xref: /openbmc/qemu/hw/ppc/spapr.c (revision 42fe7499)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58 
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61 
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
70 
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
75 
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
83 
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
90 
91 #include "monitor/monitor.h"
92 
93 #include <libfdt.h>
94 
95 /* SLOF memory layout:
96  *
97  * SLOF raw image loaded at 0, copies its romfs right below the flat
98  * device-tree, then position SLOF itself 31M below that
99  *
100  * So we set FW_OVERHEAD to 40MB which should account for all of that
101  * and more
102  *
103  * We load our kernel at 4M, leaving space for SLOF initial image
104  */
105 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE             0x400000
107 #define FW_FILE_NAME            "slof.bin"
108 #define FW_FILE_NAME_VOF        "vof.bin"
109 #define FW_OVERHEAD             0x2800000
110 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
111 
112 #define MIN_RMA_SLOF            (128 * MiB)
113 
114 #define PHANDLE_INTC            0x00001111
115 
116 /* These two functions implement the VCPU id numbering: one to compute them
117  * all and one to identify thread 0 of a VCORE. Any change to the first one
118  * is likely to have an impact on the second one, so let's keep them close.
119  */
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
121 {
122     MachineState *ms = MACHINE(spapr);
123     unsigned int smp_threads = ms->smp.threads;
124 
125     assert(spapr->vsmt);
126     return
127         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
128 }
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130                                       PowerPCCPU *cpu)
131 {
132     assert(spapr->vsmt);
133     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
134 }
135 
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
137 {
138     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139      * and newer QEMUs don't even have them. In both cases, we don't want
140      * to send anything on the wire.
141      */
142     return false;
143 }
144 
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146     .name = "icp/server",
147     .version_id = 1,
148     .minimum_version_id = 1,
149     .needed = pre_2_10_vmstate_dummy_icp_needed,
150     .fields = (VMStateField[]) {
151         VMSTATE_UNUSED(4), /* uint32_t xirr */
152         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
153         VMSTATE_UNUSED(1), /* uint8_t mfrr */
154         VMSTATE_END_OF_LIST()
155     },
156 };
157 
158 static void pre_2_10_vmstate_register_dummy_icp(int i)
159 {
160     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
161                      (void *)(uintptr_t) i);
162 }
163 
164 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
165 {
166     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
167                        (void *)(uintptr_t) i);
168 }
169 
170 int spapr_max_server_number(SpaprMachineState *spapr)
171 {
172     MachineState *ms = MACHINE(spapr);
173 
174     assert(spapr->vsmt);
175     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
176 }
177 
178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
179                                   int smt_threads)
180 {
181     int i, ret = 0;
182     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
183     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
184     int index = spapr_get_vcpu_id(cpu);
185 
186     if (cpu->compat_pvr) {
187         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
188         if (ret < 0) {
189             return ret;
190         }
191     }
192 
193     /* Build interrupt servers and gservers properties */
194     for (i = 0; i < smt_threads; i++) {
195         servers_prop[i] = cpu_to_be32(index + i);
196         /* Hack, direct the group queues back to cpu 0 */
197         gservers_prop[i*2] = cpu_to_be32(index + i);
198         gservers_prop[i*2 + 1] = 0;
199     }
200     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
201                       servers_prop, sizeof(*servers_prop) * smt_threads);
202     if (ret < 0) {
203         return ret;
204     }
205     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
206                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
207 
208     return ret;
209 }
210 
211 static void spapr_dt_pa_features(SpaprMachineState *spapr,
212                                  PowerPCCPU *cpu,
213                                  void *fdt, int offset)
214 {
215     uint8_t pa_features_206[] = { 6, 0,
216         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
217     uint8_t pa_features_207[] = { 24, 0,
218         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
219         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
220         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
221         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
222     uint8_t pa_features_300[] = { 66, 0,
223         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
224         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
225         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
226         /* 6: DS207 */
227         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
228         /* 16: Vector */
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
230         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
231         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
232         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
234         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
235         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
236         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
238         /* 42: PM, 44: PC RA, 46: SC vec'd */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
240         /* 48: SIMD, 50: QP BFP, 52: String */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
242         /* 54: DecFP, 56: DecI, 58: SHA */
243         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
244         /* 60: NM atomic, 62: RNG */
245         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
246     };
247     uint8_t *pa_features = NULL;
248     size_t pa_size;
249 
250     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
251         pa_features = pa_features_206;
252         pa_size = sizeof(pa_features_206);
253     }
254     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
255         pa_features = pa_features_207;
256         pa_size = sizeof(pa_features_207);
257     }
258     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
259         pa_features = pa_features_300;
260         pa_size = sizeof(pa_features_300);
261     }
262     if (!pa_features) {
263         return;
264     }
265 
266     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
267         /*
268          * Note: we keep CI large pages off by default because a 64K capable
269          * guest provisioned with large pages might otherwise try to map a qemu
270          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
271          * even if that qemu runs on a 4k host.
272          * We dd this bit back here if we are confident this is not an issue
273          */
274         pa_features[3] |= 0x20;
275     }
276     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
277         pa_features[24] |= 0x80;    /* Transactional memory support */
278     }
279     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
280         /* Workaround for broken kernels that attempt (guest) radix
281          * mode when they can't handle it, if they see the radix bit set
282          * in pa-features. So hide it from them. */
283         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284     }
285 
286     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 }
288 
289 static hwaddr spapr_node0_size(MachineState *machine)
290 {
291     if (machine->numa_state->num_nodes) {
292         int i;
293         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
294             if (machine->numa_state->nodes[i].node_mem) {
295                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
296                            machine->ram_size);
297             }
298         }
299     }
300     return machine->ram_size;
301 }
302 
303 static void add_str(GString *s, const gchar *s1)
304 {
305     g_string_append_len(s, s1, strlen(s1) + 1);
306 }
307 
308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
309                                 hwaddr start, hwaddr size)
310 {
311     char mem_name[32];
312     uint64_t mem_reg_property[2];
313     int off;
314 
315     mem_reg_property[0] = cpu_to_be64(start);
316     mem_reg_property[1] = cpu_to_be64(size);
317 
318     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
319     off = fdt_add_subnode(fdt, 0, mem_name);
320     _FDT(off);
321     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
322     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
323                       sizeof(mem_reg_property))));
324     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
325     return off;
326 }
327 
328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
329 {
330     MemoryDeviceInfoList *info;
331 
332     for (info = list; info; info = info->next) {
333         MemoryDeviceInfo *value = info->value;
334 
335         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
336             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
337 
338             if (addr >= pcdimm_info->addr &&
339                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
340                 return pcdimm_info->node;
341             }
342         }
343     }
344 
345     return -1;
346 }
347 
348 struct sPAPRDrconfCellV2 {
349      uint32_t seq_lmbs;
350      uint64_t base_addr;
351      uint32_t drc_index;
352      uint32_t aa_index;
353      uint32_t flags;
354 } QEMU_PACKED;
355 
356 typedef struct DrconfCellQueue {
357     struct sPAPRDrconfCellV2 cell;
358     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
359 } DrconfCellQueue;
360 
361 static DrconfCellQueue *
362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
363                       uint32_t drc_index, uint32_t aa_index,
364                       uint32_t flags)
365 {
366     DrconfCellQueue *elem;
367 
368     elem = g_malloc0(sizeof(*elem));
369     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
370     elem->cell.base_addr = cpu_to_be64(base_addr);
371     elem->cell.drc_index = cpu_to_be32(drc_index);
372     elem->cell.aa_index = cpu_to_be32(aa_index);
373     elem->cell.flags = cpu_to_be32(flags);
374 
375     return elem;
376 }
377 
378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
379                                       int offset, MemoryDeviceInfoList *dimms)
380 {
381     MachineState *machine = MACHINE(spapr);
382     uint8_t *int_buf, *cur_index;
383     int ret;
384     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
385     uint64_t addr, cur_addr, size;
386     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
387     uint64_t mem_end = machine->device_memory->base +
388                        memory_region_size(&machine->device_memory->mr);
389     uint32_t node, buf_len, nr_entries = 0;
390     SpaprDrc *drc;
391     DrconfCellQueue *elem, *next;
392     MemoryDeviceInfoList *info;
393     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
394         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
395 
396     /* Entry to cover RAM and the gap area */
397     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
398                                  SPAPR_LMB_FLAGS_RESERVED |
399                                  SPAPR_LMB_FLAGS_DRC_INVALID);
400     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
401     nr_entries++;
402 
403     cur_addr = machine->device_memory->base;
404     for (info = dimms; info; info = info->next) {
405         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
406 
407         addr = di->addr;
408         size = di->size;
409         node = di->node;
410 
411         /*
412          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
413          * area is marked hotpluggable in the next iteration for the bigger
414          * chunk including the NVDIMM occupied area.
415          */
416         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
417             continue;
418 
419         /* Entry for hot-pluggable area */
420         if (cur_addr < addr) {
421             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
422             g_assert(drc);
423             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
424                                          cur_addr, spapr_drc_index(drc), -1, 0);
425             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
426             nr_entries++;
427         }
428 
429         /* Entry for DIMM */
430         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
431         g_assert(drc);
432         elem = spapr_get_drconf_cell(size / lmb_size, addr,
433                                      spapr_drc_index(drc), node,
434                                      (SPAPR_LMB_FLAGS_ASSIGNED |
435                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
436         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
437         nr_entries++;
438         cur_addr = addr + size;
439     }
440 
441     /* Entry for remaining hotpluggable area */
442     if (cur_addr < mem_end) {
443         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
444         g_assert(drc);
445         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
446                                      cur_addr, spapr_drc_index(drc), -1, 0);
447         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
448         nr_entries++;
449     }
450 
451     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
452     int_buf = cur_index = g_malloc0(buf_len);
453     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
454     cur_index += sizeof(nr_entries);
455 
456     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
457         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
458         cur_index += sizeof(elem->cell);
459         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
460         g_free(elem);
461     }
462 
463     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
464     g_free(int_buf);
465     if (ret < 0) {
466         return -1;
467     }
468     return 0;
469 }
470 
471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
472                                    int offset, MemoryDeviceInfoList *dimms)
473 {
474     MachineState *machine = MACHINE(spapr);
475     int i, ret;
476     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
477     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
478     uint32_t nr_lmbs = (machine->device_memory->base +
479                        memory_region_size(&machine->device_memory->mr)) /
480                        lmb_size;
481     uint32_t *int_buf, *cur_index, buf_len;
482 
483     /*
484      * Allocate enough buffer size to fit in ibm,dynamic-memory
485      */
486     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
487     cur_index = int_buf = g_malloc0(buf_len);
488     int_buf[0] = cpu_to_be32(nr_lmbs);
489     cur_index++;
490     for (i = 0; i < nr_lmbs; i++) {
491         uint64_t addr = i * lmb_size;
492         uint32_t *dynamic_memory = cur_index;
493 
494         if (i >= device_lmb_start) {
495             SpaprDrc *drc;
496 
497             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
498             g_assert(drc);
499 
500             dynamic_memory[0] = cpu_to_be32(addr >> 32);
501             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
502             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
503             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
504             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
505             if (memory_region_present(get_system_memory(), addr)) {
506                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
507             } else {
508                 dynamic_memory[5] = cpu_to_be32(0);
509             }
510         } else {
511             /*
512              * LMB information for RMA, boot time RAM and gap b/n RAM and
513              * device memory region -- all these are marked as reserved
514              * and as having no valid DRC.
515              */
516             dynamic_memory[0] = cpu_to_be32(addr >> 32);
517             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
518             dynamic_memory[2] = cpu_to_be32(0);
519             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
520             dynamic_memory[4] = cpu_to_be32(-1);
521             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
522                                             SPAPR_LMB_FLAGS_DRC_INVALID);
523         }
524 
525         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
526     }
527     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
528     g_free(int_buf);
529     if (ret < 0) {
530         return -1;
531     }
532     return 0;
533 }
534 
535 /*
536  * Adds ibm,dynamic-reconfiguration-memory node.
537  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
538  * of this device tree node.
539  */
540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
541                                                    void *fdt)
542 {
543     MachineState *machine = MACHINE(spapr);
544     int ret, offset;
545     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
546     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
547                                 cpu_to_be32(lmb_size & 0xffffffff)};
548     MemoryDeviceInfoList *dimms = NULL;
549 
550     /* Don't create the node if there is no device memory. */
551     if (!machine->device_memory) {
552         return 0;
553     }
554 
555     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
556 
557     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558                     sizeof(prop_lmb_size));
559     if (ret < 0) {
560         return ret;
561     }
562 
563     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564     if (ret < 0) {
565         return ret;
566     }
567 
568     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569     if (ret < 0) {
570         return ret;
571     }
572 
573     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574     dimms = qmp_memory_device_list();
575     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577     } else {
578         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
579     }
580     qapi_free_MemoryDeviceInfoList(dimms);
581 
582     if (ret < 0) {
583         return ret;
584     }
585 
586     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
587 
588     return ret;
589 }
590 
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
592 {
593     MachineState *machine = MACHINE(spapr);
594     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595     hwaddr mem_start, node_size;
596     int i, nb_nodes = machine->numa_state->num_nodes;
597     NodeInfo *nodes = machine->numa_state->nodes;
598 
599     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600         if (!nodes[i].node_mem) {
601             continue;
602         }
603         if (mem_start >= machine->ram_size) {
604             node_size = 0;
605         } else {
606             node_size = nodes[i].node_mem;
607             if (node_size > machine->ram_size - mem_start) {
608                 node_size = machine->ram_size - mem_start;
609             }
610         }
611         if (!mem_start) {
612             /* spapr_machine_init() checks for rma_size <= node0_size
613              * already */
614             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615             mem_start += spapr->rma_size;
616             node_size -= spapr->rma_size;
617         }
618         for ( ; node_size; ) {
619             hwaddr sizetmp = pow2floor(node_size);
620 
621             /* mem_start != 0 here */
622             if (ctzl(mem_start) < ctzl(sizetmp)) {
623                 sizetmp = 1ULL << ctzl(mem_start);
624             }
625 
626             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627             node_size -= sizetmp;
628             mem_start += sizetmp;
629         }
630     }
631 
632     /* Generate ibm,dynamic-reconfiguration-memory node if required */
633     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634         int ret;
635 
636         g_assert(smc->dr_lmb_enabled);
637         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638         if (ret) {
639             return ret;
640         }
641     }
642 
643     return 0;
644 }
645 
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647                          SpaprMachineState *spapr)
648 {
649     MachineState *ms = MACHINE(spapr);
650     PowerPCCPU *cpu = POWERPC_CPU(cs);
651     CPUPPCState *env = &cpu->env;
652     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653     int index = spapr_get_vcpu_id(cpu);
654     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655                        0xffffffff, 0xffffffff};
656     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657         : SPAPR_TIMEBASE_FREQ;
658     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659     uint32_t page_sizes_prop[64];
660     size_t page_sizes_prop_size;
661     unsigned int smp_threads = ms->smp.threads;
662     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665     SpaprDrc *drc;
666     int drc_index;
667     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668     int i;
669 
670     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671     if (drc) {
672         drc_index = spapr_drc_index(drc);
673         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
674     }
675 
676     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
678 
679     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681                            env->dcache_line_size)));
682     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683                            env->dcache_line_size)));
684     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685                            env->icache_line_size)));
686     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687                            env->icache_line_size)));
688 
689     if (pcc->l1_dcache_size) {
690         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691                                pcc->l1_dcache_size)));
692     } else {
693         warn_report("Unknown L1 dcache size for cpu");
694     }
695     if (pcc->l1_icache_size) {
696         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697                                pcc->l1_icache_size)));
698     } else {
699         warn_report("Unknown L1 icache size for cpu");
700     }
701 
702     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
708 
709     if (ppc_has_spr(cpu, SPR_PURR)) {
710         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
711     }
712     if (ppc_has_spr(cpu, SPR_PURR)) {
713         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
714     }
715 
716     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718                           segs, sizeof(segs))));
719     }
720 
721     /* Advertise VSX (vector extensions) if available
722      *   1               == VMX / Altivec available
723      *   2               == VSX available
724      *
725      * Only CPUs for which we create core types in spapr_cpu_core.c
726      * are possible, and all of those have VMX */
727     if (env->insns_flags & PPC_ALTIVEC) {
728         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730         } else {
731             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
732         }
733     }
734 
735     /* Advertise DFP (Decimal Floating Point) if available
736      *   0 / no property == no DFP
737      *   1               == DFP available */
738     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
740     }
741 
742     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743                                                       sizeof(page_sizes_prop));
744     if (page_sizes_prop_size) {
745         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746                           page_sizes_prop, page_sizes_prop_size)));
747     }
748 
749     spapr_dt_pa_features(spapr, cpu, fdt, offset);
750 
751     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752                            cs->cpu_index / vcpus_per_socket)));
753 
754     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755                       pft_size_prop, sizeof(pft_size_prop))));
756 
757     if (ms->numa_state->num_nodes > 1) {
758         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
759     }
760 
761     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
762 
763     if (pcc->radix_page_info) {
764         for (i = 0; i < pcc->radix_page_info->count; i++) {
765             radix_AP_encodings[i] =
766                 cpu_to_be32(pcc->radix_page_info->entries[i]);
767         }
768         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769                           radix_AP_encodings,
770                           pcc->radix_page_info->count *
771                           sizeof(radix_AP_encodings[0]))));
772     }
773 
774     /*
775      * We set this property to let the guest know that it can use the large
776      * decrementer and its width in bits.
