xref: /openbmc/qemu/hw/ppc/spapr.c (revision 44602af8)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58 
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61 
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_vio.h"
65 #include "hw/qdev-properties.h"
66 #include "hw/pci-host/spapr.h"
67 #include "hw/pci/msi.h"
68 
69 #include "hw/pci/pci.h"
70 #include "hw/scsi/scsi.h"
71 #include "hw/virtio/virtio-scsi.h"
72 #include "hw/virtio/vhost-scsi-common.h"
73 
74 #include "exec/ram_addr.h"
75 #include "hw/usb.h"
76 #include "qemu/config-file.h"
77 #include "qemu/error-report.h"
78 #include "trace.h"
79 #include "hw/nmi.h"
80 #include "hw/intc/intc.h"
81 
82 #include "hw/ppc/spapr_cpu_core.h"
83 #include "hw/mem/memory-device.h"
84 #include "hw/ppc/spapr_tpm_proxy.h"
85 #include "hw/ppc/spapr_nvdimm.h"
86 #include "hw/ppc/spapr_numa.h"
87 #include "hw/ppc/pef.h"
88 
89 #include "monitor/monitor.h"
90 
91 #include <libfdt.h>
92 
93 /* SLOF memory layout:
94  *
95  * SLOF raw image loaded at 0, copies its romfs right below the flat
96  * device-tree, then position SLOF itself 31M below that
97  *
98  * So we set FW_OVERHEAD to 40MB which should account for all of that
99  * and more
100  *
101  * We load our kernel at 4M, leaving space for SLOF initial image
102  */
103 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
104 #define FW_MAX_SIZE             0x400000
105 #define FW_FILE_NAME            "slof.bin"
106 #define FW_FILE_NAME_VOF        "vof.bin"
107 #define FW_OVERHEAD             0x2800000
108 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
109 
110 #define MIN_RMA_SLOF            (128 * MiB)
111 
112 #define PHANDLE_INTC            0x00001111
113 
114 /* These two functions implement the VCPU id numbering: one to compute them
115  * all and one to identify thread 0 of a VCORE. Any change to the first one
116  * is likely to have an impact on the second one, so let's keep them close.
117  */
118 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
119 {
120     MachineState *ms = MACHINE(spapr);
121     unsigned int smp_threads = ms->smp.threads;
122 
123     assert(spapr->vsmt);
124     return
125         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
126 }
127 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
128                                       PowerPCCPU *cpu)
129 {
130     assert(spapr->vsmt);
131     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
132 }
133 
134 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
135 {
136     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
137      * and newer QEMUs don't even have them. In both cases, we don't want
138      * to send anything on the wire.
139      */
140     return false;
141 }
142 
143 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
144     .name = "icp/server",
145     .version_id = 1,
146     .minimum_version_id = 1,
147     .needed = pre_2_10_vmstate_dummy_icp_needed,
148     .fields = (VMStateField[]) {
149         VMSTATE_UNUSED(4), /* uint32_t xirr */
150         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
151         VMSTATE_UNUSED(1), /* uint8_t mfrr */
152         VMSTATE_END_OF_LIST()
153     },
154 };
155 
156 static void pre_2_10_vmstate_register_dummy_icp(int i)
157 {
158     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
159                      (void *)(uintptr_t) i);
160 }
161 
162 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
163 {
164     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
165                        (void *)(uintptr_t) i);
166 }
167 
168 int spapr_max_server_number(SpaprMachineState *spapr)
169 {
170     MachineState *ms = MACHINE(spapr);
171 
172     assert(spapr->vsmt);
173     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
174 }
175 
176 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
177                                   int smt_threads)
178 {
179     int i, ret = 0;
180     uint32_t servers_prop[smt_threads];
181     uint32_t gservers_prop[smt_threads * 2];
182     int index = spapr_get_vcpu_id(cpu);
183 
184     if (cpu->compat_pvr) {
185         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
186         if (ret < 0) {
187             return ret;
188         }
189     }
190 
191     /* Build interrupt servers and gservers properties */
192     for (i = 0; i < smt_threads; i++) {
193         servers_prop[i] = cpu_to_be32(index + i);
194         /* Hack, direct the group queues back to cpu 0 */
195         gservers_prop[i*2] = cpu_to_be32(index + i);
196         gservers_prop[i*2 + 1] = 0;
197     }
198     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
199                       servers_prop, sizeof(servers_prop));
200     if (ret < 0) {
201         return ret;
202     }
203     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
204                       gservers_prop, sizeof(gservers_prop));
205 
206     return ret;
207 }
208 
209 static void spapr_dt_pa_features(SpaprMachineState *spapr,
210                                  PowerPCCPU *cpu,
211                                  void *fdt, int offset)
212 {
213     uint8_t pa_features_206[] = { 6, 0,
214         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215     uint8_t pa_features_207[] = { 24, 0,
216         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220     uint8_t pa_features_300[] = { 66, 0,
221         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224         /* 6: DS207 */
225         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226         /* 16: Vector */
227         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236         /* 42: PM, 44: PC RA, 46: SC vec'd */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238         /* 48: SIMD, 50: QP BFP, 52: String */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240         /* 54: DecFP, 56: DecI, 58: SHA */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242         /* 60: NM atomic, 62: RNG */
243         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244     };
245     uint8_t *pa_features = NULL;
246     size_t pa_size;
247 
248     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249         pa_features = pa_features_206;
250         pa_size = sizeof(pa_features_206);
251     }
252     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253         pa_features = pa_features_207;
254         pa_size = sizeof(pa_features_207);
255     }
256     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257         pa_features = pa_features_300;
258         pa_size = sizeof(pa_features_300);
259     }
260     if (!pa_features) {
261         return;
262     }
263 
264     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265         /*
266          * Note: we keep CI large pages off by default because a 64K capable
267          * guest provisioned with large pages might otherwise try to map a qemu
268          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269          * even if that qemu runs on a 4k host.
270          * We dd this bit back here if we are confident this is not an issue
271          */
272         pa_features[3] |= 0x20;
273     }
274     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275         pa_features[24] |= 0x80;    /* Transactional memory support */
276     }
277     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
278         /* Workaround for broken kernels that attempt (guest) radix
279          * mode when they can't handle it, if they see the radix bit set
280          * in pa-features. So hide it from them. */
281         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282     }
283 
284     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286 
287 static hwaddr spapr_node0_size(MachineState *machine)
288 {
289     if (machine->numa_state->num_nodes) {
290         int i;
291         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
292             if (machine->numa_state->nodes[i].node_mem) {
293                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
294                            machine->ram_size);
295             }
296         }
297     }
298     return machine->ram_size;
299 }
300 
301 static void add_str(GString *s, const gchar *s1)
302 {
303     g_string_append_len(s, s1, strlen(s1) + 1);
304 }
305 
306 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
307                                 hwaddr start, hwaddr size)
308 {
309     char mem_name[32];
310     uint64_t mem_reg_property[2];
311     int off;
312 
313     mem_reg_property[0] = cpu_to_be64(start);
314     mem_reg_property[1] = cpu_to_be64(size);
315 
316     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
317     off = fdt_add_subnode(fdt, 0, mem_name);
318     _FDT(off);
319     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
320     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
321                       sizeof(mem_reg_property))));
322     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
323     return off;
324 }
325 
326 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
327 {
328     MemoryDeviceInfoList *info;
329 
330     for (info = list; info; info = info->next) {
331         MemoryDeviceInfo *value = info->value;
332 
333         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
334             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
335 
336             if (addr >= pcdimm_info->addr &&
337                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
338                 return pcdimm_info->node;
339             }
340         }
341     }
342 
343     return -1;
344 }
345 
346 struct sPAPRDrconfCellV2 {
347      uint32_t seq_lmbs;
348      uint64_t base_addr;
349      uint32_t drc_index;
350      uint32_t aa_index;
351      uint32_t flags;
352 } QEMU_PACKED;
353 
354 typedef struct DrconfCellQueue {
355     struct sPAPRDrconfCellV2 cell;
356     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
357 } DrconfCellQueue;
358 
359 static DrconfCellQueue *
360 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
361                       uint32_t drc_index, uint32_t aa_index,
362                       uint32_t flags)
363 {
364     DrconfCellQueue *elem;
365 
366     elem = g_malloc0(sizeof(*elem));
367     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
368     elem->cell.base_addr = cpu_to_be64(base_addr);
369     elem->cell.drc_index = cpu_to_be32(drc_index);
370     elem->cell.aa_index = cpu_to_be32(aa_index);
371     elem->cell.flags = cpu_to_be32(flags);
372 
373     return elem;
374 }
375 
376 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
377                                       int offset, MemoryDeviceInfoList *dimms)
378 {
379     MachineState *machine = MACHINE(spapr);
380     uint8_t *int_buf, *cur_index;
381     int ret;
382     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
383     uint64_t addr, cur_addr, size;
384     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
385     uint64_t mem_end = machine->device_memory->base +
386                        memory_region_size(&machine->device_memory->mr);
387     uint32_t node, buf_len, nr_entries = 0;
388     SpaprDrc *drc;
389     DrconfCellQueue *elem, *next;
390     MemoryDeviceInfoList *info;
391     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
392         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
393 
394     /* Entry to cover RAM and the gap area */
395     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
396                                  SPAPR_LMB_FLAGS_RESERVED |
397                                  SPAPR_LMB_FLAGS_DRC_INVALID);
398     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
399     nr_entries++;
400 
401     cur_addr = machine->device_memory->base;
402     for (info = dimms; info; info = info->next) {
403         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
404 
405         addr = di->addr;
406         size = di->size;
407         node = di->node;
408 
409         /*
410          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
411          * area is marked hotpluggable in the next iteration for the bigger
412          * chunk including the NVDIMM occupied area.
413          */
414         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
415             continue;
416 
417         /* Entry for hot-pluggable area */
418         if (cur_addr < addr) {
419             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
420             g_assert(drc);
421             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
422                                          cur_addr, spapr_drc_index(drc), -1, 0);
423             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
424             nr_entries++;
425         }
426 
427         /* Entry for DIMM */
428         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
429         g_assert(drc);
430         elem = spapr_get_drconf_cell(size / lmb_size, addr,
431                                      spapr_drc_index(drc), node,
432                                      (SPAPR_LMB_FLAGS_ASSIGNED |
433                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
434         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
435         nr_entries++;
436         cur_addr = addr + size;
437     }
438 
439     /* Entry for remaining hotpluggable area */
440     if (cur_addr < mem_end) {
441         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
442         g_assert(drc);
443         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
444                                      cur_addr, spapr_drc_index(drc), -1, 0);
445         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
446         nr_entries++;
447     }
448 
449     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
450     int_buf = cur_index = g_malloc0(buf_len);
451     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
452     cur_index += sizeof(nr_entries);
453 
454     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
455         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
456         cur_index += sizeof(elem->cell);
457         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
458         g_free(elem);
459     }
460 
461     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
462     g_free(int_buf);
463     if (ret < 0) {
464         return -1;
465     }
466     return 0;
467 }
468 
469 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
470                                    int offset, MemoryDeviceInfoList *dimms)
471 {
472     MachineState *machine = MACHINE(spapr);
473     int i, ret;
474     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
475     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
476     uint32_t nr_lmbs = (machine->device_memory->base +
477                        memory_region_size(&machine->device_memory->mr)) /
478                        lmb_size;
479     uint32_t *int_buf, *cur_index, buf_len;
480 
481     /*
482      * Allocate enough buffer size to fit in ibm,dynamic-memory
483      */
484     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
485     cur_index = int_buf = g_malloc0(buf_len);
486     int_buf[0] = cpu_to_be32(nr_lmbs);
487     cur_index++;
488     for (i = 0; i < nr_lmbs; i++) {
489         uint64_t addr = i * lmb_size;
490         uint32_t *dynamic_memory = cur_index;
491 
492         if (i >= device_lmb_start) {
493             SpaprDrc *drc;
494 
495             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
496             g_assert(drc);
497 
498             dynamic_memory[0] = cpu_to_be32(addr >> 32);
499             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
500             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
501             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
502             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
503             if (memory_region_present(get_system_memory(), addr)) {
504                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
505             } else {
506                 dynamic_memory[5] = cpu_to_be32(0);
507             }
508         } else {
509             /*
510              * LMB information for RMA, boot time RAM and gap b/n RAM and
511              * device memory region -- all these are marked as reserved
512              * and as having no valid DRC.
513              */
514             dynamic_memory[0] = cpu_to_be32(addr >> 32);
515             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
516             dynamic_memory[2] = cpu_to_be32(0);
517             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
518             dynamic_memory[4] = cpu_to_be32(-1);
519             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
520                                             SPAPR_LMB_FLAGS_DRC_INVALID);
521         }
522 
523         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
524     }
525     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
526     g_free(int_buf);
527     if (ret < 0) {
528         return -1;
529     }
530     return 0;
531 }
532 
533 /*
534  * Adds ibm,dynamic-reconfiguration-memory node.
535  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
536  * of this device tree node.
537  */
538 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
539                                                    void *fdt)
540 {
541     MachineState *machine = MACHINE(spapr);
542     int ret, offset;
543     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
544     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
545                                 cpu_to_be32(lmb_size & 0xffffffff)};
546     MemoryDeviceInfoList *dimms = NULL;
547 
548     /*
549      * Don't create the node if there is no device memory
550      */
551     if (machine->ram_size == machine->maxram_size) {
552         return 0;
553     }
554 
555     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
556 
557     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558                     sizeof(prop_lmb_size));
559     if (ret < 0) {
560         return ret;
561     }
562 
563     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564     if (ret < 0) {
565         return ret;
566     }
567 
568     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569     if (ret < 0) {
570         return ret;
571     }
572 
573     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574     dimms = qmp_memory_device_list();
575     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577     } else {
578         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
579     }
580     qapi_free_MemoryDeviceInfoList(dimms);
581 
582     if (ret < 0) {
583         return ret;
584     }
585 
586     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
587 
588     return ret;
589 }
590 
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
592 {
593     MachineState *machine = MACHINE(spapr);
594     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595     hwaddr mem_start, node_size;
596     int i, nb_nodes = machine->numa_state->num_nodes;
597     NodeInfo *nodes = machine->numa_state->nodes;
598 
599     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600         if (!nodes[i].node_mem) {
601             continue;
602         }
603         if (mem_start >= machine->ram_size) {
604             node_size = 0;
605         } else {
606             node_size = nodes[i].node_mem;
607             if (node_size > machine->ram_size - mem_start) {
608                 node_size = machine->ram_size - mem_start;
609             }
610         }
611         if (!mem_start) {
612             /* spapr_machine_init() checks for rma_size <= node0_size
613              * already */
614             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615             mem_start += spapr->rma_size;
616             node_size -= spapr->rma_size;
617         }
618         for ( ; node_size; ) {
619             hwaddr sizetmp = pow2floor(node_size);
620 
621             /* mem_start != 0 here */
622             if (ctzl(mem_start) < ctzl(sizetmp)) {
623                 sizetmp = 1ULL << ctzl(mem_start);
624             }
625 
626             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627             node_size -= sizetmp;
628             mem_start += sizetmp;
629         }
630     }
631 
632     /* Generate ibm,dynamic-reconfiguration-memory node if required */
633     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634         int ret;
635 
636         g_assert(smc->dr_lmb_enabled);
637         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638         if (ret) {
639             return ret;
640         }
641     }
642 
643     return 0;
644 }
645 
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647                          SpaprMachineState *spapr)
648 {
649     MachineState *ms = MACHINE(spapr);
650     PowerPCCPU *cpu = POWERPC_CPU(cs);
651     CPUPPCState *env = &cpu->env;
652     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653     int index = spapr_get_vcpu_id(cpu);
654     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655                        0xffffffff, 0xffffffff};
656     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657         : SPAPR_TIMEBASE_FREQ;
658     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659     uint32_t page_sizes_prop[64];
660     size_t page_sizes_prop_size;
661     unsigned int smp_threads = ms->smp.threads;
662     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665     SpaprDrc *drc;
666     int drc_index;
667     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668     int i;
669 
670     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671     if (drc) {
672         drc_index = spapr_drc_index(drc);
673         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
674     }
675 
676     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
678 
679     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681                            env->dcache_line_size)));
682     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683                            env->dcache_line_size)));
684     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685                            env->icache_line_size)));
686     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687                            env->icache_line_size)));
688 
689     if (pcc->l1_dcache_size) {
690         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691                                pcc->l1_dcache_size)));
692     } else {
693         warn_report("Unknown L1 dcache size for cpu");
694     }
695     if (pcc->l1_icache_size) {
696         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697                                pcc->l1_icache_size)));
698     } else {
699         warn_report("Unknown L1 icache size for cpu");
700     }
701 
702     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
708 
709     if (ppc_has_spr(cpu, SPR_PURR)) {
710         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
711     }
712     if (ppc_has_spr(cpu, SPR_PURR)) {
713         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
714     }
715 
716     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718                           segs, sizeof(segs))));
719     }
720 
721     /* Advertise VSX (vector extensions) if available
722      *   1               == VMX / Altivec available
723      *   2               == VSX available
724      *
725      * Only CPUs for which we create core types in spapr_cpu_core.c
726      * are possible, and all of those have VMX */
727     if (env->insns_flags & PPC_ALTIVEC) {
728         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730         } else {
731             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
732         }
733     }
734 
735     /* Advertise DFP (Decimal Floating Point) if available
736      *   0 / no property == no DFP
737      *   1               == DFP available */
738     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
740     }
741 
742     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743                                                       sizeof(page_sizes_prop));
744     if (page_sizes_prop_size) {
745         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746                           page_sizes_prop, page_sizes_prop_size)));
747     }
748 
749     spapr_dt_pa_features(spapr, cpu, fdt, offset);
750 
751     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752                            cs->cpu_index / vcpus_per_socket)));
753 
754     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755                       pft_size_prop, sizeof(pft_size_prop))));
756 
757     if (ms->numa_state->num_nodes > 1) {
758         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
759     }
760 
761     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
762 
763     if (pcc->radix_page_info) {
764         for (i = 0; i < pcc->radix_page_info->count; i++) {
765             radix_AP_encodings[i] =
766                 cpu_to_be32(pcc->radix_page_info->entries[i]);
767         }
768         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769                           radix_AP_encodings,
770                           pcc->radix_page_info->count *
771                           sizeof(radix_AP_encodings[0]))));
772     }
773 
774     /*
775      * We set this property to let the guest know that it can use the large
776      * decrementer and its width in bits.
