1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/numa.h" 31 #include "hw/hw.h" 32 #include "qemu/log.h" 33 #include "hw/fw-path-provider.h" 34 #include "elf.h" 35 #include "net/net.h" 36 #include "sysemu/device_tree.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/migration.h" 42 #include "mmu-hash64.h" 43 #include "qom/cpu.h" 44 45 #include "hw/boards.h" 46 #include "hw/ppc/ppc.h" 47 #include "hw/loader.h" 48 49 #include "hw/ppc/fdt.h" 50 #include "hw/ppc/spapr.h" 51 #include "hw/ppc/spapr_vio.h" 52 #include "hw/pci-host/spapr.h" 53 #include "hw/ppc/xics.h" 54 #include "hw/pci/msi.h" 55 56 #include "hw/pci/pci.h" 57 #include "hw/scsi/scsi.h" 58 #include "hw/virtio/virtio-scsi.h" 59 60 #include "exec/address-spaces.h" 61 #include "hw/usb.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "trace.h" 65 #include "hw/nmi.h" 66 #include "hw/intc/intc.h" 67 68 #include "hw/compat.h" 69 #include "qemu/cutils.h" 70 #include "hw/ppc/spapr_cpu_core.h" 71 #include "qmp-commands.h" 72 73 #include <libfdt.h> 74 75 /* SLOF memory layout: 76 * 77 * SLOF raw image loaded at 0, copies its romfs right below the flat 78 * device-tree, then position SLOF itself 31M below that 79 * 80 * So we set FW_OVERHEAD to 40MB which should account for all of that 81 * and more 82 * 83 * We load our kernel at 4M, leaving space for SLOF initial image 84 */ 85 #define FDT_MAX_SIZE 0x100000 86 #define RTAS_MAX_SIZE 0x10000 87 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 88 #define FW_MAX_SIZE 0x400000 89 #define FW_FILE_NAME "slof.bin" 90 #define FW_OVERHEAD 0x2800000 91 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 92 93 #define MIN_RMA_SLOF 128UL 94 95 #define PHANDLE_XICP 0x00001111 96 97 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) 98 99 static int try_create_xics(sPAPRMachineState *spapr, const char *type_ics, 100 const char *type_icp, int nr_servers, 101 int nr_irqs, Error **errp) 102 { 103 XICSFabric *xi = XICS_FABRIC(spapr); 104 Error *err = NULL, *local_err = NULL; 105 ICSState *ics = NULL; 106 int i; 107 108 ics = ICS_SIMPLE(object_new(type_ics)); 109 object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL); 110 object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err); 111 object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL); 112 object_property_set_bool(OBJECT(ics), true, "realized", &local_err); 113 error_propagate(&err, local_err); 114 if (err) { 115 goto error; 116 } 117 118 spapr->icps = g_malloc0(nr_servers * sizeof(ICPState)); 119 spapr->nr_servers = nr_servers; 120 121 for (i = 0; i < nr_servers; i++) { 122 ICPState *icp = &spapr->icps[i]; 123 124 object_initialize(icp, sizeof(*icp), type_icp); 125 object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL); 126 object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL); 127 object_property_set_bool(OBJECT(icp), true, "realized", &err); 128 if (err) { 129 goto error; 130 } 131 object_unref(OBJECT(icp)); 132 } 133 134 spapr->ics = ics; 135 return 0; 136 137 error: 138 error_propagate(errp, err); 139 if (ics) { 140 object_unparent(OBJECT(ics)); 141 } 142 return -1; 143 } 144 145 static int xics_system_init(MachineState *machine, 146 int nr_servers, int nr_irqs, Error **errp) 147 { 148 int rc = -1; 149 150 if (kvm_enabled()) { 151 Error *err = NULL; 152 153 if (machine_kernel_irqchip_allowed(machine) && 154 !xics_kvm_init(SPAPR_MACHINE(machine), errp)) { 155 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_KVM, 156 TYPE_KVM_ICP, nr_servers, nr_irqs, &err); 157 } 158 if (machine_kernel_irqchip_required(machine) && rc < 0) { 159 error_reportf_err(err, 160 "kernel_irqchip requested but unavailable: "); 161 } else { 162 error_free(err); 163 } 164 } 165 166 if (rc < 0) { 167 xics_spapr_init(SPAPR_MACHINE(machine), errp); 168 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_SIMPLE, 169 TYPE_ICP, nr_servers, nr_irqs, errp); 170 } 171 172 return rc; 173 } 174 175 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 176 int smt_threads) 177 { 178 int i, ret = 0; 179 uint32_t servers_prop[smt_threads]; 180 uint32_t gservers_prop[smt_threads * 2]; 181 int index = ppc_get_vcpu_dt_id(cpu); 182 183 if (cpu->compat_pvr) { 184 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 185 if (ret < 0) { 186 return ret; 187 } 188 } 189 190 /* Build interrupt servers and gservers properties */ 191 for (i = 0; i < smt_threads; i++) { 192 servers_prop[i] = cpu_to_be32(index + i); 193 /* Hack, direct the group queues back to cpu 0 */ 194 gservers_prop[i*2] = cpu_to_be32(index + i); 195 gservers_prop[i*2 + 1] = 0; 196 } 197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 198 servers_prop, sizeof(servers_prop)); 199 if (ret < 0) { 200 return ret; 201 } 202 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 203 gservers_prop, sizeof(gservers_prop)); 204 205 return ret; 206 } 207 208 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs) 209 { 210 int ret = 0; 211 PowerPCCPU *cpu = POWERPC_CPU(cs); 212 int index = ppc_get_vcpu_dt_id(cpu); 213 uint32_t associativity[] = {cpu_to_be32(0x5), 214 cpu_to_be32(0x0), 215 cpu_to_be32(0x0), 216 cpu_to_be32(0x0), 217 cpu_to_be32(cs->numa_node), 218 cpu_to_be32(index)}; 219 220 /* Advertise NUMA via ibm,associativity */ 221 if (nb_numa_nodes > 1) { 222 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, 223 sizeof(associativity)); 224 } 225 226 return ret; 227 } 228 229 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 230 { 231 int ret = 0, offset, cpus_offset; 232 CPUState *cs; 233 char cpu_model[32]; 234 int smt = kvmppc_smt_threads(); 235 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 236 237 CPU_FOREACH(cs) { 238 PowerPCCPU *cpu = POWERPC_CPU(cs); 239 DeviceClass *dc = DEVICE_GET_CLASS(cs); 240 int index = ppc_get_vcpu_dt_id(cpu); 241 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 242 243 if ((index % smt) != 0) { 244 continue; 245 } 246 247 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 248 249 cpus_offset = fdt_path_offset(fdt, "/cpus"); 250 if (cpus_offset < 0) { 251 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), 252 "cpus"); 253 if (cpus_offset < 0) { 254 return cpus_offset; 255 } 256 } 257 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 258 if (offset < 0) { 259 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 260 if (offset < 0) { 261 return offset; 262 } 263 } 264 265 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 266 pft_size_prop, sizeof(pft_size_prop)); 267 if (ret < 0) { 268 return ret; 269 } 270 271 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs); 272 if (ret < 0) { 273 return ret; 274 } 275 276 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 277 if (ret < 0) { 278 return ret; 279 } 280 } 281 return ret; 282 } 283 284 static hwaddr spapr_node0_size(void) 285 { 286 MachineState *machine = MACHINE(qdev_get_machine()); 287 288 if (nb_numa_nodes) { 289 int i; 290 for (i = 0; i < nb_numa_nodes; ++i) { 291 if (numa_info[i].node_mem) { 292 return MIN(pow2floor(numa_info[i].node_mem), 293 machine->ram_size); 294 } 295 } 296 } 297 return machine->ram_size; 298 } 299 300 static void add_str(GString *s, const gchar *s1) 301 { 302 g_string_append_len(s, s1, strlen(s1) + 1); 303 } 304 305 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 306 hwaddr size) 307 { 308 uint32_t associativity[] = { 309 cpu_to_be32(0x4), /* length */ 310 cpu_to_be32(0x0), cpu_to_be32(0x0), 311 cpu_to_be32(0x0), cpu_to_be32(nodeid) 312 }; 313 char mem_name[32]; 314 uint64_t mem_reg_property[2]; 315 int off; 316 317 mem_reg_property[0] = cpu_to_be64(start); 318 mem_reg_property[1] = cpu_to_be64(size); 319 320 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 321 off = fdt_add_subnode(fdt, 0, mem_name); 322 _FDT(off); 323 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 324 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 325 sizeof(mem_reg_property)))); 326 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 327 sizeof(associativity)))); 328 return off; 329 } 330 331 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 332 { 333 MachineState *machine = MACHINE(spapr); 334 hwaddr mem_start, node_size; 335 int i, nb_nodes = nb_numa_nodes; 336 NodeInfo *nodes = numa_info; 337 NodeInfo ramnode; 338 339 /* No NUMA nodes, assume there is just one node with whole RAM */ 340 if (!nb_numa_nodes) { 341 nb_nodes = 1; 342 ramnode.node_mem = machine->ram_size; 343 nodes = &ramnode; 344 } 345 346 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 347 if (!nodes[i].node_mem) { 348 continue; 349 } 350 if (mem_start >= machine->ram_size) { 351 node_size = 0; 352 } else { 353 node_size = nodes[i].node_mem; 354 if (node_size > machine->ram_size - mem_start) { 355 node_size = machine->ram_size - mem_start; 356 } 357 } 358 if (!mem_start) { 359 /* ppc_spapr_init() checks for rma_size <= node0_size already */ 360 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 361 mem_start += spapr->rma_size; 362 node_size -= spapr->rma_size; 363 } 364 for ( ; node_size; ) { 365 hwaddr sizetmp = pow2floor(node_size); 366 367 /* mem_start != 0 here */ 368 if (ctzl(mem_start) < ctzl(sizetmp)) { 369 sizetmp = 1ULL << ctzl(mem_start); 370 } 371 372 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 373 node_size -= sizetmp; 374 mem_start += sizetmp; 375 } 376 } 377 378 return 0; 379 } 380 381 /* Populate the "ibm,pa-features" property */ 382 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset) 383 { 384 uint8_t pa_features_206[] = { 6, 0, 385 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 386 uint8_t pa_features_207[] = { 24, 0, 387 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 388 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 389 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 390 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 391 /* Currently we don't advertise any of the "new" ISAv3.00 functionality */ 392 uint8_t pa_features_300[] = { 64, 0, 393 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 394 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 395 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 396 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 397 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 24 - 29 */ 398 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 30 - 35 */ 399 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 36 - 41 */ 400 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 42 - 47 */ 401 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 48 - 53 */ 402 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 54 - 59 */ 403 0x00, 0x00, 0x00, 0x00 }; /* 60 - 63 */ 404 405 uint8_t *pa_features; 406 size_t pa_size; 407 408 switch (POWERPC_MMU_VER(env->mmu_model)) { 409 case POWERPC_MMU_VER_2_06: 410 pa_features = pa_features_206; 411 pa_size = sizeof(pa_features_206); 412 break; 413 case POWERPC_MMU_VER_2_07: 414 pa_features = pa_features_207; 415 pa_size = sizeof(pa_features_207); 416 break; 417 case POWERPC_MMU_VER_3_00: 418 pa_features = pa_features_300; 419 pa_size = sizeof(pa_features_300); 420 break; 421 default: 422 return; 423 } 424 425 if (env->ci_large_pages) { 426 /* 427 * Note: we keep CI large pages off by default because a 64K capable 428 * guest provisioned with large pages might otherwise try to map a qemu 429 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 430 * even if that qemu runs on a 4k host. 431 * We dd this bit back here if we are confident this is not an issue 432 */ 433 pa_features[3] |= 0x20; 434 } 435 if (kvmppc_has_cap_htm() && pa_size > 24) { 436 pa_features[24] |= 0x80; /* Transactional memory support */ 437 } 438 439 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 440 } 441 442 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 443 sPAPRMachineState *spapr) 444 { 445 PowerPCCPU *cpu = POWERPC_CPU(cs); 446 CPUPPCState *env = &cpu->env; 447 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 448 int index = ppc_get_vcpu_dt_id(cpu); 449 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 450 0xffffffff, 0xffffffff}; 451 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 452 : SPAPR_TIMEBASE_FREQ; 453 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 454 uint32_t page_sizes_prop[64]; 455 size_t page_sizes_prop_size; 456 uint32_t vcpus_per_socket = smp_threads * smp_cores; 457 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 458 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 459 sPAPRDRConnector *drc; 460 sPAPRDRConnectorClass *drck; 461 int drc_index; 462 463 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index); 464 if (drc) { 465 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 466 drc_index = drck->get_index(drc); 467 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 468 } 469 470 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 471 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 472 473 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 475 env->dcache_line_size))); 476 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 477 env->dcache_line_size))); 478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 479 env->icache_line_size))); 480 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 481 env->icache_line_size))); 482 483 if (pcc->l1_dcache_size) { 484 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 485 pcc->l1_dcache_size))); 486 } else { 487 error_report("Warning: Unknown L1 dcache size for cpu"); 488 } 489 if (pcc->l1_icache_size) { 490 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 491 pcc->l1_icache_size))); 492 } else { 493 error_report("Warning: Unknown L1 icache size for cpu"); 494 } 495 496 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 497 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 498 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); 