1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "sysemu/qtest.h" 33 #include "hw/hw.h" 34 #include "qemu/log.h" 35 #include "hw/fw-path-provider.h" 36 #include "elf.h" 37 #include "net/net.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/cpus.h" 40 #include "sysemu/hw_accel.h" 41 #include "kvm_ppc.h" 42 #include "migration/misc.h" 43 #include "migration/global_state.h" 44 #include "migration/register.h" 45 #include "mmu-hash64.h" 46 #include "mmu-book3s-v3.h" 47 #include "cpu-models.h" 48 #include "qom/cpu.h" 49 50 #include "hw/boards.h" 51 #include "hw/ppc/ppc.h" 52 #include "hw/loader.h" 53 54 #include "hw/ppc/fdt.h" 55 #include "hw/ppc/spapr.h" 56 #include "hw/ppc/spapr_vio.h" 57 #include "hw/pci-host/spapr.h" 58 #include "hw/pci/msi.h" 59 60 #include "hw/pci/pci.h" 61 #include "hw/scsi/scsi.h" 62 #include "hw/virtio/virtio-scsi.h" 63 #include "hw/virtio/vhost-scsi-common.h" 64 65 #include "exec/address-spaces.h" 66 #include "exec/ram_addr.h" 67 #include "hw/usb.h" 68 #include "qemu/config-file.h" 69 #include "qemu/error-report.h" 70 #include "trace.h" 71 #include "hw/nmi.h" 72 #include "hw/intc/intc.h" 73 74 #include "qemu/cutils.h" 75 #include "hw/ppc/spapr_cpu_core.h" 76 #include "hw/mem/memory-device.h" 77 78 #include <libfdt.h> 79 80 /* SLOF memory layout: 81 * 82 * SLOF raw image loaded at 0, copies its romfs right below the flat 83 * device-tree, then position SLOF itself 31M below that 84 * 85 * So we set FW_OVERHEAD to 40MB which should account for all of that 86 * and more 87 * 88 * We load our kernel at 4M, leaving space for SLOF initial image 89 */ 90 #define FDT_MAX_SIZE 0x100000 91 #define RTAS_MAX_SIZE 0x10000 92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 93 #define FW_MAX_SIZE 0x400000 94 #define FW_FILE_NAME "slof.bin" 95 #define FW_OVERHEAD 0x2800000 96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 97 98 #define MIN_RMA_SLOF 128UL 99 100 #define PHANDLE_INTC 0x00001111 101 102 /* These two functions implement the VCPU id numbering: one to compute them 103 * all and one to identify thread 0 of a VCORE. Any change to the first one 104 * is likely to have an impact on the second one, so let's keep them close. 105 */ 106 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 107 { 108 assert(spapr->vsmt); 109 return 110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 111 } 112 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 113 PowerPCCPU *cpu) 114 { 115 assert(spapr->vsmt); 116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 117 } 118 119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 120 { 121 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 122 * and newer QEMUs don't even have them. In both cases, we don't want 123 * to send anything on the wire. 124 */ 125 return false; 126 } 127 128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 129 .name = "icp/server", 130 .version_id = 1, 131 .minimum_version_id = 1, 132 .needed = pre_2_10_vmstate_dummy_icp_needed, 133 .fields = (VMStateField[]) { 134 VMSTATE_UNUSED(4), /* uint32_t xirr */ 135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 136 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 137 VMSTATE_END_OF_LIST() 138 }, 139 }; 140 141 static void pre_2_10_vmstate_register_dummy_icp(int i) 142 { 143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 144 (void *)(uintptr_t) i); 145 } 146 147 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 148 { 149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 150 (void *)(uintptr_t) i); 151 } 152 153 int spapr_max_server_number(SpaprMachineState *spapr) 154 { 155 assert(spapr->vsmt); 156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 157 } 158 159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 160 int smt_threads) 161 { 162 int i, ret = 0; 163 uint32_t servers_prop[smt_threads]; 164 uint32_t gservers_prop[smt_threads * 2]; 165 int index = spapr_get_vcpu_id(cpu); 166 167 if (cpu->compat_pvr) { 168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 169 if (ret < 0) { 170 return ret; 171 } 172 } 173 174 /* Build interrupt servers and gservers properties */ 175 for (i = 0; i < smt_threads; i++) { 176 servers_prop[i] = cpu_to_be32(index + i); 177 /* Hack, direct the group queues back to cpu 0 */ 178 gservers_prop[i*2] = cpu_to_be32(index + i); 179 gservers_prop[i*2 + 1] = 0; 180 } 181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 182 servers_prop, sizeof(servers_prop)); 183 if (ret < 0) { 184 return ret; 185 } 186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 187 gservers_prop, sizeof(gservers_prop)); 188 189 return ret; 190 } 191 192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 193 { 194 int index = spapr_get_vcpu_id(cpu); 195 uint32_t associativity[] = {cpu_to_be32(0x5), 196 cpu_to_be32(0x0), 197 cpu_to_be32(0x0), 198 cpu_to_be32(0x0), 199 cpu_to_be32(cpu->node_id), 200 cpu_to_be32(index)}; 201 202 /* Advertise NUMA via ibm,associativity */ 203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 204 sizeof(associativity)); 205 } 206 207 /* Populate the "ibm,pa-features" property */ 208 static void spapr_populate_pa_features(SpaprMachineState *spapr, 209 PowerPCCPU *cpu, 210 void *fdt, int offset, 211 bool legacy_guest) 212 { 213 uint8_t pa_features_206[] = { 6, 0, 214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 215 uint8_t pa_features_207[] = { 24, 0, 216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 220 uint8_t pa_features_300[] = { 66, 0, 221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 224 /* 6: DS207 */ 225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 226 /* 16: Vector */ 227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 236 /* 42: PM, 44: PC RA, 46: SC vec'd */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 238 /* 48: SIMD, 50: QP BFP, 52: String */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 240 /* 54: DecFP, 56: DecI, 58: SHA */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 242 /* 60: NM atomic, 62: RNG */ 243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 244 }; 245 uint8_t *pa_features = NULL; 246 size_t pa_size; 247 248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 249 pa_features = pa_features_206; 250 pa_size = sizeof(pa_features_206); 251 } 252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 253 pa_features = pa_features_207; 254 pa_size = sizeof(pa_features_207); 255 } 256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 257 pa_features = pa_features_300; 258 pa_size = sizeof(pa_features_300); 259 } 260 if (!pa_features) { 261 return; 262 } 263 264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 265 /* 266 * Note: we keep CI large pages off by default because a 64K capable 267 * guest provisioned with large pages might otherwise try to map a qemu 268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 269 * even if that qemu runs on a 4k host. 270 * We dd this bit back here if we are confident this is not an issue 271 */ 272 pa_features[3] |= 0x20; 273 } 274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 275 pa_features[24] |= 0x80; /* Transactional memory support */ 276 } 277 if (legacy_guest && pa_size > 40) { 278 /* Workaround for broken kernels that attempt (guest) radix 279 * mode when they can't handle it, if they see the radix bit set 280 * in pa-features. So hide it from them. */ 281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 282 } 283 284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 285 } 286 287 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 288 { 289 int ret = 0, offset, cpus_offset; 290 CPUState *cs; 291 char cpu_model[32]; 292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 293 294 CPU_FOREACH(cs) { 295 PowerPCCPU *cpu = POWERPC_CPU(cs); 296 DeviceClass *dc = DEVICE_GET_CLASS(cs); 297 int index = spapr_get_vcpu_id(cpu); 298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 299 300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 301 continue; 302 } 303 304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 305 306 cpus_offset = fdt_path_offset(fdt, "/cpus"); 307 if (cpus_offset < 0) { 308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 309 if (cpus_offset < 0) { 310 return cpus_offset; 311 } 312 } 313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 314 if (offset < 0) { 315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 316 if (offset < 0) { 317 return offset; 318 } 319 } 320 321 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 322 pft_size_prop, sizeof(pft_size_prop)); 323 if (ret < 0) { 324 return ret; 325 } 326 327 if (nb_numa_nodes > 1) { 328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 329 if (ret < 0) { 330 return ret; 331 } 332 } 333 334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 335 if (ret < 0) { 336 return ret; 337 } 338 339 spapr_populate_pa_features(spapr, cpu, fdt, offset, 340 spapr->cas_legacy_guest_workaround); 341 } 342 return ret; 343 } 344 345 static hwaddr spapr_node0_size(MachineState *machine) 346 { 347 if (nb_numa_nodes) { 348 int i; 349 for (i = 0; i < nb_numa_nodes; ++i) { 350 if (numa_info[i].node_mem) { 351 return MIN(pow2floor(numa_info[i].node_mem), 352 machine->ram_size); 353 } 354 } 355 } 356 return machine->ram_size; 357 } 358 359 static void add_str(GString *s, const gchar *s1) 360 { 361 g_string_append_len(s, s1, strlen(s1) + 1); 362 } 363 364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 365 hwaddr size) 366 { 367 uint32_t associativity[] = { 368 cpu_to_be32(0x4), /* length */ 369 cpu_to_be32(0x0), cpu_to_be32(0x0), 370 cpu_to_be32(0x0), cpu_to_be32(nodeid) 371 }; 372 char mem_name[32]; 373 uint64_t mem_reg_property[2]; 374 int off; 375 376 mem_reg_property[0] = cpu_to_be64(start); 377 mem_reg_property[1] = cpu_to_be64(size); 378 379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 380 off = fdt_add_subnode(fdt, 0, mem_name); 381 _FDT(off); 382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 384 sizeof(mem_reg_property)))); 385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 386 sizeof(associativity)))); 387 return off; 388 } 389 390 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 391 { 392 MachineState *machine = MACHINE(spapr); 393 hwaddr mem_start, node_size; 394 int i, nb_nodes = nb_numa_nodes; 395 NodeInfo *nodes = numa_info; 396 NodeInfo ramnode; 397 398 /* No NUMA nodes, assume there is just one node with whole RAM */ 399 if (!nb_numa_nodes) { 400 nb_nodes = 1; 401 ramnode.node_mem = machine->ram_size; 402 nodes = &ramnode; 403 } 404 405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 406 if (!nodes[i].node_mem) { 407 continue; 408 } 409 if (mem_start >= machine->ram_size) { 410 node_size = 0; 411 } else { 412 node_size = nodes[i].node_mem; 413 if (node_size > machine->ram_size - mem_start) { 414 node_size = machine->ram_size - mem_start; 415 } 416 } 417 if (!mem_start) { 418 /* spapr_machine_init() checks for rma_size <= node0_size 419 * already */ 420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 421 mem_start += spapr->rma_size; 422 node_size -= spapr->rma_size; 423 } 424 for ( ; node_size; ) { 425 hwaddr sizetmp = pow2floor(node_size); 426 427 /* mem_start != 0 here */ 428 if (ctzl(mem_start) < ctzl(sizetmp)) { 429 sizetmp = 1ULL << ctzl(mem_start); 430 } 431 432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 433 node_size -= sizetmp; 434 mem_start += sizetmp; 435 } 436 } 437 438 return 0; 439 } 440 441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 442 SpaprMachineState *spapr) 443 { 444 PowerPCCPU *cpu = POWERPC_CPU(cs); 445 CPUPPCState *env = &cpu->env; 446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 447 int index = spapr_get_vcpu_id(cpu); 448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 449 0xffffffff, 0xffffffff}; 450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 451 : SPAPR_TIMEBASE_FREQ; 452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 453 uint32_t page_sizes_prop[64]; 454 size_t page_sizes_prop_size; 455 uint32_t vcpus_per_socket = smp_threads * smp_cores; 456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 458 SpaprDrc *drc; 459 int drc_index; 460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 461 int i; 462 463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 464 if (drc) { 465 drc_index = spapr_drc_index(drc); 466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 467 } 468 469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 471 472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 474 env->dcache_line_size))); 475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 476 env->dcache_line_size))); 477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 478 env->icache_line_size))); 479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 480 env->icache_line_size))); 481 482 if (pcc->l1_dcache_size) { 483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 484 pcc->l1_dcache_size))); 485 } else { 486 warn_report("Unknown L1 dcache size for cpu"); 487 } 488 if (pcc->l1_icache_size) { 489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 490 pcc->l1_icache_size))); 491 } else { 492 warn_report("Unknown L1 icache size for cpu"); 493 } 494 495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 501 502 if (env->spr_cb[SPR_PURR].oea_read) { 503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 504 } 505 506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 508 segs, sizeof(segs)))); 509 } 510 511 /* Advertise VSX (vector extensions) if available 512 * 1 == VMX / Altivec available 513 * 2 == VSX available 514 * 515 * Only CPUs for which we create core types in spapr_cpu_core.c 516 * are possible, and all of those have VMX */ 517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 519 } else { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 521 } 522 523 /* Advertise DFP (Decimal Floating Point) if available 524 * 0 / no property == no DFP 525 * 1 == DFP available */ 526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 528 } 529 530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 531 sizeof(page_sizes_prop)); 532 if (page_sizes_prop_size) { 533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 534 page_sizes_prop, page_sizes_prop_size))); 535 } 536 537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 538 539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 540 cs->cpu_index / vcpus_per_socket))); 541 542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 543 pft_size_prop, sizeof(pft_size_prop)))); 544 545 if (nb_numa_nodes > 1) { 546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 547 } 548 549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 550 551 if (pcc->radix_page_info) { 552 for (i = 0; i < pcc->radix_page_info->count; i++) { 553 radix_AP_encodings[i] = 554 cpu_to_be32(pcc->radix_page_info->entries[i]); 555 } 556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 557 radix_AP_encodings, 558 pcc->radix_page_info->count * 559 sizeof(radix_AP_encodings[0])))); 560 } 561 562 /* 563 * We set this property to let the guest know that it can use the large 564 * decrementer and its width in bits. 565 */ 566 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 567 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 568 pcc->lrg_decr_bits))); 569 } 570 571 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 572 { 573 CPUState **rev; 574 CPUState *cs; 575 int n_cpus; 576 int cpus_offset; 577 char *nodename; 578 int i; 579 580 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 581 _FDT(cpus_offset); 582 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 583 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 584 585 /* 586 * We walk the CPUs in reverse order to ensure that CPU DT nodes 587 * created by fdt_add_subnode() end up in the right order in FDT 588 * for the guest kernel the enumerate the CPUs correctly. 