777      */
778     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780                               pcc->lrg_decr_bits)));
781 }
782 
783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
784 {
785     CPUState **rev;
786     CPUState *cs;
787     int n_cpus;
788     int cpus_offset;
789     int i;
790 
791     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
792     _FDT(cpus_offset);
793     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
794     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
795 
796     /*
797      * We walk the CPUs in reverse order to ensure that CPU DT nodes
798      * created by fdt_add_subnode() end up in the right order in FDT
799      * for the guest kernel the enumerate the CPUs correctly.
800      *
801      * The CPU list cannot be traversed in reverse order, so we need
802      * to do extra work.
803      */
804     n_cpus = 0;
805     rev = NULL;
806     CPU_FOREACH(cs) {
807         rev = g_renew(CPUState *, rev, n_cpus + 1);
808         rev[n_cpus++] = cs;
809     }
810 
811     for (i = n_cpus - 1; i >= 0; i--) {
812         CPUState *cs = rev[i];
813         PowerPCCPU *cpu = POWERPC_CPU(cs);
814         int index = spapr_get_vcpu_id(cpu);
815         DeviceClass *dc = DEVICE_GET_CLASS(cs);
816         g_autofree char *nodename = NULL;
817         int offset;
818 
819         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
820             continue;
821         }
822 
823         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
824         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
825         _FDT(offset);
826         spapr_dt_cpu(cs, fdt, offset, spapr);
827     }
828 
829     g_free(rev);
830 }
831 
832 static int spapr_dt_rng(void *fdt)
833 {
834     int node;
835     int ret;
836 
837     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
838     if (node <= 0) {
839         return -1;
840     }
841     ret = fdt_setprop_string(fdt, node, "device_type",
842                              "ibm,platform-facilities");
843     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
844     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
845 
846     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
847     if (node <= 0) {
848         return -1;
849     }
850     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
851 
852     return ret ? -1 : 0;
853 }
854 
855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
856 {
857     MachineState *ms = MACHINE(spapr);
858     int rtas;
859     GString *hypertas = g_string_sized_new(256);
860     GString *qemu_hypertas = g_string_sized_new(256);
861     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
862         memory_region_size(&MACHINE(spapr)->device_memory->mr);
863     uint32_t lrdr_capacity[] = {
864         cpu_to_be32(max_device_addr >> 32),
865         cpu_to_be32(max_device_addr & 0xffffffff),
866         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
867         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
868         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
869     };
870 
871     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
872 
873     /* hypertas */
874     add_str(hypertas, "hcall-pft");
875     add_str(hypertas, "hcall-term");
876     add_str(hypertas, "hcall-dabr");
877     add_str(hypertas, "hcall-interrupt");
878     add_str(hypertas, "hcall-tce");
879     add_str(hypertas, "hcall-vio");
880     add_str(hypertas, "hcall-splpar");
881     add_str(hypertas, "hcall-join");
882     add_str(hypertas, "hcall-bulk");
883     add_str(hypertas, "hcall-set-mode");
884     add_str(hypertas, "hcall-sprg0");
885     add_str(hypertas, "hcall-copy");
886     add_str(hypertas, "hcall-debug");
887     add_str(hypertas, "hcall-vphn");
888     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
889         add_str(hypertas, "hcall-rpt-invalidate");
890     }
891 
892     add_str(qemu_hypertas, "hcall-memop1");
893 
894     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
895         add_str(hypertas, "hcall-multi-tce");
896     }
897 
898     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
899         add_str(hypertas, "hcall-hpt-resize");
900     }
901 
902     add_str(hypertas, "hcall-watchdog");
903 
904     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
905                      hypertas->str, hypertas->len));
906     g_string_free(hypertas, TRUE);
907     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
908                      qemu_hypertas->str, qemu_hypertas->len));
909     g_string_free(qemu_hypertas, TRUE);
910 
911     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
912 
913     /*
914      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
915      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
916      *
917      * The system reset requirements are driven by existing Linux and PowerVM
918      * implementation which (contrary to PAPR) saves r3 in the error log
919      * structure like machine check, so Linux expects to find the saved r3
920      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
921      * does not look at the error value).
922      *
923      * System reset interrupts are not subject to interlock like machine
924      * check, so this memory area could be corrupted if the sreset is
925      * interrupted by a machine check (or vice versa) if it was shared. To
926      * prevent this, system reset uses per-CPU areas for the sreset save
927      * area. A system reset that interrupts a system reset handler could
928      * still overwrite this area, but Linux doesn't try to recover in that
929      * case anyway.
930      *
931      * The extra 8 bytes is required because Linux's FWNMI error log check
932      * is off-by-one.
933      *
934      * RTAS_MIN_SIZE is required for the RTAS blob itself.
935      */
936     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
937                           RTAS_ERROR_LOG_MAX +
938                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
939                           sizeof(uint64_t)));
940     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
941                           RTAS_ERROR_LOG_MAX));
942     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
943                           RTAS_EVENT_SCAN_RATE));
944 
945     g_assert(msi_nonbroken);
946     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
947 
948     /*
949      * According to PAPR, rtas ibm,os-term does not guarantee a return
950      * back to the guest cpu.
951      *
952      * While an additional ibm,extended-os-term property indicates
953      * that rtas call return will always occur. Set this property.
954      */
955     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
956 
957     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
958                      lrdr_capacity, sizeof(lrdr_capacity)));
959 
960     spapr_dt_rtas_tokens(fdt, rtas);
961 }
962 
963 /*
964  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
965  * and the XIVE features that the guest may request and thus the valid
966  * values for bytes 23..26 of option vector 5:
967  */
968 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
969                                           int chosen)
970 {
971     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
972 
973     char val[2 * 4] = {
974         23, 0x00, /* XICS / XIVE mode */
975         24, 0x00, /* Hash/Radix, filled in below. */
976         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
977         26, 0x40, /* Radix options: GTSE == yes. */
978     };
979 
980     if (spapr->irq->xics && spapr->irq->xive) {
981         val[1] = SPAPR_OV5_XIVE_BOTH;
982     } else if (spapr->irq->xive) {
983         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
984     } else {
985         assert(spapr->irq->xics);
986         val[1] = SPAPR_OV5_XIVE_LEGACY;
987     }
988 
989     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
990                           first_ppc_cpu->compat_pvr)) {
991         /*
992          * If we're in a pre POWER9 compat mode then the guest should
993          * do hash and use the legacy interrupt mode
994          */
995         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
996         val[3] = 0x00; /* Hash */
997         spapr_check_mmu_mode(false);
998     } else if (kvm_enabled()) {
999         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1000             val[3] = 0x80; /* OV5_MMU_BOTH */
1001         } else if (kvmppc_has_cap_mmu_radix()) {
1002             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1003         } else {
1004             val[3] = 0x00; /* Hash */
1005         }
1006     } else {
1007         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1008         val[3] = 0xC0;
1009     }
1010     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1011                      val, sizeof(val)));
1012 }
1013 
1014 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1015 {
1016     MachineState *machine = MACHINE(spapr);
1017     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1018     uint8_t rng_seed[32];
1019     int chosen;
1020 
1021     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1022 
1023     if (reset) {
1024         const char *boot_device = spapr->boot_device;
1025         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1026         size_t cb = 0;
1027         g_autofree char *bootlist = get_boot_devices_list(&cb);
1028 
1029         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1030             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1031                                     machine->kernel_cmdline));
1032         }
1033 
1034         if (spapr->initrd_size) {
1035             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1036                                   spapr->initrd_base));
1037             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1038                                   spapr->initrd_base + spapr->initrd_size));
1039         }
1040 
1041         if (spapr->kernel_size) {
1042             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1043                                   cpu_to_be64(spapr->kernel_size) };
1044 
1045             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1046                          &kprop, sizeof(kprop)));
1047             if (spapr->kernel_le) {
1048                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1049             }
1050         }
1051         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1052             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1053         }
1054         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1055         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1056         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1057 
1058         if (cb && bootlist) {
1059             int i;
1060 
1061             for (i = 0; i < cb; i++) {
1062                 if (bootlist[i] == '\n') {
1063                     bootlist[i] = ' ';
1064                 }
1065             }
1066             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1067         }
1068 
1069         if (boot_device && strlen(boot_device)) {
1070             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1071         }
1072 
1073         if (spapr->want_stdout_path && stdout_path) {
1074             /*
1075              * "linux,stdout-path" and "stdout" properties are
1076              * deprecated by linux kernel. New platforms should only
1077              * use the "stdout-path" property. Set the new property
1078              * and continue using older property to remain compatible
1079              * with the existing firmware.
1080              */
1081             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1082             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1083         }
1084 
1085         /*
1086          * We can deal with BAR reallocation just fine, advertise it
1087          * to the guest
1088          */
1089         if (smc->linux_pci_probe) {
1090             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1091         }
1092 
1093         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1094     }
1095 
1096     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1097     _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1098 
1099     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1100 }
1101 
1102 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1103 {
1104     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1105      * KVM to work under pHyp with some guest co-operation */
1106     int hypervisor;
1107     uint8_t hypercall[16];
1108 
1109     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1110     /* indicate KVM hypercall interface */
1111     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1112     if (kvmppc_has_cap_fixup_hcalls()) {
1113         /*
1114          * Older KVM versions with older guest kernels were broken
1115          * with the magic page, don't allow the guest to map it.
1116          */
1117         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1118                                   sizeof(hypercall))) {
1119             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1120                              hypercall, sizeof(hypercall)));
1121         }
1122     }
1123 }
1124 
1125 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1126 {
1127     MachineState *machine = MACHINE(spapr);
1128     MachineClass *mc = MACHINE_GET_CLASS(machine);
1129     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1130     uint32_t root_drc_type_mask = 0;
1131     int ret;
1132     void *fdt;
1133     SpaprPhbState *phb;
1134     char *buf;
1135 
1136     fdt = g_malloc0(space);
1137     _FDT((fdt_create_empty_tree(fdt, space)));
1138 
1139     /* Root node */
1140     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1141     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1142     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1143 
1144     /* Guest UUID & Name*/
1145     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1146     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1147     if (qemu_uuid_set) {
1148         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1149     }
1150     g_free(buf);
1151 
1152     if (qemu_get_vm_name()) {
1153         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1154                                 qemu_get_vm_name()));
1155     }
1156 
1157     /* Host Model & Serial Number */
1158     if (spapr->host_model) {
1159         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1160     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1161         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1162         g_free(buf);
1163     }
1164 
1165     if (spapr->host_serial) {
1166         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1167     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1168         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1169         g_free(buf);
1170     }
1171 
1172     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1173     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1174 
1175     /* /interrupt controller */
1176     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1177 
1178     ret = spapr_dt_memory(spapr, fdt);
1179     if (ret < 0) {
1180         error_report("couldn't setup memory nodes in fdt");
1181         exit(1);
1182     }
1183 
1184     /* /vdevice */
1185     spapr_dt_vdevice(spapr->vio_bus, fdt);
1186 
1187     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1188         ret = spapr_dt_rng(fdt);
1189         if (ret < 0) {
1190             error_report("could not set up rng device in the fdt");
1191             exit(1);
1192         }
1193     }
1194 
1195     QLIST_FOREACH(phb, &spapr->phbs, list) {
1196         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1197         if (ret < 0) {
1198             error_report("couldn't setup PCI devices in fdt");
1199             exit(1);
1200         }
1201     }
1202 
1203     spapr_dt_cpus(fdt, spapr);
1204 
1205     /* ibm,drc-indexes and friends */
1206     if (smc->dr_lmb_enabled) {
1207         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1208     }
1209     if (smc->dr_phb_enabled) {
1210         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1211     }
1212     if (mc->nvdimm_supported) {
1213         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1214     }
1215     if (root_drc_type_mask) {
1216         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1217     }
1218 
1219     if (mc->has_hotpluggable_cpus) {
1220         int offset = fdt_path_offset(fdt, "/cpus");
1221         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1222         if (ret < 0) {
1223             error_report("Couldn't set up CPU DR device tree properties");
1224             exit(1);
1225         }
1226     }
1227 
1228     /* /event-sources */
1229     spapr_dt_events(spapr, fdt);
1230 
1231     /* /rtas */
1232     spapr_dt_rtas(spapr, fdt);
1233 
1234     /* /chosen */
1235     spapr_dt_chosen(spapr, fdt, reset);
1236 
1237     /* /hypervisor */
1238     if (kvm_enabled()) {
1239         spapr_dt_hypervisor(spapr, fdt);
1240     }
1241 
1242     /* Build memory reserve map */
1243     if (reset) {
1244         if (spapr->kernel_size) {
1245             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1246                                   spapr->kernel_size)));
1247         }
1248         if (spapr->initrd_size) {
1249             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1250                                   spapr->initrd_size)));
1251         }
1252     }
1253 
1254     /* NVDIMM devices */
1255     if (mc->nvdimm_supported) {
1256         spapr_dt_persistent_memory(spapr, fdt);
1257     }
1258 
1259     return fdt;
1260 }
1261 
1262 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1263 {
1264     SpaprMachineState *spapr = opaque;
1265 
1266     return (addr & 0x0fffffff) + spapr->kernel_addr;
1267 }
1268 
1269 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1270                                     PowerPCCPU *cpu)
1271 {
1272     CPUPPCState *env = &cpu->env;
1273 
1274     /* The TCG path should also be holding the BQL at this point */
1275     g_assert(qemu_mutex_iothread_locked());
1276 
1277     g_assert(!vhyp_cpu_in_nested(cpu));
1278 
1279     if (FIELD_EX64(env->msr, MSR, PR)) {
1280         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1281         env->gpr[3] = H_PRIVILEGE;
1282     } else {
1283         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1284     }
1285 }
1286 
1287 struct LPCRSyncState {
1288     target_ulong value;
1289     target_ulong mask;
1290 };
1291 
1292 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1293 {
1294     struct LPCRSyncState *s = arg.host_ptr;
1295     PowerPCCPU *cpu = POWERPC_CPU(cs);
1296     CPUPPCState *env = &cpu->env;
1297     target_ulong lpcr;
1298 
1299     cpu_synchronize_state(cs);
1300     lpcr = env->spr[SPR_LPCR];
1301     lpcr &= ~s->mask;
1302     lpcr |= s->value;
1303     ppc_store_lpcr(cpu, lpcr);
1304 }
1305 
1306 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1307 {
1308     CPUState *cs;
1309     struct LPCRSyncState s = {
1310         .value = value,
1311         .mask = mask
1312     };
1313     CPU_FOREACH(cs) {
1314         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1315     }
1316 }
1317 
1318 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1319                            target_ulong lpid, ppc_v3_pate_t *entry)
1320 {
1321     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1322     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1323 
1324     if (!spapr_cpu->in_nested) {
1325         assert(lpid == 0);
1326 
1327         /* Copy PATE1:GR into PATE0:HR */
1328         entry->dw0 = spapr->patb_entry & PATE0_HR;
1329         entry->dw1 = spapr->patb_entry;
1330 
1331     } else {
1332         uint64_t patb, pats;
1333 
1334         assert(lpid != 0);
1335 
1336         patb = spapr->nested_ptcr & PTCR_PATB;
1337         pats = spapr->nested_ptcr & PTCR_PATS;
1338 
1339         /* Check if partition table is properly aligned */
1340         if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1341             return false;
1342         }
1343 
1344         /* Calculate number of entries */
1345         pats = 1ull << (pats + 12 - 4);
1346         if (pats <= lpid) {
1347             return false;
1348         }
1349 
1350         /* Grab entry */
1351         patb += 16 * lpid;
1352         entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1353         entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1354     }
1355 
1356     return true;
1357 }
1358 
1359 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1360 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1361 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1362 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1363 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1364 
1365 /*
1366  * Get the fd to access the kernel htab, re-opening it if necessary
1367  */
1368 static int get_htab_fd(SpaprMachineState *spapr)
1369 {
1370     Error *local_err = NULL;
1371 
1372     if (spapr->htab_fd >= 0) {
1373         return spapr->htab_fd;
1374     }
1375 
1376     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1377     if (spapr->htab_fd < 0) {
1378         error_report_err(local_err);
1379     }
1380 
1381     return spapr->htab_fd;
1382 }
1383 
1384 void close_htab_fd(SpaprMachineState *spapr)
1385 {
1386     if (spapr->htab_fd >= 0) {
1387         close(spapr->htab_fd);
1388     }
1389     spapr->htab_fd = -1;
1390 }
1391 
1392 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1393 {
1394     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1395 
1396     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1397 }
1398 
1399 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1400 {
1401     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1402 
1403     assert(kvm_enabled());
1404 
1405     if (!spapr->htab) {
1406         return 0;
1407     }
1408 
1409     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1410 }
1411 
1412 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1413                                                 hwaddr ptex, int n)
1414 {
1415     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1416     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1417 
1418     if (!spapr->htab) {
1419         /*
1420          * HTAB is controlled by KVM. Fetch into temporary buffer
1421          */
1422         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1423         kvmppc_read_hptes(hptes, ptex, n);
1424         return hptes;
1425     }
1426 
1427     /*
1428      * HTAB is controlled by QEMU. Just point to the internally
1429      * accessible PTEG.
