xref: /openbmc/qemu/hw/ppc/spapr.c (revision 49d755d0)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "sysemu/qtest.h"
33 #include "hw/hw.h"
34 #include "qemu/log.h"
35 #include "hw/fw-path-provider.h"
36 #include "elf.h"
37 #include "net/net.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
49 
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
53 
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/pci/msi.h"
59 
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
64 
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
73 
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
77 
78 #include <libfdt.h>
79 
80 /* SLOF memory layout:
81  *
82  * SLOF raw image loaded at 0, copies its romfs right below the flat
83  * device-tree, then position SLOF itself 31M below that
84  *
85  * So we set FW_OVERHEAD to 40MB which should account for all of that
86  * and more
87  *
88  * We load our kernel at 4M, leaving space for SLOF initial image
89  */
90 #define FDT_MAX_SIZE            0x100000
91 #define RTAS_MAX_SIZE           0x10000
92 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE             0x400000
94 #define FW_FILE_NAME            "slof.bin"
95 #define FW_OVERHEAD             0x2800000
96 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
97 
98 #define MIN_RMA_SLOF            128UL
99 
100 #define PHANDLE_INTC            0x00001111
101 
102 /* These two functions implement the VCPU id numbering: one to compute them
103  * all and one to identify thread 0 of a VCORE. Any change to the first one
104  * is likely to have an impact on the second one, so let's keep them close.
105  */
106 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
107 {
108     assert(spapr->vsmt);
109     return
110         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 }
112 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
113                                       PowerPCCPU *cpu)
114 {
115     assert(spapr->vsmt);
116     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
117 }
118 
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
120 {
121     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122      * and newer QEMUs don't even have them. In both cases, we don't want
123      * to send anything on the wire.
124      */
125     return false;
126 }
127 
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129     .name = "icp/server",
130     .version_id = 1,
131     .minimum_version_id = 1,
132     .needed = pre_2_10_vmstate_dummy_icp_needed,
133     .fields = (VMStateField[]) {
134         VMSTATE_UNUSED(4), /* uint32_t xirr */
135         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136         VMSTATE_UNUSED(1), /* uint8_t mfrr */
137         VMSTATE_END_OF_LIST()
138     },
139 };
140 
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
142 {
143     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144                      (void *)(uintptr_t) i);
145 }
146 
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
148 {
149     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150                        (void *)(uintptr_t) i);
151 }
152 
153 int spapr_max_server_number(SpaprMachineState *spapr)
154 {
155     assert(spapr->vsmt);
156     return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
157 }
158 
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160                                   int smt_threads)
161 {
162     int i, ret = 0;
163     uint32_t servers_prop[smt_threads];
164     uint32_t gservers_prop[smt_threads * 2];
165     int index = spapr_get_vcpu_id(cpu);
166 
167     if (cpu->compat_pvr) {
168         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169         if (ret < 0) {
170             return ret;
171         }
172     }
173 
174     /* Build interrupt servers and gservers properties */
175     for (i = 0; i < smt_threads; i++) {
176         servers_prop[i] = cpu_to_be32(index + i);
177         /* Hack, direct the group queues back to cpu 0 */
178         gservers_prop[i*2] = cpu_to_be32(index + i);
179         gservers_prop[i*2 + 1] = 0;
180     }
181     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182                       servers_prop, sizeof(servers_prop));
183     if (ret < 0) {
184         return ret;
185     }
186     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187                       gservers_prop, sizeof(gservers_prop));
188 
189     return ret;
190 }
191 
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
193 {
194     int index = spapr_get_vcpu_id(cpu);
195     uint32_t associativity[] = {cpu_to_be32(0x5),
196                                 cpu_to_be32(0x0),
197                                 cpu_to_be32(0x0),
198                                 cpu_to_be32(0x0),
199                                 cpu_to_be32(cpu->node_id),
200                                 cpu_to_be32(index)};
201 
202     /* Advertise NUMA via ibm,associativity */
203     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204                           sizeof(associativity));
205 }
206 
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(SpaprMachineState *spapr,
209                                        PowerPCCPU *cpu,
210                                        void *fdt, int offset,
211                                        bool legacy_guest)
212 {
213     uint8_t pa_features_206[] = { 6, 0,
214         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215     uint8_t pa_features_207[] = { 24, 0,
216         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220     uint8_t pa_features_300[] = { 66, 0,
221         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224         /* 6: DS207 */
225         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226         /* 16: Vector */
227         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236         /* 42: PM, 44: PC RA, 46: SC vec'd */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238         /* 48: SIMD, 50: QP BFP, 52: String */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240         /* 54: DecFP, 56: DecI, 58: SHA */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242         /* 60: NM atomic, 62: RNG */
243         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244     };
245     uint8_t *pa_features = NULL;
246     size_t pa_size;
247 
248     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249         pa_features = pa_features_206;
250         pa_size = sizeof(pa_features_206);
251     }
252     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253         pa_features = pa_features_207;
254         pa_size = sizeof(pa_features_207);
255     }
256     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257         pa_features = pa_features_300;
258         pa_size = sizeof(pa_features_300);
259     }
260     if (!pa_features) {
261         return;
262     }
263 
264     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265         /*
266          * Note: we keep CI large pages off by default because a 64K capable
267          * guest provisioned with large pages might otherwise try to map a qemu
268          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269          * even if that qemu runs on a 4k host.
270          * We dd this bit back here if we are confident this is not an issue
271          */
272         pa_features[3] |= 0x20;
273     }
274     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275         pa_features[24] |= 0x80;    /* Transactional memory support */
276     }
277     if (legacy_guest && pa_size > 40) {
278         /* Workaround for broken kernels that attempt (guest) radix
279          * mode when they can't handle it, if they see the radix bit set
280          * in pa-features. So hide it from them. */
281         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282     }
283 
284     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286 
287 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
288 {
289     int ret = 0, offset, cpus_offset;
290     CPUState *cs;
291     char cpu_model[32];
292     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
293 
294     CPU_FOREACH(cs) {
295         PowerPCCPU *cpu = POWERPC_CPU(cs);
296         DeviceClass *dc = DEVICE_GET_CLASS(cs);
297         int index = spapr_get_vcpu_id(cpu);
298         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
299 
300         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301             continue;
302         }
303 
304         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
305 
306         cpus_offset = fdt_path_offset(fdt, "/cpus");
307         if (cpus_offset < 0) {
308             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309             if (cpus_offset < 0) {
310                 return cpus_offset;
311             }
312         }
313         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314         if (offset < 0) {
315             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316             if (offset < 0) {
317                 return offset;
318             }
319         }
320 
321         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322                           pft_size_prop, sizeof(pft_size_prop));
323         if (ret < 0) {
324             return ret;
325         }
326 
327         if (nb_numa_nodes > 1) {
328             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329             if (ret < 0) {
330                 return ret;
331             }
332         }
333 
334         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335         if (ret < 0) {
336             return ret;
337         }
338 
339         spapr_populate_pa_features(spapr, cpu, fdt, offset,
340                                    spapr->cas_legacy_guest_workaround);
341     }
342     return ret;
343 }
344 
345 static hwaddr spapr_node0_size(MachineState *machine)
346 {
347     if (nb_numa_nodes) {
348         int i;
349         for (i = 0; i < nb_numa_nodes; ++i) {
350             if (numa_info[i].node_mem) {
351                 return MIN(pow2floor(numa_info[i].node_mem),
352                            machine->ram_size);
353             }
354         }
355     }
356     return machine->ram_size;
357 }
358 
359 static void add_str(GString *s, const gchar *s1)
360 {
361     g_string_append_len(s, s1, strlen(s1) + 1);
362 }
363 
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365                                        hwaddr size)
366 {
367     uint32_t associativity[] = {
368         cpu_to_be32(0x4), /* length */
369         cpu_to_be32(0x0), cpu_to_be32(0x0),
370         cpu_to_be32(0x0), cpu_to_be32(nodeid)
371     };
372     char mem_name[32];
373     uint64_t mem_reg_property[2];
374     int off;
375 
376     mem_reg_property[0] = cpu_to_be64(start);
377     mem_reg_property[1] = cpu_to_be64(size);
378 
379     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380     off = fdt_add_subnode(fdt, 0, mem_name);
381     _FDT(off);
382     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384                       sizeof(mem_reg_property))));
385     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386                       sizeof(associativity))));
387     return off;
388 }
389 
390 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
391 {
392     MachineState *machine = MACHINE(spapr);
393     hwaddr mem_start, node_size;
394     int i, nb_nodes = nb_numa_nodes;
395     NodeInfo *nodes = numa_info;
396     NodeInfo ramnode;
397 
398     /* No NUMA nodes, assume there is just one node with whole RAM */
399     if (!nb_numa_nodes) {
400         nb_nodes = 1;
401         ramnode.node_mem = machine->ram_size;
402         nodes = &ramnode;
403     }
404 
405     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406         if (!nodes[i].node_mem) {
407             continue;
408         }
409         if (mem_start >= machine->ram_size) {
410             node_size = 0;
411         } else {
412             node_size = nodes[i].node_mem;
413             if (node_size > machine->ram_size - mem_start) {
414                 node_size = machine->ram_size - mem_start;
415             }
416         }
417         if (!mem_start) {
418             /* spapr_machine_init() checks for rma_size <= node0_size
419              * already */
420             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421             mem_start += spapr->rma_size;
422             node_size -= spapr->rma_size;
423         }
424         for ( ; node_size; ) {
425             hwaddr sizetmp = pow2floor(node_size);
426 
427             /* mem_start != 0 here */
428             if (ctzl(mem_start) < ctzl(sizetmp)) {
429                 sizetmp = 1ULL << ctzl(mem_start);
430             }
431 
432             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433             node_size -= sizetmp;
434             mem_start += sizetmp;
435         }
436     }
437 
438     return 0;
439 }
440 
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442                                   SpaprMachineState *spapr)
443 {
444     PowerPCCPU *cpu = POWERPC_CPU(cs);
445     CPUPPCState *env = &cpu->env;
446     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447     int index = spapr_get_vcpu_id(cpu);
448     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449                        0xffffffff, 0xffffffff};
450     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451         : SPAPR_TIMEBASE_FREQ;
452     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453     uint32_t page_sizes_prop[64];
454     size_t page_sizes_prop_size;
455     uint32_t vcpus_per_socket = smp_threads * smp_cores;
456     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458     SpaprDrc *drc;
459     int drc_index;
460     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461     int i;
462 
463     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464     if (drc) {
465         drc_index = spapr_drc_index(drc);
466         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
467     }
468 
469     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
471 
472     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474                            env->dcache_line_size)));
475     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476                            env->dcache_line_size)));
477     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478                            env->icache_line_size)));
479     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480                            env->icache_line_size)));
481 
482     if (pcc->l1_dcache_size) {
483         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484                                pcc->l1_dcache_size)));
485     } else {
486         warn_report("Unknown L1 dcache size for cpu");
487     }
488     if (pcc->l1_icache_size) {
489         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490                                pcc->l1_icache_size)));
491     } else {
492         warn_report("Unknown L1 icache size for cpu");
493     }
494 
495     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
501 
502     if (env->spr_cb[SPR_PURR].oea_read) {
503         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
504     }
505 
506     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508                           segs, sizeof(segs))));
509     }
510 
511     /* Advertise VSX (vector extensions) if available
512      *   1               == VMX / Altivec available
513      *   2               == VSX available
514      *
515      * Only CPUs for which we create core types in spapr_cpu_core.c
516      * are possible, and all of those have VMX */
517     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519     } else {
520         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
521     }
522 
523     /* Advertise DFP (Decimal Floating Point) if available
524      *   0 / no property == no DFP
525      *   1               == DFP available */
526     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
528     }
529 
530     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531                                                       sizeof(page_sizes_prop));
532     if (page_sizes_prop_size) {
533         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534                           page_sizes_prop, page_sizes_prop_size)));
535     }
536 
537     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
538 
539     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540                            cs->cpu_index / vcpus_per_socket)));
541 
542     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543                       pft_size_prop, sizeof(pft_size_prop))));
544 
545     if (nb_numa_nodes > 1) {
546         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
547     }
548 
549     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
550 
551     if (pcc->radix_page_info) {
552         for (i = 0; i < pcc->radix_page_info->count; i++) {
553             radix_AP_encodings[i] =
554                 cpu_to_be32(pcc->radix_page_info->entries[i]);
555         }
556         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557                           radix_AP_encodings,
558                           pcc->radix_page_info->count *
559                           sizeof(radix_AP_encodings[0]))));
560     }
561 
562     /*
563      * We set this property to let the guest know that it can use the large
564      * decrementer and its width in bits.
565      */
566     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
567         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
568                               pcc->lrg_decr_bits)));
569 }
570 
571 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
572 {
573     CPUState **rev;
574     CPUState *cs;
575     int n_cpus;
576     int cpus_offset;
577     char *nodename;
578     int i;
579 
580     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
581     _FDT(cpus_offset);
582     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
583     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
584 
585     /*
586      * We walk the CPUs in reverse order to ensure that CPU DT nodes
587      * created by fdt_add_subnode() end up in the right order in FDT
588      * for the guest kernel the enumerate the CPUs correctly.
589      *
590      * The CPU list cannot be traversed in reverse order, so we need
591      * to do extra work.