589 * 590 * The CPU list cannot be traversed in reverse order, so we need 591 * to do extra work. 592 */ 593 n_cpus = 0; 594 rev = NULL; 595 CPU_FOREACH(cs) { 596 rev = g_renew(CPUState *, rev, n_cpus + 1); 597 rev[n_cpus++] = cs; 598 } 599 600 for (i = n_cpus - 1; i >= 0; i--) { 601 CPUState *cs = rev[i]; 602 PowerPCCPU *cpu = POWERPC_CPU(cs); 603 int index = spapr_get_vcpu_id(cpu); 604 DeviceClass *dc = DEVICE_GET_CLASS(cs); 605 int offset; 606 607 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 608 continue; 609 } 610 611 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 612 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 613 g_free(nodename); 614 _FDT(offset); 615 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 616 } 617 618 g_free(rev); 619 } 620 621 static int spapr_rng_populate_dt(void *fdt) 622 { 623 int node; 624 int ret; 625 626 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 627 if (node <= 0) { 628 return -1; 629 } 630 ret = fdt_setprop_string(fdt, node, "device_type", 631 "ibm,platform-facilities"); 632 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 633 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 634 635 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 636 if (node <= 0) { 637 return -1; 638 } 639 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 640 641 return ret ? -1 : 0; 642 } 643 644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 645 { 646 MemoryDeviceInfoList *info; 647 648 for (info = list; info; info = info->next) { 649 MemoryDeviceInfo *value = info->value; 650 651 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 652 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 653 654 if (addr >= pcdimm_info->addr && 655 addr < (pcdimm_info->addr + pcdimm_info->size)) { 656 return pcdimm_info->node; 657 } 658 } 659 } 660 661 return -1; 662 } 663 664 struct sPAPRDrconfCellV2 { 665 uint32_t seq_lmbs; 666 uint64_t base_addr; 667 uint32_t drc_index; 668 uint32_t aa_index; 669 uint32_t flags; 670 } QEMU_PACKED; 671 672 typedef struct DrconfCellQueue { 673 struct sPAPRDrconfCellV2 cell; 674 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 675 } DrconfCellQueue; 676 677 static DrconfCellQueue * 678 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 679 uint32_t drc_index, uint32_t aa_index, 680 uint32_t flags) 681 { 682 DrconfCellQueue *elem; 683 684 elem = g_malloc0(sizeof(*elem)); 685 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 686 elem->cell.base_addr = cpu_to_be64(base_addr); 687 elem->cell.drc_index = cpu_to_be32(drc_index); 688 elem->cell.aa_index = cpu_to_be32(aa_index); 689 elem->cell.flags = cpu_to_be32(flags); 690 691 return elem; 692 } 693 694 /* ibm,dynamic-memory-v2 */ 695 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 696 int offset, MemoryDeviceInfoList *dimms) 697 { 698 MachineState *machine = MACHINE(spapr); 699 uint8_t *int_buf, *cur_index; 700 int ret; 701 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 702 uint64_t addr, cur_addr, size; 703 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 704 uint64_t mem_end = machine->device_memory->base + 705 memory_region_size(&machine->device_memory->mr); 706 uint32_t node, buf_len, nr_entries = 0; 707 SpaprDrc *drc; 708 DrconfCellQueue *elem, *next; 709 MemoryDeviceInfoList *info; 710 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 711 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 712 713 /* Entry to cover RAM and the gap area */ 714 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 715 SPAPR_LMB_FLAGS_RESERVED | 716 SPAPR_LMB_FLAGS_DRC_INVALID); 717 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 718 nr_entries++; 719 720 cur_addr = machine->device_memory->base; 721 for (info = dimms; info; info = info->next) { 722 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 723 724 addr = di->addr; 725 size = di->size; 726 node = di->node; 727 728 /* Entry for hot-pluggable area */ 729 if (cur_addr < addr) { 730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 731 g_assert(drc); 732 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 733 cur_addr, spapr_drc_index(drc), -1, 0); 734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 735 nr_entries++; 736 } 737 738 /* Entry for DIMM */ 739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 740 g_assert(drc); 741 elem = spapr_get_drconf_cell(size / lmb_size, addr, 742 spapr_drc_index(drc), node, 743 SPAPR_LMB_FLAGS_ASSIGNED); 744 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 745 nr_entries++; 746 cur_addr = addr + size; 747 } 748 749 /* Entry for remaining hotpluggable area */ 750 if (cur_addr < mem_end) { 751 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 752 g_assert(drc); 753 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 754 cur_addr, spapr_drc_index(drc), -1, 0); 755 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 756 nr_entries++; 757 } 758 759 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 760 int_buf = cur_index = g_malloc0(buf_len); 761 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 762 cur_index += sizeof(nr_entries); 763 764 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 765 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 766 cur_index += sizeof(elem->cell); 767 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 768 g_free(elem); 769 } 770 771 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 772 g_free(int_buf); 773 if (ret < 0) { 774 return -1; 775 } 776 return 0; 777 } 778 779 /* ibm,dynamic-memory */ 780 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 781 int offset, MemoryDeviceInfoList *dimms) 782 { 783 MachineState *machine = MACHINE(spapr); 784 int i, ret; 785 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 786 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 787 uint32_t nr_lmbs = (machine->device_memory->base + 788 memory_region_size(&machine->device_memory->mr)) / 789 lmb_size; 790 uint32_t *int_buf, *cur_index, buf_len; 791 792 /* 793 * Allocate enough buffer size to fit in ibm,dynamic-memory 794 */ 795 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 796 cur_index = int_buf = g_malloc0(buf_len); 797 int_buf[0] = cpu_to_be32(nr_lmbs); 798 cur_index++; 799 for (i = 0; i < nr_lmbs; i++) { 800 uint64_t addr = i * lmb_size; 801 uint32_t *dynamic_memory = cur_index; 802 803 if (i >= device_lmb_start) { 804 SpaprDrc *drc; 805 806 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 807 g_assert(drc); 808 809 dynamic_memory[0] = cpu_to_be32(addr >> 32); 810 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 811 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 812 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 813 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 814 if (memory_region_present(get_system_memory(), addr)) { 815 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 816 } else { 817 dynamic_memory[5] = cpu_to_be32(0); 818 } 819 } else { 820 /* 821 * LMB information for RMA, boot time RAM and gap b/n RAM and 822 * device memory region -- all these are marked as reserved 823 * and as having no valid DRC. 824 */ 825 dynamic_memory[0] = cpu_to_be32(addr >> 32); 826 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 827 dynamic_memory[2] = cpu_to_be32(0); 828 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 829 dynamic_memory[4] = cpu_to_be32(-1); 830 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 831 SPAPR_LMB_FLAGS_DRC_INVALID); 832 } 833 834 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 835 } 836 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 837 g_free(int_buf); 838 if (ret < 0) { 839 return -1; 840 } 841 return 0; 842 } 843 844 /* 845 * Adds ibm,dynamic-reconfiguration-memory node. 846 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 847 * of this device tree node. 848 */ 849 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 850 { 851 MachineState *machine = MACHINE(spapr); 852 int ret, i, offset; 853 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 854 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 855 uint32_t *int_buf, *cur_index, buf_len; 856 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 857 MemoryDeviceInfoList *dimms = NULL; 858 859 /* 860 * Don't create the node if there is no device memory 861 */ 862 if (machine->ram_size == machine->maxram_size) { 863 return 0; 864 } 865 866 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 867 868 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 869 sizeof(prop_lmb_size)); 870 if (ret < 0) { 871 return ret; 872 } 873 874 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 875 if (ret < 0) { 876 return ret; 877 } 878 879 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 880 if (ret < 0) { 881 return ret; 882 } 883 884 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 885 dimms = qmp_memory_device_list(); 886 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 887 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 888 } else { 889 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 890 } 891 qapi_free_MemoryDeviceInfoList(dimms); 892 893 if (ret < 0) { 894 return ret; 895 } 896 897 /* ibm,associativity-lookup-arrays */ 898 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 899 cur_index = int_buf = g_malloc0(buf_len); 900 int_buf[0] = cpu_to_be32(nr_nodes); 901 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 902 cur_index += 2; 903 for (i = 0; i < nr_nodes; i++) { 904 uint32_t associativity[] = { 905 cpu_to_be32(0x0), 906 cpu_to_be32(0x0), 907 cpu_to_be32(0x0), 908 cpu_to_be32(i) 909 }; 910 memcpy(cur_index, associativity, sizeof(associativity)); 911 cur_index += 4; 912 } 913 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 914 (cur_index - int_buf) * sizeof(uint32_t)); 915 g_free(int_buf); 916 917 return ret; 918 } 919 920 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 921 SpaprOptionVector *ov5_updates) 922 { 923 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 924 int ret = 0, offset; 925 926 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 927 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 928 g_assert(smc->dr_lmb_enabled); 929 ret = spapr_populate_drconf_memory(spapr, fdt); 930 if (ret) { 931 goto out; 932 } 933 } 934 935 offset = fdt_path_offset(fdt, "/chosen"); 936 if (offset < 0) { 937 offset = fdt_add_subnode(fdt, 0, "chosen"); 938 if (offset < 0) { 939 return offset; 940 } 941 } 942 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 943 "ibm,architecture-vec-5"); 944 945 out: 946 return ret; 947 } 948 949 static bool spapr_hotplugged_dev_before_cas(void) 950 { 951 Object *drc_container, *obj; 952 ObjectProperty *prop; 953 ObjectPropertyIterator iter; 954 955 drc_container = container_get(object_get_root(), "/dr-connector"); 956 object_property_iter_init(&iter, drc_container); 957 while ((prop = object_property_iter_next(&iter))) { 958 if (!strstart(prop->type, "link<", NULL)) { 959 continue; 960 } 961 obj = object_property_get_link(drc_container, prop->name, NULL); 962 if (spapr_drc_needed(obj)) { 963 return true; 964 } 965 } 966 return false; 967 } 968 969 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 970 target_ulong addr, target_ulong size, 971 SpaprOptionVector *ov5_updates) 972 { 973 void *fdt, *fdt_skel; 974 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 975 976 if (spapr_hotplugged_dev_before_cas()) { 977 return 1; 978 } 979 980 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 981 error_report("SLOF provided an unexpected CAS buffer size " 982 TARGET_FMT_lu " (min: %zu, max: %u)", 983 size, sizeof(hdr), FW_MAX_SIZE); 984 exit(EXIT_FAILURE); 985 } 986 987 size -= sizeof(hdr); 988 989 /* Create skeleton */ 990 fdt_skel = g_malloc0(size); 991 _FDT((fdt_create(fdt_skel, size))); 992 _FDT((fdt_finish_reservemap(fdt_skel))); 993 _FDT((fdt_begin_node(fdt_skel, ""))); 994 _FDT((fdt_end_node(fdt_skel))); 995 _FDT((fdt_finish(fdt_skel))); 996 fdt = g_malloc0(size); 997 _FDT((fdt_open_into(fdt_skel, fdt, size))); 998 g_free(fdt_skel); 999 1000 /* Fixup cpu nodes */ 1001 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1002 1003 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1004 return -1; 1005 } 1006 1007 /* Pack resulting tree */ 1008 _FDT((fdt_pack(fdt))); 1009 1010 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1011 trace_spapr_cas_failed(size); 1012 return -1; 1013 } 1014 1015 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1016 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1017 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1018 g_free(fdt); 1019 1020 return 0; 1021 } 1022 1023 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1024 { 1025 int rtas; 1026 GString *hypertas = g_string_sized_new(256); 1027 GString *qemu_hypertas = g_string_sized_new(256); 1028 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1029 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1030 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1031 uint32_t lrdr_capacity[] = { 1032 cpu_to_be32(max_device_addr >> 32), 1033 cpu_to_be32(max_device_addr & 0xffffffff), 1034 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1035 cpu_to_be32(max_cpus / smp_threads), 1036 }; 1037 uint32_t maxdomains[] = { 1038 cpu_to_be32(4), 1039 cpu_to_be32(0), 1040 cpu_to_be32(0), 1041 cpu_to_be32(0), 1042 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1), 1043 }; 1044 1045 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1046 1047 /* hypertas */ 1048 add_str(hypertas, "hcall-pft"); 1049 add_str(hypertas, "hcall-term"); 1050 add_str(hypertas, "hcall-dabr"); 1051 add_str(hypertas, "hcall-interrupt"); 1052 add_str(hypertas, "hcall-tce"); 1053 add_str(hypertas, "hcall-vio"); 1054 add_str(hypertas, "hcall-splpar"); 1055 add_str(hypertas, "hcall-bulk"); 1056 add_str(hypertas, "hcall-set-mode"); 1057 add_str(hypertas, "hcall-sprg0"); 1058 add_str(hypertas, "hcall-copy"); 1059 add_str(hypertas, "hcall-debug"); 1060 add_str(hypertas, "hcall-vphn"); 1061 add_str(qemu_hypertas, "hcall-memop1"); 1062 1063 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1064 add_str(hypertas, "hcall-multi-tce"); 1065 } 1066 1067 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1068 add_str(hypertas, "hcall-hpt-resize"); 1069 } 1070 1071 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1072 hypertas->str, hypertas->len)); 1073 g_string_free(hypertas, TRUE); 1074 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1075 qemu_hypertas->str, qemu_hypertas->len)); 1076 g_string_free(qemu_hypertas, TRUE); 1077 1078 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1079 refpoints, sizeof(refpoints))); 1080 1081 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1082 maxdomains, sizeof(maxdomains))); 1083 1084 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1085 RTAS_ERROR_LOG_MAX)); 1086 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1087 RTAS_EVENT_SCAN_RATE)); 1088 1089 g_assert(msi_nonbroken); 1090 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1091 1092 /* 1093 * According to PAPR, rtas ibm,os-term does not guarantee a return 1094 * back to the guest cpu. 1095 * 1096 * While an additional ibm,extended-os-term property indicates 1097 * that rtas call return will always occur. Set this property. 1098 */ 1099 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1100 1101 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1102 lrdr_capacity, sizeof(lrdr_capacity))); 1103 1104 spapr_dt_rtas_tokens(fdt, rtas); 1105 } 1106 1107 /* 1108 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1109 * and the XIVE features that the guest may request and thus the valid 1110 * values for bytes 23..26 of option vector 5: 1111 */ 1112 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1113 int chosen) 1114 { 1115 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1116 1117 char val[2 * 4] = { 1118 23, spapr->irq->ov5, /* Xive mode. */ 1119 24, 0x00, /* Hash/Radix, filled in below. */ 1120 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1121 26, 0x40, /* Radix options: GTSE == yes. */ 1122 }; 1123 1124 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1125 first_ppc_cpu->compat_pvr)) { 1126 /* 1127 * If we're in a pre POWER9 compat mode then the guest should 1128 * do hash and use the legacy interrupt mode 1129 */ 1130 val[1] = 0x00; /* XICS */ 1131 val[3] = 0x00; /* Hash */ 1132 } else if (kvm_enabled()) { 1133 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1134 val[3] = 0x80; /* OV5_MMU_BOTH */ 1135 } else if (kvmppc_has_cap_mmu_radix()) { 1136 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1137 } else { 1138 val[3] = 0x00; /* Hash */ 1139 } 1140 } else { 1141 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1142 val[3] = 0xC0; 1143 } 1144 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1145 val, sizeof(val))); 1146 } 1147 1148 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1149 { 1150 MachineState *machine = MACHINE(spapr); 1151 int chosen; 1152 const char *boot_device = machine->boot_order; 1153 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1154 size_t cb = 0; 1155 char *bootlist = get_boot_devices_list(&cb); 1156 1157 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1158 1159 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1160 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1161 spapr->initrd_base)); 1162 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1163 spapr->initrd_base + spapr->initrd_size)); 1164 1165 if (spapr->kernel_size) { 1166 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1167 cpu_to_be64(spapr->kernel_size) }; 1168 1169 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1170 &kprop, sizeof(kprop))); 1171 if (spapr->kernel_le) { 1172 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1173 } 1174 } 1175 if (boot_menu) { 1176 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1177 } 1178 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1179 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1180 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1181 1182 if (cb && bootlist) { 1183 int i; 1184 1185 for (i = 0; i < cb; i++) { 1186 if (bootlist[i] == '\n') { 1187 bootlist[i] = ' '; 1188 } 1189 } 1190 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1191 } 1192 1193 if (boot_device && strlen(boot_device)) { 1194 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1195 } 1196 1197 if (!spapr->has_graphics && stdout_path) { 1198 /* 1199 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1200 * kernel. New platforms should only use the "stdout-path" property. Set 1201 * the new property and continue using older property to remain 1202 * compatible with the existing firmware. 