1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "sysemu/qtest.h" 33 #include "hw/hw.h" 34 #include "qemu/log.h" 35 #include "hw/fw-path-provider.h" 36 #include "elf.h" 37 #include "net/net.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/cpus.h" 40 #include "sysemu/hw_accel.h" 41 #include "kvm_ppc.h" 42 #include "migration/misc.h" 43 #include "migration/global_state.h" 44 #include "migration/register.h" 45 #include "mmu-hash64.h" 46 #include "mmu-book3s-v3.h" 47 #include "cpu-models.h" 48 #include "qom/cpu.h" 49 50 #include "hw/boards.h" 51 #include "hw/ppc/ppc.h" 52 #include "hw/loader.h" 53 54 #include "hw/ppc/fdt.h" 55 #include "hw/ppc/spapr.h" 56 #include "hw/ppc/spapr_vio.h" 57 #include "hw/pci-host/spapr.h" 58 #include "hw/pci/msi.h" 59 60 #include "hw/pci/pci.h" 61 #include "hw/scsi/scsi.h" 62 #include "hw/virtio/virtio-scsi.h" 63 #include "hw/virtio/vhost-scsi-common.h" 64 65 #include "exec/address-spaces.h" 66 #include "exec/ram_addr.h" 67 #include "hw/usb.h" 68 #include "qemu/config-file.h" 69 #include "qemu/error-report.h" 70 #include "trace.h" 71 #include "hw/nmi.h" 72 #include "hw/intc/intc.h" 73 74 #include "qemu/cutils.h" 75 #include "hw/ppc/spapr_cpu_core.h" 76 #include "hw/mem/memory-device.h" 77 78 #include <libfdt.h> 79 80 /* SLOF memory layout: 81 * 82 * SLOF raw image loaded at 0, copies its romfs right below the flat 83 * device-tree, then position SLOF itself 31M below that 84 * 85 * So we set FW_OVERHEAD to 40MB which should account for all of that 86 * and more 87 * 88 * We load our kernel at 4M, leaving space for SLOF initial image 89 */ 90 #define FDT_MAX_SIZE 0x100000 91 #define RTAS_MAX_SIZE 0x10000 92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 93 #define FW_MAX_SIZE 0x400000 94 #define FW_FILE_NAME "slof.bin" 95 #define FW_OVERHEAD 0x2800000 96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 97 98 #define MIN_RMA_SLOF 128UL 99 100 #define PHANDLE_INTC 0x00001111 101 102 /* These two functions implement the VCPU id numbering: one to compute them 103 * all and one to identify thread 0 of a VCORE. Any change to the first one 104 * is likely to have an impact on the second one, so let's keep them close. 105 */ 106 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 107 { 108 assert(spapr->vsmt); 109 return 110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 111 } 112 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 113 PowerPCCPU *cpu) 114 { 115 assert(spapr->vsmt); 116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 117 } 118 119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 120 { 121 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 122 * and newer QEMUs don't even have them. In both cases, we don't want 123 * to send anything on the wire. 124 */ 125 return false; 126 } 127 128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 129 .name = "icp/server", 130 .version_id = 1, 131 .minimum_version_id = 1, 132 .needed = pre_2_10_vmstate_dummy_icp_needed, 133 .fields = (VMStateField[]) { 134 VMSTATE_UNUSED(4), /* uint32_t xirr */ 135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 136 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 137 VMSTATE_END_OF_LIST() 138 }, 139 }; 140 141 static void pre_2_10_vmstate_register_dummy_icp(int i) 142 { 143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 144 (void *)(uintptr_t) i); 145 } 146 147 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 148 { 149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 150 (void *)(uintptr_t) i); 151 } 152 153 int spapr_max_server_number(SpaprMachineState *spapr) 154 { 155 assert(spapr->vsmt); 156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 157 } 158 159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 160 int smt_threads) 161 { 162 int i, ret = 0; 163 uint32_t servers_prop[smt_threads]; 164 uint32_t gservers_prop[smt_threads * 2]; 165 int index = spapr_get_vcpu_id(cpu); 166 167 if (cpu->compat_pvr) { 168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 169 if (ret < 0) { 170 return ret; 171 } 172 } 173 174 /* Build interrupt servers and gservers properties */ 175 for (i = 0; i < smt_threads; i++) { 176 servers_prop[i] = cpu_to_be32(index + i); 177 /* Hack, direct the group queues back to cpu 0 */ 178 gservers_prop[i*2] = cpu_to_be32(index + i); 179 gservers_prop[i*2 + 1] = 0; 180 } 181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 182 servers_prop, sizeof(servers_prop)); 183 if (ret < 0) { 184 return ret; 185 } 186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 187 gservers_prop, sizeof(gservers_prop)); 188 189 return ret; 190 } 191 192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 193 { 194 int index = spapr_get_vcpu_id(cpu); 195 uint32_t associativity[] = {cpu_to_be32(0x5), 196 cpu_to_be32(0x0), 197 cpu_to_be32(0x0), 198 cpu_to_be32(0x0), 199 cpu_to_be32(cpu->node_id), 200 cpu_to_be32(index)}; 201 202 /* Advertise NUMA via ibm,associativity */ 203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 204 sizeof(associativity)); 205 } 206 207 /* Populate the "ibm,pa-features" property */ 208 static void spapr_populate_pa_features(SpaprMachineState *spapr, 209 PowerPCCPU *cpu, 210 void *fdt, int offset, 211 bool legacy_guest) 212 { 213 uint8_t pa_features_206[] = { 6, 0, 214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 215 uint8_t pa_features_207[] = { 24, 0, 216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 220 uint8_t pa_features_300[] = { 66, 0, 221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 224 /* 6: DS207 */ 225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 226 /* 16: Vector */ 227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 236 /* 42: PM, 44: PC RA, 46: SC vec'd */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 238 /* 48: SIMD, 50: QP BFP, 52: String */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 240 /* 54: DecFP, 56: DecI, 58: SHA */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 242 /* 60: NM atomic, 62: RNG */ 243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 244 }; 245 uint8_t *pa_features = NULL; 246 size_t pa_size; 247 248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 249 pa_features = pa_features_206; 250 pa_size = sizeof(pa_features_206); 251 } 252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 253 pa_features = pa_features_207; 254 pa_size = sizeof(pa_features_207); 255 } 256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 257 pa_features = pa_features_300; 258 pa_size = sizeof(pa_features_300); 259 } 260 if (!pa_features) { 261 return; 262 } 263 264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 265 /* 266 * Note: we keep CI large pages off by default because a 64K capable 267 * guest provisioned with large pages might otherwise try to map a qemu 268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 269 * even if that qemu runs on a 4k host. 270 * We dd this bit back here if we are confident this is not an issue 271 */ 272 pa_features[3] |= 0x20; 273 } 274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 275 pa_features[24] |= 0x80; /* Transactional memory support */ 276 } 277 if (legacy_guest && pa_size > 40) { 278 /* Workaround for broken kernels that attempt (guest) radix 279 * mode when they can't handle it, if they see the radix bit set 280 * in pa-features. So hide it from them. */ 281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 282 } 283 284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 285 } 286 287 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 288 { 289 int ret = 0, offset, cpus_offset; 290 CPUState *cs; 291 char cpu_model[32]; 292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 293 294 CPU_FOREACH(cs) { 295 PowerPCCPU *cpu = POWERPC_CPU(cs); 296 DeviceClass *dc = DEVICE_GET_CLASS(cs); 297 int index = spapr_get_vcpu_id(cpu); 298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 299 300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 301 continue; 302 } 303 304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 305 306 cpus_offset = fdt_path_offset(fdt, "/cpus"); 307 if (cpus_offset < 0) { 308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 309 if (cpus_offset < 0) { 310 return cpus_offset; 311 } 312 } 313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 314 if (offset < 0) { 315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 316 if (offset < 0) { 317 return offset; 318 } 319 } 320 321 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 322 pft_size_prop, sizeof(pft_size_prop)); 323 if (ret < 0) { 324 return ret; 325 } 326 327 if (nb_numa_nodes > 1) { 328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 329 if (ret < 0) { 330 return ret; 331 } 332 } 333 334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 335 if (ret < 0) { 336 return ret; 337 } 338 339 spapr_populate_pa_features(spapr, cpu, fdt, offset, 340 spapr->cas_legacy_guest_workaround); 341 } 342 return ret; 343 } 344 345 static hwaddr spapr_node0_size(MachineState *machine) 346 { 347 if (nb_numa_nodes) { 348 int i; 349 for (i = 0; i < nb_numa_nodes; ++i) { 350 if (numa_info[i].node_mem) { 351 return MIN(pow2floor(numa_info[i].node_mem), 352 machine->ram_size); 353 } 354 } 355 } 356 return machine->ram_size; 357 } 358 359 static void add_str(GString *s, const gchar *s1) 360 { 361 g_string_append_len(s, s1, strlen(s1) + 1); 362 } 363 364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 365 hwaddr size) 366 { 367 uint32_t associativity[] = { 368 cpu_to_be32(0x4), /* length */ 369 cpu_to_be32(0x0), cpu_to_be32(0x0), 370 cpu_to_be32(0x0), cpu_to_be32(nodeid) 371 }; 372 char mem_name[32]; 373 uint64_t mem_reg_property[2]; 374 int off; 375 376 mem_reg_property[0] = cpu_to_be64(start); 377 mem_reg_property[1] = cpu_to_be64(size); 378 379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 380 off = fdt_add_subnode(fdt, 0, mem_name); 381 _FDT(off); 382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 384 sizeof(mem_reg_property)))); 385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 386 sizeof(associativity)))); 387 return off; 388 } 389 390 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 391 { 392 MachineState *machine = MACHINE(spapr); 393 hwaddr mem_start, node_size; 394 int i, nb_nodes = nb_numa_nodes; 395 NodeInfo *nodes = numa_info; 396 NodeInfo ramnode; 397 398 /* No NUMA nodes, assume there is just one node with whole RAM */ 399 if (!nb_numa_nodes) { 400 nb_nodes = 1; 401 ramnode.node_mem = machine->ram_size; 402 nodes = &ramnode; 403 } 404 405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 406 if (!nodes[i].node_mem) { 407 continue; 408 } 409 if (mem_start >= machine->ram_size) { 410 node_size = 0; 411 } else { 412 node_size = nodes[i].node_mem; 413 if (node_size > machine->ram_size - mem_start) { 414 node_size = machine->ram_size - mem_start; 415 } 416 } 417 if (!mem_start) { 418 /* spapr_machine_init() checks for rma_size <= node0_size 419 * already */ 420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 421 mem_start += spapr->rma_size; 422 node_size -= spapr->rma_size; 423 } 424 for ( ; node_size; ) { 425 hwaddr sizetmp = pow2floor(node_size); 426 427 /* mem_start != 0 here */ 428 if (ctzl(mem_start) < ctzl(sizetmp)) { 429 sizetmp = 1ULL << ctzl(mem_start); 430 } 431 432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 433 node_size -= sizetmp; 434 mem_start += sizetmp; 435 } 436 } 437 438 return 0; 439 } 440 441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 442 SpaprMachineState *spapr) 443 { 444 PowerPCCPU *cpu = POWERPC_CPU(cs); 445 CPUPPCState *env = &cpu->env; 446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 447 int index = spapr_get_vcpu_id(cpu); 448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 449 0xffffffff, 0xffffffff}; 450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 451 : SPAPR_TIMEBASE_FREQ; 452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 453 uint32_t page_sizes_prop[64]; 454 size_t page_sizes_prop_size; 455 uint32_t vcpus_per_socket = smp_threads * smp_cores; 456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 458 SpaprDrc *drc; 459 int drc_index; 460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 461 int i; 462 463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 464 if (drc) { 465 drc_index = spapr_drc_index(drc); 466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 467 } 468 469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 471 472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 474 env->dcache_line_size))); 475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 476 env->dcache_line_size))); 477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 478 env->icache_line_size))); 479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 480 env->icache_line_size))); 481 482 if (pcc->l1_dcache_size) { 483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 484 pcc->l1_dcache_size))); 485 } else { 486 warn_report("Unknown L1 dcache size for cpu"); 487 } 488 if (pcc->l1_icache_size) { 489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 490 pcc->l1_icache_size))); 491 } else { 492 warn_report("Unknown L1 icache size for cpu"); 493 } 494 495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 501 502 if (env->spr_cb[SPR_PURR].oea_read) { 503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 504 } 505 506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 508 segs, sizeof(segs)))); 509 } 510 511 /* Advertise VSX (vector extensions) if available 512 * 1 == VMX / Altivec available 513 * 2 == VSX available 514 * 515 * Only CPUs for which we create core types in spapr_cpu_core.c 516 * are possible, and all of those have VMX */ 517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 519 } else { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 521 } 522 523 /* Advertise DFP (Decimal Floating Point) if available 524 * 0 / no property == no DFP 525 * 1 == DFP available */ 526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 528 } 529 530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 531 sizeof(page_sizes_prop)); 532 if (page_sizes_prop_size) { 533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 534 page_sizes_prop, page_sizes_prop_size))); 535 } 536 537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 538 539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 540 cs->cpu_index / vcpus_per_socket))); 541 542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 543 pft_size_prop, sizeof(pft_size_prop)))); 544 545 if (nb_numa_nodes > 1) { 546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 547 } 548 549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 550 551 if (pcc->radix_page_info) { 552 for (i = 0; i < pcc->radix_page_info->count; i++) { 553 radix_AP_encodings[i] = 554 cpu_to_be32(pcc->radix_page_info->entries[i]); 555 } 556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 557 radix_AP_encodings, 558 pcc->radix_page_info->count * 559 sizeof(radix_AP_encodings[0])))); 560 } 561 562 /* 563 * We set this property to let the guest know that it can use the large 564 * decrementer and its width in bits. 565 */ 566 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 567 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 568 pcc->lrg_decr_bits))); 569 } 570 571 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 572 { 573 CPUState **rev; 574 CPUState *cs; 575 int n_cpus; 576 int cpus_offset; 577 char *nodename; 578 int i; 579 580 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 581 _FDT(cpus_offset); 582 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 583 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 584 585 /* 586 * We walk the CPUs in reverse order to ensure that CPU DT nodes 587 * created by fdt_add_subnode() end up in the right order in FDT 588 * for the guest kernel the enumerate the CPUs correctly. 