xref: /openbmc/qemu/hw/ppc/spapr.c (revision 4c3539d491026a0cc68e3b886f16cb7f57efd46b)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 
84 #include "monitor/monitor.h"
85 
86 #include <libfdt.h>
87 
88 /* SLOF memory layout:
89  *
90  * SLOF raw image loaded at 0, copies its romfs right below the flat
91  * device-tree, then position SLOF itself 31M below that
92  *
93  * So we set FW_OVERHEAD to 40MB which should account for all of that
94  * and more
95  *
96  * We load our kernel at 4M, leaving space for SLOF initial image
97  */
98 #define FDT_MAX_SIZE            0x100000
99 #define RTAS_MAX_SIZE           0x10000
100 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE             0x400000
102 #define FW_FILE_NAME            "slof.bin"
103 #define FW_OVERHEAD             0x2800000
104 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
105 
106 #define MIN_RMA_SLOF            128UL
107 
108 #define PHANDLE_INTC            0x00001111
109 
110 /* These two functions implement the VCPU id numbering: one to compute them
111  * all and one to identify thread 0 of a VCORE. Any change to the first one
112  * is likely to have an impact on the second one, so let's keep them close.
113  */
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 {
116     MachineState *ms = MACHINE(spapr);
117     unsigned int smp_threads = ms->smp.threads;
118 
119     assert(spapr->vsmt);
120     return
121         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 }
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124                                       PowerPCCPU *cpu)
125 {
126     assert(spapr->vsmt);
127     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 }
129 
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133      * and newer QEMUs don't even have them. In both cases, we don't want
134      * to send anything on the wire.
135      */
136     return false;
137 }
138 
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140     .name = "icp/server",
141     .version_id = 1,
142     .minimum_version_id = 1,
143     .needed = pre_2_10_vmstate_dummy_icp_needed,
144     .fields = (VMStateField[]) {
145         VMSTATE_UNUSED(4), /* uint32_t xirr */
146         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147         VMSTATE_UNUSED(1), /* uint8_t mfrr */
148         VMSTATE_END_OF_LIST()
149     },
150 };
151 
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155                      (void *)(uintptr_t) i);
156 }
157 
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161                        (void *)(uintptr_t) i);
162 }
163 
164 int spapr_max_server_number(SpaprMachineState *spapr)
165 {
166     MachineState *ms = MACHINE(spapr);
167 
168     assert(spapr->vsmt);
169     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 }
171 
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173                                   int smt_threads)
174 {
175     int i, ret = 0;
176     uint32_t servers_prop[smt_threads];
177     uint32_t gservers_prop[smt_threads * 2];
178     int index = spapr_get_vcpu_id(cpu);
179 
180     if (cpu->compat_pvr) {
181         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182         if (ret < 0) {
183             return ret;
184         }
185     }
186 
187     /* Build interrupt servers and gservers properties */
188     for (i = 0; i < smt_threads; i++) {
189         servers_prop[i] = cpu_to_be32(index + i);
190         /* Hack, direct the group queues back to cpu 0 */
191         gservers_prop[i*2] = cpu_to_be32(index + i);
192         gservers_prop[i*2 + 1] = 0;
193     }
194     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195                       servers_prop, sizeof(servers_prop));
196     if (ret < 0) {
197         return ret;
198     }
199     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200                       gservers_prop, sizeof(gservers_prop));
201 
202     return ret;
203 }
204 
205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 {
207     int index = spapr_get_vcpu_id(cpu);
208     uint32_t associativity[] = {cpu_to_be32(0x5),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(0x0),
211                                 cpu_to_be32(0x0),
212                                 cpu_to_be32(cpu->node_id),
213                                 cpu_to_be32(index)};
214 
215     /* Advertise NUMA via ibm,associativity */
216     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
217                           sizeof(associativity));
218 }
219 
220 /* Populate the "ibm,pa-features" property */
221 static void spapr_populate_pa_features(SpaprMachineState *spapr,
222                                        PowerPCCPU *cpu,
223                                        void *fdt, int offset,
224                                        bool legacy_guest)
225 {
226     uint8_t pa_features_206[] = { 6, 0,
227         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
228     uint8_t pa_features_207[] = { 24, 0,
229         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
230         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
231         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
232         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
233     uint8_t pa_features_300[] = { 66, 0,
234         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
235         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
236         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
237         /* 6: DS207 */
238         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
239         /* 16: Vector */
240         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
241         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
242         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
243         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
244         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
245         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
246         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
247         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
248         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
249         /* 42: PM, 44: PC RA, 46: SC vec'd */
250         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
251         /* 48: SIMD, 50: QP BFP, 52: String */
252         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
253         /* 54: DecFP, 56: DecI, 58: SHA */
254         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
255         /* 60: NM atomic, 62: RNG */
256         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
257     };
258     uint8_t *pa_features = NULL;
259     size_t pa_size;
260 
261     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
262         pa_features = pa_features_206;
263         pa_size = sizeof(pa_features_206);
264     }
265     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
266         pa_features = pa_features_207;
267         pa_size = sizeof(pa_features_207);
268     }
269     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
270         pa_features = pa_features_300;
271         pa_size = sizeof(pa_features_300);
272     }
273     if (!pa_features) {
274         return;
275     }
276 
277     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
278         /*
279          * Note: we keep CI large pages off by default because a 64K capable
280          * guest provisioned with large pages might otherwise try to map a qemu
281          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
282          * even if that qemu runs on a 4k host.
283          * We dd this bit back here if we are confident this is not an issue
284          */
285         pa_features[3] |= 0x20;
286     }
287     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
288         pa_features[24] |= 0x80;    /* Transactional memory support */
289     }
290     if (legacy_guest && pa_size > 40) {
291         /* Workaround for broken kernels that attempt (guest) radix
292          * mode when they can't handle it, if they see the radix bit set
293          * in pa-features. So hide it from them. */
294         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
295     }
296 
297     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
298 }
299 
300 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
301 {
302     MachineState *ms = MACHINE(spapr);
303     int ret = 0, offset, cpus_offset;
304     CPUState *cs;
305     char cpu_model[32];
306     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
307 
308     CPU_FOREACH(cs) {
309         PowerPCCPU *cpu = POWERPC_CPU(cs);
310         DeviceClass *dc = DEVICE_GET_CLASS(cs);
311         int index = spapr_get_vcpu_id(cpu);
312         int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
313 
314         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
315             continue;
316         }
317 
318         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
319 
320         cpus_offset = fdt_path_offset(fdt, "/cpus");
321         if (cpus_offset < 0) {
322             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
323             if (cpus_offset < 0) {
324                 return cpus_offset;
325             }
326         }
327         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
328         if (offset < 0) {
329             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
330             if (offset < 0) {
331                 return offset;
332             }
333         }
334 
335         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
336                           pft_size_prop, sizeof(pft_size_prop));
337         if (ret < 0) {
338             return ret;
339         }
340 
341         if (ms->numa_state->num_nodes > 1) {
342             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
343             if (ret < 0) {
344                 return ret;
345             }
346         }
347 
348         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
349         if (ret < 0) {
350             return ret;
351         }
352 
353         spapr_populate_pa_features(spapr, cpu, fdt, offset,
354                                    spapr->cas_legacy_guest_workaround);
355     }
356     return ret;
357 }
358 
359 static hwaddr spapr_node0_size(MachineState *machine)
360 {
361     if (machine->numa_state->num_nodes) {
362         int i;
363         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
364             if (machine->numa_state->nodes[i].node_mem) {
365                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
366                            machine->ram_size);
367             }
368         }
369     }
370     return machine->ram_size;
371 }
372 
373 static void add_str(GString *s, const gchar *s1)
374 {
375     g_string_append_len(s, s1, strlen(s1) + 1);
376 }
377 
378 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
379                                        hwaddr size)
380 {
381     uint32_t associativity[] = {
382         cpu_to_be32(0x4), /* length */
383         cpu_to_be32(0x0), cpu_to_be32(0x0),
384         cpu_to_be32(0x0), cpu_to_be32(nodeid)
385     };
386     char mem_name[32];
387     uint64_t mem_reg_property[2];
388     int off;
389 
390     mem_reg_property[0] = cpu_to_be64(start);
391     mem_reg_property[1] = cpu_to_be64(size);
392 
393     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
394     off = fdt_add_subnode(fdt, 0, mem_name);
395     _FDT(off);
396     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
397     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
398                       sizeof(mem_reg_property))));
399     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
400                       sizeof(associativity))));
401     return off;
402 }
403 
404 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
405 {
406     MachineState *machine = MACHINE(spapr);
407     hwaddr mem_start, node_size;
408     int i, nb_nodes = machine->numa_state->num_nodes;
409     NodeInfo *nodes = machine->numa_state->nodes;
410     NodeInfo ramnode;
411 
412     /* No NUMA nodes, assume there is just one node with whole RAM */
413     if (!nb_nodes) {
414         nb_nodes = 1;
415         ramnode.node_mem = machine->ram_size;
416         nodes = &ramnode;
417     }
418 
419     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
420         if (!nodes[i].node_mem) {
421             continue;
422         }
423         if (mem_start >= machine->ram_size) {
424             node_size = 0;
425         } else {
426             node_size = nodes[i].node_mem;
427             if (node_size > machine->ram_size - mem_start) {
428                 node_size = machine->ram_size - mem_start;
429             }
430         }
431         if (!mem_start) {
432             /* spapr_machine_init() checks for rma_size <= node0_size
433              * already */
434             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
435             mem_start += spapr->rma_size;
436             node_size -= spapr->rma_size;
437         }
438         for ( ; node_size; ) {
439             hwaddr sizetmp = pow2floor(node_size);
440 
441             /* mem_start != 0 here */
442             if (ctzl(mem_start) < ctzl(sizetmp)) {
443                 sizetmp = 1ULL << ctzl(mem_start);
444             }
445 
446             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
447             node_size -= sizetmp;
448             mem_start += sizetmp;
449         }
450     }
451 
452     return 0;
453 }
454 
455 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
456                                   SpaprMachineState *spapr)
457 {
458     MachineState *ms = MACHINE(spapr);
459     PowerPCCPU *cpu = POWERPC_CPU(cs);
460     CPUPPCState *env = &cpu->env;
461     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
462     int index = spapr_get_vcpu_id(cpu);
463     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
464                        0xffffffff, 0xffffffff};
465     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
466         : SPAPR_TIMEBASE_FREQ;
467     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
468     uint32_t page_sizes_prop[64];
469     size_t page_sizes_prop_size;
470     unsigned int smp_threads = ms->smp.threads;
471     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
472     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
473     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
474     SpaprDrc *drc;
475     int drc_index;
476     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
477     int i;
478 
479     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
480     if (drc) {
481         drc_index = spapr_drc_index(drc);
482         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
483     }
484 
485     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
486     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
487 
488     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
489     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
490                            env->dcache_line_size)));
491     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
492                            env->dcache_line_size)));
493     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
494                            env->icache_line_size)));
495     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
496                            env->icache_line_size)));
497 
498     if (pcc->l1_dcache_size) {
499         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
500                                pcc->l1_dcache_size)));
501     } else {
502         warn_report("Unknown L1 dcache size for cpu");
503     }
504     if (pcc->l1_icache_size) {
505         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
506                                pcc->l1_icache_size)));
507     } else {
508         warn_report("Unknown L1 icache size for cpu");
509     }
510 
511     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
512     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
513     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
514     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
515     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
516     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
517 
518     if (env->spr_cb[SPR_PURR].oea_read) {
519         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
520     }
521     if (env->spr_cb[SPR_SPURR].oea_read) {
522         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
523     }
524 
525     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
526         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
527                           segs, sizeof(segs))));
528     }
529 
530     /* Advertise VSX (vector extensions) if available
531      *   1               == VMX / Altivec available
532      *   2               == VSX available
533      *
534      * Only CPUs for which we create core types in spapr_cpu_core.c
535      * are possible, and all of those have VMX */
536     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
537         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
538     } else {
539         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
540     }
541 
542     /* Advertise DFP (Decimal Floating Point) if available
543      *   0 / no property == no DFP
544      *   1               == DFP available */
545     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
546         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
547     }
548 
549     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
550                                                       sizeof(page_sizes_prop));
551     if (page_sizes_prop_size) {
552         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
553                           page_sizes_prop, page_sizes_prop_size)));
554     }
555 
556     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
557 
558     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
559                            cs->cpu_index / vcpus_per_socket)));
560 
561     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
562                       pft_size_prop, sizeof(pft_size_prop))));
563 
564     if (ms->numa_state->num_nodes > 1) {
565         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
566     }
567 
568     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
569 
570     if (pcc->radix_page_info) {
571         for (i = 0; i < pcc->radix_page_info->count; i++) {
572             radix_AP_encodings[i] =
573                 cpu_to_be32(pcc->radix_page_info->entries[i]);
574         }
575         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
576                           radix_AP_encodings,
577                           pcc->radix_page_info->count *
578                           sizeof(radix_AP_encodings[0]))));
579     }
580 
581     /*
582      * We set this property to let the guest know that it can use the large
583      * decrementer and its width in bits.
584      */
585     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
586         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
587                               pcc->lrg_decr_bits)));
588 }
589 
590 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
591 {
592     CPUState **rev;
593     CPUState *cs;
594     int n_cpus;
595     int cpus_offset;
596     char *nodename;
597     int i;
598 
599     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
600     _FDT(cpus_offset);
601     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
602     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
603 
604     /*
605      * We walk the CPUs in reverse order to ensure that CPU DT nodes
606      * created by fdt_add_subnode() end up in the right order in FDT
607      * for the guest kernel the enumerate the CPUs correctly.
608      *
609      * The CPU list cannot be traversed in reverse order, so we need
610      * to do extra work.