1203 */ 1204 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1205 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1206 } 1207 1208 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1209 1210 g_free(stdout_path); 1211 g_free(bootlist); 1212 } 1213 1214 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1215 { 1216 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1217 * KVM to work under pHyp with some guest co-operation */ 1218 int hypervisor; 1219 uint8_t hypercall[16]; 1220 1221 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1222 /* indicate KVM hypercall interface */ 1223 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1224 if (kvmppc_has_cap_fixup_hcalls()) { 1225 /* 1226 * Older KVM versions with older guest kernels were broken 1227 * with the magic page, don't allow the guest to map it. 1228 */ 1229 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1230 sizeof(hypercall))) { 1231 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1232 hypercall, sizeof(hypercall))); 1233 } 1234 } 1235 } 1236 1237 static void *spapr_build_fdt(SpaprMachineState *spapr) 1238 { 1239 MachineState *machine = MACHINE(spapr); 1240 MachineClass *mc = MACHINE_GET_CLASS(machine); 1241 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1242 int ret; 1243 void *fdt; 1244 SpaprPhbState *phb; 1245 char *buf; 1246 1247 fdt = g_malloc0(FDT_MAX_SIZE); 1248 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1249 1250 /* Root node */ 1251 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1252 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1253 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1254 1255 /* 1256 * Add info to guest to indentify which host is it being run on 1257 * and what is the uuid of the guest 1258 */ 1259 if (spapr->host_model && !g_str_equal(spapr->host_model, "none")) { 1260 if (g_str_equal(spapr->host_model, "passthrough")) { 1261 /* -M host-model=passthrough */ 1262 if (kvmppc_get_host_model(&buf)) { 1263 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1264 g_free(buf); 1265 } 1266 } else { 1267 /* -M host-model=<user-string> */ 1268 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1269 } 1270 } 1271 1272 if (spapr->host_serial && !g_str_equal(spapr->host_serial, "none")) { 1273 if (g_str_equal(spapr->host_serial, "passthrough")) { 1274 /* -M host-serial=passthrough */ 1275 if (kvmppc_get_host_serial(&buf)) { 1276 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1277 g_free(buf); 1278 } 1279 } else { 1280 /* -M host-serial=<user-string> */ 1281 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1282 } 1283 } 1284 1285 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1286 1287 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1288 if (qemu_uuid_set) { 1289 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1290 } 1291 g_free(buf); 1292 1293 if (qemu_get_vm_name()) { 1294 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1295 qemu_get_vm_name())); 1296 } 1297 1298 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1299 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1300 1301 /* /interrupt controller */ 1302 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1303 PHANDLE_INTC); 1304 1305 ret = spapr_populate_memory(spapr, fdt); 1306 if (ret < 0) { 1307 error_report("couldn't setup memory nodes in fdt"); 1308 exit(1); 1309 } 1310 1311 /* /vdevice */ 1312 spapr_dt_vdevice(spapr->vio_bus, fdt); 1313 1314 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1315 ret = spapr_rng_populate_dt(fdt); 1316 if (ret < 0) { 1317 error_report("could not set up rng device in the fdt"); 1318 exit(1); 1319 } 1320 } 1321 1322 QLIST_FOREACH(phb, &spapr->phbs, list) { 1323 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt, 1324 spapr->irq->nr_msis, NULL); 1325 if (ret < 0) { 1326 error_report("couldn't setup PCI devices in fdt"); 1327 exit(1); 1328 } 1329 } 1330 1331 /* cpus */ 1332 spapr_populate_cpus_dt_node(fdt, spapr); 1333 1334 if (smc->dr_lmb_enabled) { 1335 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1336 } 1337 1338 if (mc->has_hotpluggable_cpus) { 1339 int offset = fdt_path_offset(fdt, "/cpus"); 1340 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1341 SPAPR_DR_CONNECTOR_TYPE_CPU); 1342 if (ret < 0) { 1343 error_report("Couldn't set up CPU DR device tree properties"); 1344 exit(1); 1345 } 1346 } 1347 1348 /* /event-sources */ 1349 spapr_dt_events(spapr, fdt); 1350 1351 /* /rtas */ 1352 spapr_dt_rtas(spapr, fdt); 1353 1354 /* /chosen */ 1355 spapr_dt_chosen(spapr, fdt); 1356 1357 /* /hypervisor */ 1358 if (kvm_enabled()) { 1359 spapr_dt_hypervisor(spapr, fdt); 1360 } 1361 1362 /* Build memory reserve map */ 1363 if (spapr->kernel_size) { 1364 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1365 } 1366 if (spapr->initrd_size) { 1367 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1368 } 1369 1370 /* ibm,client-architecture-support updates */ 1371 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1372 if (ret < 0) { 1373 error_report("couldn't setup CAS properties fdt"); 1374 exit(1); 1375 } 1376 1377 if (smc->dr_phb_enabled) { 1378 ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1379 if (ret < 0) { 1380 error_report("Couldn't set up PHB DR device tree properties"); 1381 exit(1); 1382 } 1383 } 1384 1385 return fdt; 1386 } 1387 1388 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1389 { 1390 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1391 } 1392 1393 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1394 PowerPCCPU *cpu) 1395 { 1396 CPUPPCState *env = &cpu->env; 1397 1398 /* The TCG path should also be holding the BQL at this point */ 1399 g_assert(qemu_mutex_iothread_locked()); 1400 1401 if (msr_pr) { 1402 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1403 env->gpr[3] = H_PRIVILEGE; 1404 } else { 1405 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1406 } 1407 } 1408 1409 struct LPCRSyncState { 1410 target_ulong value; 1411 target_ulong mask; 1412 }; 1413 1414 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1415 { 1416 struct LPCRSyncState *s = arg.host_ptr; 1417 PowerPCCPU *cpu = POWERPC_CPU(cs); 1418 CPUPPCState *env = &cpu->env; 1419 target_ulong lpcr; 1420 1421 cpu_synchronize_state(cs); 1422 lpcr = env->spr[SPR_LPCR]; 1423 lpcr &= ~s->mask; 1424 lpcr |= s->value; 1425 ppc_store_lpcr(cpu, lpcr); 1426 } 1427 1428 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1429 { 1430 CPUState *cs; 1431 struct LPCRSyncState s = { 1432 .value = value, 1433 .mask = mask 1434 }; 1435 CPU_FOREACH(cs) { 1436 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1437 } 1438 } 1439 1440 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1441 { 1442 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1443 1444 /* Copy PATE1:GR into PATE0:HR */ 1445 entry->dw0 = spapr->patb_entry & PATE0_HR; 1446 entry->dw1 = spapr->patb_entry; 1447 } 1448 1449 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1450 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1451 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1452 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1453 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1454 1455 /* 1456 * Get the fd to access the kernel htab, re-opening it if necessary 1457 */ 1458 static int get_htab_fd(SpaprMachineState *spapr) 1459 { 1460 Error *local_err = NULL; 1461 1462 if (spapr->htab_fd >= 0) { 1463 return spapr->htab_fd; 1464 } 1465 1466 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1467 if (spapr->htab_fd < 0) { 1468 error_report_err(local_err); 1469 } 1470 1471 return spapr->htab_fd; 1472 } 1473 1474 void close_htab_fd(SpaprMachineState *spapr) 1475 { 1476 if (spapr->htab_fd >= 0) { 1477 close(spapr->htab_fd); 1478 } 1479 spapr->htab_fd = -1; 1480 } 1481 1482 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1483 { 1484 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1485 1486 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1487 } 1488 1489 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1490 { 1491 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1492 1493 assert(kvm_enabled()); 1494 1495 if (!spapr->htab) { 1496 return 0; 1497 } 1498 1499 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1500 } 1501 1502 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1503 hwaddr ptex, int n) 1504 { 1505 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1506 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1507 1508 if (!spapr->htab) { 1509 /* 1510 * HTAB is controlled by KVM. Fetch into temporary buffer 1511 */ 1512 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1513 kvmppc_read_hptes(hptes, ptex, n); 1514 return hptes; 1515 } 1516 1517 /* 1518 * HTAB is controlled by QEMU. Just point to the internally 1519 * accessible PTEG. 1520 */ 1521 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1522 } 1523 1524 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1525 const ppc_hash_pte64_t *hptes, 1526 hwaddr ptex, int n) 1527 { 1528 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1529 1530 if (!spapr->htab) { 1531 g_free((void *)hptes); 1532 } 1533 1534 /* Nothing to do for qemu managed HPT */ 1535 } 1536 1537 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1538 uint64_t pte0, uint64_t pte1) 1539 { 1540 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1541 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1542 1543 if (!spapr->htab) { 1544 kvmppc_write_hpte(ptex, pte0, pte1); 1545 } else { 1546 if (pte0 & HPTE64_V_VALID) { 1547 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1548 /* 1549 * When setting valid, we write PTE1 first. This ensures 1550 * proper synchronization with the reading code in 1551 * ppc_hash64_pteg_search() 1552 */ 1553 smp_wmb(); 1554 stq_p(spapr->htab + offset, pte0); 1555 } else { 1556 stq_p(spapr->htab + offset, pte0); 1557 /* 1558 * When clearing it we set PTE0 first. This ensures proper 1559 * synchronization with the reading code in 1560 * ppc_hash64_pteg_search() 1561 */ 1562 smp_wmb(); 1563 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1564 } 1565 } 1566 } 1567 1568 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1569 { 1570 int shift; 1571 1572 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1573 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1574 * that's much more than is needed for Linux guests */ 1575 shift = ctz64(pow2ceil(ramsize)) - 7; 1576 shift = MAX(shift, 18); /* Minimum architected size */ 1577 shift = MIN(shift, 46); /* Maximum architected size */ 1578 return shift; 1579 } 1580 1581 void spapr_free_hpt(SpaprMachineState *spapr) 1582 { 1583 g_free(spapr->htab); 1584 spapr->htab = NULL; 1585 spapr->htab_shift = 0; 1586 close_htab_fd(spapr); 1587 } 1588 1589 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1590 Error **errp) 1591 { 1592 long rc; 1593 1594 /* Clean up any HPT info from a previous boot */ 1595 spapr_free_hpt(spapr); 1596 1597 rc = kvmppc_reset_htab(shift); 1598 if (rc < 0) { 1599 /* kernel-side HPT needed, but couldn't allocate one */ 1600 error_setg_errno(errp, errno, 1601 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1602 shift); 1603 /* This is almost certainly fatal, but if the caller really 1604 * wants to carry on with shift == 0, it's welcome to try */ 1605 } else if (rc > 0) { 1606 /* kernel-side HPT allocated */ 1607 if (rc != shift) { 1608 error_setg(errp, 1609 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1610 shift, rc); 1611 } 1612 1613 spapr->htab_shift = shift; 1614 spapr->htab = NULL; 1615 } else { 1616 /* kernel-side HPT not needed, allocate in userspace instead */ 1617 size_t size = 1ULL << shift; 1618 int i; 1619 1620 spapr->htab = qemu_memalign(size, size); 1621 if (!spapr->htab) { 1622 error_setg_errno(errp, errno, 1623 "Could not allocate HPT of order %d", shift); 1624 return; 1625 } 1626 1627 memset(spapr->htab, 0, size); 1628 spapr->htab_shift = shift; 1629 1630 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1631 DIRTY_HPTE(HPTE(spapr->htab, i)); 1632 } 1633 } 1634 /* We're setting up a hash table, so that means we're not radix */ 1635 spapr->patb_entry = 0; 1636 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1637 } 1638 1639 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1640 { 1641 int hpt_shift; 1642 1643 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1644 || (spapr->cas_reboot 1645 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1646 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1647 } else { 1648 uint64_t current_ram_size; 1649 1650 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1651 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1652 } 1653 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1654 1655 if (spapr->vrma_adjust) { 1656 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1657 spapr->htab_shift); 1658 } 1659 } 1660 1661 static int spapr_reset_drcs(Object *child, void *opaque) 1662 { 1663 SpaprDrc *drc = 1664 (SpaprDrc *) object_dynamic_cast(child, 1665 TYPE_SPAPR_DR_CONNECTOR); 1666 1667 if (drc) { 1668 spapr_drc_reset(drc); 1669 } 1670 1671 return 0; 1672 } 1673 1674 static void spapr_machine_reset(void) 1675 { 1676 MachineState *machine = MACHINE(qdev_get_machine()); 1677 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1678 PowerPCCPU *first_ppc_cpu; 1679 uint32_t rtas_limit; 1680 hwaddr rtas_addr, fdt_addr; 1681 void *fdt; 1682 int rc; 1683 1684 spapr_caps_apply(spapr); 1685 1686 first_ppc_cpu = POWERPC_CPU(first_cpu); 1687 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1688 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1689 spapr->max_compat_pvr)) { 1690 /* 1691 * If using KVM with radix mode available, VCPUs can be started 1692 * without a HPT because KVM will start them in radix mode. 1693 * Set the GR bit in PATE so that we know there is no HPT. 1694 */ 1695 spapr->patb_entry = PATE1_GR; 1696 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1697 } else { 1698 spapr_setup_hpt_and_vrma(spapr); 1699 } 1700 1701 /* 1702 * If this reset wasn't generated by CAS, we should reset our 1703 * negotiated options and start from scratch 1704 */ 1705 if (!spapr->cas_reboot) { 1706 spapr_ovec_cleanup(spapr->ov5_cas); 1707 spapr->ov5_cas = spapr_ovec_new(); 1708 1709 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1710 } 1711 1712 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1713 spapr_irq_msi_reset(spapr); 1714 } 1715 1716 qemu_devices_reset(); 1717 1718 /* 1719 * This is fixing some of the default configuration of the XIVE 1720 * devices. To be called after the reset of the machine devices. 1721 */ 1722 spapr_irq_reset(spapr, &error_fatal); 1723 1724 /* 1725 * There is no CAS under qtest. Simulate one to please the code that 1726 * depends on spapr->ov5_cas. This is especially needed to test device 1727 * unplug, so we do that before resetting the DRCs. 1728 */ 1729 if (qtest_enabled()) { 1730 spapr_ovec_cleanup(spapr->ov5_cas); 1731 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1732 } 1733 1734 /* DRC reset may cause a device to be unplugged. This will cause troubles 1735 * if this device is used by another device (eg, a running vhost backend 1736 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1737 * situations, we reset DRCs after all devices have been reset. 1738 */ 1739 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1740 1741 spapr_clear_pending_events(spapr); 1742 1743 /* 1744 * We place the device tree and RTAS just below either the top of the RMA, 1745 * or just below 2GB, whichever is lower, so that it can be 1746 * processed with 32-bit real mode code if necessary 1747 */ 1748 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1749 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1750 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1751 1752 fdt = spapr_build_fdt(spapr); 1753 1754 spapr_load_rtas(spapr, fdt, rtas_addr); 1755 1756 rc = fdt_pack(fdt); 1757 1758 /* Should only fail if we've built a corrupted tree */ 1759 assert(rc == 0); 1760 1761 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1762 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1763 fdt_totalsize(fdt), FDT_MAX_SIZE); 1764 exit(1); 1765 } 1766 1767 /* Load the fdt */ 1768 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1769 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1770 g_free(spapr->fdt_blob); 1771 spapr->fdt_size = fdt_totalsize(fdt); 1772 spapr->fdt_initial_size = spapr->fdt_size; 1773 spapr->fdt_blob = fdt; 1774 1775 /* Set up the entry state */ 1776 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1777 first_ppc_cpu->env.gpr[5] = 0; 1778 1779 spapr->cas_reboot = false; 1780 } 1781 1782 static void spapr_create_nvram(SpaprMachineState *spapr) 1783 { 1784 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1785 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1786 1787 if (dinfo) { 1788 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1789 &error_fatal); 1790 } 1791 1792 qdev_init_nofail(dev); 1793 1794 spapr->nvram = (struct SpaprNvram *)dev; 1795 } 1796 1797 static void spapr_rtc_create(SpaprMachineState *spapr) 1798 { 1799 object_initialize_child(OBJECT(spapr), "rtc", 1800 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1801 &error_fatal, NULL); 1802 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1803 &error_fatal); 1804 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1805 "date", &error_fatal); 1806 } 1807 1808 /* Returns whether we want to use VGA or not */ 1809 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1810 { 1811 switch (vga_interface_type) { 1812 case VGA_NONE: 1813 return false; 1814 case VGA_DEVICE: 1815 return true; 1816 case VGA_STD: 1817 case VGA_VIRTIO: 1818 case VGA_CIRRUS: 1819 return pci_vga_init(pci_bus) != NULL; 1820 default: 1821 error_setg(errp, 1822 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1823 return false; 1824 } 1825 } 1826 1827 static int spapr_pre_load(void *opaque) 1828 { 1829 int rc; 1830 1831 rc = spapr_caps_pre_load(opaque); 1832 if (rc) { 1833 return rc; 1834 } 1835 1836 return 0; 1837 } 1838 1839 static int spapr_post_load(void *opaque, int version_id) 1840 { 1841 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1842 int err = 0; 1843 1844 err = spapr_caps_post_migration(spapr); 1845 if (err) { 1846 return err; 1847 } 1848 1849 /* 1850 * In earlier versions, there was no separate qdev for the PAPR 1851 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1852 * So when migrating from those versions, poke the incoming offset 1853 * value into the RTC device 1854 */ 1855 if (version_id < 3) { 1856 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1857 if (err) { 1858 return err; 1859 } 1860 } 1861 1862 if (kvm_enabled() && spapr->patb_entry) { 1863 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1864 bool radix = !!