589 * 590 * The CPU list cannot be traversed in reverse order, so we need 591 * to do extra work. 592 */ 593 n_cpus = 0; 594 rev = NULL; 595 CPU_FOREACH(cs) { 596 rev = g_renew(CPUState *, rev, n_cpus + 1); 597 rev[n_cpus++] = cs; 598 } 599 600 for (i = n_cpus - 1; i >= 0; i--) { 601 CPUState *cs = rev[i]; 602 PowerPCCPU *cpu = POWERPC_CPU(cs); 603 int index = spapr_get_vcpu_id(cpu); 604 DeviceClass *dc = DEVICE_GET_CLASS(cs); 605 int offset; 606 607 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 608 continue; 609 } 610 611 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 612 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 613 g_free(nodename); 614 _FDT(offset); 615 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 616 } 617 618 g_free(rev); 619 } 620 621 static int spapr_rng_populate_dt(void *fdt) 622 { 623 int node; 624 int ret; 625 626 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 627 if (node <= 0) { 628 return -1; 629 } 630 ret = fdt_setprop_string(fdt, node, "device_type", 631 "ibm,platform-facilities"); 632 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 633 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 634 635 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 636 if (node <= 0) { 637 return -1; 638 } 639 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 640 641 return ret ? -1 : 0; 642 } 643 644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 645 { 646 MemoryDeviceInfoList *info; 647 648 for (info = list; info; info = info->next) { 649 MemoryDeviceInfo *value = info->value; 650 651 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 652 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 653 654 if (addr >= pcdimm_info->addr && 655 addr < (pcdimm_info->addr + pcdimm_info->size)) { 656 return pcdimm_info->node; 657 } 658 } 659 } 660 661 return -1; 662 } 663 664 struct sPAPRDrconfCellV2 { 665 uint32_t seq_lmbs; 666 uint64_t base_addr; 667 uint32_t drc_index; 668 uint32_t aa_index; 669 uint32_t flags; 670 } QEMU_PACKED; 671 672 typedef struct DrconfCellQueue { 673 struct sPAPRDrconfCellV2 cell; 674 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 675 } DrconfCellQueue; 676 677 static DrconfCellQueue * 678 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 679 uint32_t drc_index, uint32_t aa_index, 680 uint32_t flags) 681 { 682 DrconfCellQueue *elem; 683 684 elem = g_malloc0(sizeof(*elem)); 685 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 686 elem->cell.base_addr = cpu_to_be64(base_addr); 687 elem->cell.drc_index = cpu_to_be32(drc_index); 688 elem->cell.aa_index = cpu_to_be32(aa_index); 689 elem->cell.flags = cpu_to_be32(flags); 690 691 return elem; 692 } 693 694 /* ibm,dynamic-memory-v2 */ 695 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 696 int offset, MemoryDeviceInfoList *dimms) 697 { 698 MachineState *machine = MACHINE(spapr); 699 uint8_t *int_buf, *cur_index; 700 int ret; 701 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 702 uint64_t addr, cur_addr, size; 703 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 704 uint64_t mem_end = machine->device_memory->base + 705 memory_region_size(&machine->device_memory->mr); 706 uint32_t node, buf_len, nr_entries = 0; 707 SpaprDrc *drc; 708 DrconfCellQueue *elem, *next; 709 MemoryDeviceInfoList *info; 710 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 711 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 712 713 /* Entry to cover RAM and the gap area */ 714 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 715 SPAPR_LMB_FLAGS_RESERVED | 716 SPAPR_LMB_FLAGS_DRC_INVALID); 717 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 718 nr_entries++; 719 720 cur_addr = machine->device_memory->base; 721 for (info = dimms; info; info = info->next) { 722 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 723 724 addr = di->addr; 725 size = di->size; 726 node = di->node; 727 728 /* Entry for hot-pluggable area */ 729 if (cur_addr < addr) { 730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 731 g_assert(drc); 732 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 733 cur_addr, spapr_drc_index(drc), -1, 0); 734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 735 nr_entries++; 736 } 737 738 /* Entry for DIMM */ 739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 740 g_assert(drc); 741 elem = spapr_get_drconf_cell(size / lmb_size, addr, 742 spapr_drc_index(drc), node, 743 SPAPR_LMB_FLAGS_ASSIGNED); 744 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 745 nr_entries++; 746 cur_addr = addr + size; 747 } 748 749 /* Entry for remaining hotpluggable area */ 750 if (cur_addr < mem_end) { 751 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 752 g_assert(drc); 753 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 754 cur_addr, spapr_drc_index(drc), -1, 0); 755 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 756 nr_entries++; 757 } 758 759 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 760 int_buf = cur_index = g_malloc0(buf_len); 761 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 762 cur_index += sizeof(nr_entries); 763 764 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 765 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 766 cur_index += sizeof(elem->cell); 767 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 768 g_free(elem); 769 } 770 771 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 772 g_free(int_buf); 773 if (ret < 0) { 774 return -1; 775 } 776 return 0; 777 } 778 779 /* ibm,dynamic-memory */ 780 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 781 int offset, MemoryDeviceInfoList *dimms) 782 { 783 MachineState *machine = MACHINE(spapr); 784 int i, ret; 785 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 786 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 787 uint32_t nr_lmbs = (machine->device_memory->base + 788 memory_region_size(&machine->device_memory->mr)) / 789 lmb_size; 790 uint32_t *int_buf, *cur_index, buf_len; 791 792 /* 793 * Allocate enough buffer size to fit in ibm,dynamic-memory 794 */ 795 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 796 cur_index = int_buf = g_malloc0(buf_len); 797 int_buf[0] = cpu_to_be32(nr_lmbs); 798 cur_index++; 799 for (i = 0; i < nr_lmbs; i++) { 800 uint64_t addr = i * lmb_size; 801 uint32_t *dynamic_memory = cur_index; 802 803 if (i >= device_lmb_start) { 804 SpaprDrc *drc; 805 806 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 807 g_assert(drc); 808 809 dynamic_memory[0] = cpu_to_be32(addr >> 32); 810 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 811 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 812 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 813 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 814 if (memory_region_present(get_system_memory(), addr)) { 815 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 816 } else { 817 dynamic_memory[5] = cpu_to_be32(0); 818 } 819 } else { 820 /* 821 * LMB information for RMA, boot time RAM and gap b/n RAM and 822 * device memory region -- all these are marked as reserved 823 * and as having no valid DRC. 824 */ 825 dynamic_memory[0] = cpu_to_be32(addr >> 32); 826 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 827 dynamic_memory[2] = cpu_to_be32(0); 828 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 829 dynamic_memory[4] = cpu_to_be32(-1); 830 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 831 SPAPR_LMB_FLAGS_DRC_INVALID); 832 } 833 834 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 835 } 836 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 837 g_free(int_buf); 838 if (ret < 0) { 839 return -1; 840 } 841 return 0; 842 } 843 844 /* 845 * Adds ibm,dynamic-reconfiguration-memory node. 846 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 847 * of this device tree node. 848 */ 849 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 850 { 851 MachineState *machine = MACHINE(spapr); 852 int ret, i, offset; 853 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 854 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 855 uint32_t *int_buf, *cur_index, buf_len; 856 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 857 MemoryDeviceInfoList *dimms = NULL; 858 859 /* 860 * Don't create the node if there is no device memory 861 */ 862 if (machine->ram_size == machine->maxram_size) { 863 return 0; 864 } 865 866 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 867 868 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 869 sizeof(prop_lmb_size)); 870 if (ret < 0) { 871 return ret; 872 } 873 874 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 875 if (ret < 0) { 876 return ret; 877 } 878 879 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 880 if (ret < 0) { 881 return ret; 882 } 883 884 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 885 dimms = qmp_memory_device_list(); 886 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 887 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 888 } else { 889 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 890 } 891 qapi_free_MemoryDeviceInfoList(dimms); 892 893 if (ret < 0) { 894 return ret; 895 } 896 897 /* ibm,associativity-lookup-arrays */ 898 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 899 cur_index = int_buf = g_malloc0(buf_len); 900 int_buf[0] = cpu_to_be32(nr_nodes); 901 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 902 cur_index += 2; 903 for (i = 0; i < nr_nodes; i++) { 904 uint32_t associativity[] = { 905 cpu_to_be32(0x0), 906 cpu_to_be32(0x0), 907 cpu_to_be32(0x0), 908 cpu_to_be32(i) 909 }; 910 memcpy(cur_index, associativity, sizeof(associativity)); 911 cur_index += 4; 912 } 913 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 914 (cur_index - int_buf) * sizeof(uint32_t)); 915 g_free(int_buf); 916 917 return ret; 918 } 919 920 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 921 SpaprOptionVector *ov5_updates) 922 { 923 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 924 int ret = 0, offset; 925 926 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 927 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 928 g_assert(smc->dr_lmb_enabled); 929 ret = spapr_populate_drconf_memory(spapr, fdt); 930 if (ret) { 931 goto out; 932 } 933 } 934 935 offset = fdt_path_offset(fdt, "/chosen"); 936 if (offset < 0) { 937 offset = fdt_add_subnode(fdt, 0, "chosen"); 938 if (offset < 0) { 939 return offset; 940 } 941 } 942 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 943 "ibm,architecture-vec-5"); 944 945 out: 946 return ret; 947 } 948 949 static bool spapr_hotplugged_dev_before_cas(void) 950 { 951 Object *drc_container, *obj; 952 ObjectProperty *prop; 953 ObjectPropertyIterator iter; 954 955 drc_container = container_get(object_get_root(), "/dr-connector"); 956 object_property_iter_init(&iter, drc_container); 957 while ((prop = object_property_iter_next(&iter))) { 958 if (!strstart(prop->type, "link<", NULL)) { 959 continue; 960 } 961 obj = object_property_get_link(drc_container, prop->name, NULL); 962 if (spapr_drc_needed(obj)) { 963 return true; 964 } 965 } 966 return false; 967 } 968 969 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 970 target_ulong addr, target_ulong size, 971 SpaprOptionVector *ov5_updates) 972 { 973 void *fdt, *fdt_skel; 974 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 975 976 if (spapr_hotplugged_dev_before_cas()) { 977 return 1; 978 } 979 980 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 981 error_report("SLOF provided an unexpected CAS buffer size " 982 TARGET_FMT_lu " (min: %zu, max: %u)", 983 size, sizeof(hdr), FW_MAX_SIZE); 984 exit(EXIT_FAILURE); 985 } 986 987 size -= sizeof(hdr); 988 989 /* Create skeleton */ 990 fdt_skel = g_malloc0(size); 991 _FDT((fdt_create(fdt_skel, size))); 992 _FDT((fdt_finish_reservemap(fdt_skel))); 993 _FDT((fdt_begin_node(fdt_skel, ""))); 994 _FDT((fdt_end_node(fdt_skel))); 995 _FDT((fdt_finish(fdt_skel))); 996 fdt = g_malloc0(size); 997 _FDT((fdt_open_into(fdt_skel, fdt, size))); 998 g_free(fdt_skel); 999 1000 /* Fixup cpu nodes */ 1001 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1002 1003 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1004 return -1; 1005 } 1006 1007 /* Pack resulting tree */ 1008 _FDT((fdt_pack(fdt))); 1009 1010 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1011 trace_spapr_cas_failed(size); 1012 return -1; 1013 } 1014 1015 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1016 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1017 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1018 g_free(fdt); 1019 1020 return 0; 1021 } 1022 1023 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1024 { 1025 int rtas; 1026 GString *hypertas = g_string_sized_new(256); 1027 GString *qemu_hypertas = g_string_sized_new(256); 1028 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1029 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1030 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1031 uint32_t lrdr_capacity[] = { 1032 cpu_to_be32(max_device_addr >> 32), 1033 cpu_to_be32(max_device_addr & 0xffffffff), 1034 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1035 cpu_to_be32(max_cpus / smp_threads), 1036 }; 1037 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1038 uint32_t maxdomains[] = { 1039 cpu_to_be32(4), 1040 maxdomain, 1041 maxdomain, 1042 maxdomain, 1043 cpu_to_be32(spapr->gpu_numa_id), 1044 }; 1045 1046 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1047 1048 /* hypertas */ 1049 add_str(hypertas, "hcall-pft"); 1050 add_str(hypertas, "hcall-term"); 1051 add_str(hypertas, "hcall-dabr"); 1052 add_str(hypertas, "hcall-interrupt"); 1053 add_str(hypertas, "hcall-tce"); 1054 add_str(hypertas, "hcall-vio"); 1055 add_str(hypertas, "hcall-splpar"); 1056 add_str(hypertas, "hcall-bulk"); 1057 add_str(hypertas, "hcall-set-mode"); 1058 add_str(hypertas, "hcall-sprg0"); 1059 add_str(hypertas, "hcall-copy"); 1060 add_str(hypertas, "hcall-debug"); 1061 add_str(hypertas, "hcall-vphn"); 1062 add_str(qemu_hypertas, "hcall-memop1"); 1063 1064 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1065 add_str(hypertas, "hcall-multi-tce"); 1066 } 1067 1068 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1069 add_str(hypertas, "hcall-hpt-resize"); 1070 } 1071 1072 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1073 hypertas->str, hypertas->len)); 1074 g_string_free(hypertas, TRUE); 1075 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1076 qemu_hypertas->str, qemu_hypertas->len)); 1077 g_string_free(qemu_hypertas, TRUE); 1078 1079 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1080 refpoints, sizeof(refpoints))); 1081 1082 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1083 maxdomains, sizeof(maxdomains))); 1084 1085 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1086 RTAS_ERROR_LOG_MAX)); 1087 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1088 RTAS_EVENT_SCAN_RATE)); 1089 1090 g_assert(msi_nonbroken); 1091 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1092 1093 /* 1094 * According to PAPR, rtas ibm,os-term does not guarantee a return 1095 * back to the guest cpu. 1096 * 1097 * While an additional ibm,extended-os-term property indicates 1098 * that rtas call return will always occur. Set this property. 1099 */ 1100 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1101 1102 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1103 lrdr_capacity, sizeof(lrdr_capacity))); 1104 1105 spapr_dt_rtas_tokens(fdt, rtas); 1106 } 1107 1108 /* 1109 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1110 * and the XIVE features that the guest may request and thus the valid 1111 * values for bytes 23..26 of option vector 5: 1112 */ 1113 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1114 int chosen) 1115 { 1116 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1117 1118 char val[2 * 4] = { 1119 23, spapr->irq->ov5, /* Xive mode. */ 1120 24, 0x00, /* Hash/Radix, filled in below. */ 1121 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1122 26, 0x40, /* Radix options: GTSE == yes. */ 1123 }; 1124 1125 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1126 first_ppc_cpu->compat_pvr)) { 1127 /* 1128 * If we're in a pre POWER9 compat mode then the guest should 1129 * do hash and use the legacy interrupt mode 1130 */ 1131 val[1] = 0x00; /* XICS */ 1132 val[3] = 0x00; /* Hash */ 1133 } else if (kvm_enabled()) { 1134 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1135 val[3] = 0x80; /* OV5_MMU_BOTH */ 1136 } else if (kvmppc_has_cap_mmu_radix()) { 1137 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1138 } else { 1139 val[3] = 0x00; /* Hash */ 1140 } 1141 } else { 1142 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1143 val[3] = 0xC0; 1144 } 1145 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1146 val, sizeof(val))); 1147 } 1148 1149 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1150 { 1151 MachineState *machine = MACHINE(spapr); 1152 int chosen; 1153 const char *boot_device = machine->boot_order; 1154 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1155 size_t cb = 0; 1156 char *bootlist = get_boot_devices_list(&cb); 1157 1158 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1159 1160 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1161 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1162 spapr->initrd_base)); 1163 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1164 spapr->initrd_base + spapr->initrd_size)); 1165 1166 if (spapr->kernel_size) { 1167 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1168 cpu_to_be64(spapr->kernel_size) }; 1169 1170 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1171 &kprop, sizeof(kprop))); 1172 if (spapr->kernel_le) { 1173 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1174 } 1175 } 1176 if (boot_menu) { 1177 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1178 } 1179 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1180 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1181 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1182 1183 if (cb && bootlist) { 1184 int i; 1185 1186 for (i = 0; i < cb; i++) { 1187 if (bootlist[i] == '\n') { 1188 bootlist[i] = ' '; 1189 } 1190 } 1191 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1192 } 1193 1194 if (boot_device && strlen(boot_device)) { 1195 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1196 } 1197 1198 if (!spapr->has_graphics && stdout_path) { 1199 /* 1200 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1201 * kernel. New platforms should only use the "stdout-path" property. Set 1202 * the new property and continue using older property to remain 1203 * compatible with the existing firmware. 