = spapr->fdt_size;
1673     spapr->fdt_blob = fdt;
1674 
1675     /* Set up the entry state */
1676     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1677     first_ppc_cpu->env.gpr[5] = 0;
1678 
1679     spapr->cas_reboot = false;
1680 }
1681 
1682 static void spapr_create_nvram(SpaprMachineState *spapr)
1683 {
1684     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1685     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1686 
1687     if (dinfo) {
1688         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1689                             &error_fatal);
1690     }
1691 
1692     qdev_init_nofail(dev);
1693 
1694     spapr->nvram = (struct SpaprNvram *)dev;
1695 }
1696 
1697 static void spapr_rtc_create(SpaprMachineState *spapr)
1698 {
1699     object_initialize_child(OBJECT(spapr), "rtc",
1700                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1701                             &error_fatal, NULL);
1702     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1703                               &error_fatal);
1704     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1705                               "date", &error_fatal);
1706 }
1707 
1708 /* Returns whether we want to use VGA or not */
1709 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1710 {
1711     switch (vga_interface_type) {
1712     case VGA_NONE:
1713         return false;
1714     case VGA_DEVICE:
1715         return true;
1716     case VGA_STD:
1717     case VGA_VIRTIO:
1718     case VGA_CIRRUS:
1719         return pci_vga_init(pci_bus) != NULL;
1720     default:
1721         error_setg(errp,
1722                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1723         return false;
1724     }
1725 }
1726 
1727 static int spapr_pre_load(void *opaque)
1728 {
1729     int rc;
1730 
1731     rc = spapr_caps_pre_load(opaque);
1732     if (rc) {
1733         return rc;
1734     }
1735 
1736     return 0;
1737 }
1738 
1739 static int spapr_post_load(void *opaque, int version_id)
1740 {
1741     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1742     int err = 0;
1743 
1744     err = spapr_caps_post_migration(spapr);
1745     if (err) {
1746         return err;
1747     }
1748 
1749     /*
1750      * In earlier versions, there was no separate qdev for the PAPR
1751      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1752      * So when migrating from those versions, poke the incoming offset
1753      * value into the RTC device
1754      */
1755     if (version_id < 3) {
1756         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1757         if (err) {
1758             return err;
1759         }
1760     }
1761 
1762     if (kvm_enabled() && spapr->patb_entry) {
1763         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1764         bool radix = !!(spapr->patb_entry & PATE1_GR);
1765         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1766 
1767         /*
1768          * Update LPCR:HR and UPRT as they may not be set properly in
1769          * the stream
1770          */
1771         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1772                             LPCR_HR | LPCR_UPRT);
1773 
1774         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1775         if (err) {
1776             error_report("Process table config unsupported by the host");
1777             return -EINVAL;
1778         }
1779     }
1780 
1781     err = spapr_irq_post_load(spapr, version_id);
1782     if (err) {
1783         return err;
1784     }
1785 
1786     return err;
1787 }
1788 
1789 static int spapr_pre_save(void *opaque)
1790 {
1791     int rc;
1792 
1793     rc = spapr_caps_pre_save(opaque);
1794     if (rc) {
1795         return rc;
1796     }
1797 
1798     return 0;
1799 }
1800 
1801 static bool version_before_3(void *opaque, int version_id)
1802 {
1803     return version_id < 3;
1804 }
1805 
1806 static bool spapr_pending_events_needed(void *opaque)
1807 {
1808     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1809     return !QTAILQ_EMPTY(&spapr->pending_events);
1810 }
1811 
1812 static const VMStateDescription vmstate_spapr_event_entry = {
1813     .name = "spapr_event_log_entry",
1814     .version_id = 1,
1815     .minimum_version_id = 1,
1816     .fields = (VMStateField[]) {
1817         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1818         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1819         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1820                                      NULL, extended_length),
1821         VMSTATE_END_OF_LIST()
1822     },
1823 };
1824 
1825 static const VMStateDescription vmstate_spapr_pending_events = {
1826     .name = "spapr_pending_events",
1827     .version_id = 1,
1828     .minimum_version_id = 1,
1829     .needed = spapr_pending_events_needed,
1830     .fields = (VMStateField[]) {
1831         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1832                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1833         VMSTATE_END_OF_LIST()
1834     },
1835 };
1836 
1837 static bool spapr_ov5_cas_needed(void *opaque)
1838 {
1839     SpaprMachineState *spapr = opaque;
1840     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1841     bool cas_needed;
1842 
1843     /* Prior to the introduction of SpaprOptionVector, we had two option
1844      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1845      * Both of these options encode machine topology into the device-tree
1846      * in such a way that the now-booted OS should still be able to interact
1847      * appropriately with QEMU regardless of what options were actually
1848      * negotiatied on the source side.
1849      *
1850      * As such, we can avoid migrating the CAS-negotiated options if these
1851      * are the only options available on the current machine/platform.
1852      * Since these are the only options available for pseries-2.7 and
1853      * earlier, this allows us to maintain old->new/new->old migration
1854      * compatibility.
1855      *
1856      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1857      * via default pseries-2.8 machines and explicit command-line parameters.
1858      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1859      * of the actual CAS-negotiated values to continue working properly. For
1860      * example, availability of memory unplug depends on knowing whether
1861      * OV5_HP_EVT was negotiated via CAS.
1862      *
1863      * Thus, for any cases where the set of available CAS-negotiatable
1864      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1865      * include the CAS-negotiated options in the migration stream, unless
1866      * if they affect boot time behaviour only.
1867      */
1868     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1869     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1870     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1871 
1872     /* We need extra information if we have any bits outside the mask
1873      * defined above */
1874     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1875 
1876     spapr_ovec_cleanup(ov5_mask);
1877 
1878     return cas_needed;
1879 }
1880 
1881 static const VMStateDescription vmstate_spapr_ov5_cas = {
1882     .name = "spapr_option_vector_ov5_cas",
1883     .version_id = 1,
1884     .minimum_version_id = 1,
1885     .needed = spapr_ov5_cas_needed,
1886     .fields = (VMStateField[]) {
1887         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1888                                  vmstate_spapr_ovec, SpaprOptionVector),
1889         VMSTATE_END_OF_LIST()
1890     },
1891 };
1892 
1893 static bool spapr_patb_entry_needed(void *opaque)
1894 {
1895     SpaprMachineState *spapr = opaque;
1896 
1897     return !!spapr->patb_entry;
1898 }
1899 
1900 static const VMStateDescription vmstate_spapr_patb_entry = {
1901     .name = "spapr_patb_entry",
1902     .version_id = 1,
1903     .minimum_version_id = 1,
1904     .needed = spapr_patb_entry_needed,
1905     .fields = (VMStateField[]) {
1906         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1907         VMSTATE_END_OF_LIST()
1908     },
1909 };
1910 
1911 static bool spapr_irq_map_needed(void *opaque)
1912 {
1913     SpaprMachineState *spapr = opaque;
1914 
1915     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1916 }
1917 
1918 static const VMStateDescription vmstate_spapr_irq_map = {
1919     .name = "spapr_irq_map",
1920     .version_id = 1,
1921     .minimum_version_id = 1,
1922     .needed = spapr_irq_map_needed,
1923     .fields = (VMStateField[]) {
1924         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1925         VMSTATE_END_OF_LIST()
1926     },
1927 };
1928 
1929 static bool spapr_dtb_needed(void *opaque)
1930 {
1931     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1932 
1933     return smc->update_dt_enabled;
1934 }
1935 
1936 static int spapr_dtb_pre_load(void *opaque)
1937 {
1938     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1939 
1940     g_free(spapr->fdt_blob);
1941     spapr->fdt_blob = NULL;
1942     spapr->fdt_size = 0;
1943 
1944     return 0;
1945 }
1946 
1947 static const VMStateDescription vmstate_spapr_dtb = {
1948     .name = "spapr_dtb",
1949     .version_id = 1,
1950     .minimum_version_id = 1,
1951     .needed = spapr_dtb_needed,
1952     .pre_load = spapr_dtb_pre_load,
1953     .fields = (VMStateField[]) {
1954         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1955         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1956         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1957                                      fdt_size),
1958         VMSTATE_END_OF_LIST()
1959     },
1960 };
1961 
1962 static const VMStateDescription vmstate_spapr = {
1963     .name = "spapr",
1964     .version_id = 3,
1965     .minimum_version_id = 1,
1966     .pre_load = spapr_pre_load,
1967     .post_load = spapr_post_load,
1968     .pre_save = spapr_pre_save,
1969     .fields = (VMStateField[]) {
1970         /* used to be @next_irq */
1971         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1972 
1973         /* RTC offset */
1974         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1975 
1976         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1977         VMSTATE_END_OF_LIST()
1978     },
1979     .subsections = (const VMStateDescription*[]) {
1980         &vmstate_spapr_ov5_cas,
1981         &vmstate_spapr_patb_entry,
1982         &vmstate_spapr_pending_events,
1983         &vmstate_spapr_cap_htm,
1984         &vmstate_spapr_cap_vsx,
1985         &vmstate_spapr_cap_dfp,
1986         &vmstate_spapr_cap_cfpc,
1987         &vmstate_spapr_cap_sbbc,
1988         &vmstate_spapr_cap_ibs,
1989         &vmstate_spapr_cap_hpt_maxpagesize,
1990         &vmstate_spapr_irq_map,
1991         &vmstate_spapr_cap_nested_kvm_hv,
1992         &vmstate_spapr_dtb,
1993         &vmstate_spapr_cap_large_decr,
1994         &vmstate_spapr_cap_ccf_assist,
1995         NULL
1996     }
1997 };
1998 
1999 static int htab_save_setup(QEMUFile *f, void *opaque)
2000 {
2001     SpaprMachineState *spapr = opaque;
2002 
2003     /* "Iteration" header */
2004     if (!spapr->htab_shift) {
2005         qemu_put_be32(f, -1);
2006     } else {
2007         qemu_put_be32(f, spapr->htab_shift);
2008     }
2009 
2010     if (spapr->htab) {
2011         spapr->htab_save_index = 0;
2012         spapr->htab_first_pass = true;
2013     } else {
2014         if (spapr->htab_shift) {
2015             assert(kvm_enabled());
2016         }
2017     }
2018 
2019 
2020     return 0;
2021 }
2022 
2023 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2024                             int chunkstart, int n_valid, int n_invalid)
2025 {
2026     qemu_put_be32(f, chunkstart);
2027     qemu_put_be16(f, n_valid);
2028     qemu_put_be16(f, n_invalid);
2029     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2030                     HASH_PTE_SIZE_64 * n_valid);
2031 }
2032 
2033 static void htab_save_end_marker(QEMUFile *f)
2034 {
2035     qemu_put_be32(f, 0);
2036     qemu_put_be16(f, 0);
2037     qemu_put_be16(f, 0);
2038 }
2039 
2040 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2041                                  int64_t max_ns)
2042 {
2043     bool has_timeout = max_ns != -1;
2044     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2045     int index = spapr->htab_save_index;
2046     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2047 
2048     assert(spapr->htab_first_pass);
2049 
2050     do {
2051         int chunkstart;
2052 
2053         /* Consume invalid HPTEs */
2054         while ((index < htabslots)
2055                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2056             CLEAN_HPTE(HPTE(spapr->htab, index));
