1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "hw/hw.h" 33 #include "qemu/log.h" 34 #include "hw/fw-path-provider.h" 35 #include "elf.h" 36 #include "net/net.h" 37 #include "sysemu/device_tree.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/misc.h" 42 #include "migration/global_state.h" 43 #include "migration/register.h" 44 #include "mmu-hash64.h" 45 #include "mmu-book3s-v3.h" 46 #include "cpu-models.h" 47 #include "qom/cpu.h" 48 49 #include "hw/boards.h" 50 #include "hw/ppc/ppc.h" 51 #include "hw/loader.h" 52 53 #include "hw/ppc/fdt.h" 54 #include "hw/ppc/spapr.h" 55 #include "hw/ppc/spapr_vio.h" 56 #include "hw/pci-host/spapr.h" 57 #include "hw/pci/msi.h" 58 59 #include "hw/pci/pci.h" 60 #include "hw/scsi/scsi.h" 61 #include "hw/virtio/virtio-scsi.h" 62 #include "hw/virtio/vhost-scsi-common.h" 63 64 #include "exec/address-spaces.h" 65 #include "exec/ram_addr.h" 66 #include "hw/usb.h" 67 #include "qemu/config-file.h" 68 #include "qemu/error-report.h" 69 #include "trace.h" 70 #include "hw/nmi.h" 71 #include "hw/intc/intc.h" 72 73 #include "hw/compat.h" 74 #include "qemu/cutils.h" 75 #include "hw/ppc/spapr_cpu_core.h" 76 #include "hw/mem/memory-device.h" 77 78 #include <libfdt.h> 79 80 /* SLOF memory layout: 81 * 82 * SLOF raw image loaded at 0, copies its romfs right below the flat 83 * device-tree, then position SLOF itself 31M below that 84 * 85 * So we set FW_OVERHEAD to 40MB which should account for all of that 86 * and more 87 * 88 * We load our kernel at 4M, leaving space for SLOF initial image 89 */ 90 #define FDT_MAX_SIZE 0x100000 91 #define RTAS_MAX_SIZE 0x10000 92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 93 #define FW_MAX_SIZE 0x400000 94 #define FW_FILE_NAME "slof.bin" 95 #define FW_OVERHEAD 0x2800000 96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 97 98 #define MIN_RMA_SLOF 128UL 99 100 #define PHANDLE_XICP 0x00001111 101 102 /* These two functions implement the VCPU id numbering: one to compute them 103 * all and one to identify thread 0 of a VCORE. Any change to the first one 104 * is likely to have an impact on the second one, so let's keep them close. 105 */ 106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index) 107 { 108 assert(spapr->vsmt); 109 return 110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 111 } 112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr, 113 PowerPCCPU *cpu) 114 { 115 assert(spapr->vsmt); 116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 117 } 118 119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 120 { 121 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 122 * and newer QEMUs don't even have them. In both cases, we don't want 123 * to send anything on the wire. 124 */ 125 return false; 126 } 127 128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 129 .name = "icp/server", 130 .version_id = 1, 131 .minimum_version_id = 1, 132 .needed = pre_2_10_vmstate_dummy_icp_needed, 133 .fields = (VMStateField[]) { 134 VMSTATE_UNUSED(4), /* uint32_t xirr */ 135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 136 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 137 VMSTATE_END_OF_LIST() 138 }, 139 }; 140 141 static void pre_2_10_vmstate_register_dummy_icp(int i) 142 { 143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 144 (void *)(uintptr_t) i); 145 } 146 147 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 148 { 149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 150 (void *)(uintptr_t) i); 151 } 152 153 static int xics_max_server_number(sPAPRMachineState *spapr) 154 { 155 assert(spapr->vsmt); 156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 157 } 158 159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 160 int smt_threads) 161 { 162 int i, ret = 0; 163 uint32_t servers_prop[smt_threads]; 164 uint32_t gservers_prop[smt_threads * 2]; 165 int index = spapr_get_vcpu_id(cpu); 166 167 if (cpu->compat_pvr) { 168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 169 if (ret < 0) { 170 return ret; 171 } 172 } 173 174 /* Build interrupt servers and gservers properties */ 175 for (i = 0; i < smt_threads; i++) { 176 servers_prop[i] = cpu_to_be32(index + i); 177 /* Hack, direct the group queues back to cpu 0 */ 178 gservers_prop[i*2] = cpu_to_be32(index + i); 179 gservers_prop[i*2 + 1] = 0; 180 } 181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 182 servers_prop, sizeof(servers_prop)); 183 if (ret < 0) { 184 return ret; 185 } 186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 187 gservers_prop, sizeof(gservers_prop)); 188 189 return ret; 190 } 191 192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 193 { 194 int index = spapr_get_vcpu_id(cpu); 195 uint32_t associativity[] = {cpu_to_be32(0x5), 196 cpu_to_be32(0x0), 197 cpu_to_be32(0x0), 198 cpu_to_be32(0x0), 199 cpu_to_be32(cpu->node_id), 200 cpu_to_be32(index)}; 201 202 /* Advertise NUMA via ibm,associativity */ 203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 204 sizeof(associativity)); 205 } 206 207 /* Populate the "ibm,pa-features" property */ 208 static void spapr_populate_pa_features(sPAPRMachineState *spapr, 209 PowerPCCPU *cpu, 210 void *fdt, int offset, 211 bool legacy_guest) 212 { 213 uint8_t pa_features_206[] = { 6, 0, 214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 215 uint8_t pa_features_207[] = { 24, 0, 216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 220 uint8_t pa_features_300[] = { 66, 0, 221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 224 /* 6: DS207 */ 225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 226 /* 16: Vector */ 227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 236 /* 42: PM, 44: PC RA, 46: SC vec'd */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 238 /* 48: SIMD, 50: QP BFP, 52: String */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 240 /* 54: DecFP, 56: DecI, 58: SHA */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 242 /* 60: NM atomic, 62: RNG */ 243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 244 }; 245 uint8_t *pa_features = NULL; 246 size_t pa_size; 247 248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 249 pa_features = pa_features_206; 250 pa_size = sizeof(pa_features_206); 251 } 252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 253 pa_features = pa_features_207; 254 pa_size = sizeof(pa_features_207); 255 } 256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 257 pa_features = pa_features_300; 258 pa_size = sizeof(pa_features_300); 259 } 260 if (!pa_features) { 261 return; 262 } 263 264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 265 /* 266 * Note: we keep CI large pages off by default because a 64K capable 267 * guest provisioned with large pages might otherwise try to map a qemu 268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 269 * even if that qemu runs on a 4k host. 270 * We dd this bit back here if we are confident this is not an issue 271 */ 272 pa_features[3] |= 0x20; 273 } 274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 275 pa_features[24] |= 0x80; /* Transactional memory support */ 276 } 277 if (legacy_guest && pa_size > 40) { 278 /* Workaround for broken kernels that attempt (guest) radix 279 * mode when they can't handle it, if they see the radix bit set 280 * in pa-features. So hide it from them. */ 281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 282 } 283 284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 285 } 286 287 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 288 { 289 int ret = 0, offset, cpus_offset; 290 CPUState *cs; 291 char cpu_model[32]; 292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 293 294 CPU_FOREACH(cs) { 295 PowerPCCPU *cpu = POWERPC_CPU(cs); 296 DeviceClass *dc = DEVICE_GET_CLASS(cs); 297 int index = spapr_get_vcpu_id(cpu); 298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 299 300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 301 continue; 302 } 303 304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 305 306 cpus_offset = fdt_path_offset(fdt, "/cpus"); 307 if (cpus_offset < 0) { 308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 309 if (cpus_offset < 0) { 310 return cpus_offset; 311 } 312 } 313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 314 if (offset < 0) { 315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 316 if (offset < 0) { 317 return offset; 318 } 319 } 320 321 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 322 pft_size_prop, sizeof(pft_size_prop)); 323 if (ret < 0) { 324 return ret; 325 } 326 327 if (nb_numa_nodes > 1) { 328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 329 if (ret < 0) { 330 return ret; 331 } 332 } 333 334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 335 if (ret < 0) { 336 return ret; 337 } 338 339 spapr_populate_pa_features(spapr, cpu, fdt, offset, 340 spapr->cas_legacy_guest_workaround); 341 } 342 return ret; 343 } 344 345 static hwaddr spapr_node0_size(MachineState *machine) 346 { 347 if (nb_numa_nodes) { 348 int i; 349 for (i = 0; i < nb_numa_nodes; ++i) { 350 if (numa_info[i].node_mem) { 351 return MIN(pow2floor(numa_info[i].node_mem), 352 machine->ram_size); 353 } 354 } 355 } 356 return machine->ram_size; 357 } 358 359 static void add_str(GString *s, const gchar *s1) 360 { 361 g_string_append_len(s, s1, strlen(s1) + 1); 362 } 363 364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 365 hwaddr size) 366 { 367 uint32_t associativity[] = { 368 cpu_to_be32(0x4), /* length */ 369 cpu_to_be32(0x0), cpu_to_be32(0x0), 370 cpu_to_be32(0x0), cpu_to_be32(nodeid) 371 }; 372 char mem_name[32]; 373 uint64_t mem_reg_property[2]; 374 int off; 375 376 mem_reg_property[0] = cpu_to_be64(start); 377 mem_reg_property[1] = cpu_to_be64(size); 378 379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 380 off = fdt_add_subnode(fdt, 0, mem_name); 381 _FDT(off); 382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 384 sizeof(mem_reg_property)))); 385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 386 sizeof(associativity)))); 387 return off; 388 } 389 390 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 391 { 392 MachineState *machine = MACHINE(spapr); 393 hwaddr mem_start, node_size; 394 int i, nb_nodes = nb_numa_nodes; 395 NodeInfo *nodes = numa_info; 396 NodeInfo ramnode; 397 398 /* No NUMA nodes, assume there is just one node with whole RAM */ 399 if (!nb_numa_nodes) { 400 nb_nodes = 1; 401 ramnode.node_mem = machine->ram_size; 402 nodes = &ramnode; 403 } 404 405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 406 if (!nodes[i].node_mem) { 407 continue; 408 } 409 if (mem_start >= machine->ram_size) { 410 node_size = 0; 411 } else { 412 node_size = nodes[i].node_mem; 413 if (node_size > machine->ram_size - mem_start) { 414 node_size = machine->ram_size - mem_start; 415 } 416 } 417 if (!mem_start) { 418 /* spapr_machine_init() checks for rma_size <= node0_size 419 * already */ 420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 421 mem_start += spapr->rma_size; 422 node_size -= spapr->rma_size; 423 } 424 for ( ; node_size; ) { 425 hwaddr sizetmp = pow2floor(node_size); 426 427 /* mem_start != 0 here */ 428 if (ctzl(mem_start) < ctzl(sizetmp)) { 429 sizetmp = 1ULL << ctzl(mem_start); 430 } 431 432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 433 node_size -= sizetmp; 434 mem_start += sizetmp; 435 } 436 } 437 438 return 0; 439 } 440 441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 442 sPAPRMachineState *spapr) 443 { 444 PowerPCCPU *cpu = POWERPC_CPU(cs); 445 CPUPPCState *env = &cpu->env; 446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 447 int index = spapr_get_vcpu_id(cpu); 448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 449 0xffffffff, 0xffffffff}; 450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 451 : SPAPR_TIMEBASE_FREQ; 452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 453 uint32_t page_sizes_prop[64]; 454 size_t page_sizes_prop_size; 455 uint32_t vcpus_per_socket = smp_threads * smp_cores; 456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 458 sPAPRDRConnector *drc; 459 int drc_index; 460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 461 int i; 462 463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 464 if (drc) { 465 drc_index = spapr_drc_index(drc); 466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 467 } 468 469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 471 472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 474 env->dcache_line_size))); 475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 476 env->dcache_line_size))); 477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 478 env->icache_line_size))); 479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 480 env->icache_line_size))); 481 482 if (pcc->l1_dcache_size) { 483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 484 pcc->l1_dcache_size))); 485 } else { 486 warn_report("Unknown L1 dcache size for cpu"); 487 } 488 if (pcc->l1_icache_size) { 489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 490 pcc->l1_icache_size))); 491 } else { 492 warn_report("Unknown L1 icache size for cpu"); 493 } 494 495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 501 502 if (env->spr_cb[SPR_PURR].oea_read) { 503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 504 } 505 506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 508 segs, sizeof(segs)))); 509 } 510 511 /* Advertise VSX (vector extensions) if available 512 * 1 == VMX / Altivec available 513 * 2 == VSX available 514 * 515 * Only CPUs for which we create core types in spapr_cpu_core.c 516 * are possible, and all of those have VMX */ 517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 519 } else { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 521 } 522 523 /* Advertise DFP (Decimal Floating Point) if available 524 * 0 / no property == no DFP 525 * 1 == DFP available */ 526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 528 } 529 530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 531 sizeof(page_sizes_prop)); 532 if (page_sizes_prop_size) { 533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 534 page_sizes_prop, page_sizes_prop_size))); 535 } 536 537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 538 539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 540 cs->cpu_index / vcpus_per_socket))); 541 542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 543 pft_size_prop, sizeof(pft_size_prop)))); 544 545 if (nb_numa_nodes > 1) { 546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 547 } 548 549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 550 551 if (pcc->radix_page_info) { 552 for (i = 0; i < pcc->radix_page_info->count; i++) { 553 radix_AP_encodings[i] = 554 cpu_to_be32(pcc->radix_page_info->entries[i]); 555 } 556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 557 radix_AP_encodings, 558 pcc->radix_page_info->count * 559 sizeof(radix_AP_encodings[0])))); 560 } 561 } 562 563 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 564 { 565 CPUState **rev; 566 CPUState *cs; 567 int n_cpus; 568 int cpus_offset; 569 char *nodename; 570 int i; 571 572 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 573 _FDT(cpus_offset); 574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 575 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 576 577 /* 578 * We walk the CPUs in reverse order to ensure that CPU DT nodes 579 * created by fdt_add_subnode() end up in the right order in FDT 580 * for the guest kernel the enumerate the CPUs correctly. 