1204 */ 1205 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1206 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1207 } 1208 1209 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1210 1211 g_free(stdout_path); 1212 g_free(bootlist); 1213 } 1214 1215 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1216 { 1217 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1218 * KVM to work under pHyp with some guest co-operation */ 1219 int hypervisor; 1220 uint8_t hypercall[16]; 1221 1222 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1223 /* indicate KVM hypercall interface */ 1224 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1225 if (kvmppc_has_cap_fixup_hcalls()) { 1226 /* 1227 * Older KVM versions with older guest kernels were broken 1228 * with the magic page, don't allow the guest to map it. 1229 */ 1230 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1231 sizeof(hypercall))) { 1232 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1233 hypercall, sizeof(hypercall))); 1234 } 1235 } 1236 } 1237 1238 static void *spapr_build_fdt(SpaprMachineState *spapr) 1239 { 1240 MachineState *machine = MACHINE(spapr); 1241 MachineClass *mc = MACHINE_GET_CLASS(machine); 1242 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1243 int ret; 1244 void *fdt; 1245 SpaprPhbState *phb; 1246 char *buf; 1247 1248 fdt = g_malloc0(FDT_MAX_SIZE); 1249 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1250 1251 /* Root node */ 1252 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1253 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1254 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1255 1256 /* Guest UUID & Name*/ 1257 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1258 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1259 if (qemu_uuid_set) { 1260 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1261 } 1262 g_free(buf); 1263 1264 if (qemu_get_vm_name()) { 1265 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1266 qemu_get_vm_name())); 1267 } 1268 1269 /* Host Model & Serial Number */ 1270 if (spapr->host_model) { 1271 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1272 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1273 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1274 g_free(buf); 1275 } 1276 1277 if (spapr->host_serial) { 1278 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1279 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1280 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1281 g_free(buf); 1282 } 1283 1284 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1285 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1286 1287 /* /interrupt controller */ 1288 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1289 PHANDLE_INTC); 1290 1291 ret = spapr_populate_memory(spapr, fdt); 1292 if (ret < 0) { 1293 error_report("couldn't setup memory nodes in fdt"); 1294 exit(1); 1295 } 1296 1297 /* /vdevice */ 1298 spapr_dt_vdevice(spapr->vio_bus, fdt); 1299 1300 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1301 ret = spapr_rng_populate_dt(fdt); 1302 if (ret < 0) { 1303 error_report("could not set up rng device in the fdt"); 1304 exit(1); 1305 } 1306 } 1307 1308 QLIST_FOREACH(phb, &spapr->phbs, list) { 1309 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt, 1310 spapr->irq->nr_msis, NULL); 1311 if (ret < 0) { 1312 error_report("couldn't setup PCI devices in fdt"); 1313 exit(1); 1314 } 1315 } 1316 1317 /* cpus */ 1318 spapr_populate_cpus_dt_node(fdt, spapr); 1319 1320 if (smc->dr_lmb_enabled) { 1321 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1322 } 1323 1324 if (mc->has_hotpluggable_cpus) { 1325 int offset = fdt_path_offset(fdt, "/cpus"); 1326 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1327 SPAPR_DR_CONNECTOR_TYPE_CPU); 1328 if (ret < 0) { 1329 error_report("Couldn't set up CPU DR device tree properties"); 1330 exit(1); 1331 } 1332 } 1333 1334 /* /event-sources */ 1335 spapr_dt_events(spapr, fdt); 1336 1337 /* /rtas */ 1338 spapr_dt_rtas(spapr, fdt); 1339 1340 /* /chosen */ 1341 spapr_dt_chosen(spapr, fdt); 1342 1343 /* /hypervisor */ 1344 if (kvm_enabled()) { 1345 spapr_dt_hypervisor(spapr, fdt); 1346 } 1347 1348 /* Build memory reserve map */ 1349 if (spapr->kernel_size) { 1350 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1351 } 1352 if (spapr->initrd_size) { 1353 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1354 } 1355 1356 /* ibm,client-architecture-support updates */ 1357 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1358 if (ret < 0) { 1359 error_report("couldn't setup CAS properties fdt"); 1360 exit(1); 1361 } 1362 1363 if (smc->dr_phb_enabled) { 1364 ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1365 if (ret < 0) { 1366 error_report("Couldn't set up PHB DR device tree properties"); 1367 exit(1); 1368 } 1369 } 1370 1371 return fdt; 1372 } 1373 1374 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1375 { 1376 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1377 } 1378 1379 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1380 PowerPCCPU *cpu) 1381 { 1382 CPUPPCState *env = &cpu->env; 1383 1384 /* The TCG path should also be holding the BQL at this point */ 1385 g_assert(qemu_mutex_iothread_locked()); 1386 1387 if (msr_pr) { 1388 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1389 env->gpr[3] = H_PRIVILEGE; 1390 } else { 1391 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1392 } 1393 } 1394 1395 struct LPCRSyncState { 1396 target_ulong value; 1397 target_ulong mask; 1398 }; 1399 1400 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1401 { 1402 struct LPCRSyncState *s = arg.host_ptr; 1403 PowerPCCPU *cpu = POWERPC_CPU(cs); 1404 CPUPPCState *env = &cpu->env; 1405 target_ulong lpcr; 1406 1407 cpu_synchronize_state(cs); 1408 lpcr = env->spr[SPR_LPCR]; 1409 lpcr &= ~s->mask; 1410 lpcr |= s->value; 1411 ppc_store_lpcr(cpu, lpcr); 1412 } 1413 1414 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1415 { 1416 CPUState *cs; 1417 struct LPCRSyncState s = { 1418 .value = value, 1419 .mask = mask 1420 }; 1421 CPU_FOREACH(cs) { 1422 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1423 } 1424 } 1425 1426 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1427 { 1428 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1429 1430 /* Copy PATE1:GR into PATE0:HR */ 1431 entry->dw0 = spapr->patb_entry & PATE0_HR; 1432 entry->dw1 = spapr->patb_entry; 1433 } 1434 1435 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1436 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1437 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1438 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1439 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1440 1441 /* 1442 * Get the fd to access the kernel htab, re-opening it if necessary 1443 */ 1444 static int get_htab_fd(SpaprMachineState *spapr) 1445 { 1446 Error *local_err = NULL; 1447 1448 if (spapr->htab_fd >= 0) { 1449 return spapr->htab_fd; 1450 } 1451 1452 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1453 if (spapr->htab_fd < 0) { 1454 error_report_err(local_err); 1455 } 1456 1457 return spapr->htab_fd; 1458 } 1459 1460 void close_htab_fd(SpaprMachineState *spapr) 1461 { 1462 if (spapr->htab_fd >= 0) { 1463 close(spapr->htab_fd); 1464 } 1465 spapr->htab_fd = -1; 1466 } 1467 1468 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1469 { 1470 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1471 1472 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1473 } 1474 1475 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1476 { 1477 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1478 1479 assert(kvm_enabled()); 1480 1481 if (!spapr->htab) { 1482 return 0; 1483 } 1484 1485 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1486 } 1487 1488 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1489 hwaddr ptex, int n) 1490 { 1491 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1492 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1493 1494 if (!spapr->htab) { 1495 /* 1496 * HTAB is controlled by KVM. Fetch into temporary buffer 1497 */ 1498 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1499 kvmppc_read_hptes(hptes, ptex, n); 1500 return hptes; 1501 } 1502 1503 /* 1504 * HTAB is controlled by QEMU. Just point to the internally 1505 * accessible PTEG. 1506 */ 1507 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1508 } 1509 1510 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1511 const ppc_hash_pte64_t *hptes, 1512 hwaddr ptex, int n) 1513 { 1514 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1515 1516 if (!spapr->htab) { 1517 g_free((void *)hptes); 1518 } 1519 1520 /* Nothing to do for qemu managed HPT */ 1521 } 1522 1523 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1524 uint64_t pte0, uint64_t pte1) 1525 { 1526 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1527 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1528 1529 if (!spapr->htab) { 1530 kvmppc_write_hpte(ptex, pte0, pte1); 1531 } else { 1532 if (pte0 & HPTE64_V_VALID) { 1533 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1534 /* 1535 * When setting valid, we write PTE1 first. This ensures 1536 * proper synchronization with the reading code in 1537 * ppc_hash64_pteg_search() 1538 */ 1539 smp_wmb(); 1540 stq_p(spapr->htab + offset, pte0); 1541 } else { 1542 stq_p(spapr->htab + offset, pte0); 1543 /* 1544 * When clearing it we set PTE0 first. This ensures proper 1545 * synchronization with the reading code in 1546 * ppc_hash64_pteg_search() 1547 */ 1548 smp_wmb(); 1549 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1550 } 1551 } 1552 } 1553 1554 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1555 uint64_t pte1) 1556 { 1557 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1558 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1559 1560 if (!spapr->htab) { 1561 /* There should always be a hash table when this is called */ 1562 error_report("spapr_hpte_set_c called with no hash table !"); 1563 return; 1564 } 1565 1566 /* The HW performs a non-atomic byte update */ 1567 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1568 } 1569 1570 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1571 uint64_t pte1) 1572 { 1573 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1574 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1575 1576 if (!spapr->htab) { 1577 /* There should always be a hash table when this is called */ 1578 error_report("spapr_hpte_set_r called with no hash table !"); 1579 return; 1580 } 1581 1582 /* The HW performs a non-atomic byte update */ 1583 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1584 } 1585 1586 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1587 { 1588 int shift; 1589 1590 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1591 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1592 * that's much more than is needed for Linux guests */ 1593 shift = ctz64(pow2ceil(ramsize)) - 7; 1594 shift = MAX(shift, 18); /* Minimum architected size */ 1595 shift = MIN(shift, 46); /* Maximum architected size */ 1596 return shift; 1597 } 1598 1599 void spapr_free_hpt(SpaprMachineState *spapr) 1600 { 1601 g_free(spapr->htab); 1602 spapr->htab = NULL; 1603 spapr->htab_shift = 0; 1604 close_htab_fd(spapr); 1605 } 1606 1607 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1608 Error **errp) 1609 { 1610 long rc; 1611 1612 /* Clean up any HPT info from a previous boot */ 1613 spapr_free_hpt(spapr); 1614 1615 rc = kvmppc_reset_htab(shift); 1616 if (rc < 0) { 1617 /* kernel-side HPT needed, but couldn't allocate one */ 1618 error_setg_errno(errp, errno, 1619 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1620 shift); 1621 /* This is almost certainly fatal, but if the caller really 1622 * wants to carry on with shift == 0, it's welcome to try */ 1623 } else if (rc > 0) { 1624 /* kernel-side HPT allocated */ 1625 if (rc != shift) { 1626 error_setg(errp, 1627 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1628 shift, rc); 1629 } 1630 1631 spapr->htab_shift = shift; 1632 spapr->htab = NULL; 1633 } else { 1634 /* kernel-side HPT not needed, allocate in userspace instead */ 1635 size_t size = 1ULL << shift; 1636 int i; 1637 1638 spapr->htab = qemu_memalign(size, size); 1639 if (!spapr->htab) { 1640 error_setg_errno(errp, errno, 1641 "Could not allocate HPT of order %d", shift); 1642 return; 1643 } 1644 1645 memset(spapr->htab, 0, size); 1646 spapr->htab_shift = shift; 1647 1648 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1649 DIRTY_HPTE(HPTE(spapr->htab, i)); 1650 } 1651 } 1652 /* We're setting up a hash table, so that means we're not radix */ 1653 spapr->patb_entry = 0; 1654 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1655 } 1656 1657 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1658 { 1659 int hpt_shift; 1660 1661 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1662 || (spapr->cas_reboot 1663 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1664 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1665 } else { 1666 uint64_t current_ram_size; 1667 1668 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1669 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1670 } 1671 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1672 1673 if (spapr->vrma_adjust) { 1674 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1675 spapr->htab_shift); 1676 } 1677 } 1678 1679 static int spapr_reset_drcs(Object *child, void *opaque) 1680 { 1681 SpaprDrc *drc = 1682 (SpaprDrc *) object_dynamic_cast(child, 1683 TYPE_SPAPR_DR_CONNECTOR); 1684 1685 if (drc) { 1686 spapr_drc_reset(drc); 1687 } 1688 1689 return 0; 1690 } 1691 1692 static void spapr_machine_reset(void) 1693 { 1694 MachineState *machine = MACHINE(qdev_get_machine()); 1695 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1696 PowerPCCPU *first_ppc_cpu; 1697 uint32_t rtas_limit; 1698 hwaddr rtas_addr, fdt_addr; 1699 void *fdt; 1700 int rc; 1701 1702 spapr_caps_apply(spapr); 1703 1704 first_ppc_cpu = POWERPC_CPU(first_cpu); 1705 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1706 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1707 spapr->max_compat_pvr)) { 1708 /* 1709 * If using KVM with radix mode available, VCPUs can be started 1710 * without a HPT because KVM will start them in radix mode. 1711 * Set the GR bit in PATE so that we know there is no HPT. 1712 */ 1713 spapr->patb_entry = PATE1_GR; 1714 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1715 } else { 1716 spapr_setup_hpt_and_vrma(spapr); 1717 } 1718 1719 /* 1720 * If this reset wasn't generated by CAS, we should reset our 1721 * negotiated options and start from scratch 1722 */ 1723 if (!spapr->cas_reboot) { 1724 spapr_ovec_cleanup(spapr->ov5_cas); 1725 spapr->ov5_cas = spapr_ovec_new(); 1726 1727 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1728 } 1729 1730 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1731 spapr_irq_msi_reset(spapr); 1732 } 1733 1734 /* 1735 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1736 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1737 * called from vPHB reset handler so we initialize the counter here. 1738 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1739 * must be equally distant from any other node. 1740 * The final value of spapr->gpu_numa_id is going to be written to 1741 * max-associativity-domains in spapr_build_fdt(). 1742 */ 1743 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1744 qemu_devices_reset(); 1745 1746 /* 1747 * This is fixing some of the default configuration of the XIVE 1748 * devices. To be called after the reset of the machine devices. 1749 */ 1750 spapr_irq_reset(spapr, &error_fatal); 1751 1752 /* 1753 * There is no CAS under qtest. Simulate one to please the code that 1754 * depends on spapr->ov5_cas. This is especially needed to test device 1755 * unplug, so we do that before resetting the DRCs. 1756 */ 1757 if (qtest_enabled()) { 1758 spapr_ovec_cleanup(spapr->ov5_cas); 1759 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1760 } 1761 1762 /* DRC reset may cause a device to be unplugged. This will cause troubles 1763 * if this device is used by another device (eg, a running vhost backend 1764 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1765 * situations, we reset DRCs after all devices have been reset. 1766 */ 1767 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1768 1769 spapr_clear_pending_events(spapr); 1770 1771 /* 1772 * We place the device tree and RTAS just below either the top of the RMA, 1773 * or just below 2GB, whichever is lower, so that it can be 1774 * processed with 32-bit real mode code if necessary 1775 */ 1776 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1777 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1778 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1779 1780 fdt = spapr_build_fdt(spapr); 1781 1782 spapr_load_rtas(spapr, fdt, rtas_addr); 1783 1784 rc = fdt_pack(fdt); 1785 1786 /* Should only fail if we've built a corrupted tree */ 1787 assert(rc == 0); 1788 1789 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1790 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1791 fdt_totalsize(fdt), FDT_MAX_SIZE); 1792 exit(1); 1793 } 1794 1795 /* Load the fdt */ 1796 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1797 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1798 g_free(spapr->fdt_blob); 1799 spapr->fdt_size = fdt_totalsize(fdt); 1800 spapr->fdt_initial_size = spapr->fdt_size; 1801 spapr->fdt_blob = fdt; 1802 1803 /* Set up the entry state */ 1804 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1805 first_ppc_cpu->env.gpr[5] = 0; 1806 1807 spapr->cas_reboot = false; 1808 } 1809 1810 static void spapr_create_nvram(SpaprMachineState *spapr) 1811 { 1812 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1813 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1814 1815 if (dinfo) { 1816 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1817 &error_fatal); 1818 } 1819 1820 qdev_init_nofail(dev); 1821 1822 spapr->nvram = (struct SpaprNvram *)dev; 1823 } 1824 1825 static void spapr_rtc_create(SpaprMachineState *spapr) 1826 { 1827 object_initialize_child(OBJECT(spapr), "rtc", 1828 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1829 &error_fatal, NULL); 1830 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1831 &error_fatal); 1832 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1833 "date", &error_fatal); 1834 } 1835 1836 /* Returns whether we want to use VGA or not */ 1837 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1838 { 1839 switch (vga_interface_type) { 1840 case VGA_NONE: 1841 return false; 1842 case VGA_DEVICE: 1843 return true; 1844 case VGA_STD: 1845 case VGA_VIRTIO: 1846 case VGA_CIRRUS: 1847 return pci_vga_init(pci_bus) != NULL; 1848 default: 1849 error_setg(errp, 1850 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1851 return false; 1852 } 1853 } 1854 1855 static int spapr_pre_load(void *opaque) 1856 { 1857 int rc; 1858 1859 rc = spapr_caps_pre_load(opaque); 1860 if (rc) { 1861 return rc; 1862 } 1863 1864 return 0; 1865 } 1866 1867 static int spapr_post_load(void *opaque, int version_id) 1868 { 1869 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1870 int err = 0; 1871 1872 err = spapr_caps_post_migration(spapr); 1873 if (err) { 1874 return err; 1875 } 1876 1877 /* 1878 * In earlier versions, there was no separate qdev for the PAPR 1879 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1880 * So when migrating from those versions, poke the incoming offset 1881 * value into the RTC device 1882 */ 1883 if (version_id < 3) { 1884 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1885 if (err) { 1886 return err; 1887 } 1888 } 1889 1890 if (kvm_enabled() && spapr->patb_entry) { 1891 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1892 bool radix = !!