777      */
778     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780                               pcc->lrg_decr_bits)));
781 }
782 
783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
784 {
785     CPUState **rev;
786     CPUState *cs;
787     int n_cpus;
788     int cpus_offset;
789     int i;
790 
791     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
792     _FDT(cpus_offset);
793     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
794     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
795 
796     /*
797      * We walk the CPUs in reverse order to ensure that CPU DT nodes
798      * created by fdt_add_subnode() end up in the right order in FDT
799      * for the guest kernel the enumerate the CPUs correctly.
800      *
801      * The CPU list cannot be traversed in reverse order, so we need
802      * to do extra work.
803      */
804     n_cpus = 0;
805     rev = NULL;
806     CPU_FOREACH(cs) {
807         rev = g_renew(CPUState *, rev, n_cpus + 1);
808         rev[n_cpus++] = cs;
809     }
810 
811     for (i = n_cpus - 1; i >= 0; i--) {
812         CPUState *cs = rev[i];
813         PowerPCCPU *cpu = POWERPC_CPU(cs);
814         int index = spapr_get_vcpu_id(cpu);
815         DeviceClass *dc = DEVICE_GET_CLASS(cs);
816         g_autofree char *nodename = NULL;
817         int offset;
818 
819         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
820             continue;
821         }
822 
823         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
824         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
825         _FDT(offset);
826         spapr_dt_cpu(cs, fdt, offset, spapr);
827     }
828 
829     g_free(rev);
830 }
831 
832 static int spapr_dt_rng(void *fdt)
833 {
834     int node;
835     int ret;
836 
837     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
838     if (node <= 0) {
839         return -1;
840     }
841     ret = fdt_setprop_string(fdt, node, "device_type",
842                              "ibm,platform-facilities");
843     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
844     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
845 
846     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
847     if (node <= 0) {
848         return -1;
849     }
850     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
851 
852     return ret ? -1 : 0;
853 }
854 
855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
856 {
857     MachineState *ms = MACHINE(spapr);
858     int rtas;
859     GString *hypertas = g_string_sized_new(256);
860     GString *qemu_hypertas = g_string_sized_new(256);
861     uint32_t lrdr_capacity[] = {
862         0,
863         0,
864         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
865         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
866         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
867     };
868 
869     /* Do we have device memory? */
870     if (MACHINE(spapr)->device_memory) {
871         uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
872             memory_region_size(&MACHINE(spapr)->device_memory->mr);
873 
874         lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
875         lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
876     }
877 
878     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
879 
880     /* hypertas */
881     add_str(hypertas, "hcall-pft");
882     add_str(hypertas, "hcall-term");
883     add_str(hypertas, "hcall-dabr");
884     add_str(hypertas, "hcall-interrupt");
885     add_str(hypertas, "hcall-tce");
886     add_str(hypertas, "hcall-vio");
887     add_str(hypertas, "hcall-splpar");
888     add_str(hypertas, "hcall-join");
889     add_str(hypertas, "hcall-bulk");
890     add_str(hypertas, "hcall-set-mode");
891     add_str(hypertas, "hcall-sprg0");
892     add_str(hypertas, "hcall-copy");
893     add_str(hypertas, "hcall-debug");
894     add_str(hypertas, "hcall-vphn");
895     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
896         add_str(hypertas, "hcall-rpt-invalidate");
897     }
898 
899     add_str(qemu_hypertas, "hcall-memop1");
900 
901     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
902         add_str(hypertas, "hcall-multi-tce");
903     }
904 
905     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
906         add_str(hypertas, "hcall-hpt-resize");
907     }
908 
909     add_str(hypertas, "hcall-watchdog");
910 
911     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
912                      hypertas->str, hypertas->len));
913     g_string_free(hypertas, TRUE);
914     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
915                      qemu_hypertas->str, qemu_hypertas->len));
916     g_string_free(qemu_hypertas, TRUE);
917 
918     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
919 
920     /*
921      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
922      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
923      *
924      * The system reset requirements are driven by existing Linux and PowerVM
925      * implementation which (contrary to PAPR) saves r3 in the error log
926      * structure like machine check, so Linux expects to find the saved r3
927      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
928      * does not look at the error value).
929      *
930      * System reset interrupts are not subject to interlock like machine
931      * check, so this memory area could be corrupted if the sreset is
932      * interrupted by a machine check (or vice versa) if it was shared. To
933      * prevent this, system reset uses per-CPU areas for the sreset save
934      * area. A system reset that interrupts a system reset handler could
935      * still overwrite this area, but Linux doesn't try to recover in that
936      * case anyway.
937      *
938      * The extra 8 bytes is required because Linux's FWNMI error log check
939      * is off-by-one.
940      *
941      * RTAS_MIN_SIZE is required for the RTAS blob itself.
942      */
943     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
944                           RTAS_ERROR_LOG_MAX +
945                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
946                           sizeof(uint64_t)));
947     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
948                           RTAS_ERROR_LOG_MAX));
949     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
950                           RTAS_EVENT_SCAN_RATE));
951 
952     g_assert(msi_nonbroken);
953     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
954 
955     /*
956      * According to PAPR, rtas ibm,os-term does not guarantee a return
957      * back to the guest cpu.
958      *
959      * While an additional ibm,extended-os-term property indicates
960      * that rtas call return will always occur. Set this property.
961      */
962     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
963 
964     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
965                      lrdr_capacity, sizeof(lrdr_capacity)));
966 
967     spapr_dt_rtas_tokens(fdt, rtas);
968 }
969 
970 /*
971  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
972  * and the XIVE features that the guest may request and thus the valid
973  * values for bytes 23..26 of option vector 5:
974  */
975 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
976                                           int chosen)
977 {
978     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
979 
980     char val[2 * 4] = {
981         23, 0x00, /* XICS / XIVE mode */
982         24, 0x00, /* Hash/Radix, filled in below. */
983         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
984         26, 0x40, /* Radix options: GTSE == yes. */
985     };
986 
987     if (spapr->irq->xics && spapr->irq->xive) {
988         val[1] = SPAPR_OV5_XIVE_BOTH;
989     } else if (spapr->irq->xive) {
990         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
991     } else {
992         assert(spapr->irq->xics);
993         val[1] = SPAPR_OV5_XIVE_LEGACY;
994     }
995 
996     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
997                           first_ppc_cpu->compat_pvr)) {
998         /*
999          * If we're in a pre POWER9 compat mode then the guest should
1000          * do hash and use the legacy interrupt mode
1001          */
1002         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1003         val[3] = 0x00; /* Hash */
1004         spapr_check_mmu_mode(false);
1005     } else if (kvm_enabled()) {
1006         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1007             val[3] = 0x80; /* OV5_MMU_BOTH */
1008         } else if (kvmppc_has_cap_mmu_radix()) {
1009             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1010         } else {
1011             val[3] = 0x00; /* Hash */
1012         }
1013     } else {
1014         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1015         val[3] = 0xC0;
1016     }
1017     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1018                      val, sizeof(val)));
1019 }
1020 
1021 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1022 {
1023     MachineState *machine = MACHINE(spapr);
1024     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1025     int chosen;
1026 
1027     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1028 
1029     if (reset) {
1030         const char *boot_device = spapr->boot_device;
1031         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1032         size_t cb = 0;
1033         g_autofree char *bootlist = get_boot_devices_list(&cb);
1034 
1035         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1036             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1037                                     machine->kernel_cmdline));
1038         }
1039 
1040         if (spapr->initrd_size) {
1041             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1042                                   spapr->initrd_base));
1043             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1044                                   spapr->initrd_base + spapr->initrd_size));
1045         }
1046 
1047         if (spapr->kernel_size) {
1048             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1049                                   cpu_to_be64(spapr->kernel_size) };
1050 
1051             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1052                          &kprop, sizeof(kprop)));
1053             if (spapr->kernel_le) {
1054                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1055             }
1056         }
1057         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1058             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1059         }
1060         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1061         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1062         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1063 
1064         if (cb && bootlist) {
1065             int i;
1066 
1067             for (i = 0; i < cb; i++) {
1068                 if (bootlist[i] == '\n') {
1069                     bootlist[i] = ' ';
1070                 }
1071             }
1072             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1073         }
1074 
1075         if (boot_device && strlen(boot_device)) {
1076             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1077         }
1078 
1079         if (spapr->want_stdout_path && stdout_path) {
1080             /*
1081              * "linux,stdout-path" and "stdout" properties are
1082              * deprecated by linux kernel. New platforms should only
1083              * use the "stdout-path" property. Set the new property
1084              * and continue using older property to remain compatible
1085              * with the existing firmware.
1086              */
1087             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1088             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1089         }
1090 
1091         /*
1092          * We can deal with BAR reallocation just fine, advertise it
1093          * to the guest
1094          */
1095         if (smc->linux_pci_probe) {
1096             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1097         }
1098 
1099         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1100     }
1101 
1102     _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1103 
1104     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1105 }
1106 
1107 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1108 {
1109     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1110      * KVM to work under pHyp with some guest co-operation */
1111     int hypervisor;
1112     uint8_t hypercall[16];
1113 
1114     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1115     /* indicate KVM hypercall interface */
1116     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1117     if (kvmppc_has_cap_fixup_hcalls()) {
1118         /*
1119          * Older KVM versions with older guest kernels were broken
1120          * with the magic page, don't allow the guest to map it.
1121          */
1122         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1123                                   sizeof(hypercall))) {
1124             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1125                              hypercall, sizeof(hypercall)));
1126         }
1127     }
1128 }
1129 
1130 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1131 {
1132     MachineState *machine = MACHINE(spapr);
1133     MachineClass *mc = MACHINE_GET_CLASS(machine);
1134     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1135     uint32_t root_drc_type_mask = 0;
1136     int ret;
1137     void *fdt;
1138     SpaprPhbState *phb;
1139     char *buf;
1140 
1141     fdt = g_malloc0(space);
1142     _FDT((fdt_create_empty_tree(fdt, space)));
1143 
1144     /* Root node */
1145     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1146     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1147     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1148 
1149     /* Guest UUID & Name*/
1150     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1151     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1152     if (qemu_uuid_set) {
1153         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1154     }
1155     g_free(buf);
1156 
1157     if (qemu_get_vm_name()) {
1158         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1159                                 qemu_get_vm_name()));
1160     }
1161 
1162     /* Host Model & Serial Number */
1163     if (spapr->host_model) {
1164         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1165     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1166         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1167         g_free(buf);
1168     }
1169 
1170     if (spapr->host_serial) {
1171         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1172     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1173         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1174         g_free(buf);
1175     }
1176 
1177     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1178     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1179 
1180     /* /interrupt controller */
1181     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1182 
1183     ret = spapr_dt_memory(spapr, fdt);
1184     if (ret < 0) {
1185         error_report("couldn't setup memory nodes in fdt");
1186         exit(1);
1187     }
1188 
1189     /* /vdevice */
1190     spapr_dt_vdevice(spapr->vio_bus, fdt);
1191 
1192     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1193         ret = spapr_dt_rng(fdt);
1194         if (ret < 0) {
1195             error_report("could not set up rng device in the fdt");
1196             exit(1);
1197         }
1198     }
1199 
1200     QLIST_FOREACH(phb, &spapr->phbs, list) {
1201         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1202         if (ret < 0) {
1203             error_report("couldn't setup PCI devices in fdt");
1204             exit(1);
1205         }
1206     }
1207 
1208     spapr_dt_cpus(fdt, spapr);
1209 
1210     /* ibm,drc-indexes and friends */
1211     if (smc->dr_lmb_enabled) {
1212         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1213     }
1214     if (smc->dr_phb_enabled) {
1215         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1216     }
1217     if (mc->nvdimm_supported) {
1218         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1219     }
1220     if (root_drc_type_mask) {
1221         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1222     }
1223 
1224     if (mc->has_hotpluggable_cpus) {
1225         int offset = fdt_path_offset(fdt, "/cpus");
1226         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1227         if (ret < 0) {
1228             error_report("Couldn't set up CPU DR device tree properties");
1229             exit(1);
1230         }
1231     }
1232 
1233     /* /event-sources */
1234     spapr_dt_events(spapr, fdt);
1235 
1236     /* /rtas */
1237     spapr_dt_rtas(spapr, fdt);
1238 
1239     /* /chosen */
1240     spapr_dt_chosen(spapr, fdt, reset);
1241 
1242     /* /hypervisor */
1243     if (kvm_enabled()) {
1244         spapr_dt_hypervisor(spapr, fdt);
1245     }
1246 
1247     /* Build memory reserve map */
1248     if (reset) {
1249         if (spapr->kernel_size) {
1250             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1251                                   spapr->kernel_size)));
1252         }
1253         if (spapr->initrd_size) {
1254             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1255                                   spapr->initrd_size)));
1256         }
1257     }
1258 
1259     /* NVDIMM devices */
1260     if (mc->nvdimm_supported) {
1261         spapr_dt_persistent_memory(spapr, fdt);
1262     }
1263 
1264     return fdt;
1265 }
1266 
1267 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1268 {
1269     SpaprMachineState *spapr = opaque;
1270 
1271     return (addr & 0x0fffffff) + spapr->kernel_addr;
1272 }
1273 
1274 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1275                                     PowerPCCPU *cpu)
1276 {
1277     CPUPPCState *env = &cpu->env;
1278 
1279     /* The TCG path should also be holding the BQL at this point */
1280     g_assert(qemu_mutex_iothread_locked());
1281 
1282     g_assert(!vhyp_cpu_in_nested(cpu));
1283 
1284     if (FIELD_EX64(env->msr, MSR, PR)) {
1285         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1286         env->gpr[3] = H_PRIVILEGE;
1287     } else {
1288         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1289     }
1290 }
1291 
1292 struct LPCRSyncState {
1293     target_ulong value;
1294     target_ulong mask;
1295 };
1296 
1297 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1298 {
1299     struct LPCRSyncState *s = arg.host_ptr;
1300     PowerPCCPU *cpu = POWERPC_CPU(cs);
1301     CPUPPCState *env = &cpu->env;
1302     target_ulong lpcr;
1303 
1304     cpu_synchronize_state(cs);
1305     lpcr = env->spr[SPR_LPCR];
1306     lpcr &= ~s->mask;
1307     lpcr |= s->value;
1308     ppc_store_lpcr(cpu, lpcr);
1309 }
1310 
1311 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1312 {
1313     CPUState *cs;
1314     struct LPCRSyncState s = {
1315         .value = value,
1316         .mask = mask
1317     };
1318     CPU_FOREACH(cs) {
1319         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1320     }
1321 }
1322 
1323 /* May be used when the machine is not running */
1324 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1325 {
1326     CPUState *cs;
1327     CPU_FOREACH(cs) {
1328         PowerPCCPU *cpu = POWERPC_CPU(cs);
1329         CPUPPCState *env = &cpu->env;
1330         target_ulong lpcr;
1331 
1332         lpcr = env->spr[SPR_LPCR];
1333         lpcr &= ~(LPCR_HR | LPCR_UPRT);
1334         ppc_store_lpcr(cpu, lpcr);
1335     }
1336 }
1337 
1338 
1339 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1340                            target_ulong lpid, ppc_v3_pate_t *entry)
1341 {
1342     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1343     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1344 
1345     if (!spapr_cpu->in_nested) {
1346         assert(lpid == 0);
1347 
1348         /* Copy PATE1:GR into PATE0:HR */
1349         entry->dw0 = spapr->patb_entry & PATE0_HR;
1350         entry->dw1 = spapr->patb_entry;
1351 
1352     } else {
1353         uint64_t patb, pats;
1354 
1355         assert(lpid != 0);
1356 
1357         patb = spapr->nested_ptcr & PTCR_PATB;
1358         pats = spapr->nested_ptcr & PTCR_PATS;
1359 
1360         /* Check if partition table is properly aligned */
1361         if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1362             return false;
1363         }
1364 
1365         /* Calculate number of entries */
1366         pats = 1ull << (pats + 12 - 4);
1367         if (pats <= lpid) {
1368             return false;
1369         }
1370 
1371         /* Grab entry */
1372         patb += 16 * lpid;
1373         entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1374         entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1375     }
1376 
1377     return true;
1378 }
1379 
1380 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1381 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1382 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1383 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1384 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1385 
1386 /*
1387  * Get the fd to access the kernel htab, re-opening it if necessary
1388  */
1389 static int get_htab_fd(SpaprMachineState *spapr)
1390 {
1391     Error *local_err = NULL;
1392 
1393     if (spapr->htab_fd >= 0) {
1394         return spapr->htab_fd;
1395     }
1396 
1397     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1398     if (spapr->htab_fd < 0) {
1399         error_report_err(local_err);
1400     }
1401 
1402     return spapr->htab_fd;
1403 }
1404 
1405 void close_htab_fd(SpaprMachineState *spapr)
1406 {
1407     if (spapr->htab_fd >= 0) {
1408         close(spapr->htab_fd);
1409     }
1410     spapr->htab_fd = -1;
1411 }
1412 
1413 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1414 {
1415     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1416 
1417     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1418 }
1419 
1420 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1421 {
1422     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1423 
1424     assert(kvm_enabled());
1425 
1426     if (!spapr->htab) {
1427         return 0;
1428     }
1429 
1430     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1431 }
1432 
1433 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1434                                                 hwaddr ptex, int n)
1435 {
1436     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1437     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1438 
1439     if (!spapr->htab) {
1440         /*
1441          * HTAB is controlled by KVM. Fetch into temporary buffer
1442          */
1443         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1444         kvmppc_read_hptes(hptes, ptex, n);
1445         return hptes;
1446     }
1447 
1448     /*
1449      * HTAB is controlled by QEMU. Just point to the internally
1450      * accessible PTEG.