611      */
612     n_cpus = 0;
613     rev = NULL;
614     CPU_FOREACH(cs) {
615         rev = g_renew(CPUState *, rev, n_cpus + 1);
616         rev[n_cpus++] = cs;
617     }
618 
619     for (i = n_cpus - 1; i >= 0; i--) {
620         CPUState *cs = rev[i];
621         PowerPCCPU *cpu = POWERPC_CPU(cs);
622         int index = spapr_get_vcpu_id(cpu);
623         DeviceClass *dc = DEVICE_GET_CLASS(cs);
624         int offset;
625 
626         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
627             continue;
628         }
629 
630         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
631         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
632         g_free(nodename);
633         _FDT(offset);
634         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
635     }
636 
637     g_free(rev);
638 }
639 
640 static int spapr_rng_populate_dt(void *fdt)
641 {
642     int node;
643     int ret;
644 
645     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
646     if (node <= 0) {
647         return -1;
648     }
649     ret = fdt_setprop_string(fdt, node, "device_type",
650                              "ibm,platform-facilities");
651     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
652     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
653 
654     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
655     if (node <= 0) {
656         return -1;
657     }
658     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
659 
660     return ret ? -1 : 0;
661 }
662 
663 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
664 {
665     MemoryDeviceInfoList *info;
666 
667     for (info = list; info; info = info->next) {
668         MemoryDeviceInfo *value = info->value;
669 
670         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
671             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
672 
673             if (addr >= pcdimm_info->addr &&
674                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
675                 return pcdimm_info->node;
676             }
677         }
678     }
679 
680     return -1;
681 }
682 
683 struct sPAPRDrconfCellV2 {
684      uint32_t seq_lmbs;
685      uint64_t base_addr;
686      uint32_t drc_index;
687      uint32_t aa_index;
688      uint32_t flags;
689 } QEMU_PACKED;
690 
691 typedef struct DrconfCellQueue {
692     struct sPAPRDrconfCellV2 cell;
693     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
694 } DrconfCellQueue;
695 
696 static DrconfCellQueue *
697 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
698                       uint32_t drc_index, uint32_t aa_index,
699                       uint32_t flags)
700 {
701     DrconfCellQueue *elem;
702 
703     elem = g_malloc0(sizeof(*elem));
704     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
705     elem->cell.base_addr = cpu_to_be64(base_addr);
706     elem->cell.drc_index = cpu_to_be32(drc_index);
707     elem->cell.aa_index = cpu_to_be32(aa_index);
708     elem->cell.flags = cpu_to_be32(flags);
709 
710     return elem;
711 }
712 
713 /* ibm,dynamic-memory-v2 */
714 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
715                                    int offset, MemoryDeviceInfoList *dimms)
716 {
717     MachineState *machine = MACHINE(spapr);
718     uint8_t *int_buf, *cur_index;
719     int ret;
720     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
721     uint64_t addr, cur_addr, size;
722     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
723     uint64_t mem_end = machine->device_memory->base +
724                        memory_region_size(&machine->device_memory->mr);
725     uint32_t node, buf_len, nr_entries = 0;
726     SpaprDrc *drc;
727     DrconfCellQueue *elem, *next;
728     MemoryDeviceInfoList *info;
729     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
730         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
731 
732     /* Entry to cover RAM and the gap area */
733     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
734                                  SPAPR_LMB_FLAGS_RESERVED |
735                                  SPAPR_LMB_FLAGS_DRC_INVALID);
736     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
737     nr_entries++;
738 
739     cur_addr = machine->device_memory->base;
740     for (info = dimms; info; info = info->next) {
741         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
742 
743         addr = di->addr;
744         size = di->size;
745         node = di->node;
746 
747         /* Entry for hot-pluggable area */
748         if (cur_addr < addr) {
749             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
750             g_assert(drc);
751             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
752                                          cur_addr, spapr_drc_index(drc), -1, 0);
753             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
754             nr_entries++;
755         }
756 
757         /* Entry for DIMM */
758         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
759         g_assert(drc);
760         elem = spapr_get_drconf_cell(size / lmb_size, addr,
761                                      spapr_drc_index(drc), node,
762                                      SPAPR_LMB_FLAGS_ASSIGNED);
763         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
764         nr_entries++;
765         cur_addr = addr + size;
766     }
767 
768     /* Entry for remaining hotpluggable area */
769     if (cur_addr < mem_end) {
770         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
771         g_assert(drc);
772         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
773                                      cur_addr, spapr_drc_index(drc), -1, 0);
774         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
775         nr_entries++;
776     }
777 
778     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
779     int_buf = cur_index = g_malloc0(buf_len);
780     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
781     cur_index += sizeof(nr_entries);
782 
783     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
784         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
785         cur_index += sizeof(elem->cell);
786         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
787         g_free(elem);
788     }
789 
790     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
791     g_free(int_buf);
792     if (ret < 0) {
793         return -1;
794     }
795     return 0;
796 }
797 
798 /* ibm,dynamic-memory */
799 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
800                                    int offset, MemoryDeviceInfoList *dimms)
801 {
802     MachineState *machine = MACHINE(spapr);
803     int i, ret;
804     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
805     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
806     uint32_t nr_lmbs = (machine->device_memory->base +
807                        memory_region_size(&machine->device_memory->mr)) /
808                        lmb_size;
809     uint32_t *int_buf, *cur_index, buf_len;
810 
811     /*
812      * Allocate enough buffer size to fit in ibm,dynamic-memory
813      */
814     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
815     cur_index = int_buf = g_malloc0(buf_len);
816     int_buf[0] = cpu_to_be32(nr_lmbs);
817     cur_index++;
818     for (i = 0; i < nr_lmbs; i++) {
819         uint64_t addr = i * lmb_size;
820         uint32_t *dynamic_memory = cur_index;
821 
822         if (i >= device_lmb_start) {
823             SpaprDrc *drc;
824 
825             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
826             g_assert(drc);
827 
828             dynamic_memory[0] = cpu_to_be32(addr >> 32);
829             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
830             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
831             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
832             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
833             if (memory_region_present(get_system_memory(), addr)) {
834                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
835             } else {
836                 dynamic_memory[5] = cpu_to_be32(0);
837             }
838         } else {
839             /*
840              * LMB information for RMA, boot time RAM and gap b/n RAM and
841              * device memory region -- all these are marked as reserved
842              * and as having no valid DRC.
843              */
844             dynamic_memory[0] = cpu_to_be32(addr >> 32);
845             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
846             dynamic_memory[2] = cpu_to_be32(0);
847             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
848             dynamic_memory[4] = cpu_to_be32(-1);
849             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
850                                             SPAPR_LMB_FLAGS_DRC_INVALID);
851         }
852 
853         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
854     }
855     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
856     g_free(int_buf);
857     if (ret < 0) {
858         return -1;
859     }
860     return 0;
861 }
862 
863 /*
864  * Adds ibm,dynamic-reconfiguration-memory node.
865  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
866  * of this device tree node.
867  */
868 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
869 {
870     MachineState *machine = MACHINE(spapr);
871     int nb_numa_nodes = machine->numa_state->num_nodes;
872     int ret, i, offset;
873     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
874     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
875     uint32_t *int_buf, *cur_index, buf_len;
876     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
877     MemoryDeviceInfoList *dimms = NULL;
878 
879     /*
880      * Don't create the node if there is no device memory
881      */
882     if (machine->ram_size == machine->maxram_size) {
883         return 0;
884     }
885 
886     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
887 
888     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
889                     sizeof(prop_lmb_size));
890     if (ret < 0) {
891         return ret;
892     }
893 
894     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
895     if (ret < 0) {
896         return ret;
897     }
898 
899     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
900     if (ret < 0) {
901         return ret;
902     }
903 
904     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
905     dimms = qmp_memory_device_list();
906     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
907         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
908     } else {
909         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
910     }
911     qapi_free_MemoryDeviceInfoList(dimms);
912 
913     if (ret < 0) {
914         return ret;
915     }
916 
917     /* ibm,associativity-lookup-arrays */
918     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
919     cur_index = int_buf = g_malloc0(buf_len);
920     int_buf[0] = cpu_to_be32(nr_nodes);
921     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
922     cur_index += 2;
923     for (i = 0; i < nr_nodes; i++) {
924         uint32_t associativity[] = {
925             cpu_to_be32(0x0),
926             cpu_to_be32(0x0),
927             cpu_to_be32(0x0),
928             cpu_to_be32(i)
929         };
930         memcpy(cur_index, associativity, sizeof(associativity));
931         cur_index += 4;
932     }
933     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
934             (cur_index - int_buf) * sizeof(uint32_t));
935     g_free(int_buf);
936 
937     return ret;
938 }
939 
940 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
941                                 SpaprOptionVector *ov5_updates)
942 {
943     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
944     int ret = 0, offset;
945 
946     /* Generate ibm,dynamic-reconfiguration-memory node if required */
947     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
948         g_assert(smc->dr_lmb_enabled);
949         ret = spapr_populate_drconf_memory(spapr, fdt);
950         if (ret) {
951             goto out;
952         }
953     }
954 
955     offset = fdt_path_offset(fdt, "/chosen");
956     if (offset < 0) {
957         offset = fdt_add_subnode(fdt, 0, "chosen");
958         if (offset < 0) {
959             return offset;
960         }
961     }
962     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
963                                  "ibm,architecture-vec-5");
964 
965 out:
966     return ret;
967 }
968 
969 static bool spapr_hotplugged_dev_before_cas(void)
970 {
971     Object *drc_container, *obj;
972     ObjectProperty *prop;
973     ObjectPropertyIterator iter;
974 
975     drc_container = container_get(object_get_root(), "/dr-connector");
976     object_property_iter_init(&iter, drc_container);
977     while ((prop = object_property_iter_next(&iter))) {
978         if (!strstart(prop->type, "link<", NULL)) {
979             continue;
980         }
981         obj = object_property_get_link(drc_container, prop->name, NULL);
982         if (spapr_drc_needed(obj)) {
983             return true;
984         }
985     }
986     return false;
987 }
988 
989 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
990                                  target_ulong addr, target_ulong size,
991                                  SpaprOptionVector *ov5_updates)
992 {
993     void *fdt, *fdt_skel;
994     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
995 
996     if (spapr_hotplugged_dev_before_cas()) {
997         return 1;
998     }
999 
1000     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
1001         error_report("SLOF provided an unexpected CAS buffer size "
1002                      TARGET_FMT_lu " (min: %zu, max: %u)",
1003                      size, sizeof(hdr), FW_MAX_SIZE);
1004         exit(EXIT_FAILURE);
1005     }
1006 
1007     size -= sizeof(hdr);
1008 
1009     /* Create skeleton */
1010     fdt_skel = g_malloc0(size);
1011     _FDT((fdt_create(fdt_skel, size)));
1012     _FDT((fdt_finish_reservemap(fdt_skel)));
1013     _FDT((fdt_begin_node(fdt_skel, "")));
1014     _FDT((fdt_end_node(fdt_skel)));
1015     _FDT((fdt_finish(fdt_skel)));
1016     fdt = g_malloc0(size);
1017     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1018     g_free(fdt_skel);
1019 
1020     /* Fixup cpu nodes */
1021     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1022 
1023     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1024         return -1;
1025     }
1026 
1027     /* Pack resulting tree */
1028     _FDT((fdt_pack(fdt)));
1029 
1030     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1031         trace_spapr_cas_failed(size);
1032         return -1;
1033     }
1034 
1035     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1036     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1037     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1038     g_free(fdt);
1039 
1040     return 0;
1041 }
1042 
1043 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1044 {
1045     MachineState *ms = MACHINE(spapr);
1046     int rtas;
1047     GString *hypertas = g_string_sized_new(256);
1048     GString *qemu_hypertas = g_string_sized_new(256);
1049     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1050     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1051         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1052     uint32_t lrdr_capacity[] = {
1053         cpu_to_be32(max_device_addr >> 32),
1054         cpu_to_be32(max_device_addr & 0xffffffff),
1055         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1056         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1057     };
1058     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1059     uint32_t maxdomains[] = {
1060         cpu_to_be32(4),
1061         maxdomain,
1062         maxdomain,
1063         maxdomain,
1064         cpu_to_be32(spapr->gpu_numa_id),
1065     };
1066 
1067     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1068 
1069     /* hypertas */
1070     add_str(hypertas, "hcall-pft");
1071     add_str(hypertas, "hcall-term");
1072     add_str(hypertas, "hcall-dabr");
1073     add_str(hypertas, "hcall-interrupt");
1074     add_str(hypertas, "hcall-tce");
1075     add_str(hypertas, "hcall-vio");
1076     add_str(hypertas, "hcall-splpar");
1077     add_str(hypertas, "hcall-join");
1078     add_str(hypertas, "hcall-bulk");
1079     add_str(hypertas, "hcall-set-mode");
1080     add_str(hypertas, "hcall-sprg0");
1081     add_str(hypertas, "hcall-copy");
1082     add_str(hypertas, "hcall-debug");
1083     add_str(hypertas, "hcall-vphn");
1084     add_str(qemu_hypertas, "hcall-memop1");
1085 
1086     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1087         add_str(hypertas, "hcall-multi-tce");
1088     }
1089 
1090     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1091         add_str(hypertas, "hcall-hpt-resize");
1092     }
1093 
1094     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1095                      hypertas->str, hypertas->len));
1096     g_string_free(hypertas, TRUE);
1097     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1098                      qemu_hypertas->str, qemu_hypertas->len));
1099     g_string_free(qemu_hypertas, TRUE);
1100 
1101     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1102                      refpoints, sizeof(refpoints)));
1103 
1104     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1105                      maxdomains, sizeof(maxdomains)));
1106 
1107     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1108                           RTAS_ERROR_LOG_MAX));
1109     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1110                           RTAS_EVENT_SCAN_RATE));
1111 
1112     g_assert(msi_nonbroken);
1113     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1114 
1115     /*
1116      * According to PAPR, rtas ibm,os-term does not guarantee a return
1117      * back to the guest cpu.
1118      *
1119      * While an additional ibm,extended-os-term property indicates
1120      * that rtas call return will always occur. Set this property.
1121      */
1122     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1123 
1124     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1125                      lrdr_capacity, sizeof(lrdr_capacity)));
1126 
1127     spapr_dt_rtas_tokens(fdt, rtas);
1128 }
1129 
1130 /*
1131  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1132  * and the XIVE features that the guest may request and thus the valid
1133  * values for bytes 23..26 of option vector 5:
1134  */
1135 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1136                                           int chosen)
1137 {
1138     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1139 
1140     char val[2 * 4] = {
1141         23, spapr->irq->ov5, /* Xive mode. */
1142         24, 0x00, /* Hash/Radix, filled in below. */
1143         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1144         26, 0x40, /* Radix options: GTSE == yes. */
1145     };
1146 
1147     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1148                           first_ppc_cpu->compat_pvr)) {
1149         /*
1150          * If we're in a pre POWER9 compat mode then the guest should
1151          * do hash and use the legacy interrupt mode
1152          */
1153         val[1] = 0x00; /* XICS */
1154         val[3] = 0x00; /* Hash */
1155     } else if (kvm_enabled()) {
1156         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1157             val[3] = 0x80; /* OV5_MMU_BOTH */
1158         } else if (kvmppc_has_cap_mmu_radix()) {
1159             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1160         } else {
1161             val[3] = 0x00; /* Hash */
1162         }
1163     } else {
1164         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1165         val[3] = 0xC0;
1166     }
1167     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1168                      val, sizeof(val)));
1169 }
1170 
1171 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1172 {
1173     MachineState *machine = MACHINE(spapr);
1174     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1175     int chosen;
1176     const char *boot_device = machine->boot_order;
1177     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1178     size_t cb = 0;
1179     char *bootlist = get_boot_devices_list(&cb);
1180 
1181     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1182 
1183     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1184     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1185                           spapr->initrd_base));
1186     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1187                           spapr->initrd_base + spapr->initrd_size));
1188 
1189     if (spapr->kernel_size) {
1190         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1191                               cpu_to_be64(spapr->kernel_size) };
1192 
1193         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1194                          &kprop, sizeof(kprop)));
1195         if (spapr->kernel_le) {
1196             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1197         }
1198     }
1199     if (boot_menu) {
1200         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1201     }
1202     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1203     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1204     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1205 
1206     if (cb && bootlist) {
1207         int i;
1208 
1209         for (i = 0; i < cb; i++) {
1210             if (bootlist[i] == '\n') {
1211                 bootlist[i] = ' ';
1212             }
1213         }
1214         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1215     }
1216 
1217     if (boot_device && strlen(boot_device)) {
1218         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1219     }
1220 
1221     if (!spapr->has_graphics && stdout_path) {
1222         /*
1223          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1224          * kernel. New platforms should only use the "stdout-path" property. Set
1225          * the new property and continue using older property to remain
1226          * compatible with the existing firmware.
1227          */
1228         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1229         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1230     }
1231 
1232     /* We can deal with BAR reallocation just fine, advertise it to the guest */
1233     if (smc->linux_pci_probe) {
1234         _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1235     }
1236 
1237     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1238 
1239     g_free(stdout_path);
1240     g_free(bootlist);
1241 }
1242 
1243 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1244 {
1245     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1246      * KVM to work under pHyp with some guest co-operation */
1247     int hypervisor;
1248     uint8_t hypercall[16];
1249 
1250     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1251     /* indicate KVM hypercall interface */
1252     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1253     if (kvmppc_has_cap_fixup_hcalls()) {
1254         /*
1255          * Older KVM versions with older guest kernels were broken
1256          * with the magic page, don't allow the guest to map it.