(spapr->patb_entry & PATE1_GR); 1893 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1894 1895 /* 1896 * Update LPCR:HR and UPRT as they may not be set properly in 1897 * the stream 1898 */ 1899 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1900 LPCR_HR | LPCR_UPRT); 1901 1902 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1903 if (err) { 1904 error_report("Process table config unsupported by the host"); 1905 return -EINVAL; 1906 } 1907 } 1908 1909 err = spapr_irq_post_load(spapr, version_id); 1910 if (err) { 1911 return err; 1912 } 1913 1914 return err; 1915 } 1916 1917 static int spapr_pre_save(void *opaque) 1918 { 1919 int rc; 1920 1921 rc = spapr_caps_pre_save(opaque); 1922 if (rc) { 1923 return rc; 1924 } 1925 1926 return 0; 1927 } 1928 1929 static bool version_before_3(void *opaque, int version_id) 1930 { 1931 return version_id < 3; 1932 } 1933 1934 static bool spapr_pending_events_needed(void *opaque) 1935 { 1936 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1937 return !QTAILQ_EMPTY(&spapr->pending_events); 1938 } 1939 1940 static const VMStateDescription vmstate_spapr_event_entry = { 1941 .name = "spapr_event_log_entry", 1942 .version_id = 1, 1943 .minimum_version_id = 1, 1944 .fields = (VMStateField[]) { 1945 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1946 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1947 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1948 NULL, extended_length), 1949 VMSTATE_END_OF_LIST() 1950 }, 1951 }; 1952 1953 static const VMStateDescription vmstate_spapr_pending_events = { 1954 .name = "spapr_pending_events", 1955 .version_id = 1, 1956 .minimum_version_id = 1, 1957 .needed = spapr_pending_events_needed, 1958 .fields = (VMStateField[]) { 1959 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1960 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1961 VMSTATE_END_OF_LIST() 1962 }, 1963 }; 1964 1965 static bool spapr_ov5_cas_needed(void *opaque) 1966 { 1967 SpaprMachineState *spapr = opaque; 1968 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1969 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1970 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1971 bool cas_needed; 1972 1973 /* Prior to the introduction of SpaprOptionVector, we had two option 1974 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1975 * Both of these options encode machine topology into the device-tree 1976 * in such a way that the now-booted OS should still be able to interact 1977 * appropriately with QEMU regardless of what options were actually 1978 * negotiatied on the source side. 1979 * 1980 * As such, we can avoid migrating the CAS-negotiated options if these 1981 * are the only options available on the current machine/platform. 1982 * Since these are the only options available for pseries-2.7 and 1983 * earlier, this allows us to maintain old->new/new->old migration 1984 * compatibility. 1985 * 1986 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1987 * via default pseries-2.8 machines and explicit command-line parameters. 1988 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1989 * of the actual CAS-negotiated values to continue working properly. For 1990 * example, availability of memory unplug depends on knowing whether 1991 * OV5_HP_EVT was negotiated via CAS. 1992 * 1993 * Thus, for any cases where the set of available CAS-negotiatable 1994 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1995 * include the CAS-negotiated options in the migration stream, unless 1996 * if they affect boot time behaviour only. 1997 */ 1998 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1999 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2000 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2001 2002 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2003 * the mask itself since in the future it's possible "legacy" bits may be 2004 * removed via machine options, which could generate a false positive 2005 * that breaks migration. 2006 */ 2007 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2008 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2009 2010 spapr_ovec_cleanup(ov5_mask); 2011 spapr_ovec_cleanup(ov5_legacy); 2012 spapr_ovec_cleanup(ov5_removed); 2013 2014 return cas_needed; 2015 } 2016 2017 static const VMStateDescription vmstate_spapr_ov5_cas = { 2018 .name = "spapr_option_vector_ov5_cas", 2019 .version_id = 1, 2020 .minimum_version_id = 1, 2021 .needed = spapr_ov5_cas_needed, 2022 .fields = (VMStateField[]) { 2023 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2024 vmstate_spapr_ovec, SpaprOptionVector), 2025 VMSTATE_END_OF_LIST() 2026 }, 2027 }; 2028 2029 static bool spapr_patb_entry_needed(void *opaque) 2030 { 2031 SpaprMachineState *spapr = opaque; 2032 2033 return !!spapr->patb_entry; 2034 } 2035 2036 static const VMStateDescription vmstate_spapr_patb_entry = { 2037 .name = "spapr_patb_entry", 2038 .version_id = 1, 2039 .minimum_version_id = 1, 2040 .needed = spapr_patb_entry_needed, 2041 .fields = (VMStateField[]) { 2042 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2043 VMSTATE_END_OF_LIST() 2044 }, 2045 }; 2046 2047 static bool spapr_irq_map_needed(void *opaque) 2048 { 2049 SpaprMachineState *spapr = opaque; 2050 2051 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2052 } 2053 2054 static const VMStateDescription vmstate_spapr_irq_map = { 2055 .name = "spapr_irq_map", 2056 .version_id = 1, 2057 .minimum_version_id = 1, 2058 .needed = spapr_irq_map_needed, 2059 .fields = (VMStateField[]) { 2060 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2061 VMSTATE_END_OF_LIST() 2062 }, 2063 }; 2064 2065 static bool spapr_dtb_needed(void *opaque) 2066 { 2067 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2068 2069 return smc->update_dt_enabled; 2070 } 2071 2072 static int spapr_dtb_pre_load(void *opaque) 2073 { 2074 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2075 2076 g_free(spapr->fdt_blob); 2077 spapr->fdt_blob = NULL; 2078 spapr->fdt_size = 0; 2079 2080 return 0; 2081 } 2082 2083 static const VMStateDescription vmstate_spapr_dtb = { 2084 .name = "spapr_dtb", 2085 .version_id = 1, 2086 .minimum_version_id = 1, 2087 .needed = spapr_dtb_needed, 2088 .pre_load = spapr_dtb_pre_load, 2089 .fields = (VMStateField[]) { 2090 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2091 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2092 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2093 fdt_size), 2094 VMSTATE_END_OF_LIST() 2095 }, 2096 }; 2097 2098 static const VMStateDescription vmstate_spapr = { 2099 .name = "spapr", 2100 .version_id = 3, 2101 .minimum_version_id = 1, 2102 .pre_load = spapr_pre_load, 2103 .post_load = spapr_post_load, 2104 .pre_save = spapr_pre_save, 2105 .fields = (VMStateField[]) { 2106 /* used to be @next_irq */ 2107 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2108 2109 /* RTC offset */ 2110 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2111 2112 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2113 VMSTATE_END_OF_LIST() 2114 }, 2115 .subsections = (const VMStateDescription*[]) { 2116 &vmstate_spapr_ov5_cas, 2117 &vmstate_spapr_patb_entry, 2118 &vmstate_spapr_pending_events, 2119 &vmstate_spapr_cap_htm, 2120 &vmstate_spapr_cap_vsx, 2121 &vmstate_spapr_cap_dfp, 2122 &vmstate_spapr_cap_cfpc, 2123 &vmstate_spapr_cap_sbbc, 2124 &vmstate_spapr_cap_ibs, 2125 &vmstate_spapr_irq_map, 2126 &vmstate_spapr_cap_nested_kvm_hv, 2127 &vmstate_spapr_dtb, 2128 &vmstate_spapr_cap_large_decr, 2129 &vmstate_spapr_cap_ccf_assist, 2130 NULL 2131 } 2132 }; 2133 2134 static int htab_save_setup(QEMUFile *f, void *opaque) 2135 { 2136 SpaprMachineState *spapr = opaque; 2137 2138 /* "Iteration" header */ 2139 if (!spapr->htab_shift) { 2140 qemu_put_be32(f, -1); 2141 } else { 2142 qemu_put_be32(f, spapr->htab_shift); 2143 } 2144 2145 if (spapr->htab) { 2146 spapr->htab_save_index = 0; 2147 spapr->htab_first_pass = true; 2148 } else { 2149 if (spapr->htab_shift) { 2150 assert(kvm_enabled()); 2151 } 2152 } 2153 2154 2155 return 0; 2156 } 2157 2158 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2159 int chunkstart, int n_valid, int n_invalid) 2160 { 2161 qemu_put_be32(f, chunkstart); 2162 qemu_put_be16(f, n_valid); 2163 qemu_put_be16(f, n_invalid); 2164 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2165 HASH_PTE_SIZE_64 * n_valid); 2166 } 2167 2168 static void htab_save_end_marker(QEMUFile *f) 2169 { 2170 qemu_put_be32(f, 0); 2171 qemu_put_be16(f, 0); 2172 qemu_put_be16(f, 0); 2173 } 2174 2175 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2176 int64_t max_ns) 2177 { 2178 bool has_timeout = max_ns != -1; 2179 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2180 int index = spapr->htab_save_index; 2181 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2182 2183 assert(spapr->htab_first_pass); 2184 2185 do { 2186 int chunkstart; 2187 2188 /* Consume invalid HPTEs */ 2189 while ((index < htabslots) 2190 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2191 CLEAN_HPTE(HPTE(spapr->htab, index)); 2192 index++; 2193 } 2194 2195 /* Consume valid HPTEs */ 2196 chunkstart = index; 2197 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2198 && HPTE_VALID(HPTE(spapr->htab, index))) { 2199 CLEAN_HPTE(HPTE(spapr->htab, index)); 2200 index++; 2201 } 2202 2203 if (index > chunkstart) { 2204 int n_valid = index - chunkstart; 2205 2206 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2207 2208 if (has_timeout && 2209 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2210 break; 2211 } 2212 } 2213 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2214 2215 if (index >= htabslots) { 2216 assert(index == htabslots); 2217 index = 0; 2218 spapr->htab_first_pass = false; 2219 } 2220 spapr->htab_save_index = index; 2221 } 2222 2223 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2224 int64_t max_ns) 2225 { 2226 bool final = max_ns < 0; 2227 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2228 int examined = 0, sent = 0; 2229 int index = spapr->htab_save_index; 2230 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2231 2232 assert(!spapr->htab_first_pass); 2233 2234 do { 2235 int chunkstart, invalidstart; 2236 2237 /* Consume non-dirty HPTEs */ 2238 while ((index < htabslots) 2239 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2240 index++; 2241 examined++; 2242 } 2243 2244 chunkstart = index; 2245 /* Consume valid dirty HPTEs */ 2246 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2247 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2248 && HPTE_VALID(HPTE(spapr->htab, index))) { 2249 CLEAN_HPTE(HPTE(spapr->htab, index)); 2250 index++; 2251 examined++; 2252 } 2253 2254 invalidstart = index; 2255 /* Consume invalid dirty HPTEs */ 2256 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2257 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2258 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2259 CLEAN_HPTE(HPTE(spapr->htab, index)); 2260 index++; 2261 examined++; 2262 } 2263 2264 if (index > chunkstart) { 2265 int n_valid = invalidstart - chunkstart; 2266 int n_invalid = index - invalidstart; 2267 2268 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2269 sent += index - chunkstart; 2270 2271 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2272 break; 2273 } 2274 } 2275 2276 if (examined >= htabslots) { 2277 break; 2278 } 2279 2280 if (index >= htabslots) { 2281 assert(index == htabslots); 2282 index = 0; 2283 } 2284 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2285 2286 if (index >= htabslots) { 2287 assert(index == htabslots); 2288 index = 0; 2289 } 2290 2291 spapr->htab_save_index = index; 2292 2293 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2294 } 2295 2296 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2297 #define MAX_KVM_BUF_SIZE 2048 2298 2299 static int htab_save_iterate(QEMUFile *f, void *opaque) 2300 { 2301 SpaprMachineState *spapr = opaque; 2302 int fd; 2303 int rc = 0; 2304 2305 /* Iteration header */ 2306 if (!spapr->htab_shift) { 2307 qemu_put_be32(f, -1); 2308 return 1; 2309 } else { 2310 qemu_put_be32(f, 0); 2311 } 2312 2313 if (!spapr->htab) { 2314 assert(kvm_enabled()); 2315 2316 fd = get_htab_fd(spapr); 2317 if (fd < 0) { 2318 return fd; 2319 } 2320 2321 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2322 if (rc < 0) { 2323 return rc; 2324 } 2325 } else if (spapr->htab_first_pass) { 2326 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2327 } else { 2328 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2329 } 2330 2331 htab_save_end_marker(f); 2332 2333 return rc; 2334 } 2335 2336 static int htab_save_complete(QEMUFile *f, void *opaque) 2337 { 2338 SpaprMachineState *spapr = opaque; 2339 int fd; 2340 2341 /* Iteration header */ 2342 if (!spapr->htab_shift) { 2343 qemu_put_be32(f, -1); 2344 return 0; 2345 } else { 2346 qemu_put_be32(f, 0); 2347 } 2348 2349 if (!spapr->htab) { 2350 int rc; 2351 2352 assert(kvm_enabled()); 2353 2354 fd = get_htab_fd(spapr); 2355 if (fd < 0) { 2356 return fd; 2357 } 2358 2359 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2360 if (rc < 0) { 2361 return rc; 2362 } 2363 } else { 2364 if (spapr->htab_first_pass) { 2365 htab_save_first_pass(f, spapr, -1); 2366 } 2367 htab_save_later_pass(f, spapr, -1); 2368 } 2369 2370 /* End marker */ 2371 htab_save_end_marker(f); 2372 2373 return 0; 2374 } 2375 2376 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2377 { 2378 SpaprMachineState *spapr = opaque; 2379 uint32_t section_hdr; 2380 int fd = -1; 2381 Error *local_err = NULL; 2382 2383 if (version_id < 1 || version_id > 1) { 2384 error_report("htab_load() bad version"); 2385 return -EINVAL; 2386 } 2387 2388 section_hdr = qemu_get_be32(f); 2389 2390 if (section_hdr == -1) { 2391 spapr_free_hpt(spapr); 2392 return 0; 2393 } 2394 2395 if (section_hdr) { 2396 /* First section gives the htab size */ 2397 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2398 if (local_err) { 2399 error_report_err(local_err); 2400 return -EINVAL; 2401 } 2402 return 0; 2403 } 2404 2405 if (!spapr->htab) { 2406 assert(kvm_enabled()); 2407 2408 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2409 if (fd < 0) { 2410 error_report_err(local_err); 2411 return fd; 2412 } 2413 } 2414 2415 while (true) { 2416 uint32_t index; 2417 uint16_t n_valid, n_invalid; 2418 2419 index = qemu_get_be32(f); 2420 n_valid = qemu_get_be16(f); 2421 n_invalid = qemu_get_be16(f); 2422 2423 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2424 /* End of Stream */ 2425 break; 2426 } 2427 2428 if ((index + n_valid + n_invalid) > 2429 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2430 /* Bad index in stream */ 2431 error_report( 2432 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2433 index, n_valid, n_invalid, spapr->htab_shift); 2434 return -EINVAL; 2435 } 2436 2437 if (spapr->htab) { 2438 if (n_valid) { 2439 qemu_get_buffer(f, HPTE(spapr->htab, index), 2440 HASH_PTE_SIZE_64 * n_valid); 2441 } 2442 if (n_invalid) { 2443 memset(HPTE(spapr->htab, index + n_valid), 0, 2444 HASH_PTE_SIZE_64 * n_invalid); 2445 } 2446 } else { 2447 int rc; 2448 2449 assert(fd >= 0); 2450 2451 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2452 if (rc < 0) { 2453 return rc; 2454 } 2455 } 2456 } 2457 2458 if (!spapr->htab) { 2459 assert(fd >= 0); 2460 close(fd); 2461 } 2462 2463 return 0; 2464 } 2465 2466 static void htab_save_cleanup(void *opaque) 2467 { 2468 SpaprMachineState *spapr = opaque; 2469 2470 close_htab_fd(spapr); 2471 } 2472 2473 static SaveVMHandlers savevm_htab_handlers = { 2474 .save_setup = htab_save_setup, 2475 .save_live_iterate = htab_save_iterate, 2476 .save_live_complete_precopy = htab_save_complete, 2477 .save_cleanup = htab_save_cleanup, 2478 .load_state = htab_load, 2479 }; 2480 2481 static void spapr_boot_set(void *opaque, const char *boot_device, 2482 Error **errp) 2483 { 2484 MachineState *machine = MACHINE(opaque); 2485 machine->boot_order = g_strdup(boot_device); 2486 } 2487 2488 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2489 { 2490 MachineState *machine = MACHINE(spapr); 2491 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2492 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2493 int i; 2494 2495 