499 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); 500 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 501 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 502 503 if (env->spr_cb[SPR_PURR].oea_read) { 504 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 505 } 506 507 if (env->mmu_model & POWERPC_MMU_1TSEG) { 508 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 509 segs, sizeof(segs)))); 510 } 511 512 /* Advertise VMX/VSX (vector extensions) if available 513 * 0 / no property == no vector extensions 514 * 1 == VMX / Altivec available 515 * 2 == VSX available */ 516 if (env->insns_flags & PPC_ALTIVEC) { 517 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 518 519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 520 } 521 522 /* Advertise DFP (Decimal Floating Point) if available 523 * 0 / no property == no DFP 524 * 1 == DFP available */ 525 if (env->insns_flags2 & PPC2_DFP) { 526 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 527 } 528 529 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, 530 sizeof(page_sizes_prop)); 531 if (page_sizes_prop_size) { 532 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 533 page_sizes_prop, page_sizes_prop_size))); 534 } 535 536 spapr_populate_pa_features(env, fdt, offset); 537 538 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 539 cs->cpu_index / vcpus_per_socket))); 540 541 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 542 pft_size_prop, sizeof(pft_size_prop)))); 543 544 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs)); 545 546 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 547 } 548 549 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 550 { 551 CPUState *cs; 552 int cpus_offset; 553 char *nodename; 554 int smt = kvmppc_smt_threads(); 555 556 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 557 _FDT(cpus_offset); 558 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 559 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 560 561 /* 562 * We walk the CPUs in reverse order to ensure that CPU DT nodes 563 * created by fdt_add_subnode() end up in the right order in FDT 564 * for the guest kernel the enumerate the CPUs correctly. 565 */ 566 CPU_FOREACH_REVERSE(cs) { 567 PowerPCCPU *cpu = POWERPC_CPU(cs); 568 int index = ppc_get_vcpu_dt_id(cpu); 569 DeviceClass *dc = DEVICE_GET_CLASS(cs); 570 int offset; 571 572 if ((index % smt) != 0) { 573 continue; 574 } 575 576 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 577 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 578 g_free(nodename); 579 _FDT(offset); 580 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 581 } 582 583 } 584 585 /* 586 * Adds ibm,dynamic-reconfiguration-memory node. 587 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 588 * of this device tree node. 589 */ 590 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 591 { 592 MachineState *machine = MACHINE(spapr); 593 int ret, i, offset; 594 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 595 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 596 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; 597 uint32_t nr_lmbs = (spapr->hotplug_memory.base + 598 memory_region_size(&spapr->hotplug_memory.mr)) / 599 lmb_size; 600 uint32_t *int_buf, *cur_index, buf_len; 601 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 602 603 /* 604 * Don't create the node if there is no hotpluggable memory 605 */ 606 if (machine->ram_size == machine->maxram_size) { 607 return 0; 608 } 609 610 /* 611 * Allocate enough buffer size to fit in ibm,dynamic-memory 612 * or ibm,associativity-lookup-arrays 613 */ 614 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) 615 * sizeof(uint32_t); 616 cur_index = int_buf = g_malloc0(buf_len); 617 618 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 619 620 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 621 sizeof(prop_lmb_size)); 622 if (ret < 0) { 623 goto out; 624 } 625 626 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 627 if (ret < 0) { 628 goto out; 629 } 630 631 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 632 if (ret < 0) { 633 goto out; 634 } 635 636 /* ibm,dynamic-memory */ 637 int_buf[0] = cpu_to_be32(nr_lmbs); 638 cur_index++; 639 for (i = 0; i < nr_lmbs; i++) { 640 uint64_t addr = i * lmb_size; 641 uint32_t *dynamic_memory = cur_index; 642 643 if (i >= hotplug_lmb_start) { 644 sPAPRDRConnector *drc; 645 sPAPRDRConnectorClass *drck; 646 647 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i); 648 g_assert(drc); 649 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 650 651 dynamic_memory[0] = cpu_to_be32(addr >> 32); 652 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 653 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc)); 654 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 655 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL)); 656 if (memory_region_present(get_system_memory(), addr)) { 657 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 658 } else { 659 dynamic_memory[5] = cpu_to_be32(0); 660 } 661 } else { 662 /* 663 * LMB information for RMA, boot time RAM and gap b/n RAM and 664 * hotplug memory region -- all these are marked as reserved 665 * and as having no valid DRC. 666 */ 667 dynamic_memory[0] = cpu_to_be32(addr >> 32); 668 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 669 dynamic_memory[2] = cpu_to_be32(0); 670 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 671 dynamic_memory[4] = cpu_to_be32(-1); 672 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 673 SPAPR_LMB_FLAGS_DRC_INVALID); 674 } 675 676 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 677 } 678 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 679 if (ret < 0) { 680 goto out; 681 } 682 683 /* ibm,associativity-lookup-arrays */ 684 cur_index = int_buf; 685 int_buf[0] = cpu_to_be32(nr_nodes); 686 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 687 cur_index += 2; 688 for (i = 0; i < nr_nodes; i++) { 689 uint32_t associativity[] = { 690 cpu_to_be32(0x0), 691 cpu_to_be32(0x0), 692 cpu_to_be32(0x0), 693 cpu_to_be32(i) 694 }; 695 memcpy(cur_index, associativity, sizeof(associativity)); 696 cur_index += 4; 697 } 698 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 699 (cur_index - int_buf) * sizeof(uint32_t)); 700 out: 701 g_free(int_buf); 702 return ret; 703 } 704 705 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 706 sPAPROptionVector *ov5_updates) 707 { 708 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 709 int ret = 0, offset; 710 711 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 712 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 713 g_assert(smc->dr_lmb_enabled); 714 ret = spapr_populate_drconf_memory(spapr, fdt); 715 if (ret) { 716 goto out; 717 } 718 } 719 720 offset = fdt_path_offset(fdt, "/chosen"); 721 if (offset < 0) { 722 offset = fdt_add_subnode(fdt, 