1257          */
1258         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1259                                   sizeof(hypercall))) {
1260             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1261                              hypercall, sizeof(hypercall)));
1262         }
1263     }
1264 }
1265 
1266 static void *spapr_build_fdt(SpaprMachineState *spapr)
1267 {
1268     MachineState *machine = MACHINE(spapr);
1269     MachineClass *mc = MACHINE_GET_CLASS(machine);
1270     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1271     int ret;
1272     void *fdt;
1273     SpaprPhbState *phb;
1274     char *buf;
1275 
1276     fdt = g_malloc0(FDT_MAX_SIZE);
1277     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1278 
1279     /* Root node */
1280     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1281     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1282     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1283 
1284     /* Guest UUID & Name*/
1285     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1286     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1287     if (qemu_uuid_set) {
1288         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1289     }
1290     g_free(buf);
1291 
1292     if (qemu_get_vm_name()) {
1293         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1294                                 qemu_get_vm_name()));
1295     }
1296 
1297     /* Host Model & Serial Number */
1298     if (spapr->host_model) {
1299         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1300     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1301         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1302         g_free(buf);
1303     }
1304 
1305     if (spapr->host_serial) {
1306         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1307     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1308         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1309         g_free(buf);
1310     }
1311 
1312     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1313     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1314 
1315     /* /interrupt controller */
1316     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1317                           PHANDLE_INTC);
1318 
1319     ret = spapr_populate_memory(spapr, fdt);
1320     if (ret < 0) {
1321         error_report("couldn't setup memory nodes in fdt");
1322         exit(1);
1323     }
1324 
1325     /* /vdevice */
1326     spapr_dt_vdevice(spapr->vio_bus, fdt);
1327 
1328     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1329         ret = spapr_rng_populate_dt(fdt);
1330         if (ret < 0) {
1331             error_report("could not set up rng device in the fdt");
1332             exit(1);
1333         }
1334     }
1335 
1336     QLIST_FOREACH(phb, &spapr->phbs, list) {
1337         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1338         if (ret < 0) {
1339             error_report("couldn't setup PCI devices in fdt");
1340             exit(1);
1341         }
1342     }
1343 
1344     /* cpus */
1345     spapr_populate_cpus_dt_node(fdt, spapr);
1346 
1347     if (smc->dr_lmb_enabled) {
1348         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1349     }
1350 
1351     if (mc->has_hotpluggable_cpus) {
1352         int offset = fdt_path_offset(fdt, "/cpus");
1353         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1354         if (ret < 0) {
1355             error_report("Couldn't set up CPU DR device tree properties");
1356             exit(1);
1357         }
1358     }
1359 
1360     /* /event-sources */
1361     spapr_dt_events(spapr, fdt);
1362 
1363     /* /rtas */
1364     spapr_dt_rtas(spapr, fdt);
1365 
1366     /* /chosen */
1367     spapr_dt_chosen(spapr, fdt);
1368 
1369     /* /hypervisor */
1370     if (kvm_enabled()) {
1371         spapr_dt_hypervisor(spapr, fdt);
1372     }
1373 
1374     /* Build memory reserve map */
1375     if (spapr->kernel_size) {
1376         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1377     }
1378     if (spapr->initrd_size) {
1379         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1380     }
1381 
1382     /* ibm,client-architecture-support updates */
1383     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1384     if (ret < 0) {
1385         error_report("couldn't setup CAS properties fdt");
1386         exit(1);
1387     }
1388 
1389     if (smc->dr_phb_enabled) {
1390         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1391         if (ret < 0) {
1392             error_report("Couldn't set up PHB DR device tree properties");
1393             exit(1);
1394         }
1395     }
1396 
1397     return fdt;
1398 }
1399 
1400 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1401 {
1402     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1403 }
1404 
1405 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1406                                     PowerPCCPU *cpu)
1407 {
1408     CPUPPCState *env = &cpu->env;
1409 
1410     /* The TCG path should also be holding the BQL at this point */
1411     g_assert(qemu_mutex_iothread_locked());
1412 
1413     if (msr_pr) {
1414         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1415         env->gpr[3] = H_PRIVILEGE;
1416     } else {
1417         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1418     }
1419 }
1420 
1421 struct LPCRSyncState {
1422     target_ulong value;
1423     target_ulong mask;
1424 };
1425 
1426 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1427 {
1428     struct LPCRSyncState *s = arg.host_ptr;
1429     PowerPCCPU *cpu = POWERPC_CPU(cs);
1430     CPUPPCState *env = &cpu->env;
1431     target_ulong lpcr;
1432 
1433     cpu_synchronize_state(cs);
1434     lpcr = env->spr[SPR_LPCR];
1435     lpcr &= ~s->mask;
1436     lpcr |= s->value;
1437     ppc_store_lpcr(cpu, lpcr);
1438 }
1439 
1440 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1441 {
1442     CPUState *cs;
1443     struct LPCRSyncState s = {
1444         .value = value,
1445         .mask = mask
1446     };
1447     CPU_FOREACH(cs) {
1448         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1449     }
1450 }
1451 
1452 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1453 {
1454     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1455 
1456     /* Copy PATE1:GR into PATE0:HR */
1457     entry->dw0 = spapr->patb_entry & PATE0_HR;
1458     entry->dw1 = spapr->patb_entry;
1459 }
1460 
1461 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1462 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1463 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1464 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1465 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1466 
1467 /*
1468  * Get the fd to access the kernel htab, re-opening it if necessary
1469  */
1470 static int get_htab_fd(SpaprMachineState *spapr)
1471 {
1472     Error *local_err = NULL;
1473 
1474     if (spapr->htab_fd >= 0) {
1475         return spapr->htab_fd;
1476     }
1477 
1478     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1479     if (spapr->htab_fd < 0) {
1480         error_report_err(local_err);
1481     }
1482 
1483     return spapr->htab_fd;
1484 }
1485 
1486 void close_htab_fd(SpaprMachineState *spapr)
1487 {
1488     if (spapr->htab_fd >= 0) {
1489         close(spapr->htab_fd);
1490     }
1491     spapr->htab_fd = -1;
1492 }
1493 
1494 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1495 {
1496     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1497 
1498     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1499 }
1500 
1501 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1502 {
1503     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1504 
1505     assert(kvm_enabled());
1506 
1507     if (!spapr->htab) {
1508         return 0;
1509     }
1510 
1511     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1512 }
1513 
1514 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1515                                                 hwaddr ptex, int n)
1516 {
1517     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1518     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1519 
1520     if (!spapr->htab) {
1521         /*
1522          * HTAB is controlled by KVM. Fetch into temporary buffer
1523          */
1524         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1525         kvmppc_read_hptes(hptes, ptex, n);
1526         return hptes;
1527     }
1528 
1529     /*
1530      * HTAB is controlled by QEMU. Just point to the internally
1531      * accessible PTEG.
1532      */
1533     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1534 }
1535 
1536 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1537                               const ppc_hash_pte64_t *hptes,
1538                               hwaddr ptex, int n)
1539 {
1540     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1541 
1542     if (!spapr->htab) {
1543         g_free((void *)hptes);
1544     }
1545 
1546     /* Nothing to do for qemu managed HPT */
1547 }
1548 
1549 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1550                       uint64_t pte0, uint64_t pte1)
1551 {
1552     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1553     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1554 
1555     if (!spapr->htab) {
1556         kvmppc_write_hpte(ptex, pte0, pte1);
1557     } else {
1558         if (pte0 & HPTE64_V_VALID) {
1559             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1560             /*
1561              * When setting valid, we write PTE1 first. This ensures
1562              * proper synchronization with the reading code in
1563              * ppc_hash64_pteg_search()
1564              */
1565             smp_wmb();
1566             stq_p(spapr->htab + offset, pte0);
1567         } else {
1568             stq_p(spapr->htab + offset, pte0);
1569             /*
1570              * When clearing it we set PTE0 first. This ensures proper
1571              * synchronization with the reading code in
1572              * ppc_hash64_pteg_search()
1573              */
1574             smp_wmb();
1575             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1576         }
1577     }
1578 }
1579 
1580 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1581                              uint64_t pte1)
1582 {
1583     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1584     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1585 
1586     if (!spapr->htab) {
1587         /* There should always be a hash table when this is called */
1588         error_report("spapr_hpte_set_c called with no hash table !");
1589         return;
1590     }
1591 
1592     /* The HW performs a non-atomic byte update */
1593     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1594 }
1595 
1596 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1597                              uint64_t pte1)
1598 {
1599     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1600     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1601 
1602     if (!spapr->htab) {
1603         /* There should always be a hash table when this is called */
1604         error_report("spapr_hpte_set_r called with no hash table !");
1605         return;
1606     }
1607 
1608     /* The HW performs a non-atomic byte update */
1609     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1610 }
1611 
1612 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1613 {
1614     int shift;
1615 
1616     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1617      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1618      * that's much more than is needed for Linux guests */
1619     shift = ctz64(pow2ceil(ramsize)) - 7;
1620     shift = MAX(shift, 18); /* Minimum architected size */
1621     shift = MIN(shift, 46); /* Maximum architected size */
1622     return shift;
1623 }
1624 
1625 void spapr_free_hpt(SpaprMachineState *spapr)
1626 {
1627     g_free(spapr->htab);
1628     spapr->htab = NULL;
1629     spapr->htab_shift = 0;
1630     close_htab_fd(spapr);
1631 }
1632 
1633 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1634                           Error **errp)
1635 {
1636     long rc;
1637 
1638     /* Clean up any HPT info from a previous boot */
1639     spapr_free_hpt(spapr);
1640 
1641     rc = kvmppc_reset_htab(shift);
1642     if (rc < 0) {
1643         /* kernel-side HPT needed, but couldn't allocate one */
1644         error_setg_errno(errp, errno,
1645                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1646                          shift);
1647         /* This is almost certainly fatal, but if the caller really
1648          * wants to carry on with shift == 0, it's welcome to try */
1649     } else if (rc > 0) {
1650         /* kernel-side HPT allocated */
1651         if (rc != shift) {
1652             error_setg(errp,
1653                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1654                        shift, rc);
1655         }
1656 
1657         spapr->htab_shift = shift;
1658         spapr->htab = NULL;
1659     } else {
1660         /* kernel-side HPT not needed, allocate in userspace instead */
1661         size_t size = 1ULL << shift;
1662         int i;
1663 
1664         spapr->htab = qemu_memalign(size, size);
1665         if (!spapr->htab) {
1666             error_setg_errno(errp, errno,
1667                              "Could not allocate HPT of order %d", shift);
1668             return;
1669         }
1670 
1671         memset(spapr->htab, 0, size);
1672         spapr->htab_shift = shift;
1673 
1674         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1675             DIRTY_HPTE(HPTE(spapr->htab, i));
1676         }
1677     }
1678     /* We're setting up a hash table, so that means we're not radix */
1679     spapr->patb_entry = 0;
1680     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1681 }
1682 
1683 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1684 {
1685     int hpt_shift;
1686 
1687     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1688         || (spapr->cas_reboot
1689             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1690         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1691     } else {
1692         uint64_t current_ram_size;
1693 
1694         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1695         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1696     }
1697     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1698 
1699     if (spapr->vrma_adjust) {
1700         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1701                                           spapr->htab_shift);
1702     }
1703 }
1704 
1705 static int spapr_reset_drcs(Object *child, void *opaque)
1706 {
1707     SpaprDrc *drc =
1708         (SpaprDrc *) object_dynamic_cast(child,
1709                                                  TYPE_SPAPR_DR_CONNECTOR);
1710 
1711     if (drc) {
1712         spapr_drc_reset(drc);
1713     }
1714 
1715     return 0;
1716 }
1717 
1718 static void spapr_machine_reset(MachineState *machine)
1719 {
1720     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1721     PowerPCCPU *first_ppc_cpu;
1722     uint32_t rtas_limit;
1723     hwaddr rtas_addr, fdt_addr;
1724     void *fdt;
1725     int rc;
1726 
1727     spapr_caps_apply(spapr);
1728 
1729     first_ppc_cpu = POWERPC_CPU(first_cpu);
1730     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1731         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1732                               spapr->max_compat_pvr)) {
1733         /*
1734          * If using KVM with radix mode available, VCPUs can be started
1735          * without a HPT because KVM will start them in radix mode.
1736          * Set the GR bit in PATE so that we know there is no HPT.
1737          */
1738         spapr->patb_entry = PATE1_GR;
1739         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1740     } else {
1741         spapr_setup_hpt_and_vrma(spapr);
1742     }
1743 
1744     /*
1745      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1746      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1747      * called from vPHB reset handler so we initialize the counter here.
1748      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1749      * must be equally distant from any other node.
1750      * The final value of spapr->gpu_numa_id is going to be written to
1751      * max-associativity-domains in spapr_build_fdt().
1752      */
1753     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
1754     qemu_devices_reset();
1755 
1756     /*
1757      * If this reset wasn't generated by CAS, we should reset our
1758      * negotiated options and start from scratch
1759      */
1760     if (!spapr->cas_reboot) {
1761         spapr_ovec_cleanup(spapr->ov5_cas);
1762         spapr->ov5_cas = spapr_ovec_new();
1763 
1764         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1765     }
1766 
1767     /*
1768      * This is fixing some of the default configuration of the XIVE
1769      * devices. To be called after the reset of the machine devices.
1770      */
1771     spapr_irq_reset(spapr, &error_fatal);
1772 
1773     /*
1774      * There is no CAS under qtest. Simulate one to please the code that
1775      * depends on spapr->ov5_cas. This is especially needed to test device
1776      * unplug, so we do that before resetting the DRCs.
1777      */
1778     if (qtest_enabled()) {
1779         spapr_ovec_cleanup(spapr->ov5_cas);
1780         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1781     }
1782 
1783     /* DRC reset may cause a device to be unplugged. This will cause troubles
1784      * if this device is used by another device (eg, a running vhost backend
1785      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1786      * situations, we reset DRCs after all devices have been reset.
1787      */
1788     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1789 
1790     spapr_clear_pending_events(spapr);
1791 
1792     /*
1793      * We place the device tree and RTAS just below either the top of the RMA,
1794      * or just below 2GB, whichever is lower, so that it can be
1795      * processed with 32-bit real mode code if necessary
1796      */
1797     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1798     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1799     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1800 
1801     fdt = spapr_build_fdt(spapr);
1802 
1803     spapr_load_rtas(spapr, fdt, rtas_addr);
1804 
1805     rc = fdt_pack(fdt);
1806 
1807     /* Should only fail if we've built a corrupted tree */
1808     assert(rc == 0);
1809 
1810     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1811         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1812                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1813         exit(1);
1814     }
1815 
1816     /* Load the fdt */
1817     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1818     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1819     g_free(spapr->fdt_blob);
1820     spapr->fdt_size = fdt_totalsize(fdt);
1821     spapr->fdt_initial_size = spapr->fdt_size;
1822     spapr->fdt_blob = fdt;
1823 
1824     /* Set up the entry state */
1825     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1826     first_ppc_cpu->env.gpr[5] = 0;
1827 
1828     spapr->cas_reboot = false;
1829 }
1830 
1831 static void spapr_create_nvram(SpaprMachineState *spapr)
1832 {
1833     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1834     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1835 
1836     if (dinfo) {
1837         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1838                             &error_fatal);
1839     }
1840 
1841     qdev_init_nofail(dev);
1842 
1843     spapr->nvram = (struct SpaprNvram *)dev;
1844 }
1845 
1846 static void spapr_rtc_create(SpaprMachineState *spapr)
1847 {
1848     object_initialize_child(OBJECT(spapr), "rtc",
1849                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1850                             &error_fatal, NULL);
1851     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1852                               &error_fatal);
1853     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1854                               "date", &error_fatal);
1855 }
1856 
1857 /* Returns whether we want to use VGA or not */
1858 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1859 {
1860     switch (vga_interface_type) {
1861     case VGA_NONE:
1862         return false;
1863     case VGA_DEVICE:
1864         return true;
1865     case VGA_STD:
1866     case VGA_VIRTIO:
1867     case VGA_CIRRUS:
1868         return pci_vga_init(pci_bus) != NULL;
1869     default:
1870         error_setg(errp,
1871                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1872         return false;
1873     }
1874 }
1875 
1876 static int spapr_pre_load(void *opaque)
1877 {
1878     int rc;
1879 
1880     rc = spapr_caps_pre_load(opaque);
1881     if (rc) {
1882         return rc;
1883     }
1884 
1885     return 0;
1886 }
1887 
1888 static int spapr_post_load(void *opaque, int version_id)
1889 {
1890     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1891     int err = 0;
1892 
1893     err = spapr_caps_post_migration(spapr);
1894     if (err) {
1895         return err;
1896     }
1897 
1898     /*
1899      * In earlier versions, there was no separate qdev for the PAPR
1900      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1901      * So when migrating from those versions, poke the incoming offset
1902      * value into the RTC device
1903      */
1904     if (version_id < 3) {
1905         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1906         if (err) {
1907             return err;
1908         }
1909     }
1910 
1911     if (kvm_enabled() && spapr->patb_entry) {
1912         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1913         bool radix = !!(spapr->patb_entry & PATE1_GR);
1914         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1915 
1916         /*
1917          * Update LPCR:HR and UPRT as they may not be set properly in
1918          * the stream
1919          */
1920         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1921                             LPCR_HR | LPCR_UPRT);
1922 
1923         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1924         if (err) {
1925             error_report("Process table config unsupported by the host");
1926             return -EINVAL;
1927         }
1928     }
1929 
1930     err = spapr_irq_post_load(spapr, version_id);
1931     if (err) {
1932         return err;
1933     }
1934 
1935     return err;
1936 }
1937 
1938 static int spapr_pre_save(void *opaque)
1939 {
1940     int rc;
1941 
1942     rc = spapr_caps_pre_save(opaque);
1943     if (rc) {
1944         return rc;
1945     }
1946 
1947     return 0;
1948 }
1949 
1950 static bool version_before_3(void *opaque, int version_id)
1951 {
1952     return version_id < 3;
1953 }
1954 
1955 static bool spapr_pending_events_needed(void *opaque)
1956 {
1957     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1958     return !QTAILQ_EMPTY(&spapr->pending_events);
1959 }
1960 
1961 static const VMStateDescription vmstate_spapr_event_entry = {
1962     .name = "spapr_event_log_entry",
1963     .version_id = 1,
1964     .minimum_version_id = 1,
1965     .fields = (VMStateField[]) {
1966         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1967         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1968         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1969                                      NULL, extended_length),
1970         VMSTATE_END_OF_LIST()
1971     },
1972 };
1973 
1974 static const VMStateDescription vmstate_spapr_pending_events = {
1975     .name = "spapr_pending_events",
1976     .version_id = 1,
1977     .minimum_version_id = 1,
1978     .needed = spapr_pending_events_needed,
1979     .fields = (VMStateField[]) {
1980         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1981                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1982         VMSTATE_END_OF_LIST()
1983     },
1984 };
1985 
1986 static bool spapr_ov5_cas_needed(void *opaque)
1987 {
1988     SpaprMachineState *spapr = opaque;
1989     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1990     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1991     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1992     bool cas_needed;
1993 
1994     /* Prior to the introduction of SpaprOptionVector, we had two option
1995      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1996      * Both of these options encode machine topology into the device-tree
1997      * in such a way that the now-booted OS should still be able to interact
1998      * appropriately with QEMU regardless of what options were actually
1999      * negotiatied on the source side.