for (i = 0; i < nr_lmbs; i++) { 2496 uint64_t addr; 2497 2498 addr = i * lmb_size + machine->device_memory->base; 2499 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2500 addr / lmb_size); 2501 } 2502 } 2503 2504 /* 2505 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2506 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2507 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2508 */ 2509 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2510 { 2511 int i; 2512 2513 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2514 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2515 " is not aligned to %" PRIu64 " MiB", 2516 machine->ram_size, 2517 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2518 return; 2519 } 2520 2521 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2522 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2523 " is not aligned to %" PRIu64 " MiB", 2524 machine->ram_size, 2525 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2526 return; 2527 } 2528 2529 for (i = 0; i < nb_numa_nodes; i++) { 2530 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2531 error_setg(errp, 2532 "Node %d memory size 0x%" PRIx64 2533 " is not aligned to %" PRIu64 " MiB", 2534 i, numa_info[i].node_mem, 2535 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2536 return; 2537 } 2538 } 2539 } 2540 2541 /* find cpu slot in machine->possible_cpus by core_id */ 2542 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2543 { 2544 int index = id / smp_threads; 2545 2546 if (index >= ms->possible_cpus->len) { 2547 return NULL; 2548 } 2549 if (idx) { 2550 *idx = index; 2551 } 2552 return &ms->possible_cpus->cpus[index]; 2553 } 2554 2555 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2556 { 2557 Error *local_err = NULL; 2558 bool vsmt_user = !!spapr->vsmt; 2559 int kvm_smt = kvmppc_smt_threads(); 2560 int ret; 2561 2562 if (!kvm_enabled() && (smp_threads > 1)) { 2563 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2564 "on a pseries machine"); 2565 goto out; 2566 } 2567 if (!is_power_of_2(smp_threads)) { 2568 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2569 "machine because it must be a power of 2", smp_threads); 2570 goto out; 2571 } 2572 2573 /* Detemine the VSMT mode to use: */ 2574 if (vsmt_user) { 2575 if (spapr->vsmt < smp_threads) { 2576 error_setg(&local_err, "Cannot support VSMT mode %d" 2577 " because it must be >= threads/core (%d)", 2578 spapr->vsmt, smp_threads); 2579 goto out; 2580 } 2581 /* In this case, spapr->vsmt has been set by the command line */ 2582 } else { 2583 /* 2584 * Default VSMT value is tricky, because we need it to be as 2585 * consistent as possible (for migration), but this requires 2586 * changing it for at least some existing cases. We pick 8 as 2587 * the value that we'd get with KVM on POWER8, the 2588 * overwhelmingly common case in production systems. 2589 */ 2590 spapr->vsmt = MAX(8, smp_threads); 2591 } 2592 2593 /* KVM: If necessary, set the SMT mode: */ 2594 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2595 ret = kvmppc_set_smt_threads(spapr->vsmt); 2596 if (ret) { 2597 /* Looks like KVM isn't able to change VSMT mode */ 2598 error_setg(&local_err, 2599 "Failed to set KVM's VSMT mode to %d (errno %d)", 2600 spapr->vsmt, ret); 2601 /* We can live with that if the default one is big enough 2602 * for the number of threads, and a submultiple of the one 2603 * we want. In this case we'll waste some vcpu ids, but 2604 * behaviour will be correct */ 2605 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2606 warn_report_err(local_err); 2607 local_err = NULL; 2608 goto out; 2609 } else { 2610 if (!vsmt_user) { 2611 error_append_hint(&local_err, 2612 "On PPC, a VM with %d threads/core" 2613 " on a host with %d threads/core" 2614 " requires the use of VSMT mode %d.\n", 2615 smp_threads, kvm_smt, spapr->vsmt); 2616 } 2617 kvmppc_hint_smt_possible(&local_err); 2618 goto out; 2619 } 2620 } 2621 } 2622 /* else TCG: nothing to do currently */ 2623 out: 2624 error_propagate(errp, local_err); 2625 } 2626 2627 static void spapr_init_cpus(SpaprMachineState *spapr) 2628 { 2629 MachineState *machine = MACHINE(spapr); 2630 MachineClass *mc = MACHINE_GET_CLASS(machine); 2631 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2632 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2633 const CPUArchIdList *possible_cpus; 2634 int boot_cores_nr = smp_cpus / smp_threads; 2635 int i; 2636 2637 possible_cpus = mc->possible_cpu_arch_ids(machine); 2638 if (mc->has_hotpluggable_cpus) { 2639 if (smp_cpus % smp_threads) { 2640 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2641 smp_cpus, smp_threads); 2642 exit(1); 2643 } 2644 if (max_cpus % smp_threads) { 2645 error_report("max_cpus (%u) must be multiple of threads (%u)", 2646 max_cpus, smp_threads); 2647 exit(1); 2648 } 2649 } else { 2650 if (max_cpus != smp_cpus) { 2651 error_report("This machine version does not support CPU hotplug"); 2652 exit(1); 2653 } 2654 boot_cores_nr = possible_cpus->len; 2655 } 2656 2657 if (smc->pre_2_10_has_unused_icps) { 2658 int i; 2659 2660 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2661 /* Dummy entries get deregistered when real ICPState objects 2662 * are registered during CPU core hotplug. 2663 */ 2664 pre_2_10_vmstate_register_dummy_icp(i); 2665 } 2666 } 2667 2668 for (i = 0; i < possible_cpus->len; i++) { 2669 int core_id = i * smp_threads; 2670 2671 if (mc->has_hotpluggable_cpus) { 2672 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2673 spapr_vcpu_id(spapr, core_id)); 2674 } 2675 2676 if (i < boot_cores_nr) { 2677 Object *core = object_new(type); 2678 int nr_threads = smp_threads; 2679 2680 /* Handle the partially filled core for older machine types */ 2681 if ((i + 1) * smp_threads >= smp_cpus) { 2682 nr_threads = smp_cpus - i * smp_threads; 2683 } 2684 2685 object_property_set_int(core, nr_threads, "nr-threads", 2686 &error_fatal); 2687 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2688 &error_fatal); 2689 object_property_set_bool(core, true, "realized", &error_fatal); 2690 2691 object_unref(core); 2692 } 2693 } 2694 } 2695 2696 static PCIHostState *spapr_create_default_phb(void) 2697 { 2698 DeviceState *dev; 2699 2700 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2701 qdev_prop_set_uint32(dev, "index", 0); 2702 qdev_init_nofail(dev); 2703 2704 return PCI_HOST_BRIDGE(dev); 2705 } 2706 2707 /* pSeries LPAR / sPAPR hardware init */ 2708 static void spapr_machine_init(MachineState *machine) 2709 { 2710 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2711 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2712 const char *kernel_filename = machine->kernel_filename; 2713 const char *initrd_filename = machine->initrd_filename; 2714 PCIHostState *phb; 2715 int i; 2716 MemoryRegion *sysmem = get_system_memory(); 2717 MemoryRegion *ram = g_new(MemoryRegion, 1); 2718 hwaddr node0_size = spapr_node0_size(machine); 2719 long load_limit, fw_size; 2720 char *filename; 2721 Error *resize_hpt_err = NULL; 2722 2723 msi_nonbroken = true; 2724 2725 QLIST_INIT(&spapr->phbs); 2726 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2727 2728 /* Determine capabilities to run with */ 2729 spapr_caps_init(spapr); 2730 2731 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2732 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2733 /* 2734 * If the user explicitly requested a mode we should either 2735 * supply it, or fail completely (which we do below). But if 2736 * it's not set explicitly, we reset our mode to something 2737 * that works 2738 */ 2739 if (resize_hpt_err) { 2740 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2741 error_free(resize_hpt_err); 2742 resize_hpt_err = NULL; 2743 } else { 2744 spapr->resize_hpt = smc->resize_hpt_default; 2745 } 2746 } 2747 2748 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2749 2750 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2751 /* 2752 * User requested HPT resize, but this host can't supply it. Bail out 2753 */ 2754 error_report_err(resize_hpt_err); 2755 exit(1); 2756 } 2757 2758 spapr->rma_size = node0_size; 2759 2760 /* With KVM, we don't actually know whether KVM supports an 2761 * unbounded RMA (PR KVM) or is limited by the hash table size 2762 * (HV KVM using VRMA), so we always assume the latter 2763 * 2764 * In that case, we also limit the initial allocations for RTAS 2765 * etc... to 256M since we have no way to know what the VRMA size 2766 * is going to be as it depends on the size of the hash table 2767 * which isn't determined yet. 2768 */ 2769 if (kvm_enabled()) { 2770 spapr->vrma_adjust = 1; 2771 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2772 } 2773 2774 /* Actually we don't support unbounded RMA anymore since we added 2775 * proper emulation of HV mode. The max we can get is 16G which 2776 * also happens to be what we configure for PAPR mode so make sure 2777 * we don't do anything bigger than that 2778 */ 2779 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2780 2781 if (spapr->rma_size > node0_size) { 2782 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2783 spapr->rma_size); 2784 exit(1); 2785 } 2786 2787 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2788 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2789 2790 /* 2791 * VSMT must be set in order to be able to compute VCPU ids, ie to 2792 * call spapr_max_server_number() or spapr_vcpu_id(). 2793 */ 2794 spapr_set_vsmt_mode(spapr, &error_fatal); 2795 2796 /* Set up Interrupt Controller before we create the VCPUs */ 2797 spapr_irq_init(spapr, &error_fatal); 2798 2799 /* Set up containers for ibm,client-architecture-support negotiated options 2800 */ 2801 spapr->ov5 = spapr_ovec_new(); 2802 spapr->ov5_cas = spapr_ovec_new(); 2803 2804 if (smc->dr_lmb_enabled) { 2805 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2806 spapr_validate_node_memory(machine, &error_fatal); 2807 } 2808 2809 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2810 2811 /* advertise support for dedicated HP event source to guests */ 2812 if (spapr->use_hotplug_event_source) { 2813 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2814 } 2815 2816 /* advertise support for HPT resizing */ 2817 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2818 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2819 } 2820 2821 /* advertise support for ibm,dyamic-memory-v2 */ 2822 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2823 2824 /* advertise XIVE on POWER9 machines */ 2825 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2826 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2827 } 2828 2829 /* init CPUs */ 2830 spapr_init_cpus(spapr); 2831 2832 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2833 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2834 spapr->max_compat_pvr)) { 2835 /* KVM and TCG always allow GTSE with radix... */ 2836 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2837 } 2838 /* ... but not with hash (currently). */ 2839 2840 if (kvm_enabled()) { 2841 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2842 kvmppc_enable_logical_ci_hcalls(); 2843 kvmppc_enable_set_mode_hcall(); 2844 2845 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2846 kvmppc_enable_clear_ref_mod_hcalls(); 2847 2848 /* Enable H_PAGE_INIT */ 2849 kvmppc_enable_h_page_init(); 2850 } 2851 2852 /* allocate RAM */ 2853 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2854 machine->ram_size); 2855 memory_region_add_subregion(sysmem, 0, ram); 2856 2857 /* always allocate the device memory information */ 2858 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2859 2860 /* initialize hotplug memory address space */ 2861 if (machine->ram_size < machine->maxram_size) { 2862 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2863 /* 2864 * Limit the number of hotpluggable memory slots to half the number 2865 * slots that KVM supports, leaving the other half for PCI and other 2866 * devices. However ensure that number of slots doesn't drop below 32. 2867 */ 2868 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2869 SPAPR_MAX_RAM_SLOTS; 2870 2871 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2872 max_memslots = SPAPR_MAX_RAM_SLOTS; 2873 } 2874 if (machine->ram_slots > max_memslots) { 2875 error_report("Specified number of memory slots %" 2876 PRIu64" exceeds max supported %d", 2877 machine->ram_slots, max_memslots); 2878 exit(1); 2879 } 2880 2881 machine->device_memory->base = ROUND_UP(machine->ram_size, 2882 SPAPR_DEVICE_MEM_ALIGN); 2883 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2884 "device-memory", device_mem_size); 2885 memory_region_add_subregion(sysmem, machine->device_memory->base, 2886 &machine->device_memory->mr); 2887 } 2888 2889 if (smc->dr_lmb_enabled) { 2890 spapr_create_lmb_dr_connectors(spapr); 2891 } 2892 2893 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2894 if (!filename) { 2895 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2896 exit(1); 2897 } 2898 spapr->rtas_size = get_image_size(filename); 2899 if (spapr->rtas_size < 0) { 2900 error_report("Could not get size of LPAR rtas '%s'", filename); 2901 exit(1); 2902 } 2903 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2904 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2905 error_report("Could not load LPAR rtas '%s'", filename); 2906 exit(1); 2907 } 2908 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2909 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2910 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2911 exit(1); 2912 } 2913 g_free(filename); 2914 2915 /* Set up RTAS event infrastructure */ 2916 spapr_events_init(spapr); 2917 2918 /* Set up the RTC RTAS interfaces */ 2919 spapr_rtc_create(spapr); 2920 2921 /* Set up VIO bus */ 2922 spapr->vio_bus = spapr_vio_bus_init(); 2923 2924 for (i = 0; i < serial_max_hds(); i++) { 2925 if (serial_hd(i)) { 2926 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2927 } 2928 } 2929 2930 /* We always have at least the nvram device on VIO */ 2931 spapr_create_nvram(spapr); 2932 2933 /* 2934 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2935 * connectors (described in root DT node's "ibm,drc-types" property) 2936 * are pre-initialized here. additional child connectors (such as 2937 * connectors for a PHBs PCI slots) are added as needed during their 2938 * parent's realization. 2939 */ 2940 if (smc->dr_phb_enabled) { 2941 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2942 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2943 } 2944 } 2945 2946 /* Set up PCI */ 2947 spapr_pci_rtas_init(); 2948 2949 phb = spapr_create_default_phb(); 2950 2951 for (i = 0; i < nb_nics; i++) { 2952 NICInfo *nd = &nd_table[i]; 2953 2954 if (!nd->model) { 2955 nd->model = g_strdup("spapr-vlan"); 2956 } 2957 2958 if (g_str_equal(nd->model, "spapr-vlan") || 2959 g_str_equal(nd->model, "ibmveth")) { 2960 spapr_vlan_create(spapr->vio_bus, nd); 2961 } else { 2962 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2963 } 2964 } 2965 2966 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2967 spapr_vscsi_create(spapr->vio_bus); 2968 } 2969 2970 /* Graphics */ 2971 if (spapr_vga_init(phb->bus, &error_fatal)) { 2972 spapr->has_graphics = true; 2973 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2974 } 2975 2976 if (machine->usb) { 2977 if (smc->use_ohci_by_default) { 2978 pci_create_simple(phb->bus, -1, "pci-ohci"); 2979 } else { 2980 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2981 } 2982 2983 if (spapr->has_graphics) { 2984 USBBus *usb_bus = usb_bus_find(-1); 2985 2986 usb_create_simple(usb_bus, "usb-kbd"); 2987 usb_create_simple(usb_bus, "usb-mouse"); 2988 } 2989 } 2990 2991 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2992 error_report( 2993 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2994 MIN_RMA_SLOF); 2995 exit(1); 2996 } 2997 2998 if (kernel_filename) { 2999 uint64_t lowaddr = 0; 3000 3001 spapr->kernel_size = load_elf(kernel_filename, NULL, 3002 translate_kernel_address, NULL, 3003 NULL, &lowaddr, NULL, 1, 3004 PPC_ELF_MACHINE, 0, 0); 3005 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3006 spapr->kernel_size = load_elf(kernel_filename, NULL, 3007 translate_kernel_address, NULL, NULL, 3008 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3009 0, 0); 3010 spapr->kernel_le = spapr->kernel_size > 0; 3011 } 3012 if (spapr->kernel_size < 0) { 3013 error_report("error loading %s: %s", kernel_filename, 3014 load_elf_strerror(spapr->kernel_size)); 3015 exit(1); 3016 } 3017 3018 /* load initrd */ 3019 if (initrd_filename) { 3020 /* Try to locate the initrd in the gap between the kernel 3021 * and the firmware. Add a bit of space just in case 3022 */ 3023 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3024 + 0x1ffff) & ~0xffff; 3025 spapr->initrd_size = load_image_targphys(initrd_filename, 3026 spapr->initrd_base, 3027 load_limit 3028 - spapr->initrd_base); 3029 if (spapr->initrd_size < 0) { 3030 error_report("could not load initial ram disk '%s'", 3031 initrd_filename); 3032 exit(1); 3033 } 3034 } 3035 } 3036 3037 if (bios_name == NULL) { 3038 bios_name = FW_FILE_NAME; 3039 } 3040 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3041 if (!filename) { 3042 error_report("Could not find LPAR firmware '%s'", bios_name); 3043 exit(1); 3044 } 3045 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3046 if (fw_size <= 0) { 3047 error_report("Could not load LPAR firmware '%s'", filename); 3048 exit(1); 3049 } 3050 g_free(filename); 3051 3052 /* FIXME: Should register things through the MachineState's qdev 3053 * interface, this is a legacy from the sPAPREnvironment structure 3054 * which predated MachineState but had a similar function */ 3055 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3056 register_savevm_live(NULL, "spapr/htab", -1, 1, 3057 &savevm_htab_handlers, spapr); 3058 3059 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3060 &error_fatal); 3061 3062 qemu_register_boot_set(spapr_boot_set, spapr); 3063 3064 if (kvm_enabled()) { 3065 /* to stop and start vmclock */ 3066 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3067 &spapr->tb); 3068 3069 kvmppc_spapr_enable_inkernel_multitce(); 3070 } 3071 } 3072 3073 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3074 { 3075 if (!vm_type) { 3076 return 0; 3077 } 3078 3079 if (!strcmp(vm_type, "HV")) { 3080 return 1; 3081 } 3082 3083 if (!strcmp(vm_type, "PR")) { 3084 return 2; 3085 } 3086 3087 error_report("Unknown kvm-type specified '%s'", vm_type); 3088 exit(1); 3089 } 3090 3091 /* 3092 * Implementation of an interface to adjust firmware path 3093 * for the bootindex property handling. 