581 * 582 * The CPU list cannot be traversed in reverse order, so we need 583 * to do extra work. 584 */ 585 n_cpus = 0; 586 rev = NULL; 587 CPU_FOREACH(cs) { 588 rev = g_renew(CPUState *, rev, n_cpus + 1); 589 rev[n_cpus++] = cs; 590 } 591 592 for (i = n_cpus - 1; i >= 0; i--) { 593 CPUState *cs = rev[i]; 594 PowerPCCPU *cpu = POWERPC_CPU(cs); 595 int index = spapr_get_vcpu_id(cpu); 596 DeviceClass *dc = DEVICE_GET_CLASS(cs); 597 int offset; 598 599 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 600 continue; 601 } 602 603 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 604 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 605 g_free(nodename); 606 _FDT(offset); 607 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 608 } 609 610 g_free(rev); 611 } 612 613 static int spapr_rng_populate_dt(void *fdt) 614 { 615 int node; 616 int ret; 617 618 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 619 if (node <= 0) { 620 return -1; 621 } 622 ret = fdt_setprop_string(fdt, node, "device_type", 623 "ibm,platform-facilities"); 624 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 625 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 626 627 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 628 if (node <= 0) { 629 return -1; 630 } 631 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 632 633 return ret ? -1 : 0; 634 } 635 636 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 637 { 638 MemoryDeviceInfoList *info; 639 640 for (info = list; info; info = info->next) { 641 MemoryDeviceInfo *value = info->value; 642 643 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 644 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 645 646 if (addr >= pcdimm_info->addr && 647 addr < (pcdimm_info->addr + pcdimm_info->size)) { 648 return pcdimm_info->node; 649 } 650 } 651 } 652 653 return -1; 654 } 655 656 struct sPAPRDrconfCellV2 { 657 uint32_t seq_lmbs; 658 uint64_t base_addr; 659 uint32_t drc_index; 660 uint32_t aa_index; 661 uint32_t flags; 662 } QEMU_PACKED; 663 664 typedef struct DrconfCellQueue { 665 struct sPAPRDrconfCellV2 cell; 666 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 667 } DrconfCellQueue; 668 669 static DrconfCellQueue * 670 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 671 uint32_t drc_index, uint32_t aa_index, 672 uint32_t flags) 673 { 674 DrconfCellQueue *elem; 675 676 elem = g_malloc0(sizeof(*elem)); 677 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 678 elem->cell.base_addr = cpu_to_be64(base_addr); 679 elem->cell.drc_index = cpu_to_be32(drc_index); 680 elem->cell.aa_index = cpu_to_be32(aa_index); 681 elem->cell.flags = cpu_to_be32(flags); 682 683 return elem; 684 } 685 686 /* ibm,dynamic-memory-v2 */ 687 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt, 688 int offset, MemoryDeviceInfoList *dimms) 689 { 690 MachineState *machine = MACHINE(spapr); 691 uint8_t *int_buf, *cur_index, buf_len; 692 int ret; 693 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 694 uint64_t addr, cur_addr, size; 695 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 696 uint64_t mem_end = machine->device_memory->base + 697 memory_region_size(&machine->device_memory->mr); 698 uint32_t node, nr_entries = 0; 699 sPAPRDRConnector *drc; 700 DrconfCellQueue *elem, *next; 701 MemoryDeviceInfoList *info; 702 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 703 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 704 705 /* Entry to cover RAM and the gap area */ 706 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 707 SPAPR_LMB_FLAGS_RESERVED | 708 SPAPR_LMB_FLAGS_DRC_INVALID); 709 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 710 nr_entries++; 711 712 cur_addr = machine->device_memory->base; 713 for (info = dimms; info; info = info->next) { 714 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 715 716 addr = di->addr; 717 size = di->size; 718 node = di->node; 719 720 /* Entry for hot-pluggable area */ 721 if (cur_addr < addr) { 722 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 723 g_assert(drc); 724 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 725 cur_addr, spapr_drc_index(drc), -1, 0); 726 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 727 nr_entries++; 728 } 729 730 /* Entry for DIMM */ 731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 732 g_assert(drc); 733 elem = spapr_get_drconf_cell(size / lmb_size, addr, 734 spapr_drc_index(drc), node, 735 SPAPR_LMB_FLAGS_ASSIGNED); 736 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 737 nr_entries++; 738 cur_addr = addr + size; 739 } 740 741 /* Entry for remaining hotpluggable area */ 742 if (cur_addr < mem_end) { 743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 744 g_assert(drc); 745 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 746 cur_addr, spapr_drc_index(drc), -1, 0); 747 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 748 nr_entries++; 749 } 750 751 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 752 int_buf = cur_index = g_malloc0(buf_len); 753 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 754 cur_index += sizeof(nr_entries); 755 756 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 757 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 758 cur_index += sizeof(elem->cell); 759 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 760 g_free(elem); 761 } 762 763 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 764 g_free(int_buf); 765 if (ret < 0) { 766 return -1; 767 } 768 return 0; 769 } 770 771 /* ibm,dynamic-memory */ 772 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt, 773 int offset, MemoryDeviceInfoList *dimms) 774 { 775 MachineState *machine = MACHINE(spapr); 776 int i, ret; 777 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 778 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 779 uint32_t nr_lmbs = (machine->device_memory->base + 780 memory_region_size(&machine->device_memory->mr)) / 781 lmb_size; 782 uint32_t *int_buf, *cur_index, buf_len; 783 784 /* 785 * Allocate enough buffer size to fit in ibm,dynamic-memory 786 */ 787 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 788 cur_index = int_buf = g_malloc0(buf_len); 789 int_buf[0] = cpu_to_be32(nr_lmbs); 790 cur_index++; 791 for (i = 0; i < nr_lmbs; i++) { 792 uint64_t addr = i * lmb_size; 793 uint32_t *dynamic_memory = cur_index; 794 795 if (i >= device_lmb_start) { 796 sPAPRDRConnector *drc; 797 798 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 799 g_assert(drc); 800 801 dynamic_memory[0] = cpu_to_be32(addr >> 32); 802 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 803 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 804 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 805 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 806 if (memory_region_present(get_system_memory(), addr)) { 807 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 808 } else { 809 dynamic_memory[5] = cpu_to_be32(0); 810 } 811 } else { 812 /* 813 * LMB information for RMA, boot time RAM and gap b/n RAM and 814 * device memory region -- all these are marked as reserved 815 * and as having no valid DRC. 816 */ 817 dynamic_memory[0] = cpu_to_be32(addr >> 32); 818 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 819 dynamic_memory[2] = cpu_to_be32(0); 820 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 821 dynamic_memory[4] = cpu_to_be32(-1); 822 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 823 SPAPR_LMB_FLAGS_DRC_INVALID); 824 } 825 826 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 827 } 828 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 829 g_free(int_buf); 830 if (ret < 0) { 831 return -1; 832 } 833 return 0; 834 } 835 836 /* 837 * Adds ibm,dynamic-reconfiguration-memory node. 838 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 839 * of this device tree node. 840 */ 841 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 842 { 843 MachineState *machine = MACHINE(spapr); 844 int ret, i, offset; 845 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 846 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 847 uint32_t *int_buf, *cur_index, buf_len; 848 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 849 MemoryDeviceInfoList *dimms = NULL; 850 851 /* 852 * Don't create the node if there is no device memory 853 */ 854 if (machine->ram_size == machine->maxram_size) { 855 return 0; 856 } 857 858 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 859 860 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 861 sizeof(prop_lmb_size)); 862 if (ret < 0) { 863 return ret; 864 } 865 866 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 867 if (ret < 0) { 868 return ret; 869 } 870 871 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 872 if (ret < 0) { 873 return ret; 874 } 875 876 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 877 dimms = qmp_memory_device_list(); 878 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 879 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 880 } else { 881 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 882 } 883 qapi_free_MemoryDeviceInfoList(dimms); 884 885 if (ret < 0) { 886 return ret; 887 } 888 889 /* ibm,associativity-lookup-arrays */ 890 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 891 cur_index = int_buf = g_malloc0(buf_len); 892 893 cur_index = int_buf; 894 int_buf[0] = cpu_to_be32(nr_nodes); 895 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 896 cur_index += 2; 897 for (i = 0; i < nr_nodes; i++) { 898 uint32_t associativity[] = { 899 cpu_to_be32(0x0), 900 cpu_to_be32(0x0), 901 cpu_to_be32(0x0), 902 cpu_to_be32(i) 903 }; 904 memcpy(cur_index, associativity, sizeof(associativity)); 905 cur_index += 4; 906 } 907 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 908 (cur_index - int_buf) * sizeof(uint32_t)); 909 g_free(int_buf); 910 911 return ret; 912 } 913 914 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 915 sPAPROptionVector *ov5_updates) 916 { 917 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 918 int ret = 0, offset; 919 920 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 921 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 922 g_assert(smc->dr_lmb_enabled); 923 ret = spapr_populate_drconf_memory(spapr, fdt); 924 if (ret) { 925 goto out; 926 } 927 } 928 929 offset = fdt_path_offset(fdt, "/chosen"); 930 if (offset < 0) { 931 offset = fdt_add_subnode(fdt, 0, "chosen"); 932 if (offset < 0) { 933 return offset; 934 } 935 } 936 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 937 "ibm,architecture-vec-5"); 938 939 out: 940 return ret; 941 } 942 943 static bool spapr_hotplugged_dev_before_cas(void) 944 { 945 Object *drc_container, *obj; 946 ObjectProperty *prop; 947 ObjectPropertyIterator iter; 948 949 drc_container = container_get(object_get_root(), "/dr-connector"); 950 object_property_iter_init(&iter, drc_container); 951 while ((prop = object_property_iter_next(&iter))) { 952 if (!strstart(prop->type, "link<", NULL)) { 953 continue; 954 } 955 obj = object_property_get_link(drc_container, prop->name, NULL); 956 if (spapr_drc_needed(obj)) { 957 return true; 958 } 959 } 960 return false; 961 } 962 963 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 964 target_ulong addr, target_ulong size, 965 sPAPROptionVector *ov5_updates) 966 { 967 void *fdt, *fdt_skel; 968 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 969 970 if (spapr_hotplugged_dev_before_cas()) { 971 return 1; 972 } 973 974 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 975 error_report("SLOF provided an unexpected CAS buffer size " 976 TARGET_FMT_lu " (min: %zu, max: %u)", 977 size, sizeof(hdr), FW_MAX_SIZE); 978 exit(EXIT_FAILURE); 979 } 980 981 size -= sizeof(hdr); 982 983 /* Create skeleton */ 984 fdt_skel = g_malloc0(size); 985 _FDT((fdt_create(fdt_skel, size))); 986 _FDT((fdt_finish_reservemap(fdt_skel))); 987 _FDT((fdt_begin_node(fdt_skel, ""))); 988 _FDT((fdt_end_node(fdt_skel))); 989 _FDT((fdt_finish(fdt_skel))); 990 fdt = g_malloc0(size); 991 _FDT((fdt_open_into(fdt_skel, fdt, size))); 992 g_free(fdt_skel); 993 994 /* Fixup cpu nodes */ 995 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 996 997 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 998 return -1; 999 } 1000 1001 /* Pack resulting tree */ 1002 _FDT((fdt_pack(fdt))); 1003 1004 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1005 trace_spapr_cas_failed(size); 1006 return -1; 1007 } 1008 1009 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1010 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1011 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1012 g_free(fdt); 1013 1014 return 0; 1015 } 1016 1017 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 1018 { 1019 int rtas; 1020 GString *hypertas = g_string_sized_new(256); 1021 GString *qemu_hypertas = g_string_sized_new(256); 1022 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1023 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1024 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1025 uint32_t lrdr_capacity[] = { 1026 cpu_to_be32(max_device_addr >> 32), 1027 cpu_to_be32(max_device_addr & 0xffffffff), 1028 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1029 cpu_to_be32(max_cpus / smp_threads), 1030 }; 1031 uint32_t maxdomains[] = { 1032 cpu_to_be32(4), 1033 cpu_to_be32(0), 1034 cpu_to_be32(0), 1035 cpu_to_be32(0), 1036 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0), 1037 }; 1038 1039 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1040 1041 /* hypertas */ 1042 add_str(hypertas, "hcall-pft"); 1043 add_str(hypertas, "hcall-term"); 1044 add_str(hypertas, "hcall-dabr"); 1045 add_str(hypertas, "hcall-interrupt"); 1046 add_str(hypertas, "hcall-tce"); 1047 add_str(hypertas, "hcall-vio"); 1048 add_str(hypertas, "hcall-splpar"); 1049 add_str(hypertas, "hcall-bulk"); 1050 add_str(hypertas, "hcall-set-mode"); 1051 add_str(hypertas, "hcall-sprg0"); 1052 add_str(hypertas, "hcall-copy"); 1053 add_str(hypertas, "hcall-debug"); 1054 add_str(qemu_hypertas, "hcall-memop1"); 1055 1056 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1057 add_str(hypertas, "hcall-multi-tce"); 1058 } 1059 1060 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1061 add_str(hypertas, "hcall-hpt-resize"); 1062 } 1063 1064 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1065 hypertas->str, hypertas->len)); 1066 g_string_free(hypertas, TRUE); 1067 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1068 qemu_hypertas->str, qemu_hypertas->len)); 1069 g_string_free(qemu_hypertas, TRUE); 1070 1071 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1072 refpoints, sizeof(refpoints))); 1073 1074 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1075 maxdomains, sizeof(maxdomains))); 1076 1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1078 RTAS_ERROR_LOG_MAX)); 1079 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1080 RTAS_EVENT_SCAN_RATE)); 1081 1082 g_assert(msi_nonbroken); 1083 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1084 1085 /* 1086 * According to PAPR, rtas ibm,os-term does not guarantee a return 1087 * back to the guest cpu. 1088 * 1089 * While an additional ibm,extended-os-term property indicates 1090 * that rtas call return will always occur. Set this property. 