2000      *
2001      * As such, we can avoid migrating the CAS-negotiated options if these
2002      * are the only options available on the current machine/platform.
2003      * Since these are the only options available for pseries-2.7 and
2004      * earlier, this allows us to maintain old->new/new->old migration
2005      * compatibility.
2006      *
2007      * For QEMU 2.8+, there are additional CAS-negotiatable options available
2008      * via default pseries-2.8 machines and explicit command-line parameters.
2009      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2010      * of the actual CAS-negotiated values to continue working properly. For
2011      * example, availability of memory unplug depends on knowing whether
2012      * OV5_HP_EVT was negotiated via CAS.
2013      *
2014      * Thus, for any cases where the set of available CAS-negotiatable
2015      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2016      * include the CAS-negotiated options in the migration stream, unless
2017      * if they affect boot time behaviour only.
2018      */
2019     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2020     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2021     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2022 
2023     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2024      * the mask itself since in the future it's possible "legacy" bits may be
2025      * removed via machine options, which could generate a false positive
2026      * that breaks migration.
2027      */
2028     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2029     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2030 
2031     spapr_ovec_cleanup(ov5_mask);
2032     spapr_ovec_cleanup(ov5_legacy);
2033     spapr_ovec_cleanup(ov5_removed);
2034 
2035     return cas_needed;
2036 }
2037 
2038 static const VMStateDescription vmstate_spapr_ov5_cas = {
2039     .name = "spapr_option_vector_ov5_cas",
2040     .version_id = 1,
2041     .minimum_version_id = 1,
2042     .needed = spapr_ov5_cas_needed,
2043     .fields = (VMStateField[]) {
2044         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2045                                  vmstate_spapr_ovec, SpaprOptionVector),
2046         VMSTATE_END_OF_LIST()
2047     },
2048 };
2049 
2050 static bool spapr_patb_entry_needed(void *opaque)
2051 {
2052     SpaprMachineState *spapr = opaque;
2053 
2054     return !!spapr->patb_entry;
2055 }
2056 
2057 static const VMStateDescription vmstate_spapr_patb_entry = {
2058     .name = "spapr_patb_entry",
2059     .version_id = 1,
2060     .minimum_version_id = 1,
2061     .needed = spapr_patb_entry_needed,
2062     .fields = (VMStateField[]) {
2063         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2064         VMSTATE_END_OF_LIST()
2065     },
2066 };
2067 
2068 static bool spapr_irq_map_needed(void *opaque)
2069 {
2070     SpaprMachineState *spapr = opaque;
2071 
2072     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2073 }
2074 
2075 static const VMStateDescription vmstate_spapr_irq_map = {
2076     .name = "spapr_irq_map",
2077     .version_id = 1,
2078     .minimum_version_id = 1,
2079     .needed = spapr_irq_map_needed,
2080     .fields = (VMStateField[]) {
2081         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2082         VMSTATE_END_OF_LIST()
2083     },
2084 };
2085 
2086 static bool spapr_dtb_needed(void *opaque)
2087 {
2088     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2089 
2090     return smc->update_dt_enabled;
2091 }
2092 
2093 static int spapr_dtb_pre_load(void *opaque)
2094 {
2095     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2096 
2097     g_free(spapr->fdt_blob);
2098     spapr->fdt_blob = NULL;
2099     spapr->fdt_size = 0;
2100 
2101     return 0;
2102 }
2103 
2104 static const VMStateDescription vmstate_spapr_dtb = {
2105     .name = "spapr_dtb",
2106     .version_id = 1,
2107     .minimum_version_id = 1,
2108     .needed = spapr_dtb_needed,
2109     .pre_load = spapr_dtb_pre_load,
2110     .fields = (VMStateField[]) {
2111         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2112         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2113         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2114                                      fdt_size),
2115         VMSTATE_END_OF_LIST()
2116     },
2117 };
2118 
2119 static const VMStateDescription vmstate_spapr = {
2120     .name = "spapr",
2121     .version_id = 3,
2122     .minimum_version_id = 1,
2123     .pre_load = spapr_pre_load,
2124     .post_load = spapr_post_load,
2125     .pre_save = spapr_pre_save,
2126     .fields = (VMStateField[]) {
2127         /* used to be @next_irq */
2128         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2129 
2130         /* RTC offset */
2131         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2132 
2133         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2134         VMSTATE_END_OF_LIST()
2135     },
2136     .subsections = (const VMStateDescription*[]) {
2137         &vmstate_spapr_ov5_cas,
2138         &vmstate_spapr_patb_entry,
2139         &vmstate_spapr_pending_events,
2140         &vmstate_spapr_cap_htm,
2141         &vmstate_spapr_cap_vsx,
2142         &vmstate_spapr_cap_dfp,
2143         &vmstate_spapr_cap_cfpc,
2144         &vmstate_spapr_cap_sbbc,
2145         &vmstate_spapr_cap_ibs,
2146         &vmstate_spapr_cap_hpt_maxpagesize,
2147         &vmstate_spapr_irq_map,
2148         &vmstate_spapr_cap_nested_kvm_hv,
2149         &vmstate_spapr_dtb,
2150         &vmstate_spapr_cap_large_decr,
2151         &vmstate_spapr_cap_ccf_assist,
2152         NULL
2153     }
2154 };
2155 
2156 static int htab_save_setup(QEMUFile *f, void *opaque)
2157 {
2158     SpaprMachineState *spapr = opaque;
2159 
2160     /* "Iteration" header */
2161     if (!spapr->htab_shift) {
2162         qemu_put_be32(f, -1);
2163     } else {
2164         qemu_put_be32(f, spapr->htab_shift);
2165     }
2166 
2167     if (spapr->htab) {
2168         spapr->htab_save_index = 0;
2169         spapr->htab_first_pass = true;
2170     } else {
2171         if (spapr->htab_shift) {
2172             assert(kvm_enabled());
2173         }
2174     }
2175 
2176 
2177     return 0;
2178 }
2179 
2180 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2181                             int chunkstart, int n_valid, int n_invalid)
2182 {
2183     qemu_put_be32(f, chunkstart);
2184     qemu_put_be16(f, n_valid);
2185     qemu_put_be16(f, n_invalid);
2186     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2187                     HASH_PTE_SIZE_64 * n_valid);
2188 }
2189 
2190 static void htab_save_end_marker(QEMUFile *f)
2191 {
2192     qemu_put_be32(f, 0);
2193     qemu_put_be16(f, 0);
2194     qemu_put_be16(f, 0);
2195 }
2196 
2197 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2198                                  int64_t max_ns)
2199 {
2200     bool has_timeout = max_ns != -1;
2201     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2202     int index = spapr->htab_save_index;
2203     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2204 
2205     assert(spapr->htab_first_pass);
2206 
2207     do {
2208         int chunkstart;
2209 
2210         /* Consume invalid HPTEs */
2211         while ((index < htabslots)
2212                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2213             CLEAN_HPTE(HPTE(spapr->htab, index));
2214             index++;
2215         }
2216 
2217         /* Consume valid HPTEs */
2218         chunkstart = index;
2219         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2220                && HPTE_VALID(HPTE(spapr->htab, index))) {
2221             CLEAN_HPTE(HPTE(spapr->htab, index));
2222             index++;
2223         }
2224 
2225         if (index > chunkstart) {
2226             int n_valid = index - chunkstart;
2227 
2228             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2229 
2230             if (has_timeout &&
2231                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2232                 break;
2233             }
2234         }
2235     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2236 
2237     if (index >= htabslots) {
2238         assert(index == htabslots);
2239         index = 0;
2240         spapr->htab_first_pass = false;
2241     }
2242     spapr->htab_save_index = index;
2243 }
2244 
2245 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2246                                 int64_t max_ns)
2247 {
2248     bool final = max_ns < 0;
2249     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2250     int examined = 0, sent = 0;
2251     int index = spapr->htab_save_index;
2252     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2253 
2254     assert(!spapr->htab_first_pass);
2255 
2256     do {
2257         int chunkstart, invalidstart;
2258 
2259         /* Consume non-dirty HPTEs */
2260         while ((index < htabslots)
2261                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2262             index++;
2263             examined++;
2264         }
2265 
2266         chunkstart = index;
2267         /* Consume valid dirty HPTEs */
2268         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2269                && HPTE_DIRTY(HPTE(spapr->htab, index))
2270                && HPTE_VALID(HPTE(spapr->htab, index))) {
2271             CLEAN_HPTE(HPTE(spapr->htab, index));
2272             index++;
2273             examined++;
2274         }
2275 
2276         invalidstart = index;
2277         /* Consume invalid dirty HPTEs */
2278         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2279                && HPTE_DIRTY(HPTE(spapr->htab, index))
2280                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2281             CLEAN_HPTE(HPTE(spapr->htab, index));
2282             index++;
2283             examined++;
2284         }
2285 
2286         if (index > chunkstart) {
2287             int n_valid = invalidstart - chunkstart;
2288             int n_invalid = index - invalidstart;
2289 
2290             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2291             sent += index - chunkstart;
2292 
2293             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2294                 break;
2295             }
2296         }
2297 
2298         if (examined >= htabslots) {
2299             break;
2300         }
2301 
2302         if (index >= htabslots) {
2303             assert(index == htabslots);
2304             index = 0;
2305         }
2306     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2307 
2308     if (index >= htabslots) {
2309         assert(index == htabslots);
2310         index = 0;
2311     }
2312 
2313     spapr->htab_save_index = index;
2314 
2315     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2316 }
2317 
2318 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2319 #define MAX_KVM_BUF_SIZE    2048
2320 
2321 static int htab_save_iterate(QEMUFile *f, void *opaque)
2322 {
2323     SpaprMachineState *spapr = opaque;
2324     int fd;
2325     int rc = 0;
2326 
2327     /* Iteration header */
2328     if (!spapr->htab_shift) {
2329         qemu_put_be32(f, -1);
2330         return 1;
2331     } else {
2332         qemu_put_be32(f, 0);
2333     }
2334 
2335     if (!spapr->htab) {
2336         assert(kvm_enabled());
2337 
2338         fd = get_htab_fd(spapr);
2339         if (fd < 0) {
2340             return fd;
2341         }
2342 
2343         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2344         if (rc < 0) {
2345             return rc;
2346         }
2347     } else  if (spapr->htab_first_pass) {
2348         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2349     } else {
2350         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2351     }
2352 
2353     htab_save_end_marker(f);
2354 
2355     return rc;
2356 }
2357 
2358 static int htab_save_complete(QEMUFile *f, void *opaque)
2359 {
2360     SpaprMachineState *spapr = opaque;
2361     int fd;
2362 
2363     /* Iteration header */
2364     if (!spapr->htab_shift) {
2365         qemu_put_be32(f, -1);
2366         return 0;
2367     } else {
2368         qemu_put_be32(f, 0);
2369     }
2370 
2371     if (!spapr->htab) {
2372         int rc;
2373 
2374         assert(kvm_enabled());
2375 
2376         fd = get_htab_fd(spapr);
2377         if (fd < 0) {
2378             return fd;
2379         }
2380 
2381         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2382         if (rc < 0) {
2383             return rc;
2384         }
2385     } else {
2386         if (spapr->htab_first_pass) {
2387             htab_save_first_pass(f, spapr, -1);
2388         }
2389         htab_save_later_pass(f, spapr, -1);
2390     }
2391 
2392     /* End marker */
2393     htab_save_end_marker(f);
2394 
2395     return 0;
2396 }
2397 
2398 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2399 {
2400     SpaprMachineState *spapr = opaque;
2401     uint32_t section_hdr;
2402     int fd = -1;
2403     Error *local_err = NULL;
2404 
2405     if (version_id < 1 || version_id > 1) {
2406         error_report("htab_load() bad version");
2407         return -EINVAL;
2408     }
2409 
2410     section_hdr = qemu_get_be32(f);
2411 
2412     if (section_hdr == -1) {
2413         spapr_free_hpt(spapr);
2414         return 0;
2415     }
2416 
2417     if (section_hdr) {
2418         /* First section gives the htab size */
2419         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2420         if (local_err) {
2421             error_report_err(local_err);
2422             return -EINVAL;
2423         }
2424         return 0;
2425     }
2426 
2427     if (!spapr->htab) {
2428         assert(kvm_enabled());
2429 
2430         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2431         if (fd < 0) {
2432             error_report_err(local_err);
2433             return fd;
2434         }
2435     }
2436 
2437     while (true) {
2438         uint32_t index;
2439         uint16_t n_valid, n_invalid;
2440 
2441         index = qemu_get_be32(f);
2442         n_valid = qemu_get_be16(f);
2443         n_invalid = qemu_get_be16(f);
2444 
2445         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2446             /* End of Stream */
2447             break;
2448         }
2449 
2450         if ((index + n_valid + n_invalid) >
2451             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2452             /* Bad index in stream */
2453             error_report(
2454                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2455                 index, n_valid, n_invalid, spapr->htab_shift);
2456             return -EINVAL;
2457         }
2458 
2459         if (spapr->htab) {
2460             if (n_valid) {
2461                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2462                                 HASH_PTE_SIZE_64 * n_valid);
2463             }
2464             if (n_invalid) {
2465                 memset(HPTE(spapr->htab, index + n_valid), 0,
2466                        HASH_PTE_SIZE_64 * n_invalid);
2467             }
2468         } else {
2469             int rc;
2470 
2471             assert(fd >= 0);
2472 
2473             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2474             if (rc < 0) {
2475                 return rc;
2476             }
2477         }
2478     }
2479 
2480     if (!spapr->htab) {
2481         assert(fd >= 0);
2482         close(fd);
2483     }
2484 
2485     return 0;
2486 }
2487 
2488 static void htab_save_cleanup(void *opaque)
2489 {
2490     SpaprMachineState *spapr = opaque;
2491 
2492     close_htab_fd(spapr);
2493 }
2494 
2495 static SaveVMHandlers savevm_htab_handlers = {
2496     .save_setup = htab_save_setup,
2497     .save_live_iterate = htab_save_iterate,
2498     .save_live_complete_precopy = htab_save_complete,
2499     .save_cleanup = htab_save_cleanup,
2500     .load_state = htab_load,
2501 };
2502 
2503 static void spapr_boot_set(void *opaque, const char *boot_device,
2504                            Error **errp)
2505 {
2506     MachineState *machine = MACHINE(opaque);
2507     machine->boot_order = g_strdup(boot_device);
2508 }
2509 
2510 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2511 {
2512     MachineState *machine = MACHINE(spapr);
2513     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2514     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2515     int i;
2516 
2517     for (i = 0; i < nr_lmbs; i++) {
2518         uint64_t addr;
2519 
2520         addr = i * lmb_size + machine->device_memory->base;
2521         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2522                                addr / lmb_size);
2523     }
2524 }
2525 
2526 /*
2527  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2528  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2529  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2530  */
2531 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2532 {
2533     int i;
2534 
2535     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2536         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2537                    " is not aligned to %" PRIu64 " MiB",
2538                    machine->ram_size,
2539                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2540         return;
2541     }
2542 
2543     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2544         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2545                    " is not aligned to %" PRIu64 " MiB",
2546                    machine->ram_size,
2547                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2548         return;
2549     }
2550 
2551     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2552         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2553             error_setg(errp,
2554                        "Node %d memory size 0x%" PRIx64
2555                        " is not aligned to %" PRIu64 " MiB",
2556                        i, machine->numa_state->nodes[i].node_mem,
2557                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2558             return;
2559         }
2560     }
2561 }
2562 
2563 /* find cpu slot in machine->possible_cpus by core_id */
2564 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2565 {
2566     int index = id / ms->smp.threads;
2567 
2568     if (index >= ms->possible_cpus->len) {
2569         return NULL;
2570     }
2571     if (idx) {
2572         *idx = index;
2573     }
2574     return &ms->possible_cpus->cpus[index];
2575 }
2576 
2577 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2578 {
2579     MachineState *ms = MACHINE(spapr);
2580     Error *local_err = NULL;
2581     bool vsmt_user = !!spapr->vsmt;
2582     int kvm_smt = kvmppc_smt_threads();
2583     int ret;
2584     unsigned int smp_threads = ms->smp.threads;
2585 
2586     if (!kvm_enabled() && (smp_threads > 1)) {
2587         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2588                      "on a pseries machine");
2589         goto out;
2590     }
2591     if (!is_power_of_2(smp_threads)) {
2592         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2593                      "machine because it must be a power of 2", smp_threads);
2594         goto out;
2595     }
2596 
2597     /* Detemine the VSMT mode to use: */
2598     if (vsmt_user) {
2599         if (spapr->vsmt < smp_threads) {
2600             error_setg(&local_err, "Cannot support VSMT mode %d"
2601                          " because it must be >= threads/core (%d)",
2602                          spapr->vsmt, smp_threads);
2603             goto out;
2604         }
2605         /* In this case, spapr->vsmt has been set by the command line */
2606     } else {
2607         /*
2608          * Default VSMT value is tricky, because we need it to be as
2609          * consistent as possible (for migration), but this requires
2610          * changing it for at least some existing cases.  We pick 8 as
2611          * the value that we'd get with KVM on POWER8, the
2612          * overwhelmingly common case in production systems.