592      */
593     n_cpus = 0;
594     rev = NULL;
595     CPU_FOREACH(cs) {
596         rev = g_renew(CPUState *, rev, n_cpus + 1);
597         rev[n_cpus++] = cs;
598     }
599 
600     for (i = n_cpus - 1; i >= 0; i--) {
601         CPUState *cs = rev[i];
602         PowerPCCPU *cpu = POWERPC_CPU(cs);
603         int index = spapr_get_vcpu_id(cpu);
604         DeviceClass *dc = DEVICE_GET_CLASS(cs);
605         int offset;
606 
607         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
608             continue;
609         }
610 
611         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
612         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
613         g_free(nodename);
614         _FDT(offset);
615         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
616     }
617 
618     g_free(rev);
619 }
620 
621 static int spapr_rng_populate_dt(void *fdt)
622 {
623     int node;
624     int ret;
625 
626     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
627     if (node <= 0) {
628         return -1;
629     }
630     ret = fdt_setprop_string(fdt, node, "device_type",
631                              "ibm,platform-facilities");
632     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
633     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
634 
635     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
636     if (node <= 0) {
637         return -1;
638     }
639     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
640 
641     return ret ? -1 : 0;
642 }
643 
644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
645 {
646     MemoryDeviceInfoList *info;
647 
648     for (info = list; info; info = info->next) {
649         MemoryDeviceInfo *value = info->value;
650 
651         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
652             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
653 
654             if (addr >= pcdimm_info->addr &&
655                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
656                 return pcdimm_info->node;
657             }
658         }
659     }
660 
661     return -1;
662 }
663 
664 struct sPAPRDrconfCellV2 {
665      uint32_t seq_lmbs;
666      uint64_t base_addr;
667      uint32_t drc_index;
668      uint32_t aa_index;
669      uint32_t flags;
670 } QEMU_PACKED;
671 
672 typedef struct DrconfCellQueue {
673     struct sPAPRDrconfCellV2 cell;
674     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
675 } DrconfCellQueue;
676 
677 static DrconfCellQueue *
678 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
679                       uint32_t drc_index, uint32_t aa_index,
680                       uint32_t flags)
681 {
682     DrconfCellQueue *elem;
683 
684     elem = g_malloc0(sizeof(*elem));
685     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
686     elem->cell.base_addr = cpu_to_be64(base_addr);
687     elem->cell.drc_index = cpu_to_be32(drc_index);
688     elem->cell.aa_index = cpu_to_be32(aa_index);
689     elem->cell.flags = cpu_to_be32(flags);
690 
691     return elem;
692 }
693 
694 /* ibm,dynamic-memory-v2 */
695 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
696                                    int offset, MemoryDeviceInfoList *dimms)
697 {
698     MachineState *machine = MACHINE(spapr);
699     uint8_t *int_buf, *cur_index;
700     int ret;
701     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
702     uint64_t addr, cur_addr, size;
703     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
704     uint64_t mem_end = machine->device_memory->base +
705                        memory_region_size(&machine->device_memory->mr);
706     uint32_t node, buf_len, nr_entries = 0;
707     SpaprDrc *drc;
708     DrconfCellQueue *elem, *next;
709     MemoryDeviceInfoList *info;
710     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
711         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
712 
713     /* Entry to cover RAM and the gap area */
714     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
715                                  SPAPR_LMB_FLAGS_RESERVED |
716                                  SPAPR_LMB_FLAGS_DRC_INVALID);
717     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
718     nr_entries++;
719 
720     cur_addr = machine->device_memory->base;
721     for (info = dimms; info; info = info->next) {
722         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
723 
724         addr = di->addr;
725         size = di->size;
726         node = di->node;
727 
728         /* Entry for hot-pluggable area */
729         if (cur_addr < addr) {
730             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
731             g_assert(drc);
732             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
733                                          cur_addr, spapr_drc_index(drc), -1, 0);
734             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735             nr_entries++;
736         }
737 
738         /* Entry for DIMM */
739         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
740         g_assert(drc);
741         elem = spapr_get_drconf_cell(size / lmb_size, addr,
742                                      spapr_drc_index(drc), node,
743                                      SPAPR_LMB_FLAGS_ASSIGNED);
744         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
745         nr_entries++;
746         cur_addr = addr + size;
747     }
748 
749     /* Entry for remaining hotpluggable area */
750     if (cur_addr < mem_end) {
751         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
752         g_assert(drc);
753         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
754                                      cur_addr, spapr_drc_index(drc), -1, 0);
755         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
756         nr_entries++;
757     }
758 
759     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
760     int_buf = cur_index = g_malloc0(buf_len);
761     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
762     cur_index += sizeof(nr_entries);
763 
764     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
765         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
766         cur_index += sizeof(elem->cell);
767         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
768         g_free(elem);
769     }
770 
771     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
772     g_free(int_buf);
773     if (ret < 0) {
774         return -1;
775     }
776     return 0;
777 }
778 
779 /* ibm,dynamic-memory */
780 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
781                                    int offset, MemoryDeviceInfoList *dimms)
782 {
783     MachineState *machine = MACHINE(spapr);
784     int i, ret;
785     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
786     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
787     uint32_t nr_lmbs = (machine->device_memory->base +
788                        memory_region_size(&machine->device_memory->mr)) /
789                        lmb_size;
790     uint32_t *int_buf, *cur_index, buf_len;
791 
792     /*
793      * Allocate enough buffer size to fit in ibm,dynamic-memory
794      */
795     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
796     cur_index = int_buf = g_malloc0(buf_len);
797     int_buf[0] = cpu_to_be32(nr_lmbs);
798     cur_index++;
799     for (i = 0; i < nr_lmbs; i++) {
800         uint64_t addr = i * lmb_size;
801         uint32_t *dynamic_memory = cur_index;
802 
803         if (i >= device_lmb_start) {
804             SpaprDrc *drc;
805 
806             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
807             g_assert(drc);
808 
809             dynamic_memory[0] = cpu_to_be32(addr >> 32);
810             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
811             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
812             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
813             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
814             if (memory_region_present(get_system_memory(), addr)) {
815                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
816             } else {
817                 dynamic_memory[5] = cpu_to_be32(0);
818             }
819         } else {
820             /*
821              * LMB information for RMA, boot time RAM and gap b/n RAM and
822              * device memory region -- all these are marked as reserved
823              * and as having no valid DRC.
824              */
825             dynamic_memory[0] = cpu_to_be32(addr >> 32);
826             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
827             dynamic_memory[2] = cpu_to_be32(0);
828             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
829             dynamic_memory[4] = cpu_to_be32(-1);
830             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
831                                             SPAPR_LMB_FLAGS_DRC_INVALID);
832         }
833 
834         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
835     }
836     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
837     g_free(int_buf);
838     if (ret < 0) {
839         return -1;
840     }
841     return 0;
842 }
843 
844 /*
845  * Adds ibm,dynamic-reconfiguration-memory node.
846  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
847  * of this device tree node.
848  */
849 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
850 {
851     MachineState *machine = MACHINE(spapr);
852     int ret, i, offset;
853     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
854     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
855     uint32_t *int_buf, *cur_index, buf_len;
856     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
857     MemoryDeviceInfoList *dimms = NULL;
858 
859     /*
860      * Don't create the node if there is no device memory
861      */
862     if (machine->ram_size == machine->maxram_size) {
863         return 0;
864     }
865 
866     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
867 
868     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
869                     sizeof(prop_lmb_size));
870     if (ret < 0) {
871         return ret;
872     }
873 
874     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
875     if (ret < 0) {
876         return ret;
877     }
878 
879     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
880     if (ret < 0) {
881         return ret;
882     }
883 
884     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
885     dimms = qmp_memory_device_list();
886     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
887         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
888     } else {
889         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
890     }
891     qapi_free_MemoryDeviceInfoList(dimms);
892 
893     if (ret < 0) {
894         return ret;
895     }
896 
897     /* ibm,associativity-lookup-arrays */
898     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
899     cur_index = int_buf = g_malloc0(buf_len);
900     int_buf[0] = cpu_to_be32(nr_nodes);
901     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
902     cur_index += 2;
903     for (i = 0; i < nr_nodes; i++) {
904         uint32_t associativity[] = {
905             cpu_to_be32(0x0),
906             cpu_to_be32(0x0),
907             cpu_to_be32(0x0),
908             cpu_to_be32(i)
909         };
910         memcpy(cur_index, associativity, sizeof(associativity));
911         cur_index += 4;
912     }
913     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
914             (cur_index - int_buf) * sizeof(uint32_t));
915     g_free(int_buf);
916 
917     return ret;
918 }
919 
920 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
921                                 SpaprOptionVector *ov5_updates)
922 {
923     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
924     int ret = 0, offset;
925 
926     /* Generate ibm,dynamic-reconfiguration-memory node if required */
927     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
928         g_assert(smc->dr_lmb_enabled);
929         ret = spapr_populate_drconf_memory(spapr, fdt);
930         if (ret) {
931             goto out;
932         }
933     }
934 
935     offset = fdt_path_offset(fdt, "/chosen");
936     if (offset < 0) {
937         offset = fdt_add_subnode(fdt, 0, "chosen");
938         if (offset < 0) {
939             return offset;
940         }
941     }
942     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
943                                  "ibm,architecture-vec-5");
944 
945 out:
946     return ret;
947 }
948 
949 static bool spapr_hotplugged_dev_before_cas(void)
950 {
951     Object *drc_container, *obj;
952     ObjectProperty *prop;
953     ObjectPropertyIterator iter;
954 
955     drc_container = container_get(object_get_root(), "/dr-connector");
956     object_property_iter_init(&iter, drc_container);
957     while ((prop = object_property_iter_next(&iter))) {
958         if (!strstart(prop->type, "link<", NULL)) {
959             continue;
960         }
961         obj = object_property_get_link(drc_container, prop->name, NULL);
962         if (spapr_drc_needed(obj)) {
963             return true;
964         }
965     }
966     return false;
967 }
968 
969 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
970                                  target_ulong addr, target_ulong size,
971                                  SpaprOptionVector *ov5_updates)
972 {
973     void *fdt, *fdt_skel;
974     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
975 
976     if (spapr_hotplugged_dev_before_cas()) {
977         return 1;
978     }
979 
980     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
981         error_report("SLOF provided an unexpected CAS buffer size "
982                      TARGET_FMT_lu " (min: %zu, max: %u)",
983                      size, sizeof(hdr), FW_MAX_SIZE);
984         exit(EXIT_FAILURE);
985     }
986 
987     size -= sizeof(hdr);
988 
989     /* Create skeleton */
990     fdt_skel = g_malloc0(size);
991     _FDT((fdt_create(fdt_skel, size)));
992     _FDT((fdt_finish_reservemap(fdt_skel)));
993     _FDT((fdt_begin_node(fdt_skel, "")));
994     _FDT((fdt_end_node(fdt_skel)));
995     _FDT((fdt_finish(fdt_skel)));
996     fdt = g_malloc0(size);
997     _FDT((fdt_open_into(fdt_skel, fdt, size)));
998     g_free(fdt_skel);
999 
1000     /* Fixup cpu nodes */
1001     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1002 
1003     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1004         return -1;
1005     }
1006 
1007     /* Pack resulting tree */
1008     _FDT((fdt_pack(fdt)));
1009 
1010     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1011         trace_spapr_cas_failed(size);
1012         return -1;
1013     }
1014 
1015     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1016     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1017     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1018     g_free(fdt);
1019 
1020     return 0;
1021 }
1022 
1023 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1024 {
1025     int rtas;
1026     GString *hypertas = g_string_sized_new(256);
1027     GString *qemu_hypertas = g_string_sized_new(256);
1028     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1029     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1030         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1031     uint32_t lrdr_capacity[] = {
1032         cpu_to_be32(max_device_addr >> 32),
1033         cpu_to_be32(max_device_addr & 0xffffffff),
1034         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1035         cpu_to_be32(max_cpus / smp_threads),
1036     };
1037     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1038     uint32_t maxdomains[] = {
1039         cpu_to_be32(4),
1040         maxdomain,
1041         maxdomain,
1042         maxdomain,
1043         cpu_to_be32(spapr->gpu_numa_id),
1044     };
1045 
1046     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1047 
1048     /* hypertas */
1049     add_str(hypertas, "hcall-pft");
1050     add_str(hypertas, "hcall-term");
1051     add_str(hypertas, "hcall-dabr");
1052     add_str(hypertas, "hcall-interrupt");
1053     add_str(hypertas, "hcall-tce");
1054     add_str(hypertas, "hcall-vio");
1055     add_str(hypertas, "hcall-splpar");
1056     add_str(hypertas, "hcall-bulk");
1057     add_str(hypertas, "hcall-set-mode");
1058     add_str(hypertas, "hcall-sprg0");
1059     add_str(hypertas, "hcall-copy");
1060     add_str(hypertas, "hcall-debug");
1061     add_str(hypertas, "hcall-vphn");
1062     add_str(qemu_hypertas, "hcall-memop1");
1063 
1064     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1065         add_str(hypertas, "hcall-multi-tce");
1066     }
1067 
1068     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1069         add_str(hypertas, "hcall-hpt-resize");
1070     }
1071 
1072     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1073                      hypertas->str, hypertas->len));
1074     g_string_free(hypertas, TRUE);
1075     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1076                      qemu_hypertas->str, qemu_hypertas->len));
1077     g_string_free(qemu_hypertas, TRUE);
1078 
1079     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1080                      refpoints, sizeof(refpoints)));
1081 
1082     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1083                      maxdomains, sizeof(maxdomains)));
1084 
1085     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1086                           RTAS_ERROR_LOG_MAX));
1087     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1088                           RTAS_EVENT_SCAN_RATE));
1089 
1090     g_assert(msi_nonbroken);
1091     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1092 
1093     /*
1094      * According to PAPR, rtas ibm,os-term does not guarantee a return
1095      * back to the guest cpu.
1096      *
1097      * While an additional ibm,extended-os-term property indicates
1098      * that rtas call return will always occur. Set this property.
1099      */
1100     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1101 
1102     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1103                      lrdr_capacity, sizeof(lrdr_capacity)));
1104 
1105     spapr_dt_rtas_tokens(fdt, rtas);
1106 }
1107 
1108 /*
1109  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1110  * and the XIVE features that the guest may request and thus the valid
1111  * values for bytes 23..26 of option vector 5:
1112  */
1113 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1114                                           int chosen)
1115 {
1116     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1117 
1118     char val[2 * 4] = {
1119         23, spapr->irq->ov5, /* Xive mode. */
1120         24, 0x00, /* Hash/Radix, filled in below. */
1121         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1122         26, 0x40, /* Radix options: GTSE == yes. */
1123     };
1124 
1125     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1126                           first_ppc_cpu->compat_pvr)) {
1127         /*
1128          * If we're in a pre POWER9 compat mode then the guest should
1129          * do hash and use the legacy interrupt mode
1130          */
1131         val[1] = 0x00; /* XICS */
1132         val[3] = 0x00; /* Hash */
1133     } else if (kvm_enabled()) {
1134         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1135             val[3] = 0x80; /* OV5_MMU_BOTH */
1136         } else if (kvmppc_has_cap_mmu_radix()) {
1137             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1138         } else {
1139             val[3] = 0x00; /* Hash */
1140         }
1141     } else {
1142         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1143         val[3] = 0xC0;
1144     }
1145     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1146                      val, sizeof(val)));
1147 }
1148 
1149 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1150 {
1151     MachineState *machine = MACHINE(spapr);
1152     int chosen;
1153     const char *boot_device = machine->boot_order;
1154     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1155     size_t cb = 0;
1156     char *bootlist = get_boot_devices_list(&cb);
1157 
1158     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1159 
1160     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1161     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1162                           spapr->initrd_base));
1163     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1164                           spapr->initrd_base + spapr->initrd_size));
1165 
1166     if (spapr->kernel_size) {
1167         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1168                               cpu_to_be64(spapr->kernel_size) };
1169 
1170         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1171                          &kprop, sizeof(kprop)));
1172         if (spapr->kernel_le) {
1173             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1174         }
1175     }
1176     if (boot_menu) {
1177         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1178     }
1179     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1180     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1181     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1182 
1183     if (cb && bootlist) {
1184         int i;
1185 
1186         for (i = 0; i < cb; i++) {
1187             if (bootlist[i] == '\n') {
1188                 bootlist[i] = ' ';
1189             }
1190         }
1191         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1192     }
1193 
1194     if (boot_device && strlen(boot_device)) {
1195         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1196     }
1197 
1198     if (!spapr->has_graphics && stdout_path) {
1199         /*
1200          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1201          * kernel. New platforms should only use the "stdout-path" property. Set
1202          * the new property and continue using older property to remain
1203          * compatible with the existing firmware.
1204          */
1205         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1206         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1207     }
1208 
1209     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1210 
1211     g_free(stdout_path);
1212     g_free(bootlist);
1213 }
1214 
1215 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1216 {
1217     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1218      * KVM to work under pHyp with some guest co-operation */
1219     int hypervisor;
1220     uint8_t hypercall[16];
1221 
1222     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1223     /* indicate KVM hypercall interface */
1224     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1225     if (kvmppc_has_cap_fixup_hcalls()) {
1226         /*
1227          * Older KVM versions with older guest kernels were broken
1228          * with the magic page, don't allow the guest to map it.