1451      */
1452     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1453 }
1454 
1455 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1456                               const ppc_hash_pte64_t *hptes,
1457                               hwaddr ptex, int n)
1458 {
1459     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1460 
1461     if (!spapr->htab) {
1462         g_free((void *)hptes);
1463     }
1464 
1465     /* Nothing to do for qemu managed HPT */
1466 }
1467 
1468 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1469                       uint64_t pte0, uint64_t pte1)
1470 {
1471     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1472     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1473 
1474     if (!spapr->htab) {
1475         kvmppc_write_hpte(ptex, pte0, pte1);
1476     } else {
1477         if (pte0 & HPTE64_V_VALID) {
1478             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1479             /*
1480              * When setting valid, we write PTE1 first. This ensures
1481              * proper synchronization with the reading code in
1482              * ppc_hash64_pteg_search()
1483              */
1484             smp_wmb();
1485             stq_p(spapr->htab + offset, pte0);
1486         } else {
1487             stq_p(spapr->htab + offset, pte0);
1488             /*
1489              * When clearing it we set PTE0 first. This ensures proper
1490              * synchronization with the reading code in
1491              * ppc_hash64_pteg_search()
1492              */
1493             smp_wmb();
1494             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1495         }
1496     }
1497 }
1498 
1499 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1500                              uint64_t pte1)
1501 {
1502     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1503     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1504 
1505     if (!spapr->htab) {
1506         /* There should always be a hash table when this is called */
1507         error_report("spapr_hpte_set_c called with no hash table !");
1508         return;
1509     }
1510 
1511     /* The HW performs a non-atomic byte update */
1512     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1513 }
1514 
1515 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1516                              uint64_t pte1)
1517 {
1518     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1519     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1520 
1521     if (!spapr->htab) {
1522         /* There should always be a hash table when this is called */
1523         error_report("spapr_hpte_set_r called with no hash table !");
1524         return;
1525     }
1526 
1527     /* The HW performs a non-atomic byte update */
1528     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1529 }
1530 
1531 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1532 {
1533     int shift;
1534 
1535     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1536      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1537      * that's much more than is needed for Linux guests */
1538     shift = ctz64(pow2ceil(ramsize)) - 7;
1539     shift = MAX(shift, 18); /* Minimum architected size */
1540     shift = MIN(shift, 46); /* Maximum architected size */
1541     return shift;
1542 }
1543 
1544 void spapr_free_hpt(SpaprMachineState *spapr)
1545 {
1546     qemu_vfree(spapr->htab);
1547     spapr->htab = NULL;
1548     spapr->htab_shift = 0;
1549     close_htab_fd(spapr);
1550 }
1551 
1552 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1553 {
1554     ERRP_GUARD();
1555     long rc;
1556 
1557     /* Clean up any HPT info from a previous boot */
1558     spapr_free_hpt(spapr);
1559 
1560     rc = kvmppc_reset_htab(shift);
1561 
1562     if (rc == -EOPNOTSUPP) {
1563         error_setg(errp, "HPT not supported in nested guests");
1564         return -EOPNOTSUPP;
1565     }
1566 
1567     if (rc < 0) {
1568         /* kernel-side HPT needed, but couldn't allocate one */
1569         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1570                          shift);
1571         error_append_hint(errp, "Try smaller maxmem?\n");
1572         return -errno;
1573     } else if (rc > 0) {
1574         /* kernel-side HPT allocated */
1575         if (rc != shift) {
1576             error_setg(errp,
1577                        "Requested order %d HPT, but kernel allocated order %ld",
1578                        shift, rc);
1579             error_append_hint(errp, "Try smaller maxmem?\n");
1580             return -ENOSPC;
1581         }
1582 
1583         spapr->htab_shift = shift;
1584         spapr->htab = NULL;
1585     } else {
1586         /* kernel-side HPT not needed, allocate in userspace instead */
1587         size_t size = 1ULL << shift;
1588         int i;
1589 
1590         spapr->htab = qemu_memalign(size, size);
1591         memset(spapr->htab, 0, size);
1592         spapr->htab_shift = shift;
1593 
1594         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1595             DIRTY_HPTE(HPTE(spapr->htab, i));
1596         }
1597     }
1598     /* We're setting up a hash table, so that means we're not radix */
1599     spapr->patb_entry = 0;
1600     spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1601     return 0;
1602 }
1603 
1604 void spapr_setup_hpt(SpaprMachineState *spapr)
1605 {
1606     int hpt_shift;
1607 
1608     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1609         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1610     } else {
1611         uint64_t current_ram_size;
1612 
1613         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1614         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1615     }
1616     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1617 
1618     if (kvm_enabled()) {
1619         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1620 
1621         /* Check our RMA fits in the possible VRMA */
1622         if (vrma_limit < spapr->rma_size) {
1623             error_report("Unable to create %" HWADDR_PRIu
1624                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1625                          spapr->rma_size / MiB, vrma_limit / MiB);
1626             exit(EXIT_FAILURE);
1627         }
1628     }
1629 }
1630 
1631 void spapr_check_mmu_mode(bool guest_radix)
1632 {
1633     if (guest_radix) {
1634         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1635             error_report("Guest requested unavailable MMU mode (radix).");
1636             exit(EXIT_FAILURE);
1637         }
1638     } else {
1639         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1640             && !kvmppc_has_cap_mmu_hash_v3()) {
1641             error_report("Guest requested unavailable MMU mode (hash).");
1642             exit(EXIT_FAILURE);
1643         }
1644     }
1645 }
1646 
1647 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1648 {
1649     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1650     PowerPCCPU *first_ppc_cpu;
1651     hwaddr fdt_addr;
1652     void *fdt;
1653     int rc;
1654 
1655     if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) {
1656         /*
1657          * Record-replay snapshot load must not consume random, this was
1658          * already replayed from initial machine reset.
1659          */
1660         qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1661     }
1662 
1663     pef_kvm_reset(machine->cgs, &error_fatal);
1664     spapr_caps_apply(spapr);
1665 
1666     first_ppc_cpu = POWERPC_CPU(first_cpu);
1667     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1668         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1669                               spapr->max_compat_pvr)) {
1670         /*
1671          * If using KVM with radix mode available, VCPUs can be started
1672          * without a HPT because KVM will start them in radix mode.
1673          * Set the GR bit in PATE so that we know there is no HPT.
1674          */
1675         spapr->patb_entry = PATE1_GR;
1676         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1677     } else {
1678         spapr_setup_hpt(spapr);
1679     }
1680 
1681     qemu_devices_reset(reason);
1682 
1683     spapr_ovec_cleanup(spapr->ov5_cas);
1684     spapr->ov5_cas = spapr_ovec_new();
1685 
1686     ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1687 
1688     /*
1689      * This is fixing some of the default configuration of the XIVE
1690      * devices. To be called after the reset of the machine devices.
1691      */
1692     spapr_irq_reset(spapr, &error_fatal);
1693 
1694     /*
1695      * There is no CAS under qtest. Simulate one to please the code that
1696      * depends on spapr->ov5_cas. This is especially needed to test device
1697      * unplug, so we do that before resetting the DRCs.
1698      */
1699     if (qtest_enabled()) {
1700         spapr_ovec_cleanup(spapr->ov5_cas);
1701         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1702     }
1703 
1704     spapr_nvdimm_finish_flushes();
1705 
1706     /* DRC reset may cause a device to be unplugged. This will cause troubles
1707      * if this device is used by another device (eg, a running vhost backend
1708      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1709      * situations, we reset DRCs after all devices have been reset.
1710      */
1711     spapr_drc_reset_all(spapr);
1712 
1713     spapr_clear_pending_events(spapr);
1714 
1715     /*
1716      * We place the device tree just below either the top of the RMA,
1717      * or just below 2GB, whichever is lower, so that it can be
1718      * processed with 32-bit real mode code if necessary
1719      */
1720     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1721 
1722     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1723     if (spapr->vof) {
1724         spapr_vof_reset(spapr, fdt, &error_fatal);
1725         /*
1726          * Do not pack the FDT as the client may change properties.
1727          * VOF client does not expect the FDT so we do not load it to the VM.
1728          */
1729     } else {
1730         rc = fdt_pack(fdt);
1731         /* Should only fail if we've built a corrupted tree */
1732         assert(rc == 0);
1733 
1734         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1735                                   0, fdt_addr, 0);
1736         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1737     }
1738     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1739 
1740     g_free(spapr->fdt_blob);
1741     spapr->fdt_size = fdt_totalsize(fdt);
1742     spapr->fdt_initial_size = spapr->fdt_size;
1743     spapr->fdt_blob = fdt;
1744 
1745     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1746     machine->fdt = fdt;
1747 
1748     /* Set up the entry state */
1749     first_ppc_cpu->env.gpr[5] = 0;
1750 
1751     spapr->fwnmi_system_reset_addr = -1;
1752     spapr->fwnmi_machine_check_addr = -1;
1753     spapr->fwnmi_machine_check_interlock = -1;
1754 
1755     /* Signal all vCPUs waiting on this condition */
1756     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1757 
1758     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1759 }
1760 
1761 static void spapr_create_nvram(SpaprMachineState *spapr)
1762 {
1763     DeviceState *dev = qdev_new("spapr-nvram");
1764     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1765 
1766     if (dinfo) {
1767         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1768                                 &error_fatal);
1769     }
1770 
1771     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1772 
1773     spapr->nvram = (struct SpaprNvram *)dev;
1774 }
1775 
1776 static void spapr_rtc_create(SpaprMachineState *spapr)
1777 {
1778     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1779                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1780                                        &error_fatal, NULL);
1781     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1782     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1783                               "date");
1784 }
1785 
1786 /* Returns whether we want to use VGA or not */
1787 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1788 {
1789     vga_interface_created = true;
1790     switch (vga_interface_type) {
1791     case VGA_NONE:
1792         return false;
1793     case VGA_DEVICE:
1794         return true;
1795     case VGA_STD:
1796     case VGA_VIRTIO:
1797     case VGA_CIRRUS:
1798         return pci_vga_init(pci_bus) != NULL;
1799     default:
1800         error_setg(errp,
1801                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1802         return false;
1803     }
1804 }
1805 
1806 static int spapr_pre_load(void *opaque)
1807 {
1808     int rc;
1809 
1810     rc = spapr_caps_pre_load(opaque);
1811     if (rc) {
1812         return rc;
1813     }
1814 
1815     return 0;
1816 }
1817 
1818 static int spapr_post_load(void *opaque, int version_id)
1819 {
1820     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1821     int err = 0;
1822 
1823     err = spapr_caps_post_migration(spapr);
1824     if (err) {
1825         return err;
1826     }
1827 
1828     /*
1829      * In earlier versions, there was no separate qdev for the PAPR
1830      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1831      * So when migrating from those versions, poke the incoming offset
1832      * value into the RTC device
1833      */
1834     if (version_id < 3) {
1835         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1836         if (err) {
1837             return err;
1838         }
1839     }
1840 
1841     if (kvm_enabled() && spapr->patb_entry) {
1842         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1843         bool radix = !!(spapr->patb_entry & PATE1_GR);
1844         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1845 
1846         /*
1847          * Update LPCR:HR and UPRT as they may not be set properly in
1848          * the stream
1849          */
1850         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1851                             LPCR_HR | LPCR_UPRT);
1852 
1853         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1854         if (err) {
1855             error_report("Process table config unsupported by the host");
1856             return -EINVAL;
1857         }
1858     }
1859 
1860     err = spapr_irq_post_load(spapr, version_id);
1861     if (err) {
1862         return err;
1863     }
1864 
1865     return err;
1866 }
1867 
1868 static int spapr_pre_save(void *opaque)
1869 {
1870     int rc;
1871 
1872     rc = spapr_caps_pre_save(opaque);
1873     if (rc) {
1874         return rc;
1875     }
1876 
1877     return 0;
1878 }
1879 
1880 static bool version_before_3(void *opaque, int version_id)
1881 {
1882     return version_id < 3;
1883 }
1884 
1885 static bool spapr_pending_events_needed(void *opaque)
1886 {
1887     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1888     return !QTAILQ_EMPTY(&spapr->pending_events);
1889 }
1890 
1891 static const VMStateDescription vmstate_spapr_event_entry = {
1892     .name = "spapr_event_log_entry",
1893     .version_id = 1,
1894     .minimum_version_id = 1,
1895     .fields = (VMStateField[]) {
1896         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1897         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1898         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1899                                      NULL, extended_length),
1900         VMSTATE_END_OF_LIST()
1901     },
1902 };
1903 
1904 static const VMStateDescription vmstate_spapr_pending_events = {
1905     .name = "spapr_pending_events",
1906     .version_id = 1,
1907     .minimum_version_id = 1,
1908     .needed = spapr_pending_events_needed,
1909     .fields = (VMStateField[]) {
1910         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1911                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1912         VMSTATE_END_OF_LIST()
1913     },
1914 };
1915 
1916 static bool spapr_ov5_cas_needed(void *opaque)
1917 {
1918     SpaprMachineState *spapr = opaque;
1919     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1920     bool cas_needed;
1921 
1922     /* Prior to the introduction of SpaprOptionVector, we had two option
1923      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1924      * Both of these options encode machine topology into the device-tree
1925      * in such a way that the now-booted OS should still be able to interact
1926      * appropriately with QEMU regardless of what options were actually
1927      * negotiatied on the source side.
1928      *
1929      * As such, we can avoid migrating the CAS-negotiated options if these
1930      * are the only options available on the current machine/platform.
1931      * Since these are the only options available for pseries-2.7 and
1932      * earlier, this allows us to maintain old->new/new->old migration
1933      * compatibility.
1934      *
1935      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1936      * via default pseries-2.8 machines and explicit command-line parameters.
1937      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1938      * of the actual CAS-negotiated values to continue working properly. For
1939      * example, availability of memory unplug depends on knowing whether
1940      * OV5_HP_EVT was negotiated via CAS.
1941      *
1942      * Thus, for any cases where the set of available CAS-negotiatable
1943      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1944      * include the CAS-negotiated options in the migration stream, unless
1945      * if they affect boot time behaviour only.
1946      */
1947     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1948     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1949     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1950 
1951     /* We need extra information if we have any bits outside the mask
1952      * defined above */
1953     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1954 
1955     spapr_ovec_cleanup(ov5_mask);
1956 
1957     return cas_needed;
1958 }
1959 
1960 static const VMStateDescription vmstate_spapr_ov5_cas = {
1961     .name = "spapr_option_vector_ov5_cas",
1962     .version_id = 1,
1963     .minimum_version_id = 1,
1964     .needed = spapr_ov5_cas_needed,
1965     .fields = (VMStateField[]) {
1966         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1967                                  vmstate_spapr_ovec, SpaprOptionVector),
1968         VMSTATE_END_OF_LIST()
1969     },
1970 };
1971 
1972 static bool spapr_patb_entry_needed(void *opaque)
1973 {
1974     SpaprMachineState *spapr = opaque;
1975 
1976     return !!spapr->patb_entry;
1977 }
1978 
1979 static const VMStateDescription vmstate_spapr_patb_entry = {
1980     .name = "spapr_patb_entry",
1981     .version_id = 1,
1982     .minimum_version_id = 1,
1983     .needed = spapr_patb_entry_needed,
1984     .fields = (VMStateField[]) {
1985         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1986         VMSTATE_END_OF_LIST()
1987     },
1988 };
1989 
1990 static bool spapr_irq_map_needed(void *opaque)
1991 {
1992     SpaprMachineState *spapr = opaque;
1993 
1994     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1995 }
1996 
1997 static const VMStateDescription vmstate_spapr_irq_map = {
1998     .name = "spapr_irq_map",
1999     .version_id = 1,
2000     .minimum_version_id = 1,
2001     .needed = spapr_irq_map_needed,
2002     .fields = (VMStateField[]) {
2003         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2004         VMSTATE_END_OF_LIST()
2005     },
2006 };
2007 
2008 static bool spapr_dtb_needed(void *opaque)
2009 {
2010     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2011 
2012     return smc->update_dt_enabled;
2013 }
2014 
2015 static int spapr_dtb_pre_load(void *opaque)
2016 {
2017     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2018 
2019     g_free(spapr->fdt_blob);
2020     spapr->fdt_blob = NULL;
2021     spapr->fdt_size = 0;
2022 
2023     return 0;
2024 }
2025 
2026 static const VMStateDescription vmstate_spapr_dtb = {
2027     .name = "spapr_dtb",
2028     .version_id = 1,
2029     .minimum_version_id = 1,
2030     .needed = spapr_dtb_needed,
2031     .pre_load = spapr_dtb_pre_load,
2032     .fields = (VMStateField[]) {
2033         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2034         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2035         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2036                                      fdt_size),
2037         VMSTATE_END_OF_LIST()
2038     },
2039 };
2040 
2041 static bool spapr_fwnmi_needed(void *opaque)
2042 {
2043     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2044 
2045     return spapr->fwnmi_machine_check_addr != -1;
2046 }
2047 
2048 static int spapr_fwnmi_pre_save(void *opaque)
2049 {
2050     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2051 
2052     /*
2053      * Check if machine check handling is in progress and print a
2054      * warning message.