2613          */
2614         spapr->vsmt = MAX(8, smp_threads);
2615     }
2616 
2617     /* KVM: If necessary, set the SMT mode: */
2618     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2619         ret = kvmppc_set_smt_threads(spapr->vsmt);
2620         if (ret) {
2621             /* Looks like KVM isn't able to change VSMT mode */
2622             error_setg(&local_err,
2623                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2624                        spapr->vsmt, ret);
2625             /* We can live with that if the default one is big enough
2626              * for the number of threads, and a submultiple of the one
2627              * we want.  In this case we'll waste some vcpu ids, but
2628              * behaviour will be correct */
2629             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2630                 warn_report_err(local_err);
2631                 local_err = NULL;
2632                 goto out;
2633             } else {
2634                 if (!vsmt_user) {
2635                     error_append_hint(&local_err,
2636                                       "On PPC, a VM with %d threads/core"
2637                                       " on a host with %d threads/core"
2638                                       " requires the use of VSMT mode %d.\n",
2639                                       smp_threads, kvm_smt, spapr->vsmt);
2640                 }
2641                 kvmppc_hint_smt_possible(&local_err);
2642                 goto out;
2643             }
2644         }
2645     }
2646     /* else TCG: nothing to do currently */
2647 out:
2648     error_propagate(errp, local_err);
2649 }
2650 
2651 static void spapr_init_cpus(SpaprMachineState *spapr)
2652 {
2653     MachineState *machine = MACHINE(spapr);
2654     MachineClass *mc = MACHINE_GET_CLASS(machine);
2655     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2656     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2657     const CPUArchIdList *possible_cpus;
2658     unsigned int smp_cpus = machine->smp.cpus;
2659     unsigned int smp_threads = machine->smp.threads;
2660     unsigned int max_cpus = machine->smp.max_cpus;
2661     int boot_cores_nr = smp_cpus / smp_threads;
2662     int i;
2663 
2664     possible_cpus = mc->possible_cpu_arch_ids(machine);
2665     if (mc->has_hotpluggable_cpus) {
2666         if (smp_cpus % smp_threads) {
2667             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2668                          smp_cpus, smp_threads);
2669             exit(1);
2670         }
2671         if (max_cpus % smp_threads) {
2672             error_report("max_cpus (%u) must be multiple of threads (%u)",
2673                          max_cpus, smp_threads);
2674             exit(1);
2675         }
2676     } else {
2677         if (max_cpus != smp_cpus) {
2678             error_report("This machine version does not support CPU hotplug");
2679             exit(1);
2680         }
2681         boot_cores_nr = possible_cpus->len;
2682     }
2683 
2684     if (smc->pre_2_10_has_unused_icps) {
2685         int i;
2686 
2687         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2688             /* Dummy entries get deregistered when real ICPState objects
2689              * are registered during CPU core hotplug.
2690              */
2691             pre_2_10_vmstate_register_dummy_icp(i);
2692         }
2693     }
2694 
2695     for (i = 0; i < possible_cpus->len; i++) {
2696         int core_id = i * smp_threads;
2697 
2698         if (mc->has_hotpluggable_cpus) {
2699             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2700                                    spapr_vcpu_id(spapr, core_id));
2701         }
2702 
2703         if (i < boot_cores_nr) {
2704             Object *core  = object_new(type);
2705             int nr_threads = smp_threads;
2706 
2707             /* Handle the partially filled core for older machine types */
2708             if ((i + 1) * smp_threads >= smp_cpus) {
2709                 nr_threads = smp_cpus - i * smp_threads;
2710             }
2711 
2712             object_property_set_int(core, nr_threads, "nr-threads",
2713                                     &error_fatal);
2714             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2715                                     &error_fatal);
2716             object_property_set_bool(core, true, "realized", &error_fatal);
2717 
2718             object_unref(core);
2719         }
2720     }
2721 }
2722 
2723 static PCIHostState *spapr_create_default_phb(void)
2724 {
2725     DeviceState *dev;
2726 
2727     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2728     qdev_prop_set_uint32(dev, "index", 0);
2729     qdev_init_nofail(dev);
2730 
2731     return PCI_HOST_BRIDGE(dev);
2732 }
2733 
2734 /* pSeries LPAR / sPAPR hardware init */
2735 static void spapr_machine_init(MachineState *machine)
2736 {
2737     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2738     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2739     const char *kernel_filename = machine->kernel_filename;
2740     const char *initrd_filename = machine->initrd_filename;
2741     PCIHostState *phb;
2742     int i;
2743     MemoryRegion *sysmem = get_system_memory();
2744     MemoryRegion *ram = g_new(MemoryRegion, 1);
2745     hwaddr node0_size = spapr_node0_size(machine);
2746     long load_limit, fw_size;
2747     char *filename;
2748     Error *resize_hpt_err = NULL;
2749 
2750     msi_nonbroken = true;
2751 
2752     QLIST_INIT(&spapr->phbs);
2753     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2754 
2755     /* Determine capabilities to run with */
2756     spapr_caps_init(spapr);
2757 
2758     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2759     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2760         /*
2761          * If the user explicitly requested a mode we should either
2762          * supply it, or fail completely (which we do below).  But if
2763          * it's not set explicitly, we reset our mode to something
2764          * that works
2765          */
2766         if (resize_hpt_err) {
2767             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2768             error_free(resize_hpt_err);
2769             resize_hpt_err = NULL;
2770         } else {
2771             spapr->resize_hpt = smc->resize_hpt_default;
2772         }
2773     }
2774 
2775     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2776 
2777     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2778         /*
2779          * User requested HPT resize, but this host can't supply it.  Bail out
2780          */
2781         error_report_err(resize_hpt_err);
2782         exit(1);
2783     }
2784 
2785     spapr->rma_size = node0_size;
2786 
2787     /* With KVM, we don't actually know whether KVM supports an
2788      * unbounded RMA (PR KVM) or is limited by the hash table size
2789      * (HV KVM using VRMA), so we always assume the latter
2790      *
2791      * In that case, we also limit the initial allocations for RTAS
2792      * etc... to 256M since we have no way to know what the VRMA size
2793      * is going to be as it depends on the size of the hash table
2794      * which isn't determined yet.
2795      */
2796     if (kvm_enabled()) {
2797         spapr->vrma_adjust = 1;
2798         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2799     }
2800 
2801     /* Actually we don't support unbounded RMA anymore since we added
2802      * proper emulation of HV mode. The max we can get is 16G which
2803      * also happens to be what we configure for PAPR mode so make sure
2804      * we don't do anything bigger than that
2805      */
2806     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2807 
2808     if (spapr->rma_size > node0_size) {
2809         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2810                      spapr->rma_size);
2811         exit(1);
2812     }
2813 
2814     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2815     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2816 
2817     /*
2818      * VSMT must be set in order to be able to compute VCPU ids, ie to
2819      * call spapr_max_server_number() or spapr_vcpu_id().
2820      */
2821     spapr_set_vsmt_mode(spapr, &error_fatal);
2822 
2823     /* Set up Interrupt Controller before we create the VCPUs */
2824     spapr_irq_init(spapr, &error_fatal);
2825 
2826     /* Set up containers for ibm,client-architecture-support negotiated options
2827      */
2828     spapr->ov5 = spapr_ovec_new();
2829     spapr->ov5_cas = spapr_ovec_new();
2830 
2831     if (smc->dr_lmb_enabled) {
2832         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2833         spapr_validate_node_memory(machine, &error_fatal);
2834     }
2835 
2836     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2837 
2838     /* advertise support for dedicated HP event source to guests */
2839     if (spapr->use_hotplug_event_source) {
2840         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2841     }
2842 
2843     /* advertise support for HPT resizing */
2844     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2845         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2846     }
2847 
2848     /* advertise support for ibm,dyamic-memory-v2 */
2849     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2850 
2851     /* advertise XIVE on POWER9 machines */
2852     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2853         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2854     }
2855 
2856     /* init CPUs */
2857     spapr_init_cpus(spapr);
2858 
2859     /*
2860      * check we don't have a memory-less/cpu-less NUMA node
2861      * Firmware relies on the existing memory/cpu topology to provide the
2862      * NUMA topology to the kernel.
2863      * And the linux kernel needs to know the NUMA topology at start
2864      * to be able to hotplug CPUs later.
2865      */
2866     if (machine->numa_state->num_nodes) {
2867         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2868             /* check for memory-less node */
2869             if (machine->numa_state->nodes[i].node_mem == 0) {
2870                 CPUState *cs;
2871                 int found = 0;
2872                 /* check for cpu-less node */
2873                 CPU_FOREACH(cs) {
2874                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2875                     if (cpu->node_id == i) {
2876                         found = 1;
2877                         break;
2878                     }
2879                 }
2880                 /* memory-less and cpu-less node */
2881                 if (!found) {
2882                     error_report(
2883                        "Memory-less/cpu-less nodes are not supported (node %d)",
2884                                  i);
2885                     exit(1);
2886                 }
2887             }
2888         }
2889 
2890     }
2891 
2892     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2893         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2894                               spapr->max_compat_pvr)) {
2895         /* KVM and TCG always allow GTSE with radix... */
2896         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2897     }
2898     /* ... but not with hash (currently). */
2899 
2900     if (kvm_enabled()) {
2901         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2902         kvmppc_enable_logical_ci_hcalls();
2903         kvmppc_enable_set_mode_hcall();
2904 
2905         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2906         kvmppc_enable_clear_ref_mod_hcalls();
2907 
2908         /* Enable H_PAGE_INIT */
2909         kvmppc_enable_h_page_init();
2910     }
2911 
2912     /* allocate RAM */
2913     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2914                                          machine->ram_size);
2915     memory_region_add_subregion(sysmem, 0, ram);
2916 
2917     /* always allocate the device memory information */
2918     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2919 
2920     /* initialize hotplug memory address space */
2921     if (machine->ram_size < machine->maxram_size) {
2922         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2923         /*
2924          * Limit the number of hotpluggable memory slots to half the number
2925          * slots that KVM supports, leaving the other half for PCI and other
2926          * devices. However ensure that number of slots doesn't drop below 32.
2927          */
2928         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2929                            SPAPR_MAX_RAM_SLOTS;
2930 
2931         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2932             max_memslots = SPAPR_MAX_RAM_SLOTS;
2933         }
2934         if (machine->ram_slots > max_memslots) {
2935             error_report("Specified number of memory slots %"
2936                          PRIu64" exceeds max supported %d",
2937                          machine->ram_slots, max_memslots);
2938             exit(1);
2939         }
2940 
2941         machine->device_memory->base = ROUND_UP(machine->ram_size,
2942                                                 SPAPR_DEVICE_MEM_ALIGN);
2943         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2944                            "device-memory", device_mem_size);
2945         memory_region_add_subregion(sysmem, machine->device_memory->base,
2946                                     &machine->device_memory->mr);
2947     }
2948 
2949     if (smc->dr_lmb_enabled) {
2950         spapr_create_lmb_dr_connectors(spapr);
2951     }
2952 
2953     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2954     if (!filename) {
2955         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2956         exit(1);
2957     }
2958     spapr->rtas_size = get_image_size(filename);
2959     if (spapr->rtas_size < 0) {
2960         error_report("Could not get size of LPAR rtas '%s'", filename);
2961         exit(1);
2962     }
2963     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2964     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2965         error_report("Could not load LPAR rtas '%s'", filename);
2966         exit(1);
2967     }
2968     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2969         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2970                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2971         exit(1);
2972     }
2973     g_free(filename);
2974 
2975     /* Set up RTAS event infrastructure */
2976     spapr_events_init(spapr);
2977 
2978     /* Set up the RTC RTAS interfaces */
2979     spapr_rtc_create(spapr);
2980 
2981     /* Set up VIO bus */
2982     spapr->vio_bus = spapr_vio_bus_init();
2983 
2984     for (i = 0; i < serial_max_hds(); i++) {
2985         if (serial_hd(i)) {
2986             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2987         }
2988     }
2989 
2990     /* We always have at least the nvram device on VIO */
2991     spapr_create_nvram(spapr);
2992 
2993     /*
2994      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2995      * connectors (described in root DT node's "ibm,drc-types" property)
2996      * are pre-initialized here. additional child connectors (such as
2997      * connectors for a PHBs PCI slots) are added as needed during their
2998      * parent's realization.