0, "chosen"); 723 if (offset < 0) { 724 return offset; 725 } 726 } 727 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 728 "ibm,architecture-vec-5"); 729 730 out: 731 return ret; 732 } 733 734 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 735 target_ulong addr, target_ulong size, 736 sPAPROptionVector *ov5_updates) 737 { 738 void *fdt, *fdt_skel; 739 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 740 741 size -= sizeof(hdr); 742 743 /* Create sceleton */ 744 fdt_skel = g_malloc0(size); 745 _FDT((fdt_create(fdt_skel, size))); 746 _FDT((fdt_begin_node(fdt_skel, ""))); 747 _FDT((fdt_end_node(fdt_skel))); 748 _FDT((fdt_finish(fdt_skel))); 749 fdt = g_malloc0(size); 750 _FDT((fdt_open_into(fdt_skel, fdt, size))); 751 g_free(fdt_skel); 752 753 /* Fixup cpu nodes */ 754 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 755 756 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 757 return -1; 758 } 759 760 /* Pack resulting tree */ 761 _FDT((fdt_pack(fdt))); 762 763 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 764 trace_spapr_cas_failed(size); 765 return -1; 766 } 767 768 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 769 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 770 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 771 g_free(fdt); 772 773 return 0; 774 } 775 776 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 777 { 778 int rtas; 779 GString *hypertas = g_string_sized_new(256); 780 GString *qemu_hypertas = g_string_sized_new(256); 781 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 782 uint64_t max_hotplug_addr = spapr->hotplug_memory.base + 783 memory_region_size(&spapr->hotplug_memory.mr); 784 uint32_t lrdr_capacity[] = { 785 cpu_to_be32(max_hotplug_addr >> 32), 786 cpu_to_be32(max_hotplug_addr & 0xffffffff), 787 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 788 cpu_to_be32(max_cpus / smp_threads), 789 }; 790 791 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 792 793 /* hypertas */ 794 add_str(hypertas, "hcall-pft"); 795 add_str(hypertas, "hcall-term"); 796 add_str(hypertas, "hcall-dabr"); 797 add_str(hypertas, "hcall-interrupt"); 798 add_str(hypertas, "hcall-tce"); 799 add_str(hypertas, "hcall-vio"); 800 add_str(hypertas, "hcall-splpar"); 801 add_str(hypertas, "hcall-bulk"); 802 add_str(hypertas, "hcall-set-mode"); 803 add_str(hypertas, "hcall-sprg0"); 804 add_str(hypertas, "hcall-copy"); 805 add_str(hypertas, "hcall-debug"); 806 add_str(qemu_hypertas, "hcall-memop1"); 807 808 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 809 add_str(hypertas, "hcall-multi-tce"); 810 } 811 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 812 hypertas->str, hypertas->len)); 813 g_string_free(hypertas, TRUE); 814 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 815 qemu_hypertas->str, qemu_hypertas->len)); 816 g_string_free(qemu_hypertas, TRUE); 817 818 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 819 refpoints, sizeof(refpoints))); 820 821 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 822 RTAS_ERROR_LOG_MAX)); 823 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 824 RTAS_EVENT_SCAN_RATE)); 825 826 if (msi_nonbroken) { 827 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 828 } 829 830 /* 831 * According to PAPR, rtas ibm,os-term does not guarantee a return 832 * back to the guest cpu. 833 * 834 * While an additional ibm,extended-os-term property indicates 835 * that rtas call return will always occur. Set this property. 836 */ 837 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 838 839 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 840 lrdr_capacity, sizeof(lrdr_capacity))); 841 842 spapr_dt_rtas_tokens(fdt, rtas); 843 } 844 845 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 846 { 847 MachineState *machine = MACHINE(spapr); 848 int chosen; 849 const char *boot_device = machine->boot_order; 850 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 851 size_t cb = 0; 852 char *bootlist = get_boot_devices_list(&cb, true); 853 854 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 855 856 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 857 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 858 spapr->initrd_base)); 859 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 860 spapr->initrd_base + spapr->initrd_size)); 861 862 if (spapr->kernel_size) { 863 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 864 cpu_to_be64(spapr->kernel_size) }; 865 866 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 867 &kprop, sizeof(kprop))); 868 if (spapr->kernel_le) { 869 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 870 } 871 } 872 if (boot_menu) { 873 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 874 } 875 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 876 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 877 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 878 879 if (cb && bootlist) { 880 int i; 881 882 for (i = 0; i < cb; i++) { 883 if (bootlist[i] == '\n') { 884 bootlist[i] = ' '; 885 } 886 } 887 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 888 } 889 890 if (boot_device && strlen(boot_device)) { 891 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 892 } 893 894 if (!spapr->has_graphics && stdout_path) { 895 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 896 } 897 898 g_free(stdout_path); 899 g_free(bootlist); 900 } 901 902 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 903 { 904 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 905 * KVM to work under pHyp with some guest co-operation */ 906 int hypervisor; 907 uint8_t hypercall[16]; 908 909 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 910 /* indicate KVM hypercall interface */ 911 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 912 if (kvmppc_has_cap_fixup_hcalls()) { 913 /* 914 * Older KVM versions with older guest kernels were broken 915 * with the magic page, don't allow the guest to map it. 916 */ 917 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 918 sizeof(hypercall))) { 919 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 920 hypercall, sizeof(hypercall))); 921 } 922 } 923 } 924 925 static void *spapr_build_fdt(sPAPRMachineState *spapr, 926 hwaddr rtas_addr, 927 hwaddr rtas_size) 928 { 929 MachineState *machine = MACHINE(qdev_get_machine()); 930 MachineClass *mc = MACHINE_GET_CLASS(machine); 931 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 932 int ret; 933 void *fdt; 934 sPAPRPHBState *phb; 935 char *buf; 936 937 fdt = g_malloc0(FDT_MAX_SIZE); 938 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 939 940 /* Root node */ 941 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 942 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 943 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 944 945 /* 946 * Add info to guest to indentify which host is it being run on 947 * and what is the uuid of the guest 948 */ 949 if (kvmppc_get_host_model(&buf)) { 950 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 951 g_free(buf); 952 } 953 if (kvmppc_get_host_serial(&buf)) { 954 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 955 g_free(buf); 956 } 957 958 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 959 960 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 961 if (qemu_uuid_set) { 962 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 963 } 964 g_free(buf); 965 966 if (qemu_get_vm_name()) { 967 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 968 qemu_get_vm_name())); 969 } 970 971 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 972 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 973 974 /* /interrupt controller */ 975 spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP); 976 977 ret = spapr_populate_memory(spapr, fdt); 978 if (ret < 0) { 979 error_report("couldn't setup memory nodes in fdt"); 980 exit(1); 981 } 982 983 /* /vdevice */ 984 spapr_dt_vdevice(spapr->vio_bus, fdt); 985 986 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 987 ret = spapr_rng_populate_dt(fdt); 988 if (ret < 0) { 989 error_report("could not set up rng device in the fdt"); 990 exit(1); 991 } 992 } 993 994 QLIST_FOREACH(phb, &spapr->phbs, list) { 995 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 996 if (ret < 0) { 997 error_report("couldn't setup PCI devices in fdt"); 998 exit(1); 999 } 1000 } 1001 1002 /* cpus */ 1003 spapr_populate_cpus_dt_node(fdt, spapr); 1004 1005 if (smc->dr_lmb_enabled) { 1006 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1007 } 1008 1009 if (mc->has_hotpluggable_cpus) { 1010 int offset = fdt_path_offset(fdt, "/cpus"); 1011 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1012 SPAPR_DR_CONNECTOR_TYPE_CPU); 1013 if (ret < 0) { 1014 error_report("Couldn't set up CPU DR device tree properties"); 1015 exit(1); 1016 } 1017 } 1018 1019 /* /event-sources */ 1020 spapr_dt_events(spapr, fdt); 1021 1022 /* /rtas */ 1023 spapr_dt_rtas(spapr, fdt); 1024 1025 /* /chosen */ 1026 spapr_dt_chosen(spapr, fdt); 1027 1028 /* /hypervisor */ 1029 if (kvm_enabled()) { 1030 spapr_dt_hypervisor(spapr, fdt); 1031 } 1032 1033 /* Build memory reserve map */ 1034 if (spapr->kernel_size) { 1035 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1036 } 1037 if (spapr->initrd_size) { 1038 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1039 } 1040 1041 /* ibm,client-architecture-support updates */ 1042 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1043 if (ret < 0) { 1044 error_report("couldn't setup CAS properties fdt"); 1045 exit(1); 1046 } 1047 1048 return fdt; 1049 } 1050 1051 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1052 { 1053 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1054 } 1055 1056 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1057 PowerPCCPU *cpu) 1058 { 1059 CPUPPCState *env = &cpu->env; 1060 1061 /* The TCG path should also be holding the BQL at this point */ 1062 g_assert(qemu_mutex_iothread_locked()); 1063 1064 if (msr_pr) { 1065 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1066 env->gpr[3] = H_PRIVILEGE; 1067 } else { 1068 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1069 } 1070 } 1071 1072 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1073 { 1074 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1075 1076 return spapr->patb_entry; 1077 } 1078 1079 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1080 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1081 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1082 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1083 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1084 1085 /* 1086 * Get the fd to access the kernel htab, re-opening it if necessary 1087 */ 1088 static int get_htab_fd(sPAPRMachineState *spapr) 1089 { 1090 if (spapr->htab_fd >= 0) { 1091 return spapr->htab_fd; 1092 } 1093 1094 spapr->htab_fd = kvmppc_get_htab_fd(false); 1095 if (spapr->htab_fd < 0) { 1096 error_report("Unable to open fd for reading hash table from KVM: %s", 1097 strerror(errno)); 1098 } 1099 1100 return spapr->htab_fd; 1101 } 1102 1103 static void close_htab_fd(sPAPRMachineState *spapr) 1104 { 1105 if (spapr->htab_fd >= 0) { 1106 close(spapr->htab_fd); 1107 } 1108 spapr->htab_fd = -1; 1109 } 1110 1111 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1112 { 1113 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1114 1115 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1116 } 1117 1118 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1119 hwaddr ptex, int n) 1120 { 1121 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1122 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1123 1124 if (!spapr->htab) { 1125 /* 1126 * HTAB is controlled by KVM. Fetch into temporary buffer 1127 */ 1128 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1129 kvmppc_read_hptes(hptes, ptex, n); 1130 return hptes; 1131 } 1132 1133 /* 1134 * HTAB is controlled by QEMU. Just point to the internally 1135 * accessible PTEG. 1136 */ 1137 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1138 } 1139 1140 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1141 const ppc_hash_pte64_t *hptes, 1142 hwaddr ptex, int n) 1143 { 1144 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1145 1146 if (!spapr->htab) { 1147 g_free((void *)hptes); 1148 } 1149 1150 /* Nothing to do for qemu managed HPT */ 1151 } 1152 1153 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1154 uint64_t pte0, uint64_t pte1) 1155 { 1156 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1157 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1158 1159 if (!spapr->htab) { 1160 kvmppc_write_hpte(ptex, pte0, pte1); 1161 } else { 1162 stq_p(spapr->htab + offset, pte0); 1163 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1164 } 1165 } 1166 1167 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1168 { 1169 int shift; 1170 1171 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1172 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1173 * that's much more than is needed for Linux guests */ 1174 shift = ctz64(pow2ceil(ramsize)) - 7; 1175 shift = MAX(shift, 18); /* Minimum architected size */ 1176 shift = MIN(shift, 46); /* Maximum architected size */ 1177 return shift; 1178 } 1179 1180 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1181 Error **errp) 1182 { 1183 long rc; 1184 1185 /* Clean up any HPT info from a previous boot */ 1186 g_free(spapr->htab); 1187 spapr->htab = NULL; 1188 spapr->htab_shift = 0; 1189 close_htab_fd(spapr); 1190 1191 rc = kvmppc_reset_htab(shift); 1192 if (rc < 0) { 1193 /* kernel-side HPT needed, but couldn't allocate one */ 1194 error_setg_errno(errp, errno, 1195 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1196 shift); 1197 /* This is almost certainly fatal, but