3094 */ 3095 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3096 DeviceState *dev) 3097 { 3098 #define CAST(type, obj, name) \ 3099 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3100 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3101 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3102 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3103 3104 if (d) { 3105 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3106 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3107 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3108 3109 if (spapr) { 3110 /* 3111 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3112 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3113 * 0x8000 | (target << 8) | (bus << 5) | lun 3114 * (see the "Logical unit addressing format" table in SAM5) 3115 */ 3116 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3117 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3118 (uint64_t)id << 48); 3119 } else if (virtio) { 3120 /* 3121 * We use SRP luns of the form 01000000 | (target << 8) | lun 3122 * in the top 32 bits of the 64-bit LUN 3123 * Note: the quote above is from SLOF and it is wrong, 3124 * the actual binding is: 3125 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3126 */ 3127 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3128 if (d->lun >= 256) { 3129 /* Use the LUN "flat space addressing method" */ 3130 id |= 0x4000; 3131 } 3132 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3133 (uint64_t)id << 32); 3134 } else if (usb) { 3135 /* 3136 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3137 * in the top 32 bits of the 64-bit LUN 3138 */ 3139 unsigned usb_port = atoi(usb->port->path); 3140 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3141 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3142 (uint64_t)id << 32); 3143 } 3144 } 3145 3146 /* 3147 * SLOF probes the USB devices, and if it recognizes that the device is a 3148 * storage device, it changes its name to "storage" instead of "usb-host", 3149 * and additionally adds a child node for the SCSI LUN, so the correct 3150 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3151 */ 3152 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3153 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3154 if (usb_host_dev_is_scsi_storage(usbdev)) { 3155 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3156 } 3157 } 3158 3159 if (phb) { 3160 /* Replace "pci" with "pci@800000020000000" */ 3161 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3162 } 3163 3164 if (vsc) { 3165 /* Same logic as virtio above */ 3166 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3167 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3168 } 3169 3170 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3171 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3172 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3173 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3174 } 3175 3176 return NULL; 3177 } 3178 3179 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3180 { 3181 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3182 3183 return g_strdup(spapr->kvm_type); 3184 } 3185 3186 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3187 { 3188 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3189 3190 g_free(spapr->kvm_type); 3191 spapr->kvm_type = g_strdup(value); 3192 } 3193 3194 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3195 { 3196 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3197 3198 return spapr->use_hotplug_event_source; 3199 } 3200 3201 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3202 Error **errp) 3203 { 3204 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3205 3206 spapr->use_hotplug_event_source = value; 3207 } 3208 3209 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3210 { 3211 return true; 3212 } 3213 3214 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3215 { 3216 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3217 3218 switch (spapr->resize_hpt) { 3219 case SPAPR_RESIZE_HPT_DEFAULT: 3220 return g_strdup("default"); 3221 case SPAPR_RESIZE_HPT_DISABLED: 3222 return g_strdup("disabled"); 3223 case SPAPR_RESIZE_HPT_ENABLED: 3224 return g_strdup("enabled"); 3225 case SPAPR_RESIZE_HPT_REQUIRED: 3226 return g_strdup("required"); 3227 } 3228 g_assert_not_reached(); 3229 } 3230 3231 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3232 { 3233 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3234 3235 if (strcmp(value, "default") == 0) { 3236 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3237 } else if (strcmp(value, "disabled") == 0) { 3238 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3239 } else if (strcmp(value, "enabled") == 0) { 3240 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3241 } else if (strcmp(value, "required") == 0) { 3242 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3243 } else { 3244 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3245 } 3246 } 3247 3248 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3249 void *opaque, Error **errp) 3250 { 3251 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3252 } 3253 3254 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3255 void *opaque, Error **errp) 3256 { 3257 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3258 } 3259 3260 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3261 { 3262 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3263 3264 if (spapr->irq == &spapr_irq_xics_legacy) { 3265 return g_strdup("legacy"); 3266 } else if (spapr->irq == &spapr_irq_xics) { 3267 return g_strdup("xics"); 3268 } else if (spapr->irq == &spapr_irq_xive) { 3269 return g_strdup("xive"); 3270 } else if (spapr->irq == &spapr_irq_dual) { 3271 return g_strdup("dual"); 3272 } 3273 g_assert_not_reached(); 3274 } 3275 3276 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3277 { 3278 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3279 3280 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3281 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3282 return; 3283 } 3284 3285 /* The legacy IRQ backend can not be set */ 3286 if (strcmp(value, "xics") == 0) { 3287 spapr->irq = &spapr_irq_xics; 3288 } else if (strcmp(value, "xive") == 0) { 3289 spapr->irq = &spapr_irq_xive; 3290 } else if (strcmp(value, "dual") == 0) { 3291 spapr->irq = &spapr_irq_dual; 3292 } else { 3293 error_setg(errp, "Bad value for \"ic-mode\" property"); 3294 } 3295 } 3296 3297 static char *spapr_get_host_model(Object *obj, Error **errp) 3298 { 3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3300 3301 return g_strdup(spapr->host_model); 3302 } 3303 3304 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3305 { 3306 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3307 3308 g_free(spapr->host_model); 3309 spapr->host_model = g_strdup(value); 3310 } 3311 3312 static char *spapr_get_host_serial(Object *obj, Error **errp) 3313 { 3314 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3315 3316 return g_strdup(spapr->host_serial); 3317 } 3318 3319 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3320 { 3321 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3322 3323 g_free(spapr->host_serial); 3324 spapr->host_serial = g_strdup(value); 3325 } 3326 3327 static void spapr_instance_init(Object *obj) 3328 { 3329 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3330 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3331 3332 spapr->htab_fd = -1; 3333 spapr->use_hotplug_event_source = true; 3334 object_property_add_str(obj, "kvm-type", 3335 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3336 object_property_set_description(obj, "kvm-type", 3337 "Specifies the KVM virtualization mode (HV, PR)", 3338 NULL); 3339 object_property_add_bool(obj, "modern-hotplug-events", 3340 spapr_get_modern_hotplug_events, 3341 spapr_set_modern_hotplug_events, 3342 NULL); 3343 object_property_set_description(obj, "modern-hotplug-events", 3344 "Use dedicated hotplug event mechanism in" 3345 " place of standard EPOW events when possible" 3346 " (required for memory hot-unplug support)", 3347 NULL); 3348 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3349 "Maximum permitted CPU compatibility mode", 3350 &error_fatal); 3351 3352 object_property_add_str(obj, "resize-hpt", 3353 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3354 object_property_set_description(obj, "resize-hpt", 3355 "Resizing of the Hash Page Table (enabled, disabled, required)", 3356 NULL); 3357 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3358 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3359 object_property_set_description(obj, "vsmt", 3360 "Virtual SMT: KVM behaves as if this were" 3361 " the host's SMT mode", &error_abort); 3362 object_property_add_bool(obj, "vfio-no-msix-emulation", 3363 spapr_get_msix_emulation, NULL, NULL); 3364 3365 /* The machine class defines the default interrupt controller mode */ 3366 spapr->irq = smc->irq; 3367 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3368 spapr_set_ic_mode, NULL); 3369 object_property_set_description(obj, "ic-mode", 3370 "Specifies the interrupt controller mode (xics, xive, dual)", 3371 NULL); 3372 3373 object_property_add_str(obj, "host-model", 3374 spapr_get_host_model, spapr_set_host_model, 3375 &error_abort); 3376 object_property_set_description(obj, "host-model", 3377 "Host model to advertise in guest device tree", &error_abort); 3378 object_property_add_str(obj, "host-serial", 3379 spapr_get_host_serial, spapr_set_host_serial, 3380 &error_abort); 3381 object_property_set_description(obj, "host-serial", 3382 "Host serial number to advertise in guest device tree", &error_abort); 3383 } 3384 3385 static void spapr_machine_finalizefn(Object *obj) 3386 { 3387 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3388 3389 g_free(spapr->kvm_type); 3390 } 3391 3392 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3393 { 3394 cpu_synchronize_state(cs); 3395 ppc_cpu_do_system_reset(cs); 3396 } 3397 3398 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3399 { 3400 CPUState *cs; 3401 3402 CPU_FOREACH(cs) { 3403 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3404 } 3405 } 3406 3407 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3408 void *fdt, int *fdt_start_offset, Error **errp) 3409 { 3410 uint64_t addr; 3411 uint32_t node; 3412 3413 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3414 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3415 &error_abort); 3416 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3417 SPAPR_MEMORY_BLOCK_SIZE); 3418 return 0; 3419 } 3420 3421 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3422 bool dedicated_hp_event_source, Error **errp) 3423 { 3424 SpaprDrc *drc; 3425 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3426 int i; 3427 uint64_t addr = addr_start; 3428 bool hotplugged = spapr_drc_hotplugged(dev); 3429 Error *local_err = NULL; 3430 3431 for (i = 0; i < nr_lmbs; i++) { 3432 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3433 addr / SPAPR_MEMORY_BLOCK_SIZE); 3434 g_assert(drc); 3435 3436 spapr_drc_attach(drc, dev, &local_err); 3437 if (local_err) { 3438 while (addr > addr_start) { 3439 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3440 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3441 addr / SPAPR_MEMORY_BLOCK_SIZE); 3442 spapr_drc_detach(drc); 3443 } 3444 error_propagate(errp, local_err); 3445 return; 3446 } 3447 if (!hotplugged) { 3448 spapr_drc_reset(drc); 3449 } 3450 addr += SPAPR_MEMORY_BLOCK_SIZE; 3451 } 3452 /* send hotplug notification to the 3453 * guest only in case of hotplugged memory 3454 */ 3455 if (hotplugged) { 3456 if (dedicated_hp_event_source) { 3457 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3458 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3459 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3460 nr_lmbs, 3461 spapr_drc_index(drc)); 3462 } else { 3463 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3464 nr_lmbs); 3465 } 3466 } 3467 } 3468 3469 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3470 Error **errp) 3471 { 3472 Error *local_err = NULL; 3473 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3474 PCDIMMDevice *dimm = PC_DIMM(dev); 3475 uint64_t size, addr; 3476 3477 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3478 3479 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3480 if (local_err) { 3481 goto out; 3482 } 3483 3484 addr = object_property_get_uint(OBJECT(dimm), 3485 PC_DIMM_ADDR_PROP, &local_err); 3486 if (local_err) { 3487 goto out_unplug; 3488 } 3489 3490 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3491 &local_err); 3492 if (local_err) { 3493 goto out_unplug; 3494 } 3495 3496 return; 3497 3498 out_unplug: 3499 pc_dimm_unplug(dimm, MACHINE(ms)); 3500 out: 3501 error_propagate(errp, local_err); 3502 } 3503 3504 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3505 Error **errp) 3506 { 3507 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3508 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3509 PCDIMMDevice *dimm = PC_DIMM(dev); 3510 Error *local_err = NULL; 3511 uint64_t size; 3512 Object *memdev; 3513 hwaddr pagesize; 3514 3515 if (!smc->dr_lmb_enabled) { 3516 error_setg(errp, "Memory hotplug not supported for this machine"); 3517 return; 3518 } 3519 3520 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3521 if (local_err) { 3522 error_propagate(errp, local_err); 3523 return; 3524 } 3525 3526 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3527 error_setg(errp, "Hotplugged memory size must be a multiple of " 3528 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3529 return; 3530 } 3531 3532 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3533 &error_abort); 3534 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3535 spapr_check_pagesize(spapr, pagesize, &local_err); 3536 if (local_err) { 3537 error_propagate(errp, local_err); 3538 return; 3539 } 3540 3541 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3542 } 3543 3544 struct SpaprDimmState { 3545 PCDIMMDevice *dimm; 3546 uint32_t nr_lmbs; 3547 QTAILQ_ENTRY(SpaprDimmState) next; 3548 }; 3549 3550 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3551 PCDIMMDevice *dimm) 3552 { 3553 SpaprDimmState *dimm_state = NULL; 3554 3555 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3556 if (dimm_state->dimm == dimm) { 3557 break; 3558 } 3559 } 3560 return dimm_state; 3561 } 3562 3563 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3564 uint32_t nr_lmbs, 3565 PCDIMMDevice *dimm) 3566 { 3567 SpaprDimmState *ds = NULL; 3568 3569 /* 3570 * If this request is for a DIMM whose removal had failed earlier 3571 * (due to guest's refusal to remove the LMBs), we would have this 3572 * dimm already in the pending_dimm_unplugs list. In that 3573 * case don't add again. 3574 */ 3575 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3576 if (!ds) { 3577 ds = g_malloc0(sizeof(SpaprDimmState)); 3578 ds->nr_lmbs = nr_lmbs; 3579 ds->dimm = dimm; 3580 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3581 } 3582 return ds; 3583 } 3584 3585 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3586 SpaprDimmState *dimm_state) 3587 { 3588 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3589 g_free(dimm_state); 3590 } 3591 3592 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3593 PCDIMMDevice *dimm) 3594 { 3595 SpaprDrc *drc; 3596 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3597 &error_abort); 3598 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3599 uint32_t avail_lmbs = 0; 3600 uint64_t addr_start, addr; 3601 int i; 3602 3603 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3604 &error_abort); 3605 3606 addr = addr_start; 3607 for (i = 0; i < nr_lmbs; i++) { 3608 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3609 addr / SPAPR_MEMORY_BLOCK_SIZE); 3610 g_assert(drc); 3611 if (drc->dev) { 3612 avail_lmbs++; 3613 } 3614 addr += SPAPR_MEMORY_BLOCK_SIZE; 3615 } 3616 3617 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3618 } 3619 3620 /* Callback to be called during DRC release. */ 3621 void spapr_lmb_release(DeviceState *dev) 3622 { 3623 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3624 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3625 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3626 3627 /* This information will get lost if a migration occurs 3628 * during the unplug process. In this case recover it. */ 3629 if (ds == NULL) { 3630 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3631 g_assert(ds); 3632 /* The DRC being examined by the caller at least must be counted */ 3633 g_assert(ds->nr_lmbs); 3634 } 3635 3636 if (--ds->nr_lmbs) { 3637 return; 3638 } 3639 3640 /* 3641 * Now that all the LMBs have been removed by the guest, call the 3642 * unplug handler chain. This can never fail. 3643 */ 3644 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3645 object_unparent(OBJECT(dev)); 3646 } 3647 3648 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3649 { 3650 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3651 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3652 3653 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3654 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3655 spapr_pending_dimm_unplugs_remove(spapr, ds); 3656 } 3657 3658 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3659 DeviceState *dev, Error **errp) 3660 { 3661 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3662 Error *local_err = NULL; 3663 PCDIMMDevice *dimm = PC_DIMM(dev); 3664 uint32_t nr_lmbs; 3665 uint64_t size, addr_start, addr; 3666 int i; 3667 SpaprDrc *drc; 3668 3669 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3670 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3671 3672 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3673 &local_err); 3674 if (local_err) { 3675 goto out; 3676 } 3677 3678 /* 3679 * An existing pending dimm state for this DIMM means that there is an 3680 * unplug operation in progress, waiting for the spapr_lmb_release 3681 * callback to complete the job (BQL can't cover that far). In this case, 3682 * bail out to avoid detaching DRCs that were already released. 