1229          */
1230         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1231                                   sizeof(hypercall))) {
1232             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1233                              hypercall, sizeof(hypercall)));
1234         }
1235     }
1236 }
1237 
1238 static void *spapr_build_fdt(SpaprMachineState *spapr)
1239 {
1240     MachineState *machine = MACHINE(spapr);
1241     MachineClass *mc = MACHINE_GET_CLASS(machine);
1242     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1243     int ret;
1244     void *fdt;
1245     SpaprPhbState *phb;
1246     char *buf;
1247 
1248     fdt = g_malloc0(FDT_MAX_SIZE);
1249     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1250 
1251     /* Root node */
1252     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1253     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1254     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1255 
1256     /* Guest UUID & Name*/
1257     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1258     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1259     if (qemu_uuid_set) {
1260         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1261     }
1262     g_free(buf);
1263 
1264     if (qemu_get_vm_name()) {
1265         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1266                                 qemu_get_vm_name()));
1267     }
1268 
1269     /* Host Model & Serial Number */
1270     if (spapr->host_model) {
1271         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1272     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1273         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1274         g_free(buf);
1275     }
1276 
1277     if (spapr->host_serial) {
1278         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1279     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1280         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1281         g_free(buf);
1282     }
1283 
1284     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1285     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1286 
1287     /* /interrupt controller */
1288     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1289                           PHANDLE_INTC);
1290 
1291     ret = spapr_populate_memory(spapr, fdt);
1292     if (ret < 0) {
1293         error_report("couldn't setup memory nodes in fdt");
1294         exit(1);
1295     }
1296 
1297     /* /vdevice */
1298     spapr_dt_vdevice(spapr->vio_bus, fdt);
1299 
1300     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1301         ret = spapr_rng_populate_dt(fdt);
1302         if (ret < 0) {
1303             error_report("could not set up rng device in the fdt");
1304             exit(1);
1305         }
1306     }
1307 
1308     QLIST_FOREACH(phb, &spapr->phbs, list) {
1309         ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1310                                     spapr->irq->nr_msis, NULL);
1311         if (ret < 0) {
1312             error_report("couldn't setup PCI devices in fdt");
1313             exit(1);
1314         }
1315     }
1316 
1317     /* cpus */
1318     spapr_populate_cpus_dt_node(fdt, spapr);
1319 
1320     if (smc->dr_lmb_enabled) {
1321         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1322     }
1323 
1324     if (mc->has_hotpluggable_cpus) {
1325         int offset = fdt_path_offset(fdt, "/cpus");
1326         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1327                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1328         if (ret < 0) {
1329             error_report("Couldn't set up CPU DR device tree properties");
1330             exit(1);
1331         }
1332     }
1333 
1334     /* /event-sources */
1335     spapr_dt_events(spapr, fdt);
1336 
1337     /* /rtas */
1338     spapr_dt_rtas(spapr, fdt);
1339 
1340     /* /chosen */
1341     spapr_dt_chosen(spapr, fdt);
1342 
1343     /* /hypervisor */
1344     if (kvm_enabled()) {
1345         spapr_dt_hypervisor(spapr, fdt);
1346     }
1347 
1348     /* Build memory reserve map */
1349     if (spapr->kernel_size) {
1350         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1351     }
1352     if (spapr->initrd_size) {
1353         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1354     }
1355 
1356     /* ibm,client-architecture-support updates */
1357     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1358     if (ret < 0) {
1359         error_report("couldn't setup CAS properties fdt");
1360         exit(1);
1361     }
1362 
1363     if (smc->dr_phb_enabled) {
1364         ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1365         if (ret < 0) {
1366             error_report("Couldn't set up PHB DR device tree properties");
1367             exit(1);
1368         }
1369     }
1370 
1371     return fdt;
1372 }
1373 
1374 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1375 {
1376     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1377 }
1378 
1379 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1380                                     PowerPCCPU *cpu)
1381 {
1382     CPUPPCState *env = &cpu->env;
1383 
1384     /* The TCG path should also be holding the BQL at this point */
1385     g_assert(qemu_mutex_iothread_locked());
1386 
1387     if (msr_pr) {
1388         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1389         env->gpr[3] = H_PRIVILEGE;
1390     } else {
1391         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1392     }
1393 }
1394 
1395 struct LPCRSyncState {
1396     target_ulong value;
1397     target_ulong mask;
1398 };
1399 
1400 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1401 {
1402     struct LPCRSyncState *s = arg.host_ptr;
1403     PowerPCCPU *cpu = POWERPC_CPU(cs);
1404     CPUPPCState *env = &cpu->env;
1405     target_ulong lpcr;
1406 
1407     cpu_synchronize_state(cs);
1408     lpcr = env->spr[SPR_LPCR];
1409     lpcr &= ~s->mask;
1410     lpcr |= s->value;
1411     ppc_store_lpcr(cpu, lpcr);
1412 }
1413 
1414 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1415 {
1416     CPUState *cs;
1417     struct LPCRSyncState s = {
1418         .value = value,
1419         .mask = mask
1420     };
1421     CPU_FOREACH(cs) {
1422         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1423     }
1424 }
1425 
1426 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1427 {
1428     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1429 
1430     /* Copy PATE1:GR into PATE0:HR */
1431     entry->dw0 = spapr->patb_entry & PATE0_HR;
1432     entry->dw1 = spapr->patb_entry;
1433 }
1434 
1435 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1436 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1437 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1438 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1439 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1440 
1441 /*
1442  * Get the fd to access the kernel htab, re-opening it if necessary
1443  */
1444 static int get_htab_fd(SpaprMachineState *spapr)
1445 {
1446     Error *local_err = NULL;
1447 
1448     if (spapr->htab_fd >= 0) {
1449         return spapr->htab_fd;
1450     }
1451 
1452     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1453     if (spapr->htab_fd < 0) {
1454         error_report_err(local_err);
1455     }
1456 
1457     return spapr->htab_fd;
1458 }
1459 
1460 void close_htab_fd(SpaprMachineState *spapr)
1461 {
1462     if (spapr->htab_fd >= 0) {
1463         close(spapr->htab_fd);
1464     }
1465     spapr->htab_fd = -1;
1466 }
1467 
1468 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1469 {
1470     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1471 
1472     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1473 }
1474 
1475 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1476 {
1477     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1478 
1479     assert(kvm_enabled());
1480 
1481     if (!spapr->htab) {
1482         return 0;
1483     }
1484 
1485     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1486 }
1487 
1488 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1489                                                 hwaddr ptex, int n)
1490 {
1491     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1492     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1493 
1494     if (!spapr->htab) {
1495         /*
1496          * HTAB is controlled by KVM. Fetch into temporary buffer
1497          */
1498         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1499         kvmppc_read_hptes(hptes, ptex, n);
1500         return hptes;
1501     }
1502 
1503     /*
1504      * HTAB is controlled by QEMU. Just point to the internally
1505      * accessible PTEG.
1506      */
1507     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1508 }
1509 
1510 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1511                               const ppc_hash_pte64_t *hptes,
1512                               hwaddr ptex, int n)
1513 {
1514     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1515 
1516     if (!spapr->htab) {
1517         g_free((void *)hptes);
1518     }
1519 
1520     /* Nothing to do for qemu managed HPT */
1521 }
1522 
1523 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1524                       uint64_t pte0, uint64_t pte1)
1525 {
1526     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1527     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1528 
1529     if (!spapr->htab) {
1530         kvmppc_write_hpte(ptex, pte0, pte1);
1531     } else {
1532         if (pte0 & HPTE64_V_VALID) {
1533             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1534             /*
1535              * When setting valid, we write PTE1 first. This ensures
1536              * proper synchronization with the reading code in
1537              * ppc_hash64_pteg_search()
1538              */
1539             smp_wmb();
1540             stq_p(spapr->htab + offset, pte0);
1541         } else {
1542             stq_p(spapr->htab + offset, pte0);
1543             /*
1544              * When clearing it we set PTE0 first. This ensures proper
1545              * synchronization with the reading code in
1546              * ppc_hash64_pteg_search()
1547              */
1548             smp_wmb();
1549             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1550         }
1551     }
1552 }
1553 
1554 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1555                              uint64_t pte1)
1556 {
1557     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1558     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1559 
1560     if (!spapr->htab) {
1561         /* There should always be a hash table when this is called */
1562         error_report("spapr_hpte_set_c called with no hash table !");
1563         return;
1564     }
1565 
1566     /* The HW performs a non-atomic byte update */
1567     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1568 }
1569 
1570 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1571                              uint64_t pte1)
1572 {
1573     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1574     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1575 
1576     if (!spapr->htab) {
1577         /* There should always be a hash table when this is called */
1578         error_report("spapr_hpte_set_r called with no hash table !");
1579         return;
1580     }
1581 
1582     /* The HW performs a non-atomic byte update */
1583     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1584 }
1585 
1586 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1587 {
1588     int shift;
1589 
1590     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1591      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1592      * that's much more than is needed for Linux guests */
1593     shift = ctz64(pow2ceil(ramsize)) - 7;
1594     shift = MAX(shift, 18); /* Minimum architected size */
1595     shift = MIN(shift, 46); /* Maximum architected size */
1596     return shift;
1597 }
1598 
1599 void spapr_free_hpt(SpaprMachineState *spapr)
1600 {
1601     g_free(spapr->htab);
1602     spapr->htab = NULL;
1603     spapr->htab_shift = 0;
1604     close_htab_fd(spapr);
1605 }
1606 
1607 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1608                           Error **errp)
1609 {
1610     long rc;
1611 
1612     /* Clean up any HPT info from a previous boot */
1613     spapr_free_hpt(spapr);
1614 
1615     rc = kvmppc_reset_htab(shift);
1616     if (rc < 0) {
1617         /* kernel-side HPT needed, but couldn't allocate one */
1618         error_setg_errno(errp, errno,
1619                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1620                          shift);
1621         /* This is almost certainly fatal, but if the caller really
1622          * wants to carry on with shift == 0, it's welcome to try */
1623     } else if (rc > 0) {
1624         /* kernel-side HPT allocated */
1625         if (rc != shift) {
1626             error_setg(errp,
1627                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1628                        shift, rc);
1629         }
1630 
1631         spapr->htab_shift = shift;
1632         spapr->htab = NULL;
1633     } else {
1634         /* kernel-side HPT not needed, allocate in userspace instead */
1635         size_t size = 1ULL << shift;
1636         int i;
1637 
1638         spapr->htab = qemu_memalign(size, size);
1639         if (!spapr->htab) {
1640             error_setg_errno(errp, errno,
1641                              "Could not allocate HPT of order %d", shift);
1642             return;
1643         }
1644 
1645         memset(spapr->htab, 0, size);
1646         spapr->htab_shift = shift;
1647 
1648         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1649             DIRTY_HPTE(HPTE(spapr->htab, i));
1650         }
1651     }
1652     /* We're setting up a hash table, so that means we're not radix */
1653     spapr->patb_entry = 0;
1654     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1655 }
1656 
1657 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1658 {
1659     int hpt_shift;
1660 
1661     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1662         || (spapr->cas_reboot
1663             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1664         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1665     } else {
1666         uint64_t current_ram_size;
1667 
1668         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1669         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1670     }
1671     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1672 
1673     if (spapr->vrma_adjust) {
1674         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1675                                           spapr->htab_shift);
1676     }
1677 }
1678 
1679 static int spapr_reset_drcs(Object *child, void *opaque)
1680 {
1681     SpaprDrc *drc =
1682         (SpaprDrc *) object_dynamic_cast(child,
1683                                                  TYPE_SPAPR_DR_CONNECTOR);
1684 
1685     if (drc) {
1686         spapr_drc_reset(drc);
1687     }
1688 
1689     return 0;
1690 }
1691 
1692 static void spapr_machine_reset(void)
1693 {
1694     MachineState *machine = MACHINE(qdev_get_machine());
1695     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1696     PowerPCCPU *first_ppc_cpu;
1697     uint32_t rtas_limit;
1698     hwaddr rtas_addr, fdt_addr;
1699     void *fdt;
1700     int rc;
1701 
1702     spapr_caps_apply(spapr);
1703 
1704     first_ppc_cpu = POWERPC_CPU(first_cpu);
1705     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1706         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1707                               spapr->max_compat_pvr)) {
1708         /*
1709          * If using KVM with radix mode available, VCPUs can be started
1710          * without a HPT because KVM will start them in radix mode.
1711          * Set the GR bit in PATE so that we know there is no HPT.
1712          */
1713         spapr->patb_entry = PATE1_GR;
1714         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1715     } else {
1716         spapr_setup_hpt_and_vrma(spapr);
1717     }
1718 
1719     /*
1720      * If this reset wasn't generated by CAS, we should reset our
1721      * negotiated options and start from scratch
1722      */
1723     if (!spapr->cas_reboot) {
1724         spapr_ovec_cleanup(spapr->ov5_cas);
1725         spapr->ov5_cas = spapr_ovec_new();
1726 
1727         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1728     }
1729 
1730     if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1731         spapr_irq_msi_reset(spapr);
1732     }
1733 
1734     /*
1735      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1736      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1737      * called from vPHB reset handler so we initialize the counter here.
1738      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1739      * must be equally distant from any other node.
1740      * The final value of spapr->gpu_numa_id is going to be written to
1741      * max-associativity-domains in spapr_build_fdt().
1742      */
1743     spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1744     qemu_devices_reset();
1745 
1746     /*
1747      * This is fixing some of the default configuration of the XIVE
1748      * devices. To be called after the reset of the machine devices.
1749      */
1750     spapr_irq_reset(spapr, &error_fatal);
1751 
1752     /*
1753      * There is no CAS under qtest. Simulate one to please the code that
1754      * depends on spapr->ov5_cas. This is especially needed to test device
1755      * unplug, so we do that before resetting the DRCs.
1756      */
1757     if (qtest_enabled()) {
1758         spapr_ovec_cleanup(spapr->ov5_cas);
1759         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1760     }
1761 
1762     /* DRC reset may cause a device to be unplugged. This will cause troubles
1763      * if this device is used by another device (eg, a running vhost backend
1764      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1765      * situations, we reset DRCs after all devices have been reset.