(spapr->patb_entry & PATE1_GR); 1865 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1866 1867 /* 1868 * Update LPCR:HR and UPRT as they may not be set properly in 1869 * the stream 1870 */ 1871 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1872 LPCR_HR | LPCR_UPRT); 1873 1874 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1875 if (err) { 1876 error_report("Process table config unsupported by the host"); 1877 return -EINVAL; 1878 } 1879 } 1880 1881 err = spapr_irq_post_load(spapr, version_id); 1882 if (err) { 1883 return err; 1884 } 1885 1886 return err; 1887 } 1888 1889 static int spapr_pre_save(void *opaque) 1890 { 1891 int rc; 1892 1893 rc = spapr_caps_pre_save(opaque); 1894 if (rc) { 1895 return rc; 1896 } 1897 1898 return 0; 1899 } 1900 1901 static bool version_before_3(void *opaque, int version_id) 1902 { 1903 return version_id < 3; 1904 } 1905 1906 static bool spapr_pending_events_needed(void *opaque) 1907 { 1908 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1909 return !QTAILQ_EMPTY(&spapr->pending_events); 1910 } 1911 1912 static const VMStateDescription vmstate_spapr_event_entry = { 1913 .name = "spapr_event_log_entry", 1914 .version_id = 1, 1915 .minimum_version_id = 1, 1916 .fields = (VMStateField[]) { 1917 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1918 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1919 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1920 NULL, extended_length), 1921 VMSTATE_END_OF_LIST() 1922 }, 1923 }; 1924 1925 static const VMStateDescription vmstate_spapr_pending_events = { 1926 .name = "spapr_pending_events", 1927 .version_id = 1, 1928 .minimum_version_id = 1, 1929 .needed = spapr_pending_events_needed, 1930 .fields = (VMStateField[]) { 1931 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1932 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1933 VMSTATE_END_OF_LIST() 1934 }, 1935 }; 1936 1937 static bool spapr_ov5_cas_needed(void *opaque) 1938 { 1939 SpaprMachineState *spapr = opaque; 1940 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1941 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1942 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1943 bool cas_needed; 1944 1945 /* Prior to the introduction of SpaprOptionVector, we had two option 1946 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1947 * Both of these options encode machine topology into the device-tree 1948 * in such a way that the now-booted OS should still be able to interact 1949 * appropriately with QEMU regardless of what options were actually 1950 * negotiatied on the source side. 1951 * 1952 * As such, we can avoid migrating the CAS-negotiated options if these 1953 * are the only options available on the current machine/platform. 1954 * Since these are the only options available for pseries-2.7 and 1955 * earlier, this allows us to maintain old->new/new->old migration 1956 * compatibility. 1957 * 1958 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1959 * via default pseries-2.8 machines and explicit command-line parameters. 1960 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1961 * of the actual CAS-negotiated values to continue working properly. For 1962 * example, availability of memory unplug depends on knowing whether 1963 * OV5_HP_EVT was negotiated via CAS. 1964 * 1965 * Thus, for any cases where the set of available CAS-negotiatable 1966 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1967 * include the CAS-negotiated options in the migration stream, unless 1968 * if they affect boot time behaviour only. 1969 */ 1970 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1971 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1972 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1973 1974 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1975 * the mask itself since in the future it's possible "legacy" bits may be 1976 * removed via machine options, which could generate a false positive 1977 * that breaks migration. 1978 */ 1979 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1980 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1981 1982 spapr_ovec_cleanup(ov5_mask); 1983 spapr_ovec_cleanup(ov5_legacy); 1984 spapr_ovec_cleanup(ov5_removed); 1985 1986 return cas_needed; 1987 } 1988 1989 static const VMStateDescription vmstate_spapr_ov5_cas = { 1990 .name = "spapr_option_vector_ov5_cas", 1991 .version_id = 1, 1992 .minimum_version_id = 1, 1993 .needed = spapr_ov5_cas_needed, 1994 .fields = (VMStateField[]) { 1995 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1996 vmstate_spapr_ovec, SpaprOptionVector), 1997 VMSTATE_END_OF_LIST() 1998 }, 1999 }; 2000 2001 static bool spapr_patb_entry_needed(void *opaque) 2002 { 2003 SpaprMachineState *spapr = opaque; 2004 2005 return !!spapr->patb_entry; 2006 } 2007 2008 static const VMStateDescription vmstate_spapr_patb_entry = { 2009 .name = "spapr_patb_entry", 2010 .version_id = 1, 2011 .minimum_version_id = 1, 2012 .needed = spapr_patb_entry_needed, 2013 .fields = (VMStateField[]) { 2014 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2015 VMSTATE_END_OF_LIST() 2016 }, 2017 }; 2018 2019 static bool spapr_irq_map_needed(void *opaque) 2020 { 2021 SpaprMachineState *spapr = opaque; 2022 2023 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2024 } 2025 2026 static const VMStateDescription vmstate_spapr_irq_map = { 2027 .name = "spapr_irq_map", 2028 .version_id = 1, 2029 .minimum_version_id = 1, 2030 .needed = spapr_irq_map_needed, 2031 .fields = (VMStateField[]) { 2032 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2033 VMSTATE_END_OF_LIST() 2034 }, 2035 }; 2036 2037 static bool spapr_dtb_needed(void *opaque) 2038 { 2039 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2040 2041 return smc->update_dt_enabled; 2042 } 2043 2044 static int spapr_dtb_pre_load(void *opaque) 2045 { 2046 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2047 2048 g_free(spapr->fdt_blob); 2049 spapr->fdt_blob = NULL; 2050 spapr->fdt_size = 0; 2051 2052 return 0; 2053 } 2054 2055 static const VMStateDescription vmstate_spapr_dtb = { 2056 .name = "spapr_dtb", 2057 .version_id = 1, 2058 .minimum_version_id = 1, 2059 .needed = spapr_dtb_needed, 2060 .pre_load = spapr_dtb_pre_load, 2061 .fields = (VMStateField[]) { 2062 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2063 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2064 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2065 fdt_size), 2066 VMSTATE_END_OF_LIST() 2067 }, 2068 }; 2069 2070 static const VMStateDescription vmstate_spapr = { 2071 .name = "spapr", 2072 .version_id = 3, 2073 .minimum_version_id = 1, 2074 .pre_load = spapr_pre_load, 2075 .post_load = spapr_post_load, 2076 .pre_save = spapr_pre_save, 2077 .fields = (VMStateField[]) { 2078 /* used to be @next_irq */ 2079 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2080 2081 /* RTC offset */ 2082 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2083 2084 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2085 VMSTATE_END_OF_LIST() 2086 }, 2087 .subsections = (const VMStateDescription*[]) { 2088 &vmstate_spapr_ov5_cas, 2089 &vmstate_spapr_patb_entry, 2090 &vmstate_spapr_pending_events, 2091 &vmstate_spapr_cap_htm, 2092 &vmstate_spapr_cap_vsx, 2093 &vmstate_spapr_cap_dfp, 2094 &vmstate_spapr_cap_cfpc, 2095 &vmstate_spapr_cap_sbbc, 2096 &vmstate_spapr_cap_ibs, 2097 &vmstate_spapr_irq_map, 2098 &vmstate_spapr_cap_nested_kvm_hv, 2099 &vmstate_spapr_dtb, 2100 &vmstate_spapr_cap_large_decr, 2101 &vmstate_spapr_cap_ccf_assist, 2102 NULL 2103 } 2104 }; 2105 2106 static int htab_save_setup(QEMUFile *f, void *opaque) 2107 { 2108 SpaprMachineState *spapr = opaque; 2109 2110 /* "Iteration" header */ 2111 if (!spapr->htab_shift) { 2112 qemu_put_be32(f, -1); 2113 } else { 2114 qemu_put_be32(f, spapr->htab_shift); 2115 } 2116 2117 if (spapr->htab) { 2118 spapr->htab_save_index = 0; 2119 spapr->htab_first_pass = true; 2120 } else { 2121 if (spapr->htab_shift) { 2122 assert(kvm_enabled()); 2123 } 2124 } 2125 2126 2127 return 0; 2128 } 2129 2130 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2131 int chunkstart, int n_valid, int n_invalid) 2132 { 2133 qemu_put_be32(f, chunkstart); 2134 qemu_put_be16(f, n_valid); 2135 qemu_put_be16(f, n_invalid); 2136 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2137 HASH_PTE_SIZE_64 * n_valid); 2138 } 2139 2140 static void htab_save_end_marker(QEMUFile *f) 2141 { 2142 qemu_put_be32(f, 0); 2143 qemu_put_be16(f, 0); 2144 qemu_put_be16(f, 0); 2145 } 2146 2147 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2148 int64_t max_ns) 2149 { 2150 bool has_timeout = max_ns != -1; 2151 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2152 int index = spapr->htab_save_index; 2153 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2154 2155 assert(spapr->htab_first_pass); 2156 2157 do { 2158 int chunkstart; 2159 2160 /* Consume invalid HPTEs */ 2161 while ((index < htabslots) 2162 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2163 CLEAN_HPTE(HPTE(spapr->htab, index)); 2164 index++; 2165 } 2166 2167 /* Consume valid HPTEs */ 2168 chunkstart = index; 2169 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2170 && HPTE_VALID(HPTE(spapr->htab, index))) { 2171 CLEAN_HPTE(HPTE(spapr->htab, index)); 2172 index++; 2173 } 2174 2175 if (index > chunkstart) { 2176 int n_valid = index - chunkstart; 2177 2178 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2179 2180 if (has_timeout && 2181 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2182 break; 2183 } 2184 } 2185 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2186 2187 if (index >= htabslots) { 2188 assert(index == htabslots); 2189 index = 0; 2190 spapr->htab_first_pass = false; 2191 } 2192 spapr->htab_save_index = index; 2193 } 2194 2195 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2196 int64_t max_ns) 2197 { 2198 bool final = max_ns < 0; 2199 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2200 int examined = 0, sent = 0; 2201 int index = spapr->htab_save_index; 2202 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2203 2204 assert(!spapr->htab_first_pass); 2205 2206 do { 2207 int chunkstart, invalidstart; 2208 2209 /* Consume non-dirty HPTEs */ 2210 while ((index < htabslots) 2211 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2212 index++; 2213 examined++; 2214 } 2215 2216 chunkstart = index; 2217 /* Consume valid dirty HPTEs */ 2218 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2219 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2220 && HPTE_VALID(HPTE(spapr->htab, index))) { 2221 CLEAN_HPTE(HPTE(spapr->htab, index)); 2222 index++; 2223 examined++; 2224 } 2225 2226 invalidstart = index; 2227 /* Consume invalid dirty HPTEs */ 2228 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2229 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2230 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2231 CLEAN_HPTE(HPTE(spapr->htab, index)); 2232 index++; 2233 examined++; 2234 } 2235 2236 if (index > chunkstart) { 2237 int n_valid = invalidstart - chunkstart; 2238 int n_invalid = index - invalidstart; 2239 2240 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2241 sent += index - chunkstart; 2242 2243 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2244 break; 2245 } 2246 } 2247 2248 if (examined >= htabslots) { 2249 break; 2250 } 2251 2252 if (index >= htabslots) { 2253 assert(index == htabslots); 2254 index = 0; 2255 } 2256 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2257 2258 if (index >= htabslots) { 2259 assert(index == htabslots); 2260 index = 0; 2261 } 2262 2263 spapr->htab_save_index = index; 2264 2265 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2266 } 2267 2268 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2269 #define MAX_KVM_BUF_SIZE 2048 2270 2271 static int htab_save_iterate(QEMUFile *f, void *opaque) 2272 { 2273 SpaprMachineState *spapr = opaque; 2274 int fd; 2275 int rc = 0; 2276 2277 /* Iteration header */ 2278 if (!spapr->htab_shift) { 2279 qemu_put_be32(f, -1); 2280 return 1; 2281 } else { 2282 qemu_put_be32(f, 0); 2283 } 2284 2285 if (!spapr->htab) { 2286 assert(kvm_enabled()); 2287 2288 fd = get_htab_fd(spapr); 2289 if (fd < 0) { 2290 return fd; 2291 } 2292 2293 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2294 if (rc < 0) { 2295 return rc; 2296 } 2297 } else if (spapr->htab_first_pass) { 2298 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2299 } else { 2300 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2301 } 2302 2303 htab_save_end_marker(f); 2304 2305 return rc; 2306 } 2307 2308 static int htab_save_complete(QEMUFile *f, void *opaque) 2309 { 2310 SpaprMachineState *spapr = opaque; 2311 int fd; 2312 2313 /* Iteration header */ 2314 if (!spapr->htab_shift) { 2315 qemu_put_be32(f, -1); 2316 return 0; 2317 } else { 2318 qemu_put_be32(f, 0); 2319 } 2320 2321 if (!spapr->htab) { 2322 int rc; 2323 2324 assert(kvm_enabled()); 2325 2326 fd = get_htab_fd(spapr); 2327 if (fd < 0) { 2328 return fd; 2329 } 2330 2331 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2332 if (rc < 0) { 2333 return rc; 2334 } 2335 } else { 2336 if (spapr->htab_first_pass) { 2337 htab_save_first_pass(f, spapr, -1); 2338 } 2339 htab_save_later_pass(f, spapr, -1); 2340 } 2341 2342 /* End marker */ 2343 htab_save_end_marker(f); 2344 2345 return 0; 2346 } 2347 2348 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2349 { 2350 SpaprMachineState *spapr = opaque; 2351 uint32_t section_hdr; 2352 int fd = -1; 2353 Error *local_err = NULL; 2354 2355 if (version_id < 1 || version_id > 1) { 2356 error_report("htab_load() bad version"); 2357 return -EINVAL; 2358 } 2359 2360 section_hdr = qemu_get_be32(f); 2361 2362 if (section_hdr == -1) { 2363 spapr_free_hpt(spapr); 2364 return 0; 2365 } 2366 2367 if (section_hdr) { 2368 /* First section gives the htab size */ 2369 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2370 if (local_err) { 2371 error_report_err(local_err); 2372 return -EINVAL; 2373 } 2374 return 0; 2375 } 2376 2377 if (!spapr->htab) { 2378 assert(kvm_enabled()); 2379 2380 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2381 if (fd < 0) { 2382 error_report_err(local_err); 2383 return fd; 2384 } 2385 } 2386 2387 while (true) { 2388 uint32_t index; 2389 uint16_t n_valid, n_invalid; 2390 2391 index = qemu_get_be32(f); 2392 n_valid = qemu_get_be16(f); 2393 n_invalid = qemu_get_be16(f); 2394 2395 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2396 /* End of Stream */ 2397 break; 2398 } 2399 2400 if ((index + n_valid + n_invalid) > 2401 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2402 /* Bad index in stream */ 2403 error_report( 2404 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2405 index, n_valid, n_invalid, spapr->htab_shift); 2406 return -EINVAL; 2407 } 2408 2409 if (spapr->htab) { 2410 if (n_valid) { 2411 qemu_get_buffer(f, HPTE(spapr->htab, index), 2412 HASH_PTE_SIZE_64 * n_valid); 2413 } 2414 if (n_invalid) { 2415 memset(HPTE(spapr->htab, index + n_valid), 0, 2416 HASH_PTE_SIZE_64 * n_invalid); 2417 } 2418 } else { 2419 int rc; 2420 2421 assert(fd >= 0); 2422 2423 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2424 if (rc < 0) { 2425 return rc; 2426 } 2427 } 2428 } 2429 2430 if (!spapr->htab) { 2431 assert(fd >= 0); 2432 close(fd); 2433 } 2434 2435 return 0; 2436 } 2437 2438 static void htab_save_cleanup(void *opaque) 2439 { 2440 SpaprMachineState *spapr = opaque; 2441 2442 close_htab_fd(spapr); 2443 } 2444 2445 static SaveVMHandlers savevm_htab_handlers = { 2446 .save_setup = htab_save_setup, 2447 .save_live_iterate = htab_save_iterate, 2448 .save_live_complete_precopy = htab_save_complete, 2449 .save_cleanup = htab_save_cleanup, 2450 .load_state = htab_load, 2451 }; 2452 2453 static void spapr_boot_set(void *opaque, const char *boot_device, 2454 Error **errp) 2455 { 2456 MachineState *machine = MACHINE(opaque); 2457 machine->boot_order = g_strdup(boot_device); 2458 } 2459 2460 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2461 { 2462 MachineState *machine = MACHINE(spapr); 2463 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2464 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2465 int i; 2466 2467 for (i = 0; i < nr_lmbs; i++) { 2468 uint64_t addr; 2469 2470 addr = i * lmb_size + machine->device_memory->base; 2471 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2472 addr / lmb_size); 2473 } 