3683 */ 3684 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3685 error_setg(&local_err, 3686 "Memory unplug already in progress for device %s", 3687 dev->id); 3688 goto out; 3689 } 3690 3691 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3692 3693 addr = addr_start; 3694 for (i = 0; i < nr_lmbs; i++) { 3695 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3696 addr / SPAPR_MEMORY_BLOCK_SIZE); 3697 g_assert(drc); 3698 3699 spapr_drc_detach(drc); 3700 addr += SPAPR_MEMORY_BLOCK_SIZE; 3701 } 3702 3703 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3704 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3705 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3706 nr_lmbs, spapr_drc_index(drc)); 3707 out: 3708 error_propagate(errp, local_err); 3709 } 3710 3711 /* Callback to be called during DRC release. */ 3712 void spapr_core_release(DeviceState *dev) 3713 { 3714 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3715 3716 /* Call the unplug handler chain. This can never fail. */ 3717 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3718 object_unparent(OBJECT(dev)); 3719 } 3720 3721 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3722 { 3723 MachineState *ms = MACHINE(hotplug_dev); 3724 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3725 CPUCore *cc = CPU_CORE(dev); 3726 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3727 3728 if (smc->pre_2_10_has_unused_icps) { 3729 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3730 int i; 3731 3732 for (i = 0; i < cc->nr_threads; i++) { 3733 CPUState *cs = CPU(sc->threads[i]); 3734 3735 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3736 } 3737 } 3738 3739 assert(core_slot); 3740 core_slot->cpu = NULL; 3741 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3742 } 3743 3744 static 3745 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3746 Error **errp) 3747 { 3748 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3749 int index; 3750 SpaprDrc *drc; 3751 CPUCore *cc = CPU_CORE(dev); 3752 3753 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3754 error_setg(errp, "Unable to find CPU core with core-id: %d", 3755 cc->core_id); 3756 return; 3757 } 3758 if (index == 0) { 3759 error_setg(errp, "Boot CPU core may not be unplugged"); 3760 return; 3761 } 3762 3763 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3764 spapr_vcpu_id(spapr, cc->core_id)); 3765 g_assert(drc); 3766 3767 spapr_drc_detach(drc); 3768 3769 spapr_hotplug_req_remove_by_index(drc); 3770 } 3771 3772 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3773 void *fdt, int *fdt_start_offset, Error **errp) 3774 { 3775 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3776 CPUState *cs = CPU(core->threads[0]); 3777 PowerPCCPU *cpu = POWERPC_CPU(cs); 3778 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3779 int id = spapr_get_vcpu_id(cpu); 3780 char *nodename; 3781 int offset; 3782 3783 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3784 offset = fdt_add_subnode(fdt, 0, nodename); 3785 g_free(nodename); 3786 3787 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3788 3789 *fdt_start_offset = offset; 3790 return 0; 3791 } 3792 3793 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3794 Error **errp) 3795 { 3796 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3797 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3798 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3799 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3800 CPUCore *cc = CPU_CORE(dev); 3801 CPUState *cs; 3802 SpaprDrc *drc; 3803 Error *local_err = NULL; 3804 CPUArchId *core_slot; 3805 int index; 3806 bool hotplugged = spapr_drc_hotplugged(dev); 3807 3808 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3809 if (!core_slot) { 3810 error_setg(errp, "Unable to find CPU core with core-id: %d", 3811 cc->core_id); 3812 return; 3813 } 3814 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3815 spapr_vcpu_id(spapr, cc->core_id)); 3816 3817 g_assert(drc || !mc->has_hotpluggable_cpus); 3818 3819 if (drc) { 3820 spapr_drc_attach(drc, dev, &local_err); 3821 if (local_err) { 3822 error_propagate(errp, local_err); 3823 return; 3824 } 3825 3826 if (hotplugged) { 3827 /* 3828 * Send hotplug notification interrupt to the guest only 3829 * in case of hotplugged CPUs. 3830 */ 3831 spapr_hotplug_req_add_by_index(drc); 3832 } else { 3833 spapr_drc_reset(drc); 3834 } 3835 } 3836 3837 core_slot->cpu = OBJECT(dev); 3838 3839 if (smc->pre_2_10_has_unused_icps) { 3840 int i; 3841 3842 for (i = 0; i < cc->nr_threads; i++) { 3843 cs = CPU(core->threads[i]); 3844 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3845 } 3846 } 3847 } 3848 3849 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3850 Error **errp) 3851 { 3852 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3853 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3854 Error *local_err = NULL; 3855 CPUCore *cc = CPU_CORE(dev); 3856 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3857 const char *type = object_get_typename(OBJECT(dev)); 3858 CPUArchId *core_slot; 3859 int index; 3860 3861 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3862 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3863 goto out; 3864 } 3865 3866 if (strcmp(base_core_type, type)) { 3867 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3868 goto out; 3869 } 3870 3871 if (cc->core_id % smp_threads) { 3872 error_setg(&local_err, "invalid core id %d", cc->core_id); 3873 goto out; 3874 } 3875 3876 /* 3877 * In general we should have homogeneous threads-per-core, but old 3878 * (pre hotplug support) machine types allow the last core to have 3879 * reduced threads as a compatibility hack for when we allowed 3880 * total vcpus not a multiple of threads-per-core. 3881 */ 3882 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3883 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3884 cc->nr_threads, smp_threads); 3885 goto out; 3886 } 3887 3888 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3889 if (!core_slot) { 3890 error_setg(&local_err, "core id %d out of range", cc->core_id); 3891 goto out; 3892 } 3893 3894 if (core_slot->cpu) { 3895 error_setg(&local_err, "core %d already populated", cc->core_id); 3896 goto out; 3897 } 3898 3899 numa_cpu_pre_plug(core_slot, dev, &local_err); 3900 3901 out: 3902 error_propagate(errp, local_err); 3903 } 3904 3905 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3906 void *fdt, int *fdt_start_offset, Error **errp) 3907 { 3908 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3909 int intc_phandle; 3910 3911 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3912 if (intc_phandle <= 0) { 3913 return -1; 3914 } 3915 3916 if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3917 fdt_start_offset)) { 3918 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3919 return -1; 3920 } 3921 3922 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3923 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3924 3925 return 0; 3926 } 3927 3928 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3929 Error **errp) 3930 { 3931 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3932 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3933 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3934 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3935 3936 if (dev->hotplugged && !smc->dr_phb_enabled) { 3937 error_setg(errp, "PHB hotplug not supported for this machine"); 3938 return; 3939 } 3940 3941 if (sphb->index == (uint32_t)-1) { 3942 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3943 return; 3944 } 3945 3946 /* 3947 * This will check that sphb->index doesn't exceed the maximum number of 3948 * PHBs for the current machine type. 3949 */ 3950 smc->phb_placement(spapr, sphb->index, 3951 &sphb->buid, &sphb->io_win_addr, 3952 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3953 windows_supported, sphb->dma_liobn, 3954 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3955 errp); 3956 } 3957 3958 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3959 Error **errp) 3960 { 3961 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3962 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3963 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3964 SpaprDrc *drc; 3965 bool hotplugged = spapr_drc_hotplugged(dev); 3966 Error *local_err = NULL; 3967 3968 if (!smc->dr_phb_enabled) { 3969 return; 3970 } 3971 3972 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3973 /* hotplug hooks should check it's enabled before getting this far */ 3974 assert(drc); 3975 3976 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3977 if (local_err) { 3978 error_propagate(errp, local_err); 3979 return; 3980 } 3981 3982 if (hotplugged) { 3983 spapr_hotplug_req_add_by_index(drc); 3984 } else { 3985 spapr_drc_reset(drc); 3986 } 3987 } 3988 3989 void spapr_phb_release(DeviceState *dev) 3990 { 3991 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3992 3993 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3994 object_unparent(OBJECT(dev)); 3995 } 3996 3997 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3998 { 3999 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4000 } 4001 4002 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4003 DeviceState *dev, Error **errp) 4004 { 4005 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4006 SpaprDrc *drc; 4007 4008 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4009 assert(drc); 4010 4011 if (!spapr_drc_unplug_requested(drc)) { 4012 spapr_drc_detach(drc); 4013 spapr_hotplug_req_remove_by_index(drc); 4014 } 4015 } 4016 4017 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4018 DeviceState *dev, Error **errp) 4019 { 4020 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4021 spapr_memory_plug(hotplug_dev, dev, errp); 4022 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4023 spapr_core_plug(hotplug_dev, dev, errp); 4024 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4025 spapr_phb_plug(hotplug_dev, dev, errp); 4026 } 4027 } 4028 4029 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4030 DeviceState *dev, Error **errp) 4031 { 4032 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4033 spapr_memory_unplug(hotplug_dev, dev); 4034 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4035 spapr_core_unplug(hotplug_dev, dev); 4036 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4037 spapr_phb_unplug(hotplug_dev, dev); 4038 } 4039 } 4040 4041 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4042 DeviceState *dev, Error **errp) 4043 { 4044 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4045 MachineClass *mc = MACHINE_GET_CLASS(sms); 4046 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4047 4048 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4049 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4050 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4051 } else { 4052 /* NOTE: this means there is a window after guest reset, prior to 4053 * CAS negotiation, where unplug requests will fail due to the 4054 * capability not being detected yet. This is a bit different than 4055 * the case with PCI unplug, where the events will be queued and 4056 * eventually handled by the guest after boot 4057 */ 4058 error_setg(errp, "Memory hot unplug not supported for this guest"); 4059 } 4060 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4061 if (!mc->has_hotpluggable_cpus) { 4062 error_setg(errp, "CPU hot unplug not supported on this machine"); 4063 return; 4064 } 4065 spapr_core_unplug_request(hotplug_dev, dev, errp); 4066 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4067 if (!smc->dr_phb_enabled) { 4068 error_setg(errp, "PHB hot unplug not supported on this machine"); 4069 return; 4070 } 4071 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4072 } 4073 } 4074 4075 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4076 DeviceState *dev, Error **errp) 4077 { 4078 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4079 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4080 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4081 spapr_core_pre_plug(hotplug_dev, dev, errp); 4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4083 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4084 } 4085 } 4086 4087 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4088 DeviceState *dev) 4089 { 4090 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4091 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4092 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4093 return HOTPLUG_HANDLER(machine); 4094 } 4095 return NULL; 4096 } 4097 4098 static CpuInstanceProperties 4099 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4100 { 4101 CPUArchId *core_slot; 4102 MachineClass *mc = MACHINE_GET_CLASS(machine); 4103 4104 /* make sure possible_cpu are intialized */ 4105 mc->possible_cpu_arch_ids(machine); 4106 /* get CPU core slot containing thread that matches cpu_index */ 4107 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4108 assert(core_slot); 4109 return core_slot->props; 4110 } 4111 4112 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4113 { 4114 return idx / smp_cores % nb_numa_nodes; 4115 } 4116 4117 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4118 { 4119 int i; 4120 const char *core_type; 4121 int spapr_max_cores = max_cpus / smp_threads; 4122 MachineClass *mc = MACHINE_GET_CLASS(machine); 4123 4124 if (!mc->has_hotpluggable_cpus) { 4125 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4126 } 4127 if (machine->possible_cpus) { 4128 assert(machine->possible_cpus->len == spapr_max_cores); 4129 return machine->possible_cpus; 4130 } 4131 4132 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4133 if (!core_type) { 4134 error_report("Unable to find sPAPR CPU Core definition"); 4135 exit(1); 4136 } 4137 4138 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4139 sizeof(CPUArchId) * spapr_max_cores); 4140 machine->possible_cpus->len = spapr_max_cores; 4141 for (i = 0; i < machine->possible_cpus->len; i++) { 4142 int core_id = i * smp_threads; 4143 4144 machine->possible_cpus->cpus[i].type = core_type; 4145 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4146 machine->possible_cpus->cpus[i].arch_id = core_id; 4147 machine->possible_cpus->cpus[i].props.has_core_id = true; 4148 machine->possible_cpus->cpus[i].props.core_id = core_id; 4149 } 4150 return machine->possible_cpus; 4151 } 4152 4153 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4154 uint64_t *buid, hwaddr *pio, 4155 hwaddr *mmio32, hwaddr *mmio64, 4156 unsigned n_dma, uint32_t *liobns, 4157 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4158 { 4159 /* 4160 * New-style PHB window placement. 4161 * 4162 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4163 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4164 * windows. 