if the caller really 1198 * wants to carry on with shift == 0, it's welcome to try */ 1199 } else if (rc > 0) { 1200 /* kernel-side HPT allocated */ 1201 if (rc != shift) { 1202 error_setg(errp, 1203 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1204 shift, rc); 1205 } 1206 1207 spapr->htab_shift = shift; 1208 spapr->htab = NULL; 1209 } else { 1210 /* kernel-side HPT not needed, allocate in userspace instead */ 1211 size_t size = 1ULL << shift; 1212 int i; 1213 1214 spapr->htab = qemu_memalign(size, size); 1215 if (!spapr->htab) { 1216 error_setg_errno(errp, errno, 1217 "Could not allocate HPT of order %d", shift); 1218 return; 1219 } 1220 1221 memset(spapr->htab, 0, size); 1222 spapr->htab_shift = shift; 1223 1224 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1225 DIRTY_HPTE(HPTE(spapr->htab, i)); 1226 } 1227 } 1228 } 1229 1230 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) 1231 { 1232 bool matched = false; 1233 1234 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 1235 matched = true; 1236 } 1237 1238 if (!matched) { 1239 error_report("Device %s is not supported by this machine yet.", 1240 qdev_fw_name(DEVICE(sbdev))); 1241 exit(1); 1242 } 1243 } 1244 1245 static void ppc_spapr_reset(void) 1246 { 1247 MachineState *machine = MACHINE(qdev_get_machine()); 1248 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1249 PowerPCCPU *first_ppc_cpu; 1250 uint32_t rtas_limit; 1251 hwaddr rtas_addr, fdt_addr; 1252 void *fdt; 1253 int rc; 1254 1255 /* Check for unknown sysbus devices */ 1256 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); 1257 1258 spapr->patb_entry = 0; 1259 1260 /* Allocate and/or reset the hash page table */ 1261 spapr_reallocate_hpt(spapr, 1262 spapr_hpt_shift_for_ramsize(machine->maxram_size), 1263 &error_fatal); 1264 1265 /* Update the RMA size if necessary */ 1266 if (spapr->vrma_adjust) { 1267 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(), 1268 spapr->htab_shift); 1269 } 1270 1271 qemu_devices_reset(); 1272 1273 /* 1274 * We place the device tree and RTAS just below either the top of the RMA, 1275 * or just below 2GB, whichever is lowere, so that it can be 1276 * processed with 32-bit real mode code if necessary 1277 */ 1278 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1279 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1280 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1281 1282 /* if this reset wasn't generated by CAS, we should reset our 1283 * negotiated options and start from scratch */ 1284 if (!spapr->cas_reboot) { 1285 spapr_ovec_cleanup(spapr->ov5_cas); 1286 spapr->ov5_cas = spapr_ovec_new(); 1287 } 1288 1289 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1290 1291 spapr_load_rtas(spapr, fdt, rtas_addr); 1292 1293 rc = fdt_pack(fdt); 1294 1295 /* Should only fail if we've built a corrupted tree */ 1296 assert(rc == 0); 1297 1298 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1299 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1300 fdt_totalsize(fdt), FDT_MAX_SIZE); 1301 exit(1); 1302 } 1303 1304 /* Load the fdt */ 1305 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1306 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1307 g_free(fdt); 1308 1309 /* Set up the entry state */ 1310 first_ppc_cpu = POWERPC_CPU(first_cpu); 1311 first_ppc_cpu->env.gpr[3] = fdt_addr; 1312 first_ppc_cpu->env.gpr[5] = 0; 1313 first_cpu->halted = 0; 1314 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; 1315 1316 spapr->cas_reboot = false; 1317 } 1318 1319 static void spapr_create_nvram(sPAPRMachineState *spapr) 1320 { 1321 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1322 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1323 1324 if (dinfo) { 1325 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1326 &error_fatal); 1327 } 1328 1329 qdev_init_nofail(dev); 1330 1331 spapr->nvram = (struct sPAPRNVRAM *)dev; 1332 } 1333 1334 static void spapr_rtc_create(sPAPRMachineState *spapr) 1335 { 1336 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC); 1337 1338 qdev_init_nofail(dev); 1339 spapr->rtc = dev; 1340 1341 object_property_add_alias(qdev_get_machine(), "rtc-time", 1342 OBJECT(spapr->rtc), "date", NULL); 1343 } 1344 1345 /* Returns whether we want to use VGA or not */ 1346 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1347 { 1348 switch (vga_interface_type) { 1349 case VGA_NONE: 1350 return false; 1351 case VGA_DEVICE: 1352 return true; 1353 case VGA_STD: 1354 case VGA_VIRTIO: 1355 return pci_vga_init(pci_bus) != NULL; 1356 default: 1357 error_setg(errp, 1358 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1359 return false; 1360 } 1361 } 1362 1363 static int spapr_post_load(void *opaque, int version_id) 1364 { 1365 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1366 int err = 0; 1367 1368 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1369 int i; 1370 for (i = 0; i < spapr->nr_servers; i++) { 1371 icp_resend(&spapr->icps[i]); 1372 } 1373 } 1374 1375 /* In earlier versions, there was no separate qdev for the PAPR 1376 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1377 * So when migrating from those versions, poke the incoming offset 1378 * value into the RTC device */ 1379 if (version_id < 3) { 1380 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset); 1381 } 1382 1383 return err; 1384 } 1385 1386 static bool version_before_3(void *opaque, int version_id) 1387 { 1388 return version_id < 3; 1389 } 1390 1391 static bool spapr_ov5_cas_needed(void *opaque) 1392 { 1393 sPAPRMachineState *spapr = opaque; 1394 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1395 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1396 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1397 bool cas_needed; 1398 1399 /* Prior to the introduction of sPAPROptionVector, we had two option 1400 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1401 * Both of these options encode machine topology into the device-tree 1402 * in such a way that the now-booted OS should still be able to interact 1403 * appropriately with QEMU regardless of what options were actually 1404 * negotiatied on the source side. 1405 * 1406 * As such, we can avoid migrating the CAS-negotiated options if these 1407 * are the only options available on the current machine/platform. 1408 * Since these are the only options available for pseries-2.7 and 1409 * earlier, this allows us to maintain old->new/new->old migration 1410 * compatibility. 1411 * 1412 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1413 * via default pseries-2.8 machines and explicit command-line parameters. 1414 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1415 * of the actual CAS-negotiated values to continue working properly. For 1416 * example, availability of memory unplug depends on knowing whether 1417 * OV5_HP_EVT was negotiated via CAS. 1418 * 1419 * Thus, for any cases where the set of available CAS-negotiatable 1420 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1421 * include the CAS-negotiated options in the migration stream. 