2057             index++;
2058         }
2059 
2060         /* Consume valid HPTEs */
2061         chunkstart = index;
2062         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2063                && HPTE_VALID(HPTE(spapr->htab, index))) {
2064             CLEAN_HPTE(HPTE(spapr->htab, index));
2065             index++;
2066         }
2067 
2068         if (index > chunkstart) {
2069             int n_valid = index - chunkstart;
2070 
2071             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2072 
2073             if (has_timeout &&
2074                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2075                 break;
2076             }
2077         }
2078     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2079 
2080     if (index >= htabslots) {
2081         assert(index == htabslots);
2082         index = 0;
2083         spapr->htab_first_pass = false;
2084     }
2085     spapr->htab_save_index = index;
2086 }
2087 
2088 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2089                                 int64_t max_ns)
2090 {
2091     bool final = max_ns < 0;
2092     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2093     int examined = 0, sent = 0;
2094     int index = spapr->htab_save_index;
2095     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2096 
2097     assert(!spapr->htab_first_pass);
2098 
2099     do {
2100         int chunkstart, invalidstart;
2101 
2102         /* Consume non-dirty HPTEs */
2103         while ((index < htabslots)
2104                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2105             index++;
2106             examined++;
2107         }
2108 
2109         chunkstart = index;
2110         /* Consume valid dirty HPTEs */
2111         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2112                && HPTE_DIRTY(HPTE(spapr->htab, index))
2113                && HPTE_VALID(HPTE(spapr->htab, index))) {
2114             CLEAN_HPTE(HPTE(spapr->htab, index));
2115             index++;
2116             examined++;
2117         }
2118 
2119         invalidstart = index;
2120         /* Consume invalid dirty HPTEs */
2121         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2122                && HPTE_DIRTY(HPTE(spapr->htab, index))
2123                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2124             CLEAN_HPTE(HPTE(spapr->htab, index));
2125             index++;
2126             examined++;
2127         }
2128 
2129         if (index > chunkstart) {
2130             int n_valid = invalidstart - chunkstart;
2131             int n_invalid = index - invalidstart;
2132 
2133             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2134             sent += index - chunkstart;
2135 
2136             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2137                 break;
2138             }
2139         }
2140 
2141         if (examined >= htabslots) {
2142             break;
2143         }
2144 
2145         if (index >= htabslots) {
2146             assert(index == htabslots);
2147             index = 0;
2148         }
2149     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2150 
2151     if (index >= htabslots) {
2152         assert(index == htabslots);
2153         index = 0;
2154     }
2155 
2156     spapr->htab_save_index = index;
2157 
2158     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2159 }
2160 
2161 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2162 #define MAX_KVM_BUF_SIZE    2048
2163 
2164 static int htab_save_iterate(QEMUFile *f, void *opaque)
2165 {
2166     SpaprMachineState *spapr = opaque;
2167     int fd;
2168     int rc = 0;
2169 
2170     /* Iteration header */
2171     if (!spapr->htab_shift) {
2172         qemu_put_be32(f, -1);
2173         return 1;
2174     } else {
2175         qemu_put_be32(f, 0);
2176     }
2177 
2178     if (!spapr->htab) {
2179         assert(kvm_enabled());
2180 
2181         fd = get_htab_fd(spapr);
2182         if (fd < 0) {
2183             return fd;
2184         }
2185 
2186         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2187         if (rc < 0) {
2188             return rc;
2189         }
2190     } else  if (spapr->htab_first_pass) {
2191         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2192     } else {
2193         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2194     }
2195 
2196     htab_save_end_marker(f);
2197 
2198     return rc;
2199 }
2200 
2201 static int htab_save_complete(QEMUFile *f, void *opaque)
2202 {
2203     SpaprMachineState *spapr = opaque;
2204     int fd;
2205 
2206     /* Iteration header */
2207     if (!spapr->htab_shift) {
2208         qemu_put_be32(f, -1);
2209         return 0;
2210     } else {
2211         qemu_put_be32(f, 0);
2212     }
2213 
2214     if (!spapr->htab) {
2215         int rc;
2216 
2217         assert(kvm_enabled());
2218 
2219         fd = get_htab_fd(spapr);
2220         if (fd < 0) {
2221             return fd;
2222         }
2223 
2224         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2225         if (rc < 0) {
2226             return rc;
2227         }
2228     } else {
2229         if (spapr->htab_first_pass) {
2230             htab_save_first_pass(f, spapr, -1);
2231         }
2232         htab_save_later_pass(f, spapr, -1);
2233     }
2234 
2235     /* End marker */
2236     htab_save_end_marker(f);
2237 
2238     return 0;
2239 }
2240 
2241 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2242 {
2243     SpaprMachineState *spapr = opaque;
2244     uint32_t section_hdr;
2245     int fd = -1;
2246     Error *local_err = NULL;
2247 
2248     if (version_id < 1 || version_id > 1) {
2249         error_report("htab_load() bad version");
2250         return -EINVAL;
2251     }
2252 
2253     section_hdr = qemu_get_be32(f);
2254 
2255     if (section_hdr == -1) {
2256         spapr_free_hpt(spapr);
2257         return 0;
2258     }
2259 
2260     if (section_hdr) {
2261         /* First section gives the htab size */
2262         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2263         if (local_err) {
2264             error_report_err(local_err);
2265             return -EINVAL;
2266         }
2267         return 0;
2268     }
2269 
2270     if (!spapr->htab) {
2271         assert(kvm_enabled());
2272 
2273         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2274         if (fd < 0) {
2275             error_report_err(local_err);
2276             return fd;
2277         }
2278     }
2279 
2280     while (true) {
2281         uint32_t index;
2282         uint16_t n_valid, n_invalid;
2283 
2284         index = qemu_get_be32(f);
2285         n_valid = qemu_get_be16(f);
2286         n_invalid = qemu_get_be16(f);
2287 
2288         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2289             /* End of Stream */
2290             break;
2291         }
2292 
2293         if ((index + n_valid + n_invalid) >
2294             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2295             /* Bad index in stream */
2296             error_report(
2297                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2298                 index, n_valid, n_invalid, spapr->htab_shift);
2299             return -EINVAL;
2300         }
2301 
2302         if (spapr->htab) {
2303             if (n_valid) {
2304                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2305                                 HASH_PTE_SIZE_64 * n_valid);
2306             }
2307             if (n_invalid) {
2308                 memset(HPTE(spapr->htab, index + n_valid), 0,
2309                        HASH_PTE_SIZE_64 * n_invalid);
2310             }
2311         } else {
2312             int rc;
2313 
2314             assert(fd >= 0);
2315 
2316             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2317             if (rc < 0) {
2318                 return rc;
2319             }
2320         }
2321     }
2322 
2323     if (!spapr->htab) {
2324         assert(fd >= 0);
2325         close(fd);
2326     }
2327 
2328     return 0;
2329 }
2330 
2331 static void htab_save_cleanup(void *opaque)
2332 {
2333     SpaprMachineState *spapr = opaque;
2334 
2335     close_htab_fd(spapr);
2336 }
2337 
2338 static SaveVMHandlers savevm_htab_handlers = {
2339     .save_setup = htab_save_setup,
2340     .save_live_iterate = htab_save_iterate,
2341     .save_live_complete_precopy = htab_save_complete,
2342     .save_cleanup = htab_save_cleanup,
2343     .load_state = htab_load,
2344 };
2345 
2346 static void spapr_boot_set(void *opaque, const char *boot_device,
2347                            Error **errp)
2348 {
2349     MachineState *machine = MACHINE(opaque);
2350     machine->boot_order = g_strdup(boot_device);
2351 }
2352 
2353 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2354 {
2355     MachineState *machine = MACHINE(spapr);
2356     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2357     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2358     int i;
2359 
2360     for (i = 0; i < nr_lmbs; i++) {
2361         uint64_t addr;
2362 
2363         addr = i * lmb_size + machine->device_memory->base;
2364         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2365                                addr / lmb_size);
2366     }
2367 }
2368 
2369 /*
2370  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2371  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2372  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2373  */
2374 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2375 {
2376     int i;
2377 
2378     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2379         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2380                    " is not aligned to %" PRIu64 " MiB",
2381                    machine->ram_size,
2382                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2383         return;
2384     }
2385 
2386     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2387         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2388                    " is not aligned to %" PRIu64 " MiB",
2389                    machine->ram_size,
2390                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2391         return;
2392     }
2393 
2394     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2395         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2396             error_setg(errp,
2397                        "Node %d memory size 0x%" PRIx64
2398                        " is not aligned to %" PRIu64 " MiB",
2399                        i, machine->numa_state->nodes[i].node_mem,
2400                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2401             return;
2402         }
2403     }
2404 }
2405 
2406 /* find cpu slot in machine->possible_cpus by core_id */
2407 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2408 {
2409     int index = id / ms->smp.threads;
2410 
2411     if (index >= ms->possible_cpus->len) {
2412         return NULL;
2413     }
2414     if (idx) {
2415         *idx = index;
2416     }
2417     return &ms->possible_cpus->cpus[index];
2418 }
2419 
2420 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2421 {
2422     MachineState *ms = MACHINE(spapr);
2423     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2424     Error *local_err = NULL;
2425     bool vsmt_user = !!spapr->vsmt;
2426     int kvm_smt = kvmppc_smt_threads();
2427     int ret;
2428     unsigned int smp_threads = ms->smp.threads;
2429 
2430     if (!kvm_enabled() && (smp_threads > 1)) {
2431         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2432                      "on a pseries machine");
2433         goto out;
2434     }
2435     if (!is_power_of_2(smp_threads)) {
2436         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2437                      "machine because it must be a power of 2", smp_threads);
2438         goto out;
2439     }
2440 
2441     /* Detemine the VSMT mode to use: */
2442     if (vsmt_user) {
2443         if (spapr->vsmt < smp_threads) {
2444             error_setg(&local_err, "Cannot support VSMT mode %d"
2445                          " because it must be >= threads/core (%d)",
2446                          spapr->vsmt, smp_threads);
2447             goto out;
2448         }
2449         /* In this case, spapr->vsmt has been set by the command line */
2450     } else if (!smc->smp_threads_vsmt) {
2451         /*
2452          * Default VSMT value is tricky, because we need it to be as
2453          * consistent as possible (for migration), but this requires
2454          * changing it for at least some existing cases.  We pick 8 as
2455          * the value that we'd get with KVM on POWER8, the
2456          * overwhelmingly common case in production systems.