1766      */
1767     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1768 
1769     spapr_clear_pending_events(spapr);
1770 
1771     /*
1772      * We place the device tree and RTAS just below either the top of the RMA,
1773      * or just below 2GB, whichever is lower, so that it can be
1774      * processed with 32-bit real mode code if necessary
1775      */
1776     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1777     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1778     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1779 
1780     fdt = spapr_build_fdt(spapr);
1781 
1782     spapr_load_rtas(spapr, fdt, rtas_addr);
1783 
1784     rc = fdt_pack(fdt);
1785 
1786     /* Should only fail if we've built a corrupted tree */
1787     assert(rc == 0);
1788 
1789     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1790         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1791                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1792         exit(1);
1793     }
1794 
1795     /* Load the fdt */
1796     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1797     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1798     g_free(spapr->fdt_blob);
1799     spapr->fdt_size = fdt_totalsize(fdt);
1800     spapr->fdt_initial_size = spapr->fdt_size;
1801     spapr->fdt_blob = fdt;
1802 
1803     /* Set up the entry state */
1804     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1805     first_ppc_cpu->env.gpr[5] = 0;
1806 
1807     spapr->cas_reboot = false;
1808 }
1809 
1810 static void spapr_create_nvram(SpaprMachineState *spapr)
1811 {
1812     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1813     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1814 
1815     if (dinfo) {
1816         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1817                             &error_fatal);
1818     }
1819 
1820     qdev_init_nofail(dev);
1821 
1822     spapr->nvram = (struct SpaprNvram *)dev;
1823 }
1824 
1825 static void spapr_rtc_create(SpaprMachineState *spapr)
1826 {
1827     object_initialize_child(OBJECT(spapr), "rtc",
1828                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1829                             &error_fatal, NULL);
1830     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1831                               &error_fatal);
1832     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1833                               "date", &error_fatal);
1834 }
1835 
1836 /* Returns whether we want to use VGA or not */
1837 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1838 {
1839     switch (vga_interface_type) {
1840     case VGA_NONE:
1841         return false;
1842     case VGA_DEVICE:
1843         return true;
1844     case VGA_STD:
1845     case VGA_VIRTIO:
1846     case VGA_CIRRUS:
1847         return pci_vga_init(pci_bus) != NULL;
1848     default:
1849         error_setg(errp,
1850                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1851         return false;
1852     }
1853 }
1854 
1855 static int spapr_pre_load(void *opaque)
1856 {
1857     int rc;
1858 
1859     rc = spapr_caps_pre_load(opaque);
1860     if (rc) {
1861         return rc;
1862     }
1863 
1864     return 0;
1865 }
1866 
1867 static int spapr_post_load(void *opaque, int version_id)
1868 {
1869     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1870     int err = 0;
1871 
1872     err = spapr_caps_post_migration(spapr);
1873     if (err) {
1874         return err;
1875     }
1876 
1877     /*
1878      * In earlier versions, there was no separate qdev for the PAPR
1879      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1880      * So when migrating from those versions, poke the incoming offset
1881      * value into the RTC device
1882      */
1883     if (version_id < 3) {
1884         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1885         if (err) {
1886             return err;
1887         }
1888     }
1889 
1890     if (kvm_enabled() && spapr->patb_entry) {
1891         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1892         bool radix = !!(spapr->patb_entry & PATE1_GR);
1893         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1894 
1895         /*
1896          * Update LPCR:HR and UPRT as they may not be set properly in
1897          * the stream
1898          */
1899         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1900                             LPCR_HR | LPCR_UPRT);
1901 
1902         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1903         if (err) {
1904             error_report("Process table config unsupported by the host");
1905             return -EINVAL;
1906         }
1907     }
1908 
1909     err = spapr_irq_post_load(spapr, version_id);
1910     if (err) {
1911         return err;
1912     }
1913 
1914     return err;
1915 }
1916 
1917 static int spapr_pre_save(void *opaque)
1918 {
1919     int rc;
1920 
1921     rc = spapr_caps_pre_save(opaque);
1922     if (rc) {
1923         return rc;
1924     }
1925 
1926     return 0;
1927 }
1928 
1929 static bool version_before_3(void *opaque, int version_id)
1930 {
1931     return version_id < 3;
1932 }
1933 
1934 static bool spapr_pending_events_needed(void *opaque)
1935 {
1936     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1937     return !QTAILQ_EMPTY(&spapr->pending_events);
1938 }
1939 
1940 static const VMStateDescription vmstate_spapr_event_entry = {
1941     .name = "spapr_event_log_entry",
1942     .version_id = 1,
1943     .minimum_version_id = 1,
1944     .fields = (VMStateField[]) {
1945         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1946         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1947         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1948                                      NULL, extended_length),
1949         VMSTATE_END_OF_LIST()
1950     },
1951 };
1952 
1953 static const VMStateDescription vmstate_spapr_pending_events = {
1954     .name = "spapr_pending_events",
1955     .version_id = 1,
1956     .minimum_version_id = 1,
1957     .needed = spapr_pending_events_needed,
1958     .fields = (VMStateField[]) {
1959         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1960                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1961         VMSTATE_END_OF_LIST()
1962     },
1963 };
1964 
1965 static bool spapr_ov5_cas_needed(void *opaque)
1966 {
1967     SpaprMachineState *spapr = opaque;
1968     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1969     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1970     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1971     bool cas_needed;
1972 
1973     /* Prior to the introduction of SpaprOptionVector, we had two option
1974      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1975      * Both of these options encode machine topology into the device-tree
1976      * in such a way that the now-booted OS should still be able to interact
1977      * appropriately with QEMU regardless of what options were actually
1978      * negotiatied on the source side.
1979      *
1980      * As such, we can avoid migrating the CAS-negotiated options if these
1981      * are the only options available on the current machine/platform.
1982      * Since these are the only options available for pseries-2.7 and
1983      * earlier, this allows us to maintain old->new/new->old migration
1984      * compatibility.
1985      *
1986      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1987      * via default pseries-2.8 machines and explicit command-line parameters.
1988      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1989      * of the actual CAS-negotiated values to continue working properly. For
1990      * example, availability of memory unplug depends on knowing whether
1991      * OV5_HP_EVT was negotiated via CAS.
1992      *
1993      * Thus, for any cases where the set of available CAS-negotiatable
1994      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1995      * include the CAS-negotiated options in the migration stream, unless
1996      * if they affect boot time behaviour only.
1997      */
1998     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1999     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2000     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2001 
2002     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2003      * the mask itself since in the future it's possible "legacy" bits may be
2004      * removed via machine options, which could generate a false positive
2005      * that breaks migration.
2006      */
2007     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2008     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2009 
2010     spapr_ovec_cleanup(ov5_mask);
2011     spapr_ovec_cleanup(ov5_legacy);
2012     spapr_ovec_cleanup(ov5_removed);
2013 
2014     return cas_needed;
2015 }
2016 
2017 static const VMStateDescription vmstate_spapr_ov5_cas = {
2018     .name = "spapr_option_vector_ov5_cas",
2019     .version_id = 1,
2020     .minimum_version_id = 1,
2021     .needed = spapr_ov5_cas_needed,
2022     .fields = (VMStateField[]) {
2023         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2024                                  vmstate_spapr_ovec, SpaprOptionVector),
2025         VMSTATE_END_OF_LIST()
2026     },
2027 };
2028 
2029 static bool spapr_patb_entry_needed(void *opaque)
2030 {
2031     SpaprMachineState *spapr = opaque;
2032 
2033     return !!spapr->patb_entry;
2034 }
2035 
2036 static const VMStateDescription vmstate_spapr_patb_entry = {
2037     .name = "spapr_patb_entry",
2038     .version_id = 1,
2039     .minimum_version_id = 1,
2040     .needed = spapr_patb_entry_needed,
2041     .fields = (VMStateField[]) {
2042         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2043         VMSTATE_END_OF_LIST()
2044     },
2045 };
2046 
2047 static bool spapr_irq_map_needed(void *opaque)
2048 {
2049     SpaprMachineState *spapr = opaque;
2050 
2051     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2052 }
2053 
2054 static const VMStateDescription vmstate_spapr_irq_map = {
2055     .name = "spapr_irq_map",
2056     .version_id = 1,
2057     .minimum_version_id = 1,
2058     .needed = spapr_irq_map_needed,
2059     .fields = (VMStateField[]) {
2060         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2061         VMSTATE_END_OF_LIST()
2062     },
2063 };
2064 
2065 static bool spapr_dtb_needed(void *opaque)
2066 {
2067     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2068 
2069     return smc->update_dt_enabled;
2070 }
2071 
2072 static int spapr_dtb_pre_load(void *opaque)
2073 {
2074     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2075 
2076     g_free(spapr->fdt_blob);
2077     spapr->fdt_blob = NULL;
2078     spapr->fdt_size = 0;
2079 
2080     return 0;
2081 }
2082 
2083 static const VMStateDescription vmstate_spapr_dtb = {
2084     .name = "spapr_dtb",
2085     .version_id = 1,
2086     .minimum_version_id = 1,
2087     .needed = spapr_dtb_needed,
2088     .pre_load = spapr_dtb_pre_load,
2089     .fields = (VMStateField[]) {
2090         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2091         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2092         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2093                                      fdt_size),
2094         VMSTATE_END_OF_LIST()
2095     },
2096 };
2097 
2098 static const VMStateDescription vmstate_spapr = {
2099     .name = "spapr",
2100     .version_id = 3,
2101     .minimum_version_id = 1,
2102     .pre_load = spapr_pre_load,
2103     .post_load = spapr_post_load,
2104     .pre_save = spapr_pre_save,
2105     .fields = (VMStateField[]) {
2106         /* used to be @next_irq */
2107         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2108 
2109         /* RTC offset */
2110         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2111 
2112         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2113         VMSTATE_END_OF_LIST()
2114     },
2115     .subsections = (const VMStateDescription*[]) {
2116         &vmstate_spapr_ov5_cas,
2117         &vmstate_spapr_patb_entry,
2118         &vmstate_spapr_pending_events,
2119         &vmstate_spapr_cap_htm,
2120         &vmstate_spapr_cap_vsx,
2121         &vmstate_spapr_cap_dfp,
2122         &vmstate_spapr_cap_cfpc,
2123         &vmstate_spapr_cap_sbbc,
2124         &vmstate_spapr_cap_ibs,
2125         &vmstate_spapr_irq_map,
2126         &vmstate_spapr_cap_nested_kvm_hv,
2127         &vmstate_spapr_dtb,
2128         &vmstate_spapr_cap_large_decr,
2129         &vmstate_spapr_cap_ccf_assist,
2130         NULL
2131     }
2132 };
2133 
2134 static int htab_save_setup(QEMUFile *f, void *opaque)
2135 {
2136     SpaprMachineState *spapr = opaque;
2137 
2138     /* "Iteration" header */
2139     if (!spapr->htab_shift) {
2140         qemu_put_be32(f, -1);
2141     } else {
2142         qemu_put_be32(f, spapr->htab_shift);
2143     }
2144 
2145     if (spapr->htab) {
2146         spapr->htab_save_index = 0;
2147         spapr->htab_first_pass = true;
2148     } else {
2149         if (spapr->htab_shift) {
2150             assert(kvm_enabled());
2151         }
2152     }
2153 
2154 
2155     return 0;
2156 }
2157 
2158 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2159                             int chunkstart, int n_valid, int n_invalid)
2160 {
2161     qemu_put_be32(f, chunkstart);
2162     qemu_put_be16(f, n_valid);
2163     qemu_put_be16(f, n_invalid);
2164     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2165                     HASH_PTE_SIZE_64 * n_valid);
2166 }
2167 
2168 static void htab_save_end_marker(QEMUFile *f)
2169 {
2170     qemu_put_be32(f, 0);
2171     qemu_put_be16(f, 0);
2172     qemu_put_be16(f, 0);
2173 }
2174 
2175 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2176                                  int64_t max_ns)
2177 {
2178     bool has_timeout = max_ns != -1;
2179     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2180     int index = spapr->htab_save_index;
2181     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2182 
2183     assert(spapr->htab_first_pass);
2184 
2185     do {
2186         int chunkstart;
2187 
2188         /* Consume invalid HPTEs */
2189         while ((index < htabslots)
2190                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2191             CLEAN_HPTE(HPTE(spapr->htab, index));
2192             index++;
2193         }
2194 
2195         /* Consume valid HPTEs */
2196         chunkstart = index;
2197         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2198                && HPTE_VALID(HPTE(spapr->htab, index))) {
2199             CLEAN_HPTE(HPTE(spapr->htab, index));
2200             index++;
2201         }
2202 
2203         if (index > chunkstart) {
2204             int n_valid = index - chunkstart;
2205 
2206             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2207 
2208             if (has_timeout &&
2209                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2210                 break;
2211             }
2212         }
2213     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2214 
2215     if (index >= htabslots) {
2216         assert(index == htabslots);
2217         index = 0;
2218         spapr->htab_first_pass = false;
2219     }
2220     spapr->htab_save_index = index;
2221 }
2222 
2223 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2224                                 int64_t max_ns)
2225 {
2226     bool final = max_ns < 0;
2227     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2228     int examined = 0, sent = 0;
2229     int index = spapr->htab_save_index;
2230     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2231 
2232     assert(!spapr->htab_first_pass);
2233 
2234     do {
2235         int chunkstart, invalidstart;
2236 
2237         /* Consume non-dirty HPTEs */
2238         while ((index < htabslots)
2239                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2240             index++;
2241             examined++;
2242         }
2243 
2244         chunkstart = index;
2245         /* Consume valid dirty HPTEs */
2246         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2247                && HPTE_DIRTY(HPTE(spapr->htab, index))
2248                && HPTE_VALID(HPTE(spapr->htab, index))) {
2249             CLEAN_HPTE(HPTE(spapr->htab, index));
2250             index++;
2251             examined++;
2252         }
2253 
2254         invalidstart = index;
2255         /* Consume invalid dirty HPTEs */
2256         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2257                && HPTE_DIRTY(HPTE(spapr->htab, index))
2258                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2259             CLEAN_HPTE(HPTE(spapr->htab, index));
2260             index++;
2261             examined++;
2262         }
2263 
2264         if (index > chunkstart) {
2265             int n_valid = invalidstart - chunkstart;
2266             int n_invalid = index - invalidstart;
2267 
2268             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2269             sent += index - chunkstart;
2270 
2271             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2272                 break;
2273             }
2274         }
2275 
2276         if (examined >= htabslots) {
2277             break;
2278         }
2279 
2280         if (index >= htabslots) {
2281             assert(index == htabslots);
2282             index = 0;
2283         }
2284     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2285 
2286     if (index >= htabslots) {
2287         assert(index == htabslots);
2288         index = 0;
2289     }
2290 
2291     spapr->htab_save_index = index;
2292 
2293     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2294 }
2295 
2296 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2297 #define MAX_KVM_BUF_SIZE    2048
2298 
2299 static int htab_save_iterate(QEMUFile *f, void *opaque)
2300 {
2301     SpaprMachineState *spapr = opaque;
2302     int fd;
2303     int rc = 0;
2304 
2305     /* Iteration header */
2306     if (!spapr->htab_shift) {
2307         qemu_put_be32(f, -1);
2308         return 1;
2309     } else {
2310         qemu_put_be32(f, 0);
2311     }
2312 
2313     if (!spapr->htab) {
2314         assert(kvm_enabled());
2315 
2316         fd = get_htab_fd(spapr);
2317         if (fd < 0) {
2318             return fd;
2319         }
2320 
2321         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2322         if (rc < 0) {
2323             return rc;
2324         }
2325     } else  if (spapr->htab_first_pass) {
2326         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2327     } else {
2328         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2329     }
2330 
2331     htab_save_end_marker(f);
2332 
2333     return rc;
2334 }
2335 
2336 static int htab_save_complete(QEMUFile *f, void *opaque)
2337 {
2338     SpaprMachineState *spapr = opaque;
2339     int fd;
2340 
2341     /* Iteration header */
2342     if (!spapr->htab_shift) {
2343         qemu_put_be32(f, -1);
2344         return 0;
2345     } else {
2346         qemu_put_be32(f, 0);
2347     }
2348 
2349     if (!spapr->htab) {
2350         int rc;
2351 
2352         assert(kvm_enabled());
2353 
2354         fd = get_htab_fd(spapr);
2355         if (fd < 0) {
2356             return fd;
2357         }
2358 
2359         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2360         if (rc < 0) {
2361             return rc;
2362         }
2363     } else {
2364         if (spapr->htab_first_pass) {
2365             htab_save_first_pass(f, spapr, -1);
2366         }
2367         htab_save_later_pass(f, spapr, -1);
2368     }
2369 
2370     /* End marker */
2371     htab_save_end_marker(f);
2372 
2373     return 0;
2374 }
2375 
2376 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2377 {
2378     SpaprMachineState *spapr = opaque;
2379     uint32_t section_hdr;
2380     int fd = -1;
2381     Error *local_err = NULL;
2382 
2383     if (version_id < 1 || version_id > 1) {
2384         error_report("htab_load() bad version");
2385         return -EINVAL;
2386     }
2387 
2388     section_hdr = qemu_get_be32(f);
2389 
2390     if (section_hdr == -1) {
2391         spapr_free_hpt(spapr);
2392         return 0;
2393     }
2394 
2395     if (section_hdr) {
2396         /* First section gives the htab size */
2397         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2398         if (local_err) {
2399             error_report_err(local_err);
2400             return -EINVAL;
2401         }
2402         return 0;
2403     }
2404 
2405     if (!spapr->htab) {
2406         assert(kvm_enabled());
2407 
2408         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2409         if (fd < 0) {
2410             error_report_err(local_err);
2411             return fd;
2412         }
2413     }
2414 
2415     while (true) {
2416         uint32_t index;
2417         uint16_t n_valid, n_invalid;
2418 
2419         index = qemu_get_be32(f);
2420         n_valid = qemu_get_be16(f);
2421         n_invalid = qemu_get_be16(f);
2422 
2423         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2424             /* End of Stream */
2425             break;
2426         }
2427 
2428         if ((index + n_valid + n_invalid) >
2429             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2430             /* Bad index in stream */
2431             error_report(
2432                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2433                 index, n_valid, n_invalid, spapr->htab_shift);
2434             return -EINVAL;
2435         }
2436 
2437         if (spapr->htab) {
2438             if (n_valid) {
2439                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2440                                 HASH_PTE_SIZE_64 * n_valid);
2441             }
2442             if (n_invalid) {
2443                 memset(HPTE(spapr->htab, index + n_valid), 0,
2444                        HASH_PTE_SIZE_64 * n_invalid);
2445             }
2446         } else {
2447             int rc;
2448 
2449             assert(fd >= 0);
2450 
2451             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2452             if (rc < 0) {
2453                 return rc;
2454             }
2455         }
2456     }
2457 
2458     if (!spapr->htab) {
2459         assert(fd >= 0);
2460         close(fd);
2461     }
2462 
2463     return 0;
2464 }
2465 
2466 static void htab_save_cleanup(void *opaque)
2467 {
2468     SpaprMachineState *spapr = opaque;
2469 
2470     close_htab_fd(spapr);
2471 }
2472 
2473 static SaveVMHandlers savevm_htab_handlers = {
2474     .save_setup = htab_save_setup,
2475     .save_live_iterate = htab_save_iterate,
2476     .save_live_complete_precopy = htab_save_complete,
2477     .save_cleanup = htab_save_cleanup,
2478     .load_state = htab_load,
2479 };
2480 
2481 static void spapr_boot_set(void *opaque, const char *boot_device,
2482                            Error **errp)
2483 {
2484     MachineState *machine = MACHINE(opaque);
2485     machine->boot_order = g_strdup(boot_device);
2486 }
2487 
2488 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2489 {
2490     MachineState *machine = MACHINE(spapr);
2491     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2492     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2493     int i;
2494 
2495     for (i = 0; i < nr_lmbs; i++) {
2496         uint64_t addr;
2497 
2498         addr = i * lmb_size + machine->device_memory->base;
2499         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2500                                addr / lmb_size);
2501     }
2502 }
2503 
2504 /*
2505  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2506  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2507  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2508  */
2509 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2510 {
2511     int i;
2512 
2513     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2514         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2515                    " is not aligned to %" PRIu64 " MiB",
2516                    machine->ram_size,
2517                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2518         return;
2519     }
2520 
2521     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2522         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2523                    " is not aligned to %" PRIu64 " MiB",
2524                    machine->ram_size,
2525                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2526         return;
2527     }
2528 
2529     for (i = 0; i < nb_numa_nodes; i++) {
2530         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2531             error_setg(errp,
2532                        "Node %d memory size 0x%" PRIx64
2533                        " is not aligned to %" PRIu64 " MiB",
2534                        i, numa_info[i].node_mem,
2535                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2536             return;
2537         }
2538     }
2539 }
2540 
2541 /* find cpu slot in machine->possible_cpus by core_id */
2542 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2543 {
2544     int index = id / smp_threads;
2545 
2546     if (index >= ms->possible_cpus->len) {
2547         return NULL;
2548     }
2549     if (idx) {
2550         *idx = index;
2551     }
2552     return &ms->possible_cpus->cpus[index];
2553 }
2554 
2555 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2556 {
2557     Error *local_err = NULL;
2558     bool vsmt_user = !!spapr->vsmt;
2559     int kvm_smt = kvmppc_smt_threads();
2560     int ret;
2561 
2562     if (!kvm_enabled() && (smp_threads > 1)) {
2563         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2564                      "on a pseries machine");
2565         goto out;
2566     }
2567     if (!is_power_of_2(smp_threads)) {
2568         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2569                      "machine because it must be a power of 2", smp_threads);
2570         goto out;
2571     }
2572 
2573     /* Detemine the VSMT mode to use: */
2574     if (vsmt_user) {
2575         if (spapr->vsmt < smp_threads) {
2576             error_setg(&local_err, "Cannot support VSMT mode %d"
2577                          " because it must be >= threads/core (%d)",
2578                          spapr->vsmt, smp_threads);
2579             goto out;
2580         }
2581         /* In this case, spapr->vsmt has been set by the command line */
2582     } else {
2583         /*
2584          * Default VSMT value is tricky, because we need it to be as
2585          * consistent as possible (for migration), but this requires
2586          * changing it for at least some existing cases.  We pick 8 as
2587          * the value that we'd get with KVM on POWER8, the
2588          * overwhelmingly common case in production systems.