1422 */ 1423 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1424 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1425 1426 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1427 * the mask itself since in the future it's possible "legacy" bits may be 1428 * removed via machine options, which could generate a false positive 1429 * that breaks migration. 1430 */ 1431 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1432 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1433 1434 spapr_ovec_cleanup(ov5_mask); 1435 spapr_ovec_cleanup(ov5_legacy); 1436 spapr_ovec_cleanup(ov5_removed); 1437 1438 return cas_needed; 1439 } 1440 1441 static const VMStateDescription vmstate_spapr_ov5_cas = { 1442 .name = "spapr_option_vector_ov5_cas", 1443 .version_id = 1, 1444 .minimum_version_id = 1, 1445 .needed = spapr_ov5_cas_needed, 1446 .fields = (VMStateField[]) { 1447 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1448 vmstate_spapr_ovec, sPAPROptionVector), 1449 VMSTATE_END_OF_LIST() 1450 }, 1451 }; 1452 1453 static bool spapr_patb_entry_needed(void *opaque) 1454 { 1455 sPAPRMachineState *spapr = opaque; 1456 1457 return !!spapr->patb_entry; 1458 } 1459 1460 static const VMStateDescription vmstate_spapr_patb_entry = { 1461 .name = "spapr_patb_entry", 1462 .version_id = 1, 1463 .minimum_version_id = 1, 1464 .needed = spapr_patb_entry_needed, 1465 .fields = (VMStateField[]) { 1466 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1467 VMSTATE_END_OF_LIST() 1468 }, 1469 }; 1470 1471 static const VMStateDescription vmstate_spapr = { 1472 .name = "spapr", 1473 .version_id = 3, 1474 .minimum_version_id = 1, 1475 .post_load = spapr_post_load, 1476 .fields = (VMStateField[]) { 1477 /* used to be @next_irq */ 1478 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1479 1480 /* RTC offset */ 1481 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1482 1483 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1484 VMSTATE_END_OF_LIST() 1485 }, 1486 .subsections = (const VMStateDescription*[]) { 1487 &vmstate_spapr_ov5_cas, 1488 &vmstate_spapr_patb_entry, 1489 NULL 1490 } 1491 }; 1492 1493 static int htab_save_setup(QEMUFile *f, void *opaque) 1494 { 1495 sPAPRMachineState *spapr = opaque; 1496 1497 /* "Iteration" header */ 1498 qemu_put_be32(f, spapr->htab_shift); 1499 1500 if (spapr->htab) { 1501 spapr->htab_save_index = 0; 1502 spapr->htab_first_pass = true; 1503 } else { 1504 assert(kvm_enabled()); 1505 } 1506 1507 1508 return 0; 1509 } 1510 1511 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1512 int64_t max_ns) 1513 { 1514 bool has_timeout = max_ns != -1; 1515 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1516 int index = spapr->htab_save_index; 1517 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1518 1519 assert(spapr->htab_first_pass); 1520 1521 do { 1522 int chunkstart; 1523 1524 /* Consume invalid HPTEs */ 1525 while ((index < htabslots) 1526 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1527 index++; 1528 CLEAN_HPTE(HPTE(spapr->htab, index)); 1529 } 1530 1531 /* Consume valid HPTEs */ 1532 chunkstart = index; 1533 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1534 && HPTE_VALID(HPTE(spapr->htab, index))) { 1535 index++; 1536 CLEAN_HPTE(HPTE(spapr->htab, index)); 1537 } 1538 1539 if (index > chunkstart) { 1540 int n_valid = index - chunkstart; 1541 1542 qemu_put_be32(f, chunkstart); 1543 qemu_put_be16(f, n_valid); 1544 qemu_put_be16(f, 0); 1545 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1546 HASH_PTE_SIZE_64 * n_valid); 1547 1548 if (has_timeout && 1549 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1550 break; 1551 } 1552 } 1553 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 1554 1555 if (index >= htabslots) { 1556 assert(index == htabslots); 1557 index = 0; 1558 spapr->htab_first_pass = false; 1559 } 1560 spapr->htab_save_index = index; 1561 } 1562 1563 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 1564 int64_t max_ns) 1565 { 1566 bool final = max_ns < 0; 1567 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1568 int examined = 0, sent = 0; 1569 int index = spapr->htab_save_index; 1570 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1571 1572 assert(!spapr->htab_first_pass); 1573 1574 do { 1575 int chunkstart, invalidstart; 1576 1577 /* Consume non-dirty HPTEs */ 1578 while ((index < htabslots) 1579 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 1580 index++; 1581 examined++; 1582 } 1583 1584 chunkstart = index; 1585 /* Consume valid dirty HPTEs */ 1586 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1587 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1588 && HPTE_VALID(HPTE(spapr->htab, index))) { 1589 CLEAN_HPTE(HPTE(spapr->htab, index)); 1590 index++; 1591 examined++; 1592 } 1593 1594 invalidstart = index; 1595 /* Consume invalid dirty HPTEs */ 1596 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 1597 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1598 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1599 CLEAN_HPTE(HPTE(spapr->htab, index)); 1600 index++; 1601 examined++; 1602 } 1603 1604 if (index > chunkstart) { 1605 int n_valid = invalidstart - chunkstart; 1606 int n_invalid = index - invalidstart; 1607 1608 qemu_put_be32(f, chunkstart); 1609 qemu_put_be16(f, n_valid); 1610 qemu_put_be16(f, n_invalid); 1611 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1612 HASH_PTE_SIZE_64 * n_valid); 1613 sent += index - chunkstart; 1614 1615 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1616 break; 1617 } 1618 } 1619 1620 if (examined >= htabslots) { 1621 break; 1622 } 1623 1624 if (index >= htabslots) { 1625 assert(index == htabslots); 1626 index = 0; 1627 } 1628 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 1629 1630 if (index >= htabslots) { 1631 assert(index == htabslots); 1632 index = 0; 1633 } 1634 1635 spapr->htab_save_index = index; 1636 1637 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 1638 } 1639 1640 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 1641 #define MAX_KVM_BUF_SIZE 2048 1642 1643 static int htab_save_iterate(QEMUFile *f, void *opaque) 1644 { 1645 sPAPRMachineState *spapr = opaque; 1646 int fd; 1647 int rc = 0; 1648 1649 /* Iteration header */ 1650 qemu_put_be32(f, 0); 1651 1652 if (!spapr->htab) { 1653 assert(kvm_enabled()); 1654 1655 fd = get_htab_fd(spapr); 1656 if (fd < 0) { 1657 return fd; 1658 } 1659 1660 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 1661 if (rc < 0) { 1662 return rc; 1663 } 1664 } else if (spapr->htab_first_pass) { 1665 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 1666 } else { 1667 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 1668 } 1669 1670 /* End marker */ 1671 qemu_put_be32(f, 0); 1672 