2055      */
2056     if (spapr->fwnmi_machine_check_interlock != -1) {
2057         warn_report("A machine check is being handled during migration. The"
2058                 "handler may run and log hardware error on the destination");
2059     }
2060 
2061     return 0;
2062 }
2063 
2064 static const VMStateDescription vmstate_spapr_fwnmi = {
2065     .name = "spapr_fwnmi",
2066     .version_id = 1,
2067     .minimum_version_id = 1,
2068     .needed = spapr_fwnmi_needed,
2069     .pre_save = spapr_fwnmi_pre_save,
2070     .fields = (VMStateField[]) {
2071         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2072         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2073         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2074         VMSTATE_END_OF_LIST()
2075     },
2076 };
2077 
2078 static const VMStateDescription vmstate_spapr = {
2079     .name = "spapr",
2080     .version_id = 3,
2081     .minimum_version_id = 1,
2082     .pre_load = spapr_pre_load,
2083     .post_load = spapr_post_load,
2084     .pre_save = spapr_pre_save,
2085     .fields = (VMStateField[]) {
2086         /* used to be @next_irq */
2087         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2088 
2089         /* RTC offset */
2090         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2091 
2092         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2093         VMSTATE_END_OF_LIST()
2094     },
2095     .subsections = (const VMStateDescription*[]) {
2096         &vmstate_spapr_ov5_cas,
2097         &vmstate_spapr_patb_entry,
2098         &vmstate_spapr_pending_events,
2099         &vmstate_spapr_cap_htm,
2100         &vmstate_spapr_cap_vsx,
2101         &vmstate_spapr_cap_dfp,
2102         &vmstate_spapr_cap_cfpc,
2103         &vmstate_spapr_cap_sbbc,
2104         &vmstate_spapr_cap_ibs,
2105         &vmstate_spapr_cap_hpt_maxpagesize,
2106         &vmstate_spapr_irq_map,
2107         &vmstate_spapr_cap_nested_kvm_hv,
2108         &vmstate_spapr_dtb,
2109         &vmstate_spapr_cap_large_decr,
2110         &vmstate_spapr_cap_ccf_assist,
2111         &vmstate_spapr_cap_fwnmi,
2112         &vmstate_spapr_fwnmi,
2113         &vmstate_spapr_cap_rpt_invalidate,
2114         NULL
2115     }
2116 };
2117 
2118 static int htab_save_setup(QEMUFile *f, void *opaque)
2119 {
2120     SpaprMachineState *spapr = opaque;
2121 
2122     /* "Iteration" header */
2123     if (!spapr->htab_shift) {
2124         qemu_put_be32(f, -1);
2125     } else {
2126         qemu_put_be32(f, spapr->htab_shift);
2127     }
2128 
2129     if (spapr->htab) {
2130         spapr->htab_save_index = 0;
2131         spapr->htab_first_pass = true;
2132     } else {
2133         if (spapr->htab_shift) {
2134             assert(kvm_enabled());
2135         }
2136     }
2137 
2138 
2139     return 0;
2140 }
2141 
2142 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2143                             int chunkstart, int n_valid, int n_invalid)
2144 {
2145     qemu_put_be32(f, chunkstart);
2146     qemu_put_be16(f, n_valid);
2147     qemu_put_be16(f, n_invalid);
2148     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2149                     HASH_PTE_SIZE_64 * n_valid);
2150 }
2151 
2152 static void htab_save_end_marker(QEMUFile *f)
2153 {
2154     qemu_put_be32(f, 0);
2155     qemu_put_be16(f, 0);
2156     qemu_put_be16(f, 0);
2157 }
2158 
2159 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2160                                  int64_t max_ns)
2161 {
2162     bool has_timeout = max_ns != -1;
2163     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2164     int index = spapr->htab_save_index;
2165     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2166 
2167     assert(spapr->htab_first_pass);
2168 
2169     do {
2170         int chunkstart;
2171 
2172         /* Consume invalid HPTEs */
2173         while ((index < htabslots)
2174                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2175             CLEAN_HPTE(HPTE(spapr->htab, index));
2176             index++;
2177         }
2178 
2179         /* Consume valid HPTEs */
2180         chunkstart = index;
2181         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2182                && HPTE_VALID(HPTE(spapr->htab, index))) {
2183             CLEAN_HPTE(HPTE(spapr->htab, index));
2184             index++;
2185         }
2186 
2187         if (index > chunkstart) {
2188             int n_valid = index - chunkstart;
2189 
2190             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2191 
2192             if (has_timeout &&
2193                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2194                 break;
2195             }
2196         }
2197     } while ((index < htabslots) && !migration_rate_exceeded(f));
2198 
2199     if (index >= htabslots) {
2200         assert(index == htabslots);
2201         index = 0;
2202         spapr->htab_first_pass = false;
2203     }
2204     spapr->htab_save_index = index;
2205 }
2206 
2207 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2208                                 int64_t max_ns)
2209 {
2210     bool final = max_ns < 0;
2211     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2212     int examined = 0, sent = 0;
2213     int index = spapr->htab_save_index;
2214     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2215 
2216     assert(!spapr->htab_first_pass);
2217 
2218     do {
2219         int chunkstart, invalidstart;
2220 
2221         /* Consume non-dirty HPTEs */
2222         while ((index < htabslots)
2223                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2224             index++;
2225             examined++;
2226         }
2227 
2228         chunkstart = index;
2229         /* Consume valid dirty HPTEs */
2230         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2231                && HPTE_DIRTY(HPTE(spapr->htab, index))
2232                && HPTE_VALID(HPTE(spapr->htab, index))) {
2233             CLEAN_HPTE(HPTE(spapr->htab, index));
2234             index++;
2235             examined++;
2236         }
2237 
2238         invalidstart = index;
2239         /* Consume invalid dirty HPTEs */
2240         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2241                && HPTE_DIRTY(HPTE(spapr->htab, index))
2242                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2243             CLEAN_HPTE(HPTE(spapr->htab, index));
2244             index++;
2245             examined++;
2246         }
2247 
2248         if (index > chunkstart) {
2249             int n_valid = invalidstart - chunkstart;
2250             int n_invalid = index - invalidstart;
2251 
2252             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2253             sent += index - chunkstart;
2254 
2255             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2256                 break;
2257             }
2258         }
2259 
2260         if (examined >= htabslots) {
2261             break;
2262         }
2263 
2264         if (index >= htabslots) {
2265             assert(index == htabslots);
2266             index = 0;
2267         }
2268     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2269 
2270     if (index >= htabslots) {
2271         assert(index == htabslots);
2272         index = 0;
2273     }
2274 
2275     spapr->htab_save_index = index;
2276 
2277     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2278 }
2279 
2280 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2281 #define MAX_KVM_BUF_SIZE    2048
2282 
2283 static int htab_save_iterate(QEMUFile *f, void *opaque)
2284 {
2285     SpaprMachineState *spapr = opaque;
2286     int fd;
2287     int rc = 0;
2288 
2289     /* Iteration header */
2290     if (!spapr->htab_shift) {
2291         qemu_put_be32(f, -1);
2292         return 1;
2293     } else {
2294         qemu_put_be32(f, 0);
2295     }
2296 
2297     if (!spapr->htab) {
2298         assert(kvm_enabled());
2299 
2300         fd = get_htab_fd(spapr);
2301         if (fd < 0) {
2302             return fd;
2303         }
2304 
2305         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2306         if (rc < 0) {
2307             return rc;
2308         }
2309     } else  if (spapr->htab_first_pass) {
2310         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2311     } else {
2312         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2313     }
2314 
2315     htab_save_end_marker(f);
2316 
2317     return rc;
2318 }
2319 
2320 static int htab_save_complete(QEMUFile *f, void *opaque)
2321 {
2322     SpaprMachineState *spapr = opaque;
2323     int fd;
2324 
2325     /* Iteration header */
2326     if (!spapr->htab_shift) {
2327         qemu_put_be32(f, -1);
2328         return 0;
2329     } else {
2330         qemu_put_be32(f, 0);
2331     }
2332 
2333     if (!spapr->htab) {
2334         int rc;
2335 
2336         assert(kvm_enabled());
2337 
2338         fd = get_htab_fd(spapr);
2339         if (fd < 0) {
2340             return fd;
2341         }
2342 
2343         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2344         if (rc < 0) {
2345             return rc;
2346         }
2347     } else {
2348         if (spapr->htab_first_pass) {
2349             htab_save_first_pass(f, spapr, -1);
2350         }
2351         htab_save_later_pass(f, spapr, -1);
2352     }
2353 
2354     /* End marker */
2355     htab_save_end_marker(f);
2356 
2357     return 0;
2358 }
2359 
2360 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2361 {
2362     SpaprMachineState *spapr = opaque;
2363     uint32_t section_hdr;
2364     int fd = -1;
2365     Error *local_err = NULL;
2366 
2367     if (version_id < 1 || version_id > 1) {
2368         error_report("htab_load() bad version");
2369         return -EINVAL;
2370     }
2371 
2372     section_hdr = qemu_get_be32(f);
2373 
2374     if (section_hdr == -1) {
2375         spapr_free_hpt(spapr);
2376         return 0;
2377     }
2378 
2379     if (section_hdr) {
2380         int ret;
2381 
2382         /* First section gives the htab size */
2383         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2384         if (ret < 0) {
2385             error_report_err(local_err);
2386             return ret;
2387         }
2388         return 0;
2389     }
2390 
2391     if (!spapr->htab) {
2392         assert(kvm_enabled());
2393 
2394         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2395         if (fd < 0) {
2396             error_report_err(local_err);
2397             return fd;
2398         }
2399     }
2400 
2401     while (true) {
2402         uint32_t index;
2403         uint16_t n_valid, n_invalid;
2404 
2405         index = qemu_get_be32(f);
2406         n_valid = qemu_get_be16(f);
2407         n_invalid = qemu_get_be16(f);
2408 
2409         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2410             /* End of Stream */
2411             break;
2412         }
2413 
2414         if ((index + n_valid + n_invalid) >
2415             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2416             /* Bad index in stream */
2417             error_report(
2418                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2419                 index, n_valid, n_invalid, spapr->htab_shift);
2420             return -EINVAL;
2421         }
2422 
2423         if (spapr->htab) {
2424             if (n_valid) {
2425                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2426                                 HASH_PTE_SIZE_64 * n_valid);
2427             }
2428             if (n_invalid) {
2429                 memset(HPTE(spapr->htab, index + n_valid), 0,
2430                        HASH_PTE_SIZE_64 * n_invalid);
2431             }
2432         } else {
2433             int rc;
2434 
2435             assert(fd >= 0);
2436 
2437             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2438                                         &local_err);
2439             if (rc < 0) {
2440                 error_report_err(local_err);
2441                 return rc;
2442             }
2443         }
2444     }
2445 
2446     if (!spapr->htab) {
2447         assert(fd >= 0);
2448         close(fd);
2449     }
2450 
2451     return 0;
2452 }
2453 
2454 static void htab_save_cleanup(void *opaque)
2455 {
2456     SpaprMachineState *spapr = opaque;
2457 
2458     close_htab_fd(spapr);
2459 }
2460 
2461 static SaveVMHandlers savevm_htab_handlers = {
2462     .save_setup = htab_save_setup,
2463     .save_live_iterate = htab_save_iterate,
2464     .save_live_complete_precopy = htab_save_complete,
2465     .save_cleanup = htab_save_cleanup,
2466     .load_state = htab_load,
2467 };
2468 
2469 static void spapr_boot_set(void *opaque, const char *boot_device,
2470                            Error **errp)
2471 {
2472     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2473 
2474     g_free(spapr->boot_device);
2475     spapr->boot_device = g_strdup(boot_device);
2476 }
2477 
2478 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2479 {
2480     MachineState *machine = MACHINE(spapr);
2481     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2482     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2483     int i;
2484 
2485     g_assert(!nr_lmbs || machine->device_memory);
2486     for (i = 0; i < nr_lmbs; i++) {
2487         uint64_t addr;
2488 
2489         addr = i * lmb_size + machine->device_memory->base;
2490         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2491                                addr / lmb_size);
2492     }
2493 }
2494 
2495 /*
2496  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2497  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2498  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2499  */
2500 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2501 {
2502     int i;
2503 
2504     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2505         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2506                    " is not aligned to %" PRIu64 " MiB",
2507                    machine->ram_size,
2508                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2509         return;
2510     }
2511 
2512     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2513         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2514                    " is not aligned to %" PRIu64 " MiB",
2515                    machine->ram_size,
2516                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2517         return;
2518     }
2519 
2520     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2521         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2522             error_setg(errp,
2523                        "Node %d memory size 0x%" PRIx64
2524                        " is not aligned to %" PRIu64 " MiB",
2525                        i, machine->numa_state->nodes[i].node_mem,
2526                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2527             return;
2528         }
2529     }
2530 }
2531 
2532 /* find cpu slot in machine->possible_cpus by core_id */
2533 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2534 {
2535     int index = id / ms->smp.threads;
2536 
2537     if (index >= ms->possible_cpus->len) {
2538         return NULL;
2539     }
2540     if (idx) {
2541         *idx = index;
2542     }
2543     return &ms->possible_cpus->cpus[index];
2544 }
2545 
2546 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2547 {
2548     MachineState *ms = MACHINE(spapr);
2549     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2550     Error *local_err = NULL;
2551     bool vsmt_user = !!spapr->vsmt;
2552     int kvm_smt = kvmppc_smt_threads();
2553     int ret;
2554     unsigned int smp_threads = ms->smp.threads;
2555 
2556     if (tcg_enabled()) {
2557         if (smp_threads > 1 &&
2558             !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2559                                    spapr->max_compat_pvr)) {
2560             error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2561             return;
2562         }
2563 
2564         if (smp_threads > 8) {
2565             error_setg(errp, "TCG cannot support more than 8 threads/core "
2566                        "on a pseries machine");
2567             return;
2568         }
2569     }
2570     if (!is_power_of_2(smp_threads)) {
2571         error_setg(errp, "Cannot support %d threads/core on a pseries "
2572                    "machine because it must be a power of 2", smp_threads);
2573         return;
2574     }
2575 
2576     /* Detemine the VSMT mode to use: */
2577     if (vsmt_user) {
2578         if (spapr->vsmt < smp_threads) {
2579             error_setg(errp, "Cannot support VSMT mode %d"
2580                        " because it must be >= threads/core (%d)",
2581                        spapr->vsmt, smp_threads);
2582             return;
2583         }
2584         /* In this case, spapr->vsmt has been set by the command line */
2585     } else if (!smc->smp_threads_vsmt) {
2586         /*
2587          * Default VSMT value is tricky, because we need it to be as
2588          * consistent as possible (for migration), but this requires
2589          * changing it for at least some existing cases.  We pick 8 as
2590          * the value that we'd get with KVM on POWER8, the
2591          * overwhelmingly common case in production systems.
2592          */
2593         spapr->vsmt = MAX(8, smp_threads);
2594     } else {
2595         spapr->vsmt = smp_threads;
2596     }
2597 
2598     /* KVM: If necessary, set the SMT mode: */
2599     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2600         ret = kvmppc_set_smt_threads(spapr->vsmt);
2601         if (ret) {
2602             /* Looks like KVM isn't able to change VSMT mode */
2603             error_setg(&local_err,
2604                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2605                        spapr->vsmt, ret);
2606             /* We can live with that if the default one is big enough
2607              * for the number of threads, and a submultiple of the one
2608              * we want.  In this case we'll waste some vcpu ids, but
2609              * behaviour will be correct */
2610             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2611                 warn_report_err(local_err);
2612             } else {
2613                 if (!vsmt_user) {
2614                     error_append_hint(&local_err,
2615                                       "On PPC, a VM with %d threads/core"
2616                                       " on a host with %d threads/core"
2617                                       " requires the use of VSMT mode %d.\n",
2618                                       smp_threads, kvm_smt, spapr->vsmt);
2619                 }
2620                 kvmppc_error_append_smt_possible_hint(&local_err);
2621                 error_propagate(errp, local_err);
2622             }
2623         }
2624     }
2625     /* else TCG: nothing to do currently */
2626 }
2627 
2628 static void spapr_init_cpus(SpaprMachineState *spapr)
2629 {
2630     MachineState *machine = MACHINE(spapr);
2631     MachineClass *mc = MACHINE_GET_CLASS(machine);
2632     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2633     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2634     const CPUArchIdList *possible_cpus;
2635     unsigned int smp_cpus = machine->smp.cpus;
2636     unsigned int smp_threads = machine->smp.threads;
2637     unsigned int max_cpus = machine->smp.max_cpus;
2638     int boot_cores_nr = smp_cpus / smp_threads;
2639     int i;
2640 
2641     possible_cpus = mc->possible_cpu_arch_ids(machine);
2642     if (mc->has_hotpluggable_cpus) {
2643         if (smp_cpus % smp_threads) {
2644             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2645                          smp_cpus, smp_threads);
2646             exit(1);
2647         }
2648         if (max_cpus % smp_threads) {
2649             error_report("max_cpus (%u) must be multiple of threads (%u)",
2650                          max_cpus, smp_threads);
2651             exit(1);
2652         }
2653     } else {
2654         if (max_cpus != smp_cpus) {
2655             error_report("This machine version does not support CPU hotplug");
2656             exit(1);
2657         }
2658         boot_cores_nr = possible_cpus->len;
2659     }
2660 
2661     if (smc->pre_2_10_has_unused_icps) {
2662         int i;
2663 
2664         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2665             /* Dummy entries get deregistered when real ICPState objects
2666              * are registered during CPU core hotplug.