1430      */
1431     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1432 }
1433 
1434 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1435                               const ppc_hash_pte64_t *hptes,
1436                               hwaddr ptex, int n)
1437 {
1438     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1439 
1440     if (!spapr->htab) {
1441         g_free((void *)hptes);
1442     }
1443 
1444     /* Nothing to do for qemu managed HPT */
1445 }
1446 
1447 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1448                       uint64_t pte0, uint64_t pte1)
1449 {
1450     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1451     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1452 
1453     if (!spapr->htab) {
1454         kvmppc_write_hpte(ptex, pte0, pte1);
1455     } else {
1456         if (pte0 & HPTE64_V_VALID) {
1457             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1458             /*
1459              * When setting valid, we write PTE1 first. This ensures
1460              * proper synchronization with the reading code in
1461              * ppc_hash64_pteg_search()
1462              */
1463             smp_wmb();
1464             stq_p(spapr->htab + offset, pte0);
1465         } else {
1466             stq_p(spapr->htab + offset, pte0);
1467             /*
1468              * When clearing it we set PTE0 first. This ensures proper
1469              * synchronization with the reading code in
1470              * ppc_hash64_pteg_search()
1471              */
1472             smp_wmb();
1473             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1474         }
1475     }
1476 }
1477 
1478 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1479                              uint64_t pte1)
1480 {
1481     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1482     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1483 
1484     if (!spapr->htab) {
1485         /* There should always be a hash table when this is called */
1486         error_report("spapr_hpte_set_c called with no hash table !");
1487         return;
1488     }
1489 
1490     /* The HW performs a non-atomic byte update */
1491     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1492 }
1493 
1494 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1495                              uint64_t pte1)
1496 {
1497     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1498     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1499 
1500     if (!spapr->htab) {
1501         /* There should always be a hash table when this is called */
1502         error_report("spapr_hpte_set_r called with no hash table !");
1503         return;
1504     }
1505 
1506     /* The HW performs a non-atomic byte update */
1507     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1508 }
1509 
1510 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1511 {
1512     int shift;
1513 
1514     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1515      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1516      * that's much more than is needed for Linux guests */
1517     shift = ctz64(pow2ceil(ramsize)) - 7;
1518     shift = MAX(shift, 18); /* Minimum architected size */
1519     shift = MIN(shift, 46); /* Maximum architected size */
1520     return shift;
1521 }
1522 
1523 void spapr_free_hpt(SpaprMachineState *spapr)
1524 {
1525     g_free(spapr->htab);
1526     spapr->htab = NULL;
1527     spapr->htab_shift = 0;
1528     close_htab_fd(spapr);
1529 }
1530 
1531 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1532 {
1533     ERRP_GUARD();
1534     long rc;
1535 
1536     /* Clean up any HPT info from a previous boot */
1537     spapr_free_hpt(spapr);
1538 
1539     rc = kvmppc_reset_htab(shift);
1540 
1541     if (rc == -EOPNOTSUPP) {
1542         error_setg(errp, "HPT not supported in nested guests");
1543         return -EOPNOTSUPP;
1544     }
1545 
1546     if (rc < 0) {
1547         /* kernel-side HPT needed, but couldn't allocate one */
1548         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1549                          shift);
1550         error_append_hint(errp, "Try smaller maxmem?\n");
1551         return -errno;
1552     } else if (rc > 0) {
1553         /* kernel-side HPT allocated */
1554         if (rc != shift) {
1555             error_setg(errp,
1556                        "Requested order %d HPT, but kernel allocated order %ld",
1557                        shift, rc);
1558             error_append_hint(errp, "Try smaller maxmem?\n");
1559             return -ENOSPC;
1560         }
1561 
1562         spapr->htab_shift = shift;
1563         spapr->htab = NULL;
1564     } else {
1565         /* kernel-side HPT not needed, allocate in userspace instead */
1566         size_t size = 1ULL << shift;
1567         int i;
1568 
1569         spapr->htab = qemu_memalign(size, size);
1570         memset(spapr->htab, 0, size);
1571         spapr->htab_shift = shift;
1572 
1573         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1574             DIRTY_HPTE(HPTE(spapr->htab, i));
1575         }
1576     }
1577     /* We're setting up a hash table, so that means we're not radix */
1578     spapr->patb_entry = 0;
1579     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1580     return 0;
1581 }
1582 
1583 void spapr_setup_hpt(SpaprMachineState *spapr)
1584 {
1585     int hpt_shift;
1586 
1587     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1588         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1589     } else {
1590         uint64_t current_ram_size;
1591 
1592         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1593         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1594     }
1595     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1596 
1597     if (kvm_enabled()) {
1598         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1599 
1600         /* Check our RMA fits in the possible VRMA */
1601         if (vrma_limit < spapr->rma_size) {
1602             error_report("Unable to create %" HWADDR_PRIu
1603                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1604                          spapr->rma_size / MiB, vrma_limit / MiB);
1605             exit(EXIT_FAILURE);
1606         }
1607     }
1608 }
1609 
1610 void spapr_check_mmu_mode(bool guest_radix)
1611 {
1612     if (guest_radix) {
1613         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1614             error_report("Guest requested unavailable MMU mode (radix).");
1615             exit(EXIT_FAILURE);
1616         }
1617     } else {
1618         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1619             && !kvmppc_has_cap_mmu_hash_v3()) {
1620             error_report("Guest requested unavailable MMU mode (hash).");
1621             exit(EXIT_FAILURE);
1622         }
1623     }
1624 }
1625 
1626 static void spapr_machine_reset(MachineState *machine)
1627 {
1628     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1629     PowerPCCPU *first_ppc_cpu;
1630     hwaddr fdt_addr;
1631     void *fdt;
1632     int rc;
1633 
1634     pef_kvm_reset(machine->cgs, &error_fatal);
1635     spapr_caps_apply(spapr);
1636 
1637     first_ppc_cpu = POWERPC_CPU(first_cpu);
1638     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1639         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1640                               spapr->max_compat_pvr)) {
1641         /*
1642          * If using KVM with radix mode available, VCPUs can be started
1643          * without a HPT because KVM will start them in radix mode.
1644          * Set the GR bit in PATE so that we know there is no HPT.
1645          */
1646         spapr->patb_entry = PATE1_GR;
1647         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1648     } else {
1649         spapr_setup_hpt(spapr);
1650     }
1651 
1652     qemu_devices_reset();
1653 
1654     spapr_ovec_cleanup(spapr->ov5_cas);
1655     spapr->ov5_cas = spapr_ovec_new();
1656 
1657     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1658 
1659     /*
1660      * This is fixing some of the default configuration of the XIVE
1661      * devices. To be called after the reset of the machine devices.
1662      */
1663     spapr_irq_reset(spapr, &error_fatal);
1664 
1665     /*
1666      * There is no CAS under qtest. Simulate one to please the code that
1667      * depends on spapr->ov5_cas. This is especially needed to test device
1668      * unplug, so we do that before resetting the DRCs.
1669      */
1670     if (qtest_enabled()) {
1671         spapr_ovec_cleanup(spapr->ov5_cas);
1672         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1673     }
1674 
1675     spapr_nvdimm_finish_flushes();
1676 
1677     /* DRC reset may cause a device to be unplugged. This will cause troubles
1678      * if this device is used by another device (eg, a running vhost backend
1679      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1680      * situations, we reset DRCs after all devices have been reset.
1681      */
1682     spapr_drc_reset_all(spapr);
1683 
1684     spapr_clear_pending_events(spapr);
1685 
1686     /*
1687      * We place the device tree just below either the top of the RMA,
1688      * or just below 2GB, whichever is lower, so that it can be
1689      * processed with 32-bit real mode code if necessary
1690      */
1691     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1692 
1693     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1694     if (spapr->vof) {
1695         spapr_vof_reset(spapr, fdt, &error_fatal);
1696         /*
1697          * Do not pack the FDT as the client may change properties.
1698          * VOF client does not expect the FDT so we do not load it to the VM.
1699          */
1700     } else {
1701         rc = fdt_pack(fdt);
1702         /* Should only fail if we've built a corrupted tree */
1703         assert(rc == 0);
1704 
1705         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1706                                   0, fdt_addr, 0);
1707         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1708     }
1709     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1710 
1711     g_free(spapr->fdt_blob);
1712     spapr->fdt_size = fdt_totalsize(fdt);
1713     spapr->fdt_initial_size = spapr->fdt_size;
1714     spapr->fdt_blob = fdt;
1715 
1716     /* Set up the entry state */
1717     first_ppc_cpu->env.gpr[5] = 0;
1718 
1719     spapr->fwnmi_system_reset_addr = -1;
1720     spapr->fwnmi_machine_check_addr = -1;
1721     spapr->fwnmi_machine_check_interlock = -1;
1722 
1723     /* Signal all vCPUs waiting on this condition */
1724     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1725 
1726     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1727 }
1728 
1729 static void spapr_create_nvram(SpaprMachineState *spapr)
1730 {
1731     DeviceState *dev = qdev_new("spapr-nvram");
1732     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1733 
1734     if (dinfo) {
1735         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1736                                 &error_fatal);
1737     }
1738 
1739     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1740 
1741     spapr->nvram = (struct SpaprNvram *)dev;
1742 }
1743 
1744 static void spapr_rtc_create(SpaprMachineState *spapr)
1745 {
1746     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1747                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1748                                        &error_fatal, NULL);
1749     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1750     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1751                               "date");
1752 }
1753 
1754 /* Returns whether we want to use VGA or not */
1755 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1756 {
1757     vga_interface_created = true;
1758     switch (vga_interface_type) {
1759     case VGA_NONE:
1760         return false;
1761     case VGA_DEVICE:
1762         return true;
1763     case VGA_STD:
1764     case VGA_VIRTIO:
1765     case VGA_CIRRUS:
1766         return pci_vga_init(pci_bus) != NULL;
1767     default:
1768         error_setg(errp,
1769                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1770         return false;
1771     }
1772 }
1773 
1774 static int spapr_pre_load(void *opaque)
1775 {
1776     int rc;
1777 
1778     rc = spapr_caps_pre_load(opaque);
1779     if (rc) {
1780         return rc;
1781     }
1782 
1783     return 0;
1784 }
1785 
1786 static int spapr_post_load(void *opaque, int version_id)
1787 {
1788     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1789     int err = 0;
1790 
1791     err = spapr_caps_post_migration(spapr);
1792     if (err) {
1793         return err;
1794     }
1795 
1796     /*
1797      * In earlier versions, there was no separate qdev for the PAPR
1798      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1799      * So when migrating from those versions, poke the incoming offset
1800      * value into the RTC device
1801      */
1802     if (version_id < 3) {
1803         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1804         if (err) {
1805             return err;
1806         }
1807     }
1808 
1809     if (kvm_enabled() && spapr->patb_entry) {
1810         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1811         bool radix = !!(spapr->patb_entry & PATE1_GR);
1812         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1813 
1814         /*
1815          * Update LPCR:HR and UPRT as they may not be set properly in
1816          * the stream
1817          */
1818         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1819                             LPCR_HR | LPCR_UPRT);
1820 
1821         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1822         if (err) {
1823             error_report("Process table config unsupported by the host");
1824             return -EINVAL;
1825         }
1826     }
1827 
1828     err = spapr_irq_post_load(spapr, version_id);
1829     if (err) {
1830         return err;
1831     }
1832 
1833     return err;
1834 }
1835 
1836 static int spapr_pre_save(void *opaque)
1837 {
1838     int rc;
1839 
1840     rc = spapr_caps_pre_save(opaque);
1841     if (rc) {
1842         return rc;
1843     }
1844 
1845     return 0;
1846 }
1847 
1848 static bool version_before_3(void *opaque, int version_id)
1849 {
1850     return version_id < 3;
1851 }
1852 
1853 static bool spapr_pending_events_needed(void *opaque)
1854 {
1855     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1856     return !QTAILQ_EMPTY(&spapr->pending_events);
1857 }
1858 
1859 static const VMStateDescription vmstate_spapr_event_entry = {
1860     .name = "spapr_event_log_entry",
1861     .version_id = 1,
1862     .minimum_version_id = 1,
1863     .fields = (VMStateField[]) {
1864         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1865         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1866         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1867                                      NULL, extended_length),
1868         VMSTATE_END_OF_LIST()
1869     },
1870 };
1871 
1872 static const VMStateDescription vmstate_spapr_pending_events = {
1873     .name = "spapr_pending_events",
1874     .version_id = 1,
1875     .minimum_version_id = 1,
1876     .needed = spapr_pending_events_needed,
1877     .fields = (VMStateField[]) {
1878         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1879                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1880         VMSTATE_END_OF_LIST()
1881     },
1882 };
1883 
1884 static bool spapr_ov5_cas_needed(void *opaque)
1885 {
1886     SpaprMachineState *spapr = opaque;
1887     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1888     bool cas_needed;
1889 
1890     /* Prior to the introduction of SpaprOptionVector, we had two option
1891      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1892      * Both of these options encode machine topology into the device-tree
1893      * in such a way that the now-booted OS should still be able to interact
1894      * appropriately with QEMU regardless of what options were actually
1895      * negotiatied on the source side.
1896      *
1897      * As such, we can avoid migrating the CAS-negotiated options if these
1898      * are the only options available on the current machine/platform.
1899      * Since these are the only options available for pseries-2.7 and
1900      * earlier, this allows us to maintain old->new/new->old migration
1901      * compatibility.
1902      *
1903      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1904      * via default pseries-2.8 machines and explicit command-line parameters.
1905      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1906      * of the actual CAS-negotiated values to continue working properly. For
1907      * example, availability of memory unplug depends on knowing whether
1908      * OV5_HP_EVT was negotiated via CAS.
1909      *
1910      * Thus, for any cases where the set of available CAS-negotiatable
1911      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1912      * include the CAS-negotiated options in the migration stream, unless
1913      * if they affect boot time behaviour only.
1914      */
1915     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1916     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1917     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1918 
1919     /* We need extra information if we have any bits outside the mask
1920      * defined above */
1921     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1922 
1923     spapr_ovec_cleanup(ov5_mask);
1924 
1925     return cas_needed;
1926 }
1927 
1928 static const VMStateDescription vmstate_spapr_ov5_cas = {
1929     .name = "spapr_option_vector_ov5_cas",
1930     .version_id = 1,
1931     .minimum_version_id = 1,
1932     .needed = spapr_ov5_cas_needed,
1933     .fields = (VMStateField[]) {
1934         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1935                                  vmstate_spapr_ovec, SpaprOptionVector),
1936         VMSTATE_END_OF_LIST()
1937     },
1938 };
1939 
1940 static bool spapr_patb_entry_needed(void *opaque)
1941 {
1942     SpaprMachineState *spapr = opaque;
1943 
1944     return !!spapr->patb_entry;
1945 }
1946 
1947 static const VMStateDescription vmstate_spapr_patb_entry = {
1948     .name = "spapr_patb_entry",
1949     .version_id = 1,
1950     .minimum_version_id = 1,
1951     .needed = spapr_patb_entry_needed,
1952     .fields = (VMStateField[]) {
1953         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1954         VMSTATE_END_OF_LIST()
1955     },
1956 };
1957 
1958 static bool spapr_irq_map_needed(void *opaque)
1959 {
1960     SpaprMachineState *spapr = opaque;
1961 
1962     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1963 }
1964 
1965 static const VMStateDescription vmstate_spapr_irq_map = {
1966     .name = "spapr_irq_map",
1967     .version_id = 1,
1968     .minimum_version_id = 1,
1969     .needed = spapr_irq_map_needed,
1970     .fields = (VMStateField[]) {
1971         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1972         VMSTATE_END_OF_LIST()
1973     },
1974 };
1975 
1976 static bool spapr_dtb_needed(void *opaque)
1977 {
1978     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1979 
1980     return smc->update_dt_enabled;
1981 }
1982 
1983 static int spapr_dtb_pre_load(void *opaque)
1984 {
1985     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1986 
1987     g_free(spapr->fdt_blob);
1988     spapr->fdt_blob = NULL;
1989     spapr->fdt_size = 0;
1990 
1991     return 0;
1992 }
1993 
1994 static const VMStateDescription vmstate_spapr_dtb = {
1995     .name = "spapr_dtb",
1996     .version_id = 1,
1997     .minimum_version_id = 1,
1998     .needed = spapr_dtb_needed,
1999     .pre_load = spapr_dtb_pre_load,
2000     .fields = (VMStateField[]) {
2001         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2002         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2003         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2004                                      fdt_size),
2005         VMSTATE_END_OF_LIST()
2006     },
2007 };
2008 
2009 static bool spapr_fwnmi_needed(void *opaque)
2010 {
2011     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2012 
2013     return spapr->fwnmi_machine_check_addr != -1;
2014 }
2015 
2016 static int spapr_fwnmi_pre_save(void *opaque)
2017 {
2018     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2019 
2020     /*
2021      * Check if machine check handling is in progress and print a
2022      * warning message.