2457          */
2458         spapr->vsmt = MAX(8, smp_threads);
2459     } else {
2460         spapr->vsmt = smp_threads;
2461     }
2462 
2463     /* KVM: If necessary, set the SMT mode: */
2464     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2465         ret = kvmppc_set_smt_threads(spapr->vsmt);
2466         if (ret) {
2467             /* Looks like KVM isn't able to change VSMT mode */
2468             error_setg(&local_err,
2469                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2470                        spapr->vsmt, ret);
2471             /* We can live with that if the default one is big enough
2472              * for the number of threads, and a submultiple of the one
2473              * we want.  In this case we'll waste some vcpu ids, but
2474              * behaviour will be correct */
2475             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2476                 warn_report_err(local_err);
2477                 local_err = NULL;
2478                 goto out;
2479             } else {
2480                 if (!vsmt_user) {
2481                     error_append_hint(&local_err,
2482                                       "On PPC, a VM with %d threads/core"
2483                                       " on a host with %d threads/core"
2484                                       " requires the use of VSMT mode %d.\n",
2485                                       smp_threads, kvm_smt, spapr->vsmt);
2486                 }
2487                 kvmppc_error_append_smt_possible_hint(&local_err);
2488                 goto out;
2489             }
2490         }
2491     }
2492     /* else TCG: nothing to do currently */
2493 out:
2494     error_propagate(errp, local_err);
2495 }
2496 
2497 static void spapr_init_cpus(SpaprMachineState *spapr)
2498 {
2499     MachineState *machine = MACHINE(spapr);
2500     MachineClass *mc = MACHINE_GET_CLASS(machine);
2501     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2502     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2503     const CPUArchIdList *possible_cpus;
2504     unsigned int smp_cpus = machine->smp.cpus;
2505     unsigned int smp_threads = machine->smp.threads;
2506     unsigned int max_cpus = machine->smp.max_cpus;
2507     int boot_cores_nr = smp_cpus / smp_threads;
2508     int i;
2509 
2510     possible_cpus = mc->possible_cpu_arch_ids(machine);
2511     if (mc->has_hotpluggable_cpus) {
2512         if (smp_cpus % smp_threads) {
2513             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2514                          smp_cpus, smp_threads);
2515             exit(1);
2516         }
2517         if (max_cpus % smp_threads) {
2518             error_report("max_cpus (%u) must be multiple of threads (%u)",
2519                          max_cpus, smp_threads);
2520             exit(1);
2521         }
2522     } else {
2523         if (max_cpus != smp_cpus) {
2524             error_report("This machine version does not support CPU hotplug");
2525             exit(1);
2526         }
2527         boot_cores_nr = possible_cpus->len;
2528     }
2529 
2530     if (smc->pre_2_10_has_unused_icps) {
2531         int i;
2532 
2533         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2534             /* Dummy entries get deregistered when real ICPState objects
2535              * are registered during CPU core hotplug.
2536              */
2537             pre_2_10_vmstate_register_dummy_icp(i);
2538         }
2539     }
2540 
2541     for (i = 0; i < possible_cpus->len; i++) {
2542         int core_id = i * smp_threads;
2543 
2544         if (mc->has_hotpluggable_cpus) {
2545             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2546                                    spapr_vcpu_id(spapr, core_id));
2547         }
2548 
2549         if (i < boot_cores_nr) {
2550             Object *core  = object_new(type);
2551             int nr_threads = smp_threads;
2552 
2553             /* Handle the partially filled core for older machine types */
2554             if ((i + 1) * smp_threads >= smp_cpus) {
2555                 nr_threads = smp_cpus - i * smp_threads;
2556             }
2557 
2558             object_property_set_int(core, nr_threads, "nr-threads",
2559                                     &error_fatal);
2560             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2561                                     &error_fatal);
2562             object_property_set_bool(core, true, "realized", &error_fatal);
2563 
2564             object_unref(core);
2565         }
2566     }
2567 }
2568 
2569 static PCIHostState *spapr_create_default_phb(void)
2570 {
2571     DeviceState *dev;
2572 
2573     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2574     qdev_prop_set_uint32(dev, "index", 0);
2575     qdev_init_nofail(dev);
2576 
2577     return PCI_HOST_BRIDGE(dev);
2578 }
2579 
2580 /* pSeries LPAR / sPAPR hardware init */
2581 static void spapr_machine_init(MachineState *machine)
2582 {
2583     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2584     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2585     const char *kernel_filename = machine->kernel_filename;
2586     const char *initrd_filename = machine->initrd_filename;
2587     PCIHostState *phb;
2588     int i;
2589     MemoryRegion *sysmem = get_system_memory();
2590     MemoryRegion *ram = g_new(MemoryRegion, 1);
2591     hwaddr node0_size = spapr_node0_size(machine);
2592     long load_limit, fw_size;
2593     char *filename;
2594     Error *resize_hpt_err = NULL;
2595 
2596     msi_nonbroken = true;
2597 
2598     QLIST_INIT(&spapr->phbs);
2599     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2600 
2601     /* Determine capabilities to run with */
2602     spapr_caps_init(spapr);
2603 
2604     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2605     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2606         /*
2607          * If the user explicitly requested a mode we should either
2608          * supply it, or fail completely (which we do below).  But if
2609          * it's not set explicitly, we reset our mode to something
2610          * that works
2611          */
2612         if (resize_hpt_err) {
2613             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2614             error_free(resize_hpt_err);
2615             resize_hpt_err = NULL;
2616         } else {
2617             spapr->resize_hpt = smc->resize_hpt_default;
2618         }
2619     }
2620 
2621     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2622 
2623     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2624         /*
2625          * User requested HPT resize, but this host can't supply it.  Bail out
2626          */
2627         error_report_err(resize_hpt_err);
2628         exit(1);
2629     }
2630 
2631     spapr->rma_size = node0_size;
2632 
2633     /* With KVM, we don't actually know whether KVM supports an
2634      * unbounded RMA (PR KVM) or is limited by the hash table size
2635      * (HV KVM using VRMA), so we always assume the latter
2636      *
2637      * In that case, we also limit the initial allocations for RTAS
2638      * etc... to 256M since we have no way to know what the VRMA size
2639      * is going to be as it depends on the size of the hash table
2640      * which isn't determined yet.
2641      */
2642     if (kvm_enabled()) {
2643         spapr->vrma_adjust = 1;
2644         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2645     }
2646 
2647     /* Actually we don't support unbounded RMA anymore since we added
2648      * proper emulation of HV mode. The max we can get is 16G which
2649      * also happens to be what we configure for PAPR mode so make sure
2650      * we don't do anything bigger than that
2651      */
2652     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2653 
2654     if (spapr->rma_size > node0_size) {
2655         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2656                      spapr->rma_size);
2657         exit(1);
2658     }
2659 
2660     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2661     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2662 
2663     /*
2664      * VSMT must be set in order to be able to compute VCPU ids, ie to
2665      * call spapr_max_server_number() or spapr_vcpu_id().
2666      */
2667     spapr_set_vsmt_mode(spapr, &error_fatal);
2668 
2669     /* Set up Interrupt Controller before we create the VCPUs */
2670     spapr_irq_init(spapr, &error_fatal);
2671 
2672     /* Set up containers for ibm,client-architecture-support negotiated options
2673      */
2674     spapr->ov5 = spapr_ovec_new();
2675     spapr->ov5_cas = spapr_ovec_new();
2676 
2677     if (smc->dr_lmb_enabled) {
2678         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2679         spapr_validate_node_memory(machine, &error_fatal);
2680     }
2681 
2682     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2683 
2684     /* advertise support for dedicated HP event source to guests */
2685     if (spapr->use_hotplug_event_source) {
2686         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2687     }
2688 
2689     /* advertise support for HPT resizing */
2690     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2691         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2692     }
2693 
2694     /* advertise support for ibm,dyamic-memory-v2 */
2695     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2696 
2697     /* advertise XIVE on POWER9 machines */
2698     if (spapr->irq->xive) {
2699         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2700     }
2701 
2702     /* init CPUs */
2703     spapr_init_cpus(spapr);
2704 
2705     /*
2706      * check we don't have a memory-less/cpu-less NUMA node
2707      * Firmware relies on the existing memory/cpu topology to provide the
2708      * NUMA topology to the kernel.
2709      * And the linux kernel needs to know the NUMA topology at start
2710      * to be able to hotplug CPUs later.
2711      */
2712     if (machine->numa_state->num_nodes) {
2713         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2714             /* check for memory-less node */
2715             if (machine->numa_state->nodes[i].node_mem == 0) {
2716                 CPUState *cs;
2717                 int found = 0;
2718                 /* check for cpu-less node */
2719                 CPU_FOREACH(cs) {
2720                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2721                     if (cpu->node_id == i) {
2722                         found = 1;
2723                         break;
2724                     }
2725                 }
2726                 /* memory-less and cpu-less node */
2727                 if (!found) {
2728                     error_report(
2729                        "Memory-less/cpu-less nodes are not supported (node %d)",
2730                                  i);
2731                     exit(1);
2732                 }
2733             }
2734         }
2735 
2736     }
2737 
2738     /*
2739      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2740      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2741      * called from vPHB reset handler so we initialize the counter here.
2742      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2743      * must be equally distant from any other node.
2744      * The final value of spapr->gpu_numa_id is going to be written to
2745      * max-associativity-domains in spapr_build_fdt().
2746      */
2747     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2748 
2749     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2750         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2751                               spapr->max_compat_pvr)) {
2752         /* KVM and TCG always allow GTSE with radix... */
2753         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2754     }
2755     /* ... but not with hash (currently). */
2756 
2757     if (kvm_enabled()) {
2758         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2759         kvmppc_enable_logical_ci_hcalls();
2760         kvmppc_enable_set_mode_hcall();
2761 
2762         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2763         kvmppc_enable_clear_ref_mod_hcalls();
2764 
2765         /* Enable H_PAGE_INIT */
2766         kvmppc_enable_h_page_init();
2767     }
2768 
2769     /* allocate RAM */
2770     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2771                                          machine->ram_size);
2772     memory_region_add_subregion(sysmem, 0, ram);
2773 
2774     /* always allocate the device memory information */
2775     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2776 
2777     /* initialize hotplug memory address space */
2778     if (machine->ram_size < machine->maxram_size) {
2779         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2780         /*
2781          * Limit the number of hotpluggable memory slots to half the number
2782          * slots that KVM supports, leaving the other half for PCI and other
2783          * devices. However ensure that number of slots doesn't drop below 32.