1091 */ 1092 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1093 1094 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1095 lrdr_capacity, sizeof(lrdr_capacity))); 1096 1097 spapr_dt_rtas_tokens(fdt, rtas); 1098 } 1099 1100 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features 1101 * that the guest may request and thus the valid values for bytes 24..26 of 1102 * option vector 5: */ 1103 static void spapr_dt_ov5_platform_support(void *fdt, int chosen) 1104 { 1105 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1106 1107 char val[2 * 4] = { 1108 23, 0x00, /* Xive mode, filled in below. */ 1109 24, 0x00, /* Hash/Radix, filled in below. */ 1110 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1111 26, 0x40, /* Radix options: GTSE == yes. */ 1112 }; 1113 1114 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1115 first_ppc_cpu->compat_pvr)) { 1116 /* If we're in a pre POWER9 compat mode then the guest should do hash */ 1117 val[3] = 0x00; /* Hash */ 1118 } else if (kvm_enabled()) { 1119 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1120 val[3] = 0x80; /* OV5_MMU_BOTH */ 1121 } else if (kvmppc_has_cap_mmu_radix()) { 1122 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1123 } else { 1124 val[3] = 0x00; /* Hash */ 1125 } 1126 } else { 1127 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1128 val[3] = 0xC0; 1129 } 1130 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1131 val, sizeof(val))); 1132 } 1133 1134 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 1135 { 1136 MachineState *machine = MACHINE(spapr); 1137 int chosen; 1138 const char *boot_device = machine->boot_order; 1139 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1140 size_t cb = 0; 1141 char *bootlist = get_boot_devices_list(&cb); 1142 1143 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1144 1145 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1146 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1147 spapr->initrd_base)); 1148 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1149 spapr->initrd_base + spapr->initrd_size)); 1150 1151 if (spapr->kernel_size) { 1152 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1153 cpu_to_be64(spapr->kernel_size) }; 1154 1155 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1156 &kprop, sizeof(kprop))); 1157 if (spapr->kernel_le) { 1158 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1159 } 1160 } 1161 if (boot_menu) { 1162 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1163 } 1164 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1165 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1166 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1167 1168 if (cb && bootlist) { 1169 int i; 1170 1171 for (i = 0; i < cb; i++) { 1172 if (bootlist[i] == '\n') { 1173 bootlist[i] = ' '; 1174 } 1175 } 1176 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1177 } 1178 1179 if (boot_device && strlen(boot_device)) { 1180 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1181 } 1182 1183 if (!spapr->has_graphics && stdout_path) { 1184 /* 1185 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1186 * kernel. New platforms should only use the "stdout-path" property. Set 1187 * the new property and continue using older property to remain 1188 * compatible with the existing firmware. 1189 */ 1190 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1191 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1192 } 1193 1194 spapr_dt_ov5_platform_support(fdt, chosen); 1195 1196 g_free(stdout_path); 1197 g_free(bootlist); 1198 } 1199 1200 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 1201 { 1202 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1203 * KVM to work under pHyp with some guest co-operation */ 1204 int hypervisor; 1205 uint8_t hypercall[16]; 1206 1207 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1208 /* indicate KVM hypercall interface */ 1209 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1210 if (kvmppc_has_cap_fixup_hcalls()) { 1211 /* 1212 * Older KVM versions with older guest kernels were broken 1213 * with the magic page, don't allow the guest to map it. 1214 */ 1215 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1216 sizeof(hypercall))) { 1217 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1218 hypercall, sizeof(hypercall))); 1219 } 1220 } 1221 } 1222 1223 static void *spapr_build_fdt(sPAPRMachineState *spapr, 1224 hwaddr rtas_addr, 1225 hwaddr rtas_size) 1226 { 1227 MachineState *machine = MACHINE(spapr); 1228 MachineClass *mc = MACHINE_GET_CLASS(machine); 1229 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1230 int ret; 1231 void *fdt; 1232 sPAPRPHBState *phb; 1233 char *buf; 1234 1235 fdt = g_malloc0(FDT_MAX_SIZE); 1236 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1237 1238 /* Root node */ 1239 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1240 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1241 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1242 1243 /* 1244 * Add info to guest to indentify which host is it being run on 1245 * and what is the uuid of the guest 1246 */ 1247 if (kvmppc_get_host_model(&buf)) { 1248 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1249 g_free(buf); 1250 } 1251 if (kvmppc_get_host_serial(&buf)) { 1252 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1253 g_free(buf); 1254 } 1255 1256 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1257 1258 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1259 if (qemu_uuid_set) { 1260 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1261 } 1262 g_free(buf); 1263 1264 if (qemu_get_vm_name()) { 1265 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1266 qemu_get_vm_name())); 1267 } 1268 1269 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1270 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1271 1272 /* /interrupt controller */ 1273 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP); 1274 1275 ret = spapr_populate_memory(spapr, fdt); 1276 if (ret < 0) { 1277 error_report("couldn't setup memory nodes in fdt"); 1278 exit(1); 1279 } 1280 1281 /* /vdevice */ 1282 spapr_dt_vdevice(spapr->vio_bus, fdt); 1283 1284 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1285 ret = spapr_rng_populate_dt(fdt); 1286 if (ret < 0) { 1287 error_report("could not set up rng device in the fdt"); 1288 exit(1); 1289 } 1290 } 1291 1292 QLIST_FOREACH(phb, &spapr->phbs, list) { 1293 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt, smc->irq->nr_msis); 1294 if (ret < 0) { 1295 error_report("couldn't setup PCI devices in fdt"); 1296 exit(1); 1297 } 1298 } 1299 1300 /* cpus */ 1301 spapr_populate_cpus_dt_node(fdt, spapr); 1302 1303 if (smc->dr_lmb_enabled) { 1304 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1305 } 1306 1307 if (mc->has_hotpluggable_cpus) { 1308 int offset = fdt_path_offset(fdt, "/cpus"); 1309 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1310 SPAPR_DR_CONNECTOR_TYPE_CPU); 1311 if (ret < 0) { 1312 error_report("Couldn't set up CPU DR device tree properties"); 1313 exit(1); 1314 } 1315 } 1316 1317 /* /event-sources */ 1318 spapr_dt_events(spapr, fdt); 1319 1320 /* /rtas */ 1321 spapr_dt_rtas(spapr, fdt); 1322 1323 /* /chosen */ 1324 spapr_dt_chosen(spapr, fdt); 1325 1326 /* /hypervisor */ 1327 if (kvm_enabled()) { 1328 spapr_dt_hypervisor(spapr, fdt); 1329 } 1330 1331 /* Build memory reserve map */ 1332 if (spapr->kernel_size) { 1333 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1334 } 1335 if (spapr->initrd_size) { 1336 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1337 } 1338 1339 /* ibm,client-architecture-support updates */ 1340 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1341 if (ret < 0) { 1342 error_report("couldn't setup CAS properties fdt"); 1343 exit(1); 1344 } 1345 1346 return fdt; 1347 } 1348 1349 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1350 { 1351 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1352 } 1353 1354 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1355 PowerPCCPU *cpu) 1356 { 1357 CPUPPCState *env = &cpu->env; 1358 1359 /* The TCG path should also be holding the BQL at this point */ 1360 g_assert(qemu_mutex_iothread_locked()); 1361 1362 if (msr_pr) { 1363 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1364 env->gpr[3] = H_PRIVILEGE; 1365 } else { 1366 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1367 } 1368 } 1369 1370 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1371 { 1372 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1373 1374 return spapr->patb_entry; 1375 } 1376 1377 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1378 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1379 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1380 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1381 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1382 1383 /* 1384 * Get the fd to access the kernel htab, re-opening it if necessary 1385 */ 1386 static int get_htab_fd(sPAPRMachineState *spapr) 1387 { 1388 Error *local_err = NULL; 1389 1390 if (spapr->htab_fd >= 0) { 1391 return spapr->htab_fd; 1392 } 1393 1394 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1395 if (spapr->htab_fd < 0) { 1396 error_report_err(local_err); 1397 } 1398 1399 return spapr->htab_fd; 1400 } 1401 1402 void close_htab_fd(sPAPRMachineState *spapr) 1403 { 1404 if (spapr->htab_fd >= 0) { 1405 close(spapr->htab_fd); 1406 } 1407 spapr->htab_fd = -1; 1408 } 1409 1410 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1411 { 1412 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1413 1414 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1415 } 1416 1417 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1418 { 1419 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1420 1421 assert(kvm_enabled()); 1422 1423 if (!spapr->htab) { 1424 return 0; 1425 } 1426 1427 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1428 } 1429 1430 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1431 hwaddr ptex, int n) 1432 { 1433 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1434 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1435 1436 if (!spapr->htab) { 1437 /* 1438 * HTAB is controlled by KVM. Fetch into temporary buffer 1439 */ 1440 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1441 kvmppc_read_hptes(hptes, ptex, n); 1442 return hptes; 1443 } 1444 1445 /* 1446 * HTAB is controlled by QEMU. Just point to the internally 1447 * accessible PTEG. 1448 */ 1449 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1450 } 1451 1452 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1453 const ppc_hash_pte64_t *hptes, 1454 hwaddr ptex, int n) 1455 { 1456 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1457 1458 if (!spapr->htab) { 1459 g_free((void *)hptes); 1460 } 1461 1462 /* Nothing to do for qemu managed HPT */ 1463 } 1464 1465 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1466 uint64_t pte0, uint64_t pte1) 1467 { 1468 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1469 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1470 1471 if (!spapr->htab) { 1472 kvmppc_write_hpte(ptex, pte0, pte1); 1473 } else { 1474 stq_p(spapr->htab + offset, pte0); 1475 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1476 } 1477 } 1478 1479 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1480 { 1481 int shift; 1482 1483 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1484 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1485 * that's much more than is needed for Linux guests */ 1486 shift = ctz64(pow2ceil(ramsize)) - 7; 1487 shift = MAX(shift, 18); /* Minimum architected size */ 1488 shift = MIN(shift, 46); /* Maximum architected size */ 1489 return shift; 1490 } 1491 1492 void spapr_free_hpt(sPAPRMachineState *spapr) 1493 { 1494 g_free(spapr->htab); 1495 spapr->htab = NULL; 1496 spapr->htab_shift = 0; 1497 close_htab_fd(spapr); 1498 } 1499 1500 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1501 Error **errp) 1502 { 1503 long rc; 1504 1505 /* Clean up any HPT info from a previous boot */ 1506 spapr_free_hpt(spapr); 1507 1508 rc = kvmppc_reset_htab(shift); 1509 if (rc < 0) { 1510 /* kernel-side HPT needed, but couldn't allocate one */ 1511 error_setg_errno(errp, errno, 1512 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1513 shift); 1514 /* This is almost certainly fatal, but if the caller really 1515 * wants to carry on with shift == 0, it's welcome to try */ 1516 } else if (rc > 0) { 1517 /* kernel-side HPT allocated */ 1518 if (rc != shift) { 1519 error_setg(errp, 1520 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1521 shift, rc); 1522 } 1523 1524 spapr->htab_shift = shift; 1525 spapr->htab = NULL; 1526 } else { 1527 /* kernel-side HPT not needed, allocate in userspace instead */ 1528 size_t size = 1ULL << shift; 1529 int i; 1530 1531 spapr->htab = qemu_memalign(size, size); 1532 if (!spapr->htab) { 1533 error_setg_errno(errp, errno, 1534 "Could not allocate HPT of order %d", shift); 1535 return; 1536 } 1537 1538 memset(spapr->htab, 0, size); 1539 spapr->htab_shift = shift; 1540 1541 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1542 DIRTY_HPTE(HPTE(spapr->htab, i)); 1543 } 1544 } 1545 /* We're setting up a hash table, so that means we're not radix */ 1546 spapr->patb_entry = 0; 1547 } 1548 1549 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1550 { 1551 int hpt_shift; 1552 1553 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1554 || (spapr->cas_reboot 1555 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1556 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1557 } else { 1558 uint64_t current_ram_size; 1559 1560 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1561 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1562 } 1563 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1564 1565 if (spapr->vrma_adjust) { 1566 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1567 spapr->htab_shift); 1568 } 1569 } 1570 1571 static int spapr_reset_drcs(Object *child, void *opaque) 1572 { 1573 sPAPRDRConnector *drc = 1574 (sPAPRDRConnector *) object_dynamic_cast(child, 1575 TYPE_SPAPR_DR_CONNECTOR); 1576 1577 if (drc) { 1578 spapr_drc_reset(drc); 1579 } 1580 1581 return 0; 1582 } 1583 1584 static void spapr_machine_reset(void) 1585 { 1586 MachineState *machine = MACHINE(qdev_get_machine()); 1587 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1588 PowerPCCPU *first_ppc_cpu; 1589 uint32_t rtas_limit; 1590 hwaddr rtas_addr, fdt_addr; 1591 void *fdt; 1592 int rc; 1593 1594 spapr_caps_apply(spapr); 1595 1596 first_ppc_cpu = POWERPC_CPU(first_cpu); 1597 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1598 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1599 spapr->max_compat_pvr)) { 1600 /* If using KVM with radix mode available, VCPUs can be started 1601 * without a HPT because KVM will start them in radix mode. 1602 * Set the GR bit in PATB so that we know there is no HPT. */ 1603 spapr->patb_entry = PATBE1_GR; 1604 } else { 1605 spapr_setup_hpt_and_vrma(spapr); 1606 } 1607 1608 /* if this reset wasn't generated by CAS, we should reset our 1609 * negotiated options and start from scratch */ 1610 if (!spapr->cas_reboot) { 1611 spapr_ovec_cleanup(spapr->ov5_cas); 1612 spapr->ov5_cas = spapr_ovec_new(); 1613 1614 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1615 } 1616 1617 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1618 spapr_irq_msi_reset(spapr); 1619 } 1620 1621 qemu_devices_reset(); 1622 1623 /* DRC reset may cause a device to be unplugged. This will cause troubles 1624 * if this device is used by another device (eg, a running vhost backend 1625 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1626 * situations, we reset DRCs after all devices have been reset. 