2023      */
2024     if (spapr->fwnmi_machine_check_interlock != -1) {
2025         warn_report("A machine check is being handled during migration. The"
2026                 "handler may run and log hardware error on the destination");
2027     }
2028 
2029     return 0;
2030 }
2031 
2032 static const VMStateDescription vmstate_spapr_fwnmi = {
2033     .name = "spapr_fwnmi",
2034     .version_id = 1,
2035     .minimum_version_id = 1,
2036     .needed = spapr_fwnmi_needed,
2037     .pre_save = spapr_fwnmi_pre_save,
2038     .fields = (VMStateField[]) {
2039         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2040         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2041         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2042         VMSTATE_END_OF_LIST()
2043     },
2044 };
2045 
2046 static const VMStateDescription vmstate_spapr = {
2047     .name = "spapr",
2048     .version_id = 3,
2049     .minimum_version_id = 1,
2050     .pre_load = spapr_pre_load,
2051     .post_load = spapr_post_load,
2052     .pre_save = spapr_pre_save,
2053     .fields = (VMStateField[]) {
2054         /* used to be @next_irq */
2055         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2056 
2057         /* RTC offset */
2058         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2059 
2060         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2061         VMSTATE_END_OF_LIST()
2062     },
2063     .subsections = (const VMStateDescription*[]) {
2064         &vmstate_spapr_ov5_cas,
2065         &vmstate_spapr_patb_entry,
2066         &vmstate_spapr_pending_events,
2067         &vmstate_spapr_cap_htm,
2068         &vmstate_spapr_cap_vsx,
2069         &vmstate_spapr_cap_dfp,
2070         &vmstate_spapr_cap_cfpc,
2071         &vmstate_spapr_cap_sbbc,
2072         &vmstate_spapr_cap_ibs,
2073         &vmstate_spapr_cap_hpt_maxpagesize,
2074         &vmstate_spapr_irq_map,
2075         &vmstate_spapr_cap_nested_kvm_hv,
2076         &vmstate_spapr_dtb,
2077         &vmstate_spapr_cap_large_decr,
2078         &vmstate_spapr_cap_ccf_assist,
2079         &vmstate_spapr_cap_fwnmi,
2080         &vmstate_spapr_fwnmi,
2081         &vmstate_spapr_cap_rpt_invalidate,
2082         NULL
2083     }
2084 };
2085 
2086 static int htab_save_setup(QEMUFile *f, void *opaque)
2087 {
2088     SpaprMachineState *spapr = opaque;
2089 
2090     /* "Iteration" header */
2091     if (!spapr->htab_shift) {
2092         qemu_put_be32(f, -1);
2093     } else {
2094         qemu_put_be32(f, spapr->htab_shift);
2095     }
2096 
2097     if (spapr->htab) {
2098         spapr->htab_save_index = 0;
2099         spapr->htab_first_pass = true;
2100     } else {
2101         if (spapr->htab_shift) {
2102             assert(kvm_enabled());
2103         }
2104     }
2105 
2106 
2107     return 0;
2108 }
2109 
2110 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2111                             int chunkstart, int n_valid, int n_invalid)
2112 {
2113     qemu_put_be32(f, chunkstart);
2114     qemu_put_be16(f, n_valid);
2115     qemu_put_be16(f, n_invalid);
2116     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2117                     HASH_PTE_SIZE_64 * n_valid);
2118 }
2119 
2120 static void htab_save_end_marker(QEMUFile *f)
2121 {
2122     qemu_put_be32(f, 0);
2123     qemu_put_be16(f, 0);
2124     qemu_put_be16(f, 0);
2125 }
2126 
2127 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2128                                  int64_t max_ns)
2129 {
2130     bool has_timeout = max_ns != -1;
2131     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2132     int index = spapr->htab_save_index;
2133     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2134 
2135     assert(spapr->htab_first_pass);
2136 
2137     do {
2138         int chunkstart;
2139 
2140         /* Consume invalid HPTEs */
2141         while ((index < htabslots)
2142                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2143             CLEAN_HPTE(HPTE(spapr->htab, index));
2144             index++;
2145         }
2146 
2147         /* Consume valid HPTEs */
2148         chunkstart = index;
2149         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2150                && HPTE_VALID(HPTE(spapr->htab, index))) {
2151             CLEAN_HPTE(HPTE(spapr->htab, index));
2152             index++;
2153         }
2154 
2155         if (index > chunkstart) {
2156             int n_valid = index - chunkstart;
2157 
2158             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2159 
2160             if (has_timeout &&
2161                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2162                 break;
2163             }
2164         }
2165     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2166 
2167     if (index >= htabslots) {
2168         assert(index == htabslots);
2169         index = 0;
2170         spapr->htab_first_pass = false;
2171     }
2172     spapr->htab_save_index = index;
2173 }
2174 
2175 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2176                                 int64_t max_ns)
2177 {
2178     bool final = max_ns < 0;
2179     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2180     int examined = 0, sent = 0;
2181     int index = spapr->htab_save_index;
2182     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2183 
2184     assert(!spapr->htab_first_pass);
2185 
2186     do {
2187         int chunkstart, invalidstart;
2188 
2189         /* Consume non-dirty HPTEs */
2190         while ((index < htabslots)
2191                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2192             index++;
2193             examined++;
2194         }
2195 
2196         chunkstart = index;
2197         /* Consume valid dirty HPTEs */
2198         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2199                && HPTE_DIRTY(HPTE(spapr->htab, index))
2200                && HPTE_VALID(HPTE(spapr->htab, index))) {
2201             CLEAN_HPTE(HPTE(spapr->htab, index));
2202             index++;
2203             examined++;
2204         }
2205 
2206         invalidstart = index;
2207         /* Consume invalid dirty HPTEs */
2208         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2209                && HPTE_DIRTY(HPTE(spapr->htab, index))
2210                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2211             CLEAN_HPTE(HPTE(spapr->htab, index));
2212             index++;
2213             examined++;
2214         }
2215 
2216         if (index > chunkstart) {
2217             int n_valid = invalidstart - chunkstart;
2218             int n_invalid = index - invalidstart;
2219 
2220             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2221             sent += index - chunkstart;
2222 
2223             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2224                 break;
2225             }
2226         }
2227 
2228         if (examined >= htabslots) {
2229             break;
2230         }
2231 
2232         if (index >= htabslots) {
2233             assert(index == htabslots);
2234             index = 0;
2235         }
2236     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2237 
2238     if (index >= htabslots) {
2239         assert(index == htabslots);
2240         index = 0;
2241     }
2242 
2243     spapr->htab_save_index = index;
2244 
2245     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2246 }
2247 
2248 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2249 #define MAX_KVM_BUF_SIZE    2048
2250 
2251 static int htab_save_iterate(QEMUFile *f, void *opaque)
2252 {
2253     SpaprMachineState *spapr = opaque;
2254     int fd;
2255     int rc = 0;
2256 
2257     /* Iteration header */
2258     if (!spapr->htab_shift) {
2259         qemu_put_be32(f, -1);
2260         return 1;
2261     } else {
2262         qemu_put_be32(f, 0);
2263     }
2264 
2265     if (!spapr->htab) {
2266         assert(kvm_enabled());
2267 
2268         fd = get_htab_fd(spapr);
2269         if (fd < 0) {
2270             return fd;
2271         }
2272 
2273         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2274         if (rc < 0) {
2275             return rc;
2276         }
2277     } else  if (spapr->htab_first_pass) {
2278         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2279     } else {
2280         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2281     }
2282 
2283     htab_save_end_marker(f);
2284 
2285     return rc;
2286 }
2287 
2288 static int htab_save_complete(QEMUFile *f, void *opaque)
2289 {
2290     SpaprMachineState *spapr = opaque;
2291     int fd;
2292 
2293     /* Iteration header */
2294     if (!spapr->htab_shift) {
2295         qemu_put_be32(f, -1);
2296         return 0;
2297     } else {
2298         qemu_put_be32(f, 0);
2299     }
2300 
2301     if (!spapr->htab) {
2302         int rc;
2303 
2304         assert(kvm_enabled());
2305 
2306         fd = get_htab_fd(spapr);
2307         if (fd < 0) {
2308             return fd;
2309         }
2310 
2311         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2312         if (rc < 0) {
2313             return rc;
2314         }
2315     } else {
2316         if (spapr->htab_first_pass) {
2317             htab_save_first_pass(f, spapr, -1);
2318         }
2319         htab_save_later_pass(f, spapr, -1);
2320     }
2321 
2322     /* End marker */
2323     htab_save_end_marker(f);
2324 
2325     return 0;
2326 }
2327 
2328 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2329 {
2330     SpaprMachineState *spapr = opaque;
2331     uint32_t section_hdr;
2332     int fd = -1;
2333     Error *local_err = NULL;
2334 
2335     if (version_id < 1 || version_id > 1) {
2336         error_report("htab_load() bad version");
2337         return -EINVAL;
2338     }
2339 
2340     section_hdr = qemu_get_be32(f);
2341 
2342     if (section_hdr == -1) {
2343         spapr_free_hpt(spapr);
2344         return 0;
2345     }
2346 
2347     if (section_hdr) {
2348         int ret;
2349 
2350         /* First section gives the htab size */
2351         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2352         if (ret < 0) {
2353             error_report_err(local_err);
2354             return ret;
2355         }
2356         return 0;
2357     }
2358 
2359     if (!spapr->htab) {
2360         assert(kvm_enabled());
2361 
2362         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2363         if (fd < 0) {
2364             error_report_err(local_err);
2365             return fd;
2366         }
2367     }
2368 
2369     while (true) {
2370         uint32_t index;
2371         uint16_t n_valid, n_invalid;
2372 
2373         index = qemu_get_be32(f);
2374         n_valid = qemu_get_be16(f);
2375         n_invalid = qemu_get_be16(f);
2376 
2377         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2378             /* End of Stream */
2379             break;
2380         }
2381 
2382         if ((index + n_valid + n_invalid) >
2383             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2384             /* Bad index in stream */
2385             error_report(
2386                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2387                 index, n_valid, n_invalid, spapr->htab_shift);
2388             return -EINVAL;
2389         }
2390 
2391         if (spapr->htab) {
2392             if (n_valid) {
2393                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2394                                 HASH_PTE_SIZE_64 * n_valid);
2395             }
2396             if (n_invalid) {
2397                 memset(HPTE(spapr->htab, index + n_valid), 0,
2398                        HASH_PTE_SIZE_64 * n_invalid);
2399             }
2400         } else {
2401             int rc;
2402 
2403             assert(fd >= 0);
2404 
2405             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2406                                         &local_err);
2407             if (rc < 0) {
2408                 error_report_err(local_err);
2409                 return rc;
2410             }
2411         }
2412     }
2413 
2414     if (!spapr->htab) {
2415         assert(fd >= 0);
2416         close(fd);
2417     }
2418 
2419     return 0;
2420 }
2421 
2422 static void htab_save_cleanup(void *opaque)
2423 {
2424     SpaprMachineState *spapr = opaque;
2425 
2426     close_htab_fd(spapr);
2427 }
2428 
2429 static SaveVMHandlers savevm_htab_handlers = {
2430     .save_setup = htab_save_setup,
2431     .save_live_iterate = htab_save_iterate,
2432     .save_live_complete_precopy = htab_save_complete,
2433     .save_cleanup = htab_save_cleanup,
2434     .load_state = htab_load,
2435 };
2436 
2437 static void spapr_boot_set(void *opaque, const char *boot_device,
2438                            Error **errp)
2439 {
2440     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2441 
2442     g_free(spapr->boot_device);
2443     spapr->boot_device = g_strdup(boot_device);
2444 }
2445 
2446 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2447 {
2448     MachineState *machine = MACHINE(spapr);
2449     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2450     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2451     int i;
2452 
2453     for (i = 0; i < nr_lmbs; i++) {
2454         uint64_t addr;
2455 
2456         addr = i * lmb_size + machine->device_memory->base;
2457         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2458                                addr / lmb_size);
2459     }
2460 }
2461 
2462 /*
2463  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2464  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2465  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2466  */
2467 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2468 {
2469     int i;
2470 
2471     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2472         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2473                    " is not aligned to %" PRIu64 " MiB",
2474                    machine->ram_size,
2475                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2476         return;
2477     }
2478 
2479     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2480         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2481                    " is not aligned to %" PRIu64 " MiB",
2482                    machine->ram_size,
2483                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2484         return;
2485     }
2486 
2487     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2488         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2489             error_setg(errp,
2490                        "Node %d memory size 0x%" PRIx64
2491                        " is not aligned to %" PRIu64 " MiB",
2492                        i, machine->numa_state->nodes[i].node_mem,
2493                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2494             return;
2495         }
2496     }
2497 }
2498 
2499 /* find cpu slot in machine->possible_cpus by core_id */
2500 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2501 {
2502     int index = id / ms->smp.threads;
2503 
2504     if (index >= ms->possible_cpus->len) {
2505         return NULL;
2506     }
2507     if (idx) {
2508         *idx = index;
2509     }
2510     return &ms->possible_cpus->cpus[index];
2511 }
2512 
2513 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2514 {
2515     MachineState *ms = MACHINE(spapr);
2516     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2517     Error *local_err = NULL;
2518     bool vsmt_user = !!spapr->vsmt;
2519     int kvm_smt = kvmppc_smt_threads();
2520     int ret;
2521     unsigned int smp_threads = ms->smp.threads;
2522 
2523     if (!kvm_enabled() && (smp_threads > 1)) {
2524         error_setg(errp, "TCG cannot support more than 1 thread/core "
2525                    "on a pseries machine");
2526         return;
2527     }
2528     if (!is_power_of_2(smp_threads)) {
2529         error_setg(errp, "Cannot support %d threads/core on a pseries "
2530                    "machine because it must be a power of 2", smp_threads);
2531         return;
2532     }
2533 
2534     /* Detemine the VSMT mode to use: */
2535     if (vsmt_user) {
2536         if (spapr->vsmt < smp_threads) {
2537             error_setg(errp, "Cannot support VSMT mode %d"
2538                        " because it must be >= threads/core (%d)",
2539                        spapr->vsmt, smp_threads);
2540             return;
2541         }
2542         /* In this case, spapr->vsmt has been set by the command line */
2543     } else if (!smc->smp_threads_vsmt) {
2544         /*
2545          * Default VSMT value is tricky, because we need it to be as
2546          * consistent as possible (for migration), but this requires
2547          * changing it for at least some existing cases.  We pick 8 as
2548          * the value that we'd get with KVM on POWER8, the
2549          * overwhelmingly common case in production systems.
2550          */
2551         spapr->vsmt = MAX(8, smp_threads);
2552     } else {
2553         spapr->vsmt = smp_threads;
2554     }
2555 
2556     /* KVM: If necessary, set the SMT mode: */
2557     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2558         ret = kvmppc_set_smt_threads(spapr->vsmt);
2559         if (ret) {
2560             /* Looks like KVM isn't able to change VSMT mode */
2561             error_setg(&local_err,
2562                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2563                        spapr->vsmt, ret);
2564             /* We can live with that if the default one is big enough
2565              * for the number of threads, and a submultiple of the one
2566              * we want.  In this case we'll waste some vcpu ids, but
2567              * behaviour will be correct */
2568             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2569                 warn_report_err(local_err);
2570             } else {
2571                 if (!vsmt_user) {
2572                     error_append_hint(&local_err,
2573                                       "On PPC, a VM with %d threads/core"
2574                                       " on a host with %d threads/core"
2575                                       " requires the use of VSMT mode %d.\n",
2576                                       smp_threads, kvm_smt, spapr->vsmt);
2577                 }
2578                 kvmppc_error_append_smt_possible_hint(&local_err);
2579                 error_propagate(errp, local_err);
2580             }
2581         }
2582     }
2583     /* else TCG: nothing to do currently */
2584 }
2585 
2586 static void spapr_init_cpus(SpaprMachineState *spapr)
2587 {
2588     MachineState *machine = MACHINE(spapr);
2589     MachineClass *mc = MACHINE_GET_CLASS(machine);
2590     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2591     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2592     const CPUArchIdList *possible_cpus;
2593     unsigned int smp_cpus = machine->smp.cpus;
2594     unsigned int smp_threads = machine->smp.threads;
2595     unsigned int max_cpus = machine->smp.max_cpus;
2596     int boot_cores_nr = smp_cpus / smp_threads;
2597     int i;
2598 
2599     possible_cpus = mc->possible_cpu_arch_ids(machine);
2600     if (mc->has_hotpluggable_cpus) {
2601         if (smp_cpus % smp_threads) {
2602             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2603                          smp_cpus, smp_threads);
2604             exit(1);
2605         }
2606         if (max_cpus % smp_threads) {
2607             error_report("max_cpus (%u) must be multiple of threads (%u)",
2608                          max_cpus, smp_threads);
2609             exit(1);
2610         }
2611     } else {
2612         if (max_cpus != smp_cpus) {
2613             error_report("This machine version does not support CPU hotplug");
2614             exit(1);
2615         }
2616         boot_cores_nr = possible_cpus->len;
2617     }
2618 
2619     if (smc->pre_2_10_has_unused_icps) {
2620         int i;
2621 
2622         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2623             /* Dummy entries get deregistered when real ICPState objects
2624              * are registered during CPU core hotplug.