2667              */
2668             pre_2_10_vmstate_register_dummy_icp(i);
2669         }
2670     }
2671 
2672     for (i = 0; i < possible_cpus->len; i++) {
2673         int core_id = i * smp_threads;
2674 
2675         if (mc->has_hotpluggable_cpus) {
2676             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2677                                    spapr_vcpu_id(spapr, core_id));
2678         }
2679 
2680         if (i < boot_cores_nr) {
2681             Object *core  = object_new(type);
2682             int nr_threads = smp_threads;
2683 
2684             /* Handle the partially filled core for older machine types */
2685             if ((i + 1) * smp_threads >= smp_cpus) {
2686                 nr_threads = smp_cpus - i * smp_threads;
2687             }
2688 
2689             object_property_set_int(core, "nr-threads", nr_threads,
2690                                     &error_fatal);
2691             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2692                                     &error_fatal);
2693             qdev_realize(DEVICE(core), NULL, &error_fatal);
2694 
2695             object_unref(core);
2696         }
2697     }
2698 }
2699 
2700 static PCIHostState *spapr_create_default_phb(void)
2701 {
2702     DeviceState *dev;
2703 
2704     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2705     qdev_prop_set_uint32(dev, "index", 0);
2706     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2707 
2708     return PCI_HOST_BRIDGE(dev);
2709 }
2710 
2711 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2712 {
2713     MachineState *machine = MACHINE(spapr);
2714     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2715     hwaddr rma_size = machine->ram_size;
2716     hwaddr node0_size = spapr_node0_size(machine);
2717 
2718     /* RMA has to fit in the first NUMA node */
2719     rma_size = MIN(rma_size, node0_size);
2720 
2721     /*
2722      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2723      * never exceed that
2724      */
2725     rma_size = MIN(rma_size, 1 * TiB);
2726 
2727     /*
2728      * Clamp the RMA size based on machine type.  This is for
2729      * migration compatibility with older qemu versions, which limited
2730      * the RMA size for complicated and mostly bad reasons.
2731      */
2732     if (smc->rma_limit) {
2733         rma_size = MIN(rma_size, smc->rma_limit);
2734     }
2735 
2736     if (rma_size < MIN_RMA_SLOF) {
2737         error_setg(errp,
2738                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2739                    "ldMiB guest RMA (Real Mode Area memory)",
2740                    MIN_RMA_SLOF / MiB);
2741         return 0;
2742     }
2743 
2744     return rma_size;
2745 }
2746 
2747 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2748 {
2749     MachineState *machine = MACHINE(spapr);
2750     int i;
2751 
2752     for (i = 0; i < machine->ram_slots; i++) {
2753         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2754     }
2755 }
2756 
2757 /* pSeries LPAR / sPAPR hardware init */
2758 static void spapr_machine_init(MachineState *machine)
2759 {
2760     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2761     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2762     MachineClass *mc = MACHINE_GET_CLASS(machine);
2763     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2764     const char *bios_name = machine->firmware ?: bios_default;
2765     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2766     const char *kernel_filename = machine->kernel_filename;
2767     const char *initrd_filename = machine->initrd_filename;
2768     PCIHostState *phb;
2769     bool has_vga;
2770     int i;
2771     MemoryRegion *sysmem = get_system_memory();
2772     long load_limit, fw_size;
2773     Error *resize_hpt_err = NULL;
2774 
2775     if (!filename) {
2776         error_report("Could not find LPAR firmware '%s'", bios_name);
2777         exit(1);
2778     }
2779     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2780     if (fw_size <= 0) {
2781         error_report("Could not load LPAR firmware '%s'", filename);
2782         exit(1);
2783     }
2784 
2785     /*
2786      * if Secure VM (PEF) support is configured, then initialize it
2787      */
2788     pef_kvm_init(machine->cgs, &error_fatal);
2789 
2790     msi_nonbroken = true;
2791 
2792     QLIST_INIT(&spapr->phbs);
2793     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2794 
2795     /* Determine capabilities to run with */
2796     spapr_caps_init(spapr);
2797 
2798     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2799     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2800         /*
2801          * If the user explicitly requested a mode we should either
2802          * supply it, or fail completely (which we do below).  But if
2803          * it's not set explicitly, we reset our mode to something
2804          * that works
2805          */
2806         if (resize_hpt_err) {
2807             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2808             error_free(resize_hpt_err);
2809             resize_hpt_err = NULL;
2810         } else {
2811             spapr->resize_hpt = smc->resize_hpt_default;
2812         }
2813     }
2814 
2815     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2816 
2817     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2818         /*
2819          * User requested HPT resize, but this host can't supply it.  Bail out
2820          */
2821         error_report_err(resize_hpt_err);
2822         exit(1);
2823     }
2824     error_free(resize_hpt_err);
2825 
2826     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2827 
2828     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2829     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2830 
2831     /*
2832      * VSMT must be set in order to be able to compute VCPU ids, ie to
2833      * call spapr_max_server_number() or spapr_vcpu_id().
2834      */
2835     spapr_set_vsmt_mode(spapr, &error_fatal);
2836 
2837     /* Set up Interrupt Controller before we create the VCPUs */
2838     spapr_irq_init(spapr, &error_fatal);
2839 
2840     /* Set up containers for ibm,client-architecture-support negotiated options
2841      */
2842     spapr->ov5 = spapr_ovec_new();
2843     spapr->ov5_cas = spapr_ovec_new();
2844 
2845     if (smc->dr_lmb_enabled) {
2846         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2847         spapr_validate_node_memory(machine, &error_fatal);
2848     }
2849 
2850     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2851 
2852     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2853     if (!smc->pre_6_2_numa_affinity) {
2854         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2855     }
2856 
2857     /* advertise support for dedicated HP event source to guests */
2858     if (spapr->use_hotplug_event_source) {
2859         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2860     }
2861 
2862     /* advertise support for HPT resizing */
2863     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2864         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2865     }
2866 
2867     /* advertise support for ibm,dyamic-memory-v2 */
2868     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2869 
2870     /* advertise XIVE on POWER9 machines */
2871     if (spapr->irq->xive) {
2872         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2873     }
2874 
2875     /* init CPUs */
2876     spapr_init_cpus(spapr);
2877 
2878     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2879 
2880     /* Init numa_assoc_array */
2881     spapr_numa_associativity_init(spapr, machine);
2882 
2883     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2884         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2885                               spapr->max_compat_pvr)) {
2886         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2887         /* KVM and TCG always allow GTSE with radix... */
2888         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2889     }
2890     /* ... but not with hash (currently). */
2891 
2892     if (kvm_enabled()) {
2893         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2894         kvmppc_enable_logical_ci_hcalls();
2895         kvmppc_enable_set_mode_hcall();
2896 
2897         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2898         kvmppc_enable_clear_ref_mod_hcalls();
2899 
2900         /* Enable H_PAGE_INIT */
2901         kvmppc_enable_h_page_init();
2902     }
2903 
2904     /* map RAM */
2905     memory_region_add_subregion(sysmem, 0, machine->ram);
2906 
2907     /* initialize hotplug memory address space */
2908     if (machine->ram_size < machine->maxram_size) {
2909         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2910         hwaddr device_mem_base;
2911 
2912         /*
2913          * Limit the number of hotpluggable memory slots to half the number
2914          * slots that KVM supports, leaving the other half for PCI and other
2915          * devices. However ensure that number of slots doesn't drop below 32.
2916          */
2917         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2918                            SPAPR_MAX_RAM_SLOTS;
2919 
2920         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2921             max_memslots = SPAPR_MAX_RAM_SLOTS;
2922         }
2923         if (machine->ram_slots > max_memslots) {
2924             error_report("Specified number of memory slots %"
2925                          PRIu64" exceeds max supported %d",
2926                          machine->ram_slots, max_memslots);
2927             exit(1);
2928         }
2929 
2930         device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2931         machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2932     }
2933 
2934     if (smc->dr_lmb_enabled) {
2935         spapr_create_lmb_dr_connectors(spapr);
2936     }
2937 
2938     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2939         /* Create the error string for live migration blocker */
2940         error_setg(&spapr->fwnmi_migration_blocker,
2941             "A machine check is being handled during migration. The handler"
2942             "may run and log hardware error on the destination");
2943     }
2944 
2945     if (mc->nvdimm_supported) {
2946         spapr_create_nvdimm_dr_connectors(spapr);
2947     }
2948 
2949     /* Set up RTAS event infrastructure */
2950     spapr_events_init(spapr);
2951 
2952     /* Set up the RTC RTAS interfaces */
2953     spapr_rtc_create(spapr);
2954 
2955     /* Set up VIO bus */
2956     spapr->vio_bus = spapr_vio_bus_init();
2957 
2958     for (i = 0; serial_hd(i); i++) {
2959         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2960     }
2961 
2962     /* We always have at least the nvram device on VIO */
2963     spapr_create_nvram(spapr);
2964 
2965     /*
2966      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2967      * connectors (described in root DT node's "ibm,drc-types" property)
2968      * are pre-initialized here. additional child connectors (such as
2969      * connectors for a PHBs PCI slots) are added as needed during their
2970      * parent's realization.
2971      */
2972     if (smc->dr_phb_enabled) {
2973         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2974             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2975         }
2976     }
2977 
2978     /* Set up PCI */
2979     spapr_pci_rtas_init();
2980 
2981     phb = spapr_create_default_phb();
2982 
2983     for (i = 0; i < nb_nics; i++) {
2984         NICInfo *nd = &nd_table[i];
2985 
2986         if (!nd->model) {
2987             nd->model = g_strdup("spapr-vlan");
2988         }
2989 
2990         if (g_str_equal(nd->model, "spapr-vlan") ||
2991             g_str_equal(nd->model, "ibmveth")) {
2992             spapr_vlan_create(spapr->vio_bus, nd);
2993         } else {
2994             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2995         }
2996     }
2997 
2998     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2999         spapr_vscsi_create(spapr->vio_bus);
3000     }
3001 
3002     /* Graphics */
3003     has_vga = spapr_vga_init(phb->bus, &error_fatal);
3004     if (has_vga) {
3005         spapr->want_stdout_path = !machine->enable_graphics;
3006         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3007     } else {
3008         spapr->want_stdout_path = true;
3009     }
3010 
3011     if (machine->usb) {
3012         if (smc->use_ohci_by_default) {
3013             pci_create_simple(phb->bus, -1, "pci-ohci");
3014         } else {
3015             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3016         }
3017 
3018         if (has_vga) {
3019             USBBus *usb_bus = usb_bus_find(-1);
3020 
3021             usb_create_simple(usb_bus, "usb-kbd");
3022             usb_create_simple(usb_bus, "usb-mouse");
3023         }
3024     }
3025 
3026     if (kernel_filename) {
3027         uint64_t loaded_addr = 0;
3028 
3029         spapr->kernel_size = load_elf(kernel_filename, NULL,
3030                                       translate_kernel_address, spapr,
3031                                       NULL, &loaded_addr, NULL, NULL, 1,
3032                                       PPC_ELF_MACHINE, 0, 0);
3033         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3034             spapr->kernel_size = load_elf(kernel_filename, NULL,
3035                                           translate_kernel_address, spapr,
3036                                           NULL, &loaded_addr, NULL, NULL, 0,
3037                                           PPC_ELF_MACHINE, 0, 0);
3038             spapr->kernel_le = spapr->kernel_size > 0;
3039         }
3040         if (spapr->kernel_size < 0) {
3041             error_report("error loading %s: %s", kernel_filename,
3042                          load_elf_strerror(spapr->kernel_size));
3043             exit(1);
3044         }
3045 
3046         if (spapr->kernel_addr != loaded_addr) {
3047             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3048                         " to 0x%"PRIx64,
3049                         spapr->kernel_addr, loaded_addr);
3050             spapr->kernel_addr = loaded_addr;
3051         }
3052 
3053         /* load initrd */
3054         if (initrd_filename) {
3055             /* Try to locate the initrd in the gap between the kernel
3056              * and the firmware. Add a bit of space just in case
3057              */
3058             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3059                                   + 0x1ffff) & ~0xffff;
3060             spapr->initrd_size = load_image_targphys(initrd_filename,
3061                                                      spapr->initrd_base,
3062                                                      load_limit
3063                                                      - spapr->initrd_base);
3064             if (spapr->initrd_size < 0) {
3065                 error_report("could not load initial ram disk '%s'",
3066                              initrd_filename);
3067                 exit(1);
3068             }
3069         }
3070     }
3071 
3072     /* FIXME: Should register things through the MachineState's qdev
3073      * interface, this is a legacy from the sPAPREnvironment structure
3074      * which predated MachineState but had a similar function */
3075     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3076     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3077                          &savevm_htab_handlers, spapr);
3078 
3079     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3080 
3081     qemu_register_boot_set(spapr_boot_set, spapr);
3082 
3083     /*
3084      * Nothing needs to be done to resume a suspended guest because
3085      * suspending does not change the machine state, so no need for
3086      * a ->wakeup method.
3087      */
3088     qemu_register_wakeup_support();
3089 
3090     if (kvm_enabled()) {
3091         /* to stop and start vmclock */
3092         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3093                                          &spapr->tb);
3094 
3095         kvmppc_spapr_enable_inkernel_multitce();
3096     }
3097 
3098     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3099     if (spapr->vof) {
3100         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3101         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3102     }
3103 
3104     spapr_watchdog_init(spapr);
3105 }
3106 
3107 #define DEFAULT_KVM_TYPE "auto"
3108 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3109 {
3110     /*
3111      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3112      * accomodate the 'HV' and 'PV' formats that exists in the
3113      * wild. The 'auto' mode is being introduced already as
3114      * lower-case, thus we don't need to bother checking for
3115      * "AUTO".
3116      */
3117     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3118         return 0;
3119     }
3120 
3121     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3122         return 1;
3123     }
3124 
3125     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3126         return 2;
3127     }
3128 
3129     error_report("Unknown kvm-type specified '%s'", vm_type);
3130     return -1;
3131 }
3132 
3133 /*
3134  * Implementation of an interface to adjust firmware path
3135  * for the bootindex property handling.
3136  */
3137 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3138                                    DeviceState *dev)
3139 {
3140 #define CAST(type, obj, name) \
3141     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3142     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3143     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3144     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3145     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3146 
3147     if (d && bus) {
3148         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3149         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3150         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3151 
3152         if (spapr) {
3153             /*
3154              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3155              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3156              * 0x8000 | (target << 8) | (bus << 5) | lun
3157              * (see the "Logical unit addressing format" table in SAM5)
3158              */
3159             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3160             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3161                                    (uint64_t)id << 48);
3162         } else if (virtio) {
3163             /*
3164              * We use SRP luns of the form 01000000 | (target << 8) | lun
3165              * in the top 32 bits of the 64-bit LUN
3166              * Note: the quote above is from SLOF and it is wrong,
3167              * the actual binding is:
3168              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3169              */
3170             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3171             if (d->lun >= 256) {
3172                 /* Use the LUN "flat space addressing method" */
3173                 id |= 0x4000;
3174             }
3175             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3176                                    (uint64_t)id << 32);
3177         } else if (usb) {
3178             /*
3179              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3180              * in the top 32 bits of the 64-bit LUN
3181              */
3182             unsigned usb_port = atoi(usb->port->path);
3183             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3184             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3185                                    (uint64_t)id << 32);
3186         }
3187     }
3188 
3189     /*
3190      * SLOF probes the USB devices, and if it recognizes that the device is a
3191      * storage device, it changes its name to "storage" instead of "usb-host",
3192      * and additionally adds a child node for the SCSI LUN, so the correct
3193      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3194      */
3195     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3196         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3197         if (usb_device_is_scsi_storage(usbdev)) {
3198             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3199         }
3200     }
3201 
3202     if (phb) {
3203         /* Replace "pci" with "pci@800000020000000" */
3204         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3205     }
3206 
3207     if (vsc) {
3208         /* Same logic as virtio above */
3209         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3210         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3211     }
3212 
3213     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3214         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3215         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3216         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3217     }
3218 
3219     if (pcidev) {
3220         return spapr_pci_fw_dev_name(pcidev);
3221     }
3222 
3223     return NULL;
3224 }
3225 
3226 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3227 {
3228     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3229 
3230     return g_strdup(spapr->kvm_type);
3231 }
3232 
3233 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3234 {
3235     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3236 
3237     g_free(spapr->kvm_type);
3238     spapr->kvm_type = g_strdup(value);
3239 }
3240 
3241 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3242 {
3243     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3244 
3245     return spapr->use_hotplug_event_source;
3246 }
3247 
3248 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3249                                             Error **errp)
3250 {
3251     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3252 
3253     spapr->use_hotplug_event_source = value;
3254 }
3255 
3256 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3257 {
3258     return true;
3259 }
3260 
3261 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3262 {
3263     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264 
3265     switch (spapr->resize_hpt) {
3266     case SPAPR_RESIZE_HPT_DEFAULT:
3267         return g_strdup("default");
3268     case SPAPR_RESIZE_HPT_DISABLED:
3269         return g_strdup("disabled");
3270     case SPAPR_RESIZE_HPT_ENABLED:
3271         return g_strdup("enabled");
3272     case SPAPR_RESIZE_HPT_REQUIRED:
3273         return g_strdup("required");
3274     }
3275     g_assert_not_reached();
3276 }
3277 
3278 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3279 {
3280     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3281 
3282     if (strcmp(value, "default") == 0) {
3283         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3284     } else if (strcmp(value, "disabled") == 0) {
3285         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3286     } else if (strcmp(value, "enabled") == 0) {
3287         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3288     } else if (strcmp(value, "required") == 0) {
3289         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3290     } else {
3291         error_setg(errp, "Bad value for \"resize-hpt\" property");
3292     }
3293 }
3294 
3295 static bool spapr_get_vof(Object *obj, Error **errp)
3296 {
3297     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3298 
3299     return spapr->vof != NULL;
3300 }
3301 
3302 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3303 {
3304     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3305 
3306     if (spapr->vof) {
3307         vof_cleanup(spapr->vof);
3308         g_free(spapr->vof);
3309         spapr->vof = NULL;
3310     }
3311     if (!value) {
3312         return;
3313     }
3314     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3315 }
3316 
3317 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3318 {
3319     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3320 
3321     if (spapr->irq == &spapr_irq_xics_legacy) {
3322         return g_strdup("legacy");
3323     } else if (spapr->irq == &spapr_irq_xics) {
3324         return g_strdup("xics");
3325     } else if (spapr->irq == &spapr_irq_xive) {
3326         return g_strdup("xive");
3327     } else if (spapr->irq == &spapr_irq_dual) {
3328         return g_strdup("dual");
3329     }
3330     g_assert_not_reached();
3331 }
3332 
3333 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3334 {
3335     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3336 
3337     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3338         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3339         return;
3340     }
3341 
3342     /* The legacy IRQ backend can not be set */
3343     if (strcmp(value, "xics") == 0) {
3344         spapr->irq = &spapr_irq_xics;
3345     } else if (strcmp(value, "xive") == 0) {
3346         spapr->irq = &spapr_irq_xive;
3347     } else if (strcmp(value, "dual") == 0) {
3348         spapr->irq = &spapr_irq_dual;
3349     } else {
3350         error_setg(errp, "Bad value for \"ic-mode\" property");
3351     }
3352 }
3353 
3354 static char *spapr_get_host_model(Object *obj, Error **errp)
3355 {
3356     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3357 
3358     return g_strdup(spapr->host_model);
3359 }
3360 
3361 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3362 {
3363     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3364 
3365     g_free(spapr->host_model);
3366     spapr->host_model = g_strdup(value);
3367 }
3368 
3369 static char *spapr_get_host_serial(Object *obj, Error **errp)
3370 {
3371     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3372 
3373     return g_strdup(spapr->host_serial);
3374 }
3375 
3376 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3377 {
3378     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3379 
3380     g_free(spapr->host_serial);
3381     spapr->host_serial = g_strdup(value);
3382 }
3383 
3384 static void spapr_instance_init(Object *obj)
3385 {
3386     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3387     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3388     MachineState *ms = MACHINE(spapr);
3389     MachineClass *mc = MACHINE_GET_CLASS(ms);
3390 
3391     /*
3392      * NVDIMM support went live in 5.1 without considering that, in
3393      * other archs, the user needs to enable NVDIMM support with the
3394      * 'nvdimm' machine option and the default behavior is NVDIMM
3395      * support disabled. It is too late to roll back to the standard
3396      * behavior without breaking 5.1 guests.