2589          */
2590         spapr->vsmt = MAX(8, smp_threads);
2591     }
2592 
2593     /* KVM: If necessary, set the SMT mode: */
2594     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2595         ret = kvmppc_set_smt_threads(spapr->vsmt);
2596         if (ret) {
2597             /* Looks like KVM isn't able to change VSMT mode */
2598             error_setg(&local_err,
2599                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2600                        spapr->vsmt, ret);
2601             /* We can live with that if the default one is big enough
2602              * for the number of threads, and a submultiple of the one
2603              * we want.  In this case we'll waste some vcpu ids, but
2604              * behaviour will be correct */
2605             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2606                 warn_report_err(local_err);
2607                 local_err = NULL;
2608                 goto out;
2609             } else {
2610                 if (!vsmt_user) {
2611                     error_append_hint(&local_err,
2612                                       "On PPC, a VM with %d threads/core"
2613                                       " on a host with %d threads/core"
2614                                       " requires the use of VSMT mode %d.\n",
2615                                       smp_threads, kvm_smt, spapr->vsmt);
2616                 }
2617                 kvmppc_hint_smt_possible(&local_err);
2618                 goto out;
2619             }
2620         }
2621     }
2622     /* else TCG: nothing to do currently */
2623 out:
2624     error_propagate(errp, local_err);
2625 }
2626 
2627 static void spapr_init_cpus(SpaprMachineState *spapr)
2628 {
2629     MachineState *machine = MACHINE(spapr);
2630     MachineClass *mc = MACHINE_GET_CLASS(machine);
2631     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2632     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2633     const CPUArchIdList *possible_cpus;
2634     int boot_cores_nr = smp_cpus / smp_threads;
2635     int i;
2636 
2637     possible_cpus = mc->possible_cpu_arch_ids(machine);
2638     if (mc->has_hotpluggable_cpus) {
2639         if (smp_cpus % smp_threads) {
2640             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2641                          smp_cpus, smp_threads);
2642             exit(1);
2643         }
2644         if (max_cpus % smp_threads) {
2645             error_report("max_cpus (%u) must be multiple of threads (%u)",
2646                          max_cpus, smp_threads);
2647             exit(1);
2648         }
2649     } else {
2650         if (max_cpus != smp_cpus) {
2651             error_report("This machine version does not support CPU hotplug");
2652             exit(1);
2653         }
2654         boot_cores_nr = possible_cpus->len;
2655     }
2656 
2657     if (smc->pre_2_10_has_unused_icps) {
2658         int i;
2659 
2660         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2661             /* Dummy entries get deregistered when real ICPState objects
2662              * are registered during CPU core hotplug.
2663              */
2664             pre_2_10_vmstate_register_dummy_icp(i);
2665         }
2666     }
2667 
2668     for (i = 0; i < possible_cpus->len; i++) {
2669         int core_id = i * smp_threads;
2670 
2671         if (mc->has_hotpluggable_cpus) {
2672             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2673                                    spapr_vcpu_id(spapr, core_id));
2674         }
2675 
2676         if (i < boot_cores_nr) {
2677             Object *core  = object_new(type);
2678             int nr_threads = smp_threads;
2679 
2680             /* Handle the partially filled core for older machine types */
2681             if ((i + 1) * smp_threads >= smp_cpus) {
2682                 nr_threads = smp_cpus - i * smp_threads;
2683             }
2684 
2685             object_property_set_int(core, nr_threads, "nr-threads",
2686                                     &error_fatal);
2687             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2688                                     &error_fatal);
2689             object_property_set_bool(core, true, "realized", &error_fatal);
2690 
2691             object_unref(core);
2692         }
2693     }
2694 }
2695 
2696 static PCIHostState *spapr_create_default_phb(void)
2697 {
2698     DeviceState *dev;
2699 
2700     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2701     qdev_prop_set_uint32(dev, "index", 0);
2702     qdev_init_nofail(dev);
2703 
2704     return PCI_HOST_BRIDGE(dev);
2705 }
2706 
2707 /* pSeries LPAR / sPAPR hardware init */
2708 static void spapr_machine_init(MachineState *machine)
2709 {
2710     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2711     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2712     const char *kernel_filename = machine->kernel_filename;
2713     const char *initrd_filename = machine->initrd_filename;
2714     PCIHostState *phb;
2715     int i;
2716     MemoryRegion *sysmem = get_system_memory();
2717     MemoryRegion *ram = g_new(MemoryRegion, 1);
2718     hwaddr node0_size = spapr_node0_size(machine);
2719     long load_limit, fw_size;
2720     char *filename;
2721     Error *resize_hpt_err = NULL;
2722 
2723     msi_nonbroken = true;
2724 
2725     QLIST_INIT(&spapr->phbs);
2726     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2727 
2728     /* Determine capabilities to run with */
2729     spapr_caps_init(spapr);
2730 
2731     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2732     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2733         /*
2734          * If the user explicitly requested a mode we should either
2735          * supply it, or fail completely (which we do below).  But if
2736          * it's not set explicitly, we reset our mode to something
2737          * that works
2738          */
2739         if (resize_hpt_err) {
2740             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2741             error_free(resize_hpt_err);
2742             resize_hpt_err = NULL;
2743         } else {
2744             spapr->resize_hpt = smc->resize_hpt_default;
2745         }
2746     }
2747 
2748     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2749 
2750     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2751         /*
2752          * User requested HPT resize, but this host can't supply it.  Bail out
2753          */
2754         error_report_err(resize_hpt_err);
2755         exit(1);
2756     }
2757 
2758     spapr->rma_size = node0_size;
2759 
2760     /* With KVM, we don't actually know whether KVM supports an
2761      * unbounded RMA (PR KVM) or is limited by the hash table size
2762      * (HV KVM using VRMA), so we always assume the latter
2763      *
2764      * In that case, we also limit the initial allocations for RTAS
2765      * etc... to 256M since we have no way to know what the VRMA size
2766      * is going to be as it depends on the size of the hash table
2767      * which isn't determined yet.
2768      */
2769     if (kvm_enabled()) {
2770         spapr->vrma_adjust = 1;
2771         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2772     }
2773 
2774     /* Actually we don't support unbounded RMA anymore since we added
2775      * proper emulation of HV mode. The max we can get is 16G which
2776      * also happens to be what we configure for PAPR mode so make sure
2777      * we don't do anything bigger than that
2778      */
2779     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2780 
2781     if (spapr->rma_size > node0_size) {
2782         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2783                      spapr->rma_size);
2784         exit(1);
2785     }
2786 
2787     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2788     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2789 
2790     /*
2791      * VSMT must be set in order to be able to compute VCPU ids, ie to
2792      * call spapr_max_server_number() or spapr_vcpu_id().
2793      */
2794     spapr_set_vsmt_mode(spapr, &error_fatal);
2795 
2796     /* Set up Interrupt Controller before we create the VCPUs */
2797     spapr_irq_init(spapr, &error_fatal);
2798 
2799     /* Set up containers for ibm,client-architecture-support negotiated options
2800      */
2801     spapr->ov5 = spapr_ovec_new();
2802     spapr->ov5_cas = spapr_ovec_new();
2803 
2804     if (smc->dr_lmb_enabled) {
2805         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2806         spapr_validate_node_memory(machine, &error_fatal);
2807     }
2808 
2809     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2810 
2811     /* advertise support for dedicated HP event source to guests */
2812     if (spapr->use_hotplug_event_source) {
2813         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2814     }
2815 
2816     /* advertise support for HPT resizing */
2817     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2818         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2819     }
2820 
2821     /* advertise support for ibm,dyamic-memory-v2 */
2822     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2823 
2824     /* advertise XIVE on POWER9 machines */
2825     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2826         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2827     }
2828 
2829     /* init CPUs */
2830     spapr_init_cpus(spapr);
2831 
2832     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2833         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2834                               spapr->max_compat_pvr)) {
2835         /* KVM and TCG always allow GTSE with radix... */
2836         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2837     }
2838     /* ... but not with hash (currently). */
2839 
2840     if (kvm_enabled()) {
2841         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2842         kvmppc_enable_logical_ci_hcalls();
2843         kvmppc_enable_set_mode_hcall();
2844 
2845         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2846         kvmppc_enable_clear_ref_mod_hcalls();
2847 
2848         /* Enable H_PAGE_INIT */
2849         kvmppc_enable_h_page_init();
2850     }
2851 
2852     /* allocate RAM */
2853     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2854                                          machine->ram_size);
2855     memory_region_add_subregion(sysmem, 0, ram);
2856 
2857     /* always allocate the device memory information */
2858     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2859 
2860     /* initialize hotplug memory address space */
2861     if (machine->ram_size < machine->maxram_size) {
2862         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2863         /*
2864          * Limit the number of hotpluggable memory slots to half the number
2865          * slots that KVM supports, leaving the other half for PCI and other
2866          * devices. However ensure that number of slots doesn't drop below 32.
2867          */
2868         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2869                            SPAPR_MAX_RAM_SLOTS;
2870 
2871         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2872             max_memslots = SPAPR_MAX_RAM_SLOTS;
2873         }
2874         if (machine->ram_slots > max_memslots) {
2875             error_report("Specified number of memory slots %"
2876                          PRIu64" exceeds max supported %d",
2877                          machine->ram_slots, max_memslots);
2878             exit(1);
2879         }
2880 
2881         machine->device_memory->base = ROUND_UP(machine->ram_size,
2882                                                 SPAPR_DEVICE_MEM_ALIGN);
2883         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2884                            "device-memory", device_mem_size);
2885         memory_region_add_subregion(sysmem, machine->device_memory->base,
2886                                     &machine->device_memory->mr);
2887     }
2888 
2889     if (smc->dr_lmb_enabled) {
2890         spapr_create_lmb_dr_connectors(spapr);
2891     }
2892 
2893     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2894     if (!filename) {
2895         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2896         exit(1);
2897     }
2898     spapr->rtas_size = get_image_size(filename);
2899     if (spapr->rtas_size < 0) {
2900         error_report("Could not get size of LPAR rtas '%s'", filename);
2901         exit(1);
2902     }
2903     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2904     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2905         error_report("Could not load LPAR rtas '%s'", filename);
2906         exit(1);
2907     }
2908     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2909         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2910                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2911         exit(1);
2912     }
2913     g_free(filename);
2914 
2915     /* Set up RTAS event infrastructure */
2916     spapr_events_init(spapr);
2917 
2918     /* Set up the RTC RTAS interfaces */
2919     spapr_rtc_create(spapr);
2920 
2921     /* Set up VIO bus */
2922     spapr->vio_bus = spapr_vio_bus_init();
2923 
2924     for (i = 0; i < serial_max_hds(); i++) {
2925         if (serial_hd(i)) {
2926             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2927         }
2928     }
2929 
2930     /* We always have at least the nvram device on VIO */
2931     spapr_create_nvram(spapr);
2932 
2933     /*
2934      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2935      * connectors (described in root DT node's "ibm,drc-types" property)
2936      * are pre-initialized here. additional child connectors (such as
2937      * connectors for a PHBs PCI slots) are added as needed during their
2938      * parent's realization.