2784          */
2785         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2786                            SPAPR_MAX_RAM_SLOTS;
2787 
2788         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2789             max_memslots = SPAPR_MAX_RAM_SLOTS;
2790         }
2791         if (machine->ram_slots > max_memslots) {
2792             error_report("Specified number of memory slots %"
2793                          PRIu64" exceeds max supported %d",
2794                          machine->ram_slots, max_memslots);
2795             exit(1);
2796         }
2797 
2798         machine->device_memory->base = ROUND_UP(machine->ram_size,
2799                                                 SPAPR_DEVICE_MEM_ALIGN);
2800         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2801                            "device-memory", device_mem_size);
2802         memory_region_add_subregion(sysmem, machine->device_memory->base,
2803                                     &machine->device_memory->mr);
2804     }
2805 
2806     if (smc->dr_lmb_enabled) {
2807         spapr_create_lmb_dr_connectors(spapr);
2808     }
2809 
2810     /* Set up RTAS event infrastructure */
2811     spapr_events_init(spapr);
2812 
2813     /* Set up the RTC RTAS interfaces */
2814     spapr_rtc_create(spapr);
2815 
2816     /* Set up VIO bus */
2817     spapr->vio_bus = spapr_vio_bus_init();
2818 
2819     for (i = 0; i < serial_max_hds(); i++) {
2820         if (serial_hd(i)) {
2821             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2822         }
2823     }
2824 
2825     /* We always have at least the nvram device on VIO */
2826     spapr_create_nvram(spapr);
2827 
2828     /*
2829      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2830      * connectors (described in root DT node's "ibm,drc-types" property)
2831      * are pre-initialized here. additional child connectors (such as
2832      * connectors for a PHBs PCI slots) are added as needed during their
2833      * parent's realization.
2834      */
2835     if (smc->dr_phb_enabled) {
2836         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2837             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2838         }
2839     }
2840 
2841     /* Set up PCI */
2842     spapr_pci_rtas_init();
2843 
2844     phb = spapr_create_default_phb();
2845 
2846     for (i = 0; i < nb_nics; i++) {
2847         NICInfo *nd = &nd_table[i];
2848 
2849         if (!nd->model) {
2850             nd->model = g_strdup("spapr-vlan");
2851         }
2852 
2853         if (g_str_equal(nd->model, "spapr-vlan") ||
2854             g_str_equal(nd->model, "ibmveth")) {
2855             spapr_vlan_create(spapr->vio_bus, nd);
2856         } else {
2857             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2858         }
2859     }
2860 
2861     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2862         spapr_vscsi_create(spapr->vio_bus);
2863     }
2864 
2865     /* Graphics */
2866     if (spapr_vga_init(phb->bus, &error_fatal)) {
2867         spapr->has_graphics = true;
2868         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2869     }
2870 
2871     if (machine->usb) {
2872         if (smc->use_ohci_by_default) {
2873             pci_create_simple(phb->bus, -1, "pci-ohci");
2874         } else {
2875             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2876         }
2877 
2878         if (spapr->has_graphics) {
2879             USBBus *usb_bus = usb_bus_find(-1);
2880 
2881             usb_create_simple(usb_bus, "usb-kbd");
2882             usb_create_simple(usb_bus, "usb-mouse");
2883         }
2884     }
2885 
2886     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2887         error_report(
2888             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2889             MIN_RMA_SLOF);
2890         exit(1);
2891     }
2892 
2893     if (kernel_filename) {
2894         uint64_t lowaddr = 0;
2895 
2896         spapr->kernel_size = load_elf(kernel_filename, NULL,
2897                                       translate_kernel_address, NULL,
2898                                       NULL, &lowaddr, NULL, 1,
2899                                       PPC_ELF_MACHINE, 0, 0);
2900         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2901             spapr->kernel_size = load_elf(kernel_filename, NULL,
2902                                           translate_kernel_address, NULL, NULL,
2903                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2904                                           0, 0);
2905             spapr->kernel_le = spapr->kernel_size > 0;
2906         }
2907         if (spapr->kernel_size < 0) {
2908             error_report("error loading %s: %s", kernel_filename,
2909                          load_elf_strerror(spapr->kernel_size));
2910             exit(1);
2911         }
2912 
2913         /* load initrd */
2914         if (initrd_filename) {
2915             /* Try to locate the initrd in the gap between the kernel
2916              * and the firmware. Add a bit of space just in case
2917              */
2918             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2919                                   + 0x1ffff) & ~0xffff;
2920             spapr->initrd_size = load_image_targphys(initrd_filename,
2921                                                      spapr->initrd_base,
2922                                                      load_limit
2923                                                      - spapr->initrd_base);
2924             if (spapr->initrd_size < 0) {
2925                 error_report("could not load initial ram disk '%s'",
2926                              initrd_filename);
2927                 exit(1);
2928             }
2929         }
2930     }
2931 
2932     if (bios_name == NULL) {
2933         bios_name = FW_FILE_NAME;
2934     }
2935     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2936     if (!filename) {
2937         error_report("Could not find LPAR firmware '%s'", bios_name);
2938         exit(1);
2939     }
2940     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2941     if (fw_size <= 0) {
2942         error_report("Could not load LPAR firmware '%s'", filename);
2943         exit(1);
2944     }
2945     g_free(filename);
2946 
2947     /* FIXME: Should register things through the MachineState's qdev
2948      * interface, this is a legacy from the sPAPREnvironment structure
2949      * which predated MachineState but had a similar function */
2950     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2951     register_savevm_live("spapr/htab", -1, 1,
2952                          &savevm_htab_handlers, spapr);
2953 
2954     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
2955                              &error_fatal);
2956 
2957     qemu_register_boot_set(spapr_boot_set, spapr);
2958 
2959     /*
2960      * Nothing needs to be done to resume a suspended guest because
2961      * suspending does not change the machine state, so no need for
2962      * a ->wakeup method.
2963      */
2964     qemu_register_wakeup_support();
2965 
2966     if (kvm_enabled()) {
2967         /* to stop and start vmclock */
2968         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2969                                          &spapr->tb);
2970 
2971         kvmppc_spapr_enable_inkernel_multitce();
2972     }
2973 }
2974 
2975 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
2976 {
2977     if (!vm_type) {
2978         return 0;
2979     }
2980 
2981     if (!strcmp(vm_type, "HV")) {
2982         return 1;
2983     }
2984 
2985     if (!strcmp(vm_type, "PR")) {
2986         return 2;
2987     }
2988 
2989     error_report("Unknown kvm-type specified '%s'", vm_type);
2990     exit(1);
2991 }
2992 
2993 /*
2994  * Implementation of an interface to adjust firmware path
2995  * for the bootindex property handling.
2996  */
2997 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2998                                    DeviceState *dev)
2999 {
3000 #define CAST(type, obj, name) \
3001     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3002     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3003     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3004     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3005 
3006     if (d) {
3007         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3008         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3009         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3010 
3011         if (spapr) {
3012             /*
3013              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3014              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3015              * 0x8000 | (target << 8) | (bus << 5) | lun
3016              * (see the "Logical unit addressing format" table in SAM5)
3017              */
3018             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3019             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3020                                    (uint64_t)id << 48);
3021         } else if (virtio) {
3022             /*
3023              * We use SRP luns of the form 01000000 | (target << 8) | lun
3024              * in the top 32 bits of the 64-bit LUN
3025              * Note: the quote above is from SLOF and it is wrong,
3026              * the actual binding is:
3027              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3028              */
3029             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3030             if (d->lun >= 256) {
3031                 /* Use the LUN "flat space addressing method" */
3032                 id |= 0x4000;
3033             }
3034             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3035                                    (uint64_t)id << 32);
3036         } else if (usb) {
3037             /*
3038              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3039              * in the top 32 bits of the 64-bit LUN
3040              */
3041             unsigned usb_port = atoi(usb->port->path);
3042             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3043             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3044                                    (uint64_t)id << 32);
3045         }
3046     }
3047 
3048     /*
3049      * SLOF probes the USB devices, and if it recognizes that the device is a
3050      * storage device, it changes its name to "storage" instead of "usb-host",
3051      * and additionally adds a child node for the SCSI LUN, so the correct
3052      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3053      */
3054     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3055         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3056         if (usb_host_dev_is_scsi_storage(usbdev)) {
3057             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3058         }
3059     }
3060 
3061     if (phb) {
3062         /* Replace "pci" with "pci@800000020000000" */
3063         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3064     }
3065 
3066     if (vsc) {
3067         /* Same logic as virtio above */
3068         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3069         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3070     }
3071 
3072     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3073         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3074         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3075         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3076     }
3077 
3078     return NULL;
3079 }
3080 
3081 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3082 {
3083     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3084 
3085     return g_strdup(spapr->kvm_type);
3086 }
3087 
3088 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3089 {
3090     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3091 
3092     g_free(spapr->kvm_type);
3093     spapr->kvm_type = g_strdup(value);
3094 }
3095 
3096 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3097 {
3098     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3099 
3100     return spapr->use_hotplug_event_source;
3101 }
3102 
3103 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3104                                             Error **errp)
3105 {
3106     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3107 
3108     spapr->use_hotplug_event_source = value;
3109 }
3110 
3111 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3112 {
3113     return true;
3114 }
3115 
3116 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3117 {
3118     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3119 
3120     switch (spapr->resize_hpt) {
3121     case SPAPR_RESIZE_HPT_DEFAULT:
3122         return g_strdup("default");
3123     case SPAPR_RESIZE_HPT_DISABLED:
3124         return g_strdup("disabled");
3125     case SPAPR_RESIZE_HPT_ENABLED:
3126         return g_strdup("enabled");
3127     case SPAPR_RESIZE_HPT_REQUIRED:
3128         return g_strdup("required");
3129     }
3130     g_assert_not_reached();
3131 }
3132 
3133 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3134 {
3135     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3136 
3137     if (strcmp(value, "default") == 0) {
3138         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3139     } else if (strcmp(value, "disabled") == 0) {
3140         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3141     } else if (strcmp(value, "enabled") == 0) {
3142         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3143     } else if (strcmp(value, "required") == 0) {
3144         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3145     } else {
3146         error_setg(errp, "Bad value for \"resize-hpt\" property");
3147     }
3148 }
3149 
3150 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3151                                    void *opaque, Error **errp)
3152 {
3153     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3154 }
3155 
3156 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3157                                    void *opaque, Error **errp)
3158 {
3159     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3160 }
3161 
3162 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3163 {
3164     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3165 
3166     if (spapr->irq == &spapr_irq_xics_legacy) {
3167         return g_strdup("legacy");
3168     } else if (spapr->irq == &spapr_irq_xics) {
3169         return g_strdup("xics");
3170     } else if (spapr->irq == &spapr_irq_xive) {
3171         return g_strdup("xive");
3172     } else if (spapr->irq == &spapr_irq_dual) {
3173         return g_strdup("dual");
3174     }
3175     g_assert_not_reached();
3176 }
3177 
3178 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3179 {
3180     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3181 
3182     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3183         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3184         return;