2999      */
3000     if (smc->dr_phb_enabled) {
3001         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3002             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3003         }
3004     }
3005 
3006     /* Set up PCI */
3007     spapr_pci_rtas_init();
3008 
3009     phb = spapr_create_default_phb();
3010 
3011     for (i = 0; i < nb_nics; i++) {
3012         NICInfo *nd = &nd_table[i];
3013 
3014         if (!nd->model) {
3015             nd->model = g_strdup("spapr-vlan");
3016         }
3017 
3018         if (g_str_equal(nd->model, "spapr-vlan") ||
3019             g_str_equal(nd->model, "ibmveth")) {
3020             spapr_vlan_create(spapr->vio_bus, nd);
3021         } else {
3022             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
3023         }
3024     }
3025 
3026     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3027         spapr_vscsi_create(spapr->vio_bus);
3028     }
3029 
3030     /* Graphics */
3031     if (spapr_vga_init(phb->bus, &error_fatal)) {
3032         spapr->has_graphics = true;
3033         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3034     }
3035 
3036     if (machine->usb) {
3037         if (smc->use_ohci_by_default) {
3038             pci_create_simple(phb->bus, -1, "pci-ohci");
3039         } else {
3040             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3041         }
3042 
3043         if (spapr->has_graphics) {
3044             USBBus *usb_bus = usb_bus_find(-1);
3045 
3046             usb_create_simple(usb_bus, "usb-kbd");
3047             usb_create_simple(usb_bus, "usb-mouse");
3048         }
3049     }
3050 
3051     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3052         error_report(
3053             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3054             MIN_RMA_SLOF);
3055         exit(1);
3056     }
3057 
3058     if (kernel_filename) {
3059         uint64_t lowaddr = 0;
3060 
3061         spapr->kernel_size = load_elf(kernel_filename, NULL,
3062                                       translate_kernel_address, NULL,
3063                                       NULL, &lowaddr, NULL, 1,
3064                                       PPC_ELF_MACHINE, 0, 0);
3065         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3066             spapr->kernel_size = load_elf(kernel_filename, NULL,
3067                                           translate_kernel_address, NULL, NULL,
3068                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3069                                           0, 0);
3070             spapr->kernel_le = spapr->kernel_size > 0;
3071         }
3072         if (spapr->kernel_size < 0) {
3073             error_report("error loading %s: %s", kernel_filename,
3074                          load_elf_strerror(spapr->kernel_size));
3075             exit(1);
3076         }
3077 
3078         /* load initrd */
3079         if (initrd_filename) {
3080             /* Try to locate the initrd in the gap between the kernel
3081              * and the firmware. Add a bit of space just in case
3082              */
3083             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3084                                   + 0x1ffff) & ~0xffff;
3085             spapr->initrd_size = load_image_targphys(initrd_filename,
3086                                                      spapr->initrd_base,
3087                                                      load_limit
3088                                                      - spapr->initrd_base);
3089             if (spapr->initrd_size < 0) {
3090                 error_report("could not load initial ram disk '%s'",
3091                              initrd_filename);
3092                 exit(1);
3093             }
3094         }
3095     }
3096 
3097     if (bios_name == NULL) {
3098         bios_name = FW_FILE_NAME;
3099     }
3100     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3101     if (!filename) {
3102         error_report("Could not find LPAR firmware '%s'", bios_name);
3103         exit(1);
3104     }
3105     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3106     if (fw_size <= 0) {
3107         error_report("Could not load LPAR firmware '%s'", filename);
3108         exit(1);
3109     }
3110     g_free(filename);
3111 
3112     /* FIXME: Should register things through the MachineState's qdev
3113      * interface, this is a legacy from the sPAPREnvironment structure
3114      * which predated MachineState but had a similar function */
3115     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3116     register_savevm_live("spapr/htab", -1, 1,
3117                          &savevm_htab_handlers, spapr);
3118 
3119     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3120                              &error_fatal);
3121 
3122     qemu_register_boot_set(spapr_boot_set, spapr);
3123 
3124     /*
3125      * Nothing needs to be done to resume a suspended guest because
3126      * suspending does not change the machine state, so no need for
3127      * a ->wakeup method.
3128      */
3129     qemu_register_wakeup_support();
3130 
3131     if (kvm_enabled()) {
3132         /* to stop and start vmclock */
3133         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3134                                          &spapr->tb);
3135 
3136         kvmppc_spapr_enable_inkernel_multitce();
3137     }
3138 }
3139 
3140 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3141 {
3142     if (!vm_type) {
3143         return 0;
3144     }
3145 
3146     if (!strcmp(vm_type, "HV")) {
3147         return 1;
3148     }
3149 
3150     if (!strcmp(vm_type, "PR")) {
3151         return 2;
3152     }
3153 
3154     error_report("Unknown kvm-type specified '%s'", vm_type);
3155     exit(1);
3156 }
3157 
3158 /*
3159  * Implementation of an interface to adjust firmware path
3160  * for the bootindex property handling.
3161  */
3162 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3163                                    DeviceState *dev)
3164 {
3165 #define CAST(type, obj, name) \
3166     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3167     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3168     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3169     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3170 
3171     if (d) {
3172         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3173         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3174         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3175 
3176         if (spapr) {
3177             /*
3178              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3179              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3180              * 0x8000 | (target << 8) | (bus << 5) | lun
3181              * (see the "Logical unit addressing format" table in SAM5)
3182              */
3183             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3184             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3185                                    (uint64_t)id << 48);
3186         } else if (virtio) {
3187             /*
3188              * We use SRP luns of the form 01000000 | (target << 8) | lun
3189              * in the top 32 bits of the 64-bit LUN
3190              * Note: the quote above is from SLOF and it is wrong,
3191              * the actual binding is:
3192              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3193              */
3194             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3195             if (d->lun >= 256) {
3196                 /* Use the LUN "flat space addressing method" */
3197                 id |= 0x4000;
3198             }
3199             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3200                                    (uint64_t)id << 32);
3201         } else if (usb) {
3202             /*
3203              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3204              * in the top 32 bits of the 64-bit LUN
3205              */
3206             unsigned usb_port = atoi(usb->port->path);
3207             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3208             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3209                                    (uint64_t)id << 32);
3210         }
3211     }
3212 
3213     /*
3214      * SLOF probes the USB devices, and if it recognizes that the device is a
3215      * storage device, it changes its name to "storage" instead of "usb-host",
3216      * and additionally adds a child node for the SCSI LUN, so the correct
3217      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3218      */
3219     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3220         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3221         if (usb_host_dev_is_scsi_storage(usbdev)) {
3222             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3223         }
3224     }
3225 
3226     if (phb) {
3227         /* Replace "pci" with "pci@800000020000000" */
3228         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3229     }
3230 
3231     if (vsc) {
3232         /* Same logic as virtio above */
3233         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3234         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3235     }
3236 
3237     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3238         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3239         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3240         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3241     }
3242 
3243     return NULL;
3244 }
3245 
3246 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3247 {
3248     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3249 
3250     return g_strdup(spapr->kvm_type);
3251 }
3252 
3253 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3254 {
3255     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3256 
3257     g_free(spapr->kvm_type);
3258     spapr->kvm_type = g_strdup(value);
3259 }
3260 
3261 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3262 {
3263     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264 
3265     return spapr->use_hotplug_event_source;
3266 }
3267 
3268 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3269                                             Error **errp)
3270 {
3271     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3272 
3273     spapr->use_hotplug_event_source = value;
3274 }
3275 
3276 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3277 {
3278     return true;
3279 }
3280 
3281 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3282 {
3283     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3284 
3285     switch (spapr->resize_hpt) {
3286     case SPAPR_RESIZE_HPT_DEFAULT:
3287         return g_strdup("default");
3288     case SPAPR_RESIZE_HPT_DISABLED:
3289         return g_strdup("disabled");
3290     case SPAPR_RESIZE_HPT_ENABLED:
3291         return g_strdup("enabled");
3292     case SPAPR_RESIZE_HPT_REQUIRED:
3293         return g_strdup("required");
3294     }
3295     g_assert_not_reached();
3296 }
3297 
3298 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3299 {
3300     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3301 
3302     if (strcmp(value, "default") == 0) {
3303         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3304     } else if (strcmp(value, "disabled") == 0) {
3305         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3306     } else if (strcmp(value, "enabled") == 0) {
3307         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3308     } else if (strcmp(value, "required") == 0) {
3309         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3310     } else {
3311         error_setg(errp, "Bad value for \"resize-hpt\" property");
3312     }
3313 }
3314 
3315 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3316                                    void *opaque, Error **errp)
3317 {
3318     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3319 }
3320 
3321 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3322                                    void *opaque, Error **errp)
3323 {
3324     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3325 }
3326 
3327 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3328 {
3329     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3330 
3331     if (spapr->irq == &spapr_irq_xics_legacy) {
3332         return g_strdup("legacy");
3333     } else if (spapr->irq == &spapr_irq_xics) {
3334         return g_strdup("xics");
3335     } else if (spapr->irq == &spapr_irq_xive) {
3336         return g_strdup("xive");
3337     } else if (spapr->irq == &spapr_irq_dual) {
3338         return g_strdup("dual");
3339     }
3340     g_assert_not_reached();
3341 }
3342 
3343 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3344 {
3345     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3346 
3347     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3348         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3349         return;
3350     }
3351 
3352     /* The legacy IRQ backend can not be set */
3353     if (strcmp(value, "xics") == 0) {
3354         spapr->irq = &spapr_irq_xics;
3355     } else if (strcmp(value, "xive") == 0) {
3356         spapr->irq = &spapr_irq_xive;
3357     } else if (strcmp(value, "dual") == 0) {
3358         spapr->irq = &spapr_irq_dual;
3359     } else {
3360         error_setg(errp, "Bad value for \"ic-mode\" property");
3361     }
3362 }
3363 
3364 static char *spapr_get_host_model(Object *obj, Error **errp)
3365 {
3366     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3367 
3368     return g_strdup(spapr->host_model);
3369 }
3370 
3371 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3372 {
3373     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3374 
3375     g_free(spapr->host_model);
3376     spapr->host_model = g_strdup(value);
3377 }
3378 
3379 static char *spapr_get_host_serial(Object *obj, Error **errp)
3380 {
3381     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3382 
3383     return g_strdup(spapr->host_serial);
3384 }
3385 
3386 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3387 {
3388     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3389 
3390     g_free(spapr->host_serial);
3391     spapr->host_serial = g_strdup(value);
3392 }
3393 
3394 static void spapr_instance_init(Object *obj)
3395 {
3396     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3397     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3398 
3399     spapr->htab_fd = -1;
3400     spapr->use_hotplug_event_source = true;
3401     object_property_add_str(obj, "kvm-type",
3402                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3403     object_property_set_description(obj, "kvm-type",
3404                                     "Specifies the KVM virtualization mode (HV, PR)",
3405                                     NULL);
3406     object_property_add_bool(obj, "modern-hotplug-events",
3407                             spapr_get_modern_hotplug_events,
3408                             spapr_set_modern_hotplug_events,
3409                             NULL);
3410     object_property_set_description(obj, "modern-hotplug-events",
3411                                     "Use dedicated hotplug event mechanism in"
3412                                     " place of standard EPOW events when possible"
3413                                     " (required for memory hot-unplug support)",
3414                                     NULL);
3415     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3416                             "Maximum permitted CPU compatibility mode",
3417                             &error_fatal);
3418 
3419     object_property_add_str(obj, "resize-hpt",
3420                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3421     object_property_set_description(obj, "resize-hpt",
3422                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3423                                     NULL);
3424     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3425                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3426     object_property_set_description(obj, "vsmt",
3427                                     "Virtual SMT: KVM behaves as if this were"
3428                                     " the host's SMT mode", &error_abort);
3429     object_property_add_bool(obj, "vfio-no-msix-emulation",
3430                              spapr_get_msix_emulation, NULL, NULL);
3431 
3432     /* The machine class defines the default interrupt controller mode */
3433     spapr->irq = smc->irq;
3434     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3435                             spapr_set_ic_mode, NULL);
3436     object_property_set_description(obj, "ic-mode",
3437                  "Specifies the interrupt controller mode (xics, xive, dual)",
3438                  NULL);
3439 
3440     object_property_add_str(obj, "host-model",
3441         spapr_get_host_model, spapr_set_host_model,
3442         &error_abort);
3443     object_property_set_description(obj, "host-model",
3444         "Host model to advertise in guest device tree", &error_abort);
3445     object_property_add_str(obj, "host-serial",
3446         spapr_get_host_serial, spapr_set_host_serial,
3447         &error_abort);
3448     object_property_set_description(obj, "host-serial",
3449         "Host serial number to advertise in guest device tree", &error_abort);
3450 }
3451 
3452 static void spapr_machine_finalizefn(Object *obj)
3453 {
3454     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3455 
3456     g_free(spapr->kvm_type);
3457 }
3458 
3459 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3460 {
3461     cpu_synchronize_state(cs);
3462     ppc_cpu_do_system_reset(cs);
3463 }
3464 
3465 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3466 {
3467     CPUState *cs;
3468 
3469     CPU_FOREACH(cs) {
3470         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3471     }
3472 }
3473 
3474 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3475                           void *fdt, int *fdt_start_offset, Error **errp)
3476 {
3477     uint64_t addr;
3478     uint32_t node;
3479 
3480     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3481     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3482                                     &error_abort);
3483     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3484                                                    SPAPR_MEMORY_BLOCK_SIZE);
3485     return 0;
3486 }
3487 
3488 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3489                            bool dedicated_hp_event_source, Error **errp)
3490 {
3491     SpaprDrc *drc;
3492     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3493     int i;
3494     uint64_t addr = addr_start;
3495     bool hotplugged = spapr_drc_hotplugged(dev);
3496     Error *local_err = NULL;
3497 
3498     for (i = 0; i < nr_lmbs; i++) {
3499         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3500                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3501         g_assert(drc);
3502 
3503         spapr_drc_attach(drc, dev, &local_err);
3504         if (local_err) {
3505             while (addr > addr_start) {
3506                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3507                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3508                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3509                 spapr_drc_detach(drc);
3510             }
3511             error_propagate(errp, local_err);
3512             return;
3513         }
3514         if (!hotplugged) {
3515             spapr_drc_reset(drc);
3516         }
3517         addr += SPAPR_MEMORY_BLOCK_SIZE;
3518     }
3519     /* send hotplug notification to the
3520      * guest only in case of hotplugged memory
3521      */
3522     if (hotplugged) {
3523         if (dedicated_hp_event_source) {
3524             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3525                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3526             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3527                                                    nr_lmbs,
3528                                                    spapr_drc_index(drc));
3529         } else {
3530             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3531                                            nr_lmbs);
3532         }
3533     }
3534 }
3535 
3536 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3537                               Error **errp)
3538 {
3539     Error *local_err = NULL;
3540     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3541     PCDIMMDevice *dimm = PC_DIMM(dev);
3542     uint64_t size, addr;
3543 
3544     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3545 
3546     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3547     if (local_err) {
3548         goto out;
3549     }
3550 
3551     addr = object_property_get_uint(OBJECT(dimm),
3552                                     PC_DIMM_ADDR_PROP, &local_err);
3553     if (local_err) {
3554         goto out_unplug;
3555     }
3556 
3557     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3558                    &local_err);
3559     if (local_err) {
3560         goto out_unplug;
3561     }
3562 
3563     return;
3564 
3565 out_unplug:
3566     pc_dimm_unplug(dimm, MACHINE(ms));
3567 out:
3568     error_propagate(errp, local_err);
3569 }
3570 
3571 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3572                                   Error **errp)
3573 {
3574     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3575     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3576     PCDIMMDevice *dimm = PC_DIMM(dev);
3577     Error *local_err = NULL;
3578     uint64_t size;
3579     Object *memdev;
3580     hwaddr pagesize;
3581 
3582     if (!smc->dr_lmb_enabled) {
3583         error_setg(errp, "Memory hotplug not supported for this machine");
3584         return;
3585     }
3586 
3587     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3588     if (local_err) {
3589         error_propagate(errp, local_err);
3590         return;
3591     }
3592 
3593     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3594         error_setg(errp, "Hotplugged memory size must be a multiple of "
3595                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3596         return;
3597     }
3598 
3599     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3600                                       &error_abort);
3601     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3602     spapr_check_pagesize(spapr, pagesize, &local_err);
3603     if (local_err) {
3604         error_propagate(errp, local_err);
3605         return;
3606     }
3607 
3608     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3609 }
3610 
3611 struct SpaprDimmState {
3612     PCDIMMDevice *dimm;
3613     uint32_t nr_lmbs;
3614     QTAILQ_ENTRY(SpaprDimmState) next;
3615 };
3616 
3617 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3618                                                        PCDIMMDevice *dimm)
3619 {
3620     SpaprDimmState *dimm_state = NULL;
3621 
3622     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3623         if (dimm_state->dimm == dimm) {
3624             break;
3625         }
3626     }
3627     return dimm_state;
3628 }
3629 
3630 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3631                                                       uint32_t nr_lmbs,
3632                                                       PCDIMMDevice *dimm)
3633 {
3634     SpaprDimmState *ds = NULL;
3635 
3636     /*
3637      * If this request is for a DIMM whose removal had failed earlier
3638      * (due to guest's refusal to remove the LMBs), we would have this
3639      * dimm already in the pending_dimm_unplugs list. In that
3640      * case don't add again.
3641      */
3642     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3643     if (!ds) {
3644         ds = g_malloc0(sizeof(SpaprDimmState));
3645         ds->nr_lmbs = nr_lmbs;
3646         ds->dimm = dimm;
3647         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3648     }
3649     return ds;
3650 }
3651 
3652 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3653                                               SpaprDimmState *dimm_state)
3654 {
3655     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3656     g_free(dimm_state);
3657 }
3658 
3659 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3660                                                         PCDIMMDevice *dimm)
3661 {
3662     SpaprDrc *drc;
3663     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3664                                                   &error_abort);
3665     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3666     uint32_t avail_lmbs = 0;
3667     uint64_t addr_start, addr;
3668     int i;
3669 
3670     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3671                                          &error_abort);
3672 
3673     addr = addr_start;
3674     for (i = 0; i < nr_lmbs; i++) {
3675         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3676                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3677         g_assert(drc);
3678         if (drc->dev) {
3679             avail_lmbs++;
3680         }
3681         addr += SPAPR_MEMORY_BLOCK_SIZE;
3682     }
3683 
3684     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3685 }
3686 
3687 /* Callback to be called during DRC release. */
3688 void spapr_lmb_release(DeviceState *dev)
3689 {
3690     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3691     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3692     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3693 
3694     /* This information will get lost if a migration occurs
3695      * during the unplug process. In this case recover it. */
3696     if (ds == NULL) {
3697         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3698         g_assert(ds);
3699         /* The DRC being examined by the caller at least must be counted */
3700         g_assert(ds->nr_lmbs);
3701     }
3702 
3703     if (--ds->nr_lmbs) {
3704         return;
3705     }
3706 
3707     /*
3708      * Now that all the LMBs have been removed by the guest, call the
3709      * unplug handler chain. This can never fail.