3397      */
3398     if (mc->nvdimm_supported) {
3399         ms->nvdimms_state->is_enabled = true;
3400     }
3401 
3402     spapr->htab_fd = -1;
3403     spapr->use_hotplug_event_source = true;
3404     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3405     object_property_add_str(obj, "kvm-type",
3406                             spapr_get_kvm_type, spapr_set_kvm_type);
3407     object_property_set_description(obj, "kvm-type",
3408                                     "Specifies the KVM virtualization mode (auto,"
3409                                     " hv, pr). Defaults to 'auto'. This mode will use"
3410                                     " any available KVM module loaded in the host,"
3411                                     " where kvm_hv takes precedence if both kvm_hv and"
3412                                     " kvm_pr are loaded.");
3413     object_property_add_bool(obj, "modern-hotplug-events",
3414                             spapr_get_modern_hotplug_events,
3415                             spapr_set_modern_hotplug_events);
3416     object_property_set_description(obj, "modern-hotplug-events",
3417                                     "Use dedicated hotplug event mechanism in"
3418                                     " place of standard EPOW events when possible"
3419                                     " (required for memory hot-unplug support)");
3420     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3421                             "Maximum permitted CPU compatibility mode");
3422 
3423     object_property_add_str(obj, "resize-hpt",
3424                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3425     object_property_set_description(obj, "resize-hpt",
3426                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3427     object_property_add_uint32_ptr(obj, "vsmt",
3428                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3429     object_property_set_description(obj, "vsmt",
3430                                     "Virtual SMT: KVM behaves as if this were"
3431                                     " the host's SMT mode");
3432 
3433     object_property_add_bool(obj, "vfio-no-msix-emulation",
3434                              spapr_get_msix_emulation, NULL);
3435 
3436     object_property_add_uint64_ptr(obj, "kernel-addr",
3437                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3438     object_property_set_description(obj, "kernel-addr",
3439                                     stringify(KERNEL_LOAD_ADDR)
3440                                     " for -kernel is the default");
3441     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3442 
3443     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3444     object_property_set_description(obj, "x-vof",
3445                                     "Enable Virtual Open Firmware (experimental)");
3446 
3447     /* The machine class defines the default interrupt controller mode */
3448     spapr->irq = smc->irq;
3449     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3450                             spapr_set_ic_mode);
3451     object_property_set_description(obj, "ic-mode",
3452                  "Specifies the interrupt controller mode (xics, xive, dual)");
3453 
3454     object_property_add_str(obj, "host-model",
3455         spapr_get_host_model, spapr_set_host_model);
3456     object_property_set_description(obj, "host-model",
3457         "Host model to advertise in guest device tree");
3458     object_property_add_str(obj, "host-serial",
3459         spapr_get_host_serial, spapr_set_host_serial);
3460     object_property_set_description(obj, "host-serial",
3461         "Host serial number to advertise in guest device tree");
3462 }
3463 
3464 static void spapr_machine_finalizefn(Object *obj)
3465 {
3466     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3467 
3468     g_free(spapr->kvm_type);
3469 }
3470 
3471 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3472 {
3473     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3474     PowerPCCPU *cpu = POWERPC_CPU(cs);
3475     CPUPPCState *env = &cpu->env;
3476 
3477     cpu_synchronize_state(cs);
3478     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3479     if (spapr->fwnmi_system_reset_addr != -1) {
3480         uint64_t rtas_addr, addr;
3481 
3482         /* get rtas addr from fdt */
3483         rtas_addr = spapr_get_rtas_addr();
3484         if (!rtas_addr) {
3485             qemu_system_guest_panicked(NULL);
3486             return;
3487         }
3488 
3489         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3490         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3491         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3492         env->gpr[3] = addr;
3493     }
3494     ppc_cpu_do_system_reset(cs);
3495     if (spapr->fwnmi_system_reset_addr != -1) {
3496         env->nip = spapr->fwnmi_system_reset_addr;
3497     }
3498 }
3499 
3500 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3501 {
3502     CPUState *cs;
3503 
3504     CPU_FOREACH(cs) {
3505         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3506     }
3507 }
3508 
3509 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3510                           void *fdt, int *fdt_start_offset, Error **errp)
3511 {
3512     uint64_t addr;
3513     uint32_t node;
3514 
3515     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3516     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3517                                     &error_abort);
3518     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3519                                              SPAPR_MEMORY_BLOCK_SIZE);
3520     return 0;
3521 }
3522 
3523 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3524                            bool dedicated_hp_event_source)
3525 {
3526     SpaprDrc *drc;
3527     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3528     int i;
3529     uint64_t addr = addr_start;
3530     bool hotplugged = spapr_drc_hotplugged(dev);
3531 
3532     for (i = 0; i < nr_lmbs; i++) {
3533         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3534                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3535         g_assert(drc);
3536 
3537         /*
3538          * memory_device_get_free_addr() provided a range of free addresses
3539          * that doesn't overlap with any existing mapping at pre-plug. The
3540          * corresponding LMB DRCs are thus assumed to be all attachable.
3541          */
3542         spapr_drc_attach(drc, dev);
3543         if (!hotplugged) {
3544             spapr_drc_reset(drc);
3545         }
3546         addr += SPAPR_MEMORY_BLOCK_SIZE;
3547     }
3548     /* send hotplug notification to the
3549      * guest only in case of hotplugged memory
3550      */
3551     if (hotplugged) {
3552         if (dedicated_hp_event_source) {
3553             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3554                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3555             g_assert(drc);
3556             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3557                                                    nr_lmbs,
3558                                                    spapr_drc_index(drc));
3559         } else {
3560             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3561                                            nr_lmbs);
3562         }
3563     }
3564 }
3565 
3566 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3567 {
3568     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3569     PCDIMMDevice *dimm = PC_DIMM(dev);
3570     uint64_t size, addr;
3571     int64_t slot;
3572     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3573 
3574     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3575 
3576     pc_dimm_plug(dimm, MACHINE(ms));
3577 
3578     if (!is_nvdimm) {
3579         addr = object_property_get_uint(OBJECT(dimm),
3580                                         PC_DIMM_ADDR_PROP, &error_abort);
3581         spapr_add_lmbs(dev, addr, size,
3582                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3583     } else {
3584         slot = object_property_get_int(OBJECT(dimm),
3585                                        PC_DIMM_SLOT_PROP, &error_abort);
3586         /* We should have valid slot number at this point */
3587         g_assert(slot >= 0);
3588         spapr_add_nvdimm(dev, slot);
3589     }
3590 }
3591 
3592 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3593                                   Error **errp)
3594 {
3595     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3596     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3597     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3598     PCDIMMDevice *dimm = PC_DIMM(dev);
3599     Error *local_err = NULL;
3600     uint64_t size;
3601     Object *memdev;
3602     hwaddr pagesize;
3603 
3604     if (!smc->dr_lmb_enabled) {
3605         error_setg(errp, "Memory hotplug not supported for this machine");
3606         return;
3607     }
3608 
3609     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3610     if (local_err) {
3611         error_propagate(errp, local_err);
3612         return;
3613     }
3614 
3615     if (is_nvdimm) {
3616         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3617             return;
3618         }
3619     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3620         error_setg(errp, "Hotplugged memory size must be a multiple of "
3621                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3622         return;
3623     }
3624 
3625     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3626                                       &error_abort);
3627     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3628     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3629         return;
3630     }
3631 
3632     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3633 }
3634 
3635 struct SpaprDimmState {
3636     PCDIMMDevice *dimm;
3637     uint32_t nr_lmbs;
3638     QTAILQ_ENTRY(SpaprDimmState) next;
3639 };
3640 
3641 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3642                                                        PCDIMMDevice *dimm)
3643 {
3644     SpaprDimmState *dimm_state = NULL;
3645 
3646     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3647         if (dimm_state->dimm == dimm) {
3648             break;
3649         }
3650     }
3651     return dimm_state;
3652 }
3653 
3654 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3655                                                       uint32_t nr_lmbs,
3656                                                       PCDIMMDevice *dimm)
3657 {
3658     SpaprDimmState *ds = NULL;
3659 
3660     /*
3661      * If this request is for a DIMM whose removal had failed earlier
3662      * (due to guest's refusal to remove the LMBs), we would have this
3663      * dimm already in the pending_dimm_unplugs list. In that
3664      * case don't add again.
3665      */
3666     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3667     if (!ds) {
3668         ds = g_new0(SpaprDimmState, 1);
3669         ds->nr_lmbs = nr_lmbs;
3670         ds->dimm = dimm;
3671         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3672     }
3673     return ds;
3674 }
3675 
3676 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3677                                               SpaprDimmState *dimm_state)
3678 {
3679     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3680     g_free(dimm_state);
3681 }
3682 
3683 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3684                                                         PCDIMMDevice *dimm)
3685 {
3686     SpaprDrc *drc;
3687     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3688                                                   &error_abort);
3689     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3690     uint32_t avail_lmbs = 0;
3691     uint64_t addr_start, addr;
3692     int i;
3693 
3694     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3695                                           &error_abort);
3696 
3697     addr = addr_start;
3698     for (i = 0; i < nr_lmbs; i++) {
3699         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3700                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3701         g_assert(drc);
3702         if (drc->dev) {
3703             avail_lmbs++;
3704         }
3705         addr += SPAPR_MEMORY_BLOCK_SIZE;
3706     }
3707 
3708     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3709 }
3710 
3711 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3712 {
3713     SpaprDimmState *ds;
3714     PCDIMMDevice *dimm;
3715     SpaprDrc *drc;
3716     uint32_t nr_lmbs;
3717     uint64_t size, addr_start, addr;
3718     g_autofree char *qapi_error = NULL;
3719     int i;
3720 
3721     if (!dev) {
3722         return;
3723     }
3724 
3725     dimm = PC_DIMM(dev);
3726     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3727 
3728     /*
3729      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3730      * unplug state, but one of its DRC is marked as unplug_requested.
3731      * This is bad and weird enough to g_assert() out.
3732      */
3733     g_assert(ds);
3734 
3735     spapr_pending_dimm_unplugs_remove(spapr, ds);
3736 
3737     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3738     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3739 
3740     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3741                                           &error_abort);
3742 
3743     addr = addr_start;
3744     for (i = 0; i < nr_lmbs; i++) {
3745         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3746                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3747         g_assert(drc);
3748 
3749         drc->unplug_requested = false;
3750         addr += SPAPR_MEMORY_BLOCK_SIZE;
3751     }
3752 
3753     /*
3754      * Tell QAPI that something happened and the memory
3755      * hotunplug wasn't successful. Keep sending
3756      * MEM_UNPLUG_ERROR even while sending
3757      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3758      * MEM_UNPLUG_ERROR is due.
3759      */
3760     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3761                                  "for device %s", dev->id);
3762 
3763     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3764 
3765     qapi_event_send_device_unplug_guest_error(dev->id,
3766                                               dev->canonical_path);
3767 }
3768 
3769 /* Callback to be called during DRC release. */
3770 void spapr_lmb_release(DeviceState *dev)
3771 {
3772     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3773     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3774     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3775 
3776     /* This information will get lost if a migration occurs
3777      * during the unplug process. In this case recover it. */
3778     if (ds == NULL) {
3779         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3780         g_assert(ds);
3781         /* The DRC being examined by the caller at least must be counted */
3782         g_assert(ds->nr_lmbs);
3783     }
3784 
3785     if (--ds->nr_lmbs) {
3786         return;
3787     }
3788 
3789     /*
3790      * Now that all the LMBs have been removed by the guest, call the
3791      * unplug handler chain. This can never fail.
3792      */
3793     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3794     object_unparent(OBJECT(dev));
3795 }
3796 
3797 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3798 {
3799     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3800     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3801 
3802     /* We really shouldn't get this far without anything to unplug */
3803     g_assert(ds);
3804 
3805     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3806     qdev_unrealize(dev);
3807     spapr_pending_dimm_unplugs_remove(spapr, ds);
3808 }
3809 
3810 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3811                                         DeviceState *dev, Error **errp)
3812 {
3813     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3814     PCDIMMDevice *dimm = PC_DIMM(dev);
3815     uint32_t nr_lmbs;
3816     uint64_t size, addr_start, addr;
3817     int i;
3818     SpaprDrc *drc;
3819 
3820     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3821         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3822         return;
3823     }
3824 
3825     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3826     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3827 
3828     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3829                                           &error_abort);
3830 
3831     /*
3832      * An existing pending dimm state for this DIMM means that there is an
3833      * unplug operation in progress, waiting for the spapr_lmb_release
3834      * callback to complete the job (BQL can't cover that far). In this case,
3835      * bail out to avoid detaching DRCs that were already released.
3836      */
3837     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3838         error_setg(errp, "Memory unplug already in progress for device %s",
3839                    dev->id);
3840         return;
3841     }
3842 
3843     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3844 
3845     addr = addr_start;
3846     for (i = 0; i < nr_lmbs; i++) {
3847         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3848                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3849         g_assert(drc);
3850 
3851         spapr_drc_unplug_request(drc);
3852         addr += SPAPR_MEMORY_BLOCK_SIZE;
3853     }
3854 
3855     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3856                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3857     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3858                                               nr_lmbs, spapr_drc_index(drc));
3859 }
3860 
3861 /* Callback to be called during DRC release. */
3862 void spapr_core_release(DeviceState *dev)
3863 {
3864     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3865 
3866     /* Call the unplug handler chain. This can never fail. */
3867     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3868     object_unparent(OBJECT(dev));
3869 }
3870 
3871 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3872 {
3873     MachineState *ms = MACHINE(hotplug_dev);
3874     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3875     CPUCore *cc = CPU_CORE(dev);
3876     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3877 
3878     if (smc->pre_2_10_has_unused_icps) {
3879         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3880         int i;
3881 
3882         for (i = 0; i < cc->nr_threads; i++) {
3883             CPUState *cs = CPU(sc->threads[i]);
3884 
3885             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3886         }
3887     }
3888 
3889     assert(core_slot);
3890     core_slot->cpu = NULL;
3891     qdev_unrealize(dev);
3892 }
3893 
3894 static
3895 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3896                                Error **errp)
3897 {
3898     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3899     int index;
3900     SpaprDrc *drc;
3901     CPUCore *cc = CPU_CORE(dev);
3902 
3903     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3904         error_setg(errp, "Unable to find CPU core with core-id: %d",
3905                    cc->core_id);
3906         return;
3907     }
3908     if (index == 0) {
3909         error_setg(errp, "Boot CPU core may not be unplugged");
3910         return;
3911     }
3912 
3913     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3914                           spapr_vcpu_id(spapr, cc->core_id));
3915     g_assert(drc);
3916 
3917     if (!spapr_drc_unplug_requested(drc)) {
3918         spapr_drc_unplug_request(drc);
3919     }
3920 
3921     /*
3922      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3923      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3924      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3925      * attempt (e.g. the kernel will refuse to remove the last online
3926      * CPU), we will never attempt it again because unplug_requested
3927      * will still be 'true' in that case.
3928      */
3929     spapr_hotplug_req_remove_by_index(drc);
3930 }
3931 
3932 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3933                            void *fdt, int *fdt_start_offset, Error **errp)
3934 {
3935     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3936     CPUState *cs = CPU(core->threads[0]);
3937     PowerPCCPU *cpu = POWERPC_CPU(cs);
3938     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3939     int id = spapr_get_vcpu_id(cpu);
3940     g_autofree char *nodename = NULL;
3941     int offset;
3942 
3943     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3944     offset = fdt_add_subnode(fdt, 0, nodename);
3945 
3946     spapr_dt_cpu(cs, fdt, offset, spapr);
3947 
3948     /*
3949      * spapr_dt_cpu() does not fill the 'name' property in the
3950      * CPU node. The function is called during boot process, before
3951      * and after CAS, and overwriting the 'name' property written
3952      * by SLOF is not allowed.