3185     }
3186 
3187     /* The legacy IRQ backend can not be set */
3188     if (strcmp(value, "xics") == 0) {
3189         spapr->irq = &spapr_irq_xics;
3190     } else if (strcmp(value, "xive") == 0) {
3191         spapr->irq = &spapr_irq_xive;
3192     } else if (strcmp(value, "dual") == 0) {
3193         spapr->irq = &spapr_irq_dual;
3194     } else {
3195         error_setg(errp, "Bad value for \"ic-mode\" property");
3196     }
3197 }
3198 
3199 static char *spapr_get_host_model(Object *obj, Error **errp)
3200 {
3201     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3202 
3203     return g_strdup(spapr->host_model);
3204 }
3205 
3206 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3207 {
3208     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3209 
3210     g_free(spapr->host_model);
3211     spapr->host_model = g_strdup(value);
3212 }
3213 
3214 static char *spapr_get_host_serial(Object *obj, Error **errp)
3215 {
3216     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3217 
3218     return g_strdup(spapr->host_serial);
3219 }
3220 
3221 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3222 {
3223     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3224 
3225     g_free(spapr->host_serial);
3226     spapr->host_serial = g_strdup(value);
3227 }
3228 
3229 static void spapr_instance_init(Object *obj)
3230 {
3231     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3232     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3233 
3234     spapr->htab_fd = -1;
3235     spapr->use_hotplug_event_source = true;
3236     object_property_add_str(obj, "kvm-type",
3237                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3238     object_property_set_description(obj, "kvm-type",
3239                                     "Specifies the KVM virtualization mode (HV, PR)",
3240                                     NULL);
3241     object_property_add_bool(obj, "modern-hotplug-events",
3242                             spapr_get_modern_hotplug_events,
3243                             spapr_set_modern_hotplug_events,
3244                             NULL);
3245     object_property_set_description(obj, "modern-hotplug-events",
3246                                     "Use dedicated hotplug event mechanism in"
3247                                     " place of standard EPOW events when possible"
3248                                     " (required for memory hot-unplug support)",
3249                                     NULL);
3250     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3251                             "Maximum permitted CPU compatibility mode",
3252                             &error_fatal);
3253 
3254     object_property_add_str(obj, "resize-hpt",
3255                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3256     object_property_set_description(obj, "resize-hpt",
3257                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3258                                     NULL);
3259     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3260                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3261     object_property_set_description(obj, "vsmt",
3262                                     "Virtual SMT: KVM behaves as if this were"
3263                                     " the host's SMT mode", &error_abort);
3264     object_property_add_bool(obj, "vfio-no-msix-emulation",
3265                              spapr_get_msix_emulation, NULL, NULL);
3266 
3267     /* The machine class defines the default interrupt controller mode */
3268     spapr->irq = smc->irq;
3269     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3270                             spapr_set_ic_mode, NULL);
3271     object_property_set_description(obj, "ic-mode",
3272                  "Specifies the interrupt controller mode (xics, xive, dual)",
3273                  NULL);
3274 
3275     object_property_add_str(obj, "host-model",
3276         spapr_get_host_model, spapr_set_host_model,
3277         &error_abort);
3278     object_property_set_description(obj, "host-model",
3279         "Host model to advertise in guest device tree", &error_abort);
3280     object_property_add_str(obj, "host-serial",
3281         spapr_get_host_serial, spapr_set_host_serial,
3282         &error_abort);
3283     object_property_set_description(obj, "host-serial",
3284         "Host serial number to advertise in guest device tree", &error_abort);
3285 }
3286 
3287 static void spapr_machine_finalizefn(Object *obj)
3288 {
3289     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3290 
3291     g_free(spapr->kvm_type);
3292 }
3293 
3294 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3295 {
3296     cpu_synchronize_state(cs);
3297     ppc_cpu_do_system_reset(cs);
3298 }
3299 
3300 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3301 {
3302     CPUState *cs;
3303 
3304     CPU_FOREACH(cs) {
3305         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3306     }
3307 }
3308 
3309 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3310                           void *fdt, int *fdt_start_offset, Error **errp)
3311 {
3312     uint64_t addr;
3313     uint32_t node;
3314 
3315     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3316     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3317                                     &error_abort);
3318     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3319                                                    SPAPR_MEMORY_BLOCK_SIZE);
3320     return 0;
3321 }
3322 
3323 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3324                            bool dedicated_hp_event_source, Error **errp)
3325 {
3326     SpaprDrc *drc;
3327     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3328     int i;
3329     uint64_t addr = addr_start;
3330     bool hotplugged = spapr_drc_hotplugged(dev);
3331     Error *local_err = NULL;
3332 
3333     for (i = 0; i < nr_lmbs; i++) {
3334         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3335                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3336         g_assert(drc);
3337 
3338         spapr_drc_attach(drc, dev, &local_err);
3339         if (local_err) {
3340             while (addr > addr_start) {
3341                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3342                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3343                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3344                 spapr_drc_detach(drc);
3345             }
3346             error_propagate(errp, local_err);
3347             return;
3348         }
3349         if (!hotplugged) {
3350             spapr_drc_reset(drc);
3351         }
3352         addr += SPAPR_MEMORY_BLOCK_SIZE;
3353     }
3354     /* send hotplug notification to the
3355      * guest only in case of hotplugged memory
3356      */
3357     if (hotplugged) {
3358         if (dedicated_hp_event_source) {
3359             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3360                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3361             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3362                                                    nr_lmbs,
3363                                                    spapr_drc_index(drc));
3364         } else {
3365             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3366                                            nr_lmbs);
3367         }
3368     }
3369 }
3370 
3371 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3372                               Error **errp)
3373 {
3374     Error *local_err = NULL;
3375     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3376     PCDIMMDevice *dimm = PC_DIMM(dev);
3377     uint64_t size, addr;
3378 
3379     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3380 
3381     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3382     if (local_err) {
3383         goto out;
3384     }
3385 
3386     addr = object_property_get_uint(OBJECT(dimm),
3387                                     PC_DIMM_ADDR_PROP, &local_err);
3388     if (local_err) {
3389         goto out_unplug;
3390     }
3391 
3392     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3393                    &local_err);
3394     if (local_err) {
3395         goto out_unplug;
3396     }
3397 
3398     return;
3399 
3400 out_unplug:
3401     pc_dimm_unplug(dimm, MACHINE(ms));
3402 out:
3403     error_propagate(errp, local_err);
3404 }
3405 
3406 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3407                                   Error **errp)
3408 {
3409     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3410     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3411     PCDIMMDevice *dimm = PC_DIMM(dev);
3412     Error *local_err = NULL;
3413     uint64_t size;
3414     Object *memdev;
3415     hwaddr pagesize;
3416 
3417     if (!smc->dr_lmb_enabled) {
3418         error_setg(errp, "Memory hotplug not supported for this machine");
3419         return;
3420     }
3421 
3422     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3423     if (local_err) {
3424         error_propagate(errp, local_err);
3425         return;
3426     }
3427 
3428     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3429         error_setg(errp, "Hotplugged memory size must be a multiple of "
3430                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3431         return;
3432     }
3433 
3434     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3435                                       &error_abort);
3436     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3437     spapr_check_pagesize(spapr, pagesize, &local_err);
3438     if (local_err) {
3439         error_propagate(errp, local_err);
3440         return;
3441     }
3442 
3443     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3444 }
3445 
3446 struct SpaprDimmState {
3447     PCDIMMDevice *dimm;
3448     uint32_t nr_lmbs;
3449     QTAILQ_ENTRY(SpaprDimmState) next;
3450 };
3451 
3452 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3453                                                        PCDIMMDevice *dimm)
3454 {
3455     SpaprDimmState *dimm_state = NULL;
3456 
3457     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3458         if (dimm_state->dimm == dimm) {
3459             break;
3460         }
3461     }
3462     return dimm_state;
3463 }
3464 
3465 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3466                                                       uint32_t nr_lmbs,
3467                                                       PCDIMMDevice *dimm)
3468 {
3469     SpaprDimmState *ds = NULL;
3470 
3471     /*
3472      * If this request is for a DIMM whose removal had failed earlier
3473      * (due to guest's refusal to remove the LMBs), we would have this
3474      * dimm already in the pending_dimm_unplugs list. In that
3475      * case don't add again.
3476      */
3477     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3478     if (!ds) {
3479         ds = g_malloc0(sizeof(SpaprDimmState));
3480         ds->nr_lmbs = nr_lmbs;
3481         ds->dimm = dimm;
3482         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3483     }
3484     return ds;
3485 }
3486 
3487 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3488                                               SpaprDimmState *dimm_state)
3489 {
3490     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3491     g_free(dimm_state);
3492 }
3493 
3494 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3495                                                         PCDIMMDevice *dimm)
3496 {
3497     SpaprDrc *drc;
3498     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3499                                                   &error_abort);
3500     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3501     uint32_t avail_lmbs = 0;
3502     uint64_t addr_start, addr;
3503     int i;
3504 
3505     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3506                                          &error_abort);
3507 
3508     addr = addr_start;
3509     for (i = 0; i < nr_lmbs; i++) {
3510         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3511                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3512         g_assert(drc);
3513         if (drc->dev) {
3514             avail_lmbs++;
3515         }
3516         addr += SPAPR_MEMORY_BLOCK_SIZE;
3517     }
3518 
3519     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3520 }
3521 
3522 /* Callback to be called during DRC release. */
3523 void spapr_lmb_release(DeviceState *dev)
3524 {
3525     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3526     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3527     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3528 
3529     /* This information will get lost if a migration occurs
3530      * during the unplug process. In this case recover it. */
3531     if (ds == NULL) {
3532         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3533         g_assert(ds);
3534         /* The DRC being examined by the caller at least must be counted */
3535         g_assert(ds->nr_lmbs);
3536     }
3537 
3538     if (--ds->nr_lmbs) {
3539         return;
3540     }
3541 
3542     /*
3543      * Now that all the LMBs have been removed by the guest, call the
3544      * unplug handler chain. This can never fail.
3545      */
3546     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3547     object_unparent(OBJECT(dev));
3548 }
3549 
3550 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3551 {
3552     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3553     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3554 
3555     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3556     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3557     spapr_pending_dimm_unplugs_remove(spapr, ds);
3558 }
3559 
3560 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3561                                         DeviceState *dev, Error **errp)
3562 {
3563     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3564     Error *local_err = NULL;
3565     PCDIMMDevice *dimm = PC_DIMM(dev);
3566     uint32_t nr_lmbs;
3567     uint64_t size, addr_start, addr;
3568     int i;
3569     SpaprDrc *drc;
3570 
3571     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3572     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3573 
3574     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3575                                          &local_err);
3576     if (local_err) {
3577         goto out;
3578     }
3579 
3580     /*
3581      * An existing pending dimm state for this DIMM means that there is an
3582      * unplug operation in progress, waiting for the spapr_lmb_release
3583      * callback to complete the job (BQL can't cover that far). In this case,
3584      * bail out to avoid detaching DRCs that were already released.