2474 } 2475 2476 /* 2477 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2478 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2479 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2480 */ 2481 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2482 { 2483 int i; 2484 2485 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2486 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2487 " is not aligned to %" PRIu64 " MiB", 2488 machine->ram_size, 2489 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2490 return; 2491 } 2492 2493 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2494 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2495 " is not aligned to %" PRIu64 " MiB", 2496 machine->ram_size, 2497 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2498 return; 2499 } 2500 2501 for (i = 0; i < nb_numa_nodes; i++) { 2502 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2503 error_setg(errp, 2504 "Node %d memory size 0x%" PRIx64 2505 " is not aligned to %" PRIu64 " MiB", 2506 i, numa_info[i].node_mem, 2507 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2508 return; 2509 } 2510 } 2511 } 2512 2513 /* find cpu slot in machine->possible_cpus by core_id */ 2514 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2515 { 2516 int index = id / smp_threads; 2517 2518 if (index >= ms->possible_cpus->len) { 2519 return NULL; 2520 } 2521 if (idx) { 2522 *idx = index; 2523 } 2524 return &ms->possible_cpus->cpus[index]; 2525 } 2526 2527 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2528 { 2529 Error *local_err = NULL; 2530 bool vsmt_user = !!spapr->vsmt; 2531 int kvm_smt = kvmppc_smt_threads(); 2532 int ret; 2533 2534 if (!kvm_enabled() && (smp_threads > 1)) { 2535 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2536 "on a pseries machine"); 2537 goto out; 2538 } 2539 if (!is_power_of_2(smp_threads)) { 2540 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2541 "machine because it must be a power of 2", smp_threads); 2542 goto out; 2543 } 2544 2545 /* Detemine the VSMT mode to use: */ 2546 if (vsmt_user) { 2547 if (spapr->vsmt < smp_threads) { 2548 error_setg(&local_err, "Cannot support VSMT mode %d" 2549 " because it must be >= threads/core (%d)", 2550 spapr->vsmt, smp_threads); 2551 goto out; 2552 } 2553 /* In this case, spapr->vsmt has been set by the command line */ 2554 } else { 2555 /* 2556 * Default VSMT value is tricky, because we need it to be as 2557 * consistent as possible (for migration), but this requires 2558 * changing it for at least some existing cases. We pick 8 as 2559 * the value that we'd get with KVM on POWER8, the 2560 * overwhelmingly common case in production systems. 2561 */ 2562 spapr->vsmt = MAX(8, smp_threads); 2563 } 2564 2565 /* KVM: If necessary, set the SMT mode: */ 2566 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2567 ret = kvmppc_set_smt_threads(spapr->vsmt); 2568 if (ret) { 2569 /* Looks like KVM isn't able to change VSMT mode */ 2570 error_setg(&local_err, 2571 "Failed to set KVM's VSMT mode to %d (errno %d)", 2572 spapr->vsmt, ret); 2573 /* We can live with that if the default one is big enough 2574 * for the number of threads, and a submultiple of the one 2575 * we want. In this case we'll waste some vcpu ids, but 2576 * behaviour will be correct */ 2577 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2578 warn_report_err(local_err); 2579 local_err = NULL; 2580 goto out; 2581 } else { 2582 if (!vsmt_user) { 2583 error_append_hint(&local_err, 2584 "On PPC, a VM with %d threads/core" 2585 " on a host with %d threads/core" 2586 " requires the use of VSMT mode %d.\n", 2587 smp_threads, kvm_smt, spapr->vsmt); 2588 } 2589 kvmppc_hint_smt_possible(&local_err); 2590 goto out; 2591 } 2592 } 2593 } 2594 /* else TCG: nothing to do currently */ 2595 out: 2596 error_propagate(errp, local_err); 2597 } 2598 2599 static void spapr_init_cpus(SpaprMachineState *spapr) 2600 { 2601 MachineState *machine = MACHINE(spapr); 2602 MachineClass *mc = MACHINE_GET_CLASS(machine); 2603 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2604 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2605 const CPUArchIdList *possible_cpus; 2606 int boot_cores_nr = smp_cpus / smp_threads; 2607 int i; 2608 2609 possible_cpus = mc->possible_cpu_arch_ids(machine); 2610 if (mc->has_hotpluggable_cpus) { 2611 if (smp_cpus % smp_threads) { 2612 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2613 smp_cpus, smp_threads); 2614 exit(1); 2615 } 2616 if (max_cpus % smp_threads) { 2617 error_report("max_cpus (%u) must be multiple of threads (%u)", 2618 max_cpus, smp_threads); 2619 exit(1); 2620 } 2621 } else { 2622 if (max_cpus != smp_cpus) { 2623 error_report("This machine version does not support CPU hotplug"); 2624 exit(1); 2625 } 2626 boot_cores_nr = possible_cpus->len; 2627 } 2628 2629 if (smc->pre_2_10_has_unused_icps) { 2630 int i; 2631 2632 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2633 /* Dummy entries get deregistered when real ICPState objects 2634 * are registered during CPU core hotplug. 2635 */ 2636 pre_2_10_vmstate_register_dummy_icp(i); 2637 } 2638 } 2639 2640 for (i = 0; i < possible_cpus->len; i++) { 2641 int core_id = i * smp_threads; 2642 2643 if (mc->has_hotpluggable_cpus) { 2644 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2645 spapr_vcpu_id(spapr, core_id)); 2646 } 2647 2648 if (i < boot_cores_nr) { 2649 Object *core = object_new(type); 2650 int nr_threads = smp_threads; 2651 2652 /* Handle the partially filled core for older machine types */ 2653 if ((i + 1) * smp_threads >= smp_cpus) { 2654 nr_threads = smp_cpus - i * smp_threads; 2655 } 2656 2657 object_property_set_int(core, nr_threads, "nr-threads", 2658 &error_fatal); 2659 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2660 &error_fatal); 2661 object_property_set_bool(core, true, "realized", &error_fatal); 2662 2663 object_unref(core); 2664 } 2665 } 2666 } 2667 2668 static PCIHostState *spapr_create_default_phb(void) 2669 { 2670 DeviceState *dev; 2671 2672 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2673 qdev_prop_set_uint32(dev, "index", 0); 2674 qdev_init_nofail(dev); 2675 2676 return PCI_HOST_BRIDGE(dev); 2677 } 2678 2679 /* pSeries LPAR / sPAPR hardware init */ 2680 static void spapr_machine_init(MachineState *machine) 2681 { 2682 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2683 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2684 const char *kernel_filename = machine->kernel_filename; 2685 const char *initrd_filename = machine->initrd_filename; 2686 PCIHostState *phb; 2687 int i; 2688 MemoryRegion *sysmem = get_system_memory(); 2689 MemoryRegion *ram = g_new(MemoryRegion, 1); 2690 hwaddr node0_size = spapr_node0_size(machine); 2691 long load_limit, fw_size; 2692 char *filename; 2693 Error *resize_hpt_err = NULL; 2694 2695 msi_nonbroken = true; 2696 2697 QLIST_INIT(&spapr->phbs); 2698 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2699 2700 /* Determine capabilities to run with */ 2701 spapr_caps_init(spapr); 2702 2703 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2704 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2705 /* 2706 * If the user explicitly requested a mode we should either 2707 * supply it, or fail completely (which we do below). But if 2708 * it's not set explicitly, we reset our mode to something 2709 * that works 2710 */ 2711 if (resize_hpt_err) { 2712 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2713 error_free(resize_hpt_err); 2714 resize_hpt_err = NULL; 2715 } else { 2716 spapr->resize_hpt = smc->resize_hpt_default; 2717 } 2718 } 2719 2720 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2721 2722 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2723 /* 2724 * User requested HPT resize, but this host can't supply it. Bail out 2725 */ 2726 error_report_err(resize_hpt_err); 2727 exit(1); 2728 } 2729 2730 spapr->rma_size = node0_size; 2731 2732 /* With KVM, we don't actually know whether KVM supports an 2733 * unbounded RMA (PR KVM) or is limited by the hash table size 2734 * (HV KVM using VRMA), so we always assume the latter 2735 * 2736 * In that case, we also limit the initial allocations for RTAS 2737 * etc... to 256M since we have no way to know what the VRMA size 2738 * is going to be as it depends on the size of the hash table 2739 * which isn't determined yet. 2740 */ 2741 if (kvm_enabled()) { 2742 spapr->vrma_adjust = 1; 2743 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2744 } 2745 2746 /* Actually we don't support unbounded RMA anymore since we added 2747 * proper emulation of HV mode. The max we can get is 16G which 2748 * also happens to be what we configure for PAPR mode so make sure 2749 * we don't do anything bigger than that 2750 */ 2751 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2752 2753 if (spapr->rma_size > node0_size) { 2754 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2755 spapr->rma_size); 2756 exit(1); 2757 } 2758 2759 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2760 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2761 2762 /* 2763 * VSMT must be set in order to be able to compute VCPU ids, ie to 2764 * call spapr_max_server_number() or spapr_vcpu_id(). 2765 */ 2766 spapr_set_vsmt_mode(spapr, &error_fatal); 2767 2768 /* Set up Interrupt Controller before we create the VCPUs */ 2769 spapr_irq_init(spapr, &error_fatal); 2770 2771 /* Set up containers for ibm,client-architecture-support negotiated options 2772 */ 2773 spapr->ov5 = spapr_ovec_new(); 2774 spapr->ov5_cas = spapr_ovec_new(); 2775 2776 if (smc->dr_lmb_enabled) { 2777 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2778 spapr_validate_node_memory(machine, &error_fatal); 2779 } 2780 2781 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2782 2783 /* advertise support for dedicated HP event source to guests */ 2784 if (spapr->use_hotplug_event_source) { 2785 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2786 } 2787 2788 /* advertise support for HPT resizing */ 2789 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2790 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2791 } 2792 2793 /* advertise support for ibm,dyamic-memory-v2 */ 2794 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2795 2796 /* advertise XIVE on POWER9 machines */ 2797 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2798 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 2799 0, spapr->max_compat_pvr)) { 2800 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2801 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) { 2802 error_report("XIVE-only machines require a POWER9 CPU"); 2803 exit(1); 2804 } 2805 } 2806 2807 /* init CPUs */ 2808 spapr_init_cpus(spapr); 2809 2810 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2811 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2812 spapr->max_compat_pvr)) { 2813 /* KVM and TCG always allow GTSE with radix... */ 2814 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2815 } 2816 /* ... but not with hash (currently). */ 2817 2818 if (kvm_enabled()) { 2819 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2820 kvmppc_enable_logical_ci_hcalls(); 2821 kvmppc_enable_set_mode_hcall(); 2822 2823 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2824 kvmppc_enable_clear_ref_mod_hcalls(); 2825 2826 /* Enable H_PAGE_INIT */ 2827 kvmppc_enable_h_page_init(); 2828 } 2829 2830 /* allocate RAM */ 2831 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2832 machine->ram_size); 2833 memory_region_add_subregion(sysmem, 0, ram); 2834 2835 /* always allocate the device memory information */ 2836 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2837 2838 /* initialize hotplug memory address space */ 2839 if (machine->ram_size < machine->maxram_size) { 2840 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2841 /* 2842 * Limit the number of hotpluggable memory slots to half the number 2843 * slots that KVM supports, leaving the other half for PCI and other 2844 * devices. However ensure that number of slots doesn't drop below 32. 2845 */ 2846 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2847 SPAPR_MAX_RAM_SLOTS; 2848 2849 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2850 max_memslots = SPAPR_MAX_RAM_SLOTS; 2851 } 2852 if (machine->ram_slots > max_memslots) { 2853 error_report("Specified number of memory slots %" 2854 PRIu64" exceeds max supported %d", 2855 machine->ram_slots, max_memslots); 2856 exit(1); 2857 } 2858 2859 machine->device_memory->base = ROUND_UP(machine->ram_size, 2860 SPAPR_DEVICE_MEM_ALIGN); 2861 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2862 "device-memory", device_mem_size); 2863 memory_region_add_subregion(sysmem, machine->device_memory->base, 2864 &machine->device_memory->mr); 2865 } 2866 2867 if (smc->dr_lmb_enabled) { 2868 spapr_create_lmb_dr_connectors(spapr); 2869 } 2870 2871 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2872 if (!filename) { 2873 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2874 exit(1); 2875 } 2876 spapr->rtas_size = get_image_size(filename); 2877 if (spapr->rtas_size < 0) { 2878 error_report("Could not get size of LPAR rtas '%s'", filename); 2879 exit(1); 2880 } 2881 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2882 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2883 error_report("Could not load LPAR rtas '%s'", filename); 2884 exit(1); 2885 } 2886 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2887 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2888 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2889 exit(1); 2890 } 2891 g_free(filename); 2892 2893 /* Set up RTAS event infrastructure */ 2894 spapr_events_init(spapr); 2895 2896 /* Set up the RTC RTAS interfaces */ 2897 spapr_rtc_create(spapr); 2898 2899 /* Set up VIO bus */ 2900 spapr->vio_bus = spapr_vio_bus_init(); 2901 2902 for (i = 0; i < serial_max_hds(); i++) { 2903 if (serial_hd(i)) { 2904 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2905 } 2906 } 2907 2908 /* We always have at least the nvram device on VIO */ 2909 spapr_create_nvram(spapr); 2910 2911 /* 2912 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2913 * connectors (described in root DT node's "ibm,drc-types" property) 2914 * are pre-initialized here. additional child connectors (such as 2915 * connectors for a PHBs PCI slots) are added as needed during their 2916 * parent's realization. 2917 */ 2918 if (smc->dr_phb_enabled) { 2919 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2920 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2921 } 2922 } 2923 2924 /* Set up PCI */ 2925 spapr_pci_rtas_init(); 2926 2927 phb = spapr_create_default_phb(); 2928 2929 for (i = 0; i < nb_nics; i++) { 2930 NICInfo *nd = &nd_table[i]; 2931 2932 if (!nd->model) { 2933 nd->model = g_strdup("spapr-vlan"); 2934 } 2935 2936 if (g_str_equal(nd->model, "spapr-vlan") || 2937 g_str_equal(nd->model, "ibmveth")) { 2938 spapr_vlan_create(spapr->vio_bus, nd); 2939 } else { 2940 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2941 } 2942 } 2943 2944 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2945 spapr_vscsi_create(spapr->vio_bus); 2946 } 2947 2948 /* Graphics */ 2949 if (spapr_vga_init(phb->bus, &error_fatal)) { 2950 spapr->has_graphics = true; 2951 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2952 } 2953 2954 if (machine->usb) { 2955 if (smc->use_ohci_by_default) { 2956 pci_create_simple(phb->bus, -1, "pci-ohci"); 2957 } else { 2958 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2959 } 2960 2961 if (spapr->has_graphics) { 2962 USBBus *usb_bus = usb_bus_find(-1); 2963 2964 usb_create_simple(usb_bus, "usb-kbd"); 2965 usb_create_simple(usb_bus, "usb-mouse"); 2966 } 2967 } 2968 2969 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2970 error_report( 2971 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2972 MIN_RMA_SLOF); 2973 exit(1); 2974 } 2975 2976 if (kernel_filename) { 2977 uint64_t lowaddr = 0; 2978 2979 spapr->kernel_size = load_elf(kernel_filename, NULL, 2980 translate_kernel_address, NULL, 2981 NULL, &lowaddr, NULL, 1, 2982 PPC_ELF_MACHINE, 0, 0); 2983 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2984 spapr->kernel_size = load_elf(kernel_filename, NULL, 2985 translate_kernel_address, NULL, NULL, 2986 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2987 0, 0); 2988 spapr->kernel_le = spapr->kernel_size > 0; 2989 } 2990 if (spapr->kernel_size < 0) { 2991 error_report("error loading %s: %s", kernel_filename, 2992 load_elf_strerror(spapr->kernel_size)); 2993 exit(1); 2994 } 2995 2996 /* load initrd */ 2997 if (initrd_filename) { 2998 /* Try to locate the initrd in the gap between the kernel 2999 * and the firmware. Add a bit of space just in case 3000 */ 3001 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3002 + 0x1ffff) & ~0xffff; 3003 spapr->initrd_size = load_image_targphys(initrd_filename, 3004 spapr->initrd_base, 3005 load_limit 3006 - spapr->initrd_base); 3007 if (spapr->initrd_size < 0) { 3008 error_report("could not load initial ram disk '%s'", 3009 initrd_filename); 3010 exit(1); 3011 } 3012 } 3013 } 3014 3015 if (bios_name == NULL) { 3016 bios_name = FW_FILE_NAME; 3017 } 3018 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3019 if (!filename) { 3020 error_report("Could not find LPAR firmware '%s'", bios_name); 3021 exit(1); 3022 } 3023 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3024 if (fw_size <= 0) { 3025 error_report("Could not load LPAR firmware '%s'", filename); 3026 exit(1); 3027 } 3028 g_free(filename); 3029 3030 /* FIXME: Should register things through the MachineState's qdev 3031 * interface, this is a legacy from the sPAPREnvironment structure 3032 * which predated MachineState but had a similar function */ 3033 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3034 register_savevm_live(NULL, "spapr/htab", -1, 1, 3035 &savevm_htab_handlers, spapr); 3036 3037 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3038 &error_fatal); 3039 3040 qemu_register_boot_set(spapr_boot_set, spapr); 3041 3042 if (kvm_enabled()) { 3043 /* to stop and start vmclock */ 3044 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3045 &spapr->tb); 3046 3047 kvmppc_spapr_enable_inkernel_multitce(); 3048 } 3049 } 3050 3051 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3052 { 3053 if (!vm_type) { 3054 return 0; 3055 } 3056 3057 if (!strcmp(vm_type, "HV")) { 3058 return 1; 3059 } 3060 3061 if (!strcmp(vm_type, "PR")) { 3062 return 2; 3063 } 3064 3065 error_report("Unknown kvm-type specified '%s'", vm_type); 3066 exit(1); 3067 } 3068 3069 /* 3070 * Implementation of an interface to adjust firmware path 3071 * for the bootindex property handling. 