3710      */
3711     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3712     object_unparent(OBJECT(dev));
3713 }
3714 
3715 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3716 {
3717     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3718     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3719 
3720     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3721     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3722     spapr_pending_dimm_unplugs_remove(spapr, ds);
3723 }
3724 
3725 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3726                                         DeviceState *dev, Error **errp)
3727 {
3728     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3729     Error *local_err = NULL;
3730     PCDIMMDevice *dimm = PC_DIMM(dev);
3731     uint32_t nr_lmbs;
3732     uint64_t size, addr_start, addr;
3733     int i;
3734     SpaprDrc *drc;
3735 
3736     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3737     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3738 
3739     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3740                                          &local_err);
3741     if (local_err) {
3742         goto out;
3743     }
3744 
3745     /*
3746      * An existing pending dimm state for this DIMM means that there is an
3747      * unplug operation in progress, waiting for the spapr_lmb_release
3748      * callback to complete the job (BQL can't cover that far). In this case,
3749      * bail out to avoid detaching DRCs that were already released.
3750      */
3751     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3752         error_setg(&local_err,
3753                    "Memory unplug already in progress for device %s",
3754                    dev->id);
3755         goto out;
3756     }
3757 
3758     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3759 
3760     addr = addr_start;
3761     for (i = 0; i < nr_lmbs; i++) {
3762         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3763                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3764         g_assert(drc);
3765 
3766         spapr_drc_detach(drc);
3767         addr += SPAPR_MEMORY_BLOCK_SIZE;
3768     }
3769 
3770     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3771                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3772     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3773                                               nr_lmbs, spapr_drc_index(drc));
3774 out:
3775     error_propagate(errp, local_err);
3776 }
3777 
3778 /* Callback to be called during DRC release. */
3779 void spapr_core_release(DeviceState *dev)
3780 {
3781     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3782 
3783     /* Call the unplug handler chain. This can never fail. */
3784     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3785     object_unparent(OBJECT(dev));
3786 }
3787 
3788 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3789 {
3790     MachineState *ms = MACHINE(hotplug_dev);
3791     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3792     CPUCore *cc = CPU_CORE(dev);
3793     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3794 
3795     if (smc->pre_2_10_has_unused_icps) {
3796         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3797         int i;
3798 
3799         for (i = 0; i < cc->nr_threads; i++) {
3800             CPUState *cs = CPU(sc->threads[i]);
3801 
3802             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3803         }
3804     }
3805 
3806     assert(core_slot);
3807     core_slot->cpu = NULL;
3808     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3809 }
3810 
3811 static
3812 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3813                                Error **errp)
3814 {
3815     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3816     int index;
3817     SpaprDrc *drc;
3818     CPUCore *cc = CPU_CORE(dev);
3819 
3820     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3821         error_setg(errp, "Unable to find CPU core with core-id: %d",
3822                    cc->core_id);
3823         return;
3824     }
3825     if (index == 0) {
3826         error_setg(errp, "Boot CPU core may not be unplugged");
3827         return;
3828     }
3829 
3830     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3831                           spapr_vcpu_id(spapr, cc->core_id));
3832     g_assert(drc);
3833 
3834     spapr_drc_detach(drc);
3835 
3836     spapr_hotplug_req_remove_by_index(drc);
3837 }
3838 
3839 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3840                            void *fdt, int *fdt_start_offset, Error **errp)
3841 {
3842     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3843     CPUState *cs = CPU(core->threads[0]);
3844     PowerPCCPU *cpu = POWERPC_CPU(cs);
3845     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3846     int id = spapr_get_vcpu_id(cpu);
3847     char *nodename;
3848     int offset;
3849 
3850     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3851     offset = fdt_add_subnode(fdt, 0, nodename);
3852     g_free(nodename);
3853 
3854     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3855 
3856     *fdt_start_offset = offset;
3857     return 0;
3858 }
3859 
3860 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3861                             Error **errp)
3862 {
3863     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3864     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3865     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3866     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3867     CPUCore *cc = CPU_CORE(dev);
3868     CPUState *cs;
3869     SpaprDrc *drc;
3870     Error *local_err = NULL;
3871     CPUArchId *core_slot;
3872     int index;
3873     bool hotplugged = spapr_drc_hotplugged(dev);
3874     int i;
3875 
3876     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3877     if (!core_slot) {
3878         error_setg(errp, "Unable to find CPU core with core-id: %d",
3879                    cc->core_id);
3880         return;
3881     }
3882     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3883                           spapr_vcpu_id(spapr, cc->core_id));
3884 
3885     g_assert(drc || !mc->has_hotpluggable_cpus);
3886 
3887     if (drc) {
3888         spapr_drc_attach(drc, dev, &local_err);
3889         if (local_err) {
3890             error_propagate(errp, local_err);
3891             return;
3892         }
3893 
3894         if (hotplugged) {
3895             /*
3896              * Send hotplug notification interrupt to the guest only
3897              * in case of hotplugged CPUs.
3898              */
3899             spapr_hotplug_req_add_by_index(drc);
3900         } else {
3901             spapr_drc_reset(drc);
3902         }
3903     }
3904 
3905     core_slot->cpu = OBJECT(dev);
3906 
3907     if (smc->pre_2_10_has_unused_icps) {
3908         for (i = 0; i < cc->nr_threads; i++) {
3909             cs = CPU(core->threads[i]);
3910             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3911         }
3912     }
3913 
3914     /*
3915      * Set compatibility mode to match the boot CPU, which was either set
3916      * by the machine reset code or by CAS.
3917      */
3918     if (hotplugged) {
3919         for (i = 0; i < cc->nr_threads; i++) {
3920             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3921                            &local_err);
3922             if (local_err) {
3923                 error_propagate(errp, local_err);
3924                 return;
3925             }
3926         }
3927     }
3928 }
3929 
3930 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3931                                 Error **errp)
3932 {
3933     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3934     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3935     Error *local_err = NULL;
3936     CPUCore *cc = CPU_CORE(dev);
3937     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3938     const char *type = object_get_typename(OBJECT(dev));
3939     CPUArchId *core_slot;
3940     int index;
3941     unsigned int smp_threads = machine->smp.threads;
3942 
3943     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3944         error_setg(&local_err, "CPU hotplug not supported for this machine");
3945         goto out;
3946     }
3947 
3948     if (strcmp(base_core_type, type)) {
3949         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3950         goto out;
3951     }
3952 
3953     if (cc->core_id % smp_threads) {
3954         error_setg(&local_err, "invalid core id %d", cc->core_id);
3955         goto out;
3956     }
3957 
3958     /*
3959      * In general we should have homogeneous threads-per-core, but old
3960      * (pre hotplug support) machine types allow the last core to have
3961      * reduced threads as a compatibility hack for when we allowed
3962      * total vcpus not a multiple of threads-per-core.
3963      */
3964     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3965         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3966                    cc->nr_threads, smp_threads);
3967         goto out;
3968     }
3969 
3970     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3971     if (!core_slot) {
3972         error_setg(&local_err, "core id %d out of range", cc->core_id);
3973         goto out;
3974     }
3975 
3976     if (core_slot->cpu) {
3977         error_setg(&local_err, "core %d already populated", cc->core_id);
3978         goto out;
3979     }
3980 
3981     numa_cpu_pre_plug(core_slot, dev, &local_err);
3982 
3983 out:
3984     error_propagate(errp, local_err);
3985 }
3986 
3987 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3988                           void *fdt, int *fdt_start_offset, Error **errp)
3989 {
3990     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3991     int intc_phandle;
3992 
3993     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3994     if (intc_phandle <= 0) {
3995         return -1;
3996     }
3997 
3998     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3999                      fdt_start_offset)) {
4000         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4001         return -1;
4002     }
4003 
4004     /* generally SLOF creates these, for hotplug it's up to QEMU */
4005     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4006 
4007     return 0;
4008 }
4009 
4010 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4011                                Error **errp)
4012 {
4013     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4014     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4015     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4016     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4017 
4018     if (dev->hotplugged && !smc->dr_phb_enabled) {
4019         error_setg(errp, "PHB hotplug not supported for this machine");
4020         return;
4021     }
4022 
4023     if (sphb->index == (uint32_t)-1) {
4024         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4025         return;
4026     }
4027 
4028     /*
4029      * This will check that sphb->index doesn't exceed the maximum number of
4030      * PHBs for the current machine type.
4031      */
4032     smc->phb_placement(spapr, sphb->index,
4033                        &sphb->buid, &sphb->io_win_addr,
4034                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
4035                        windows_supported, sphb->dma_liobn,
4036                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4037                        errp);
4038 }
4039 
4040 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4041                            Error **errp)
4042 {
4043     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4044     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4045     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4046     SpaprDrc *drc;
4047     bool hotplugged = spapr_drc_hotplugged(dev);
4048     Error *local_err = NULL;
4049 
4050     if (!smc->dr_phb_enabled) {
4051         return;
4052     }
4053 
4054     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4055     /* hotplug hooks should check it's enabled before getting this far */
4056     assert(drc);
4057 
4058     spapr_drc_attach(drc, DEVICE(dev), &local_err);
4059     if (local_err) {
4060         error_propagate(errp, local_err);
4061         return;
4062     }
4063 
4064     if (hotplugged) {
4065         spapr_hotplug_req_add_by_index(drc);
4066     } else {
4067         spapr_drc_reset(drc);
4068     }
4069 }
4070 
4071 void spapr_phb_release(DeviceState *dev)
4072 {
4073     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4074 
4075     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4076     object_unparent(OBJECT(dev));
4077 }
4078 
4079 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4080 {
4081     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4082 }
4083 
4084 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4085                                      DeviceState *dev, Error **errp)
4086 {
4087     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4088     SpaprDrc *drc;
4089 
4090     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4091     assert(drc);
4092 
4093     if (!spapr_drc_unplug_requested(drc)) {
4094         spapr_drc_detach(drc);
4095         spapr_hotplug_req_remove_by_index(drc);
4096     }
4097 }
4098 
4099 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4100                                  Error **errp)
4101 {
4102     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4103     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4104 
4105     if (spapr->tpm_proxy != NULL) {
4106         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4107         return;
4108     }
4109 
4110     spapr->tpm_proxy = tpm_proxy;
4111 }
4112 
4113 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4114 {
4115     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4116 
4117     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4118     object_unparent(OBJECT(dev));
4119     spapr->tpm_proxy = NULL;
4120 }
4121 
4122 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4123                                       DeviceState *dev, Error **errp)
4124 {
4125     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4126         spapr_memory_plug(hotplug_dev, dev, errp);
4127     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4128         spapr_core_plug(hotplug_dev, dev, errp);
4129     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4130         spapr_phb_plug(hotplug_dev, dev, errp);
4131     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4132         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4133     }
4134 }
4135 
4136 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4137                                         DeviceState *dev, Error **errp)
4138 {
4139     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4140         spapr_memory_unplug(hotplug_dev, dev);
4141     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4142         spapr_core_unplug(hotplug_dev, dev);
4143     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4144         spapr_phb_unplug(hotplug_dev, dev);
4145     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4146         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4147     }
4148 }
4149 
4150 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4151                                                 DeviceState *dev, Error **errp)
4152 {
4153     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4154     MachineClass *mc = MACHINE_GET_CLASS(sms);
4155     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4156 
4157     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4158         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4159             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4160         } else {
4161             /* NOTE: this means there is a window after guest reset, prior to
4162              * CAS negotiation, where unplug requests will fail due to the
4163              * capability not being detected yet. This is a bit different than
4164              * the case with PCI unplug, where the events will be queued and
4165              * eventually handled by the guest after boot
4166              */
4167             error_setg(errp, "Memory hot unplug not supported for this guest");
4168         }
4169     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4170         if (!mc->has_hotpluggable_cpus) {
4171             error_setg(errp, "CPU hot unplug not supported on this machine");
4172             return;
4173         }
4174         spapr_core_unplug_request(hotplug_dev, dev, errp);
4175     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4176         if (!smc->dr_phb_enabled) {
4177             error_setg(errp, "PHB hot unplug not supported on this machine");
4178             return;
4179         }
4180         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4181     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4182         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4183     }
4184 }
4185 
4186 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4187                                           DeviceState *dev, Error **errp)
4188 {
4189     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4190         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4191     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4192         spapr_core_pre_plug(hotplug_dev, dev, errp);
4193     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4194         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4195     }
4196 }
4197 
4198 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4199                                                  DeviceState *dev)
4200 {
4201     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4202         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4203         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4204         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4205         return HOTPLUG_HANDLER(machine);
4206     }
4207     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4208         PCIDevice *pcidev = PCI_DEVICE(dev);
4209         PCIBus *root = pci_device_root_bus(pcidev);
4210         SpaprPhbState *phb =
4211             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4212                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4213 
4214         if (phb) {
4215             return HOTPLUG_HANDLER(phb);
4216         }
4217     }
4218     return NULL;
4219 }
4220 
4221 static CpuInstanceProperties
4222 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4223 {
4224     CPUArchId *core_slot;
4225     MachineClass *mc = MACHINE_GET_CLASS(machine);
4226 
4227     /* make sure possible_cpu are intialized */
4228     mc->possible_cpu_arch_ids(machine);
4229     /* get CPU core slot containing thread that matches cpu_index */
4230     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4231     assert(core_slot);
4232     return core_slot->props;
4233 }
4234 
4235 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4236 {
4237     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4238 }
4239 
4240 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4241 {
4242     int i;
4243     unsigned int smp_threads = machine->smp.threads;
4244     unsigned int smp_cpus = machine->smp.cpus;
4245     const char *core_type;
4246     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4247     MachineClass *mc = MACHINE_GET_CLASS(machine);
4248 
4249     if (!mc->has_hotpluggable_cpus) {
4250         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4251     }
4252     if (machine->possible_cpus) {
4253         assert(machine->possible_cpus->len == spapr_max_cores);
4254         return machine->possible_cpus;
4255     }
4256 
4257     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4258     if (!core_type) {
4259         error_report("Unable to find sPAPR CPU Core definition");
4260         exit(1);
4261     }
4262 
4263     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4264                              sizeof(CPUArchId) * spapr_max_cores);
4265     machine->possible_cpus->len = spapr_max_cores;
4266     for (i = 0; i < machine->possible_cpus->len; i++) {
4267         int core_id = i * smp_threads;
4268 
4269         machine->possible_cpus->cpus[i].type = core_type;
4270         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4271         machine->possible_cpus->cpus[i].arch_id = core_id;
4272         machine->possible_cpus->cpus[i].props.has_core_id = true;
4273         machine->possible_cpus->cpus[i].props.core_id = core_id;
4274     }
4275     return machine->possible_cpus;
4276 }
4277 
4278 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4279                                 uint64_t *buid, hwaddr *pio,
4280                                 hwaddr *mmio32, hwaddr *mmio64,
4281                                 unsigned n_dma, uint32_t *liobns,
4282                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4283 {
4284     /*
4285      * New-style PHB window placement.
4286      *
4287      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4288      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4289      * windows.
4290      *
4291      * Some guest kernels can't work with MMIO windows above 1<<46
4292      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4293      *
4294      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4295      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4296      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4297      * 1TiB 64-bit MMIO windows for each PHB.