3585      */
3586     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3587         error_setg(&local_err,
3588                    "Memory unplug already in progress for device %s",
3589                    dev->id);
3590         goto out;
3591     }
3592 
3593     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3594 
3595     addr = addr_start;
3596     for (i = 0; i < nr_lmbs; i++) {
3597         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3598                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3599         g_assert(drc);
3600 
3601         spapr_drc_detach(drc);
3602         addr += SPAPR_MEMORY_BLOCK_SIZE;
3603     }
3604 
3605     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3606                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3607     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3608                                               nr_lmbs, spapr_drc_index(drc));
3609 out:
3610     error_propagate(errp, local_err);
3611 }
3612 
3613 /* Callback to be called during DRC release. */
3614 void spapr_core_release(DeviceState *dev)
3615 {
3616     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3617 
3618     /* Call the unplug handler chain. This can never fail. */
3619     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3620     object_unparent(OBJECT(dev));
3621 }
3622 
3623 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3624 {
3625     MachineState *ms = MACHINE(hotplug_dev);
3626     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3627     CPUCore *cc = CPU_CORE(dev);
3628     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3629 
3630     if (smc->pre_2_10_has_unused_icps) {
3631         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3632         int i;
3633 
3634         for (i = 0; i < cc->nr_threads; i++) {
3635             CPUState *cs = CPU(sc->threads[i]);
3636 
3637             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3638         }
3639     }
3640 
3641     assert(core_slot);
3642     core_slot->cpu = NULL;
3643     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3644 }
3645 
3646 static
3647 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3648                                Error **errp)
3649 {
3650     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3651     int index;
3652     SpaprDrc *drc;
3653     CPUCore *cc = CPU_CORE(dev);
3654 
3655     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3656         error_setg(errp, "Unable to find CPU core with core-id: %d",
3657                    cc->core_id);
3658         return;
3659     }
3660     if (index == 0) {
3661         error_setg(errp, "Boot CPU core may not be unplugged");
3662         return;
3663     }
3664 
3665     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3666                           spapr_vcpu_id(spapr, cc->core_id));
3667     g_assert(drc);
3668 
3669     if (!spapr_drc_unplug_requested(drc)) {
3670         spapr_drc_detach(drc);
3671         spapr_hotplug_req_remove_by_index(drc);
3672     }
3673 }
3674 
3675 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3676                            void *fdt, int *fdt_start_offset, Error **errp)
3677 {
3678     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3679     CPUState *cs = CPU(core->threads[0]);
3680     PowerPCCPU *cpu = POWERPC_CPU(cs);
3681     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3682     int id = spapr_get_vcpu_id(cpu);
3683     char *nodename;
3684     int offset;
3685 
3686     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3687     offset = fdt_add_subnode(fdt, 0, nodename);
3688     g_free(nodename);
3689 
3690     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3691 
3692     *fdt_start_offset = offset;
3693     return 0;
3694 }
3695 
3696 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3697                             Error **errp)
3698 {
3699     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3700     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3701     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3702     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3703     CPUCore *cc = CPU_CORE(dev);
3704     CPUState *cs;
3705     SpaprDrc *drc;
3706     Error *local_err = NULL;
3707     CPUArchId *core_slot;
3708     int index;
3709     bool hotplugged = spapr_drc_hotplugged(dev);
3710     int i;
3711 
3712     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3713     if (!core_slot) {
3714         error_setg(errp, "Unable to find CPU core with core-id: %d",
3715                    cc->core_id);
3716         return;
3717     }
3718     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3719                           spapr_vcpu_id(spapr, cc->core_id));
3720 
3721     g_assert(drc || !mc->has_hotpluggable_cpus);
3722 
3723     if (drc) {
3724         spapr_drc_attach(drc, dev, &local_err);
3725         if (local_err) {
3726             error_propagate(errp, local_err);
3727             return;
3728         }
3729 
3730         if (hotplugged) {
3731             /*
3732              * Send hotplug notification interrupt to the guest only
3733              * in case of hotplugged CPUs.
3734              */
3735             spapr_hotplug_req_add_by_index(drc);
3736         } else {
3737             spapr_drc_reset(drc);
3738         }
3739     }
3740 
3741     core_slot->cpu = OBJECT(dev);
3742 
3743     if (smc->pre_2_10_has_unused_icps) {
3744         for (i = 0; i < cc->nr_threads; i++) {
3745             cs = CPU(core->threads[i]);
3746             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3747         }
3748     }
3749 
3750     /*
3751      * Set compatibility mode to match the boot CPU, which was either set
3752      * by the machine reset code or by CAS.
3753      */
3754     if (hotplugged) {
3755         for (i = 0; i < cc->nr_threads; i++) {
3756             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3757                            &local_err);
3758             if (local_err) {
3759                 error_propagate(errp, local_err);
3760                 return;
3761             }
3762         }
3763     }
3764 }
3765 
3766 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3767                                 Error **errp)
3768 {
3769     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3770     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3771     Error *local_err = NULL;
3772     CPUCore *cc = CPU_CORE(dev);
3773     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3774     const char *type = object_get_typename(OBJECT(dev));
3775     CPUArchId *core_slot;
3776     int index;
3777     unsigned int smp_threads = machine->smp.threads;
3778 
3779     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3780         error_setg(&local_err, "CPU hotplug not supported for this machine");
3781         goto out;
3782     }
3783 
3784     if (strcmp(base_core_type, type)) {
3785         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3786         goto out;
3787     }
3788 
3789     if (cc->core_id % smp_threads) {
3790         error_setg(&local_err, "invalid core id %d", cc->core_id);
3791         goto out;
3792     }
3793 
3794     /*
3795      * In general we should have homogeneous threads-per-core, but old
3796      * (pre hotplug support) machine types allow the last core to have
3797      * reduced threads as a compatibility hack for when we allowed
3798      * total vcpus not a multiple of threads-per-core.
3799      */
3800     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3801         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3802                    cc->nr_threads, smp_threads);
3803         goto out;
3804     }
3805 
3806     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3807     if (!core_slot) {
3808         error_setg(&local_err, "core id %d out of range", cc->core_id);
3809         goto out;
3810     }
3811 
3812     if (core_slot->cpu) {
3813         error_setg(&local_err, "core %d already populated", cc->core_id);
3814         goto out;
3815     }
3816 
3817     numa_cpu_pre_plug(core_slot, dev, &local_err);
3818 
3819 out:
3820     error_propagate(errp, local_err);
3821 }
3822 
3823 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3824                           void *fdt, int *fdt_start_offset, Error **errp)
3825 {
3826     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3827     int intc_phandle;
3828 
3829     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3830     if (intc_phandle <= 0) {
3831         return -1;
3832     }
3833 
3834     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3835         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3836         return -1;
3837     }
3838 
3839     /* generally SLOF creates these, for hotplug it's up to QEMU */
3840     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3841 
3842     return 0;
3843 }
3844 
3845 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3846                                Error **errp)
3847 {
3848     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3849     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3850     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3851     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3852 
3853     if (dev->hotplugged && !smc->dr_phb_enabled) {
3854         error_setg(errp, "PHB hotplug not supported for this machine");
3855         return;
3856     }
3857 
3858     if (sphb->index == (uint32_t)-1) {
3859         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3860         return;
3861     }
3862 
3863     /*
3864      * This will check that sphb->index doesn't exceed the maximum number of
3865      * PHBs for the current machine type.
3866      */
3867     smc->phb_placement(spapr, sphb->index,
3868                        &sphb->buid, &sphb->io_win_addr,
3869                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3870                        windows_supported, sphb->dma_liobn,
3871                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3872                        errp);
3873 }
3874 
3875 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3876                            Error **errp)
3877 {
3878     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3879     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3880     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3881     SpaprDrc *drc;
3882     bool hotplugged = spapr_drc_hotplugged(dev);
3883     Error *local_err = NULL;
3884 
3885     if (!smc->dr_phb_enabled) {
3886         return;
3887     }
3888 
3889     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3890     /* hotplug hooks should check it's enabled before getting this far */
3891     assert(drc);
3892 
3893     spapr_drc_attach(drc, DEVICE(dev), &local_err);
3894     if (local_err) {
3895         error_propagate(errp, local_err);
3896         return;
3897     }
3898 
3899     if (hotplugged) {
3900         spapr_hotplug_req_add_by_index(drc);
3901     } else {
3902         spapr_drc_reset(drc);
3903     }
3904 }
3905 
3906 void spapr_phb_release(DeviceState *dev)
3907 {
3908     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3909 
3910     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3911     object_unparent(OBJECT(dev));
3912 }
3913 
3914 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3915 {
3916     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3917 }
3918 
3919 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3920                                      DeviceState *dev, Error **errp)
3921 {
3922     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3923     SpaprDrc *drc;
3924 
3925     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3926     assert(drc);
3927 
3928     if (!spapr_drc_unplug_requested(drc)) {
3929         spapr_drc_detach(drc);
3930         spapr_hotplug_req_remove_by_index(drc);
3931     }
3932 }
3933 
3934 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3935                                  Error **errp)
3936 {
3937     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3938     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
3939 
3940     if (spapr->tpm_proxy != NULL) {
3941         error_setg(errp, "Only one TPM proxy can be specified for this machine");
3942         return;
3943     }
3944 
3945     spapr->tpm_proxy = tpm_proxy;
3946 }
3947 
3948 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3949 {
3950     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3951 
3952     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3953     object_unparent(OBJECT(dev));
3954     spapr->tpm_proxy = NULL;
3955 }
3956 
3957 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3958                                       DeviceState *dev, Error **errp)
3959 {
3960     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3961         spapr_memory_plug(hotplug_dev, dev, errp);
3962     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3963         spapr_core_plug(hotplug_dev, dev, errp);
3964     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3965         spapr_phb_plug(hotplug_dev, dev, errp);
3966     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
3967         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
3968     }
3969 }
3970 
3971 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3972                                         DeviceState *dev, Error **errp)
3973 {
3974     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3975         spapr_memory_unplug(hotplug_dev, dev);
3976     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3977         spapr_core_unplug(hotplug_dev, dev);
3978     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3979         spapr_phb_unplug(hotplug_dev, dev);
3980     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
3981         spapr_tpm_proxy_unplug(hotplug_dev, dev);
3982     }
3983 }
3984 
3985 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3986                                                 DeviceState *dev, Error **errp)
3987 {
3988     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3989     MachineClass *mc = MACHINE_GET_CLASS(sms);
3990     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3991 
3992     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3993         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3994             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3995         } else {
3996             /* NOTE: this means there is a window after guest reset, prior to
3997              * CAS negotiation, where unplug requests will fail due to the
3998              * capability not being detected yet. This is a bit different than
3999              * the case with PCI unplug, where the events will be queued and
4000              * eventually handled by the guest after boot
4001              */
4002             error_setg(errp, "Memory hot unplug not supported for this guest");
4003         }
4004     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4005         if (!mc->has_hotpluggable_cpus) {
4006             error_setg(errp, "CPU hot unplug not supported on this machine");
4007             return;
4008         }
4009         spapr_core_unplug_request(hotplug_dev, dev, errp);
4010     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4011         if (!smc->dr_phb_enabled) {
4012             error_setg(errp, "PHB hot unplug not supported on this machine");
4013             return;
4014         }
4015         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4016     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4017         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4018     }
4019 }
4020 
4021 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4022                                           DeviceState *dev, Error **errp)
4023 {
4024     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4025         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4026     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4027         spapr_core_pre_plug(hotplug_dev, dev, errp);
4028     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4029         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4030     }
4031 }
4032 
4033 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4034                                                  DeviceState *dev)
4035 {
4036     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4037         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4038         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4039         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4040         return HOTPLUG_HANDLER(machine);
4041     }
4042     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4043         PCIDevice *pcidev = PCI_DEVICE(dev);
4044         PCIBus *root = pci_device_root_bus(pcidev);
4045         SpaprPhbState *phb =
4046             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4047                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4048 
4049         if (phb) {
4050             return HOTPLUG_HANDLER(phb);
4051         }
4052     }
4053     return NULL;
4054 }
4055 
4056 static CpuInstanceProperties
4057 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4058 {
4059     CPUArchId *core_slot;
4060     MachineClass *mc = MACHINE_GET_CLASS(machine);
4061 
4062     /* make sure possible_cpu are intialized */
4063     mc->possible_cpu_arch_ids(machine);
4064     /* get CPU core slot containing thread that matches cpu_index */
4065     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4066     assert(core_slot);
4067     return core_slot->props;
4068 }
4069 
4070 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4071 {
4072     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4073 }
4074 
4075 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4076 {
4077     int i;
4078     unsigned int smp_threads = machine->smp.threads;
4079     unsigned int smp_cpus = machine->smp.cpus;
4080     const char *core_type;
4081     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4082     MachineClass *mc = MACHINE_GET_CLASS(machine);
4083 
4084     if (!mc->has_hotpluggable_cpus) {
4085         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4086     }
4087     if (machine->possible_cpus) {
4088         assert(machine->possible_cpus->len == spapr_max_cores);
4089         return machine->possible_cpus;
4090     }
4091 
4092     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4093     if (!core_type) {
4094         error_report("Unable to find sPAPR CPU Core definition");
4095         exit(1);
4096     }
4097 
4098     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4099                              sizeof(CPUArchId) * spapr_max_cores);
4100     machine->possible_cpus->len = spapr_max_cores;
4101     for (i = 0; i < machine->possible_cpus->len; i++) {
4102         int core_id = i * smp_threads;
4103 
4104         machine->possible_cpus->cpus[i].type = core_type;
4105         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4106         machine->possible_cpus->cpus[i].arch_id = core_id;
4107         machine->possible_cpus->cpus[i].props.has_core_id = true;
4108         machine->possible_cpus->cpus[i].props.core_id = core_id;
4109     }
4110     return machine->possible_cpus;
4111 }
4112 
4113 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4114                                 uint64_t *buid, hwaddr *pio,
4115                                 hwaddr *mmio32, hwaddr *mmio64,
4116                                 unsigned n_dma, uint32_t *liobns,
4117                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4118 {
4119     /*
4120      * New-style PHB window placement.