1627 */ 1628 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1629 1630 spapr_clear_pending_events(spapr); 1631 1632 /* 1633 * We place the device tree and RTAS just below either the top of the RMA, 1634 * or just below 2GB, whichever is lowere, so that it can be 1635 * processed with 32-bit real mode code if necessary 1636 */ 1637 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1638 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1639 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1640 1641 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1642 1643 spapr_load_rtas(spapr, fdt, rtas_addr); 1644 1645 rc = fdt_pack(fdt); 1646 1647 /* Should only fail if we've built a corrupted tree */ 1648 assert(rc == 0); 1649 1650 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1651 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1652 fdt_totalsize(fdt), FDT_MAX_SIZE); 1653 exit(1); 1654 } 1655 1656 /* Load the fdt */ 1657 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1658 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1659 g_free(fdt); 1660 1661 /* Set up the entry state */ 1662 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1663 first_ppc_cpu->env.gpr[5] = 0; 1664 1665 spapr->cas_reboot = false; 1666 } 1667 1668 static void spapr_create_nvram(sPAPRMachineState *spapr) 1669 { 1670 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1671 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1672 1673 if (dinfo) { 1674 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1675 &error_fatal); 1676 } 1677 1678 qdev_init_nofail(dev); 1679 1680 spapr->nvram = (struct sPAPRNVRAM *)dev; 1681 } 1682 1683 static void spapr_rtc_create(sPAPRMachineState *spapr) 1684 { 1685 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1686 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1687 &error_fatal); 1688 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1689 &error_fatal); 1690 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1691 "date", &error_fatal); 1692 } 1693 1694 /* Returns whether we want to use VGA or not */ 1695 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1696 { 1697 switch (vga_interface_type) { 1698 case VGA_NONE: 1699 return false; 1700 case VGA_DEVICE: 1701 return true; 1702 case VGA_STD: 1703 case VGA_VIRTIO: 1704 return pci_vga_init(pci_bus) != NULL; 1705 default: 1706 error_setg(errp, 1707 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1708 return false; 1709 } 1710 } 1711 1712 static int spapr_pre_load(void *opaque) 1713 { 1714 int rc; 1715 1716 rc = spapr_caps_pre_load(opaque); 1717 if (rc) { 1718 return rc; 1719 } 1720 1721 return 0; 1722 } 1723 1724 static int spapr_post_load(void *opaque, int version_id) 1725 { 1726 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1727 int err = 0; 1728 1729 err = spapr_caps_post_migration(spapr); 1730 if (err) { 1731 return err; 1732 } 1733 1734 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1735 CPUState *cs; 1736 CPU_FOREACH(cs) { 1737 PowerPCCPU *cpu = POWERPC_CPU(cs); 1738 icp_resend(ICP(cpu->intc)); 1739 } 1740 } 1741 1742 /* In earlier versions, there was no separate qdev for the PAPR 1743 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1744 * So when migrating from those versions, poke the incoming offset 1745 * value into the RTC device */ 1746 if (version_id < 3) { 1747 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1748 } 1749 1750 if (kvm_enabled() && spapr->patb_entry) { 1751 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1752 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1753 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1754 1755 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1756 if (err) { 1757 error_report("Process table config unsupported by the host"); 1758 return -EINVAL; 1759 } 1760 } 1761 1762 return err; 1763 } 1764 1765 static int spapr_pre_save(void *opaque) 1766 { 1767 int rc; 1768 1769 rc = spapr_caps_pre_save(opaque); 1770 if (rc) { 1771 return rc; 1772 } 1773 1774 return 0; 1775 } 1776 1777 static bool version_before_3(void *opaque, int version_id) 1778 { 1779 return version_id < 3; 1780 } 1781 1782 static bool spapr_pending_events_needed(void *opaque) 1783 { 1784 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1785 return !QTAILQ_EMPTY(&spapr->pending_events); 1786 } 1787 1788 static const VMStateDescription vmstate_spapr_event_entry = { 1789 .name = "spapr_event_log_entry", 1790 .version_id = 1, 1791 .minimum_version_id = 1, 1792 .fields = (VMStateField[]) { 1793 VMSTATE_UINT32(summary, sPAPREventLogEntry), 1794 VMSTATE_UINT32(extended_length, sPAPREventLogEntry), 1795 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, 1796 NULL, extended_length), 1797 VMSTATE_END_OF_LIST() 1798 }, 1799 }; 1800 1801 static const VMStateDescription vmstate_spapr_pending_events = { 1802 .name = "spapr_pending_events", 1803 .version_id = 1, 1804 .minimum_version_id = 1, 1805 .needed = spapr_pending_events_needed, 1806 .fields = (VMStateField[]) { 1807 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, 1808 vmstate_spapr_event_entry, sPAPREventLogEntry, next), 1809 VMSTATE_END_OF_LIST() 1810 }, 1811 }; 1812 1813 static bool spapr_ov5_cas_needed(void *opaque) 1814 { 1815 sPAPRMachineState *spapr = opaque; 1816 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1817 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1818 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1819 bool cas_needed; 1820 1821 /* Prior to the introduction of sPAPROptionVector, we had two option 1822 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1823 * Both of these options encode machine topology into the device-tree 1824 * in such a way that the now-booted OS should still be able to interact 1825 * appropriately with QEMU regardless of what options were actually 1826 * negotiatied on the source side. 1827 * 1828 * As such, we can avoid migrating the CAS-negotiated options if these 1829 * are the only options available on the current machine/platform. 1830 * Since these are the only options available for pseries-2.7 and 1831 * earlier, this allows us to maintain old->new/new->old migration 1832 * compatibility. 1833 * 1834 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1835 * via default pseries-2.8 machines and explicit command-line parameters. 1836 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1837 * of the actual CAS-negotiated values to continue working properly. For 1838 * example, availability of memory unplug depends on knowing whether 1839 * OV5_HP_EVT was negotiated via CAS. 1840 * 1841 * Thus, for any cases where the set of available CAS-negotiatable 1842 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1843 * include the CAS-negotiated options in the migration stream, unless 1844 * if they affect boot time behaviour only. 1845 */ 1846 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1847 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1848 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1849 1850 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1851 * the mask itself since in the future it's possible "legacy" bits may be 1852 * removed via machine options, which could generate a false positive 1853 * that breaks migration. 1854 */ 1855 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1856 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1857 1858 spapr_ovec_cleanup(ov5_mask); 1859 spapr_ovec_cleanup(ov5_legacy); 1860 spapr_ovec_cleanup(ov5_removed); 1861 1862 return cas_needed; 1863 } 1864 1865 static const VMStateDescription vmstate_spapr_ov5_cas = { 1866 .name = "spapr_option_vector_ov5_cas", 1867 .version_id = 1, 1868 .minimum_version_id = 1, 1869 .needed = spapr_ov5_cas_needed, 1870 .fields = (VMStateField[]) { 1871 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1872 vmstate_spapr_ovec, sPAPROptionVector), 1873 VMSTATE_END_OF_LIST() 1874 }, 1875 }; 1876 1877 static bool spapr_patb_entry_needed(void *opaque) 1878 { 1879 sPAPRMachineState *spapr = opaque; 1880 1881 return !!spapr->patb_entry; 1882 } 1883 1884 static const VMStateDescription vmstate_spapr_patb_entry = { 1885 .name = "spapr_patb_entry", 1886 .version_id = 1, 1887 .minimum_version_id = 1, 1888 .needed = spapr_patb_entry_needed, 1889 .fields = (VMStateField[]) { 1890 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1891 VMSTATE_END_OF_LIST() 1892 }, 1893 }; 1894 1895 static bool spapr_irq_map_needed(void *opaque) 1896 { 1897 sPAPRMachineState *spapr = opaque; 1898 1899 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1900 } 1901 1902 static const VMStateDescription vmstate_spapr_irq_map = { 1903 .name = "spapr_irq_map", 1904 .version_id = 1, 1905 .minimum_version_id = 1, 1906 .needed = spapr_irq_map_needed, 1907 .fields = (VMStateField[]) { 1908 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr), 1909 VMSTATE_END_OF_LIST() 1910 }, 1911 }; 1912 1913 static const VMStateDescription vmstate_spapr = { 1914 .name = "spapr", 1915 .version_id = 3, 1916 .minimum_version_id = 1, 1917 .pre_load = spapr_pre_load, 1918 .post_load = spapr_post_load, 1919 .pre_save = spapr_pre_save, 1920 .fields = (VMStateField[]) { 1921 /* used to be @next_irq */ 1922 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1923 1924 /* RTC offset */ 1925 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1926 1927 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1928 VMSTATE_END_OF_LIST() 1929 }, 1930 .subsections = (const VMStateDescription*[]) { 1931 &vmstate_spapr_ov5_cas, 1932 &vmstate_spapr_patb_entry, 1933 &vmstate_spapr_pending_events, 1934 &vmstate_spapr_cap_htm, 1935 &vmstate_spapr_cap_vsx, 1936 &vmstate_spapr_cap_dfp, 1937 &vmstate_spapr_cap_cfpc, 1938 &vmstate_spapr_cap_sbbc, 1939 &vmstate_spapr_cap_ibs, 1940 &vmstate_spapr_irq_map, 1941 &vmstate_spapr_cap_nested_kvm_hv, 1942 NULL 1943 } 1944 }; 1945 1946 static int htab_save_setup(QEMUFile *f, void *opaque) 1947 { 1948 sPAPRMachineState *spapr = opaque; 1949 1950 /* "Iteration" header */ 1951 if (!spapr->htab_shift) { 1952 qemu_put_be32(f, -1); 1953 } else { 1954 qemu_put_be32(f, spapr->htab_shift); 1955 } 1956 1957 if (spapr->htab) { 1958 spapr->htab_save_index = 0; 1959 spapr->htab_first_pass = true; 1960 } else { 1961 if (spapr->htab_shift) { 1962 assert(kvm_enabled()); 1963 } 1964 } 1965 1966 1967 return 0; 1968 } 1969 1970 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, 1971 int chunkstart, int n_valid, int n_invalid) 1972 { 1973 qemu_put_be32(f, chunkstart); 1974 qemu_put_be16(f, n_valid); 1975 qemu_put_be16(f, n_invalid); 1976 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1977 HASH_PTE_SIZE_64 * n_valid); 1978 } 1979 1980 static void htab_save_end_marker(QEMUFile *f) 1981 { 1982 qemu_put_be32(f, 0); 1983 qemu_put_be16(f, 0); 1984 qemu_put_be16(f, 0); 1985 } 1986 1987 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1988 int64_t max_ns) 1989 { 1990 bool has_timeout = max_ns != -1; 1991 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1992 int index = spapr->htab_save_index; 1993 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1994 1995 assert(spapr->htab_first_pass); 1996 1997 do { 1998 int chunkstart; 1999 2000 /* Consume invalid HPTEs */ 2001 while ((index < htabslots) 2002 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2003 CLEAN_HPTE(HPTE(spapr->htab, index)); 2004 index++; 2005 } 2006 2007 /* Consume valid HPTEs */ 2008 chunkstart = index; 2009 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2010 && HPTE_VALID(HPTE(spapr->htab, index))) { 2011 CLEAN_HPTE(HPTE(spapr->htab, index)); 2012 index++; 2013 } 2014 2015 if (index > chunkstart) { 2016 int n_valid = index - chunkstart; 2017 2018 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2019 2020 if (has_timeout && 2021 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2022 break; 2023 } 2024 } 2025 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2026 2027 if (index >= htabslots) { 2028 assert(index == htabslots); 2029 index = 0; 2030 spapr->htab_first_pass = false; 2031 } 2032 spapr->htab_save_index = index; 2033 } 2034 2035 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 2036 int64_t max_ns) 2037 { 2038 bool final = max_ns < 0; 2039 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2040 int examined = 0, sent = 0; 2041 int index = spapr->htab_save_index; 2042 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2043 2044 assert(!spapr->htab_first_pass); 2045 2046 do { 2047 int chunkstart, invalidstart; 2048 2049 /* Consume non-dirty HPTEs */ 2050 while ((index < htabslots) 2051 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2052 index++; 2053 examined++; 2054 } 2055 2056 chunkstart = index; 2057 /* Consume valid dirty HPTEs */ 2058 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2059 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2060 && HPTE_VALID(HPTE(spapr->htab, index))) { 2061 CLEAN_HPTE(HPTE(spapr->htab, index)); 2062 index++; 2063 examined++; 2064 } 2065 2066 invalidstart = index; 2067 /* Consume invalid dirty HPTEs */ 2068 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2069 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2070 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2071 CLEAN_HPTE(HPTE(spapr->htab, index)); 2072 index++; 2073 examined++; 2074 } 2075 2076 if (index > chunkstart) { 2077 int n_valid = invalidstart - chunkstart; 2078 int n_invalid = index - invalidstart; 2079 2080 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2081 sent += index - chunkstart; 2082 2083 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2084 break; 2085 } 2086 } 2087 2088 if (examined >= htabslots) { 2089 break; 2090 } 2091 2092 if (index >= htabslots) { 2093 assert(index == htabslots); 2094 index = 0; 2095 } 2096 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2097 2098 if (index >= htabslots) { 2099 assert(index == htabslots); 2100 index = 0; 2101 } 2102 2103 spapr->htab_save_index = index; 2104 2105 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2106 } 2107 2108 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2109 #define MAX_KVM_BUF_SIZE 2048 2110 2111 static int htab_save_iterate(QEMUFile *f, void *opaque) 2112 { 2113 sPAPRMachineState *spapr = opaque; 2114 int fd; 2115 int rc = 0; 2116 2117 /* Iteration header */ 2118 if (!spapr->htab_shift) { 2119 qemu_put_be32(f, -1); 2120 return 1; 2121 } else { 2122 qemu_put_be32(f, 0); 2123 } 2124 2125 if (!spapr->htab) { 2126 assert(kvm_enabled()); 2127 2128 fd = get_htab_fd(spapr); 2129 if (fd < 0) { 2130 return fd; 2131 } 2132 2133 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2134 if (rc < 0) { 2135 return rc; 2136 } 2137 } else if (spapr->htab_first_pass) { 2138 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2139 } else { 2140 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2141 } 2142 2143 htab_save_end_marker(f); 2144 2145 return rc; 2146 } 2147 2148 static int htab_save_complete(QEMUFile *f, void *opaque) 2149 { 2150 sPAPRMachineState *spapr = opaque; 2151 int fd; 2152 2153 /* Iteration header */ 2154 if (!spapr->htab_shift) { 2155 qemu_put_be32(f, -1); 2156 return 0; 2157 } else { 2158 qemu_put_be32(f, 0); 2159 } 2160 2161 if (!spapr->htab) { 2162 int rc; 2163 2164 assert(kvm_enabled()); 2165 2166 fd = get_htab_fd(spapr); 2167 if (fd < 0) { 2168 return fd; 2169 } 2170 2171 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2172 if (rc < 0) { 2173 return rc; 2174 } 2175 } else { 2176 if (spapr->htab_first_pass) { 2177 htab_save_first_pass(f, spapr, -1); 2178 } 2179 htab_save_later_pass(f, spapr, -1); 2180 } 2181 2182 /* End marker */ 2183 htab_save_end_marker(f); 2184 2185 return 0; 2186 } 2187 2188 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2189 { 2190 sPAPRMachineState *spapr = opaque; 2191 uint32_t section_hdr; 2192 int fd = -1; 2193 Error *local_err = NULL; 2194 2195 if (version_id < 1 || version_id > 1) { 2196 error_report("htab_load() bad version"); 2197 return -EINVAL; 2198 } 2199 2200 section_hdr = qemu_get_be32(f); 2201 2202 if (section_hdr == -1) { 2203 spapr_free_hpt(spapr); 2204 return 0; 2205 } 2206 2207 if (section_hdr) { 2208 /* First section gives the htab size */ 2209 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2210 if (local_err) { 2211 error_report_err(local_err); 2212 return -EINVAL; 2213 } 2214 return 0; 2215 } 2216 2217 if (!spapr->htab) { 2218 assert(kvm_enabled()); 2219 2220 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2221 if (fd < 0) { 2222 error_report_err(local_err); 2223 return fd; 2224 } 2225 } 2226 2227 while (true) { 2228 uint32_t index; 2229 uint16_t n_valid, n_invalid; 2230 2231 index = qemu_get_be32(f); 2232 n_valid = qemu_get_be16(f); 2233 n_invalid = qemu_get_be16(f); 2234 2235 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2236 /* End of Stream */ 2237 break; 2238 } 2239 2240 if ((index + n_valid + n_invalid) > 2241 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2242 /* Bad index in stream */ 2243 error_report( 2244 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2245 index, n_valid, n_invalid, spapr->htab_shift); 2246 return -EINVAL; 2247 } 2248 2249 if (spapr->htab) { 2250 if (n_valid) { 2251 qemu_get_buffer(f, HPTE(spapr->htab, index), 2252 HASH_PTE_SIZE_64 * n_valid); 2253 } 2254 if (n_invalid) { 2255 memset(HPTE(spapr->htab, index + n_valid), 0, 2256 HASH_PTE_SIZE_64 * n_invalid); 2257 } 2258 } else { 2259 int rc; 2260 2261 assert(fd >= 0); 2262 2263 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2264 if (rc < 0) { 2265 return rc; 2266 } 2267 } 2268 } 2269 2270 if (!spapr->htab) { 2271 assert(fd >= 0); 2272 close(fd); 2273 } 2274 2275 return 0; 2276 } 2277 2278 static void htab_save_cleanup(void *opaque) 2279 { 2280 sPAPRMachineState *spapr = opaque; 2281 2282 close_htab_fd(spapr); 2283 } 2284 2285 static SaveVMHandlers savevm_htab_handlers = { 2286 .save_setup = htab_save_setup, 2287 .save_live_iterate = htab_save_iterate, 2288 .save_live_complete_precopy = htab_save_complete, 