2625              */
2626             pre_2_10_vmstate_register_dummy_icp(i);
2627         }
2628     }
2629 
2630     for (i = 0; i < possible_cpus->len; i++) {
2631         int core_id = i * smp_threads;
2632 
2633         if (mc->has_hotpluggable_cpus) {
2634             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2635                                    spapr_vcpu_id(spapr, core_id));
2636         }
2637 
2638         if (i < boot_cores_nr) {
2639             Object *core  = object_new(type);
2640             int nr_threads = smp_threads;
2641 
2642             /* Handle the partially filled core for older machine types */
2643             if ((i + 1) * smp_threads >= smp_cpus) {
2644                 nr_threads = smp_cpus - i * smp_threads;
2645             }
2646 
2647             object_property_set_int(core, "nr-threads", nr_threads,
2648                                     &error_fatal);
2649             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2650                                     &error_fatal);
2651             qdev_realize(DEVICE(core), NULL, &error_fatal);
2652 
2653             object_unref(core);
2654         }
2655     }
2656 }
2657 
2658 static PCIHostState *spapr_create_default_phb(void)
2659 {
2660     DeviceState *dev;
2661 
2662     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2663     qdev_prop_set_uint32(dev, "index", 0);
2664     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2665 
2666     return PCI_HOST_BRIDGE(dev);
2667 }
2668 
2669 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2670 {
2671     MachineState *machine = MACHINE(spapr);
2672     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2673     hwaddr rma_size = machine->ram_size;
2674     hwaddr node0_size = spapr_node0_size(machine);
2675 
2676     /* RMA has to fit in the first NUMA node */
2677     rma_size = MIN(rma_size, node0_size);
2678 
2679     /*
2680      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2681      * never exceed that
2682      */
2683     rma_size = MIN(rma_size, 1 * TiB);
2684 
2685     /*
2686      * Clamp the RMA size based on machine type.  This is for
2687      * migration compatibility with older qemu versions, which limited
2688      * the RMA size for complicated and mostly bad reasons.
2689      */
2690     if (smc->rma_limit) {
2691         rma_size = MIN(rma_size, smc->rma_limit);
2692     }
2693 
2694     if (rma_size < MIN_RMA_SLOF) {
2695         error_setg(errp,
2696                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2697                    "ldMiB guest RMA (Real Mode Area memory)",
2698                    MIN_RMA_SLOF / MiB);
2699         return 0;
2700     }
2701 
2702     return rma_size;
2703 }
2704 
2705 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2706 {
2707     MachineState *machine = MACHINE(spapr);
2708     int i;
2709 
2710     for (i = 0; i < machine->ram_slots; i++) {
2711         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2712     }
2713 }
2714 
2715 /* pSeries LPAR / sPAPR hardware init */
2716 static void spapr_machine_init(MachineState *machine)
2717 {
2718     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2719     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2720     MachineClass *mc = MACHINE_GET_CLASS(machine);
2721     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2722     const char *bios_name = machine->firmware ?: bios_default;
2723     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2724     const char *kernel_filename = machine->kernel_filename;
2725     const char *initrd_filename = machine->initrd_filename;
2726     PCIHostState *phb;
2727     bool has_vga;
2728     int i;
2729     MemoryRegion *sysmem = get_system_memory();
2730     long load_limit, fw_size;
2731     Error *resize_hpt_err = NULL;
2732 
2733     if (!filename) {
2734         error_report("Could not find LPAR firmware '%s'", bios_name);
2735         exit(1);
2736     }
2737     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2738     if (fw_size <= 0) {
2739         error_report("Could not load LPAR firmware '%s'", filename);
2740         exit(1);
2741     }
2742 
2743     /*
2744      * if Secure VM (PEF) support is configured, then initialize it
2745      */
2746     pef_kvm_init(machine->cgs, &error_fatal);
2747 
2748     msi_nonbroken = true;
2749 
2750     QLIST_INIT(&spapr->phbs);
2751     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2752 
2753     /* Determine capabilities to run with */
2754     spapr_caps_init(spapr);
2755 
2756     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2757     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2758         /*
2759          * If the user explicitly requested a mode we should either
2760          * supply it, or fail completely (which we do below).  But if
2761          * it's not set explicitly, we reset our mode to something
2762          * that works
2763          */
2764         if (resize_hpt_err) {
2765             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2766             error_free(resize_hpt_err);
2767             resize_hpt_err = NULL;
2768         } else {
2769             spapr->resize_hpt = smc->resize_hpt_default;
2770         }
2771     }
2772 
2773     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2774 
2775     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2776         /*
2777          * User requested HPT resize, but this host can't supply it.  Bail out
2778          */
2779         error_report_err(resize_hpt_err);
2780         exit(1);
2781     }
2782     error_free(resize_hpt_err);
2783 
2784     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2785 
2786     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2787     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2788 
2789     /*
2790      * VSMT must be set in order to be able to compute VCPU ids, ie to
2791      * call spapr_max_server_number() or spapr_vcpu_id().
2792      */
2793     spapr_set_vsmt_mode(spapr, &error_fatal);
2794 
2795     /* Set up Interrupt Controller before we create the VCPUs */
2796     spapr_irq_init(spapr, &error_fatal);
2797 
2798     /* Set up containers for ibm,client-architecture-support negotiated options
2799      */
2800     spapr->ov5 = spapr_ovec_new();
2801     spapr->ov5_cas = spapr_ovec_new();
2802 
2803     if (smc->dr_lmb_enabled) {
2804         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2805         spapr_validate_node_memory(machine, &error_fatal);
2806     }
2807 
2808     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2809 
2810     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2811     if (!smc->pre_6_2_numa_affinity) {
2812         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2813     }
2814 
2815     /* advertise support for dedicated HP event source to guests */
2816     if (spapr->use_hotplug_event_source) {
2817         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2818     }
2819 
2820     /* advertise support for HPT resizing */
2821     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2822         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2823     }
2824 
2825     /* advertise support for ibm,dyamic-memory-v2 */
2826     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2827 
2828     /* advertise XIVE on POWER9 machines */
2829     if (spapr->irq->xive) {
2830         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2831     }
2832 
2833     /* init CPUs */
2834     spapr_init_cpus(spapr);
2835 
2836     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2837 
2838     /* Init numa_assoc_array */
2839     spapr_numa_associativity_init(spapr, machine);
2840 
2841     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2842         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2843                               spapr->max_compat_pvr)) {
2844         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2845         /* KVM and TCG always allow GTSE with radix... */
2846         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2847     }
2848     /* ... but not with hash (currently). */
2849 
2850     if (kvm_enabled()) {
2851         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2852         kvmppc_enable_logical_ci_hcalls();
2853         kvmppc_enable_set_mode_hcall();
2854 
2855         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2856         kvmppc_enable_clear_ref_mod_hcalls();
2857 
2858         /* Enable H_PAGE_INIT */
2859         kvmppc_enable_h_page_init();
2860     }
2861 
2862     /* map RAM */
2863     memory_region_add_subregion(sysmem, 0, machine->ram);
2864 
2865     /* always allocate the device memory information */
2866     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2867 
2868     /* initialize hotplug memory address space */
2869     if (machine->ram_size < machine->maxram_size) {
2870         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2871         /*
2872          * Limit the number of hotpluggable memory slots to half the number
2873          * slots that KVM supports, leaving the other half for PCI and other
2874          * devices. However ensure that number of slots doesn't drop below 32.
2875          */
2876         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2877                            SPAPR_MAX_RAM_SLOTS;
2878 
2879         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2880             max_memslots = SPAPR_MAX_RAM_SLOTS;
2881         }
2882         if (machine->ram_slots > max_memslots) {
2883             error_report("Specified number of memory slots %"
2884                          PRIu64" exceeds max supported %d",
2885                          machine->ram_slots, max_memslots);
2886             exit(1);
2887         }
2888 
2889         machine->device_memory->base = ROUND_UP(machine->ram_size,
2890                                                 SPAPR_DEVICE_MEM_ALIGN);
2891         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2892                            "device-memory", device_mem_size);
2893         memory_region_add_subregion(sysmem, machine->device_memory->base,
2894                                     &machine->device_memory->mr);
2895     }
2896 
2897     if (smc->dr_lmb_enabled) {
2898         spapr_create_lmb_dr_connectors(spapr);
2899     }
2900 
2901     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2902         /* Create the error string for live migration blocker */
2903         error_setg(&spapr->fwnmi_migration_blocker,
2904             "A machine check is being handled during migration. The handler"
2905             "may run and log hardware error on the destination");
2906     }
2907 
2908     if (mc->nvdimm_supported) {
2909         spapr_create_nvdimm_dr_connectors(spapr);
2910     }
2911 
2912     /* Set up RTAS event infrastructure */
2913     spapr_events_init(spapr);
2914 
2915     /* Set up the RTC RTAS interfaces */
2916     spapr_rtc_create(spapr);
2917 
2918     /* Set up VIO bus */
2919     spapr->vio_bus = spapr_vio_bus_init();
2920 
2921     for (i = 0; serial_hd(i); i++) {
2922         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2923     }
2924 
2925     /* We always have at least the nvram device on VIO */
2926     spapr_create_nvram(spapr);
2927 
2928     /*
2929      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2930      * connectors (described in root DT node's "ibm,drc-types" property)
2931      * are pre-initialized here. additional child connectors (such as
2932      * connectors for a PHBs PCI slots) are added as needed during their
2933      * parent's realization.
2934      */
2935     if (smc->dr_phb_enabled) {
2936         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2937             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2938         }
2939     }
2940 
2941     /* Set up PCI */
2942     spapr_pci_rtas_init();
2943 
2944     phb = spapr_create_default_phb();
2945 
2946     for (i = 0; i < nb_nics; i++) {
2947         NICInfo *nd = &nd_table[i];
2948 
2949         if (!nd->model) {
2950             nd->model = g_strdup("spapr-vlan");
2951         }
2952 
2953         if (g_str_equal(nd->model, "spapr-vlan") ||
2954             g_str_equal(nd->model, "ibmveth")) {
2955             spapr_vlan_create(spapr->vio_bus, nd);
2956         } else {
2957             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2958         }
2959     }
2960 
2961     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2962         spapr_vscsi_create(spapr->vio_bus);
2963     }
2964 
2965     /* Graphics */
2966     has_vga = spapr_vga_init(phb->bus, &error_fatal);
2967     if (has_vga) {
2968         spapr->want_stdout_path = !machine->enable_graphics;
2969         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2970     } else {
2971         spapr->want_stdout_path = true;
2972     }
2973 
2974     if (machine->usb) {
2975         if (smc->use_ohci_by_default) {
2976             pci_create_simple(phb->bus, -1, "pci-ohci");
2977         } else {
2978             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2979         }
2980 
2981         if (has_vga) {
2982             USBBus *usb_bus = usb_bus_find(-1);
2983 
2984             usb_create_simple(usb_bus, "usb-kbd");
2985             usb_create_simple(usb_bus, "usb-mouse");
2986         }
2987     }
2988 
2989     if (kernel_filename) {
2990         uint64_t loaded_addr = 0;
2991 
2992         spapr->kernel_size = load_elf(kernel_filename, NULL,
2993                                       translate_kernel_address, spapr,
2994                                       NULL, &loaded_addr, NULL, NULL, 1,
2995                                       PPC_ELF_MACHINE, 0, 0);
2996         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2997             spapr->kernel_size = load_elf(kernel_filename, NULL,
2998                                           translate_kernel_address, spapr,
2999                                           NULL, &loaded_addr, NULL, NULL, 0,
3000                                           PPC_ELF_MACHINE, 0, 0);
3001             spapr->kernel_le = spapr->kernel_size > 0;
3002         }
3003         if (spapr->kernel_size < 0) {
3004             error_report("error loading %s: %s", kernel_filename,
3005                          load_elf_strerror(spapr->kernel_size));
3006             exit(1);
3007         }
3008 
3009         if (spapr->kernel_addr != loaded_addr) {
3010             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3011                         " to 0x%"PRIx64,
3012                         spapr->kernel_addr, loaded_addr);
3013             spapr->kernel_addr = loaded_addr;
3014         }
3015 
3016         /* load initrd */
3017         if (initrd_filename) {
3018             /* Try to locate the initrd in the gap between the kernel
3019              * and the firmware. Add a bit of space just in case
3020              */
3021             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3022                                   + 0x1ffff) & ~0xffff;
3023             spapr->initrd_size = load_image_targphys(initrd_filename,
3024                                                      spapr->initrd_base,
3025                                                      load_limit
3026                                                      - spapr->initrd_base);
3027             if (spapr->initrd_size < 0) {
3028                 error_report("could not load initial ram disk '%s'",
3029                              initrd_filename);
3030                 exit(1);
3031             }
3032         }
3033     }
3034 
3035     /* FIXME: Should register things through the MachineState's qdev
3036      * interface, this is a legacy from the sPAPREnvironment structure
3037      * which predated MachineState but had a similar function */
3038     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3039     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3040                          &savevm_htab_handlers, spapr);
3041 
3042     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3043 
3044     qemu_register_boot_set(spapr_boot_set, spapr);
3045 
3046     /*
3047      * Nothing needs to be done to resume a suspended guest because
3048      * suspending does not change the machine state, so no need for
3049      * a ->wakeup method.
3050      */
3051     qemu_register_wakeup_support();
3052 
3053     if (kvm_enabled()) {
3054         /* to stop and start vmclock */
3055         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3056                                          &spapr->tb);
3057 
3058         kvmppc_spapr_enable_inkernel_multitce();
3059     }
3060 
3061     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3062     if (spapr->vof) {
3063         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3064         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3065     }
3066 
3067     spapr_watchdog_init(spapr);
3068 }
3069 
3070 #define DEFAULT_KVM_TYPE "auto"
3071 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3072 {
3073     /*
3074      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3075      * accomodate the 'HV' and 'PV' formats that exists in the
3076      * wild. The 'auto' mode is being introduced already as
3077      * lower-case, thus we don't need to bother checking for
3078      * "AUTO".
3079      */
3080     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3081         return 0;
3082     }
3083 
3084     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3085         return 1;
3086     }
3087 
3088     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3089         return 2;
3090     }
3091 
3092     error_report("Unknown kvm-type specified '%s'", vm_type);
3093     exit(1);
3094 }
3095 
3096 /*
3097  * Implementation of an interface to adjust firmware path
3098  * for the bootindex property handling.
3099  */
3100 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3101                                    DeviceState *dev)
3102 {
3103 #define CAST(type, obj, name) \
3104     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3105     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3106     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3107     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3108     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3109 
3110     if (d && bus) {
3111         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3112         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3113         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3114 
3115         if (spapr) {
3116             /*
3117              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3118              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3119              * 0x8000 | (target << 8) | (bus << 5) | lun
3120              * (see the "Logical unit addressing format" table in SAM5)
3121              */
3122             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3123             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3124                                    (uint64_t)id << 48);
3125         } else if (virtio) {
3126             /*
3127              * We use SRP luns of the form 01000000 | (target << 8) | lun
3128              * in the top 32 bits of the 64-bit LUN
3129              * Note: the quote above is from SLOF and it is wrong,
3130              * the actual binding is:
3131              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3132              */
3133             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3134             if (d->lun >= 256) {
3135                 /* Use the LUN "flat space addressing method" */
3136                 id |= 0x4000;
3137             }
3138             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3139                                    (uint64_t)id << 32);
3140         } else if (usb) {
3141             /*
3142              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3143              * in the top 32 bits of the 64-bit LUN
3144              */
3145             unsigned usb_port = atoi(usb->port->path);
3146             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3147             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3148                                    (uint64_t)id << 32);
3149         }
3150     }
3151 
3152     /*
3153      * SLOF probes the USB devices, and if it recognizes that the device is a
3154      * storage device, it changes its name to "storage" instead of "usb-host",
3155      * and additionally adds a child node for the SCSI LUN, so the correct
3156      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3157      */
3158     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3159         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3160         if (usb_device_is_scsi_storage(usbdev)) {
3161             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3162         }
3163     }
3164 
3165     if (phb) {
3166         /* Replace "pci" with "pci@800000020000000" */
3167         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3168     }
3169 
3170     if (vsc) {
3171         /* Same logic as virtio above */
3172         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3173         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3174     }
3175 
3176     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3177         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3178         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3179         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3180     }
3181 
3182     if (pcidev) {
3183         return spapr_pci_fw_dev_name(pcidev);
3184     }
3185 
3186     return NULL;
3187 }
3188 
3189 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3190 {
3191     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3192 
3193     return g_strdup(spapr->kvm_type);
3194 }
3195 
3196 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3197 {
3198     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3199 
3200     g_free(spapr->kvm_type);
3201     spapr->kvm_type = g_strdup(value);
3202 }
3203 
3204 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3205 {
3206     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207 
3208     return spapr->use_hotplug_event_source;
3209 }
3210 
3211 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3212                                             Error **errp)
3213 {
3214     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3215 
3216     spapr->use_hotplug_event_source = value;
3217 }
3218 
3219 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3220 {
3221     return true;
3222 }
3223 
3224 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3225 {
3226     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3227 
3228     switch (spapr->resize_hpt) {
3229     case SPAPR_RESIZE_HPT_DEFAULT:
3230         return g_strdup("default");
3231     case SPAPR_RESIZE_HPT_DISABLED:
3232         return g_strdup("disabled");
3233     case SPAPR_RESIZE_HPT_ENABLED:
3234         return g_strdup("enabled");
3235     case SPAPR_RESIZE_HPT_REQUIRED:
3236         return g_strdup("required");
3237     }
3238     g_assert_not_reached();
3239 }
3240 
3241 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3242 {
3243     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3244 
3245     if (strcmp(value, "default") == 0) {
3246         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3247     } else if (strcmp(value, "disabled") == 0) {
3248         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3249     } else if (strcmp(value, "enabled") == 0) {
3250         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3251     } else if (strcmp(value, "required") == 0) {
3252         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3253     } else {
3254         error_setg(errp, "Bad value for \"resize-hpt\" property");
3255     }
3256 }
3257 
3258 static bool spapr_get_vof(Object *obj, Error **errp)
3259 {
3260     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3261 
3262     return spapr->vof != NULL;
3263 }
3264 
3265 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3266 {
3267     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3268 
3269     if (spapr->vof) {
3270         vof_cleanup(spapr->vof);
3271         g_free(spapr->vof);
3272         spapr->vof = NULL;
3273     }
3274     if (!value) {
3275         return;
3276     }
3277     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3278 }
3279 
3280 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3281 {
3282     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3283 
3284     if (spapr->irq == &spapr_irq_xics_legacy) {
3285         return g_strdup("legacy");
3286     } else if (spapr->irq == &spapr_irq_xics) {
3287         return g_strdup("xics");
3288     } else if (spapr->irq == &spapr_irq_xive) {
3289         return g_strdup("xive");
3290     } else if (spapr->irq == &spapr_irq_dual) {
3291         return g_strdup("dual");
3292     }
3293     g_assert_not_reached();
3294 }
3295 
3296 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3297 {
3298     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3299 
3300     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3301         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3302         return;
3303     }
3304 
3305     /* The legacy IRQ backend can not be set */
3306     if (strcmp(value, "xics") == 0) {
3307         spapr->irq = &spapr_irq_xics;
3308     } else if (strcmp(value, "xive") == 0) {
3309         spapr->irq = &spapr_irq_xive;
3310     } else if (strcmp(value, "dual") == 0) {
3311         spapr->irq = &spapr_irq_dual;
3312     } else {
3313         error_setg(errp, "Bad value for \"ic-mode\" property");
3314     }
3315 }
3316 
3317 static char *spapr_get_host_model(Object *obj, Error **errp)
3318 {
3319     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3320 
3321     return g_strdup(spapr->host_model);
3322 }
3323 
3324 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3325 {
3326     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3327 
3328     g_free(spapr->host_model);
3329     spapr->host_model = g_strdup(value);
3330 }
3331 
3332 static char *spapr_get_host_serial(Object *obj, Error **errp)
3333 {
3334     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3335 
3336     return g_strdup(spapr->host_serial);
3337 }
3338 
3339 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3340 {
3341     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3342 
3343     g_free(spapr->host_serial);
3344     spapr->host_serial = g_strdup(value);
3345 }
3346 
3347 static void spapr_instance_init(Object *obj)
3348 {
3349     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3350     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3351     MachineState *ms = MACHINE(spapr);
3352     MachineClass *mc = MACHINE_GET_CLASS(ms);
3353 
3354     /*
3355      * NVDIMM support went live in 5.1 without considering that, in
3356      * other archs, the user needs to enable NVDIMM support with the
3357      * 'nvdimm' machine option and the default behavior is NVDIMM
3358      * support disabled. It is too late to roll back to the standard
3359      * behavior without breaking 5.1 guests.