4121      *
4122      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4123      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4124      * windows.
4125      *
4126      * Some guest kernels can't work with MMIO windows above 1<<46
4127      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4128      *
4129      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4130      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4131      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4132      * 1TiB 64-bit MMIO windows for each PHB.
4133      */
4134     const uint64_t base_buid = 0x800000020000000ULL;
4135     int i;
4136 
4137     /* Sanity check natural alignments */
4138     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4139     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4140     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4141     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4142     /* Sanity check bounds */
4143     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4144                       SPAPR_PCI_MEM32_WIN_SIZE);
4145     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4146                       SPAPR_PCI_MEM64_WIN_SIZE);
4147 
4148     if (index >= SPAPR_MAX_PHBS) {
4149         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4150                    SPAPR_MAX_PHBS - 1);
4151         return;
4152     }
4153 
4154     *buid = base_buid + index;
4155     for (i = 0; i < n_dma; ++i) {
4156         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4157     }
4158 
4159     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4160     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4161     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4162 
4163     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4164     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4165 }
4166 
4167 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4168 {
4169     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4170 
4171     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4172 }
4173 
4174 static void spapr_ics_resend(XICSFabric *dev)
4175 {
4176     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4177 
4178     ics_resend(spapr->ics);
4179 }
4180 
4181 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4182 {
4183     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4184 
4185     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4186 }
4187 
4188 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4189                                  Monitor *mon)
4190 {
4191     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4192 
4193     spapr_irq_print_info(spapr, mon);
4194     monitor_printf(mon, "irqchip: %s\n",
4195                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4196 }
4197 
4198 /*
4199  * This is a XIVE only operation
4200  */
4201 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4202                            uint8_t nvt_blk, uint32_t nvt_idx,
4203                            bool cam_ignore, uint8_t priority,
4204                            uint32_t logic_serv, XiveTCTXMatch *match)
4205 {
4206     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4207     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4208     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4209     int count;
4210 
4211     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4212                            priority, logic_serv, match);
4213     if (count < 0) {
4214         return count;
4215     }
4216 
4217     /*
4218      * When we implement the save and restore of the thread interrupt
4219      * contexts in the enter/exit CPU handlers of the machine and the
4220      * escalations in QEMU, we should be able to handle non dispatched
4221      * vCPUs.
4222      *
4223      * Until this is done, the sPAPR machine should find at least one
4224      * matching context always.
4225      */
4226     if (count == 0) {
4227         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4228                       nvt_blk, nvt_idx);
4229     }
4230 
4231     return count;
4232 }
4233 
4234 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4235 {
4236     return cpu->vcpu_id;
4237 }
4238 
4239 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4240 {
4241     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4242     MachineState *ms = MACHINE(spapr);
4243     int vcpu_id;
4244 
4245     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4246 
4247     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4248         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4249         error_append_hint(errp, "Adjust the number of cpus to %d "
4250                           "or try to raise the number of threads per core\n",
4251                           vcpu_id * ms->smp.threads / spapr->vsmt);
4252         return;
4253     }
4254 
4255     cpu->vcpu_id = vcpu_id;
4256 }
4257 
4258 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4259 {
4260     CPUState *cs;
4261 
4262     CPU_FOREACH(cs) {
4263         PowerPCCPU *cpu = POWERPC_CPU(cs);
4264 
4265         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4266             return cpu;
4267         }
4268     }
4269 
4270     return NULL;
4271 }
4272 
4273 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4274 {
4275     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4276 
4277     /* These are only called by TCG, KVM maintains dispatch state */
4278 
4279     spapr_cpu->prod = false;
4280     if (spapr_cpu->vpa_addr) {
4281         CPUState *cs = CPU(cpu);
4282         uint32_t dispatch;
4283 
4284         dispatch = ldl_be_phys(cs->as,
4285                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4286         dispatch++;
4287         if ((dispatch & 1) != 0) {
4288             qemu_log_mask(LOG_GUEST_ERROR,
4289                           "VPA: incorrect dispatch counter value for "
4290                           "dispatched partition %u, correcting.\n", dispatch);
4291             dispatch++;
4292         }
4293         stl_be_phys(cs->as,
4294                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4295     }
4296 }
4297 
4298 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4299 {
4300     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4301 
4302     if (spapr_cpu->vpa_addr) {
4303         CPUState *cs = CPU(cpu);
4304         uint32_t dispatch;
4305 
4306         dispatch = ldl_be_phys(cs->as,
4307                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4308         dispatch++;
4309         if ((dispatch & 1) != 1) {
4310             qemu_log_mask(LOG_GUEST_ERROR,
4311                           "VPA: incorrect dispatch counter value for "
4312                           "preempted partition %u, correcting.\n", dispatch);
4313             dispatch++;
4314         }
4315         stl_be_phys(cs->as,
4316                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4317     }
4318 }
4319 
4320 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4321 {
4322     MachineClass *mc = MACHINE_CLASS(oc);
4323     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4324     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4325     NMIClass *nc = NMI_CLASS(oc);
4326     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4327     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4328     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4329     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4330     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4331 
4332     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4333     mc->ignore_boot_device_suffixes = true;
4334 
4335     /*
4336      * We set up the default / latest behaviour here.  The class_init
4337      * functions for the specific versioned machine types can override
4338      * these details for backwards compatibility
4339      */
4340     mc->init = spapr_machine_init;
4341     mc->reset = spapr_machine_reset;
4342     mc->block_default_type = IF_SCSI;
4343     mc->max_cpus = 1024;
4344     mc->no_parallel = 1;
4345     mc->default_boot_order = "";
4346     mc->default_ram_size = 512 * MiB;
4347     mc->default_display = "std";
4348     mc->kvm_type = spapr_kvm_type;
4349     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4350     mc->pci_allow_0_address = true;
4351     assert(!mc->get_hotplug_handler);
4352     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4353     hc->pre_plug = spapr_machine_device_pre_plug;
4354     hc->plug = spapr_machine_device_plug;
4355     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4356     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4357     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4358     hc->unplug_request = spapr_machine_device_unplug_request;
4359     hc->unplug = spapr_machine_device_unplug;
4360 
4361     smc->dr_lmb_enabled = true;
4362     smc->update_dt_enabled = true;
4363     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4364     mc->has_hotpluggable_cpus = true;
4365     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4366     fwc->get_dev_path = spapr_get_fw_dev_path;
4367     nc->nmi_monitor_handler = spapr_nmi;
4368     smc->phb_placement = spapr_phb_placement;
4369     vhc->hypercall = emulate_spapr_hypercall;
4370     vhc->hpt_mask = spapr_hpt_mask;
4371     vhc->map_hptes = spapr_map_hptes;
4372     vhc->unmap_hptes = spapr_unmap_hptes;
4373     vhc->hpte_set_c = spapr_hpte_set_c;
4374     vhc->hpte_set_r = spapr_hpte_set_r;
4375     vhc->get_pate = spapr_get_pate;
4376     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4377     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4378     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4379     xic->ics_get = spapr_ics_get;
4380     xic->ics_resend = spapr_ics_resend;
4381     xic->icp_get = spapr_icp_get;
4382     ispc->print_info = spapr_pic_print_info;
4383     /* Force NUMA node memory size to be a multiple of
4384      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4385      * in which LMBs are represented and hot-added
4386      */
4387     mc->numa_mem_align_shift = 28;
4388     mc->numa_mem_supported = true;
4389     mc->auto_enable_numa = true;
4390 
4391     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4392     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4393     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4394     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4395     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4396     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4397     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4398     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4399     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4400     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4401     spapr_caps_add_properties(smc, &error_abort);
4402     smc->irq = &spapr_irq_dual;
4403     smc->dr_phb_enabled = true;
4404     smc->linux_pci_probe = true;
4405     smc->smp_threads_vsmt = true;
4406     smc->nr_xirqs = SPAPR_NR_XIRQS;
4407     xfc->match_nvt = spapr_match_nvt;
4408 }
4409 
4410 static const TypeInfo spapr_machine_info = {
4411     .name          = TYPE_SPAPR_MACHINE,
4412     .parent        = TYPE_MACHINE,
4413     .abstract      = true,
4414     .instance_size = sizeof(SpaprMachineState),
4415     .instance_init = spapr_instance_init,
4416     .instance_finalize = spapr_machine_finalizefn,
4417     .class_size    = sizeof(SpaprMachineClass),
4418     .class_init    = spapr_machine_class_init,
4419     .interfaces = (InterfaceInfo[]) {
4420         { TYPE_FW_PATH_PROVIDER },
4421         { TYPE_NMI },
4422         { TYPE_HOTPLUG_HANDLER },
4423         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4424         { TYPE_XICS_FABRIC },
4425         { TYPE_INTERRUPT_STATS_PROVIDER },
4426         { TYPE_XIVE_FABRIC },
4427         { }
4428     },
4429 };
4430 
4431 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4432     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4433                                                     void *data)      \
4434     {                                                                \
4435         MachineClass *mc = MACHINE_CLASS(oc);                        \
4436         spapr_machine_##suffix##_class_options(mc);                  \
4437         if (latest) {                                                \
4438             mc->alias = "pseries";                                   \
4439             mc->is_default = 1;                                      \
4440         }                                                            \
4441     }                                                                \
4442     static const TypeInfo spapr_machine_##suffix##_info = {          \
4443         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4444         .parent = TYPE_SPAPR_MACHINE,                                \
4445         .class_init = spapr_machine_##suffix##_class_init,           \
4446     };                                                               \
4447     static void spapr_machine_register_##suffix(void)                \