2289 .save_cleanup = htab_save_cleanup, 2290 .load_state = htab_load, 2291 }; 2292 2293 static void spapr_boot_set(void *opaque, const char *boot_device, 2294 Error **errp) 2295 { 2296 MachineState *machine = MACHINE(opaque); 2297 machine->boot_order = g_strdup(boot_device); 2298 } 2299 2300 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 2301 { 2302 MachineState *machine = MACHINE(spapr); 2303 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2304 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2305 int i; 2306 2307 for (i = 0; i < nr_lmbs; i++) { 2308 uint64_t addr; 2309 2310 addr = i * lmb_size + machine->device_memory->base; 2311 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2312 addr / lmb_size); 2313 } 2314 } 2315 2316 /* 2317 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2318 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2319 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2320 */ 2321 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2322 { 2323 int i; 2324 2325 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2326 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2327 " is not aligned to %" PRIu64 " MiB", 2328 machine->ram_size, 2329 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2330 return; 2331 } 2332 2333 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2334 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2335 " is not aligned to %" PRIu64 " MiB", 2336 machine->ram_size, 2337 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2338 return; 2339 } 2340 2341 for (i = 0; i < nb_numa_nodes; i++) { 2342 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2343 error_setg(errp, 2344 "Node %d memory size 0x%" PRIx64 2345 " is not aligned to %" PRIu64 " MiB", 2346 i, numa_info[i].node_mem, 2347 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2348 return; 2349 } 2350 } 2351 } 2352 2353 /* find cpu slot in machine->possible_cpus by core_id */ 2354 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2355 { 2356 int index = id / smp_threads; 2357 2358 if (index >= ms->possible_cpus->len) { 2359 return NULL; 2360 } 2361 if (idx) { 2362 *idx = index; 2363 } 2364 return &ms->possible_cpus->cpus[index]; 2365 } 2366 2367 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) 2368 { 2369 Error *local_err = NULL; 2370 bool vsmt_user = !!spapr->vsmt; 2371 int kvm_smt = kvmppc_smt_threads(); 2372 int ret; 2373 2374 if (!kvm_enabled() && (smp_threads > 1)) { 2375 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2376 "on a pseries machine"); 2377 goto out; 2378 } 2379 if (!is_power_of_2(smp_threads)) { 2380 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2381 "machine because it must be a power of 2", smp_threads); 2382 goto out; 2383 } 2384 2385 /* Detemine the VSMT mode to use: */ 2386 if (vsmt_user) { 2387 if (spapr->vsmt < smp_threads) { 2388 error_setg(&local_err, "Cannot support VSMT mode %d" 2389 " because it must be >= threads/core (%d)", 2390 spapr->vsmt, smp_threads); 2391 goto out; 2392 } 2393 /* In this case, spapr->vsmt has been set by the command line */ 2394 } else { 2395 /* 2396 * Default VSMT value is tricky, because we need it to be as 2397 * consistent as possible (for migration), but this requires 2398 * changing it for at least some existing cases. We pick 8 as 2399 * the value that we'd get with KVM on POWER8, the 2400 * overwhelmingly common case in production systems. 2401 */ 2402 spapr->vsmt = MAX(8, smp_threads); 2403 } 2404 2405 /* KVM: If necessary, set the SMT mode: */ 2406 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2407 ret = kvmppc_set_smt_threads(spapr->vsmt); 2408 if (ret) { 2409 /* Looks like KVM isn't able to change VSMT mode */ 2410 error_setg(&local_err, 2411 "Failed to set KVM's VSMT mode to %d (errno %d)", 2412 spapr->vsmt, ret); 2413 /* We can live with that if the default one is big enough 2414 * for the number of threads, and a submultiple of the one 2415 * we want. In this case we'll waste some vcpu ids, but 2416 * behaviour will be correct */ 2417 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2418 warn_report_err(local_err); 2419 local_err = NULL; 2420 goto out; 2421 } else { 2422 if (!vsmt_user) { 2423 error_append_hint(&local_err, 2424 "On PPC, a VM with %d threads/core" 2425 " on a host with %d threads/core" 2426 " requires the use of VSMT mode %d.\n", 2427 smp_threads, kvm_smt, spapr->vsmt); 2428 } 2429 kvmppc_hint_smt_possible(&local_err); 2430 goto out; 2431 } 2432 } 2433 } 2434 /* else TCG: nothing to do currently */ 2435 out: 2436 error_propagate(errp, local_err); 2437 } 2438 2439 static void spapr_init_cpus(sPAPRMachineState *spapr) 2440 { 2441 MachineState *machine = MACHINE(spapr); 2442 MachineClass *mc = MACHINE_GET_CLASS(machine); 2443 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2444 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2445 const CPUArchIdList *possible_cpus; 2446 int boot_cores_nr = smp_cpus / smp_threads; 2447 int i; 2448 2449 possible_cpus = mc->possible_cpu_arch_ids(machine); 2450 if (mc->has_hotpluggable_cpus) { 2451 if (smp_cpus % smp_threads) { 2452 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2453 smp_cpus, smp_threads); 2454 exit(1); 2455 } 2456 if (max_cpus % smp_threads) { 2457 error_report("max_cpus (%u) must be multiple of threads (%u)", 2458 max_cpus, smp_threads); 2459 exit(1); 2460 } 2461 } else { 2462 if (max_cpus != smp_cpus) { 2463 error_report("This machine version does not support CPU hotplug"); 2464 exit(1); 2465 } 2466 boot_cores_nr = possible_cpus->len; 2467 } 2468 2469 /* VSMT must be set in order to be able to compute VCPU ids, ie to 2470 * call xics_max_server_number() or spapr_vcpu_id(). 2471 */ 2472 spapr_set_vsmt_mode(spapr, &error_fatal); 2473 2474 if (smc->pre_2_10_has_unused_icps) { 2475 int i; 2476 2477 for (i = 0; i < xics_max_server_number(spapr); i++) { 2478 /* Dummy entries get deregistered when real ICPState objects 2479 * are registered during CPU core hotplug. 2480 */ 2481 pre_2_10_vmstate_register_dummy_icp(i); 2482 } 2483 } 2484 2485 for (i = 0; i < possible_cpus->len; i++) { 2486 int core_id = i * smp_threads; 2487 2488 if (mc->has_hotpluggable_cpus) { 2489 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2490 spapr_vcpu_id(spapr, core_id)); 2491 } 2492 2493 if (i < boot_cores_nr) { 2494 Object *core = object_new(type); 2495 int nr_threads = smp_threads; 2496 2497 /* Handle the partially filled core for older machine types */ 2498 if ((i + 1) * smp_threads >= smp_cpus) { 2499 nr_threads = smp_cpus - i * smp_threads; 2500 } 2501 2502 object_property_set_int(core, nr_threads, "nr-threads", 2503 &error_fatal); 2504 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2505 &error_fatal); 2506 object_property_set_bool(core, true, "realized", &error_fatal); 2507 2508 object_unref(core); 2509 } 2510 } 2511 } 2512 2513 /* pSeries LPAR / sPAPR hardware init */ 2514 static void spapr_machine_init(MachineState *machine) 2515 { 2516 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2517 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2518 const char *kernel_filename = machine->kernel_filename; 2519 const char *initrd_filename = machine->initrd_filename; 2520 PCIHostState *phb; 2521 int i; 2522 MemoryRegion *sysmem = get_system_memory(); 2523 MemoryRegion *ram = g_new(MemoryRegion, 1); 2524 hwaddr node0_size = spapr_node0_size(machine); 2525 long load_limit, fw_size; 2526 char *filename; 2527 Error *resize_hpt_err = NULL; 2528 2529 msi_nonbroken = true; 2530 2531 QLIST_INIT(&spapr->phbs); 2532 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2533 2534 /* Determine capabilities to run with */ 2535 spapr_caps_init(spapr); 2536 2537 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2538 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2539 /* 2540 * If the user explicitly requested a mode we should either 2541 * supply it, or fail completely (which we do below). But if 2542 * it's not set explicitly, we reset our mode to something 2543 * that works 2544 */ 2545 if (resize_hpt_err) { 2546 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2547 error_free(resize_hpt_err); 2548 resize_hpt_err = NULL; 2549 } else { 2550 spapr->resize_hpt = smc->resize_hpt_default; 2551 } 2552 } 2553 2554 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2555 2556 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2557 /* 2558 * User requested HPT resize, but this host can't supply it. Bail out 2559 */ 2560 error_report_err(resize_hpt_err); 2561 exit(1); 2562 } 2563 2564 spapr->rma_size = node0_size; 2565 2566 /* With KVM, we don't actually know whether KVM supports an 2567 * unbounded RMA (PR KVM) or is limited by the hash table size 2568 * (HV KVM using VRMA), so we always assume the latter 2569 * 2570 * In that case, we also limit the initial allocations for RTAS 2571 * etc... to 256M since we have no way to know what the VRMA size 2572 * is going to be as it depends on the size of the hash table 2573 * which isn't determined yet. 2574 */ 2575 if (kvm_enabled()) { 2576 spapr->vrma_adjust = 1; 2577 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2578 } 2579 2580 /* Actually we don't support unbounded RMA anymore since we added 2581 * proper emulation of HV mode. The max we can get is 16G which 2582 * also happens to be what we configure for PAPR mode so make sure 2583 * we don't do anything bigger than that 2584 */ 2585 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2586 2587 if (spapr->rma_size > node0_size) { 2588 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2589 spapr->rma_size); 2590 exit(1); 2591 } 2592 2593 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2594 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2595 2596 /* Set up Interrupt Controller before we create the VCPUs */ 2597 smc->irq->init(spapr, &error_fatal); 2598 2599 /* Set up containers for ibm,client-architecture-support negotiated options 2600 */ 2601 spapr->ov5 = spapr_ovec_new(); 2602 spapr->ov5_cas = spapr_ovec_new(); 2603 2604 if (smc->dr_lmb_enabled) { 2605 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2606 spapr_validate_node_memory(machine, &error_fatal); 2607 } 2608 2609 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2610 2611 /* advertise support for dedicated HP event source to guests */ 2612 if (spapr->use_hotplug_event_source) { 2613 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2614 } 2615 2616 /* advertise support for HPT resizing */ 2617 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2618 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2619 } 2620 2621 /* advertise support for ibm,dyamic-memory-v2 */ 2622 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2623 2624 /* init CPUs */ 2625 spapr_init_cpus(spapr); 2626 2627 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2628 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2629 spapr->max_compat_pvr)) { 2630 /* KVM and TCG always allow GTSE with radix... */ 2631 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2632 } 2633 /* ... but not with hash (currently). */ 2634 2635 if (kvm_enabled()) { 2636 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2637 kvmppc_enable_logical_ci_hcalls(); 2638 kvmppc_enable_set_mode_hcall(); 2639 2640 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2641 kvmppc_enable_clear_ref_mod_hcalls(); 2642 } 2643 2644 /* allocate RAM */ 2645 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2646 machine->ram_size); 2647 memory_region_add_subregion(sysmem, 0, ram); 2648 2649 /* always allocate the device memory information */ 2650 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2651 2652 /* initialize hotplug memory address space */ 2653 if (machine->ram_size < machine->maxram_size) { 2654 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2655 /* 2656 * Limit the number of hotpluggable memory slots to half the number 2657 * slots that KVM supports, leaving the other half for PCI and other 2658 * devices. However ensure that number of slots doesn't drop below 32. 2659 */ 2660 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2661 SPAPR_MAX_RAM_SLOTS; 2662 2663 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2664 max_memslots = SPAPR_MAX_RAM_SLOTS; 2665 } 2666 if (machine->ram_slots > max_memslots) { 2667 error_report("Specified number of memory slots %" 2668 PRIu64" exceeds max supported %d", 2669 machine->ram_slots, max_memslots); 2670 exit(1); 2671 } 2672 2673 machine->device_memory->base = ROUND_UP(machine->ram_size, 2674 SPAPR_DEVICE_MEM_ALIGN); 2675 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2676 "device-memory", device_mem_size); 2677 memory_region_add_subregion(sysmem, machine->device_memory->base, 2678 &machine->device_memory->mr); 2679 } 2680 2681 if (smc->dr_lmb_enabled) { 2682 spapr_create_lmb_dr_connectors(spapr); 2683 } 2684 2685 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2686 if (!filename) { 2687 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2688 exit(1); 2689 } 2690 spapr->rtas_size = get_image_size(filename); 2691 if (spapr->rtas_size < 0) { 2692 error_report("Could not get size of LPAR rtas '%s'", filename); 2693 exit(1); 2694 } 2695 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2696 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2697 error_report("Could not load LPAR rtas '%s'", filename); 2698 exit(1); 2699 } 2700 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2701 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2702 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2703 exit(1); 2704 } 2705 g_free(filename); 2706 2707 /* Set up RTAS event infrastructure */ 2708 spapr_events_init(spapr); 2709 2710 /* Set up the RTC RTAS interfaces */ 2711 spapr_rtc_create(spapr); 2712 2713 /* Set up VIO bus */ 2714 spapr->vio_bus = spapr_vio_bus_init(); 2715 2716 for (i = 0; i < serial_max_hds(); i++) { 2717 if (serial_hd(i)) { 2718 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2719 } 2720 } 2721 2722 /* We always have at least the nvram device on VIO */ 2723 spapr_create_nvram(spapr); 2724 2725 /* Set up PCI */ 2726 spapr_pci_rtas_init(); 2727 2728 phb = spapr_create_phb(spapr, 0); 2729 2730 for (i = 0; i < nb_nics; i++) { 2731 NICInfo *nd = &nd_table[i]; 2732 2733 if (!nd->model) { 2734 nd->model = g_strdup("spapr-vlan"); 2735 } 2736 2737 if (g_str_equal(nd->model, "spapr-vlan") || 2738 g_str_equal(nd->model, "ibmveth")) { 2739 spapr_vlan_create(spapr->vio_bus, nd); 2740 } else { 2741 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2742 } 2743 } 2744 2745 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2746 spapr_vscsi_create(spapr->vio_bus); 2747 } 2748 2749 /* Graphics */ 2750 if (spapr_vga_init(phb->bus, &error_fatal)) { 2751 spapr->has_graphics = true; 2752 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2753 } 2754 2755 if (machine->usb) { 2756 if (smc->use_ohci_by_default) { 2757 pci_create_simple(phb->bus, -1, "pci-ohci"); 2758 } else { 2759 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2760 } 2761 2762 if (spapr->has_graphics) { 2763 USBBus *usb_bus = usb_bus_find(-1); 2764 2765 usb_create_simple(usb_bus, "usb-kbd"); 2766 usb_create_simple(usb_bus, "usb-mouse"); 2767 } 2768 } 2769 2770 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2771 error_report( 2772 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2773 MIN_RMA_SLOF); 2774 exit(1); 2775 } 2776 2777 if (kernel_filename) { 2778 uint64_t lowaddr = 0; 2779 2780 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2781 NULL, NULL, &lowaddr, NULL, 1, 2782 PPC_ELF_MACHINE, 0, 0); 2783 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2784 spapr->kernel_size = load_elf(kernel_filename, 2785 translate_kernel_address, NULL, NULL, 2786 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2787 0, 0); 2788 spapr->kernel_le = spapr->kernel_size > 0; 2789 } 2790 if (spapr->kernel_size < 0) { 2791 error_report("error loading %s: %s", kernel_filename, 2792 load_elf_strerror(spapr->kernel_size)); 2793 exit(1); 2794 } 2795 2796 /* load initrd */ 2797 if (initrd_filename) { 2798 /* Try to locate the initrd in the gap between the kernel 2799 * and the firmware. Add a bit of space just in case 2800 */ 2801 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2802 + 0x1ffff) & ~0xffff; 2803 spapr->initrd_size = load_image_targphys(initrd_filename, 2804 spapr->initrd_base, 2805 load_limit 2806 - spapr->initrd_base); 2807 if (spapr->initrd_size < 0) { 2808 error_report("could not load initial ram disk '%s'", 2809 initrd_filename); 2810 exit(1); 2811 } 2812 } 2813 } 2814 2815 if (bios_name == NULL) { 2816 bios_name = FW_FILE_NAME; 2817 } 2818 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2819 if (!filename) { 2820 error_report("Could not find LPAR firmware '%s'", bios_name); 2821 exit(1); 2822 } 2823 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2824 if (fw_size <= 0) { 2825 error_report("Could not load LPAR firmware '%s'", filename); 2826 exit(1); 2827 } 2828 g_free(filename); 2829 2830 /* FIXME: Should register things through the MachineState's qdev 2831 * interface, this is a legacy from the sPAPREnvironment structure 2832 * which predated MachineState but had a similar function */ 2833 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2834 register_savevm_live(NULL, "spapr/htab", -1, 1, 2835 &savevm_htab_handlers, spapr); 2836 2837 qemu_register_boot_set(spapr_boot_set, spapr); 2838 2839 if (kvm_enabled()) { 2840 /* to stop and start vmclock */ 2841 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2842 &spapr->tb); 2843 2844 kvmppc_spapr_enable_inkernel_multitce(); 2845 } 2846 } 2847 2848 static int spapr_kvm_type(const char *vm_type) 2849 { 2850 if (!vm_type) { 2851 return 0; 2852 } 2853 2854 if (!strcmp(vm_type, "HV")) { 2855 return 1; 2856 } 2857 2858 if (!strcmp(vm_type, "PR")) { 2859 return 2; 2860 } 2861 2862 error_report("Unknown kvm-type specified '%s'", vm_type); 2863 exit(1); 2864 } 2865 2866 /* 2867 * Implementation of an interface to adjust firmware path 2868 * for the bootindex property handling. 