3360      */
3361     if (mc->nvdimm_supported) {
3362         ms->nvdimms_state->is_enabled = true;
3363     }
3364 
3365     spapr->htab_fd = -1;
3366     spapr->use_hotplug_event_source = true;
3367     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3368     object_property_add_str(obj, "kvm-type",
3369                             spapr_get_kvm_type, spapr_set_kvm_type);
3370     object_property_set_description(obj, "kvm-type",
3371                                     "Specifies the KVM virtualization mode (auto,"
3372                                     " hv, pr). Defaults to 'auto'. This mode will use"
3373                                     " any available KVM module loaded in the host,"
3374                                     " where kvm_hv takes precedence if both kvm_hv and"
3375                                     " kvm_pr are loaded.");
3376     object_property_add_bool(obj, "modern-hotplug-events",
3377                             spapr_get_modern_hotplug_events,
3378                             spapr_set_modern_hotplug_events);
3379     object_property_set_description(obj, "modern-hotplug-events",
3380                                     "Use dedicated hotplug event mechanism in"
3381                                     " place of standard EPOW events when possible"
3382                                     " (required for memory hot-unplug support)");
3383     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3384                             "Maximum permitted CPU compatibility mode");
3385 
3386     object_property_add_str(obj, "resize-hpt",
3387                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3388     object_property_set_description(obj, "resize-hpt",
3389                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3390     object_property_add_uint32_ptr(obj, "vsmt",
3391                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3392     object_property_set_description(obj, "vsmt",
3393                                     "Virtual SMT: KVM behaves as if this were"
3394                                     " the host's SMT mode");
3395 
3396     object_property_add_bool(obj, "vfio-no-msix-emulation",
3397                              spapr_get_msix_emulation, NULL);
3398 
3399     object_property_add_uint64_ptr(obj, "kernel-addr",
3400                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3401     object_property_set_description(obj, "kernel-addr",
3402                                     stringify(KERNEL_LOAD_ADDR)
3403                                     " for -kernel is the default");
3404     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3405 
3406     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3407     object_property_set_description(obj, "x-vof",
3408                                     "Enable Virtual Open Firmware (experimental)");
3409 
3410     /* The machine class defines the default interrupt controller mode */
3411     spapr->irq = smc->irq;
3412     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3413                             spapr_set_ic_mode);
3414     object_property_set_description(obj, "ic-mode",
3415                  "Specifies the interrupt controller mode (xics, xive, dual)");
3416 
3417     object_property_add_str(obj, "host-model",
3418         spapr_get_host_model, spapr_set_host_model);
3419     object_property_set_description(obj, "host-model",
3420         "Host model to advertise in guest device tree");
3421     object_property_add_str(obj, "host-serial",
3422         spapr_get_host_serial, spapr_set_host_serial);
3423     object_property_set_description(obj, "host-serial",
3424         "Host serial number to advertise in guest device tree");
3425 }
3426 
3427 static void spapr_machine_finalizefn(Object *obj)
3428 {
3429     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3430 
3431     g_free(spapr->kvm_type);
3432 }
3433 
3434 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3435 {
3436     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3437     PowerPCCPU *cpu = POWERPC_CPU(cs);
3438     CPUPPCState *env = &cpu->env;
3439 
3440     cpu_synchronize_state(cs);
3441     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3442     if (spapr->fwnmi_system_reset_addr != -1) {
3443         uint64_t rtas_addr, addr;
3444 
3445         /* get rtas addr from fdt */
3446         rtas_addr = spapr_get_rtas_addr();
3447         if (!rtas_addr) {
3448             qemu_system_guest_panicked(NULL);
3449             return;
3450         }
3451 
3452         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3453         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3454         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3455         env->gpr[3] = addr;
3456     }
3457     ppc_cpu_do_system_reset(cs);
3458     if (spapr->fwnmi_system_reset_addr != -1) {
3459         env->nip = spapr->fwnmi_system_reset_addr;
3460     }
3461 }
3462 
3463 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3464 {
3465     CPUState *cs;
3466 
3467     CPU_FOREACH(cs) {
3468         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3469     }
3470 }
3471 
3472 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3473                           void *fdt, int *fdt_start_offset, Error **errp)
3474 {
3475     uint64_t addr;
3476     uint32_t node;
3477 
3478     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3479     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3480                                     &error_abort);
3481     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3482                                              SPAPR_MEMORY_BLOCK_SIZE);
3483     return 0;
3484 }
3485 
3486 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3487                            bool dedicated_hp_event_source)
3488 {
3489     SpaprDrc *drc;
3490     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3491     int i;
3492     uint64_t addr = addr_start;
3493     bool hotplugged = spapr_drc_hotplugged(dev);
3494 
3495     for (i = 0; i < nr_lmbs; i++) {
3496         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3497                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3498         g_assert(drc);
3499 
3500         /*
3501          * memory_device_get_free_addr() provided a range of free addresses
3502          * that doesn't overlap with any existing mapping at pre-plug. The
3503          * corresponding LMB DRCs are thus assumed to be all attachable.
3504          */
3505         spapr_drc_attach(drc, dev);
3506         if (!hotplugged) {
3507             spapr_drc_reset(drc);
3508         }
3509         addr += SPAPR_MEMORY_BLOCK_SIZE;
3510     }
3511     /* send hotplug notification to the
3512      * guest only in case of hotplugged memory
3513      */
3514     if (hotplugged) {
3515         if (dedicated_hp_event_source) {
3516             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3517                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3518             g_assert(drc);
3519             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3520                                                    nr_lmbs,
3521                                                    spapr_drc_index(drc));
3522         } else {
3523             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3524                                            nr_lmbs);
3525         }
3526     }
3527 }
3528 
3529 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3530 {
3531     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3532     PCDIMMDevice *dimm = PC_DIMM(dev);
3533     uint64_t size, addr;
3534     int64_t slot;
3535     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3536 
3537     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3538 
3539     pc_dimm_plug(dimm, MACHINE(ms));
3540 
3541     if (!is_nvdimm) {
3542         addr = object_property_get_uint(OBJECT(dimm),
3543                                         PC_DIMM_ADDR_PROP, &error_abort);
3544         spapr_add_lmbs(dev, addr, size,
3545                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3546     } else {
3547         slot = object_property_get_int(OBJECT(dimm),
3548                                        PC_DIMM_SLOT_PROP, &error_abort);
3549         /* We should have valid slot number at this point */
3550         g_assert(slot >= 0);
3551         spapr_add_nvdimm(dev, slot);
3552     }
3553 }
3554 
3555 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3556                                   Error **errp)
3557 {
3558     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3559     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3560     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3561     PCDIMMDevice *dimm = PC_DIMM(dev);
3562     Error *local_err = NULL;
3563     uint64_t size;
3564     Object *memdev;
3565     hwaddr pagesize;
3566 
3567     if (!smc->dr_lmb_enabled) {
3568         error_setg(errp, "Memory hotplug not supported for this machine");
3569         return;
3570     }
3571 
3572     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3573     if (local_err) {
3574         error_propagate(errp, local_err);
3575         return;
3576     }
3577 
3578     if (is_nvdimm) {
3579         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3580             return;
3581         }
3582     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3583         error_setg(errp, "Hotplugged memory size must be a multiple of "
3584                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3585         return;
3586     }
3587 
3588     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3589                                       &error_abort);
3590     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3591     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3592         return;
3593     }
3594 
3595     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3596 }
3597 
3598 struct SpaprDimmState {
3599     PCDIMMDevice *dimm;
3600     uint32_t nr_lmbs;
3601     QTAILQ_ENTRY(SpaprDimmState) next;
3602 };
3603 
3604 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3605                                                        PCDIMMDevice *dimm)
3606 {
3607     SpaprDimmState *dimm_state = NULL;
3608 
3609     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3610         if (dimm_state->dimm == dimm) {
3611             break;
3612         }
3613     }
3614     return dimm_state;
3615 }
3616 
3617 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3618                                                       uint32_t nr_lmbs,
3619                                                       PCDIMMDevice *dimm)
3620 {
3621     SpaprDimmState *ds = NULL;
3622 
3623     /*
3624      * If this request is for a DIMM whose removal had failed earlier
3625      * (due to guest's refusal to remove the LMBs), we would have this
3626      * dimm already in the pending_dimm_unplugs list. In that
3627      * case don't add again.
3628      */
3629     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3630     if (!ds) {
3631         ds = g_new0(SpaprDimmState, 1);
3632         ds->nr_lmbs = nr_lmbs;
3633         ds->dimm = dimm;
3634         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3635     }
3636     return ds;
3637 }
3638 
3639 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3640                                               SpaprDimmState *dimm_state)
3641 {
3642     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3643     g_free(dimm_state);
3644 }
3645 
3646 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3647                                                         PCDIMMDevice *dimm)
3648 {
3649     SpaprDrc *drc;
3650     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3651                                                   &error_abort);
3652     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3653     uint32_t avail_lmbs = 0;
3654     uint64_t addr_start, addr;
3655     int i;
3656 
3657     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3658                                           &error_abort);
3659 
3660     addr = addr_start;
3661     for (i = 0; i < nr_lmbs; i++) {
3662         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3663                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3664         g_assert(drc);
3665         if (drc->dev) {
3666             avail_lmbs++;
3667         }
3668         addr += SPAPR_MEMORY_BLOCK_SIZE;
3669     }
3670 
3671     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3672 }
3673 
3674 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3675 {
3676     SpaprDimmState *ds;
3677     PCDIMMDevice *dimm;
3678     SpaprDrc *drc;
3679     uint32_t nr_lmbs;
3680     uint64_t size, addr_start, addr;
3681     g_autofree char *qapi_error = NULL;
3682     int i;
3683 
3684     if (!dev) {
3685         return;
3686     }
3687 
3688     dimm = PC_DIMM(dev);
3689     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3690 
3691     /*
3692      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3693      * unplug state, but one of its DRC is marked as unplug_requested.
3694      * This is bad and weird enough to g_assert() out.
3695      */
3696     g_assert(ds);
3697 
3698     spapr_pending_dimm_unplugs_remove(spapr, ds);
3699 
3700     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3701     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3702 
3703     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3704                                           &error_abort);
3705 
3706     addr = addr_start;
3707     for (i = 0; i < nr_lmbs; i++) {
3708         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3709                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3710         g_assert(drc);
3711 
3712         drc->unplug_requested = false;
3713         addr += SPAPR_MEMORY_BLOCK_SIZE;
3714     }
3715 
3716     /*
3717      * Tell QAPI that something happened and the memory
3718      * hotunplug wasn't successful. Keep sending
3719      * MEM_UNPLUG_ERROR even while sending
3720      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3721      * MEM_UNPLUG_ERROR is due.
3722      */
3723     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3724                                  "for device %s", dev->id);
3725 
3726     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3727 
3728     qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id,
3729                                               dev->canonical_path);
3730 }
3731 
3732 /* Callback to be called during DRC release. */
3733 void spapr_lmb_release(DeviceState *dev)
3734 {
3735     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3736     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3737     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3738 
3739     /* This information will get lost if a migration occurs
3740      * during the unplug process. In this case recover it. */
3741     if (ds == NULL) {
3742         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3743         g_assert(ds);
3744         /* The DRC being examined by the caller at least must be counted */
3745         g_assert(ds->nr_lmbs);
3746     }
3747 
3748     if (--ds->nr_lmbs) {
3749         return;
3750     }
3751 
3752     /*
3753      * Now that all the LMBs have been removed by the guest, call the
3754      * unplug handler chain. This can never fail.
3755      */
3756     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3757     object_unparent(OBJECT(dev));
3758 }
3759 
3760 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3761 {
3762     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3763     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3764 
3765     /* We really shouldn't get this far without anything to unplug */
3766     g_assert(ds);
3767 
3768     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3769     qdev_unrealize(dev);
3770     spapr_pending_dimm_unplugs_remove(spapr, ds);
3771 }
3772 
3773 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3774                                         DeviceState *dev, Error **errp)
3775 {
3776     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3777     PCDIMMDevice *dimm = PC_DIMM(dev);
3778     uint32_t nr_lmbs;
3779     uint64_t size, addr_start, addr;
3780     int i;
3781     SpaprDrc *drc;
3782 
3783     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3784         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3785         return;
3786     }
3787 
3788     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3789     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3790 
3791     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3792                                           &error_abort);
3793 
3794     /*
3795      * An existing pending dimm state for this DIMM means that there is an
3796      * unplug operation in progress, waiting for the spapr_lmb_release
3797      * callback to complete the job (BQL can't cover that far). In this case,
3798      * bail out to avoid detaching DRCs that were already released.
3799      */
3800     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3801         error_setg(errp, "Memory unplug already in progress for device %s",
3802                    dev->id);
3803         return;
3804     }
3805 
3806     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3807 
3808     addr = addr_start;
3809     for (i = 0; i < nr_lmbs; i++) {
3810         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3811                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3812         g_assert(drc);
3813 
3814         spapr_drc_unplug_request(drc);
3815         addr += SPAPR_MEMORY_BLOCK_SIZE;
3816     }
3817 
3818     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3819                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3820     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3821                                               nr_lmbs, spapr_drc_index(drc));
3822 }
3823 
3824 /* Callback to be called during DRC release. */
3825 void spapr_core_release(DeviceState *dev)
3826 {
3827     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3828 
3829     /* Call the unplug handler chain. This can never fail. */
3830     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3831     object_unparent(OBJECT(dev));
3832 }
3833 
3834 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3835 {
3836     MachineState *ms = MACHINE(hotplug_dev);
3837     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3838     CPUCore *cc = CPU_CORE(dev);
3839     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3840 
3841     if (smc->pre_2_10_has_unused_icps) {
3842         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3843         int i;
3844 
3845         for (i = 0; i < cc->nr_threads; i++) {
3846             CPUState *cs = CPU(sc->threads[i]);
3847 
3848             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3849         }
3850     }
3851 
3852     assert(core_slot);
3853     core_slot->cpu = NULL;
3854     qdev_unrealize(dev);
3855 }
3856 
3857 static
3858 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3859                                Error **errp)
3860 {
3861     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3862     int index;
3863     SpaprDrc *drc;
3864     CPUCore *cc = CPU_CORE(dev);
3865 
3866     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3867         error_setg(errp, "Unable to find CPU core with core-id: %d",
3868                    cc->core_id);
3869         return;
3870     }
3871     if (index == 0) {
3872         error_setg(errp, "Boot CPU core may not be unplugged");
3873         return;
3874     }
3875 
3876     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3877                           spapr_vcpu_id(spapr, cc->core_id));
3878     g_assert(drc);
3879 
3880     if (!spapr_drc_unplug_requested(drc)) {
3881         spapr_drc_unplug_request(drc);
3882     }
3883 
3884     /*
3885      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3886      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3887      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3888      * attempt (e.g. the kernel will refuse to remove the last online
3889      * CPU), we will never attempt it again because unplug_requested
3890      * will still be 'true' in that case.