4448     {                                                                \
4449         type_register(&spapr_machine_##suffix##_info);               \
4450     }                                                                \
4451     type_init(spapr_machine_register_##suffix)
4452 
4453 /*
4454  * pseries-5.0
4455  */
4456 static void spapr_machine_5_0_class_options(MachineClass *mc)
4457 {
4458     /* Defaults for the latest behaviour inherited from the base class */
4459 }
4460 
4461 DEFINE_SPAPR_MACHINE(5_0, "5.0", true);
4462 
4463 /*
4464  * pseries-4.2
4465  */
4466 static void spapr_machine_4_2_class_options(MachineClass *mc)
4467 {
4468     spapr_machine_5_0_class_options(mc);
4469     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4470 }
4471 
4472 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4473 
4474 /*
4475  * pseries-4.1
4476  */
4477 static void spapr_machine_4_1_class_options(MachineClass *mc)
4478 {
4479     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4480     static GlobalProperty compat[] = {
4481         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4482         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4483     };
4484 
4485     spapr_machine_4_2_class_options(mc);
4486     smc->linux_pci_probe = false;
4487     smc->smp_threads_vsmt = false;
4488     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4489     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4490 }
4491 
4492 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4493 
4494 /*
4495  * pseries-4.0
4496  */
4497 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4498                               uint64_t *buid, hwaddr *pio,
4499                               hwaddr *mmio32, hwaddr *mmio64,
4500                               unsigned n_dma, uint32_t *liobns,
4501                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4502 {
4503     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4504                         nv2gpa, nv2atsd, errp);
4505     *nv2gpa = 0;
4506     *nv2atsd = 0;
4507 }
4508 
4509 static void spapr_machine_4_0_class_options(MachineClass *mc)
4510 {
4511     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4512 
4513     spapr_machine_4_1_class_options(mc);
4514     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4515     smc->phb_placement = phb_placement_4_0;
4516     smc->irq = &spapr_irq_xics;
4517     smc->pre_4_1_migration = true;
4518 }
4519 
4520 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4521 
4522 /*
4523  * pseries-3.1
4524  */
4525 static void spapr_machine_3_1_class_options(MachineClass *mc)
4526 {
4527     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4528 
4529     spapr_machine_4_0_class_options(mc);
4530     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4531 
4532     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4533     smc->update_dt_enabled = false;
4534     smc->dr_phb_enabled = false;
4535     smc->broken_host_serial_model = true;
4536     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4537     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4538     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4539     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4540 }
4541 
4542 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4543 
4544 /*
4545  * pseries-3.0
4546  */
4547 
4548 static void spapr_machine_3_0_class_options(MachineClass *mc)
4549 {
4550     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4551 
4552     spapr_machine_3_1_class_options(mc);
4553     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4554 
4555     smc->legacy_irq_allocation = true;
4556     smc->nr_xirqs = 0x400;
4557     smc->irq = &spapr_irq_xics_legacy;
4558 }
4559 
4560 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4561 
4562 /*
4563  * pseries-2.12
4564  */
4565 static void spapr_machine_2_12_class_options(MachineClass *mc)
4566 {
4567     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4568     static GlobalProperty compat[] = {
4569         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4570         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4571     };
4572 
4573     spapr_machine_3_0_class_options(mc);
4574     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4575     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4576 
4577     /* We depend on kvm_enabled() to choose a default value for the
4578      * hpt-max-page-size capability. Of course we can't do it here
4579      * because this is too early and the HW accelerator isn't initialzed
4580      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4581      */
4582     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4583 }
4584 
4585 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4586 
4587 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4588 {
4589     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4590 
4591     spapr_machine_2_12_class_options(mc);
4592     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4593     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4594     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4595 }
4596 
4597 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4598 
4599 /*
4600  * pseries-2.11
4601  */
4602 
4603 static void spapr_machine_2_11_class_options(MachineClass *mc)
4604 {
4605     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4606 
4607     spapr_machine_2_12_class_options(mc);
4608     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4609     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4610 }
4611 
4612 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4613 
4614 /*
4615  * pseries-2.10
4616  */
4617 
4618 static void spapr_machine_2_10_class_options(MachineClass *mc)
4619 {
4620     spapr_machine_2_11_class_options(mc);
4621     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4622 }
4623 
4624 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4625 
4626 /*
4627  * pseries-2.9
4628  */
4629 
4630 static void spapr_machine_2_9_class_options(MachineClass *mc)
4631 {
4632     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4633     static GlobalProperty compat[] = {
4634         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4635     };
4636 
4637     spapr_machine_2_10_class_options(mc);
4638     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4639     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4640     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4641     smc->pre_2_10_has_unused_icps = true;
4642     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4643 }
4644 
4645 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4646 
4647 /*
4648  * pseries-2.8
4649  */
4650 
4651 static void spapr_machine_2_8_class_options(MachineClass *mc)
4652 {
4653     static GlobalProperty compat[] = {
4654         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4655     };
4656 
4657     spapr_machine_2_9_class_options(mc);
4658     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4659     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4660     mc->numa_mem_align_shift = 23;
4661 }
4662 
4663 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4664 
4665 /*
4666  * pseries-2.7
4667  */
4668 
4669 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4670                               uint64_t *buid, hwaddr *pio,
4671                               hwaddr *mmio32, hwaddr *mmio64,
4672                               unsigned n_dma, uint32_t *liobns,
4673                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4674 {
4675     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4676     const uint64_t base_buid = 0x800000020000000ULL;
4677     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4678     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4679     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4680     const uint32_t max_index = 255;
4681     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4682 
4683     uint64_t ram_top = MACHINE(spapr)->ram_size;
4684     hwaddr phb0_base, phb_base;
4685     int i;
4686 
4687     /* Do we have device memory? */
4688     if (MACHINE(spapr)->maxram_size > ram_top) {
4689         /* Can't just use maxram_size, because there may be an
4690          * alignment gap between normal and device memory regions
4691          */
4692         ram_top = MACHINE(spapr)->device_memory->base +
4693             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4694     }
4695 
4696     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4697 
4698     if (index > max_index) {
4699         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4700                    max_index);
4701         return;
4702     }
4703 
4704     *buid = base_buid + index;
4705     for (i = 0; i < n_dma; ++i) {
4706         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4707     }
4708 
4709     phb_base = phb0_base + index * phb_spacing;
4710     *pio = phb_base + pio_offset;
4711     *mmio32 = phb_base + mmio_offset;
4712     /*
4713      * We don't set the 64-bit MMIO window, relying on the PHB's
4714      * fallback behaviour of automatically splitting a large "32-bit"
4715      * window into contiguous 32-bit and 64-bit windows
4716      */
4717 
4718     *nv2gpa = 0;
4719     *nv2atsd = 0;
4720 }
4721 
4722 static void spapr_machine_2_7_class_options(MachineClass *mc)
4723 {
4724     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4725     static GlobalProperty compat[] = {
4726         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4727         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4728         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4729         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4730     };
4731 
4732     spapr_machine_2_8_class_options(mc);
4733     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4734     mc->default_machine_opts = "modern-hotplug-events=off";
4735     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4736     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4737     smc->phb_placement = phb_placement_2_7;
4738 }
4739 
4740 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4741 
4742 /*
4743  * pseries-2.6
4744  */
4745 
4746 static void spapr_machine_2_6_class_options(MachineClass *mc)
4747 {
4748     static GlobalProperty compat[] = {
4749         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4750     };
4751 
4752     spapr_machine_2_7_class_options(mc);
4753     mc->has_hotpluggable_cpus = false;
4754     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4755     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4756 }
4757 
4758 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4759 
4760 /*
4761  * pseries-2.5
4762  */
4763 
4764 static void spapr_machine_2_5_class_options(MachineClass *mc)
4765 {
4766     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4767     static GlobalProperty compat[] = {
4768         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4769     };
4770 
4771     spapr_machine_2_6_class_options(mc);
4772     smc->use_ohci_by_default = true;
4773     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4774     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4775 }
4776 
4777 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4778 
4779 /*
4780  * pseries-2.4
4781  */
4782 
4783 static void spapr_machine_2_4_class_options(MachineClass *mc)
4784 {
4785     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4786 
4787     spapr_machine_2_5_class_options(mc);
4788     smc->dr_lmb_enabled = false;
4789     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4790 }
4791 
4792 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4793 
4794 /*
4795  * pseries-2.3
4796  */
4797 
4798 static void spapr_machine_2_3_class_options(MachineClass *mc)
4799 {
4800     static GlobalProperty compat[] = {
4801         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4802     };
4803     spapr_machine_2_4_class_options(mc);
4804     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4805     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4806 }
4807 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4808 
4809 /*
4810  * pseries-2.2
4811  */
4812 
4813 static void spapr_machine_2_2_class_options(MachineClass *mc)
4814 {
4815     static GlobalProperty compat[] = {
4816         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4817     };
4818 
4819     spapr_machine_2_3_class_options(mc);
4820     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4821     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4822     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4823 }
4824 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4825 
4826 /*
4827  * pseries-2.1
4828  */
4829 
4830 static void spapr_machine_2_1_class_options(MachineClass *mc)
4831 {
4832     spapr_machine_2_2_class_options(mc);
4833     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4834 }
4835 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4836 
4837 static void spapr_machine_register_types(void)
4838 {
4839     type_register_static(&spapr_machine_info);
4840 }
4841 
4842 type_init(spapr_machine_register_types)
4843