2939      */
2940     if (smc->dr_phb_enabled) {
2941         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2942             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2943         }
2944     }
2945 
2946     /* Set up PCI */
2947     spapr_pci_rtas_init();
2948 
2949     phb = spapr_create_default_phb();
2950 
2951     for (i = 0; i < nb_nics; i++) {
2952         NICInfo *nd = &nd_table[i];
2953 
2954         if (!nd->model) {
2955             nd->model = g_strdup("spapr-vlan");
2956         }
2957 
2958         if (g_str_equal(nd->model, "spapr-vlan") ||
2959             g_str_equal(nd->model, "ibmveth")) {
2960             spapr_vlan_create(spapr->vio_bus, nd);
2961         } else {
2962             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2963         }
2964     }
2965 
2966     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2967         spapr_vscsi_create(spapr->vio_bus);
2968     }
2969 
2970     /* Graphics */
2971     if (spapr_vga_init(phb->bus, &error_fatal)) {
2972         spapr->has_graphics = true;
2973         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2974     }
2975 
2976     if (machine->usb) {
2977         if (smc->use_ohci_by_default) {
2978             pci_create_simple(phb->bus, -1, "pci-ohci");
2979         } else {
2980             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2981         }
2982 
2983         if (spapr->has_graphics) {
2984             USBBus *usb_bus = usb_bus_find(-1);
2985 
2986             usb_create_simple(usb_bus, "usb-kbd");
2987             usb_create_simple(usb_bus, "usb-mouse");
2988         }
2989     }
2990 
2991     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2992         error_report(
2993             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2994             MIN_RMA_SLOF);
2995         exit(1);
2996     }
2997 
2998     if (kernel_filename) {
2999         uint64_t lowaddr = 0;
3000 
3001         spapr->kernel_size = load_elf(kernel_filename, NULL,
3002                                       translate_kernel_address, NULL,
3003                                       NULL, &lowaddr, NULL, 1,
3004                                       PPC_ELF_MACHINE, 0, 0);
3005         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3006             spapr->kernel_size = load_elf(kernel_filename, NULL,
3007                                           translate_kernel_address, NULL, NULL,
3008                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3009                                           0, 0);
3010             spapr->kernel_le = spapr->kernel_size > 0;
3011         }
3012         if (spapr->kernel_size < 0) {
3013             error_report("error loading %s: %s", kernel_filename,
3014                          load_elf_strerror(spapr->kernel_size));
3015             exit(1);
3016         }
3017 
3018         /* load initrd */
3019         if (initrd_filename) {
3020             /* Try to locate the initrd in the gap between the kernel
3021              * and the firmware. Add a bit of space just in case
3022              */
3023             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3024                                   + 0x1ffff) & ~0xffff;
3025             spapr->initrd_size = load_image_targphys(initrd_filename,
3026                                                      spapr->initrd_base,
3027                                                      load_limit
3028                                                      - spapr->initrd_base);
3029             if (spapr->initrd_size < 0) {
3030                 error_report("could not load initial ram disk '%s'",
3031                              initrd_filename);
3032                 exit(1);
3033             }
3034         }
3035     }
3036 
3037     if (bios_name == NULL) {
3038         bios_name = FW_FILE_NAME;
3039     }
3040     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3041     if (!filename) {
3042         error_report("Could not find LPAR firmware '%s'", bios_name);
3043         exit(1);
3044     }
3045     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3046     if (fw_size <= 0) {
3047         error_report("Could not load LPAR firmware '%s'", filename);
3048         exit(1);
3049     }
3050     g_free(filename);
3051 
3052     /* FIXME: Should register things through the MachineState's qdev
3053      * interface, this is a legacy from the sPAPREnvironment structure
3054      * which predated MachineState but had a similar function */
3055     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3056     register_savevm_live(NULL, "spapr/htab", -1, 1,
3057                          &savevm_htab_handlers, spapr);
3058 
3059     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3060                              &error_fatal);
3061 
3062     qemu_register_boot_set(spapr_boot_set, spapr);
3063 
3064     if (kvm_enabled()) {
3065         /* to stop and start vmclock */
3066         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3067                                          &spapr->tb);
3068 
3069         kvmppc_spapr_enable_inkernel_multitce();
3070     }
3071 }
3072 
3073 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3074 {
3075     if (!vm_type) {
3076         return 0;
3077     }
3078 
3079     if (!strcmp(vm_type, "HV")) {
3080         return 1;
3081     }
3082 
3083     if (!strcmp(vm_type, "PR")) {
3084         return 2;
3085     }
3086 
3087     error_report("Unknown kvm-type specified '%s'", vm_type);
3088     exit(1);
3089 }
3090 
3091 /*
3092  * Implementation of an interface to adjust firmware path
3093  * for the bootindex property handling.
3094  */
3095 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3096                                    DeviceState *dev)
3097 {
3098 #define CAST(type, obj, name) \
3099     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3100     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3101     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3102     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3103 
3104     if (d) {
3105         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3106         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3107         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3108 
3109         if (spapr) {
3110             /*
3111              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3112              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3113              * 0x8000 | (target << 8) | (bus << 5) | lun
3114              * (see the "Logical unit addressing format" table in SAM5)
3115              */
3116             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3117             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3118                                    (uint64_t)id << 48);
3119         } else if (virtio) {
3120             /*
3121              * We use SRP luns of the form 01000000 | (target << 8) | lun
3122              * in the top 32 bits of the 64-bit LUN
3123              * Note: the quote above is from SLOF and it is wrong,
3124              * the actual binding is:
3125              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3126              */
3127             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3128             if (d->lun >= 256) {
3129                 /* Use the LUN "flat space addressing method" */
3130                 id |= 0x4000;
3131             }
3132             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3133                                    (uint64_t)id << 32);
3134         } else if (usb) {
3135             /*
3136              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3137              * in the top 32 bits of the 64-bit LUN
3138              */
3139             unsigned usb_port = atoi(usb->port->path);
3140             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3141             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3142                                    (uint64_t)id << 32);
3143         }
3144     }
3145 
3146     /*
3147      * SLOF probes the USB devices, and if it recognizes that the device is a
3148      * storage device, it changes its name to "storage" instead of "usb-host",
3149      * and additionally adds a child node for the SCSI LUN, so the correct
3150      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3151      */
3152     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3153         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3154         if (usb_host_dev_is_scsi_storage(usbdev)) {
3155             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3156         }
3157     }
3158 
3159     if (phb) {
3160         /* Replace "pci" with "pci@800000020000000" */
3161         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3162     }
3163 
3164     if (vsc) {
3165         /* Same logic as virtio above */
3166         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3167         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3168     }
3169 
3170     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3171         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3172         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3173         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3174     }
3175 
3176     return NULL;
3177 }
3178 
3179 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3180 {
3181     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3182 
3183     return g_strdup(spapr->kvm_type);
3184 }
3185 
3186 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3187 {
3188     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3189 
3190     g_free(spapr->kvm_type);
3191     spapr->kvm_type = g_strdup(value);
3192 }
3193 
3194 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3195 {
3196     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3197 
3198     return spapr->use_hotplug_event_source;
3199 }
3200 
3201 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3202                                             Error **errp)
3203 {
3204     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3205 
3206     spapr->use_hotplug_event_source = value;
3207 }
3208 
3209 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3210 {
3211     return true;
3212 }
3213 
3214 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3215 {
3216     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3217 
3218     switch (spapr->resize_hpt) {
3219     case SPAPR_RESIZE_HPT_DEFAULT:
3220         return g_strdup("default");
3221     case SPAPR_RESIZE_HPT_DISABLED:
3222         return g_strdup("disabled");
3223     case SPAPR_RESIZE_HPT_ENABLED:
3224         return g_strdup("enabled");
3225     case SPAPR_RESIZE_HPT_REQUIRED:
3226         return g_strdup("required");
3227     }
3228     g_assert_not_reached();
3229 }
3230 
3231 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3232 {
3233     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3234 
3235     if (strcmp(value, "default") == 0) {
3236         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3237     } else if (strcmp(value, "disabled") == 0) {
3238         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3239     } else if (strcmp(value, "enabled") == 0) {
3240         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3241     } else if (strcmp(value, "required") == 0) {
3242         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3243     } else {
3244         error_setg(errp, "Bad value for \"resize-hpt\" property");
3245     }
3246 }
3247 
3248 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3249                                    void *opaque, Error **errp)
3250 {
3251     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3252 }
3253 
3254 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3255                                    void *opaque, Error **errp)
3256 {
3257     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3258 }
3259 
3260 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3261 {
3262     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3263 
3264     if (spapr->irq == &spapr_irq_xics_legacy) {
3265         return g_strdup("legacy");
3266     } else if (spapr->irq == &spapr_irq_xics) {
3267         return g_strdup("xics");
3268     } else if (spapr->irq == &spapr_irq_xive) {
3269         return g_strdup("xive");
3270     } else if (spapr->irq == &spapr_irq_dual) {
3271         return g_strdup("dual");
3272     }
3273     g_assert_not_reached();
3274 }
3275 
3276 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3277 {
3278     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3279 
3280     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3281         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3282         return;
3283     }
3284 
3285     /* The legacy IRQ backend can not be set */
3286     if (strcmp(value, "xics") == 0) {
3287         spapr->irq = &spapr_irq_xics;
3288     } else if (strcmp(value, "xive") == 0) {
3289         spapr->irq = &spapr_irq_xive;
3290     } else if (strcmp(value, "dual") == 0) {
3291         spapr->irq = &spapr_irq_dual;
3292     } else {
3293         error_setg(errp, "Bad value for \"ic-mode\" property");
3294     }
3295 }
3296 
3297 static char *spapr_get_host_model(Object *obj, Error **errp)
3298 {
3299     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300 
3301     return g_strdup(spapr->host_model);
3302 }
3303 
3304 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3305 {
3306     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3307 
3308     g_free(spapr->host_model);
3309     spapr->host_model = g_strdup(value);
3310 }
3311 
3312 static char *spapr_get_host_serial(Object *obj, Error **errp)
3313 {
3314     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3315 
3316     return g_strdup(spapr->host_serial);
3317 }
3318 
3319 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3320 {
3321     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3322 
3323     g_free(spapr->host_serial);
3324     spapr->host_serial = g_strdup(value);
3325 }
3326 
3327 static void spapr_instance_init(Object *obj)
3328 {
3329     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3330     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3331 
3332     spapr->htab_fd = -1;
3333     spapr->use_hotplug_event_source = true;
3334     object_property_add_str(obj, "kvm-type",
3335                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3336     object_property_set_description(obj, "kvm-type",
3337                                     "Specifies the KVM virtualization mode (HV, PR)",
3338                                     NULL);
3339     object_property_add_bool(obj, "modern-hotplug-events",
3340                             spapr_get_modern_hotplug_events,
3341                             spapr_set_modern_hotplug_events,
3342                             NULL);
3343     object_property_set_description(obj, "modern-hotplug-events",
3344                                     "Use dedicated hotplug event mechanism in"
3345                                     " place of standard EPOW events when possible"
3346                                     " (required for memory hot-unplug support)",
3347                                     NULL);
3348     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3349                             "Maximum permitted CPU compatibility mode",
3350                             &error_fatal);
3351 
3352     object_property_add_str(obj, "resize-hpt",
3353                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3354     object_property_set_description(obj, "resize-hpt",
3355                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3356                                     NULL);
3357     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3358                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3359     object_property_set_description(obj, "vsmt",
3360                                     "Virtual SMT: KVM behaves as if this were"
3361                                     " the host's SMT mode", &error_abort);
3362     object_property_add_bool(obj, "vfio-no-msix-emulation",
3363                              spapr_get_msix_emulation, NULL, NULL);
3364 
3365     /* The machine class defines the default interrupt controller mode */
3366     spapr->irq = smc->irq;
3367     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3368                             spapr_set_ic_mode, NULL);
3369     object_property_set_description(obj, "ic-mode",
3370                  "Specifies the interrupt controller mode (xics, xive, dual)",
3371                  NULL);
3372 
3373     object_property_add_str(obj, "host-model",
3374         spapr_get_host_model, spapr_set_host_model,
3375         &error_abort);
3376     object_property_set_description(obj, "host-model",
3377         "Host model to advertise in guest device tree", &error_abort);
3378     object_property_add_str(obj, "host-serial",
3379         spapr_get_host_serial, spapr_set_host_serial,
3380         &error_abort);
3381     object_property_set_description(obj, "host-serial",
3382         "Host serial number to advertise in guest device tree", &error_abort);
3383 }
3384 
3385 static void spapr_machine_finalizefn(Object *obj)
3386 {
3387     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3388 
3389     g_free(spapr->kvm_type);
3390 }
3391 
3392 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3393 {
3394     cpu_synchronize_state(cs);
3395     ppc_cpu_do_system_reset(cs);
3396 }
3397 
3398 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3399 {
3400     CPUState *cs;
3401 
3402     CPU_FOREACH(cs) {
3403         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3404     }
3405 }
3406 
3407 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3408                           void *fdt, int *fdt_start_offset, Error **errp)
3409 {
3410     uint64_t addr;
3411     uint32_t node;
3412 
3413     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3414     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3415                                     &error_abort);
3416     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3417                                                    SPAPR_MEMORY_BLOCK_SIZE);
3418     return 0;
3419 }
3420 
3421 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3422                            bool dedicated_hp_event_source, Error **errp)
3423 {
3424     SpaprDrc *drc;
3425     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3426     int i;
3427     uint64_t addr = addr_start;
3428     bool hotplugged = spapr_drc_hotplugged(dev);
3429     Error *local_err = NULL;
3430 
3431     for (i = 0; i < nr_lmbs; i++) {
3432         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3433                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3434         g_assert(drc);
3435 
3436         spapr_drc_attach(drc, dev, &local_err);
3437         if (local_err) {
3438             while (addr > addr_start) {
3439                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3440                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3441                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3442                 spapr_drc_detach(drc);
3443             }
3444             error_propagate(errp, local_err);
3445             return;
3446         }
3447         if (!hotplugged) {
3448             spapr_drc_reset(drc);
3449         }
3450         addr += SPAPR_MEMORY_BLOCK_SIZE;
3451     }
3452     /* send hotplug notification to the
3453      * guest only in case of hotplugged memory
3454      */
3455     if (hotplugged) {
3456         if (dedicated_hp_event_source) {
3457             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3458                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3459             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3460                                                    nr_lmbs,
3461                                                    spapr_drc_index(drc));
3462         } else {
3463             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3464                                            nr_lmbs);
3465         }
3466     }
3467 }
3468 
3469 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3470                               Error **errp)
3471 {
3472     Error *local_err = NULL;
3473     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3474     PCDIMMDevice *dimm = PC_DIMM(dev);
3475     uint64_t size, addr;
3476 
3477     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3478 
3479     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3480     if (local_err) {
3481         goto out;
3482     }
3483 
3484     addr = object_property_get_uint(OBJECT(dimm),
3485                                     PC_DIMM_ADDR_PROP, &local_err);
3486     if (local_err) {
3487         goto out_unplug;
3488     }
3489 
3490     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3491                    &local_err);
3492     if (local_err) {
3493         goto out_unplug;
3494     }
3495 
3496     return;
3497 
3498 out_unplug:
3499     pc_dimm_unplug(dimm, MACHINE(ms));
3500 out:
3501     error_propagate(errp, local_err);
3502 }
3503 
3504 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3505                                   Error **errp)
3506 {
3507     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3508     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3509     PCDIMMDevice *dimm = PC_DIMM(dev);
3510     Error *local_err = NULL;
3511     uint64_t size;
3512     Object *memdev;
3513     hwaddr pagesize;
3514 
3515     if (!smc->dr_lmb_enabled) {
3516         error_setg(errp, "Memory hotplug not supported for this machine");
3517         return;
3518     }
3519 
3520     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3521     if (local_err) {
3522         error_propagate(errp, local_err);
3523         return;
3524     }
3525 
3526     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3527         error_setg(errp, "Hotplugged memory size must be a multiple of "
3528                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3529         return;
3530     }
3531 
3532     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3533                                       &error_abort);
3534     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3535     spapr_check_pagesize(spapr, pagesize, &local_err);
3536     if (local_err) {
3537         error_propagate(errp, local_err);
3538         return;
3539     }
3540 
3541     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3542 }
3543 
3544 struct SpaprDimmState {
3545     PCDIMMDevice *dimm;
3546     uint32_t nr_lmbs;
3547     QTAILQ_ENTRY(SpaprDimmState) next;
3548 };
3549 
3550 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3551                                                        PCDIMMDevice *dimm)
3552 {
3553     SpaprDimmState *dimm_state = NULL;
3554 
3555     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3556         if (dimm_state->dimm == dimm) {
3557             break;
3558         }
3559     }
3560     return dimm_state;
3561 }
3562 
3563 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3564                                                       uint32_t nr_lmbs,
3565                                                       PCDIMMDevice *dimm)
3566 {
3567     SpaprDimmState *ds = NULL;
3568 
3569     /*
3570      * If this request is for a DIMM whose removal had failed earlier
3571      * (due to guest's refusal to remove the LMBs), we would have this
3572      * dimm already in the pending_dimm_unplugs list. In that
3573      * case don't add again.