3953      *
3954      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3955      * CPUs more compatible with the coldplugged ones, which have
3956      * the 'name' property. Linux Kernel also relies on this
3957      * property to identify CPU nodes.
3958      */
3959     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3960 
3961     *fdt_start_offset = offset;
3962     return 0;
3963 }
3964 
3965 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3966 {
3967     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3968     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3969     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3970     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3971     CPUCore *cc = CPU_CORE(dev);
3972     CPUState *cs;
3973     SpaprDrc *drc;
3974     CPUArchId *core_slot;
3975     int index;
3976     bool hotplugged = spapr_drc_hotplugged(dev);
3977     int i;
3978 
3979     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3980     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3981 
3982     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3983                           spapr_vcpu_id(spapr, cc->core_id));
3984 
3985     g_assert(drc || !mc->has_hotpluggable_cpus);
3986 
3987     if (drc) {
3988         /*
3989          * spapr_core_pre_plug() already buys us this is a brand new
3990          * core being plugged into a free slot. Nothing should already
3991          * be attached to the corresponding DRC.
3992          */
3993         spapr_drc_attach(drc, dev);
3994 
3995         if (hotplugged) {
3996             /*
3997              * Send hotplug notification interrupt to the guest only
3998              * in case of hotplugged CPUs.
3999              */
4000             spapr_hotplug_req_add_by_index(drc);
4001         } else {
4002             spapr_drc_reset(drc);
4003         }
4004     }
4005 
4006     core_slot->cpu = OBJECT(dev);
4007 
4008     /*
4009      * Set compatibility mode to match the boot CPU, which was either set
4010      * by the machine reset code or by CAS. This really shouldn't fail at
4011      * this point.
4012      */
4013     if (hotplugged) {
4014         for (i = 0; i < cc->nr_threads; i++) {
4015             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4016                            &error_abort);
4017         }
4018     }
4019 
4020     if (smc->pre_2_10_has_unused_icps) {
4021         for (i = 0; i < cc->nr_threads; i++) {
4022             cs = CPU(core->threads[i]);
4023             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4024         }
4025     }
4026 }
4027 
4028 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4029                                 Error **errp)
4030 {
4031     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4032     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4033     CPUCore *cc = CPU_CORE(dev);
4034     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4035     const char *type = object_get_typename(OBJECT(dev));
4036     CPUArchId *core_slot;
4037     int index;
4038     unsigned int smp_threads = machine->smp.threads;
4039 
4040     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4041         error_setg(errp, "CPU hotplug not supported for this machine");
4042         return;
4043     }
4044 
4045     if (strcmp(base_core_type, type)) {
4046         error_setg(errp, "CPU core type should be %s", base_core_type);
4047         return;
4048     }
4049 
4050     if (cc->core_id % smp_threads) {
4051         error_setg(errp, "invalid core id %d", cc->core_id);
4052         return;
4053     }
4054 
4055     /*
4056      * In general we should have homogeneous threads-per-core, but old
4057      * (pre hotplug support) machine types allow the last core to have
4058      * reduced threads as a compatibility hack for when we allowed
4059      * total vcpus not a multiple of threads-per-core.
4060      */
4061     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4062         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4063                    smp_threads);
4064         return;
4065     }
4066 
4067     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4068     if (!core_slot) {
4069         error_setg(errp, "core id %d out of range", cc->core_id);
4070         return;
4071     }
4072 
4073     if (core_slot->cpu) {
4074         error_setg(errp, "core %d already populated", cc->core_id);
4075         return;
4076     }
4077 
4078     numa_cpu_pre_plug(core_slot, dev, errp);
4079 }
4080 
4081 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4082                           void *fdt, int *fdt_start_offset, Error **errp)
4083 {
4084     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4085     int intc_phandle;
4086 
4087     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4088     if (intc_phandle <= 0) {
4089         return -1;
4090     }
4091 
4092     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4093         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4094         return -1;
4095     }
4096 
4097     /* generally SLOF creates these, for hotplug it's up to QEMU */
4098     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4099 
4100     return 0;
4101 }
4102 
4103 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4104                                Error **errp)
4105 {
4106     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4107     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4108     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4109     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4110     SpaprDrc *drc;
4111 
4112     if (dev->hotplugged && !smc->dr_phb_enabled) {
4113         error_setg(errp, "PHB hotplug not supported for this machine");
4114         return false;
4115     }
4116 
4117     if (sphb->index == (uint32_t)-1) {
4118         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4119         return false;
4120     }
4121 
4122     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4123     if (drc && drc->dev) {
4124         error_setg(errp, "PHB %d already attached", sphb->index);
4125         return false;
4126     }
4127 
4128     /*
4129      * This will check that sphb->index doesn't exceed the maximum number of
4130      * PHBs for the current machine type.
4131      */
4132     return
4133         smc->phb_placement(spapr, sphb->index,
4134                            &sphb->buid, &sphb->io_win_addr,
4135                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4136                            windows_supported, sphb->dma_liobn,
4137                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4138                            errp);
4139 }
4140 
4141 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4142 {
4143     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4144     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4145     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4146     SpaprDrc *drc;
4147     bool hotplugged = spapr_drc_hotplugged(dev);
4148 
4149     if (!smc->dr_phb_enabled) {
4150         return;
4151     }
4152 
4153     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4154     /* hotplug hooks should check it's enabled before getting this far */
4155     assert(drc);
4156 
4157     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4158     spapr_drc_attach(drc, dev);
4159 
4160     if (hotplugged) {
4161         spapr_hotplug_req_add_by_index(drc);
4162     } else {
4163         spapr_drc_reset(drc);
4164     }
4165 }
4166 
4167 void spapr_phb_release(DeviceState *dev)
4168 {
4169     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4170 
4171     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4172     object_unparent(OBJECT(dev));
4173 }
4174 
4175 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4176 {
4177     qdev_unrealize(dev);
4178 }
4179 
4180 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4181                                      DeviceState *dev, Error **errp)
4182 {
4183     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4184     SpaprDrc *drc;
4185 
4186     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4187     assert(drc);
4188 
4189     if (!spapr_drc_unplug_requested(drc)) {
4190         spapr_drc_unplug_request(drc);
4191         spapr_hotplug_req_remove_by_index(drc);
4192     } else {
4193         error_setg(errp,
4194                    "PCI Host Bridge unplug already in progress for device %s",
4195                    dev->id);
4196     }
4197 }
4198 
4199 static
4200 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4201                               Error **errp)
4202 {
4203     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4204 
4205     if (spapr->tpm_proxy != NULL) {
4206         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4207         return false;
4208     }
4209 
4210     return true;
4211 }
4212 
4213 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4214 {
4215     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4216     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4217 
4218     /* Already checked in spapr_tpm_proxy_pre_plug() */
4219     g_assert(spapr->tpm_proxy == NULL);
4220 
4221     spapr->tpm_proxy = tpm_proxy;
4222 }
4223 
4224 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4225 {
4226     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4227 
4228     qdev_unrealize(dev);
4229     object_unparent(OBJECT(dev));
4230     spapr->tpm_proxy = NULL;
4231 }
4232 
4233 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4234                                       DeviceState *dev, Error **errp)
4235 {
4236     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4237         spapr_memory_plug(hotplug_dev, dev);
4238     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4239         spapr_core_plug(hotplug_dev, dev);
4240     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4241         spapr_phb_plug(hotplug_dev, dev);
4242     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4243         spapr_tpm_proxy_plug(hotplug_dev, dev);
4244     }
4245 }
4246 
4247 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4248                                         DeviceState *dev, Error **errp)
4249 {
4250     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4251         spapr_memory_unplug(hotplug_dev, dev);
4252     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4253         spapr_core_unplug(hotplug_dev, dev);
4254     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4255         spapr_phb_unplug(hotplug_dev, dev);
4256     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4257         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4258     }
4259 }
4260 
4261 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4262 {
4263     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4264         /*
4265          * CAS will process all pending unplug requests.
4266          *
4267          * HACK: a guest could theoretically have cleared all bits in OV5,
4268          * but none of the guests we care for do.
4269          */
4270         spapr_ovec_empty(spapr->ov5_cas);
4271 }
4272 
4273 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4274                                                 DeviceState *dev, Error **errp)
4275 {
4276     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4277     MachineClass *mc = MACHINE_GET_CLASS(sms);
4278     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4279 
4280     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4281         if (spapr_memory_hot_unplug_supported(sms)) {
4282             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4283         } else {
4284             error_setg(errp, "Memory hot unplug not supported for this guest");
4285         }
4286     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4287         if (!mc->has_hotpluggable_cpus) {
4288             error_setg(errp, "CPU hot unplug not supported on this machine");
4289             return;
4290         }
4291         spapr_core_unplug_request(hotplug_dev, dev, errp);
4292     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4293         if (!smc->dr_phb_enabled) {
4294             error_setg(errp, "PHB hot unplug not supported on this machine");
4295             return;
4296         }
4297         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4298     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4299         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4300     }
4301 }
4302 
4303 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4304                                           DeviceState *dev, Error **errp)
4305 {
4306     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4307         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4308     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4309         spapr_core_pre_plug(hotplug_dev, dev, errp);
4310     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4311         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4312     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4313         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4314     }
4315 }
4316 
4317 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4318                                                  DeviceState *dev)
4319 {
4320     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4321         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4322         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4323         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4324         return HOTPLUG_HANDLER(machine);
4325     }
4326     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4327         PCIDevice *pcidev = PCI_DEVICE(dev);
4328         PCIBus *root = pci_device_root_bus(pcidev);
4329         SpaprPhbState *phb =
4330             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4331                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4332 
4333         if (phb) {
4334             return HOTPLUG_HANDLER(phb);
4335         }
4336     }
4337     return NULL;
4338 }
4339 
4340 static CpuInstanceProperties
4341 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4342 {
4343     CPUArchId *core_slot;
4344     MachineClass *mc = MACHINE_GET_CLASS(machine);
4345 
4346     /* make sure possible_cpu are intialized */
4347     mc->possible_cpu_arch_ids(machine);
4348     /* get CPU core slot containing thread that matches cpu_index */
4349     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4350     assert(core_slot);
4351     return core_slot->props;
4352 }
4353 
4354 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4355 {
4356     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4357 }
4358 
4359 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4360 {
4361     int i;
4362     unsigned int smp_threads = machine->smp.threads;
4363     unsigned int smp_cpus = machine->smp.cpus;
4364     const char *core_type;
4365     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4366     MachineClass *mc = MACHINE_GET_CLASS(machine);
4367 
4368     if (!mc->has_hotpluggable_cpus) {
4369         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4370     }
4371     if (machine->possible_cpus) {
4372         assert(machine->possible_cpus->len == spapr_max_cores);
4373         return machine->possible_cpus;
4374     }
4375 
4376     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4377     if (!core_type) {
4378         error_report("Unable to find sPAPR CPU Core definition");
4379         exit(1);
4380     }
4381 
4382     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4383                              sizeof(CPUArchId) * spapr_max_cores);
4384     machine->possible_cpus->len = spapr_max_cores;
4385     for (i = 0; i < machine->possible_cpus->len; i++) {
4386         int core_id = i * smp_threads;
4387 
4388         machine->possible_cpus->cpus[i].type = core_type;
4389         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4390         machine->possible_cpus->cpus[i].arch_id = core_id;
4391         machine->possible_cpus->cpus[i].props.has_core_id = true;
4392         machine->possible_cpus->cpus[i].props.core_id = core_id;
4393     }
4394     return machine->possible_cpus;
4395 }
4396 
4397 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4398                                 uint64_t *buid, hwaddr *pio,
4399                                 hwaddr *mmio32, hwaddr *mmio64,
4400                                 unsigned n_dma, uint32_t *liobns,
4401                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4402 {
4403     /*
4404      * New-style PHB window placement.
4405      *
4406      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4407      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4408      * windows.
4409      *
4410      * Some guest kernels can't work with MMIO windows above 1<<46
4411      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4412      *
4413      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4414      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4415      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4416      * 1TiB 64-bit MMIO windows for each PHB.
4417      */
4418     const uint64_t base_buid = 0x800000020000000ULL;
4419     int i;
4420 
4421     /* Sanity check natural alignments */
4422     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4423     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4424     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4425     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4426     /* Sanity check bounds */
4427     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4428                       SPAPR_PCI_MEM32_WIN_SIZE);
4429     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4430                       SPAPR_PCI_MEM64_WIN_SIZE);
4431 
4432     if (index >= SPAPR_MAX_PHBS) {
4433         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4434                    SPAPR_MAX_PHBS - 1);
4435         return false;
4436     }
4437 
4438     *buid = base_buid + index;
4439     for (i = 0; i < n_dma; ++i) {
4440         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4441     }
4442 
4443     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4444     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4445     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4446 
4447     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4448     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4449     return true;
4450 }
4451 
4452 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4453 {
4454     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4455 
4456     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4457 }
4458 
4459 static void spapr_ics_resend(XICSFabric *dev)
4460 {
4461     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4462 
4463     ics_resend(spapr->ics);
4464 }
4465 
4466 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4467 {
4468     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4469 
4470     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4471 }
4472 
4473 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4474                                  Monitor *mon)
4475 {
4476     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4477 
4478     spapr_irq_print_info(spapr, mon);
4479     monitor_printf(mon, "irqchip: %s\n",
4480                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4481 }
4482 
4483 /*
4484  * This is a XIVE only operation
4485  */
4486 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4487                            uint8_t nvt_blk, uint32_t nvt_idx,
4488                            bool cam_ignore, uint8_t priority,
4489                            uint32_t logic_serv, XiveTCTXMatch *match)
4490 {
4491     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4492     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4493     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4494     int count;
4495 
4496     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4497                            priority, logic_serv, match);
4498     if (count < 0) {
4499         return count;
4500     }
4501 
4502     /*
4503      * When we implement the save and restore of the thread interrupt
4504      * contexts in the enter/exit CPU handlers of the machine and the
4505      * escalations in QEMU, we should be able to handle non dispatched
4506      * vCPUs.
4507      *
4508      * Until this is done, the sPAPR machine should find at least one
4509      * matching context always.
4510      */
4511     if (count == 0) {
4512         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4513                       nvt_blk, nvt_idx);
4514     }
4515 
4516     return count;
4517 }
4518 
4519 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4520 {
4521     return cpu->vcpu_id;
4522 }
4523 
4524 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4525 {
4526     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4527     MachineState *ms = MACHINE(spapr);
4528     int vcpu_id;
4529 
4530     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4531 
4532     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4533         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4534         error_append_hint(errp, "Adjust the number of cpus to %d "
4535                           "or try to raise the number of threads per core\n",
4536                           vcpu_id * ms->smp.threads / spapr->vsmt);
4537         return false;
4538     }
4539 
4540     cpu->vcpu_id = vcpu_id;
4541     return true;
4542 }
4543 
4544 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4545 {
4546     CPUState *cs;
4547 
4548     CPU_FOREACH(cs) {
4549         PowerPCCPU *cpu = POWERPC_CPU(cs);
4550 
4551         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4552             return cpu;
4553         }
4554     }
4555 
4556     return NULL;
4557 }
4558 
4559 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4560 {
4561     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4562 
4563     return spapr_cpu->in_nested;
4564 }
4565 
4566 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4567 {
4568     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4569 
4570     /* These are only called by TCG, KVM maintains dispatch state */
4571 
4572     spapr_cpu->prod = false;
4573     if (spapr_cpu->vpa_addr) {
4574         CPUState *cs = CPU(cpu);
4575         uint32_t dispatch;
4576 
4577         dispatch = ldl_be_phys(cs->as,
4578                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4579         dispatch++;
4580         if ((dispatch & 1) != 0) {
4581             qemu_log_mask(LOG_GUEST_ERROR,
4582                           "VPA: incorrect dispatch counter value for "
4583                           "dispatched partition %u, correcting.\n", dispatch);
4584             dispatch++;
4585         }
4586         stl_be_phys(cs->as,
4587                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4588     }
4589 }
4590 
4591 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4592 {
4593     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4594 
4595     if (spapr_cpu->vpa_addr) {
4596         CPUState *cs = CPU(cpu);
4597         uint32_t dispatch;
4598 
4599         dispatch = ldl_be_phys(cs->as,
4600                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4601         dispatch++;
4602         if ((dispatch & 1) != 1) {
4603             qemu_log_mask(LOG_GUEST_ERROR,
4604                           "VPA: incorrect dispatch counter value for "
4605                           "preempted partition %u, correcting.\n", dispatch);
4606             dispatch++;
4607         }
4608         stl_be_phys(cs->as,
4609                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4610     }
4611 }
4612 
4613 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4614 {
4615     MachineClass *mc = MACHINE_CLASS(oc);
4616     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4617     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4618     NMIClass *nc = NMI_CLASS(oc);
4619     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4620     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4621     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4622     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4623     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4624     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4625 
4626     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4627     mc->ignore_boot_device_suffixes = true;
4628 
4629     /*
4630      * We set up the default / latest behaviour here.  The class_init
4631      * functions for the specific versioned machine types can override
4632      * these details for backwards compatibility
4633      */
4634     mc->init = spapr_machine_init;
4635     mc->reset = spapr_machine_reset;
4636     mc->block_default_type = IF_SCSI;
4637 
4638     /*
4639      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4640      * should be limited by the host capability instead of hardcoded.
4641      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4642      * guests are welcome to have as many CPUs as the host are capable
4643      * of emulate.