3072 */ 3073 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3074 DeviceState *dev) 3075 { 3076 #define CAST(type, obj, name) \ 3077 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3078 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3079 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3080 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3081 3082 if (d) { 3083 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3084 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3085 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3086 3087 if (spapr) { 3088 /* 3089 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3090 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3091 * 0x8000 | (target << 8) | (bus << 5) | lun 3092 * (see the "Logical unit addressing format" table in SAM5) 3093 */ 3094 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3095 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3096 (uint64_t)id << 48); 3097 } else if (virtio) { 3098 /* 3099 * We use SRP luns of the form 01000000 | (target << 8) | lun 3100 * in the top 32 bits of the 64-bit LUN 3101 * Note: the quote above is from SLOF and it is wrong, 3102 * the actual binding is: 3103 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3104 */ 3105 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3106 if (d->lun >= 256) { 3107 /* Use the LUN "flat space addressing method" */ 3108 id |= 0x4000; 3109 } 3110 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3111 (uint64_t)id << 32); 3112 } else if (usb) { 3113 /* 3114 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3115 * in the top 32 bits of the 64-bit LUN 3116 */ 3117 unsigned usb_port = atoi(usb->port->path); 3118 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3119 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3120 (uint64_t)id << 32); 3121 } 3122 } 3123 3124 /* 3125 * SLOF probes the USB devices, and if it recognizes that the device is a 3126 * storage device, it changes its name to "storage" instead of "usb-host", 3127 * and additionally adds a child node for the SCSI LUN, so the correct 3128 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3129 */ 3130 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3131 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3132 if (usb_host_dev_is_scsi_storage(usbdev)) { 3133 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3134 } 3135 } 3136 3137 if (phb) { 3138 /* Replace "pci" with "pci@800000020000000" */ 3139 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3140 } 3141 3142 if (vsc) { 3143 /* Same logic as virtio above */ 3144 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3145 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3146 } 3147 3148 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3149 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3150 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3151 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3152 } 3153 3154 return NULL; 3155 } 3156 3157 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3158 { 3159 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3160 3161 return g_strdup(spapr->kvm_type); 3162 } 3163 3164 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3165 { 3166 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3167 3168 g_free(spapr->kvm_type); 3169 spapr->kvm_type = g_strdup(value); 3170 } 3171 3172 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3173 { 3174 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3175 3176 return spapr->use_hotplug_event_source; 3177 } 3178 3179 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3180 Error **errp) 3181 { 3182 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3183 3184 spapr->use_hotplug_event_source = value; 3185 } 3186 3187 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3188 { 3189 return true; 3190 } 3191 3192 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3193 { 3194 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3195 3196 switch (spapr->resize_hpt) { 3197 case SPAPR_RESIZE_HPT_DEFAULT: 3198 return g_strdup("default"); 3199 case SPAPR_RESIZE_HPT_DISABLED: 3200 return g_strdup("disabled"); 3201 case SPAPR_RESIZE_HPT_ENABLED: 3202 return g_strdup("enabled"); 3203 case SPAPR_RESIZE_HPT_REQUIRED: 3204 return g_strdup("required"); 3205 } 3206 g_assert_not_reached(); 3207 } 3208 3209 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3210 { 3211 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3212 3213 if (strcmp(value, "default") == 0) { 3214 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3215 } else if (strcmp(value, "disabled") == 0) { 3216 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3217 } else if (strcmp(value, "enabled") == 0) { 3218 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3219 } else if (strcmp(value, "required") == 0) { 3220 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3221 } else { 3222 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3223 } 3224 } 3225 3226 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3227 void *opaque, Error **errp) 3228 { 3229 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3230 } 3231 3232 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3233 void *opaque, Error **errp) 3234 { 3235 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3236 } 3237 3238 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3239 { 3240 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3241 3242 if (spapr->irq == &spapr_irq_xics_legacy) { 3243 return g_strdup("legacy"); 3244 } else if (spapr->irq == &spapr_irq_xics) { 3245 return g_strdup("xics"); 3246 } else if (spapr->irq == &spapr_irq_xive) { 3247 return g_strdup("xive"); 3248 } else if (spapr->irq == &spapr_irq_dual) { 3249 return g_strdup("dual"); 3250 } 3251 g_assert_not_reached(); 3252 } 3253 3254 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3255 { 3256 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3257 3258 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3259 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3260 return; 3261 } 3262 3263 /* The legacy IRQ backend can not be set */ 3264 if (strcmp(value, "xics") == 0) { 3265 spapr->irq = &spapr_irq_xics; 3266 } else if (strcmp(value, "xive") == 0) { 3267 spapr->irq = &spapr_irq_xive; 3268 } else if (strcmp(value, "dual") == 0) { 3269 spapr->irq = &spapr_irq_dual; 3270 } else { 3271 error_setg(errp, "Bad value for \"ic-mode\" property"); 3272 } 3273 } 3274 3275 static char *spapr_get_host_model(Object *obj, Error **errp) 3276 { 3277 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3278 3279 return g_strdup(spapr->host_model); 3280 } 3281 3282 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3283 { 3284 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3285 3286 g_free(spapr->host_model); 3287 spapr->host_model = g_strdup(value); 3288 } 3289 3290 static char *spapr_get_host_serial(Object *obj, Error **errp) 3291 { 3292 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3293 3294 return g_strdup(spapr->host_serial); 3295 } 3296 3297 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3298 { 3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3300 3301 g_free(spapr->host_serial); 3302 spapr->host_serial = g_strdup(value); 3303 } 3304 3305 static void spapr_instance_init(Object *obj) 3306 { 3307 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3308 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3309 3310 spapr->htab_fd = -1; 3311 spapr->use_hotplug_event_source = true; 3312 object_property_add_str(obj, "kvm-type", 3313 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3314 object_property_set_description(obj, "kvm-type", 3315 "Specifies the KVM virtualization mode (HV, PR)", 3316 NULL); 3317 object_property_add_bool(obj, "modern-hotplug-events", 3318 spapr_get_modern_hotplug_events, 3319 spapr_set_modern_hotplug_events, 3320 NULL); 3321 object_property_set_description(obj, "modern-hotplug-events", 3322 "Use dedicated hotplug event mechanism in" 3323 " place of standard EPOW events when possible" 3324 " (required for memory hot-unplug support)", 3325 NULL); 3326 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3327 "Maximum permitted CPU compatibility mode", 3328 &error_fatal); 3329 3330 object_property_add_str(obj, "resize-hpt", 3331 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3332 object_property_set_description(obj, "resize-hpt", 3333 "Resizing of the Hash Page Table (enabled, disabled, required)", 3334 NULL); 3335 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3336 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3337 object_property_set_description(obj, "vsmt", 3338 "Virtual SMT: KVM behaves as if this were" 3339 " the host's SMT mode", &error_abort); 3340 object_property_add_bool(obj, "vfio-no-msix-emulation", 3341 spapr_get_msix_emulation, NULL, NULL); 3342 3343 /* The machine class defines the default interrupt controller mode */ 3344 spapr->irq = smc->irq; 3345 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3346 spapr_set_ic_mode, NULL); 3347 object_property_set_description(obj, "ic-mode", 3348 "Specifies the interrupt controller mode (xics, xive, dual)", 3349 NULL); 3350 3351 object_property_add_str(obj, "host-model", 3352 spapr_get_host_model, spapr_set_host_model, 3353 &error_abort); 3354 object_property_set_description(obj, "host-model", 3355 "Set host's model-id to use - none|passthrough|string", &error_abort); 3356 object_property_add_str(obj, "host-serial", 3357 spapr_get_host_serial, spapr_set_host_serial, 3358 &error_abort); 3359 object_property_set_description(obj, "host-serial", 3360 "Set host's system-id to use - none|passthrough|string", &error_abort); 3361 } 3362 3363 static void spapr_machine_finalizefn(Object *obj) 3364 { 3365 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3366 3367 g_free(spapr->kvm_type); 3368 } 3369 3370 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3371 { 3372 cpu_synchronize_state(cs); 3373 ppc_cpu_do_system_reset(cs); 3374 } 3375 3376 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3377 { 3378 CPUState *cs; 3379 3380 CPU_FOREACH(cs) { 3381 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3382 } 3383 } 3384 3385 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3386 void *fdt, int *fdt_start_offset, Error **errp) 3387 { 3388 uint64_t addr; 3389 uint32_t node; 3390 3391 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3392 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3393 &error_abort); 3394 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3395 SPAPR_MEMORY_BLOCK_SIZE); 3396 return 0; 3397 } 3398 3399 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3400 bool dedicated_hp_event_source, Error **errp) 3401 { 3402 SpaprDrc *drc; 3403 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3404 int i; 3405 uint64_t addr = addr_start; 3406 bool hotplugged = spapr_drc_hotplugged(dev); 3407 Error *local_err = NULL; 3408 3409 for (i = 0; i < nr_lmbs; i++) { 3410 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3411 addr / SPAPR_MEMORY_BLOCK_SIZE); 3412 g_assert(drc); 3413 3414 spapr_drc_attach(drc, dev, &local_err); 3415 if (local_err) { 3416 while (addr > addr_start) { 3417 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3419 addr / SPAPR_MEMORY_BLOCK_SIZE); 3420 spapr_drc_detach(drc); 3421 } 3422 error_propagate(errp, local_err); 3423 return; 3424 } 3425 if (!hotplugged) { 3426 spapr_drc_reset(drc); 3427 } 3428 addr += SPAPR_MEMORY_BLOCK_SIZE; 3429 } 3430 /* send hotplug notification to the 3431 * guest only in case of hotplugged memory 3432 */ 3433 if (hotplugged) { 3434 if (dedicated_hp_event_source) { 3435 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3436 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3437 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3438 nr_lmbs, 3439 spapr_drc_index(drc)); 3440 } else { 3441 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3442 nr_lmbs); 3443 } 3444 } 3445 } 3446 3447 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3448 Error **errp) 3449 { 3450 Error *local_err = NULL; 3451 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3452 PCDIMMDevice *dimm = PC_DIMM(dev); 3453 uint64_t size, addr; 3454 3455 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3456 3457 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3458 if (local_err) { 3459 goto out; 3460 } 3461 3462 addr = object_property_get_uint(OBJECT(dimm), 3463 PC_DIMM_ADDR_PROP, &local_err); 3464 if (local_err) { 3465 goto out_unplug; 3466 } 3467 3468 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3469 &local_err); 3470 if (local_err) { 3471 goto out_unplug; 3472 } 3473 3474 return; 3475 3476 out_unplug: 3477 pc_dimm_unplug(dimm, MACHINE(ms)); 3478 out: 3479 error_propagate(errp, local_err); 3480 } 3481 3482 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3483 Error **errp) 3484 { 3485 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3486 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3487 PCDIMMDevice *dimm = PC_DIMM(dev); 3488 Error *local_err = NULL; 3489 uint64_t size; 3490 Object *memdev; 3491 hwaddr pagesize; 3492 3493 if (!smc->dr_lmb_enabled) { 3494 error_setg(errp, "Memory hotplug not supported for this machine"); 3495 return; 3496 } 3497 3498 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3499 if (local_err) { 3500 error_propagate(errp, local_err); 3501 return; 3502 } 3503 3504 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3505 error_setg(errp, "Hotplugged memory size must be a multiple of " 3506 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3507 return; 3508 } 3509 3510 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3511 &error_abort); 3512 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3513 spapr_check_pagesize(spapr, pagesize, &local_err); 3514 if (local_err) { 3515 error_propagate(errp, local_err); 3516 return; 3517 } 3518 3519 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3520 } 3521 3522 struct SpaprDimmState { 3523 PCDIMMDevice *dimm; 3524 uint32_t nr_lmbs; 3525 QTAILQ_ENTRY(SpaprDimmState) next; 3526 }; 3527 3528 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3529 PCDIMMDevice *dimm) 3530 { 3531 SpaprDimmState *dimm_state = NULL; 3532 3533 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3534 if (dimm_state->dimm == dimm) { 3535 break; 3536 } 3537 } 3538 return dimm_state; 3539 } 3540 3541 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3542 uint32_t nr_lmbs, 3543 PCDIMMDevice *dimm) 3544 { 3545 SpaprDimmState *ds = NULL; 3546 3547 /* 3548 * If this request is for a DIMM whose removal had failed earlier 3549 * (due to guest's refusal to remove the LMBs), we would have this 3550 * dimm already in the pending_dimm_unplugs list. In that 3551 * case don't add again. 