3891      */
3892     spapr_hotplug_req_remove_by_index(drc);
3893 }
3894 
3895 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3896                            void *fdt, int *fdt_start_offset, Error **errp)
3897 {
3898     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3899     CPUState *cs = CPU(core->threads[0]);
3900     PowerPCCPU *cpu = POWERPC_CPU(cs);
3901     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3902     int id = spapr_get_vcpu_id(cpu);
3903     g_autofree char *nodename = NULL;
3904     int offset;
3905 
3906     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3907     offset = fdt_add_subnode(fdt, 0, nodename);
3908 
3909     spapr_dt_cpu(cs, fdt, offset, spapr);
3910 
3911     /*
3912      * spapr_dt_cpu() does not fill the 'name' property in the
3913      * CPU node. The function is called during boot process, before
3914      * and after CAS, and overwriting the 'name' property written
3915      * by SLOF is not allowed.
3916      *
3917      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3918      * CPUs more compatible with the coldplugged ones, which have
3919      * the 'name' property. Linux Kernel also relies on this
3920      * property to identify CPU nodes.
3921      */
3922     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3923 
3924     *fdt_start_offset = offset;
3925     return 0;
3926 }
3927 
3928 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3929 {
3930     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3931     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3932     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3933     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3934     CPUCore *cc = CPU_CORE(dev);
3935     CPUState *cs;
3936     SpaprDrc *drc;
3937     CPUArchId *core_slot;
3938     int index;
3939     bool hotplugged = spapr_drc_hotplugged(dev);
3940     int i;
3941 
3942     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3943     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3944 
3945     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3946                           spapr_vcpu_id(spapr, cc->core_id));
3947 
3948     g_assert(drc || !mc->has_hotpluggable_cpus);
3949 
3950     if (drc) {
3951         /*
3952          * spapr_core_pre_plug() already buys us this is a brand new
3953          * core being plugged into a free slot. Nothing should already
3954          * be attached to the corresponding DRC.
3955          */
3956         spapr_drc_attach(drc, dev);
3957 
3958         if (hotplugged) {
3959             /*
3960              * Send hotplug notification interrupt to the guest only
3961              * in case of hotplugged CPUs.
3962              */
3963             spapr_hotplug_req_add_by_index(drc);
3964         } else {
3965             spapr_drc_reset(drc);
3966         }
3967     }
3968 
3969     core_slot->cpu = OBJECT(dev);
3970 
3971     /*
3972      * Set compatibility mode to match the boot CPU, which was either set
3973      * by the machine reset code or by CAS. This really shouldn't fail at
3974      * this point.
3975      */
3976     if (hotplugged) {
3977         for (i = 0; i < cc->nr_threads; i++) {
3978             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3979                            &error_abort);
3980         }
3981     }
3982 
3983     if (smc->pre_2_10_has_unused_icps) {
3984         for (i = 0; i < cc->nr_threads; i++) {
3985             cs = CPU(core->threads[i]);
3986             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3987         }
3988     }
3989 }
3990 
3991 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3992                                 Error **errp)
3993 {
3994     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3995     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3996     CPUCore *cc = CPU_CORE(dev);
3997     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3998     const char *type = object_get_typename(OBJECT(dev));
3999     CPUArchId *core_slot;
4000     int index;
4001     unsigned int smp_threads = machine->smp.threads;
4002 
4003     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4004         error_setg(errp, "CPU hotplug not supported for this machine");
4005         return;
4006     }
4007 
4008     if (strcmp(base_core_type, type)) {
4009         error_setg(errp, "CPU core type should be %s", base_core_type);
4010         return;
4011     }
4012 
4013     if (cc->core_id % smp_threads) {
4014         error_setg(errp, "invalid core id %d", cc->core_id);
4015         return;
4016     }
4017 
4018     /*
4019      * In general we should have homogeneous threads-per-core, but old
4020      * (pre hotplug support) machine types allow the last core to have
4021      * reduced threads as a compatibility hack for when we allowed
4022      * total vcpus not a multiple of threads-per-core.
4023      */
4024     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4025         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4026                    smp_threads);
4027         return;
4028     }
4029 
4030     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4031     if (!core_slot) {
4032         error_setg(errp, "core id %d out of range", cc->core_id);
4033         return;
4034     }
4035 
4036     if (core_slot->cpu) {
4037         error_setg(errp, "core %d already populated", cc->core_id);
4038         return;
4039     }
4040 
4041     numa_cpu_pre_plug(core_slot, dev, errp);
4042 }
4043 
4044 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4045                           void *fdt, int *fdt_start_offset, Error **errp)
4046 {
4047     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4048     int intc_phandle;
4049 
4050     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4051     if (intc_phandle <= 0) {
4052         return -1;
4053     }
4054 
4055     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4056         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4057         return -1;
4058     }
4059 
4060     /* generally SLOF creates these, for hotplug it's up to QEMU */
4061     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4062 
4063     return 0;
4064 }
4065 
4066 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4067                                Error **errp)
4068 {
4069     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4070     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4071     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4072     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4073     SpaprDrc *drc;
4074 
4075     if (dev->hotplugged && !smc->dr_phb_enabled) {
4076         error_setg(errp, "PHB hotplug not supported for this machine");
4077         return false;
4078     }
4079 
4080     if (sphb->index == (uint32_t)-1) {
4081         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4082         return false;
4083     }
4084 
4085     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4086     if (drc && drc->dev) {
4087         error_setg(errp, "PHB %d already attached", sphb->index);
4088         return false;
4089     }
4090 
4091     /*
4092      * This will check that sphb->index doesn't exceed the maximum number of
4093      * PHBs for the current machine type.
4094      */
4095     return
4096         smc->phb_placement(spapr, sphb->index,
4097                            &sphb->buid, &sphb->io_win_addr,
4098                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4099                            windows_supported, sphb->dma_liobn,
4100                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4101                            errp);
4102 }
4103 
4104 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4105 {
4106     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4107     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4108     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4109     SpaprDrc *drc;
4110     bool hotplugged = spapr_drc_hotplugged(dev);
4111 
4112     if (!smc->dr_phb_enabled) {
4113         return;
4114     }
4115 
4116     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4117     /* hotplug hooks should check it's enabled before getting this far */
4118     assert(drc);
4119 
4120     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4121     spapr_drc_attach(drc, dev);
4122 
4123     if (hotplugged) {
4124         spapr_hotplug_req_add_by_index(drc);
4125     } else {
4126         spapr_drc_reset(drc);
4127     }
4128 }
4129 
4130 void spapr_phb_release(DeviceState *dev)
4131 {
4132     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4133 
4134     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4135     object_unparent(OBJECT(dev));
4136 }
4137 
4138 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4139 {
4140     qdev_unrealize(dev);
4141 }
4142 
4143 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4144                                      DeviceState *dev, Error **errp)
4145 {
4146     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4147     SpaprDrc *drc;
4148 
4149     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4150     assert(drc);
4151 
4152     if (!spapr_drc_unplug_requested(drc)) {
4153         spapr_drc_unplug_request(drc);
4154         spapr_hotplug_req_remove_by_index(drc);
4155     } else {
4156         error_setg(errp,
4157                    "PCI Host Bridge unplug already in progress for device %s",
4158                    dev->id);
4159     }
4160 }
4161 
4162 static
4163 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4164                               Error **errp)
4165 {
4166     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4167 
4168     if (spapr->tpm_proxy != NULL) {
4169         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4170         return false;
4171     }
4172 
4173     return true;
4174 }
4175 
4176 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4177 {
4178     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4179     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4180 
4181     /* Already checked in spapr_tpm_proxy_pre_plug() */
4182     g_assert(spapr->tpm_proxy == NULL);
4183 
4184     spapr->tpm_proxy = tpm_proxy;
4185 }
4186 
4187 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4188 {
4189     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4190 
4191     qdev_unrealize(dev);
4192     object_unparent(OBJECT(dev));
4193     spapr->tpm_proxy = NULL;
4194 }
4195 
4196 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4197                                       DeviceState *dev, Error **errp)
4198 {
4199     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4200         spapr_memory_plug(hotplug_dev, dev);
4201     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4202         spapr_core_plug(hotplug_dev, dev);
4203     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4204         spapr_phb_plug(hotplug_dev, dev);
4205     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4206         spapr_tpm_proxy_plug(hotplug_dev, dev);
4207     }
4208 }
4209 
4210 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4211                                         DeviceState *dev, Error **errp)
4212 {
4213     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4214         spapr_memory_unplug(hotplug_dev, dev);
4215     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4216         spapr_core_unplug(hotplug_dev, dev);
4217     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4218         spapr_phb_unplug(hotplug_dev, dev);
4219     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4220         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4221     }
4222 }
4223 
4224 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4225 {
4226     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4227         /*
4228          * CAS will process all pending unplug requests.
4229          *
4230          * HACK: a guest could theoretically have cleared all bits in OV5,
4231          * but none of the guests we care for do.
4232          */
4233         spapr_ovec_empty(spapr->ov5_cas);
4234 }
4235 
4236 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4237                                                 DeviceState *dev, Error **errp)
4238 {
4239     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4240     MachineClass *mc = MACHINE_GET_CLASS(sms);
4241     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4242 
4243     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4244         if (spapr_memory_hot_unplug_supported(sms)) {
4245             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4246         } else {
4247             error_setg(errp, "Memory hot unplug not supported for this guest");
4248         }
4249     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4250         if (!mc->has_hotpluggable_cpus) {
4251             error_setg(errp, "CPU hot unplug not supported on this machine");
4252             return;
4253         }
4254         spapr_core_unplug_request(hotplug_dev, dev, errp);
4255     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4256         if (!smc->dr_phb_enabled) {
4257             error_setg(errp, "PHB hot unplug not supported on this machine");
4258             return;
4259         }
4260         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4261     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4262         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4263     }
4264 }
4265 
4266 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4267                                           DeviceState *dev, Error **errp)
4268 {
4269     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4270         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4271     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4272         spapr_core_pre_plug(hotplug_dev, dev, errp);
4273     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4274         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4275     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4276         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4277     }
4278 }
4279 
4280 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4281                                                  DeviceState *dev)
4282 {
4283     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4284         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4285         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4286         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4287         return HOTPLUG_HANDLER(machine);
4288     }
4289     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4290         PCIDevice *pcidev = PCI_DEVICE(dev);
4291         PCIBus *root = pci_device_root_bus(pcidev);
4292         SpaprPhbState *phb =
4293             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4294                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4295 
4296         if (phb) {
4297             return HOTPLUG_HANDLER(phb);
4298         }
4299     }
4300     return NULL;
4301 }
4302 
4303 static CpuInstanceProperties
4304 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4305 {
4306     CPUArchId *core_slot;
4307     MachineClass *mc = MACHINE_GET_CLASS(machine);
4308 
4309     /* make sure possible_cpu are intialized */
4310     mc->possible_cpu_arch_ids(machine);
4311     /* get CPU core slot containing thread that matches cpu_index */
4312     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4313     assert(core_slot);
4314     return core_slot->props;
4315 }
4316 
4317 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4318 {
4319     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4320 }
4321 
4322 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4323 {
4324     int i;
4325     unsigned int smp_threads = machine->smp.threads;
4326     unsigned int smp_cpus = machine->smp.cpus;
4327     const char *core_type;
4328     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4329     MachineClass *mc = MACHINE_GET_CLASS(machine);
4330 
4331     if (!mc->has_hotpluggable_cpus) {
4332         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4333     }
4334     if (machine->possible_cpus) {
4335         assert(machine->possible_cpus->len == spapr_max_cores);
4336         return machine->possible_cpus;
4337     }
4338 
4339     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4340     if (!core_type) {
4341         error_report("Unable to find sPAPR CPU Core definition");
4342         exit(1);
4343     }
4344 
4345     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4346                              sizeof(CPUArchId) * spapr_max_cores);
4347     machine->possible_cpus->len = spapr_max_cores;
4348     for (i = 0; i < machine->possible_cpus->len; i++) {
4349         int core_id = i * smp_threads;
4350 
4351         machine->possible_cpus->cpus[i].type = core_type;
4352         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4353         machine->possible_cpus->cpus[i].arch_id = core_id;
4354         machine->possible_cpus->cpus[i].props.has_core_id = true;
4355         machine->possible_cpus->cpus[i].props.core_id = core_id;
4356     }
4357     return machine->possible_cpus;
4358 }
4359 
4360 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4361                                 uint64_t *buid, hwaddr *pio,
4362                                 hwaddr *mmio32, hwaddr *mmio64,
4363                                 unsigned n_dma, uint32_t *liobns,
4364                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4365 {
4366     /*
4367      * New-style PHB window placement.
4368      *
4369      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4370      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4371      * windows.
4372      *
4373      * Some guest kernels can't work with MMIO windows above 1<<46
4374      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4375      *
4376      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4377      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4378      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4379      * 1TiB 64-bit MMIO windows for each PHB.
4380      */
4381     const uint64_t base_buid = 0x800000020000000ULL;
4382     int i;
4383 
4384     /* Sanity check natural alignments */
4385     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4386     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4387     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4388     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4389     /* Sanity check bounds */
4390     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4391                       SPAPR_PCI_MEM32_WIN_SIZE);
4392     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4393                       SPAPR_PCI_MEM64_WIN_SIZE);
4394 
4395     if (index >= SPAPR_MAX_PHBS) {
4396         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4397                    SPAPR_MAX_PHBS - 1);
4398         return false;
4399     }
4400 
4401     *buid = base_buid + index;
4402     for (i = 0; i < n_dma; ++i) {
4403         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4404     }
4405 
4406     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4407     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4408     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4409 
4410     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4411     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4412     return true;
4413 }
4414 
4415 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4416 {
4417     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4418 
4419     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4420 }
4421 
4422 static void spapr_ics_resend(XICSFabric *dev)
4423 {
4424     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4425 
4426     ics_resend(spapr->ics);
4427 }
4428 
4429 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4430 {
4431     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4432 
4433     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4434 }
4435 
4436 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4437                                  Monitor *mon)
4438 {
4439     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4440 
4441     spapr_irq_print_info(spapr, mon);
4442     monitor_printf(mon, "irqchip: %s\n",
4443                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4444 }
4445 
4446 /*
4447  * This is a XIVE only operation
4448  */
4449 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4450                            uint8_t nvt_blk, uint32_t nvt_idx,
4451                            bool cam_ignore, uint8_t priority,
4452                            uint32_t logic_serv, XiveTCTXMatch *match)
4453 {
4454     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4455     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4456     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4457     int count;
4458 
4459     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4460                            priority, logic_serv, match);
4461     if (count < 0) {
4462         return count;
4463     }
4464 
4465     /*
4466      * When we implement the save and restore of the thread interrupt
4467      * contexts in the enter/exit CPU handlers of the machine and the
4468      * escalations in QEMU, we should be able to handle non dispatched
4469      * vCPUs.
4470      *
4471      * Until this is done, the sPAPR machine should find at least one
4472      * matching context always.
4473      */
4474     if (count == 0) {
4475         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4476                       nvt_blk, nvt_idx);
4477     }
4478 
4479     return count;
4480 }
4481 
4482 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4483 {
4484     return cpu->vcpu_id;
4485 }
4486 
4487 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4488 {
4489     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4490     MachineState *ms = MACHINE(spapr);
4491     int vcpu_id;
4492 
4493     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4494 
4495     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4496         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4497         error_append_hint(errp, "Adjust the number of cpus to %d "
4498                           "or try to raise the number of threads per core\n",
4499                           vcpu_id * ms->smp.threads / spapr->vsmt);
4500         return false;
4501     }
4502 
4503     cpu->vcpu_id = vcpu_id;
4504     return true;
4505 }
4506 
4507 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4508 {
4509     CPUState *cs;
4510 
4511     CPU_FOREACH(cs) {
4512         PowerPCCPU *cpu = POWERPC_CPU(cs);
4513 
4514         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4515             return cpu;
4516         }
4517     }
4518 
4519     return NULL;
4520 }
4521 
4522 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4523 {
4524     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4525 
4526     return spapr_cpu->in_nested;
4527 }
4528 
4529 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4530 {
4531     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4532 
4533     /* These are only called by TCG, KVM maintains dispatch state */
4534 
4535     spapr_cpu->prod = false;
4536     if (spapr_cpu->vpa_addr) {
4537         CPUState *cs = CPU(cpu);
4538         uint32_t dispatch;
4539 
4540         dispatch = ldl_be_phys(cs->as,
4541                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4542         dispatch++;
4543         if ((dispatch & 1) != 0) {
4544             qemu_log_mask(LOG_GUEST_ERROR,
4545                           "VPA: incorrect dispatch counter value for "
4546                           "dispatched partition %u, correcting.\n", dispatch);
4547             dispatch++;
4548         }
4549         stl_be_phys(cs->as,
4550                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4551     }
4552 }
4553 
4554 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4555 {
4556     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4557 
4558     if (spapr_cpu->vpa_addr) {
4559         CPUState *cs = CPU(cpu);
4560         uint32_t dispatch;
4561 
4562         dispatch = ldl_be_phys(cs->as,
4563                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4564         dispatch++;
4565         if ((dispatch & 1) != 1) {
4566             qemu_log_mask(LOG_GUEST_ERROR,
4567                           "VPA: incorrect dispatch counter value for "
4568                           "preempted partition %u, correcting.\n", dispatch);
4569             dispatch++;
4570         }
4571         stl_be_phys(cs->as,
4572                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4573     }
4574 }
4575 
4576 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4577 {
4578     MachineClass *mc = MACHINE_CLASS(oc);
4579     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4580     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4581     NMIClass *nc = NMI_CLASS(oc);
4582     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4583     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4584     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4585     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4586     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4587     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4588 
4589     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4590     mc->ignore_boot_device_suffixes = true;
4591 
4592     /*
4593      * We set up the default / latest behaviour here.  The class_init
4594      * functions for the specific versioned machine types can override
4595      * these details for backwards compatibility
4596      */
4597     mc->init = spapr_machine_init;
4598     mc->reset = spapr_machine_reset;
4599     mc->block_default_type = IF_SCSI;
4600 
4601     /*
4602      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4603      * should be limited by the host capability instead of hardcoded.