3574      */
3575     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3576     if (!ds) {
3577         ds = g_malloc0(sizeof(SpaprDimmState));
3578         ds->nr_lmbs = nr_lmbs;
3579         ds->dimm = dimm;
3580         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3581     }
3582     return ds;
3583 }
3584 
3585 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3586                                               SpaprDimmState *dimm_state)
3587 {
3588     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3589     g_free(dimm_state);
3590 }
3591 
3592 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3593                                                         PCDIMMDevice *dimm)
3594 {
3595     SpaprDrc *drc;
3596     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3597                                                   &error_abort);
3598     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3599     uint32_t avail_lmbs = 0;
3600     uint64_t addr_start, addr;
3601     int i;
3602 
3603     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3604                                          &error_abort);
3605 
3606     addr = addr_start;
3607     for (i = 0; i < nr_lmbs; i++) {
3608         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3609                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3610         g_assert(drc);
3611         if (drc->dev) {
3612             avail_lmbs++;
3613         }
3614         addr += SPAPR_MEMORY_BLOCK_SIZE;
3615     }
3616 
3617     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3618 }
3619 
3620 /* Callback to be called during DRC release. */
3621 void spapr_lmb_release(DeviceState *dev)
3622 {
3623     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3624     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3625     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3626 
3627     /* This information will get lost if a migration occurs
3628      * during the unplug process. In this case recover it. */
3629     if (ds == NULL) {
3630         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3631         g_assert(ds);
3632         /* The DRC being examined by the caller at least must be counted */
3633         g_assert(ds->nr_lmbs);
3634     }
3635 
3636     if (--ds->nr_lmbs) {
3637         return;
3638     }
3639 
3640     /*
3641      * Now that all the LMBs have been removed by the guest, call the
3642      * unplug handler chain. This can never fail.
3643      */
3644     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3645     object_unparent(OBJECT(dev));
3646 }
3647 
3648 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3649 {
3650     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3651     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3652 
3653     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3654     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3655     spapr_pending_dimm_unplugs_remove(spapr, ds);
3656 }
3657 
3658 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3659                                         DeviceState *dev, Error **errp)
3660 {
3661     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3662     Error *local_err = NULL;
3663     PCDIMMDevice *dimm = PC_DIMM(dev);
3664     uint32_t nr_lmbs;
3665     uint64_t size, addr_start, addr;
3666     int i;
3667     SpaprDrc *drc;
3668 
3669     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3670     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3671 
3672     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3673                                          &local_err);
3674     if (local_err) {
3675         goto out;
3676     }
3677 
3678     /*
3679      * An existing pending dimm state for this DIMM means that there is an
3680      * unplug operation in progress, waiting for the spapr_lmb_release
3681      * callback to complete the job (BQL can't cover that far). In this case,
3682      * bail out to avoid detaching DRCs that were already released.
3683      */
3684     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3685         error_setg(&local_err,
3686                    "Memory unplug already in progress for device %s",
3687                    dev->id);
3688         goto out;
3689     }
3690 
3691     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3692 
3693     addr = addr_start;
3694     for (i = 0; i < nr_lmbs; i++) {
3695         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3696                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3697         g_assert(drc);
3698 
3699         spapr_drc_detach(drc);
3700         addr += SPAPR_MEMORY_BLOCK_SIZE;
3701     }
3702 
3703     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3704                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3705     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3706                                               nr_lmbs, spapr_drc_index(drc));
3707 out:
3708     error_propagate(errp, local_err);
3709 }
3710 
3711 /* Callback to be called during DRC release. */
3712 void spapr_core_release(DeviceState *dev)
3713 {
3714     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3715 
3716     /* Call the unplug handler chain. This can never fail. */
3717     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3718     object_unparent(OBJECT(dev));
3719 }
3720 
3721 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3722 {
3723     MachineState *ms = MACHINE(hotplug_dev);
3724     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3725     CPUCore *cc = CPU_CORE(dev);
3726     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3727 
3728     if (smc->pre_2_10_has_unused_icps) {
3729         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3730         int i;
3731 
3732         for (i = 0; i < cc->nr_threads; i++) {
3733             CPUState *cs = CPU(sc->threads[i]);
3734 
3735             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3736         }
3737     }
3738 
3739     assert(core_slot);
3740     core_slot->cpu = NULL;
3741     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3742 }
3743 
3744 static
3745 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3746                                Error **errp)
3747 {
3748     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3749     int index;
3750     SpaprDrc *drc;
3751     CPUCore *cc = CPU_CORE(dev);
3752 
3753     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3754         error_setg(errp, "Unable to find CPU core with core-id: %d",
3755                    cc->core_id);
3756         return;
3757     }
3758     if (index == 0) {
3759         error_setg(errp, "Boot CPU core may not be unplugged");
3760         return;
3761     }
3762 
3763     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3764                           spapr_vcpu_id(spapr, cc->core_id));
3765     g_assert(drc);
3766 
3767     spapr_drc_detach(drc);
3768 
3769     spapr_hotplug_req_remove_by_index(drc);
3770 }
3771 
3772 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3773                            void *fdt, int *fdt_start_offset, Error **errp)
3774 {
3775     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3776     CPUState *cs = CPU(core->threads[0]);
3777     PowerPCCPU *cpu = POWERPC_CPU(cs);
3778     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3779     int id = spapr_get_vcpu_id(cpu);
3780     char *nodename;
3781     int offset;
3782 
3783     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3784     offset = fdt_add_subnode(fdt, 0, nodename);
3785     g_free(nodename);
3786 
3787     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3788 
3789     *fdt_start_offset = offset;
3790     return 0;
3791 }
3792 
3793 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3794                             Error **errp)
3795 {
3796     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3797     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3798     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3799     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3800     CPUCore *cc = CPU_CORE(dev);
3801     CPUState *cs;
3802     SpaprDrc *drc;
3803     Error *local_err = NULL;
3804     CPUArchId *core_slot;
3805     int index;
3806     bool hotplugged = spapr_drc_hotplugged(dev);
3807 
3808     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3809     if (!core_slot) {
3810         error_setg(errp, "Unable to find CPU core with core-id: %d",
3811                    cc->core_id);
3812         return;
3813     }
3814     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3815                           spapr_vcpu_id(spapr, cc->core_id));
3816 
3817     g_assert(drc || !mc->has_hotpluggable_cpus);
3818 
3819     if (drc) {
3820         spapr_drc_attach(drc, dev, &local_err);
3821         if (local_err) {
3822             error_propagate(errp, local_err);
3823             return;
3824         }
3825 
3826         if (hotplugged) {
3827             /*
3828              * Send hotplug notification interrupt to the guest only
3829              * in case of hotplugged CPUs.
3830              */
3831             spapr_hotplug_req_add_by_index(drc);
3832         } else {
3833             spapr_drc_reset(drc);
3834         }
3835     }
3836 
3837     core_slot->cpu = OBJECT(dev);
3838 
3839     if (smc->pre_2_10_has_unused_icps) {
3840         int i;
3841 
3842         for (i = 0; i < cc->nr_threads; i++) {
3843             cs = CPU(core->threads[i]);
3844             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3845         }
3846     }
3847 }
3848 
3849 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3850                                 Error **errp)
3851 {
3852     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3853     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3854     Error *local_err = NULL;
3855     CPUCore *cc = CPU_CORE(dev);
3856     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3857     const char *type = object_get_typename(OBJECT(dev));
3858     CPUArchId *core_slot;
3859     int index;
3860 
3861     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3862         error_setg(&local_err, "CPU hotplug not supported for this machine");
3863         goto out;
3864     }
3865 
3866     if (strcmp(base_core_type, type)) {
3867         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3868         goto out;
3869     }
3870 
3871     if (cc->core_id % smp_threads) {
3872         error_setg(&local_err, "invalid core id %d", cc->core_id);
3873         goto out;
3874     }
3875 
3876     /*
3877      * In general we should have homogeneous threads-per-core, but old
3878      * (pre hotplug support) machine types allow the last core to have
3879      * reduced threads as a compatibility hack for when we allowed
3880      * total vcpus not a multiple of threads-per-core.
3881      */
3882     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3883         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3884                    cc->nr_threads, smp_threads);
3885         goto out;
3886     }
3887 
3888     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3889     if (!core_slot) {
3890         error_setg(&local_err, "core id %d out of range", cc->core_id);
3891         goto out;
3892     }
3893 
3894     if (core_slot->cpu) {
3895         error_setg(&local_err, "core %d already populated", cc->core_id);
3896         goto out;
3897     }
3898 
3899     numa_cpu_pre_plug(core_slot, dev, &local_err);
3900 
3901 out:
3902     error_propagate(errp, local_err);
3903 }
3904 
3905 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3906                           void *fdt, int *fdt_start_offset, Error **errp)
3907 {
3908     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3909     int intc_phandle;
3910 
3911     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3912     if (intc_phandle <= 0) {
3913         return -1;
3914     }
3915 
3916     if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3917                               fdt_start_offset)) {
3918         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3919         return -1;
3920     }
3921 
3922     /* generally SLOF creates these, for hotplug it's up to QEMU */
3923     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3924 
3925     return 0;
3926 }
3927 
3928 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3929                                Error **errp)
3930 {
3931     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3932     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3933     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3934     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3935 
3936     if (dev->hotplugged && !smc->dr_phb_enabled) {
3937         error_setg(errp, "PHB hotplug not supported for this machine");
3938         return;
3939     }
3940 
3941     if (sphb->index == (uint32_t)-1) {
3942         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3943         return;
3944     }
3945 
3946     /*
3947      * This will check that sphb->index doesn't exceed the maximum number of
3948      * PHBs for the current machine type.
3949      */
3950     smc->phb_placement(spapr, sphb->index,
3951                        &sphb->buid, &sphb->io_win_addr,
3952                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3953                        windows_supported, sphb->dma_liobn,
3954                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3955                        errp);
3956 }
3957 
3958 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3959                            Error **errp)
3960 {
3961     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3962     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3963     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3964     SpaprDrc *drc;
3965     bool hotplugged = spapr_drc_hotplugged(dev);
3966     Error *local_err = NULL;
3967 
3968     if (!smc->dr_phb_enabled) {
3969         return;
3970     }
3971 
3972     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3973     /* hotplug hooks should check it's enabled before getting this far */
3974     assert(drc);
3975 
3976     spapr_drc_attach(drc, DEVICE(dev), &local_err);
3977     if (local_err) {
3978         error_propagate(errp, local_err);
3979         return;
3980     }
3981 
3982     if (hotplugged) {
3983         spapr_hotplug_req_add_by_index(drc);
3984     } else {
3985         spapr_drc_reset(drc);
3986     }
3987 }
3988 
3989 void spapr_phb_release(DeviceState *dev)
3990 {
3991     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3992 
3993     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3994     object_unparent(OBJECT(dev));
3995 }
3996 
3997 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3998 {
3999     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4000 }
4001 
4002 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4003                                      DeviceState *dev, Error **errp)
4004 {
4005     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4006     SpaprDrc *drc;
4007 
4008     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4009     assert(drc);
4010 
4011     if (!spapr_drc_unplug_requested(drc)) {
4012         spapr_drc_detach(drc);
4013         spapr_hotplug_req_remove_by_index(drc);
4014     }
4015 }
4016 
4017 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4018                                       DeviceState *dev, Error **errp)
4019 {
4020     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4021         spapr_memory_plug(hotplug_dev, dev, errp);
4022     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4023         spapr_core_plug(hotplug_dev, dev, errp);
4024     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4025         spapr_phb_plug(hotplug_dev, dev, errp);
4026     }
4027 }
4028 
4029 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4030                                         DeviceState *dev, Error **errp)
4031 {
4032     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4033         spapr_memory_unplug(hotplug_dev, dev);
4034     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4035         spapr_core_unplug(hotplug_dev, dev);
4036     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4037         spapr_phb_unplug(hotplug_dev, dev);
4038     }
4039 }
4040 
4041 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4042                                                 DeviceState *dev, Error **errp)
4043 {
4044     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4045     MachineClass *mc = MACHINE_GET_CLASS(sms);
4046     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4047 
4048     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4049         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4050             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4051         } else {
4052             /* NOTE: this means there is a window after guest reset, prior to
4053              * CAS negotiation, where unplug requests will fail due to the
4054              * capability not being detected yet. This is a bit different than
4055              * the case with PCI unplug, where the events will be queued and
4056              * eventually handled by the guest after boot
4057              */
4058             error_setg(errp, "Memory hot unplug not supported for this guest");
4059         }
4060     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4061         if (!mc->has_hotpluggable_cpus) {
4062             error_setg(errp, "CPU hot unplug not supported on this machine");
4063             return;
4064         }
4065         spapr_core_unplug_request(hotplug_dev, dev, errp);
4066     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4067         if (!smc->dr_phb_enabled) {
4068             error_setg(errp, "PHB hot unplug not supported on this machine");
4069             return;
4070         }
4071         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4072     }
4073 }
4074 
4075 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4076                                           DeviceState *dev, Error **errp)
4077 {
4078     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4079         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4080     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4081         spapr_core_pre_plug(hotplug_dev, dev, errp);
4082     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4083         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4084     }
4085 }
4086 
4087 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4088                                                  DeviceState *dev)
4089 {
4090     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4091         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4092         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4093         return HOTPLUG_HANDLER(machine);
4094     }
4095     return NULL;
4096 }
4097 
4098 static CpuInstanceProperties
4099 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4100 {
4101     CPUArchId *core_slot;
4102     MachineClass *mc = MACHINE_GET_CLASS(machine);
4103 
4104     /* make sure possible_cpu are intialized */
4105     mc->possible_cpu_arch_ids(machine);
4106     /* get CPU core slot containing thread that matches cpu_index */
4107     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4108     assert(core_slot);
4109     return core_slot->props;
4110 }
4111 
4112 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4113 {
4114     return idx / smp_cores % nb_numa_nodes;
4115 }
4116 
4117 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4118 {
4119     int i;
4120     const char *core_type;
4121     int spapr_max_cores = max_cpus / smp_threads;
4122     MachineClass *mc = MACHINE_GET_CLASS(machine);
4123 
4124     if (!mc->has_hotpluggable_cpus) {
4125         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4126     }
4127     if (machine->possible_cpus) {
4128         assert(machine->possible_cpus->len == spapr_max_cores);
4129         return machine->possible_cpus;
4130     }
4131 
4132     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4133     if (!core_type) {
4134         error_report("Unable to find sPAPR CPU Core definition");
4135         exit(1);
4136     }
4137 
4138     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4139                              sizeof(CPUArchId) * spapr_max_cores);
4140     machine->possible_cpus->len = spapr_max_cores;
4141     for (i = 0; i < machine->possible_cpus->len; i++) {
4142         int core_id = i * smp_threads;
4143 
4144         machine->possible_cpus->cpus[i].type = core_type;
4145         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4146         machine->possible_cpus->cpus[i].arch_id = core_id;
4147         machine->possible_cpus->cpus[i].props.has_core_id = true;
4148         machine->possible_cpus->cpus[i].props.core_id = core_id;
4149     }
4150     return machine->possible_cpus;
4151 }
4152 
4153 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4154                                 uint64_t *buid, hwaddr *pio,
4155                                 hwaddr *mmio32, hwaddr *mmio64,
4156                                 unsigned n_dma, uint32_t *liobns,
4157                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4158 {
4159     /*
4160      * New-style PHB window placement.