2869 */ 2870 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2871 DeviceState *dev) 2872 { 2873 #define CAST(type, obj, name) \ 2874 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2875 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2876 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2877 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2878 2879 if (d) { 2880 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2881 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2882 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2883 2884 if (spapr) { 2885 /* 2886 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2887 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2888 * in the top 16 bits of the 64-bit LUN 2889 */ 2890 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2891 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2892 (uint64_t)id << 48); 2893 } else if (virtio) { 2894 /* 2895 * We use SRP luns of the form 01000000 | (target << 8) | lun 2896 * in the top 32 bits of the 64-bit LUN 2897 * Note: the quote above is from SLOF and it is wrong, 2898 * the actual binding is: 2899 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2900 */ 2901 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2902 if (d->lun >= 256) { 2903 /* Use the LUN "flat space addressing method" */ 2904 id |= 0x4000; 2905 } 2906 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2907 (uint64_t)id << 32); 2908 } else if (usb) { 2909 /* 2910 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2911 * in the top 32 bits of the 64-bit LUN 2912 */ 2913 unsigned usb_port = atoi(usb->port->path); 2914 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2915 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2916 (uint64_t)id << 32); 2917 } 2918 } 2919 2920 /* 2921 * SLOF probes the USB devices, and if it recognizes that the device is a 2922 * storage device, it changes its name to "storage" instead of "usb-host", 2923 * and additionally adds a child node for the SCSI LUN, so the correct 2924 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2925 */ 2926 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2927 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2928 if (usb_host_dev_is_scsi_storage(usbdev)) { 2929 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2930 } 2931 } 2932 2933 if (phb) { 2934 /* Replace "pci" with "pci@800000020000000" */ 2935 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2936 } 2937 2938 if (vsc) { 2939 /* Same logic as virtio above */ 2940 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 2941 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 2942 } 2943 2944 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 2945 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 2946 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 2947 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 2948 } 2949 2950 return NULL; 2951 } 2952 2953 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2954 { 2955 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2956 2957 return g_strdup(spapr->kvm_type); 2958 } 2959 2960 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2961 { 2962 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2963 2964 g_free(spapr->kvm_type); 2965 spapr->kvm_type = g_strdup(value); 2966 } 2967 2968 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2969 { 2970 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2971 2972 return spapr->use_hotplug_event_source; 2973 } 2974 2975 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2976 Error **errp) 2977 { 2978 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2979 2980 spapr->use_hotplug_event_source = value; 2981 } 2982 2983 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 2984 { 2985 return true; 2986 } 2987 2988 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 2989 { 2990 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2991 2992 switch (spapr->resize_hpt) { 2993 case SPAPR_RESIZE_HPT_DEFAULT: 2994 return g_strdup("default"); 2995 case SPAPR_RESIZE_HPT_DISABLED: 2996 return g_strdup("disabled"); 2997 case SPAPR_RESIZE_HPT_ENABLED: 2998 return g_strdup("enabled"); 2999 case SPAPR_RESIZE_HPT_REQUIRED: 3000 return g_strdup("required"); 3001 } 3002 g_assert_not_reached(); 3003 } 3004 3005 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3006 { 3007 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3008 3009 if (strcmp(value, "default") == 0) { 3010 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3011 } else if (strcmp(value, "disabled") == 0) { 3012 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3013 } else if (strcmp(value, "enabled") == 0) { 3014 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3015 } else if (strcmp(value, "required") == 0) { 3016 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3017 } else { 3018 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3019 } 3020 } 3021 3022 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3023 void *opaque, Error **errp) 3024 { 3025 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3026 } 3027 3028 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3029 void *opaque, Error **errp) 3030 { 3031 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3032 } 3033 3034 static void spapr_instance_init(Object *obj) 3035 { 3036 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3037 3038 spapr->htab_fd = -1; 3039 spapr->use_hotplug_event_source = true; 3040 object_property_add_str(obj, "kvm-type", 3041 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3042 object_property_set_description(obj, "kvm-type", 3043 "Specifies the KVM virtualization mode (HV, PR)", 3044 NULL); 3045 object_property_add_bool(obj, "modern-hotplug-events", 3046 spapr_get_modern_hotplug_events, 3047 spapr_set_modern_hotplug_events, 3048 NULL); 3049 object_property_set_description(obj, "modern-hotplug-events", 3050 "Use dedicated hotplug event mechanism in" 3051 " place of standard EPOW events when possible" 3052 " (required for memory hot-unplug support)", 3053 NULL); 3054 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3055 "Maximum permitted CPU compatibility mode", 3056 &error_fatal); 3057 3058 object_property_add_str(obj, "resize-hpt", 3059 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3060 object_property_set_description(obj, "resize-hpt", 3061 "Resizing of the Hash Page Table (enabled, disabled, required)", 3062 NULL); 3063 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3064 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3065 object_property_set_description(obj, "vsmt", 3066 "Virtual SMT: KVM behaves as if this were" 3067 " the host's SMT mode", &error_abort); 3068 object_property_add_bool(obj, "vfio-no-msix-emulation", 3069 spapr_get_msix_emulation, NULL, NULL); 3070 } 3071 3072 static void spapr_machine_finalizefn(Object *obj) 3073 { 3074 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3075 3076 g_free(spapr->kvm_type); 3077 } 3078 3079 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3080 { 3081 cpu_synchronize_state(cs); 3082 ppc_cpu_do_system_reset(cs); 3083 } 3084 3085 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3086 { 3087 CPUState *cs; 3088 3089 CPU_FOREACH(cs) { 3090 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3091 } 3092 } 3093 3094 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3095 uint32_t node, bool dedicated_hp_event_source, 3096 Error **errp) 3097 { 3098 sPAPRDRConnector *drc; 3099 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3100 int i, fdt_offset, fdt_size; 3101 void *fdt; 3102 uint64_t addr = addr_start; 3103 bool hotplugged = spapr_drc_hotplugged(dev); 3104 Error *local_err = NULL; 3105 3106 for (i = 0; i < nr_lmbs; i++) { 3107 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3108 addr / SPAPR_MEMORY_BLOCK_SIZE); 3109 g_assert(drc); 3110 3111 fdt = create_device_tree(&fdt_size); 3112 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 3113 SPAPR_MEMORY_BLOCK_SIZE); 3114 3115 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3116 if (local_err) { 3117 while (addr > addr_start) { 3118 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3119 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3120 addr / SPAPR_MEMORY_BLOCK_SIZE); 3121 spapr_drc_detach(drc); 3122 } 3123 g_free(fdt); 3124 error_propagate(errp, local_err); 3125 return; 3126 } 3127 if (!hotplugged) { 3128 spapr_drc_reset(drc); 3129 } 3130 addr += SPAPR_MEMORY_BLOCK_SIZE; 3131 } 3132 /* send hotplug notification to the 3133 * guest only in case of hotplugged memory 3134 */ 3135 if (hotplugged) { 3136 if (dedicated_hp_event_source) { 3137 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3138 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3139 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3140 nr_lmbs, 3141 spapr_drc_index(drc)); 3142 } else { 3143 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3144 nr_lmbs); 3145 } 3146 } 3147 } 3148 3149 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3150 Error **errp) 3151 { 3152 Error *local_err = NULL; 3153 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3154 PCDIMMDevice *dimm = PC_DIMM(dev); 3155 uint64_t size, addr; 3156 uint32_t node; 3157 3158 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3159 3160 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3161 if (local_err) { 3162 goto out; 3163 } 3164 3165 addr = object_property_get_uint(OBJECT(dimm), 3166 PC_DIMM_ADDR_PROP, &local_err); 3167 if (local_err) { 3168 goto out_unplug; 3169 } 3170 3171 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, 3172 &error_abort); 3173 spapr_add_lmbs(dev, addr, size, node, 3174 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3175 &local_err); 3176 if (local_err) { 3177 goto out_unplug; 3178 } 3179 3180 return; 3181 3182 out_unplug: 3183 pc_dimm_unplug(dimm, MACHINE(ms)); 3184 out: 3185 error_propagate(errp, local_err); 3186 } 3187 3188 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3189 Error **errp) 3190 { 3191 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3192 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3193 PCDIMMDevice *dimm = PC_DIMM(dev); 3194 Error *local_err = NULL; 3195 uint64_t size; 3196 Object *memdev; 3197 hwaddr pagesize; 3198 3199 if (!smc->dr_lmb_enabled) { 3200 error_setg(errp, "Memory hotplug not supported for this machine"); 3201 return; 3202 } 3203 3204 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3205 if (local_err) { 3206 error_propagate(errp, local_err); 3207 return; 3208 } 3209 3210 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3211 error_setg(errp, "Hotplugged memory size must be a multiple of " 3212 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3213 return; 3214 } 3215 3216 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3217 &error_abort); 3218 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3219 spapr_check_pagesize(spapr, pagesize, &local_err); 3220 if (local_err) { 3221 error_propagate(errp, local_err); 3222 return; 3223 } 3224 3225 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3226 } 3227 3228 struct sPAPRDIMMState { 3229 PCDIMMDevice *dimm; 3230 uint32_t nr_lmbs; 3231 QTAILQ_ENTRY(sPAPRDIMMState) next; 3232 }; 3233 3234 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 3235 PCDIMMDevice *dimm) 3236 { 3237 sPAPRDIMMState *dimm_state = NULL; 3238 3239 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3240 if (dimm_state->dimm == dimm) { 3241 break; 3242 } 3243 } 3244 return dimm_state; 3245 } 3246 3247 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 3248 uint32_t nr_lmbs, 3249 PCDIMMDevice *dimm) 3250 { 3251 sPAPRDIMMState *ds = NULL; 3252 3253 /* 3254 * If this request is for a DIMM whose removal had failed earlier 3255 * (due to guest's refusal to remove the LMBs), we would have this 3256 * dimm already in the pending_dimm_unplugs list. In that 3257 * case don't add again. 3258 */ 3259 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3260 if (!ds) { 3261 ds = g_malloc0(sizeof(sPAPRDIMMState)); 3262 ds->nr_lmbs = nr_lmbs; 3263 ds->dimm = dimm; 3264 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3265 } 3266 return ds; 3267 } 3268 3269 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 3270 sPAPRDIMMState *dimm_state) 3271 { 3272 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3273 g_free(dimm_state); 3274 } 3275 3276 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 3277 PCDIMMDevice *dimm) 3278 { 3279 sPAPRDRConnector *drc; 3280 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3281 &error_abort); 3282 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3283 uint32_t avail_lmbs = 0; 3284 uint64_t addr_start, addr; 3285 int i; 3286 3287 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3288 &error_abort); 3289 3290 addr = addr_start; 3291 for (i = 0; i < nr_lmbs; i++) { 3292 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3293 addr / SPAPR_MEMORY_BLOCK_SIZE); 3294 g_assert(drc); 3295 if (drc->dev) { 3296 avail_lmbs++; 3297 } 3298 addr += SPAPR_MEMORY_BLOCK_SIZE; 3299 } 3300 3301 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3302 } 3303 3304 /* Callback to be called during DRC release. */ 3305 void spapr_lmb_release(DeviceState *dev) 3306 { 3307 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3308 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3309 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3310 3311 /* This information will get lost if a migration occurs 3312 * during the unplug process. In this case recover it. */ 3313 if (ds == NULL) { 3314 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3315 g_assert(ds); 3316 /* The DRC being examined by the caller at least must be counted */ 3317 g_assert(ds->nr_lmbs); 3318 } 3319 3320 if (--ds->nr_lmbs) { 3321 return; 3322 } 3323 3324 /* 3325 * Now that all the LMBs have been removed by the guest, call the 3326 * unplug handler chain. This can never fail. 3327 */ 3328 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3329 } 3330 3331 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3332 { 3333 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3334 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3335 3336 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3337 object_unparent(OBJECT(dev)); 3338 spapr_pending_dimm_unplugs_remove(spapr, ds); 3339 } 3340 3341 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3342 DeviceState *dev, Error **errp) 3343 { 3344 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3345 Error *local_err = NULL; 3346 PCDIMMDevice *dimm = PC_DIMM(dev); 3347 uint32_t nr_lmbs; 3348 uint64_t size, addr_start, addr; 3349 int i; 3350 sPAPRDRConnector *drc; 3351 3352 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3353 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3354 3355 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3356 &local_err); 3357 if (local_err) { 3358 goto out; 3359 } 3360 3361 /* 3362 * An existing pending dimm state for this DIMM means that there is an 3363 * unplug operation in progress, waiting for the spapr_lmb_release 3364 * callback to complete the job (BQL can't cover that far). In this case, 3365 * bail out to avoid detaching DRCs that were already released. 