4298      */
4299     const uint64_t base_buid = 0x800000020000000ULL;
4300     int i;
4301 
4302     /* Sanity check natural alignments */
4303     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4304     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4305     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4306     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4307     /* Sanity check bounds */
4308     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4309                       SPAPR_PCI_MEM32_WIN_SIZE);
4310     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4311                       SPAPR_PCI_MEM64_WIN_SIZE);
4312 
4313     if (index >= SPAPR_MAX_PHBS) {
4314         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4315                    SPAPR_MAX_PHBS - 1);
4316         return;
4317     }
4318 
4319     *buid = base_buid + index;
4320     for (i = 0; i < n_dma; ++i) {
4321         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4322     }
4323 
4324     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4325     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4326     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4327 
4328     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4329     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4330 }
4331 
4332 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4333 {
4334     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4335 
4336     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4337 }
4338 
4339 static void spapr_ics_resend(XICSFabric *dev)
4340 {
4341     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4342 
4343     ics_resend(spapr->ics);
4344 }
4345 
4346 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4347 {
4348     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4349 
4350     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4351 }
4352 
4353 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4354                                  Monitor *mon)
4355 {
4356     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4357 
4358     spapr->irq->print_info(spapr, mon);
4359     monitor_printf(mon, "irqchip: %s\n",
4360                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4361 }
4362 
4363 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4364 {
4365     return cpu->vcpu_id;
4366 }
4367 
4368 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4369 {
4370     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4371     MachineState *ms = MACHINE(spapr);
4372     int vcpu_id;
4373 
4374     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4375 
4376     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4377         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4378         error_append_hint(errp, "Adjust the number of cpus to %d "
4379                           "or try to raise the number of threads per core\n",
4380                           vcpu_id * ms->smp.threads / spapr->vsmt);
4381         return;
4382     }
4383 
4384     cpu->vcpu_id = vcpu_id;
4385 }
4386 
4387 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4388 {
4389     CPUState *cs;
4390 
4391     CPU_FOREACH(cs) {
4392         PowerPCCPU *cpu = POWERPC_CPU(cs);
4393 
4394         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4395             return cpu;
4396         }
4397     }
4398 
4399     return NULL;
4400 }
4401 
4402 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4403 {
4404     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4405 
4406     /* These are only called by TCG, KVM maintains dispatch state */
4407 
4408     spapr_cpu->prod = false;
4409     if (spapr_cpu->vpa_addr) {
4410         CPUState *cs = CPU(cpu);
4411         uint32_t dispatch;
4412 
4413         dispatch = ldl_be_phys(cs->as,
4414                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4415         dispatch++;
4416         if ((dispatch & 1) != 0) {
4417             qemu_log_mask(LOG_GUEST_ERROR,
4418                           "VPA: incorrect dispatch counter value for "
4419                           "dispatched partition %u, correcting.\n", dispatch);
4420             dispatch++;
4421         }
4422         stl_be_phys(cs->as,
4423                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4424     }
4425 }
4426 
4427 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4428 {
4429     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4430 
4431     if (spapr_cpu->vpa_addr) {
4432         CPUState *cs = CPU(cpu);
4433         uint32_t dispatch;
4434 
4435         dispatch = ldl_be_phys(cs->as,
4436                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4437         dispatch++;
4438         if ((dispatch & 1) != 1) {
4439             qemu_log_mask(LOG_GUEST_ERROR,
4440                           "VPA: incorrect dispatch counter value for "
4441                           "preempted partition %u, correcting.\n", dispatch);
4442             dispatch++;
4443         }
4444         stl_be_phys(cs->as,
4445                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4446     }
4447 }
4448 
4449 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4450 {
4451     MachineClass *mc = MACHINE_CLASS(oc);
4452     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4453     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4454     NMIClass *nc = NMI_CLASS(oc);
4455     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4456     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4457     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4458     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4459 
4460     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4461     mc->ignore_boot_device_suffixes = true;
4462 
4463     /*
4464      * We set up the default / latest behaviour here.  The class_init
4465      * functions for the specific versioned machine types can override
4466      * these details for backwards compatibility
4467      */
4468     mc->init = spapr_machine_init;
4469     mc->reset = spapr_machine_reset;
4470     mc->block_default_type = IF_SCSI;
4471     mc->max_cpus = 1024;
4472     mc->no_parallel = 1;
4473     mc->default_boot_order = "";
4474     mc->default_ram_size = 512 * MiB;
4475     mc->default_display = "std";
4476     mc->kvm_type = spapr_kvm_type;
4477     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4478     mc->pci_allow_0_address = true;
4479     assert(!mc->get_hotplug_handler);
4480     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4481     hc->pre_plug = spapr_machine_device_pre_plug;
4482     hc->plug = spapr_machine_device_plug;
4483     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4484     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4485     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4486     hc->unplug_request = spapr_machine_device_unplug_request;
4487     hc->unplug = spapr_machine_device_unplug;
4488 
4489     smc->dr_lmb_enabled = true;
4490     smc->update_dt_enabled = true;
4491     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4492     mc->has_hotpluggable_cpus = true;
4493     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4494     fwc->get_dev_path = spapr_get_fw_dev_path;
4495     nc->nmi_monitor_handler = spapr_nmi;
4496     smc->phb_placement = spapr_phb_placement;
4497     vhc->hypercall = emulate_spapr_hypercall;
4498     vhc->hpt_mask = spapr_hpt_mask;
4499     vhc->map_hptes = spapr_map_hptes;
4500     vhc->unmap_hptes = spapr_unmap_hptes;
4501     vhc->hpte_set_c = spapr_hpte_set_c;
4502     vhc->hpte_set_r = spapr_hpte_set_r;
4503     vhc->get_pate = spapr_get_pate;
4504     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4505     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4506     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4507     xic->ics_get = spapr_ics_get;
4508     xic->ics_resend = spapr_ics_resend;
4509     xic->icp_get = spapr_icp_get;
4510     ispc->print_info = spapr_pic_print_info;
4511     /* Force NUMA node memory size to be a multiple of
4512      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4513      * in which LMBs are represented and hot-added
4514      */
4515     mc->numa_mem_align_shift = 28;
4516     mc->numa_mem_supported = true;
4517 
4518     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4519     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4520     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4521     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4522     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4523     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4524     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4525     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4526     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4527     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4528     spapr_caps_add_properties(smc, &error_abort);
4529     smc->irq = &spapr_irq_dual;
4530     smc->dr_phb_enabled = true;
4531     smc->linux_pci_probe = true;
4532 }
4533 
4534 static const TypeInfo spapr_machine_info = {
4535     .name          = TYPE_SPAPR_MACHINE,
4536     .parent        = TYPE_MACHINE,
4537     .abstract      = true,
4538     .instance_size = sizeof(SpaprMachineState),
4539     .instance_init = spapr_instance_init,
4540     .instance_finalize = spapr_machine_finalizefn,
4541     .class_size    = sizeof(SpaprMachineClass),
4542     .class_init    = spapr_machine_class_init,
4543     .interfaces = (InterfaceInfo[]) {
4544         { TYPE_FW_PATH_PROVIDER },
4545         { TYPE_NMI },
4546         { TYPE_HOTPLUG_HANDLER },
4547         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4548         { TYPE_XICS_FABRIC },
4549         { TYPE_INTERRUPT_STATS_PROVIDER },
4550         { }
4551     },
4552 };
4553 
4554 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4555     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4556                                                     void *data)      \
4557     {                                                                \
4558         MachineClass *mc = MACHINE_CLASS(oc);                        \
4559         spapr_machine_##suffix##_class_options(mc);                  \
4560         if (latest) {                                                \
4561             mc->alias = "pseries";                                   \
4562             mc->is_default = 1;                                      \
4563         }                                                            \
4564     }                                                                \
4565     static const TypeInfo spapr_machine_##suffix##_info = {          \
4566         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4567         .parent = TYPE_SPAPR_MACHINE,                                \
4568         .class_init = spapr_machine_##suffix##_class_init,           \
4569     };                                                               \
4570     static void spapr_machine_register_##suffix(void)                \
4571     {                                                                \
4572         type_register(&spapr_machine_##suffix##_info);               \
4573     }                                                                \
4574     type_init(spapr_machine_register_##suffix)
4575 
4576 /*
4577  * pseries-4.2
4578  */
4579 static void spapr_machine_4_2_class_options(MachineClass *mc)
4580 {
4581     /* Defaults for the latest behaviour inherited from the base class */
4582 }
4583 
4584 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4585 
4586 /*
4587  * pseries-4.1
4588  */
4589 static void spapr_machine_4_1_class_options(MachineClass *mc)
4590 {
4591     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4592     static GlobalProperty compat[] = {
4593         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4594         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4595     };
4596 
4597     spapr_machine_4_2_class_options(mc);
4598     smc->linux_pci_probe = false;
4599     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4600     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4601 }
4602 
4603 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4604 
4605 /*
4606  * pseries-4.0
4607  */
4608 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4609                               uint64_t *buid, hwaddr *pio,
4610                               hwaddr *mmio32, hwaddr *mmio64,
4611                               unsigned n_dma, uint32_t *liobns,
4612                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4613 {
4614     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4615                         nv2gpa, nv2atsd, errp);
4616     *nv2gpa = 0;
4617     *nv2atsd = 0;
4618 }
4619 
4620 static void spapr_machine_4_0_class_options(MachineClass *mc)
4621 {
4622     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4623 
4624     spapr_machine_4_1_class_options(mc);
4625     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4626     smc->phb_placement = phb_placement_4_0;
4627     smc->irq = &spapr_irq_xics;
4628     smc->pre_4_1_migration = true;
4629 }
4630 
4631 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4632 
4633 /*
4634  * pseries-3.1
4635  */
4636 static void spapr_machine_3_1_class_options(MachineClass *mc)
4637 {
4638     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4639 
4640     spapr_machine_4_0_class_options(mc);
4641     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4642 
4643     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4644     smc->update_dt_enabled = false;
4645     smc->dr_phb_enabled = false;
4646     smc->broken_host_serial_model = true;
4647     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4648     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4649     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4650     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4651 }
4652 
4653 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4654 
4655 /*
4656  * pseries-3.0
4657  */
4658 
4659 static void spapr_machine_3_0_class_options(MachineClass *mc)
4660 {
4661     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4662 
4663     spapr_machine_3_1_class_options(mc);
4664     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4665 
4666     smc->legacy_irq_allocation = true;
4667     smc->irq = &spapr_irq_xics_legacy;
4668 }
4669 
4670 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4671 
4672 /*
4673  * pseries-2.12
4674  */
4675 static void spapr_machine_2_12_class_options(MachineClass *mc)
4676 {
4677     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4678     static GlobalProperty compat[] = {
4679         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4680         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4681     };
4682 
4683     spapr_machine_3_0_class_options(mc);
4684     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4685     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4686 
4687     /* We depend on kvm_enabled() to choose a default value for the
4688      * hpt-max-page-size capability. Of course we can't do it here
4689      * because this is too early and the HW accelerator isn't initialzed
4690      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4691      */
4692     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4693 }
4694 
4695 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4696 
4697 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4698 {
4699     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4700 
4701     spapr_machine_2_12_class_options(mc);
4702     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4703     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4704     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4705 }
4706 
4707 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4708 
4709 /*
4710  * pseries-2.11
4711  */
4712 
4713 static void spapr_machine_2_11_class_options(MachineClass *mc)
4714 {
4715     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4716 
4717     spapr_machine_2_12_class_options(mc);
4718     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4719     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4720 }
4721 
4722 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4723 
4724 /*
4725  * pseries-2.10
4726  */
4727 
4728 static void spapr_machine_2_10_class_options(MachineClass *mc)
4729 {
4730     spapr_machine_2_11_class_options(mc);
4731     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4732 }
4733 
4734 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4735 
4736 /*
4737  * pseries-2.9
4738  */
4739 
4740 static void spapr_machine_2_9_class_options(MachineClass *mc)
4741 {
4742     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4743     static GlobalProperty compat[] = {
4744         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4745     };
4746 
4747     spapr_machine_2_10_class_options(mc);
4748     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4749     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4750     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4751     smc->pre_2_10_has_unused_icps = true;
4752     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4753 }
4754 
4755 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4756 
4757 /*
4758  * pseries-2.8
4759  */
4760 
4761 static void spapr_machine_2_8_class_options(MachineClass *mc)
4762 {
4763     static GlobalProperty compat[] = {
4764         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4765     };
4766 
4767     spapr_machine_2_9_class_options(mc);
4768     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4769     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4770     mc->numa_mem_align_shift = 23;
4771 }
4772 
4773 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4774 
4775 /*
4776  * pseries-2.7
4777  */
4778 
4779 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4780                               uint64_t *buid, hwaddr *pio,
4781                               hwaddr *mmio32, hwaddr *mmio64,
4782                               unsigned n_dma, uint32_t *liobns,
4783                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4784 {
4785     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4786     const uint64_t base_buid = 0x800000020000000ULL;
4787     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4788     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4789     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4790     const uint32_t max_index = 255;
4791     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4792 
4793     uint64_t ram_top = MACHINE(spapr)->ram_size;
4794     hwaddr phb0_base, phb_base;
4795     int i;
4796 
4797     /* Do we have device memory? */
4798     if (MACHINE(spapr)->maxram_size > ram_top) {
4799         /* Can't just use maxram_size, because there may be an
4800          * alignment gap between normal and device memory regions
4801          */
4802         ram_top = MACHINE(spapr)->device_memory->base +
4803             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4804     }
4805 
4806     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4807 
4808     if (index > max_index) {
4809         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4810                    max_index);
4811         return;
4812     }
4813 
4814     *buid = base_buid + index;
4815     for (i = 0; i < n_dma; ++i) {
4816         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4817     }
4818 
4819     phb_base = phb0_base + index * phb_spacing;
4820     *pio = phb_base + pio_offset;
4821     *mmio32 = phb_base + mmio_offset;
4822     /*
4823      * We don't set the 64-bit MMIO window, relying on the PHB's
4824      * fallback behaviour of automatically splitting a large "32-bit"
4825      * window into contiguous 32-bit and 64-bit windows
4826      */
4827 
4828     *nv2gpa = 0;
4829     *nv2atsd = 0;
4830 }
4831 
4832 static void spapr_machine_2_7_class_options(MachineClass *mc)
4833 {
4834     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4835     static GlobalProperty compat[] = {
4836         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4837         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4838         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4839         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4840     };
4841 
4842     spapr_machine_2_8_class_options(mc);
4843     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4844     mc->default_machine_opts = "modern-hotplug-events=off";
4845     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4846     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4847     smc->phb_placement = phb_placement_2_7;
4848 }
4849 
4850 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4851 
4852 /*
4853  * pseries-2.6
4854  */
4855 
4856 static void spapr_machine_2_6_class_options(MachineClass *mc)
4857 {
4858     static GlobalProperty compat[] = {
4859         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4860     };
4861 
4862     spapr_machine_2_7_class_options(mc);
4863     mc->has_hotpluggable_cpus = false;
4864     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4865     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4866 }
4867 
4868 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4869 
4870 /*
4871  * pseries-2.5
4872  */
4873 
4874 static void spapr_machine_2_5_class_options(MachineClass *mc)
4875 {
4876     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4877     static GlobalProperty compat[] = {
4878         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4879     };
4880 
4881     spapr_machine_2_6_class_options(mc);
4882     smc->use_ohci_by_default = true;
4883     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4884     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4885 }
4886 
4887 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4888 
4889 /*
4890  * pseries-2.4
4891  */
4892 
4893 static void spapr_machine_2_4_class_options(MachineClass *mc)
4894 {
4895     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4896 
4897     spapr_machine_2_5_class_options(mc);
4898     smc->dr_lmb_enabled = false;
4899     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4900 }
4901 
4902 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4903 
4904 /*
4905  * pseries-2.3
4906  */
4907 
4908 static void spapr_machine_2_3_class_options(MachineClass *mc)
4909 {
4910     static GlobalProperty compat[] = {
4911         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4912     };
4913     spapr_machine_2_4_class_options(mc);
4914     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4915     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4916 }
4917 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4918 
4919 /*
4920  * pseries-2.2
4921  */
4922 
4923 static void spapr_machine_2_2_class_options(MachineClass *mc)
4924 {
4925     static GlobalProperty compat[] = {
4926         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4927     };
4928 
4929     spapr_machine_2_3_class_options(mc);
4930     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4931     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4932     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4933 }
4934 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4935 
4936 /*
4937  * pseries-2.1
4938  */
4939 
4940 static void spapr_machine_2_1_class_options(MachineClass *mc)
4941 {
4942     spapr_machine_2_2_class_options(mc);
4943     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4944 }
4945 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4946 
4947 static void spapr_machine_register_types(void)
4948 {
4949     type_register_static(&spapr_machine_info);
4950 }
4951 
4952 type_init(spapr_machine_register_types)
4953