4161      *
4162      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4163      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4164      * windows.
4165      *
4166      * Some guest kernels can't work with MMIO windows above 1<<46
4167      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4168      *
4169      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4170      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4171      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4172      * 1TiB 64-bit MMIO windows for each PHB.
4173      */
4174     const uint64_t base_buid = 0x800000020000000ULL;
4175     int i;
4176 
4177     /* Sanity check natural alignments */
4178     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4179     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4180     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4181     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4182     /* Sanity check bounds */
4183     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4184                       SPAPR_PCI_MEM32_WIN_SIZE);
4185     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4186                       SPAPR_PCI_MEM64_WIN_SIZE);
4187 
4188     if (index >= SPAPR_MAX_PHBS) {
4189         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4190                    SPAPR_MAX_PHBS - 1);
4191         return;
4192     }
4193 
4194     *buid = base_buid + index;
4195     for (i = 0; i < n_dma; ++i) {
4196         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4197     }
4198 
4199     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4200     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4201     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4202 
4203     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4204     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4205 }
4206 
4207 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4208 {
4209     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4210 
4211     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4212 }
4213 
4214 static void spapr_ics_resend(XICSFabric *dev)
4215 {
4216     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4217 
4218     ics_resend(spapr->ics);
4219 }
4220 
4221 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4222 {
4223     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4224 
4225     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4226 }
4227 
4228 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4229                                  Monitor *mon)
4230 {
4231     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4232 
4233     spapr->irq->print_info(spapr, mon);
4234 }
4235 
4236 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4237 {
4238     return cpu->vcpu_id;
4239 }
4240 
4241 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4242 {
4243     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4244     int vcpu_id;
4245 
4246     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4247 
4248     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4249         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4250         error_append_hint(errp, "Adjust the number of cpus to %d "
4251                           "or try to raise the number of threads per core\n",
4252                           vcpu_id * smp_threads / spapr->vsmt);
4253         return;
4254     }
4255 
4256     cpu->vcpu_id = vcpu_id;
4257 }
4258 
4259 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4260 {
4261     CPUState *cs;
4262 
4263     CPU_FOREACH(cs) {
4264         PowerPCCPU *cpu = POWERPC_CPU(cs);
4265 
4266         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4267             return cpu;
4268         }
4269     }
4270 
4271     return NULL;
4272 }
4273 
4274 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4275 {
4276     MachineClass *mc = MACHINE_CLASS(oc);
4277     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4278     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4279     NMIClass *nc = NMI_CLASS(oc);
4280     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4281     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4282     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4283     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4284 
4285     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4286     mc->ignore_boot_device_suffixes = true;
4287 
4288     /*
4289      * We set up the default / latest behaviour here.  The class_init
4290      * functions for the specific versioned machine types can override
4291      * these details for backwards compatibility
4292      */
4293     mc->init = spapr_machine_init;
4294     mc->reset = spapr_machine_reset;
4295     mc->block_default_type = IF_SCSI;
4296     mc->max_cpus = 1024;
4297     mc->no_parallel = 1;
4298     mc->default_boot_order = "";
4299     mc->default_ram_size = 512 * MiB;
4300     mc->default_display = "std";
4301     mc->kvm_type = spapr_kvm_type;
4302     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4303     mc->pci_allow_0_address = true;
4304     assert(!mc->get_hotplug_handler);
4305     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4306     hc->pre_plug = spapr_machine_device_pre_plug;
4307     hc->plug = spapr_machine_device_plug;
4308     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4309     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4310     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4311     hc->unplug_request = spapr_machine_device_unplug_request;
4312     hc->unplug = spapr_machine_device_unplug;
4313 
4314     smc->dr_lmb_enabled = true;
4315     smc->update_dt_enabled = true;
4316     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4317     mc->has_hotpluggable_cpus = true;
4318     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4319     fwc->get_dev_path = spapr_get_fw_dev_path;
4320     nc->nmi_monitor_handler = spapr_nmi;
4321     smc->phb_placement = spapr_phb_placement;
4322     vhc->hypercall = emulate_spapr_hypercall;
4323     vhc->hpt_mask = spapr_hpt_mask;
4324     vhc->map_hptes = spapr_map_hptes;
4325     vhc->unmap_hptes = spapr_unmap_hptes;
4326     vhc->hpte_set_c = spapr_hpte_set_c;
4327     vhc->hpte_set_r = spapr_hpte_set_r;
4328     vhc->get_pate = spapr_get_pate;
4329     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4330     xic->ics_get = spapr_ics_get;
4331     xic->ics_resend = spapr_ics_resend;
4332     xic->icp_get = spapr_icp_get;
4333     ispc->print_info = spapr_pic_print_info;
4334     /* Force NUMA node memory size to be a multiple of
4335      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4336      * in which LMBs are represented and hot-added
4337      */
4338     mc->numa_mem_align_shift = 28;
4339 
4340     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4341     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4342     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4343     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4344     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4345     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4346     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4347     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4348     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4349     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4350     spapr_caps_add_properties(smc, &error_abort);
4351     smc->irq = &spapr_irq_xics;
4352     smc->dr_phb_enabled = true;
4353 }
4354 
4355 static const TypeInfo spapr_machine_info = {
4356     .name          = TYPE_SPAPR_MACHINE,
4357     .parent        = TYPE_MACHINE,
4358     .abstract      = true,
4359     .instance_size = sizeof(SpaprMachineState),
4360     .instance_init = spapr_instance_init,
4361     .instance_finalize = spapr_machine_finalizefn,
4362     .class_size    = sizeof(SpaprMachineClass),
4363     .class_init    = spapr_machine_class_init,
4364     .interfaces = (InterfaceInfo[]) {
4365         { TYPE_FW_PATH_PROVIDER },
4366         { TYPE_NMI },
4367         { TYPE_HOTPLUG_HANDLER },
4368         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4369         { TYPE_XICS_FABRIC },
4370         { TYPE_INTERRUPT_STATS_PROVIDER },
4371         { }
4372     },
4373 };
4374 
4375 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4376     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4377                                                     void *data)      \
4378     {                                                                \
4379         MachineClass *mc = MACHINE_CLASS(oc);                        \
4380         spapr_machine_##suffix##_class_options(mc);                  \
4381         if (latest) {                                                \
4382             mc->alias = "pseries";                                   \
4383             mc->is_default = 1;                                      \
4384         }                                                            \
4385     }                                                                \
4386     static const TypeInfo spapr_machine_##suffix##_info = {          \
4387         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4388         .parent = TYPE_SPAPR_MACHINE,                                \
4389         .class_init = spapr_machine_##suffix##_class_init,           \
4390     };                                                               \
4391     static void spapr_machine_register_##suffix(void)                \
4392     {                                                                \
4393         type_register(&spapr_machine_##suffix##_info);               \
4394     }                                                                \
4395     type_init(spapr_machine_register_##suffix)
4396 
4397 /*
4398  * pseries-4.1
4399  */
4400 static void spapr_machine_4_1_class_options(MachineClass *mc)
4401 {
4402     /* Defaults for the latest behaviour inherited from the base class */
4403 }
4404 
4405 DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
4406 
4407 /*
4408  * pseries-4.0
4409  */
4410 static void spapr_machine_4_0_class_options(MachineClass *mc)
4411 {
4412     spapr_machine_4_1_class_options(mc);
4413     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4414 }
4415 
4416 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4417 
4418 /*
4419  * pseries-3.1
4420  */
4421 static void phb_placement_3_1(SpaprMachineState *spapr, uint32_t index,
4422                               uint64_t *buid, hwaddr *pio,
4423                               hwaddr *mmio32, hwaddr *mmio64,
4424                               unsigned n_dma, uint32_t *liobns,
4425                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4426 {
4427     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4428                         nv2gpa, nv2atsd, errp);
4429     *nv2gpa = 0;
4430     *nv2atsd = 0;
4431 }
4432 
4433 static void spapr_machine_3_1_class_options(MachineClass *mc)
4434 {
4435     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4436 
4437     spapr_machine_4_0_class_options(mc);
4438     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4439 
4440     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4441     smc->update_dt_enabled = false;
4442     smc->dr_phb_enabled = false;
4443     smc->broken_host_serial_model = true;
4444     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4445     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4446     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4447     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4448     smc->phb_placement = phb_placement_3_1;
4449 }
4450 
4451 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4452 
4453 /*
4454  * pseries-3.0
4455  */
4456 
4457 static void spapr_machine_3_0_class_options(MachineClass *mc)
4458 {
4459     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4460 
4461     spapr_machine_3_1_class_options(mc);
4462     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4463 
4464     smc->legacy_irq_allocation = true;
4465     smc->irq = &spapr_irq_xics_legacy;
4466 }
4467 
4468 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4469 
4470 /*
4471  * pseries-2.12
4472  */
4473 static void spapr_machine_2_12_class_options(MachineClass *mc)
4474 {
4475     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4476     static GlobalProperty compat[] = {
4477         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4478         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4479     };
4480 
4481     spapr_machine_3_0_class_options(mc);
4482     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4483     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4484 
4485     /* We depend on kvm_enabled() to choose a default value for the
4486      * hpt-max-page-size capability. Of course we can't do it here
4487      * because this is too early and the HW accelerator isn't initialzed
4488      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4489      */
4490     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4491 }
4492 
4493 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4494 
4495 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4496 {
4497     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4498 
4499     spapr_machine_2_12_class_options(mc);
4500     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4501     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4502     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4503 }
4504 
4505 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4506 
4507 /*
4508  * pseries-2.11
4509  */
4510 
4511 static void spapr_machine_2_11_class_options(MachineClass *mc)
4512 {
4513     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4514 
4515     spapr_machine_2_12_class_options(mc);
4516     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4517     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4518 }
4519 
4520 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4521 
4522 /*
4523  * pseries-2.10
4524  */
4525 
4526 static void spapr_machine_2_10_class_options(MachineClass *mc)
4527 {
4528     spapr_machine_2_11_class_options(mc);
4529     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4530 }
4531 
4532 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4533 
4534 /*
4535  * pseries-2.9
4536  */
4537 
4538 static void spapr_machine_2_9_class_options(MachineClass *mc)
4539 {
4540     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4541     static GlobalProperty compat[] = {
4542         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4543     };
4544 
4545     spapr_machine_2_10_class_options(mc);
4546     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4547     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4548     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4549     smc->pre_2_10_has_unused_icps = true;
4550     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4551 }
4552 
4553 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4554 
4555 /*
4556  * pseries-2.8
4557  */
4558 
4559 static void spapr_machine_2_8_class_options(MachineClass *mc)
4560 {
4561     static GlobalProperty compat[] = {
4562         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4563     };
4564 
4565     spapr_machine_2_9_class_options(mc);
4566     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4567     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4568     mc->numa_mem_align_shift = 23;
4569 }
4570 
4571 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4572 
4573 /*
4574  * pseries-2.7
4575  */
4576 
4577 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4578                               uint64_t *buid, hwaddr *pio,
4579                               hwaddr *mmio32, hwaddr *mmio64,
4580                               unsigned n_dma, uint32_t *liobns,
4581                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4582 {
4583     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4584     const uint64_t base_buid = 0x800000020000000ULL;
4585     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4586     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4587     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4588     const uint32_t max_index = 255;
4589     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4590 
4591     uint64_t ram_top = MACHINE(spapr)->ram_size;
4592     hwaddr phb0_base, phb_base;
4593     int i;
4594 
4595     /* Do we have device memory? */
4596     if (MACHINE(spapr)->maxram_size > ram_top) {
4597         /* Can't just use maxram_size, because there may be an
4598          * alignment gap between normal and device memory regions
4599          */
4600         ram_top = MACHINE(spapr)->device_memory->base +
4601             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4602     }
4603 
4604     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4605 
4606     if (index > max_index) {
4607         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4608                    max_index);
4609         return;
4610     }
4611 
4612     *buid = base_buid + index;
4613     for (i = 0; i < n_dma; ++i) {
4614         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4615     }
4616 
4617     phb_base = phb0_base + index * phb_spacing;
4618     *pio = phb_base + pio_offset;
4619     *mmio32 = phb_base + mmio_offset;
4620     /*
4621      * We don't set the 64-bit MMIO window, relying on the PHB's
4622      * fallback behaviour of automatically splitting a large "32-bit"
4623      * window into contiguous 32-bit and 64-bit windows
4624      */
4625 
4626     *nv2gpa = 0;
4627     *nv2atsd = 0;
4628 }
4629 
4630 static void spapr_machine_2_7_class_options(MachineClass *mc)
4631 {
4632     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4633     static GlobalProperty compat[] = {
4634         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4635         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4636         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4637         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4638     };
4639 
4640     spapr_machine_2_8_class_options(mc);
4641     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4642     mc->default_machine_opts = "modern-hotplug-events=off";
4643     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4644     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4645     smc->phb_placement = phb_placement_2_7;
4646 }
4647 
4648 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4649 
4650 /*
4651  * pseries-2.6
4652  */
4653 
4654 static void spapr_machine_2_6_class_options(MachineClass *mc)
4655 {
4656     static GlobalProperty compat[] = {
4657         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4658     };
4659 
4660     spapr_machine_2_7_class_options(mc);
4661     mc->has_hotpluggable_cpus = false;
4662     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4663     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4664 }
4665 
4666 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4667 
4668 /*
4669  * pseries-2.5
4670  */
4671 
4672 static void spapr_machine_2_5_class_options(MachineClass *mc)
4673 {
4674     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4675     static GlobalProperty compat[] = {
4676         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4677     };
4678 
4679     spapr_machine_2_6_class_options(mc);
4680     smc->use_ohci_by_default = true;
4681     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4682     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4683 }
4684 
4685 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4686 
4687 /*
4688  * pseries-2.4
4689  */
4690 
4691 static void spapr_machine_2_4_class_options(MachineClass *mc)
4692 {
4693     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4694 
4695     spapr_machine_2_5_class_options(mc);
4696     smc->dr_lmb_enabled = false;
4697     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4698 }
4699 
4700 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4701 
4702 /*
4703  * pseries-2.3
4704  */
4705 
4706 static void spapr_machine_2_3_class_options(MachineClass *mc)
4707 {
4708     static GlobalProperty compat[] = {
4709         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4710     };
4711     spapr_machine_2_4_class_options(mc);
4712     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4713     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4714 }
4715 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4716 
4717 /*
4718  * pseries-2.2
4719  */
4720 
4721 static void spapr_machine_2_2_class_options(MachineClass *mc)
4722 {
4723     static GlobalProperty compat[] = {
4724         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4725     };
4726 
4727     spapr_machine_2_3_class_options(mc);
4728     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4729     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4730     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4731 }
4732 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4733 
4734 /*
4735  * pseries-2.1
4736  */
4737 
4738 static void spapr_machine_2_1_class_options(MachineClass *mc)
4739 {
4740     spapr_machine_2_2_class_options(mc);
4741     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4742 }
4743 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4744 
4745 static void spapr_machine_register_types(void)
4746 {
4747     type_register_static(&spapr_machine_info);
4748 }
4749 
4750 type_init(spapr_machine_register_types)
4751