4165 * 4166 * Some guest kernels can't work with MMIO windows above 1<<46 4167 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4168 * 4169 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4170 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4171 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4172 * 1TiB 64-bit MMIO windows for each PHB. 4173 */ 4174 const uint64_t base_buid = 0x800000020000000ULL; 4175 int i; 4176 4177 /* Sanity check natural alignments */ 4178 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4179 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4180 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4181 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4182 /* Sanity check bounds */ 4183 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4184 SPAPR_PCI_MEM32_WIN_SIZE); 4185 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4186 SPAPR_PCI_MEM64_WIN_SIZE); 4187 4188 if (index >= SPAPR_MAX_PHBS) { 4189 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4190 SPAPR_MAX_PHBS - 1); 4191 return; 4192 } 4193 4194 *buid = base_buid + index; 4195 for (i = 0; i < n_dma; ++i) { 4196 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4197 } 4198 4199 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4200 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4201 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4202 4203 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4204 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4205 } 4206 4207 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4208 { 4209 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4210 4211 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4212 } 4213 4214 static void spapr_ics_resend(XICSFabric *dev) 4215 { 4216 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4217 4218 ics_resend(spapr->ics); 4219 } 4220 4221 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4222 { 4223 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4224 4225 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4226 } 4227 4228 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4229 Monitor *mon) 4230 { 4231 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4232 4233 spapr->irq->print_info(spapr, mon); 4234 } 4235 4236 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4237 { 4238 return cpu->vcpu_id; 4239 } 4240 4241 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4242 { 4243 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4244 int vcpu_id; 4245 4246 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4247 4248 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4249 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4250 error_append_hint(errp, "Adjust the number of cpus to %d " 4251 "or try to raise the number of threads per core\n", 4252 vcpu_id * smp_threads / spapr->vsmt); 4253 return; 4254 } 4255 4256 cpu->vcpu_id = vcpu_id; 4257 } 4258 4259 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4260 { 4261 CPUState *cs; 4262 4263 CPU_FOREACH(cs) { 4264 PowerPCCPU *cpu = POWERPC_CPU(cs); 4265 4266 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4267 return cpu; 4268 } 4269 } 4270 4271 return NULL; 4272 } 4273 4274 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4275 { 4276 MachineClass *mc = MACHINE_CLASS(oc); 4277 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4278 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4279 NMIClass *nc = NMI_CLASS(oc); 4280 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4281 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4282 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4283 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4284 4285 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4286 mc->ignore_boot_device_suffixes = true; 4287 4288 /* 4289 * We set up the default / latest behaviour here. The class_init 4290 * functions for the specific versioned machine types can override 4291 * these details for backwards compatibility 4292 */ 4293 mc->init = spapr_machine_init; 4294 mc->reset = spapr_machine_reset; 4295 mc->block_default_type = IF_SCSI; 4296 mc->max_cpus = 1024; 4297 mc->no_parallel = 1; 4298 mc->default_boot_order = ""; 4299 mc->default_ram_size = 512 * MiB; 4300 mc->default_display = "std"; 4301 mc->kvm_type = spapr_kvm_type; 4302 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4303 mc->pci_allow_0_address = true; 4304 assert(!mc->get_hotplug_handler); 4305 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4306 hc->pre_plug = spapr_machine_device_pre_plug; 4307 hc->plug = spapr_machine_device_plug; 4308 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4309 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4310 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4311 hc->unplug_request = spapr_machine_device_unplug_request; 4312 hc->unplug = spapr_machine_device_unplug; 4313 4314 smc->dr_lmb_enabled = true; 4315 smc->update_dt_enabled = true; 4316 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4317 mc->has_hotpluggable_cpus = true; 4318 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4319 fwc->get_dev_path = spapr_get_fw_dev_path; 4320 nc->nmi_monitor_handler = spapr_nmi; 4321 smc->phb_placement = spapr_phb_placement; 4322 vhc->hypercall = emulate_spapr_hypercall; 4323 vhc->hpt_mask = spapr_hpt_mask; 4324 vhc->map_hptes = spapr_map_hptes; 4325 vhc->unmap_hptes = spapr_unmap_hptes; 4326 vhc->hpte_set_c = spapr_hpte_set_c; 4327 vhc->hpte_set_r = spapr_hpte_set_r; 4328 vhc->get_pate = spapr_get_pate; 4329 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4330 xic->ics_get = spapr_ics_get; 4331 xic->ics_resend = spapr_ics_resend; 4332 xic->icp_get = spapr_icp_get; 4333 ispc->print_info = spapr_pic_print_info; 4334 /* Force NUMA node memory size to be a multiple of 4335 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4336 * in which LMBs are represented and hot-added 4337 */ 4338 mc->numa_mem_align_shift = 28; 4339 4340 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4341 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4342 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4343 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4344 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4345 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4346 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4347 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4348 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4349 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4350 spapr_caps_add_properties(smc, &error_abort); 4351 smc->irq = &spapr_irq_xics; 4352 smc->dr_phb_enabled = true; 4353 } 4354 4355 static const TypeInfo spapr_machine_info = { 4356 .name = TYPE_SPAPR_MACHINE, 4357 .parent = TYPE_MACHINE, 4358 .abstract = true, 4359 .instance_size = sizeof(SpaprMachineState), 4360 .instance_init = spapr_instance_init, 4361 .instance_finalize = spapr_machine_finalizefn, 4362 .class_size = sizeof(SpaprMachineClass), 4363 .class_init = spapr_machine_class_init, 4364 .interfaces = (InterfaceInfo[]) { 4365 { TYPE_FW_PATH_PROVIDER }, 4366 { TYPE_NMI }, 4367 { TYPE_HOTPLUG_HANDLER }, 4368 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4369 { TYPE_XICS_FABRIC }, 4370 { TYPE_INTERRUPT_STATS_PROVIDER }, 4371 { } 4372 }, 4373 }; 4374 4375 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4376 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4377 void *data) \ 4378 { \ 4379 MachineClass *mc = MACHINE_CLASS(oc); \ 4380 spapr_machine_##suffix##_class_options(mc); \ 4381 if (latest) { \ 4382 mc->alias = "pseries"; \ 4383 mc->is_default = 1; \ 4384 } \ 4385 } \ 4386 static const TypeInfo spapr_machine_##suffix##_info = { \ 4387 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4388 .parent = TYPE_SPAPR_MACHINE, \ 4389 .class_init = spapr_machine_##suffix##_class_init, \ 4390 }; \ 4391 static void spapr_machine_register_##suffix(void) \ 4392 { \ 4393 type_register(&spapr_machine_##suffix##_info); \ 4394 } \ 4395 type_init(spapr_machine_register_##suffix) 4396 4397 /* 4398 * pseries-4.1 4399 */ 4400 static void spapr_machine_4_1_class_options(MachineClass *mc) 4401 { 4402 /* Defaults for the latest behaviour inherited from the base class */ 4403 } 4404 4405 DEFINE_SPAPR_MACHINE(4_1, "4.1", true); 4406 4407 /* 4408 * pseries-4.0 4409 */ 4410 static void spapr_machine_4_0_class_options(MachineClass *mc) 4411 { 4412 spapr_machine_4_1_class_options(mc); 4413 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4414 } 4415 4416 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4417 4418 /* 4419 * pseries-3.1 4420 */ 4421 static void phb_placement_3_1(SpaprMachineState *spapr, uint32_t index, 4422 uint64_t *buid, hwaddr *pio, 4423 hwaddr *mmio32, hwaddr *mmio64, 4424 unsigned n_dma, uint32_t *liobns, 4425 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4426 { 4427 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4428 nv2gpa, nv2atsd, errp); 4429 *nv2gpa = 0; 4430 *nv2atsd = 0; 4431 } 4432 4433 static void spapr_machine_3_1_class_options(MachineClass *mc) 4434 { 4435 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4436 4437 spapr_machine_4_0_class_options(mc); 4438 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4439 4440 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4441 smc->update_dt_enabled = false; 4442 smc->dr_phb_enabled = false; 4443 smc->broken_host_serial_model = true; 4444 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4445 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4446 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4447 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4448 smc->phb_placement = phb_placement_3_1; 4449 } 4450 4451 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4452 4453 /* 4454 * pseries-3.0 4455 */ 4456 4457 static void spapr_machine_3_0_class_options(MachineClass *mc) 4458 { 4459 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4460 4461 spapr_machine_3_1_class_options(mc); 4462 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4463 4464 smc->legacy_irq_allocation = true; 4465 smc->irq = &spapr_irq_xics_legacy; 4466 } 4467 4468 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4469 4470 /* 4471 * pseries-2.12 4472 */ 4473 static void spapr_machine_2_12_class_options(MachineClass *mc) 4474 { 4475 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4476 static GlobalProperty compat[] = { 4477 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4478 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4479 }; 4480 4481 spapr_machine_3_0_class_options(mc); 4482 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4483 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4484 4485 /* We depend on kvm_enabled() to choose a default value for the 4486 * hpt-max-page-size capability. Of course we can't do it here 4487 * because this is too early and the HW accelerator isn't initialzed 4488 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4489 */ 4490 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4491 } 4492 4493 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4494 4495 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4496 { 4497 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4498 4499 spapr_machine_2_12_class_options(mc); 4500 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4501 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4502 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4503 } 4504 4505 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4506 4507 /* 4508 * pseries-2.11 4509 */ 4510 4511 static void spapr_machine_2_11_class_options(MachineClass *mc) 4512 { 4513 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4514 4515 spapr_machine_2_12_class_options(mc); 4516 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4517 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4518 } 4519 4520 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4521 4522 /* 4523 * pseries-2.10 4524 */ 4525 4526 static void spapr_machine_2_10_class_options(MachineClass *mc) 4527 { 4528 spapr_machine_2_11_class_options(mc); 4529 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4530 } 4531 4532 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4533 4534 /* 4535 * pseries-2.9 4536 */ 4537 4538 static void spapr_machine_2_9_class_options(MachineClass *mc) 4539 { 4540 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4541 static GlobalProperty compat[] = { 4542 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4543 }; 4544 4545 spapr_machine_2_10_class_options(mc); 4546 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4547 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4548 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4549 smc->pre_2_10_has_unused_icps = true; 4550 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4551 } 4552 4553 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4554 4555 /* 4556 * pseries-2.8 4557 */ 4558 4559 static void spapr_machine_2_8_class_options(MachineClass *mc) 4560 { 4561 static GlobalProperty compat[] = { 4562 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4563 }; 4564 4565 spapr_machine_2_9_class_options(mc); 4566 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4567 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4568 mc->numa_mem_align_shift = 23; 4569 } 4570 4571 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4572 4573 /* 4574 * pseries-2.7 4575 */ 4576 4577 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4578 uint64_t *buid, hwaddr *pio, 4579 hwaddr *mmio32, hwaddr *mmio64, 4580 unsigned n_dma, uint32_t *liobns, 4581 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4582 { 4583 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4584 const uint64_t base_buid = 0x800000020000000ULL; 4585 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4586 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4587 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4588 const uint32_t max_index = 255; 4589 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4590 4591 uint64_t ram_top = MACHINE(spapr)->ram_size; 4592 hwaddr phb0_base, phb_base; 4593 int i; 4594 4595 /* Do we have device memory? */ 4596 if (MACHINE(spapr)->maxram_size > ram_top) { 4597 /* Can't just use maxram_size, because there may be an 4598 * alignment gap between normal and device memory regions 4599 */ 4600 ram_top = MACHINE(spapr)->device_memory->base + 4601 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4602 } 4603 4604 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4605 4606 if (index > max_index) { 4607 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4608 max_index); 4609 return; 4610 } 4611 4612 *buid = base_buid + index; 4613 for (i = 0; i < n_dma; ++i) { 4614 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4615 } 4616 4617 phb_base = phb0_base + index * phb_spacing; 4618 *pio = phb_base + pio_offset; 4619 *mmio32 = phb_base + mmio_offset; 4620 /* 4621 * We don't set the 64-bit MMIO window, relying on the PHB's 4622 * fallback behaviour of automatically splitting a large "32-bit" 4623 * window into contiguous 32-bit and 64-bit windows 4624 */ 4625 4626 *nv2gpa = 0; 4627 *nv2atsd = 0; 4628 } 4629 4630 static void spapr_machine_2_7_class_options(MachineClass *mc) 4631 { 4632 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4633 static GlobalProperty compat[] = { 4634 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4635 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4636 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4637 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4638 }; 4639 4640 spapr_machine_2_8_class_options(mc); 4641 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4642 mc->default_machine_opts = "modern-hotplug-events=off"; 4643 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4644 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4645 smc->phb_placement = phb_placement_2_7; 4646 } 4647 4648 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4649 4650 /* 4651 * pseries-2.6 4652 */ 4653 4654 static void spapr_machine_2_6_class_options(MachineClass *mc) 4655 { 4656 static GlobalProperty compat[] = { 4657 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4658 }; 4659 4660 spapr_machine_2_7_class_options(mc); 4661 mc->has_hotpluggable_cpus = false; 4662 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4663 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4664 } 4665 4666 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4667 4668 /* 4669 * pseries-2.5 4670 */ 4671 4672 static void spapr_machine_2_5_class_options(MachineClass *mc) 4673 { 4674 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4675 static GlobalProperty compat[] = { 4676 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4677 }; 4678 4679 spapr_machine_2_6_class_options(mc); 4680 smc->use_ohci_by_default = true; 4681 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4682 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4683 } 4684 4685 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4686 4687 /* 4688 * pseries-2.4 4689 */ 4690 4691 static void spapr_machine_2_4_class_options(MachineClass *mc) 4692 { 4693 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4694 4695 spapr_machine_2_5_class_options(mc); 4696 smc->dr_lmb_enabled = false; 4697 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4698 } 4699 4700 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4701 4702 /* 4703 * pseries-2.3 4704 */ 4705 4706 static void spapr_machine_2_3_class_options(MachineClass *mc) 4707 { 4708 static GlobalProperty compat[] = { 4709 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4710 }; 4711 spapr_machine_2_4_class_options(mc); 4712 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4713 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4714 } 4715 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4716 4717 /* 4718 * pseries-2.2 4719 */ 4720 4721 static void spapr_machine_2_2_class_options(MachineClass *mc) 4722 { 4723 static GlobalProperty compat[] = { 4724 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4725 }; 4726 4727 spapr_machine_2_3_class_options(mc); 4728 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4729 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4730 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4731 } 4732 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4733 4734 /* 4735 * pseries-2.1 4736 */ 4737 4738 static void spapr_machine_2_1_class_options(MachineClass *mc) 4739 { 4740 spapr_machine_2_2_class_options(mc); 4741 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4742 } 4743 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4744 4745 static void spapr_machine_register_types(void) 4746 { 4747 type_register_static(&spapr_machine_info); 4748 } 4749 4750 type_init(spapr_machine_register_types) 4751