3366 */ 3367 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3368 error_setg(&local_err, 3369 "Memory unplug already in progress for device %s", 3370 dev->id); 3371 goto out; 3372 } 3373 3374 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3375 3376 addr = addr_start; 3377 for (i = 0; i < nr_lmbs; i++) { 3378 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3379 addr / SPAPR_MEMORY_BLOCK_SIZE); 3380 g_assert(drc); 3381 3382 spapr_drc_detach(drc); 3383 addr += SPAPR_MEMORY_BLOCK_SIZE; 3384 } 3385 3386 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3387 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3388 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3389 nr_lmbs, spapr_drc_index(drc)); 3390 out: 3391 error_propagate(errp, local_err); 3392 } 3393 3394 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 3395 sPAPRMachineState *spapr) 3396 { 3397 PowerPCCPU *cpu = POWERPC_CPU(cs); 3398 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3399 int id = spapr_get_vcpu_id(cpu); 3400 void *fdt; 3401 int offset, fdt_size; 3402 char *nodename; 3403 3404 fdt = create_device_tree(&fdt_size); 3405 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3406 offset = fdt_add_subnode(fdt, 0, nodename); 3407 3408 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3409 g_free(nodename); 3410 3411 *fdt_offset = offset; 3412 return fdt; 3413 } 3414 3415 /* Callback to be called during DRC release. */ 3416 void spapr_core_release(DeviceState *dev) 3417 { 3418 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3419 3420 /* Call the unplug handler chain. This can never fail. */ 3421 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3422 } 3423 3424 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3425 { 3426 MachineState *ms = MACHINE(hotplug_dev); 3427 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3428 CPUCore *cc = CPU_CORE(dev); 3429 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3430 3431 if (smc->pre_2_10_has_unused_icps) { 3432 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3433 int i; 3434 3435 for (i = 0; i < cc->nr_threads; i++) { 3436 CPUState *cs = CPU(sc->threads[i]); 3437 3438 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3439 } 3440 } 3441 3442 assert(core_slot); 3443 core_slot->cpu = NULL; 3444 object_unparent(OBJECT(dev)); 3445 } 3446 3447 static 3448 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3449 Error **errp) 3450 { 3451 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3452 int index; 3453 sPAPRDRConnector *drc; 3454 CPUCore *cc = CPU_CORE(dev); 3455 3456 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3457 error_setg(errp, "Unable to find CPU core with core-id: %d", 3458 cc->core_id); 3459 return; 3460 } 3461 if (index == 0) { 3462 error_setg(errp, "Boot CPU core may not be unplugged"); 3463 return; 3464 } 3465 3466 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3467 spapr_vcpu_id(spapr, cc->core_id)); 3468 g_assert(drc); 3469 3470 spapr_drc_detach(drc); 3471 3472 spapr_hotplug_req_remove_by_index(drc); 3473 } 3474 3475 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3476 Error **errp) 3477 { 3478 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3479 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3480 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3481 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3482 CPUCore *cc = CPU_CORE(dev); 3483 CPUState *cs = CPU(core->threads[0]); 3484 sPAPRDRConnector *drc; 3485 Error *local_err = NULL; 3486 CPUArchId *core_slot; 3487 int index; 3488 bool hotplugged = spapr_drc_hotplugged(dev); 3489 3490 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3491 if (!core_slot) { 3492 error_setg(errp, "Unable to find CPU core with core-id: %d", 3493 cc->core_id); 3494 return; 3495 } 3496 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3497 spapr_vcpu_id(spapr, cc->core_id)); 3498 3499 g_assert(drc || !mc->has_hotpluggable_cpus); 3500 3501 if (drc) { 3502 void *fdt; 3503 int fdt_offset; 3504 3505 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 3506 3507 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3508 if (local_err) { 3509 g_free(fdt); 3510 error_propagate(errp, local_err); 3511 return; 3512 } 3513 3514 if (hotplugged) { 3515 /* 3516 * Send hotplug notification interrupt to the guest only 3517 * in case of hotplugged CPUs. 3518 */ 3519 spapr_hotplug_req_add_by_index(drc); 3520 } else { 3521 spapr_drc_reset(drc); 3522 } 3523 } 3524 3525 core_slot->cpu = OBJECT(dev); 3526 3527 if (smc->pre_2_10_has_unused_icps) { 3528 int i; 3529 3530 for (i = 0; i < cc->nr_threads; i++) { 3531 cs = CPU(core->threads[i]); 3532 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3533 } 3534 } 3535 } 3536 3537 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3538 Error **errp) 3539 { 3540 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3541 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3542 Error *local_err = NULL; 3543 CPUCore *cc = CPU_CORE(dev); 3544 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3545 const char *type = object_get_typename(OBJECT(dev)); 3546 CPUArchId *core_slot; 3547 int index; 3548 3549 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3550 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3551 goto out; 3552 } 3553 3554 if (strcmp(base_core_type, type)) { 3555 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3556 goto out; 3557 } 3558 3559 if (cc->core_id % smp_threads) { 3560 error_setg(&local_err, "invalid core id %d", cc->core_id); 3561 goto out; 3562 } 3563 3564 /* 3565 * In general we should have homogeneous threads-per-core, but old 3566 * (pre hotplug support) machine types allow the last core to have 3567 * reduced threads as a compatibility hack for when we allowed 3568 * total vcpus not a multiple of threads-per-core. 3569 */ 3570 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3571 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3572 cc->nr_threads, smp_threads); 3573 goto out; 3574 } 3575 3576 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3577 if (!core_slot) { 3578 error_setg(&local_err, "core id %d out of range", cc->core_id); 3579 goto out; 3580 } 3581 3582 if (core_slot->cpu) { 3583 error_setg(&local_err, "core %d already populated", cc->core_id); 3584 goto out; 3585 } 3586 3587 numa_cpu_pre_plug(core_slot, dev, &local_err); 3588 3589 out: 3590 error_propagate(errp, local_err); 3591 } 3592 3593 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3594 DeviceState *dev, Error **errp) 3595 { 3596 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3597 spapr_memory_plug(hotplug_dev, dev, errp); 3598 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3599 spapr_core_plug(hotplug_dev, dev, errp); 3600 } 3601 } 3602 3603 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 3604 DeviceState *dev, Error **errp) 3605 { 3606 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3607 spapr_memory_unplug(hotplug_dev, dev); 3608 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3609 spapr_core_unplug(hotplug_dev, dev); 3610 } 3611 } 3612 3613 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3614 DeviceState *dev, Error **errp) 3615 { 3616 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3617 MachineClass *mc = MACHINE_GET_CLASS(sms); 3618 3619 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3620 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3621 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3622 } else { 3623 /* NOTE: this means there is a window after guest reset, prior to 3624 * CAS negotiation, where unplug requests will fail due to the 3625 * capability not being detected yet. This is a bit different than 3626 * the case with PCI unplug, where the events will be queued and 3627 * eventually handled by the guest after boot 3628 */ 3629 error_setg(errp, "Memory hot unplug not supported for this guest"); 3630 } 3631 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3632 if (!mc->has_hotpluggable_cpus) { 3633 error_setg(errp, "CPU hot unplug not supported on this machine"); 3634 return; 3635 } 3636 spapr_core_unplug_request(hotplug_dev, dev, errp); 3637 } 3638 } 3639 3640 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3641 DeviceState *dev, Error **errp) 3642 { 3643 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3644 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3645 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3646 spapr_core_pre_plug(hotplug_dev, dev, errp); 3647 } 3648 } 3649 3650 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3651 DeviceState *dev) 3652 { 3653 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3654 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3655 return HOTPLUG_HANDLER(machine); 3656 } 3657 return NULL; 3658 } 3659 3660 static CpuInstanceProperties 3661 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3662 { 3663 CPUArchId *core_slot; 3664 MachineClass *mc = MACHINE_GET_CLASS(machine); 3665 3666 /* make sure possible_cpu are intialized */ 3667 mc->possible_cpu_arch_ids(machine); 3668 /* get CPU core slot containing thread that matches cpu_index */ 3669 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3670 assert(core_slot); 3671 return core_slot->props; 3672 } 3673 3674 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 3675 { 3676 return idx / smp_cores % nb_numa_nodes; 3677 } 3678 3679 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3680 { 3681 int i; 3682 const char *core_type; 3683 int spapr_max_cores = max_cpus / smp_threads; 3684 MachineClass *mc = MACHINE_GET_CLASS(machine); 3685 3686 if (!mc->has_hotpluggable_cpus) { 3687 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3688 } 3689 if (machine->possible_cpus) { 3690 assert(machine->possible_cpus->len == spapr_max_cores); 3691 return machine->possible_cpus; 3692 } 3693 3694 core_type = spapr_get_cpu_core_type(machine->cpu_type); 3695 if (!core_type) { 3696 error_report("Unable to find sPAPR CPU Core definition"); 3697 exit(1); 3698 } 3699 3700 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3701 sizeof(CPUArchId) * spapr_max_cores); 3702 machine->possible_cpus->len = spapr_max_cores; 3703 for (i = 0; i < machine->possible_cpus->len; i++) { 3704 int core_id = i * smp_threads; 3705 3706 machine->possible_cpus->cpus[i].type = core_type; 3707 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3708 machine->possible_cpus->cpus[i].arch_id = core_id; 3709 machine->possible_cpus->cpus[i].props.has_core_id = true; 3710 machine->possible_cpus->cpus[i].props.core_id = core_id; 3711 } 3712 return machine->possible_cpus; 3713 } 3714 3715 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3716 uint64_t *buid, hwaddr *pio, 3717 hwaddr *mmio32, hwaddr *mmio64, 3718 unsigned n_dma, uint32_t *liobns, Error **errp) 3719 { 3720 /* 3721 * New-style PHB window placement. 3722 * 3723 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3724 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3725 * windows. 3726 * 3727 * Some guest kernels can't work with MMIO windows above 1<<46 3728 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3729 * 3730 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3731 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3732 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3733 * 1TiB 64-bit MMIO windows for each PHB. 3734 */ 3735 const uint64_t base_buid = 0x800000020000000ULL; 3736 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 3737 SPAPR_PCI_MEM64_WIN_SIZE - 1) 3738 int i; 3739 3740 /* Sanity check natural alignments */ 3741 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3742 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3743 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3744 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3745 /* Sanity check bounds */ 3746 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3747 SPAPR_PCI_MEM32_WIN_SIZE); 3748 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3749 SPAPR_PCI_MEM64_WIN_SIZE); 3750 3751 if (index >= SPAPR_MAX_PHBS) { 3752 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3753 SPAPR_MAX_PHBS - 1); 3754 return; 3755 } 3756 3757 *buid = base_buid + index; 3758 for (i = 0; i < n_dma; ++i) { 3759 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3760 } 3761 3762 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3763 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3764 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3765 } 3766 3767 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3768 { 3769 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3770 3771 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3772 } 3773 3774 static void spapr_ics_resend(XICSFabric *dev) 3775 { 3776 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3777 3778 ics_resend(spapr->ics); 3779 } 3780 3781 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 3782 { 3783 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 3784 3785 return cpu ? ICP(cpu->intc) : NULL; 3786 } 3787 3788 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3789 Monitor *mon) 3790 { 3791 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3792 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3793 3794 smc->irq->print_info(spapr, mon); 3795 } 3796 3797 int spapr_get_vcpu_id(PowerPCCPU *cpu) 3798 { 3799 return cpu->vcpu_id; 3800 } 3801 3802 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 3803 { 3804 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3805 int vcpu_id; 3806 3807 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 3808 3809 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 3810 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 3811 error_append_hint(errp, "Adjust the number of cpus to %d " 3812 "or try to raise the number of threads per core\n", 3813 vcpu_id * smp_threads / spapr->vsmt); 3814 return; 3815 } 3816 3817 cpu->vcpu_id = vcpu_id; 3818 } 3819 3820 PowerPCCPU *spapr_find_cpu(int vcpu_id) 3821 { 3822 CPUState *cs; 3823 3824 CPU_FOREACH(cs) { 3825 PowerPCCPU *cpu = POWERPC_CPU(cs); 3826 3827 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 3828 return cpu; 3829 } 3830 } 3831 3832 return NULL; 3833 } 3834 3835 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3836 { 3837 MachineClass *mc = MACHINE_CLASS(oc); 3838 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3839 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3840 NMIClass *nc = NMI_CLASS(oc); 3841 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3842 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3843 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3844 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3845 3846 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3847 mc->ignore_boot_device_suffixes = true; 3848 3849 /* 3850 * We set up the default / latest behaviour here. The class_init 3851 * functions for the specific versioned machine types can override 3852 * these details for backwards compatibility 3853 */ 3854 mc->init = spapr_machine_init; 3855 mc->reset = spapr_machine_reset; 3856 mc->block_default_type = IF_SCSI; 3857 mc->max_cpus = 1024; 3858 mc->no_parallel = 1; 3859 mc->default_boot_order = ""; 3860 mc->default_ram_size = 512 * MiB; 3861 mc->default_display = "std"; 3862 mc->kvm_type = spapr_kvm_type; 3863 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 3864 mc->pci_allow_0_address = true; 3865 assert(!mc->get_hotplug_handler); 3866 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3867 hc->pre_plug = spapr_machine_device_pre_plug; 3868 hc->plug = spapr_machine_device_plug; 3869 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 3870 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 3871 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3872 hc->unplug_request = spapr_machine_device_unplug_request; 3873 hc->unplug = spapr_machine_device_unplug; 3874 3875 smc->dr_lmb_enabled = true; 3876 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 3877 mc->has_hotpluggable_cpus = true; 3878 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 3879 fwc->get_dev_path = spapr_get_fw_dev_path; 3880 nc->nmi_monitor_handler = spapr_nmi; 3881 smc->phb_placement = spapr_phb_placement; 3882 vhc->hypercall = emulate_spapr_hypercall; 3883 vhc->hpt_mask = spapr_hpt_mask; 3884 vhc->map_hptes = spapr_map_hptes; 3885 vhc->unmap_hptes = spapr_unmap_hptes; 3886 vhc->store_hpte = spapr_store_hpte; 3887 vhc->get_patbe = spapr_get_patbe; 3888 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 3889 xic->ics_get = spapr_ics_get; 3890 xic->ics_resend = spapr_ics_resend; 3891 xic->icp_get = spapr_icp_get; 3892 ispc->print_info = spapr_pic_print_info; 3893 /* Force NUMA node memory size to be a multiple of 3894 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 3895 * in which LMBs are represented and hot-added 3896 */ 3897 mc->numa_mem_align_shift = 28; 3898 3899 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 3900 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 3901 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 3902 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 3903 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 3904 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 3905 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 3906 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 3907 spapr_caps_add_properties(smc, &error_abort); 3908 smc->irq = &spapr_irq_xics; 3909 } 3910 3911 static const TypeInfo spapr_machine_info = { 3912 .name = TYPE_SPAPR_MACHINE, 3913 .parent = TYPE_MACHINE, 3914 .abstract = true, 3915 .instance_size = sizeof(sPAPRMachineState), 3916 .instance_init = spapr_instance_init, 3917 .instance_finalize = spapr_machine_finalizefn, 3918 .class_size = sizeof(sPAPRMachineClass), 3919 .class_init = spapr_machine_class_init, 3920 .interfaces = (InterfaceInfo[]) { 3921 { TYPE_FW_PATH_PROVIDER }, 3922 { TYPE_NMI }, 3923 { TYPE_HOTPLUG_HANDLER }, 3924 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 3925 { TYPE_XICS_FABRIC }, 3926 { TYPE_INTERRUPT_STATS_PROVIDER }, 3927 { } 3928 }, 3929 }; 3930 3931 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 3932 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 3933 void *data) \ 3934 { \ 3935 MachineClass *mc = MACHINE_CLASS(oc); \ 3936 spapr_machine_##suffix##_class_options(mc); \ 3937 if (latest) { \ 3938 mc->alias = "pseries"; \ 3939 mc->is_default = 1; \ 3940 } \ 3941 } \ 3942 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 3943 { \ 3944 MachineState *machine = MACHINE(obj); \ 3945 spapr_machine_##suffix##_instance_options(machine); \ 3946 } \ 3947 static const TypeInfo spapr_machine_##suffix##_info = { \ 3948 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 3949 .parent = TYPE_SPAPR_MACHINE, \ 3950 .class_init = spapr_machine_##suffix##_class_init, \ 3951 .instance_init = spapr_machine_##suffix##_instance_init, \ 3952 }; \ 3953 static void spapr_machine_register_##suffix(void) \ 3954 { \ 3955 type_register(&spapr_machine_##suffix##_info); \ 3956 } \ 3957 type_init(spapr_machine_register_##suffix) 3958 3959 /* 3960 * pseries-3.1 3961 */ 3962 static void spapr_machine_3_1_instance_options(MachineState *machine) 3963 { 3964 } 3965 3966 static void spapr_machine_3_1_class_options(MachineClass *mc) 3967 { 3968 /* Defaults for the latest behaviour inherited from the base class */ 3969 } 3970 3971 DEFINE_SPAPR_MACHINE(3_1, "3.1", true); 3972 3973 /* 3974 * pseries-3.0 3975 */ 3976 #define SPAPR_COMPAT_3_0 \ 3977 HW_COMPAT_3_0 3978 3979 static void spapr_machine_3_0_instance_options(MachineState *machine) 3980 { 3981 spapr_machine_3_1_instance_options(machine); 3982 } 3983 3984 static void spapr_machine_3_0_class_options(MachineClass *mc) 3985 { 3986 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3987 3988 spapr_machine_3_1_class_options(mc); 3989 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_0); 3990 3991 smc->legacy_irq_allocation = true; 3992 smc->irq = &spapr_irq_xics_legacy; 3993 } 3994 3995 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 3996 3997 /* 3998 * pseries-2.12 3999 */ 4000 #define SPAPR_COMPAT_2_12 \ 4001 HW_COMPAT_2_12 \ 4002 { \ 4003 .driver = TYPE_POWERPC_CPU, \ 4004 .property = "pre-3.0-migration", \ 4005 .value = "on", \ 4006 }, \ 4007 { \ 4008 .driver = TYPE_SPAPR_CPU_CORE, \ 4009 .property = "pre-3.0-migration", \ 4010 .value = "on", \ 4011 }, 4012 4013 static void spapr_machine_2_12_instance_options(MachineState *machine) 4014 { 4015 spapr_machine_3_0_instance_options(machine); 4016 } 4017 4018 static void spapr_machine_2_12_class_options(MachineClass *mc) 4019 { 4020 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4021 4022 spapr_machine_3_0_class_options(mc); 4023 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12); 4024 4025 /* We depend on kvm_enabled() to choose a default value for the 4026 * hpt-max-page-size capability. Of course we can't do it here 4027 * because this is too early and the HW accelerator isn't initialzed 4028 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4029 */ 4030 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4031 } 4032 4033 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4034 4035 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine) 4036 { 4037 spapr_machine_2_12_instance_options(machine); 4038 } 4039 4040 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4041 { 4042 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4043 4044 spapr_machine_2_12_class_options(mc); 4045 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4046 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4047 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4048 } 4049 4050 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4051 4052 /* 4053 * pseries-2.11 4054 */ 4055 #define SPAPR_COMPAT_2_11 \ 4056 HW_COMPAT_2_11 4057 4058 static void spapr_machine_2_11_instance_options(MachineState *machine) 4059 { 4060 spapr_machine_2_12_instance_options(machine); 4061 } 4062 4063 static void spapr_machine_2_11_class_options(MachineClass *mc) 4064 { 4065 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4066 4067 spapr_machine_2_12_class_options(mc); 4068 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4069 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11); 4070 } 4071 4072 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4073 4074 /* 4075 * pseries-2.10 4076 */ 4077 #define SPAPR_COMPAT_2_10 \ 4078 HW_COMPAT_2_10 4079 4080 static void spapr_machine_2_10_instance_options(MachineState *machine) 4081 { 4082 spapr_machine_2_11_instance_options(machine); 4083 } 4084 4085 static void spapr_machine_2_10_class_options(MachineClass *mc) 4086 { 4087 spapr_machine_2_11_class_options(mc); 4088 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10); 4089 } 4090 4091 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4092 4093 /* 4094 * pseries-2.9 4095 */ 4096 #define SPAPR_COMPAT_2_9 \ 4097 HW_COMPAT_2_9 \ 4098 { \ 4099 .driver = TYPE_POWERPC_CPU, \ 4100 .property = "pre-2.10-migration", \ 4101 .value = "on", \ 4102 }, \ 4103 4104 static void spapr_machine_2_9_instance_options(MachineState *machine) 4105 { 4106 spapr_machine_2_10_instance_options(machine); 4107 } 4108 4109 static void spapr_machine_2_9_class_options(MachineClass *mc) 4110 { 4111 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4112 4113 spapr_machine_2_10_class_options(mc); 4114 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); 4115 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4116 smc->pre_2_10_has_unused_icps = true; 4117 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4118 } 4119 4120 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4121 4122 /* 4123 * pseries-2.8 4124 */ 4125 #define SPAPR_COMPAT_2_8 \ 4126 HW_COMPAT_2_8 \ 4127 { \ 4128 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4129 .property = "pcie-extended-configuration-space", \ 4130 .value = "off", \ 4131 }, 4132 4133 static void spapr_machine_2_8_instance_options(MachineState *machine) 4134 { 4135 spapr_machine_2_9_instance_options(machine); 4136 } 4137 4138 static void spapr_machine_2_8_class_options(MachineClass *mc) 4139 { 4140 spapr_machine_2_9_class_options(mc); 4141 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 4142 mc->numa_mem_align_shift = 23; 4143 } 4144 4145 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4146 4147 /* 4148 * pseries-2.7 4149 */ 4150 #define SPAPR_COMPAT_2_7 \ 4151 HW_COMPAT_2_7 \ 4152 { \ 4153 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4154 .property = "mem_win_size", \ 4155 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 4156 }, \ 4157 { \ 4158 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4159 .property = "mem64_win_size", \ 4160 .value = "0", \ 4161 }, \ 4162 { \ 4163 .driver = TYPE_POWERPC_CPU, \ 4164 .property = "pre-2.8-migration", \ 4165 .value = "on", \ 4166 }, \ 4167 { \ 4168 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4169 .property = "pre-2.8-migration", \ 4170 .value = "on", \ 4171 }, 4172 4173 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 4174 uint64_t *buid, hwaddr *pio, 4175 hwaddr *mmio32, hwaddr *mmio64, 4176 unsigned n_dma, uint32_t *liobns, Error **errp) 4177 { 4178 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4179 const uint64_t base_buid = 0x800000020000000ULL; 4180 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4181 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4182 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4183 const uint32_t max_index = 255; 4184 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4185 4186 uint64_t ram_top = MACHINE(spapr)->ram_size; 4187 hwaddr phb0_base, phb_base; 4188 int i; 4189 4190 /* Do we have device memory? */ 4191 if (MACHINE(spapr)->maxram_size > ram_top) { 4192 /* Can't just use maxram_size, because there may be an 4193 * alignment gap between normal and device memory regions 4194 */ 4195 ram_top = MACHINE(spapr)->device_memory->base + 4196 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4197 } 4198 4199 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4200 4201 if (index > max_index) { 4202 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4203 max_index); 4204 return; 4205 } 4206 4207 *buid = base_buid + index; 4208 for (i = 0; i < n_dma; ++i) { 4209 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4210 } 4211 4212 phb_base = phb0_base + index * phb_spacing; 4213 *pio = phb_base + pio_offset; 4214 *mmio32 = phb_base + mmio_offset; 4215 /* 4216 * We don't set the 64-bit MMIO window, relying on the PHB's 4217 * fallback behaviour of automatically splitting a large "32-bit" 4218 * window into contiguous 32-bit and 64-bit windows 4219 */ 4220 } 4221 4222 static void spapr_machine_2_7_instance_options(MachineState *machine) 4223 { 4224 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 4225 4226 spapr_machine_2_8_instance_options(machine); 4227 spapr->use_hotplug_event_source = false; 4228 } 4229 4230 static void spapr_machine_2_7_class_options(MachineClass *mc) 4231 { 4232 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4233 4234 spapr_machine_2_8_class_options(mc); 4235 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4236 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 4237 smc->phb_placement = phb_placement_2_7; 4238 } 4239 4240 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4241 4242 /* 4243 * pseries-2.6 4244 */ 4245 #define SPAPR_COMPAT_2_6 \ 4246 HW_COMPAT_2_6 \ 4247 { \ 4248 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4249 .property = "ddw",\ 4250 .value = stringify(off),\ 4251 }, 4252 4253 static void spapr_machine_2_6_instance_options(MachineState *machine) 4254 { 4255 spapr_machine_2_7_instance_options(machine); 4256 } 4257 4258 static void spapr_machine_2_6_class_options(MachineClass *mc) 4259 { 4260 spapr_machine_2_7_class_options(mc); 4261 mc->has_hotpluggable_cpus = false; 4262 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 4263 } 4264 4265 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4266 4267 /* 4268 * pseries-2.5 4269 */ 4270 #define SPAPR_COMPAT_2_5 \ 4271 HW_COMPAT_2_5 \ 4272 { \ 4273 .driver = "spapr-vlan", \ 4274 .property = "use-rx-buffer-pools", \ 4275 .value = "off", \ 4276 }, 4277 4278 static void spapr_machine_2_5_instance_options(MachineState *machine) 4279 { 4280 spapr_machine_2_6_instance_options(machine); 4281 } 4282 4283 static void spapr_machine_2_5_class_options(MachineClass *mc) 4284 { 4285 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4286 4287 spapr_machine_2_6_class_options(mc); 4288 smc->use_ohci_by_default = true; 4289 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 4290 } 4291 4292 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4293 4294 /* 4295 * pseries-2.4 4296 */ 4297 #define SPAPR_COMPAT_2_4 \ 4298 HW_COMPAT_2_4 4299 4300 static void spapr_machine_2_4_instance_options(MachineState *machine) 4301 { 4302 spapr_machine_2_5_instance_options(machine); 4303 } 4304 4305 static void spapr_machine_2_4_class_options(MachineClass *mc) 4306 { 4307 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4308 4309 spapr_machine_2_5_class_options(mc); 4310 smc->dr_lmb_enabled = false; 4311 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 4312 } 4313 4314 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4315 4316 /* 4317 * pseries-2.3 4318 */ 4319 #define SPAPR_COMPAT_2_3 \ 4320 HW_COMPAT_2_3 \ 4321 {\ 4322 .driver = "spapr-pci-host-bridge",\ 4323 .property = "dynamic-reconfiguration",\ 4324 .value = "off",\ 4325 }, 4326 4327 static void spapr_machine_2_3_instance_options(MachineState *machine) 4328 { 4329 spapr_machine_2_4_instance_options(machine); 4330 } 4331 4332 static void spapr_machine_2_3_class_options(MachineClass *mc) 4333 { 4334 spapr_machine_2_4_class_options(mc); 4335 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 4336 } 4337 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4338 4339 /* 4340 * pseries-2.2 4341 */ 4342 4343 #define SPAPR_COMPAT_2_2 \ 4344 HW_COMPAT_2_2 \ 4345 {\ 4346 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4347 .property = "mem_win_size",\ 4348 .value = "0x20000000",\ 4349 }, 4350 4351 static void spapr_machine_2_2_instance_options(MachineState *machine) 4352 { 4353 spapr_machine_2_3_instance_options(machine); 4354 machine->suppress_vmdesc = true; 4355 } 4356 4357 static void spapr_machine_2_2_class_options(MachineClass *mc) 4358 { 4359 spapr_machine_2_3_class_options(mc); 4360 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 4361 } 4362 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4363 4364 /* 4365 * pseries-2.1 4366 */ 4367 #define SPAPR_COMPAT_2_1 \ 4368 HW_COMPAT_2_1 4369 4370 static void spapr_machine_2_1_instance_options(MachineState *machine) 4371 { 4372 spapr_machine_2_2_instance_options(machine); 4373 } 4374 4375 static void spapr_machine_2_1_class_options(MachineClass *mc) 4376 { 4377 spapr_machine_2_2_class_options(mc); 4378 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 4379 } 4380 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4381 4382 static void spapr_machine_register_types(void) 4383 { 4384 type_register_static(&spapr_machine_info); 4385 } 4386 4387 type_init(spapr_machine_register_types) 4388