4644      */
4645     mc->max_cpus = INT32_MAX;
4646 
4647     mc->no_parallel = 1;
4648     mc->default_boot_order = "";
4649     mc->default_ram_size = 512 * MiB;
4650     mc->default_ram_id = "ppc_spapr.ram";
4651     mc->default_display = "std";
4652     mc->kvm_type = spapr_kvm_type;
4653     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4654     mc->pci_allow_0_address = true;
4655     assert(!mc->get_hotplug_handler);
4656     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4657     hc->pre_plug = spapr_machine_device_pre_plug;
4658     hc->plug = spapr_machine_device_plug;
4659     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4660     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4661     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4662     hc->unplug_request = spapr_machine_device_unplug_request;
4663     hc->unplug = spapr_machine_device_unplug;
4664 
4665     smc->dr_lmb_enabled = true;
4666     smc->update_dt_enabled = true;
4667     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4668     mc->has_hotpluggable_cpus = true;
4669     mc->nvdimm_supported = true;
4670     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4671     fwc->get_dev_path = spapr_get_fw_dev_path;
4672     nc->nmi_monitor_handler = spapr_nmi;
4673     smc->phb_placement = spapr_phb_placement;
4674     vhc->cpu_in_nested = spapr_cpu_in_nested;
4675     vhc->deliver_hv_excp = spapr_exit_nested;
4676     vhc->hypercall = emulate_spapr_hypercall;
4677     vhc->hpt_mask = spapr_hpt_mask;
4678     vhc->map_hptes = spapr_map_hptes;
4679     vhc->unmap_hptes = spapr_unmap_hptes;
4680     vhc->hpte_set_c = spapr_hpte_set_c;
4681     vhc->hpte_set_r = spapr_hpte_set_r;
4682     vhc->get_pate = spapr_get_pate;
4683     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4684     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4685     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4686     xic->ics_get = spapr_ics_get;
4687     xic->ics_resend = spapr_ics_resend;
4688     xic->icp_get = spapr_icp_get;
4689     ispc->print_info = spapr_pic_print_info;
4690     /* Force NUMA node memory size to be a multiple of
4691      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4692      * in which LMBs are represented and hot-added
4693      */
4694     mc->numa_mem_align_shift = 28;
4695     mc->auto_enable_numa = true;
4696 
4697     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4698     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4699     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4700     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4701     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4702     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4703     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4704     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4705     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4706     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4707     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4708     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4709 
4710     /*
4711      * This cap specifies whether the AIL 3 mode for
4712      * H_SET_RESOURCE is supported. The default is modified
4713      * by default_caps_with_cpu().
4714      */
4715     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4716     spapr_caps_add_properties(smc);
4717     smc->irq = &spapr_irq_dual;
4718     smc->dr_phb_enabled = true;
4719     smc->linux_pci_probe = true;
4720     smc->smp_threads_vsmt = true;
4721     smc->nr_xirqs = SPAPR_NR_XIRQS;
4722     xfc->match_nvt = spapr_match_nvt;
4723     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4724     vmc->quiesce = spapr_vof_quiesce;
4725     vmc->setprop = spapr_vof_setprop;
4726 }
4727 
4728 static const TypeInfo spapr_machine_info = {
4729     .name          = TYPE_SPAPR_MACHINE,
4730     .parent        = TYPE_MACHINE,
4731     .abstract      = true,
4732     .instance_size = sizeof(SpaprMachineState),
4733     .instance_init = spapr_instance_init,
4734     .instance_finalize = spapr_machine_finalizefn,
4735     .class_size    = sizeof(SpaprMachineClass),
4736     .class_init    = spapr_machine_class_init,
4737     .interfaces = (InterfaceInfo[]) {
4738         { TYPE_FW_PATH_PROVIDER },
4739         { TYPE_NMI },
4740         { TYPE_HOTPLUG_HANDLER },
4741         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4742         { TYPE_XICS_FABRIC },
4743         { TYPE_INTERRUPT_STATS_PROVIDER },
4744         { TYPE_XIVE_FABRIC },
4745         { TYPE_VOF_MACHINE_IF },
4746         { }
4747     },
4748 };
4749 
4750 static void spapr_machine_latest_class_options(MachineClass *mc)
4751 {
4752     mc->alias = "pseries";
4753     mc->is_default = true;
4754 }
4755 
4756 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4757     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4758                                                     void *data)      \
4759     {                                                                \
4760         MachineClass *mc = MACHINE_CLASS(oc);                        \
4761         spapr_machine_##suffix##_class_options(mc);                  \
4762         if (latest) {                                                \
4763             spapr_machine_latest_class_options(mc);                  \
4764         }                                                            \
4765     }                                                                \
4766     static const TypeInfo spapr_machine_##suffix##_info = {          \
4767         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4768         .parent = TYPE_SPAPR_MACHINE,                                \
4769         .class_init = spapr_machine_##suffix##_class_init,           \
4770     };                                                               \
4771     static void spapr_machine_register_##suffix(void)                \
4772     {                                                                \
4773         type_register(&spapr_machine_##suffix##_info);               \
4774     }                                                                \
4775     type_init(spapr_machine_register_##suffix)
4776 
4777 /*
4778  * pseries-8.2
4779  */
4780 static void spapr_machine_8_2_class_options(MachineClass *mc)
4781 {
4782     /* Defaults for the latest behaviour inherited from the base class */
4783 }
4784 
4785 DEFINE_SPAPR_MACHINE(8_2, "8.2", true);
4786 
4787 /*
4788  * pseries-8.1
4789  */
4790 static void spapr_machine_8_1_class_options(MachineClass *mc)
4791 {
4792     spapr_machine_8_2_class_options(mc);
4793     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4794 }
4795 
4796 DEFINE_SPAPR_MACHINE(8_1, "8.1", false);
4797 
4798 /*
4799  * pseries-8.0
4800  */
4801 static void spapr_machine_8_0_class_options(MachineClass *mc)
4802 {
4803     spapr_machine_8_1_class_options(mc);
4804     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4805 }
4806 
4807 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4808 
4809 /*
4810  * pseries-7.2
4811  */
4812 static void spapr_machine_7_2_class_options(MachineClass *mc)
4813 {
4814     spapr_machine_8_0_class_options(mc);
4815     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4816 }
4817 
4818 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4819 
4820 /*
4821  * pseries-7.1
4822  */
4823 static void spapr_machine_7_1_class_options(MachineClass *mc)
4824 {
4825     spapr_machine_7_2_class_options(mc);
4826     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4827 }
4828 
4829 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4830 
4831 /*
4832  * pseries-7.0
4833  */
4834 static void spapr_machine_7_0_class_options(MachineClass *mc)
4835 {
4836     spapr_machine_7_1_class_options(mc);
4837     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4838 }
4839 
4840 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4841 
4842 /*
4843  * pseries-6.2
4844  */
4845 static void spapr_machine_6_2_class_options(MachineClass *mc)
4846 {
4847     spapr_machine_7_0_class_options(mc);
4848     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4849 }
4850 
4851 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4852 
4853 /*
4854  * pseries-6.1
4855  */
4856 static void spapr_machine_6_1_class_options(MachineClass *mc)
4857 {
4858     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4859 
4860     spapr_machine_6_2_class_options(mc);
4861     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4862     smc->pre_6_2_numa_affinity = true;
4863     mc->smp_props.prefer_sockets = true;
4864 }
4865 
4866 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4867 
4868 /*
4869  * pseries-6.0
4870  */
4871 static void spapr_machine_6_0_class_options(MachineClass *mc)
4872 {
4873     spapr_machine_6_1_class_options(mc);
4874     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4875 }
4876 
4877 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4878 
4879 /*
4880  * pseries-5.2
4881  */
4882 static void spapr_machine_5_2_class_options(MachineClass *mc)
4883 {
4884     spapr_machine_6_0_class_options(mc);
4885     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4886 }
4887 
4888 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4889 
4890 /*
4891  * pseries-5.1
4892  */
4893 static void spapr_machine_5_1_class_options(MachineClass *mc)
4894 {
4895     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4896 
4897     spapr_machine_5_2_class_options(mc);
4898     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4899     smc->pre_5_2_numa_associativity = true;
4900 }
4901 
4902 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4903 
4904 /*
4905  * pseries-5.0
4906  */
4907 static void spapr_machine_5_0_class_options(MachineClass *mc)
4908 {
4909     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4910     static GlobalProperty compat[] = {
4911         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4912     };
4913 
4914     spapr_machine_5_1_class_options(mc);
4915     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4916     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4917     mc->numa_mem_supported = true;
4918     smc->pre_5_1_assoc_refpoints = true;
4919 }
4920 
4921 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4922 
4923 /*
4924  * pseries-4.2
4925  */
4926 static void spapr_machine_4_2_class_options(MachineClass *mc)
4927 {
4928     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4929 
4930     spapr_machine_5_0_class_options(mc);
4931     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4932     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4933     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4934     smc->rma_limit = 16 * GiB;
4935     mc->nvdimm_supported = false;
4936 }
4937 
4938 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4939 
4940 /*
4941  * pseries-4.1
4942  */
4943 static void spapr_machine_4_1_class_options(MachineClass *mc)
4944 {
4945     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4946     static GlobalProperty compat[] = {
4947         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4948         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4949     };
4950 
4951     spapr_machine_4_2_class_options(mc);
4952     smc->linux_pci_probe = false;
4953     smc->smp_threads_vsmt = false;
4954     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4955     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4956 }
4957 
4958 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4959 
4960 /*
4961  * pseries-4.0
4962  */
4963 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4964                               uint64_t *buid, hwaddr *pio,
4965                               hwaddr *mmio32, hwaddr *mmio64,
4966                               unsigned n_dma, uint32_t *liobns,
4967                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4968 {
4969     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4970                              liobns, nv2gpa, nv2atsd, errp)) {
4971         return false;
4972     }
4973 
4974     *nv2gpa = 0;
4975     *nv2atsd = 0;
4976     return true;
4977 }
4978 static void spapr_machine_4_0_class_options(MachineClass *mc)
4979 {
4980     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4981 
4982     spapr_machine_4_1_class_options(mc);
4983     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4984     smc->phb_placement = phb_placement_4_0;
4985     smc->irq = &spapr_irq_xics;
4986     smc->pre_4_1_migration = true;
4987 }
4988 
4989 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4990 
4991 /*
4992  * pseries-3.1
4993  */
4994 static void spapr_machine_3_1_class_options(MachineClass *mc)
4995 {
4996     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4997 
4998     spapr_machine_4_0_class_options(mc);
4999     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
5000 
5001     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
5002     smc->update_dt_enabled = false;
5003     smc->dr_phb_enabled = false;
5004     smc->broken_host_serial_model = true;
5005     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
5006     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
5007     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
5008     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
5009 }
5010 
5011 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
5012 
5013 /*
5014  * pseries-3.0
5015  */
5016 
5017 static void spapr_machine_3_0_class_options(MachineClass *mc)
5018 {
5019     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5020 
5021     spapr_machine_3_1_class_options(mc);
5022     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5023 
5024     smc->legacy_irq_allocation = true;
5025     smc->nr_xirqs = 0x400;
5026     smc->irq = &spapr_irq_xics_legacy;
5027 }
5028 
5029 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
5030 
5031 /*
5032  * pseries-2.12
5033  */
5034 static void spapr_machine_2_12_class_options(MachineClass *mc)
5035 {
5036     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5037     static GlobalProperty compat[] = {
5038         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5039         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5040     };
5041 
5042     spapr_machine_3_0_class_options(mc);
5043     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5044     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5045 
5046     /* We depend on kvm_enabled() to choose a default value for the
5047      * hpt-max-page-size capability. Of course we can't do it here
5048      * because this is too early and the HW accelerator isn't initialzed
5049      * yet. Postpone this to machine init (see default_caps_with_cpu()).
5050      */
5051     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5052 }
5053 
5054 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5055 
5056 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5057 {
5058     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5059 
5060     spapr_machine_2_12_class_options(mc);
5061     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5062     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5063     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5064 }
5065 
5066 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5067 
5068 /*
5069  * pseries-2.11
5070  */
5071 
5072 static void spapr_machine_2_11_class_options(MachineClass *mc)
5073 {
5074     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5075 
5076     spapr_machine_2_12_class_options(mc);
5077     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5078     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5079 }
5080 
5081 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5082 
5083 /*
5084  * pseries-2.10
5085  */
5086 
5087 static void spapr_machine_2_10_class_options(MachineClass *mc)
5088 {
5089     spapr_machine_2_11_class_options(mc);
5090     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5091 }
5092 
5093 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5094 
5095 /*
5096  * pseries-2.9
5097  */
5098 
5099 static void spapr_machine_2_9_class_options(MachineClass *mc)
5100 {
5101     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5102     static GlobalProperty compat[] = {
5103         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5104     };
5105 
5106     spapr_machine_2_10_class_options(mc);
5107     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5108     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5109     smc->pre_2_10_has_unused_icps = true;
5110     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5111 }
5112 
5113 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5114 
5115 /*
5116  * pseries-2.8
5117  */
5118 
5119 static void spapr_machine_2_8_class_options(MachineClass *mc)
5120 {
5121     static GlobalProperty compat[] = {
5122         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5123     };
5124 
5125     spapr_machine_2_9_class_options(mc);
5126     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5127     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5128     mc->numa_mem_align_shift = 23;
5129 }
5130 
5131 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5132 
5133 /*
5134  * pseries-2.7
5135  */
5136 
5137 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5138                               uint64_t *buid, hwaddr *pio,
5139                               hwaddr *mmio32, hwaddr *mmio64,
5140                               unsigned n_dma, uint32_t *liobns,
5141                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5142 {
5143     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5144     const uint64_t base_buid = 0x800000020000000ULL;
5145     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5146     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5147     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5148     const uint32_t max_index = 255;
5149     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5150 
5151     uint64_t ram_top = MACHINE(spapr)->ram_size;
5152     hwaddr phb0_base, phb_base;
5153     int i;
5154 
5155     /* Do we have device memory? */
5156     if (MACHINE(spapr)->device_memory) {
5157         /* Can't just use maxram_size, because there may be an
5158          * alignment gap between normal and device memory regions
5159          */
5160         ram_top = MACHINE(spapr)->device_memory->base +
5161             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5162     }
5163 
5164     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5165 
5166     if (index > max_index) {
5167         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5168                    max_index);
5169         return false;
5170     }
5171 
5172     *buid = base_buid + index;
5173     for (i = 0; i < n_dma; ++i) {
5174         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5175     }
5176 
5177     phb_base = phb0_base + index * phb_spacing;
5178     *pio = phb_base + pio_offset;
5179     *mmio32 = phb_base + mmio_offset;
5180     /*
5181      * We don't set the 64-bit MMIO window, relying on the PHB's
5182      * fallback behaviour of automatically splitting a large "32-bit"
5183      * window into contiguous 32-bit and 64-bit windows
5184      */
5185 
5186     *nv2gpa = 0;
5187     *nv2atsd = 0;
5188     return true;
5189 }
5190 
5191 static void spapr_machine_2_7_class_options(MachineClass *mc)
5192 {
5193     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5194     static GlobalProperty compat[] = {
5195         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5196         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5197         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5198         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5199     };
5200 
5201     spapr_machine_2_8_class_options(mc);
5202     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5203     mc->default_machine_opts = "modern-hotplug-events=off";
5204     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5205     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5206     smc->phb_placement = phb_placement_2_7;
5207 }
5208 
5209 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5210 
5211 /*
5212  * pseries-2.6
5213  */
5214 
5215 static void spapr_machine_2_6_class_options(MachineClass *mc)
5216 {
5217     static GlobalProperty compat[] = {
5218         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5219     };
5220 
5221     spapr_machine_2_7_class_options(mc);
5222     mc->has_hotpluggable_cpus = false;
5223     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5224     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5225 }
5226 
5227 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5228 
5229 /*
5230  * pseries-2.5
5231  */
5232 
5233 static void spapr_machine_2_5_class_options(MachineClass *mc)
5234 {
5235     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5236     static GlobalProperty compat[] = {
5237         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5238     };
5239 
5240     spapr_machine_2_6_class_options(mc);
5241     smc->use_ohci_by_default = true;
5242     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5243     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5244 }
5245 
5246 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5247 
5248 /*
5249  * pseries-2.4
5250  */
5251 
5252 static void spapr_machine_2_4_class_options(MachineClass *mc)
5253 {
5254     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5255 
5256     spapr_machine_2_5_class_options(mc);
5257     smc->dr_lmb_enabled = false;
5258     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5259 }
5260 
5261 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5262 
5263 /*
5264  * pseries-2.3
5265  */
5266 
5267 static void spapr_machine_2_3_class_options(MachineClass *mc)
5268 {
5269     static GlobalProperty compat[] = {
5270         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5271     };
5272     spapr_machine_2_4_class_options(mc);
5273     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5274     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5275 }
5276 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5277 
5278 /*
5279  * pseries-2.2
5280  */
5281 
5282 static void spapr_machine_2_2_class_options(MachineClass *mc)
5283 {
5284     static GlobalProperty compat[] = {
5285         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5286     };
5287 
5288     spapr_machine_2_3_class_options(mc);
5289     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5290     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5291     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5292 }
5293 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5294 
5295 /*
5296  * pseries-2.1
5297  */
5298 
5299 static void spapr_machine_2_1_class_options(MachineClass *mc)
5300 {
5301     spapr_machine_2_2_class_options(mc);
5302     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5303 }
5304 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5305 
5306 static void spapr_machine_register_types(void)
5307 {
5308     type_register_static(&spapr_machine_info);
5309 }
5310 
5311 type_init(spapr_machine_register_types)
5312