3552 */ 3553 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3554 if (!ds) { 3555 ds = g_malloc0(sizeof(SpaprDimmState)); 3556 ds->nr_lmbs = nr_lmbs; 3557 ds->dimm = dimm; 3558 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3559 } 3560 return ds; 3561 } 3562 3563 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3564 SpaprDimmState *dimm_state) 3565 { 3566 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3567 g_free(dimm_state); 3568 } 3569 3570 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3571 PCDIMMDevice *dimm) 3572 { 3573 SpaprDrc *drc; 3574 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3575 &error_abort); 3576 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3577 uint32_t avail_lmbs = 0; 3578 uint64_t addr_start, addr; 3579 int i; 3580 3581 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3582 &error_abort); 3583 3584 addr = addr_start; 3585 for (i = 0; i < nr_lmbs; i++) { 3586 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3587 addr / SPAPR_MEMORY_BLOCK_SIZE); 3588 g_assert(drc); 3589 if (drc->dev) { 3590 avail_lmbs++; 3591 } 3592 addr += SPAPR_MEMORY_BLOCK_SIZE; 3593 } 3594 3595 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3596 } 3597 3598 /* Callback to be called during DRC release. */ 3599 void spapr_lmb_release(DeviceState *dev) 3600 { 3601 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3602 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3603 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3604 3605 /* This information will get lost if a migration occurs 3606 * during the unplug process. In this case recover it. */ 3607 if (ds == NULL) { 3608 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3609 g_assert(ds); 3610 /* The DRC being examined by the caller at least must be counted */ 3611 g_assert(ds->nr_lmbs); 3612 } 3613 3614 if (--ds->nr_lmbs) { 3615 return; 3616 } 3617 3618 /* 3619 * Now that all the LMBs have been removed by the guest, call the 3620 * unplug handler chain. This can never fail. 3621 */ 3622 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3623 object_unparent(OBJECT(dev)); 3624 } 3625 3626 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3627 { 3628 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3629 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3630 3631 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3632 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3633 spapr_pending_dimm_unplugs_remove(spapr, ds); 3634 } 3635 3636 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3637 DeviceState *dev, Error **errp) 3638 { 3639 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3640 Error *local_err = NULL; 3641 PCDIMMDevice *dimm = PC_DIMM(dev); 3642 uint32_t nr_lmbs; 3643 uint64_t size, addr_start, addr; 3644 int i; 3645 SpaprDrc *drc; 3646 3647 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3648 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3649 3650 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3651 &local_err); 3652 if (local_err) { 3653 goto out; 3654 } 3655 3656 /* 3657 * An existing pending dimm state for this DIMM means that there is an 3658 * unplug operation in progress, waiting for the spapr_lmb_release 3659 * callback to complete the job (BQL can't cover that far). In this case, 3660 * bail out to avoid detaching DRCs that were already released. 3661 */ 3662 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3663 error_setg(&local_err, 3664 "Memory unplug already in progress for device %s", 3665 dev->id); 3666 goto out; 3667 } 3668 3669 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3670 3671 addr = addr_start; 3672 for (i = 0; i < nr_lmbs; i++) { 3673 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3674 addr / SPAPR_MEMORY_BLOCK_SIZE); 3675 g_assert(drc); 3676 3677 spapr_drc_detach(drc); 3678 addr += SPAPR_MEMORY_BLOCK_SIZE; 3679 } 3680 3681 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3682 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3683 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3684 nr_lmbs, spapr_drc_index(drc)); 3685 out: 3686 error_propagate(errp, local_err); 3687 } 3688 3689 /* Callback to be called during DRC release. */ 3690 void spapr_core_release(DeviceState *dev) 3691 { 3692 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3693 3694 /* Call the unplug handler chain. This can never fail. */ 3695 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3696 object_unparent(OBJECT(dev)); 3697 } 3698 3699 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3700 { 3701 MachineState *ms = MACHINE(hotplug_dev); 3702 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3703 CPUCore *cc = CPU_CORE(dev); 3704 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3705 3706 if (smc->pre_2_10_has_unused_icps) { 3707 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3708 int i; 3709 3710 for (i = 0; i < cc->nr_threads; i++) { 3711 CPUState *cs = CPU(sc->threads[i]); 3712 3713 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3714 } 3715 } 3716 3717 assert(core_slot); 3718 core_slot->cpu = NULL; 3719 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3720 } 3721 3722 static 3723 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3724 Error **errp) 3725 { 3726 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3727 int index; 3728 SpaprDrc *drc; 3729 CPUCore *cc = CPU_CORE(dev); 3730 3731 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3732 error_setg(errp, "Unable to find CPU core with core-id: %d", 3733 cc->core_id); 3734 return; 3735 } 3736 if (index == 0) { 3737 error_setg(errp, "Boot CPU core may not be unplugged"); 3738 return; 3739 } 3740 3741 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3742 spapr_vcpu_id(spapr, cc->core_id)); 3743 g_assert(drc); 3744 3745 spapr_drc_detach(drc); 3746 3747 spapr_hotplug_req_remove_by_index(drc); 3748 } 3749 3750 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3751 void *fdt, int *fdt_start_offset, Error **errp) 3752 { 3753 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3754 CPUState *cs = CPU(core->threads[0]); 3755 PowerPCCPU *cpu = POWERPC_CPU(cs); 3756 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3757 int id = spapr_get_vcpu_id(cpu); 3758 char *nodename; 3759 int offset; 3760 3761 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3762 offset = fdt_add_subnode(fdt, 0, nodename); 3763 g_free(nodename); 3764 3765 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3766 3767 *fdt_start_offset = offset; 3768 return 0; 3769 } 3770 3771 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3772 Error **errp) 3773 { 3774 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3775 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3776 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3777 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3778 CPUCore *cc = CPU_CORE(dev); 3779 CPUState *cs; 3780 SpaprDrc *drc; 3781 Error *local_err = NULL; 3782 CPUArchId *core_slot; 3783 int index; 3784 bool hotplugged = spapr_drc_hotplugged(dev); 3785 3786 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3787 if (!core_slot) { 3788 error_setg(errp, "Unable to find CPU core with core-id: %d", 3789 cc->core_id); 3790 return; 3791 } 3792 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3793 spapr_vcpu_id(spapr, cc->core_id)); 3794 3795 g_assert(drc || !mc->has_hotpluggable_cpus); 3796 3797 if (drc) { 3798 spapr_drc_attach(drc, dev, &local_err); 3799 if (local_err) { 3800 error_propagate(errp, local_err); 3801 return; 3802 } 3803 3804 if (hotplugged) { 3805 /* 3806 * Send hotplug notification interrupt to the guest only 3807 * in case of hotplugged CPUs. 3808 */ 3809 spapr_hotplug_req_add_by_index(drc); 3810 } else { 3811 spapr_drc_reset(drc); 3812 } 3813 } 3814 3815 core_slot->cpu = OBJECT(dev); 3816 3817 if (smc->pre_2_10_has_unused_icps) { 3818 int i; 3819 3820 for (i = 0; i < cc->nr_threads; i++) { 3821 cs = CPU(core->threads[i]); 3822 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3823 } 3824 } 3825 } 3826 3827 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3828 Error **errp) 3829 { 3830 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3831 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3832 Error *local_err = NULL; 3833 CPUCore *cc = CPU_CORE(dev); 3834 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3835 const char *type = object_get_typename(OBJECT(dev)); 3836 CPUArchId *core_slot; 3837 int index; 3838 3839 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3840 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3841 goto out; 3842 } 3843 3844 if (strcmp(base_core_type, type)) { 3845 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3846 goto out; 3847 } 3848 3849 if (cc->core_id % smp_threads) { 3850 error_setg(&local_err, "invalid core id %d", cc->core_id); 3851 goto out; 3852 } 3853 3854 /* 3855 * In general we should have homogeneous threads-per-core, but old 3856 * (pre hotplug support) machine types allow the last core to have 3857 * reduced threads as a compatibility hack for when we allowed 3858 * total vcpus not a multiple of threads-per-core. 3859 */ 3860 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3861 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3862 cc->nr_threads, smp_threads); 3863 goto out; 3864 } 3865 3866 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3867 if (!core_slot) { 3868 error_setg(&local_err, "core id %d out of range", cc->core_id); 3869 goto out; 3870 } 3871 3872 if (core_slot->cpu) { 3873 error_setg(&local_err, "core %d already populated", cc->core_id); 3874 goto out; 3875 } 3876 3877 numa_cpu_pre_plug(core_slot, dev, &local_err); 3878 3879 out: 3880 error_propagate(errp, local_err); 3881 } 3882 3883 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3884 void *fdt, int *fdt_start_offset, Error **errp) 3885 { 3886 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3887 int intc_phandle; 3888 3889 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3890 if (intc_phandle <= 0) { 3891 return -1; 3892 } 3893 3894 if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3895 fdt_start_offset)) { 3896 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3897 return -1; 3898 } 3899 3900 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3901 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3902 3903 return 0; 3904 } 3905 3906 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3907 Error **errp) 3908 { 3909 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3910 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3911 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3912 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3913 3914 if (dev->hotplugged && !smc->dr_phb_enabled) { 3915 error_setg(errp, "PHB hotplug not supported for this machine"); 3916 return; 3917 } 3918 3919 if (sphb->index == (uint32_t)-1) { 3920 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3921 return; 3922 } 3923 3924 /* 3925 * This will check that sphb->index doesn't exceed the maximum number of 3926 * PHBs for the current machine type. 3927 */ 3928 smc->phb_placement(spapr, sphb->index, 3929 &sphb->buid, &sphb->io_win_addr, 3930 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3931 windows_supported, sphb->dma_liobn, errp); 3932 } 3933 3934 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3935 Error **errp) 3936 { 3937 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3938 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3939 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3940 SpaprDrc *drc; 3941 bool hotplugged = spapr_drc_hotplugged(dev); 3942 Error *local_err = NULL; 3943 3944 if (!smc->dr_phb_enabled) { 3945 return; 3946 } 3947 3948 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3949 /* hotplug hooks should check it's enabled before getting this far */ 3950 assert(drc); 3951 3952 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3953 if (local_err) { 3954 error_propagate(errp, local_err); 3955 return; 3956 } 3957 3958 if (hotplugged) { 3959 spapr_hotplug_req_add_by_index(drc); 3960 } else { 3961 spapr_drc_reset(drc); 3962 } 3963 } 3964 3965 void spapr_phb_release(DeviceState *dev) 3966 { 3967 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3968 3969 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3970 object_unparent(OBJECT(dev)); 3971 } 3972 3973 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3974 { 3975 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3976 } 3977 3978 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 3979 DeviceState *dev, Error **errp) 3980 { 3981 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3982 SpaprDrc *drc; 3983 3984 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3985 assert(drc); 3986 3987 if (!spapr_drc_unplug_requested(drc)) { 3988 spapr_drc_detach(drc); 3989 spapr_hotplug_req_remove_by_index(drc); 3990 } 3991 } 3992 3993 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3994 DeviceState *dev, Error **errp) 3995 { 3996 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3997 spapr_memory_plug(hotplug_dev, dev, errp); 3998 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3999 spapr_core_plug(hotplug_dev, dev, errp); 4000 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4001 spapr_phb_plug(hotplug_dev, dev, errp); 4002 } 4003 } 4004 4005 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4006 DeviceState *dev, Error **errp) 4007 { 4008 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4009 spapr_memory_unplug(hotplug_dev, dev); 4010 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4011 spapr_core_unplug(hotplug_dev, dev); 4012 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4013 spapr_phb_unplug(hotplug_dev, dev); 4014 } 4015 } 4016 4017 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4018 DeviceState *dev, Error **errp) 4019 { 4020 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4021 MachineClass *mc = MACHINE_GET_CLASS(sms); 4022 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4023 4024 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4025 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4026 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4027 } else { 4028 /* NOTE: this means there is a window after guest reset, prior to 4029 * CAS negotiation, where unplug requests will fail due to the 4030 * capability not being detected yet. This is a bit different than 4031 * the case with PCI unplug, where the events will be queued and 4032 * eventually handled by the guest after boot 4033 */ 4034 error_setg(errp, "Memory hot unplug not supported for this guest"); 4035 } 4036 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4037 if (!mc->has_hotpluggable_cpus) { 4038 error_setg(errp, "CPU hot unplug not supported on this machine"); 4039 return; 4040 } 4041 spapr_core_unplug_request(hotplug_dev, dev, errp); 4042 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4043 if (!smc->dr_phb_enabled) { 4044 error_setg(errp, "PHB hot unplug not supported on this machine"); 4045 return; 4046 } 4047 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4048 } 4049 } 4050 4051 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4052 DeviceState *dev, Error **errp) 4053 { 4054 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4055 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4056 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4057 spapr_core_pre_plug(hotplug_dev, dev, errp); 4058 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4059 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4060 } 4061 } 4062 4063 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4064 DeviceState *dev) 4065 { 4066 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4067 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4068 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4069 return HOTPLUG_HANDLER(machine); 4070 } 4071 return NULL; 4072 } 4073 4074 static CpuInstanceProperties 4075 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4076 { 4077 CPUArchId *core_slot; 4078 MachineClass *mc = MACHINE_GET_CLASS(machine); 4079 4080 /* make sure possible_cpu are intialized */ 4081 mc->possible_cpu_arch_ids(machine); 4082 /* get CPU core slot containing thread that matches cpu_index */ 4083 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4084 assert(core_slot); 4085 return core_slot->props; 4086 } 4087 4088 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4089 { 4090 return idx / smp_cores % nb_numa_nodes; 4091 } 4092 4093 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4094 { 4095 int i; 4096 const char *core_type; 4097 int spapr_max_cores = max_cpus / smp_threads; 4098 MachineClass *mc = MACHINE_GET_CLASS(machine); 4099 4100 if (!mc->has_hotpluggable_cpus) { 4101 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4102 } 4103 if (machine->possible_cpus) { 4104 assert(machine->possible_cpus->len == spapr_max_cores); 4105 return machine->possible_cpus; 4106 } 4107 4108 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4109 if (!core_type) { 4110 error_report("Unable to find sPAPR CPU Core definition"); 4111 exit(1); 4112 } 4113 4114 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4115 sizeof(CPUArchId) * spapr_max_cores); 4116 machine->possible_cpus->len = spapr_max_cores; 4117 for (i = 0; i < machine->possible_cpus->len; i++) { 4118 int core_id = i * smp_threads; 4119 4120 machine->possible_cpus->cpus[i].type = core_type; 4121 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4122 machine->possible_cpus->cpus[i].arch_id = core_id; 4123 machine->possible_cpus->cpus[i].props.has_core_id = true; 4124 machine->possible_cpus->cpus[i].props.core_id = core_id; 4125 } 4126 return machine->possible_cpus; 4127 } 4128 4129 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4130 uint64_t *buid, hwaddr *pio, 4131 hwaddr *mmio32, hwaddr *mmio64, 4132 unsigned n_dma, uint32_t *liobns, Error **errp) 4133 { 4134 /* 4135 * New-style PHB window placement. 4136 * 4137 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4138 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4139 * windows. 