4604      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4605      * guests are welcome to have as many CPUs as the host are capable
4606      * of emulate.
4607      */
4608     mc->max_cpus = INT32_MAX;
4609 
4610     mc->no_parallel = 1;
4611     mc->default_boot_order = "";
4612     mc->default_ram_size = 512 * MiB;
4613     mc->default_ram_id = "ppc_spapr.ram";
4614     mc->default_display = "std";
4615     mc->kvm_type = spapr_kvm_type;
4616     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4617     mc->pci_allow_0_address = true;
4618     assert(!mc->get_hotplug_handler);
4619     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4620     hc->pre_plug = spapr_machine_device_pre_plug;
4621     hc->plug = spapr_machine_device_plug;
4622     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4623     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4624     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4625     hc->unplug_request = spapr_machine_device_unplug_request;
4626     hc->unplug = spapr_machine_device_unplug;
4627 
4628     smc->dr_lmb_enabled = true;
4629     smc->update_dt_enabled = true;
4630     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4631     mc->has_hotpluggable_cpus = true;
4632     mc->nvdimm_supported = true;
4633     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4634     fwc->get_dev_path = spapr_get_fw_dev_path;
4635     nc->nmi_monitor_handler = spapr_nmi;
4636     smc->phb_placement = spapr_phb_placement;
4637     vhc->cpu_in_nested = spapr_cpu_in_nested;
4638     vhc->deliver_hv_excp = spapr_exit_nested;
4639     vhc->hypercall = emulate_spapr_hypercall;
4640     vhc->hpt_mask = spapr_hpt_mask;
4641     vhc->map_hptes = spapr_map_hptes;
4642     vhc->unmap_hptes = spapr_unmap_hptes;
4643     vhc->hpte_set_c = spapr_hpte_set_c;
4644     vhc->hpte_set_r = spapr_hpte_set_r;
4645     vhc->get_pate = spapr_get_pate;
4646     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4647     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4648     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4649     xic->ics_get = spapr_ics_get;
4650     xic->ics_resend = spapr_ics_resend;
4651     xic->icp_get = spapr_icp_get;
4652     ispc->print_info = spapr_pic_print_info;
4653     /* Force NUMA node memory size to be a multiple of
4654      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4655      * in which LMBs are represented and hot-added
4656      */
4657     mc->numa_mem_align_shift = 28;
4658     mc->auto_enable_numa = true;
4659 
4660     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4661     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4662     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4663     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4664     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4665     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4666     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4667     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4668     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4669     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4670     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4671     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4672     spapr_caps_add_properties(smc);
4673     smc->irq = &spapr_irq_dual;
4674     smc->dr_phb_enabled = true;
4675     smc->linux_pci_probe = true;
4676     smc->smp_threads_vsmt = true;
4677     smc->nr_xirqs = SPAPR_NR_XIRQS;
4678     xfc->match_nvt = spapr_match_nvt;
4679     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4680     vmc->quiesce = spapr_vof_quiesce;
4681     vmc->setprop = spapr_vof_setprop;
4682 }
4683 
4684 static const TypeInfo spapr_machine_info = {
4685     .name          = TYPE_SPAPR_MACHINE,
4686     .parent        = TYPE_MACHINE,
4687     .abstract      = true,
4688     .instance_size = sizeof(SpaprMachineState),
4689     .instance_init = spapr_instance_init,
4690     .instance_finalize = spapr_machine_finalizefn,
4691     .class_size    = sizeof(SpaprMachineClass),
4692     .class_init    = spapr_machine_class_init,
4693     .interfaces = (InterfaceInfo[]) {
4694         { TYPE_FW_PATH_PROVIDER },
4695         { TYPE_NMI },
4696         { TYPE_HOTPLUG_HANDLER },
4697         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4698         { TYPE_XICS_FABRIC },
4699         { TYPE_INTERRUPT_STATS_PROVIDER },
4700         { TYPE_XIVE_FABRIC },
4701         { TYPE_VOF_MACHINE_IF },
4702         { }
4703     },
4704 };
4705 
4706 static void spapr_machine_latest_class_options(MachineClass *mc)
4707 {
4708     mc->alias = "pseries";
4709     mc->is_default = true;
4710 }
4711 
4712 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4713     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4714                                                     void *data)      \
4715     {                                                                \
4716         MachineClass *mc = MACHINE_CLASS(oc);                        \
4717         spapr_machine_##suffix##_class_options(mc);                  \
4718         if (latest) {                                                \
4719             spapr_machine_latest_class_options(mc);                  \
4720         }                                                            \
4721     }                                                                \
4722     static const TypeInfo spapr_machine_##suffix##_info = {          \
4723         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4724         .parent = TYPE_SPAPR_MACHINE,                                \
4725         .class_init = spapr_machine_##suffix##_class_init,           \
4726     };                                                               \
4727     static void spapr_machine_register_##suffix(void)                \
4728     {                                                                \
4729         type_register(&spapr_machine_##suffix##_info);               \
4730     }                                                                \
4731     type_init(spapr_machine_register_##suffix)
4732 
4733 /*
4734  * pseries-7.1
4735  */
4736 static void spapr_machine_7_1_class_options(MachineClass *mc)
4737 {
4738     /* Defaults for the latest behaviour inherited from the base class */
4739 }
4740 
4741 DEFINE_SPAPR_MACHINE(7_1, "7.1", true);
4742 
4743 /*
4744  * pseries-7.0
4745  */
4746 static void spapr_machine_7_0_class_options(MachineClass *mc)
4747 {
4748     spapr_machine_7_1_class_options(mc);
4749     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4750 }
4751 
4752 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4753 
4754 /*
4755  * pseries-6.2
4756  */
4757 static void spapr_machine_6_2_class_options(MachineClass *mc)
4758 {
4759     spapr_machine_7_0_class_options(mc);
4760     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4761 }
4762 
4763 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4764 
4765 /*
4766  * pseries-6.1
4767  */
4768 static void spapr_machine_6_1_class_options(MachineClass *mc)
4769 {
4770     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4771 
4772     spapr_machine_6_2_class_options(mc);
4773     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4774     smc->pre_6_2_numa_affinity = true;
4775     mc->smp_props.prefer_sockets = true;
4776 }
4777 
4778 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4779 
4780 /*
4781  * pseries-6.0
4782  */
4783 static void spapr_machine_6_0_class_options(MachineClass *mc)
4784 {
4785     spapr_machine_6_1_class_options(mc);
4786     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4787 }
4788 
4789 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4790 
4791 /*
4792  * pseries-5.2
4793  */
4794 static void spapr_machine_5_2_class_options(MachineClass *mc)
4795 {
4796     spapr_machine_6_0_class_options(mc);
4797     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4798 }
4799 
4800 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4801 
4802 /*
4803  * pseries-5.1
4804  */
4805 static void spapr_machine_5_1_class_options(MachineClass *mc)
4806 {
4807     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4808 
4809     spapr_machine_5_2_class_options(mc);
4810     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4811     smc->pre_5_2_numa_associativity = true;
4812 }
4813 
4814 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4815 
4816 /*
4817  * pseries-5.0
4818  */
4819 static void spapr_machine_5_0_class_options(MachineClass *mc)
4820 {
4821     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4822     static GlobalProperty compat[] = {
4823         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4824     };
4825 
4826     spapr_machine_5_1_class_options(mc);
4827     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4828     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4829     mc->numa_mem_supported = true;
4830     smc->pre_5_1_assoc_refpoints = true;
4831 }
4832 
4833 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4834 
4835 /*
4836  * pseries-4.2
4837  */
4838 static void spapr_machine_4_2_class_options(MachineClass *mc)
4839 {
4840     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4841 
4842     spapr_machine_5_0_class_options(mc);
4843     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4844     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4845     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4846     smc->rma_limit = 16 * GiB;
4847     mc->nvdimm_supported = false;
4848 }
4849 
4850 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4851 
4852 /*
4853  * pseries-4.1
4854  */
4855 static void spapr_machine_4_1_class_options(MachineClass *mc)
4856 {
4857     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4858     static GlobalProperty compat[] = {
4859         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4860         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4861     };
4862 
4863     spapr_machine_4_2_class_options(mc);
4864     smc->linux_pci_probe = false;
4865     smc->smp_threads_vsmt = false;
4866     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4867     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4868 }
4869 
4870 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4871 
4872 /*
4873  * pseries-4.0
4874  */
4875 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4876                               uint64_t *buid, hwaddr *pio,
4877                               hwaddr *mmio32, hwaddr *mmio64,
4878                               unsigned n_dma, uint32_t *liobns,
4879                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4880 {
4881     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4882                              liobns, nv2gpa, nv2atsd, errp)) {
4883         return false;
4884     }
4885 
4886     *nv2gpa = 0;
4887     *nv2atsd = 0;
4888     return true;
4889 }
4890 static void spapr_machine_4_0_class_options(MachineClass *mc)
4891 {
4892     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4893 
4894     spapr_machine_4_1_class_options(mc);
4895     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4896     smc->phb_placement = phb_placement_4_0;
4897     smc->irq = &spapr_irq_xics;
4898     smc->pre_4_1_migration = true;
4899 }
4900 
4901 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4902 
4903 /*
4904  * pseries-3.1
4905  */
4906 static void spapr_machine_3_1_class_options(MachineClass *mc)
4907 {
4908     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4909 
4910     spapr_machine_4_0_class_options(mc);
4911     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4912 
4913     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4914     smc->update_dt_enabled = false;
4915     smc->dr_phb_enabled = false;
4916     smc->broken_host_serial_model = true;
4917     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4918     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4919     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4920     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4921 }
4922 
4923 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4924 
4925 /*
4926  * pseries-3.0
4927  */
4928 
4929 static void spapr_machine_3_0_class_options(MachineClass *mc)
4930 {
4931     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4932 
4933     spapr_machine_3_1_class_options(mc);
4934     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4935 
4936     smc->legacy_irq_allocation = true;
4937     smc->nr_xirqs = 0x400;
4938     smc->irq = &spapr_irq_xics_legacy;
4939 }
4940 
4941 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4942 
4943 /*
4944  * pseries-2.12
4945  */
4946 static void spapr_machine_2_12_class_options(MachineClass *mc)
4947 {
4948     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4949     static GlobalProperty compat[] = {
4950         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4951         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4952     };
4953 
4954     spapr_machine_3_0_class_options(mc);
4955     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4956     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4957 
4958     /* We depend on kvm_enabled() to choose a default value for the
4959      * hpt-max-page-size capability. Of course we can't do it here
4960      * because this is too early and the HW accelerator isn't initialzed
4961      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4962      */
4963     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4964 }
4965 
4966 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4967 
4968 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4969 {
4970     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4971 
4972     spapr_machine_2_12_class_options(mc);
4973     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4974     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4975     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4976 }
4977 
4978 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4979 
4980 /*
4981  * pseries-2.11
4982  */
4983 
4984 static void spapr_machine_2_11_class_options(MachineClass *mc)
4985 {
4986     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4987 
4988     spapr_machine_2_12_class_options(mc);
4989     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4990     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4991 }
4992 
4993 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4994 
4995 /*
4996  * pseries-2.10
4997  */
4998 
4999 static void spapr_machine_2_10_class_options(MachineClass *mc)
5000 {
5001     spapr_machine_2_11_class_options(mc);
5002     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5003 }
5004 
5005 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5006 
5007 /*
5008  * pseries-2.9
5009  */
5010 
5011 static void spapr_machine_2_9_class_options(MachineClass *mc)
5012 {
5013     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5014     static GlobalProperty compat[] = {
5015         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5016     };
5017 
5018     spapr_machine_2_10_class_options(mc);
5019     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5020     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5021     smc->pre_2_10_has_unused_icps = true;
5022     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5023 }
5024 
5025 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5026 
5027 /*
5028  * pseries-2.8
5029  */
5030 
5031 static void spapr_machine_2_8_class_options(MachineClass *mc)
5032 {
5033     static GlobalProperty compat[] = {
5034         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5035     };
5036 
5037     spapr_machine_2_9_class_options(mc);
5038     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5039     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5040     mc->numa_mem_align_shift = 23;
5041 }
5042 
5043 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5044 
5045 /*
5046  * pseries-2.7
5047  */
5048 
5049 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5050                               uint64_t *buid, hwaddr *pio,
5051                               hwaddr *mmio32, hwaddr *mmio64,
5052                               unsigned n_dma, uint32_t *liobns,
5053                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5054 {
5055     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5056     const uint64_t base_buid = 0x800000020000000ULL;
5057     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5058     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5059     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5060     const uint32_t max_index = 255;
5061     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5062 
5063     uint64_t ram_top = MACHINE(spapr)->ram_size;
5064     hwaddr phb0_base, phb_base;
5065     int i;
5066 
5067     /* Do we have device memory? */
5068     if (MACHINE(spapr)->maxram_size > ram_top) {
5069         /* Can't just use maxram_size, because there may be an
5070          * alignment gap between normal and device memory regions
5071          */
5072         ram_top = MACHINE(spapr)->device_memory->base +
5073             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5074     }
5075 
5076     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5077 
5078     if (index > max_index) {
5079         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5080                    max_index);
5081         return false;
5082     }
5083 
5084     *buid = base_buid + index;
5085     for (i = 0; i < n_dma; ++i) {
5086         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5087     }
5088 
5089     phb_base = phb0_base + index * phb_spacing;
5090     *pio = phb_base + pio_offset;
5091     *mmio32 = phb_base + mmio_offset;
5092     /*
5093      * We don't set the 64-bit MMIO window, relying on the PHB's
5094      * fallback behaviour of automatically splitting a large "32-bit"
5095      * window into contiguous 32-bit and 64-bit windows
5096      */
5097 
5098     *nv2gpa = 0;
5099     *nv2atsd = 0;
5100     return true;
5101 }
5102 
5103 static void spapr_machine_2_7_class_options(MachineClass *mc)
5104 {
5105     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5106     static GlobalProperty compat[] = {
5107         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5108         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5109         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5110         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5111     };
5112 
5113     spapr_machine_2_8_class_options(mc);
5114     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5115     mc->default_machine_opts = "modern-hotplug-events=off";
5116     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5117     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5118     smc->phb_placement = phb_placement_2_7;
5119 }
5120 
5121 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5122 
5123 /*
5124  * pseries-2.6
5125  */
5126 
5127 static void spapr_machine_2_6_class_options(MachineClass *mc)
5128 {
5129     static GlobalProperty compat[] = {
5130         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5131     };
5132 
5133     spapr_machine_2_7_class_options(mc);
5134     mc->has_hotpluggable_cpus = false;
5135     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5136     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5137 }
5138 
5139 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5140 
5141 /*
5142  * pseries-2.5
5143  */
5144 
5145 static void spapr_machine_2_5_class_options(MachineClass *mc)
5146 {
5147     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5148     static GlobalProperty compat[] = {
5149         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5150     };
5151 
5152     spapr_machine_2_6_class_options(mc);
5153     smc->use_ohci_by_default = true;
5154     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5155     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5156 }
5157 
5158 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5159 
5160 /*
5161  * pseries-2.4
5162  */
5163 
5164 static void spapr_machine_2_4_class_options(MachineClass *mc)
5165 {
5166     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5167 
5168     spapr_machine_2_5_class_options(mc);
5169     smc->dr_lmb_enabled = false;
5170     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5171 }
5172 
5173 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5174 
5175 /*
5176  * pseries-2.3
5177  */
5178 
5179 static void spapr_machine_2_3_class_options(MachineClass *mc)
5180 {
5181     static GlobalProperty compat[] = {
5182         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5183     };
5184     spapr_machine_2_4_class_options(mc);
5185     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5186     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5187 }
5188 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5189 
5190 /*
5191  * pseries-2.2
5192  */
5193 
5194 static void spapr_machine_2_2_class_options(MachineClass *mc)
5195 {
5196     static GlobalProperty compat[] = {
5197         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5198     };
5199 
5200     spapr_machine_2_3_class_options(mc);
5201     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5202     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5203     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5204 }
5205 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5206 
5207 /*
5208  * pseries-2.1
5209  */
5210 
5211 static void spapr_machine_2_1_class_options(MachineClass *mc)
5212 {
5213     spapr_machine_2_2_class_options(mc);
5214     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5215 }
5216 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5217 
5218 static void spapr_machine_register_types(void)
5219 {
5220     type_register_static(&spapr_machine_info);
5221 }
5222 
5223 type_init(spapr_machine_register_types)
5224