4140 * 4141 * Some guest kernels can't work with MMIO windows above 1<<46 4142 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4143 * 4144 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4145 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4146 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4147 * 1TiB 64-bit MMIO windows for each PHB. 4148 */ 4149 const uint64_t base_buid = 0x800000020000000ULL; 4150 int i; 4151 4152 /* Sanity check natural alignments */ 4153 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4154 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4155 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4156 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4157 /* Sanity check bounds */ 4158 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4159 SPAPR_PCI_MEM32_WIN_SIZE); 4160 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4161 SPAPR_PCI_MEM64_WIN_SIZE); 4162 4163 if (index >= SPAPR_MAX_PHBS) { 4164 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4165 SPAPR_MAX_PHBS - 1); 4166 return; 4167 } 4168 4169 *buid = base_buid + index; 4170 for (i = 0; i < n_dma; ++i) { 4171 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4172 } 4173 4174 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4175 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4176 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4177 } 4178 4179 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4180 { 4181 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4182 4183 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4184 } 4185 4186 static void spapr_ics_resend(XICSFabric *dev) 4187 { 4188 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4189 4190 ics_resend(spapr->ics); 4191 } 4192 4193 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4194 { 4195 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4196 4197 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4198 } 4199 4200 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4201 Monitor *mon) 4202 { 4203 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4204 4205 spapr->irq->print_info(spapr, mon); 4206 } 4207 4208 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4209 { 4210 return cpu->vcpu_id; 4211 } 4212 4213 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4214 { 4215 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4216 int vcpu_id; 4217 4218 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4219 4220 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4221 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4222 error_append_hint(errp, "Adjust the number of cpus to %d " 4223 "or try to raise the number of threads per core\n", 4224 vcpu_id * smp_threads / spapr->vsmt); 4225 return; 4226 } 4227 4228 cpu->vcpu_id = vcpu_id; 4229 } 4230 4231 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4232 { 4233 CPUState *cs; 4234 4235 CPU_FOREACH(cs) { 4236 PowerPCCPU *cpu = POWERPC_CPU(cs); 4237 4238 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4239 return cpu; 4240 } 4241 } 4242 4243 return NULL; 4244 } 4245 4246 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4247 { 4248 MachineClass *mc = MACHINE_CLASS(oc); 4249 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4250 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4251 NMIClass *nc = NMI_CLASS(oc); 4252 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4253 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4254 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4255 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4256 4257 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4258 mc->ignore_boot_device_suffixes = true; 4259 4260 /* 4261 * We set up the default / latest behaviour here. The class_init 4262 * functions for the specific versioned machine types can override 4263 * these details for backwards compatibility 4264 */ 4265 mc->init = spapr_machine_init; 4266 mc->reset = spapr_machine_reset; 4267 mc->block_default_type = IF_SCSI; 4268 mc->max_cpus = 1024; 4269 mc->no_parallel = 1; 4270 mc->default_boot_order = ""; 4271 mc->default_ram_size = 512 * MiB; 4272 mc->default_display = "std"; 4273 mc->kvm_type = spapr_kvm_type; 4274 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4275 mc->pci_allow_0_address = true; 4276 assert(!mc->get_hotplug_handler); 4277 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4278 hc->pre_plug = spapr_machine_device_pre_plug; 4279 hc->plug = spapr_machine_device_plug; 4280 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4281 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4282 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4283 hc->unplug_request = spapr_machine_device_unplug_request; 4284 hc->unplug = spapr_machine_device_unplug; 4285 4286 smc->dr_lmb_enabled = true; 4287 smc->update_dt_enabled = true; 4288 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4289 mc->has_hotpluggable_cpus = true; 4290 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4291 fwc->get_dev_path = spapr_get_fw_dev_path; 4292 nc->nmi_monitor_handler = spapr_nmi; 4293 smc->phb_placement = spapr_phb_placement; 4294 vhc->hypercall = emulate_spapr_hypercall; 4295 vhc->hpt_mask = spapr_hpt_mask; 4296 vhc->map_hptes = spapr_map_hptes; 4297 vhc->unmap_hptes = spapr_unmap_hptes; 4298 vhc->store_hpte = spapr_store_hpte; 4299 vhc->get_pate = spapr_get_pate; 4300 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4301 xic->ics_get = spapr_ics_get; 4302 xic->ics_resend = spapr_ics_resend; 4303 xic->icp_get = spapr_icp_get; 4304 ispc->print_info = spapr_pic_print_info; 4305 /* Force NUMA node memory size to be a multiple of 4306 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4307 * in which LMBs are represented and hot-added 4308 */ 4309 mc->numa_mem_align_shift = 28; 4310 4311 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4312 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4313 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4314 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4315 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4316 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4317 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4318 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4319 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4320 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4321 spapr_caps_add_properties(smc, &error_abort); 4322 smc->irq = &spapr_irq_xics; 4323 smc->dr_phb_enabled = true; 4324 } 4325 4326 static const TypeInfo spapr_machine_info = { 4327 .name = TYPE_SPAPR_MACHINE, 4328 .parent = TYPE_MACHINE, 4329 .abstract = true, 4330 .instance_size = sizeof(SpaprMachineState), 4331 .instance_init = spapr_instance_init, 4332 .instance_finalize = spapr_machine_finalizefn, 4333 .class_size = sizeof(SpaprMachineClass), 4334 .class_init = spapr_machine_class_init, 4335 .interfaces = (InterfaceInfo[]) { 4336 { TYPE_FW_PATH_PROVIDER }, 4337 { TYPE_NMI }, 4338 { TYPE_HOTPLUG_HANDLER }, 4339 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4340 { TYPE_XICS_FABRIC }, 4341 { TYPE_INTERRUPT_STATS_PROVIDER }, 4342 { } 4343 }, 4344 }; 4345 4346 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4347 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4348 void *data) \ 4349 { \ 4350 MachineClass *mc = MACHINE_CLASS(oc); \ 4351 spapr_machine_##suffix##_class_options(mc); \ 4352 if (latest) { \ 4353 mc->alias = "pseries"; \ 4354 mc->is_default = 1; \ 4355 } \ 4356 } \ 4357 static const TypeInfo spapr_machine_##suffix##_info = { \ 4358 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4359 .parent = TYPE_SPAPR_MACHINE, \ 4360 .class_init = spapr_machine_##suffix##_class_init, \ 4361 }; \ 4362 static void spapr_machine_register_##suffix(void) \ 4363 { \ 4364 type_register(&spapr_machine_##suffix##_info); \ 4365 } \ 4366 type_init(spapr_machine_register_##suffix) 4367 4368 /* 4369 * pseries-4.0 4370 */ 4371 static void spapr_machine_4_0_class_options(MachineClass *mc) 4372 { 4373 /* Defaults for the latest behaviour inherited from the base class */ 4374 } 4375 4376 DEFINE_SPAPR_MACHINE(4_0, "4.0", true); 4377 4378 /* 4379 * pseries-3.1 4380 */ 4381 static void spapr_machine_3_1_class_options(MachineClass *mc) 4382 { 4383 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4384 static GlobalProperty compat[] = { 4385 { TYPE_SPAPR_MACHINE, "host-model", "passthrough" }, 4386 { TYPE_SPAPR_MACHINE, "host-serial", "passthrough" }, 4387 }; 4388 4389 spapr_machine_4_0_class_options(mc); 4390 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4391 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4392 4393 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4394 smc->update_dt_enabled = false; 4395 smc->dr_phb_enabled = false; 4396 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4397 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4398 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4399 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4400 } 4401 4402 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4403 4404 /* 4405 * pseries-3.0 4406 */ 4407 4408 static void spapr_machine_3_0_class_options(MachineClass *mc) 4409 { 4410 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4411 4412 spapr_machine_3_1_class_options(mc); 4413 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4414 4415 smc->legacy_irq_allocation = true; 4416 smc->irq = &spapr_irq_xics_legacy; 4417 } 4418 4419 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4420 4421 /* 4422 * pseries-2.12 4423 */ 4424 static void spapr_machine_2_12_class_options(MachineClass *mc) 4425 { 4426 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4427 static GlobalProperty compat[] = { 4428 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4429 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4430 }; 4431 4432 spapr_machine_3_0_class_options(mc); 4433 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4434 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4435 4436 /* We depend on kvm_enabled() to choose a default value for the 4437 * hpt-max-page-size capability. Of course we can't do it here 4438 * because this is too early and the HW accelerator isn't initialzed 4439 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4440 */ 4441 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4442 } 4443 4444 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4445 4446 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4447 { 4448 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4449 4450 spapr_machine_2_12_class_options(mc); 4451 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4452 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4453 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4454 } 4455 4456 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4457 4458 /* 4459 * pseries-2.11 4460 */ 4461 4462 static void spapr_machine_2_11_class_options(MachineClass *mc) 4463 { 4464 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4465 4466 spapr_machine_2_12_class_options(mc); 4467 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4468 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4469 } 4470 4471 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4472 4473 /* 4474 * pseries-2.10 4475 */ 4476 4477 static void spapr_machine_2_10_class_options(MachineClass *mc) 4478 { 4479 spapr_machine_2_11_class_options(mc); 4480 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4481 } 4482 4483 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4484 4485 /* 4486 * pseries-2.9 4487 */ 4488 4489 static void spapr_machine_2_9_class_options(MachineClass *mc) 4490 { 4491 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4492 static GlobalProperty compat[] = { 4493 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4494 }; 4495 4496 spapr_machine_2_10_class_options(mc); 4497 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4498 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4499 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4500 smc->pre_2_10_has_unused_icps = true; 4501 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4502 } 4503 4504 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4505 4506 /* 4507 * pseries-2.8 4508 */ 4509 4510 static void spapr_machine_2_8_class_options(MachineClass *mc) 4511 { 4512 static GlobalProperty compat[] = { 4513 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4514 }; 4515 4516 spapr_machine_2_9_class_options(mc); 4517 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4518 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4519 mc->numa_mem_align_shift = 23; 4520 } 4521 4522 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4523 4524 /* 4525 * pseries-2.7 4526 */ 4527 4528 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4529 uint64_t *buid, hwaddr *pio, 4530 hwaddr *mmio32, hwaddr *mmio64, 4531 unsigned n_dma, uint32_t *liobns, Error **errp) 4532 { 4533 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4534 const uint64_t base_buid = 0x800000020000000ULL; 4535 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4536 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4537 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4538 const uint32_t max_index = 255; 4539 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4540 4541 uint64_t ram_top = MACHINE(spapr)->ram_size; 4542 hwaddr phb0_base, phb_base; 4543 int i; 4544 4545 /* Do we have device memory? */ 4546 if (MACHINE(spapr)->maxram_size > ram_top) { 4547 /* Can't just use maxram_size, because there may be an 4548 * alignment gap between normal and device memory regions 4549 */ 4550 ram_top = MACHINE(spapr)->device_memory->base + 4551 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4552 } 4553 4554 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4555 4556 if (index > max_index) { 4557 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4558 max_index); 4559 return; 4560 } 4561 4562 *buid = base_buid + index; 4563 for (i = 0; i < n_dma; ++i) { 4564 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4565 } 4566 4567 phb_base = phb0_base + index * phb_spacing; 4568 *pio = phb_base + pio_offset; 4569 *mmio32 = phb_base + mmio_offset; 4570 /* 4571 * We don't set the 64-bit MMIO window, relying on the PHB's 4572 * fallback behaviour of automatically splitting a large "32-bit" 4573 * window into contiguous 32-bit and 64-bit windows 4574 */ 4575 } 4576 4577 static void spapr_machine_2_7_class_options(MachineClass *mc) 4578 { 4579 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4580 static GlobalProperty compat[] = { 4581 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4582 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4583 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4584 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4585 }; 4586 4587 spapr_machine_2_8_class_options(mc); 4588 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4589 mc->default_machine_opts = "modern-hotplug-events=off"; 4590 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4591 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4592 smc->phb_placement = phb_placement_2_7; 4593 } 4594 4595 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4596 4597 /* 4598 * pseries-2.6 4599 */ 4600 4601 static void spapr_machine_2_6_class_options(MachineClass *mc) 4602 { 4603 static GlobalProperty compat[] = { 4604 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4605 }; 4606 4607 spapr_machine_2_7_class_options(mc); 4608 mc->has_hotpluggable_cpus = false; 4609 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4610 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4611 } 4612 4613 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4614 4615 /* 4616 * pseries-2.5 4617 */ 4618 4619 static void spapr_machine_2_5_class_options(MachineClass *mc) 4620 { 4621 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4622 static GlobalProperty compat[] = { 4623 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4624 }; 4625 4626 spapr_machine_2_6_class_options(mc); 4627 smc->use_ohci_by_default = true; 4628 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4629 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4630 } 4631 4632 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4633 4634 /* 4635 * pseries-2.4 4636 */ 4637 4638 static void spapr_machine_2_4_class_options(MachineClass *mc) 4639 { 4640 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4641 4642 spapr_machine_2_5_class_options(mc); 4643 smc->dr_lmb_enabled = false; 4644 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4645 } 4646 4647 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4648 4649 /* 4650 * pseries-2.3 4651 */ 4652 4653 static void spapr_machine_2_3_class_options(MachineClass *mc) 4654 { 4655 static GlobalProperty compat[] = { 4656 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4657 }; 4658 spapr_machine_2_4_class_options(mc); 4659 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4660 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4661 } 4662 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4663 4664 /* 4665 * pseries-2.2 4666 */ 4667 4668 static void spapr_machine_2_2_class_options(MachineClass *mc) 4669 { 4670 static GlobalProperty compat[] = { 4671 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4672 }; 4673 4674 spapr_machine_2_3_class_options(mc); 4675 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4676 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4677 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4678 } 4679 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4680 4681 /* 4682 * pseries-2.1 4683 */ 4684 4685 static void spapr_machine_2_1_class_options(MachineClass *mc) 4686 { 4687 spapr_machine_2_2_class_options(mc); 4688 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4689 } 4690 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4691 4692 static void spapr_machine_register_types(void) 4693 { 4694 type_register_static(&spapr_machine_info); 4695 } 4696 4697 type_init(spapr_machine_register_types) 4698