qemu_put_be16(f, 0); 1673 qemu_put_be16(f, 0); 1674 1675 return rc; 1676 } 1677 1678 static int htab_save_complete(QEMUFile *f, void *opaque) 1679 { 1680 sPAPRMachineState *spapr = opaque; 1681 int fd; 1682 1683 /* Iteration header */ 1684 qemu_put_be32(f, 0); 1685 1686 if (!spapr->htab) { 1687 int rc; 1688 1689 assert(kvm_enabled()); 1690 1691 fd = get_htab_fd(spapr); 1692 if (fd < 0) { 1693 return fd; 1694 } 1695 1696 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 1697 if (rc < 0) { 1698 return rc; 1699 } 1700 } else { 1701 if (spapr->htab_first_pass) { 1702 htab_save_first_pass(f, spapr, -1); 1703 } 1704 htab_save_later_pass(f, spapr, -1); 1705 } 1706 1707 /* End marker */ 1708 qemu_put_be32(f, 0); 1709 qemu_put_be16(f, 0); 1710 qemu_put_be16(f, 0); 1711 1712 return 0; 1713 } 1714 1715 static int htab_load(QEMUFile *f, void *opaque, int version_id) 1716 { 1717 sPAPRMachineState *spapr = opaque; 1718 uint32_t section_hdr; 1719 int fd = -1; 1720 1721 if (version_id < 1 || version_id > 1) { 1722 error_report("htab_load() bad version"); 1723 return -EINVAL; 1724 } 1725 1726 section_hdr = qemu_get_be32(f); 1727 1728 if (section_hdr) { 1729 Error *local_err = NULL; 1730 1731 /* First section gives the htab size */ 1732 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 1733 if (local_err) { 1734 error_report_err(local_err); 1735 return -EINVAL; 1736 } 1737 return 0; 1738 } 1739 1740 if (!spapr->htab) { 1741 assert(kvm_enabled()); 1742 1743 fd = kvmppc_get_htab_fd(true); 1744 if (fd < 0) { 1745 error_report("Unable to open fd to restore KVM hash table: %s", 1746 strerror(errno)); 1747 } 1748 } 1749 1750 while (true) { 1751 uint32_t index; 1752 uint16_t n_valid, n_invalid; 1753 1754 index = qemu_get_be32(f); 1755 n_valid = qemu_get_be16(f); 1756 n_invalid = qemu_get_be16(f); 1757 1758 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 1759 /* End of Stream */ 1760 break; 1761 } 1762 1763 if ((index + n_valid + n_invalid) > 1764 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 1765 /* Bad index in stream */ 1766 error_report( 1767 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 1768 index, n_valid, n_invalid, spapr->htab_shift); 1769 return -EINVAL; 1770 } 1771 1772 if (spapr->htab) { 1773 if (n_valid) { 1774 qemu_get_buffer(f, HPTE(spapr->htab, index), 1775 HASH_PTE_SIZE_64 * n_valid); 1776 } 1777 if (n_invalid) { 1778 memset(HPTE(spapr->htab, index + n_valid), 0, 1779 HASH_PTE_SIZE_64 * n_invalid); 1780 } 1781 } else { 1782 int rc; 1783 1784 assert(fd >= 0); 1785 1786 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 1787 if (rc < 0) { 1788 return rc; 1789 } 1790 } 1791 } 1792 1793 if (!spapr->htab) { 1794 assert(fd >= 0); 1795 close(fd); 1796 } 1797 1798 return 0; 1799 } 1800 1801 static void htab_cleanup(void *opaque) 1802 { 1803 sPAPRMachineState *spapr = opaque; 1804 1805 close_htab_fd(spapr); 1806 } 1807 1808 static SaveVMHandlers savevm_htab_handlers = { 1809 .save_live_setup = htab_save_setup, 1810 .save_live_iterate = htab_save_iterate, 1811 .save_live_complete_precopy = htab_save_complete, 1812 .cleanup = htab_cleanup, 1813 .load_state = htab_load, 1814 }; 1815 1816 static void spapr_boot_set(void *opaque, const char *boot_device, 1817 Error **errp) 1818 { 1819 MachineState *machine = MACHINE(qdev_get_machine()); 1820 machine->boot_order = g_strdup(boot_device); 1821 } 1822 1823 /* 1824 * Reset routine for LMB DR devices. 1825 * 1826 * Unlike PCI DR devices, LMB DR devices explicitly register this reset 1827 * routine. Reset for PCI DR devices will be handled by PHB reset routine 1828 * when it walks all its children devices. LMB devices reset occurs 1829 * as part of spapr_ppc_reset(). 1830 */ 1831 static void spapr_drc_reset(void *opaque) 1832 { 1833 sPAPRDRConnector *drc = opaque; 1834 DeviceState *d = DEVICE(drc); 1835 1836 if (d) { 1837 device_reset(d); 1838 } 1839 } 1840 1841 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 1842 { 1843 MachineState *machine = MACHINE(spapr); 1844 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 1845 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 1846 int i; 1847 1848 for (i = 0; i < nr_lmbs; i++) { 1849 sPAPRDRConnector *drc; 1850 uint64_t addr; 1851 1852 addr = i * lmb_size + spapr->hotplug_memory.base; 1853 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB, 1854 addr/lmb_size); 1855 qemu_register_reset(spapr_drc_reset, drc); 1856 } 1857 } 1858 1859 /* 1860 * If RAM size, maxmem size and individual node mem sizes aren't aligned 1861 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 1862 * since we can't support such unaligned sizes with DRCONF_MEMORY. 1863 */ 1864 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 1865 { 1866 int i; 1867 1868 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1869 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 1870 " is not aligned to %llu MiB", 1871 machine->ram_size, 1872 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1873 return; 1874 } 1875 1876 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1877 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 1878 " is not aligned to %llu MiB", 1879 machine->ram_size, 1880 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1881 return; 1882 } 1883 1884 for (i = 0; i < nb_numa_nodes; i++) { 1885 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 1886 error_setg(errp, 1887 "Node %d memory size 0x%" PRIx64 1888 " is not aligned to %llu MiB", 1889 i, numa_info[i].node_mem, 1890 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1891 return; 1892 } 1893 } 1894 } 1895 1896 /* find cpu slot in machine->possible_cpus by core_id */ 1897 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1898 { 1899 int index = id / smp_threads; 1900 1901 if (index >= ms->possible_cpus->len) { 1902 return NULL; 1903 } 1904 if (idx) { 1905 *idx = index; 1906 } 1907 return &ms->possible_cpus->cpus[index]; 1908 } 1909 1910 static void spapr_init_cpus(sPAPRMachineState *spapr) 1911 { 1912 MachineState *machine = MACHINE(spapr); 1913 MachineClass *mc = MACHINE_GET_CLASS(machine); 1914 char *type = spapr_get_cpu_core_type(machine->cpu_model); 1915 int smt = kvmppc_smt_threads(); 1916 const CPUArchIdList *possible_cpus; 1917 int boot_cores_nr = smp_cpus / smp_threads; 1918 int i; 1919 1920 if (!type) { 1921 error_report("Unable to find sPAPR CPU Core definition"); 1922 exit(1); 1923 } 1924 1925 possible_cpus = mc->possible_cpu_arch_ids(machine); 1926 if (mc->has_hotpluggable_cpus) { 1927 if (smp_cpus % smp_threads) { 1928 error_report("smp_cpus (%u) must be multiple of threads (%u)", 1929 smp_cpus, smp_threads); 1930 exit(1); 1931 } 1932 if (max_cpus % smp_threads) { 1933 error_report("max_cpus (%u) must be multiple of threads (%u)", 1934 max_cpus, smp_threads); 1935 exit(1); 1936 } 1937 } else { 1938 if (max_cpus != smp_cpus) { 1939 error_report("This machine version does not support CPU hotplug"); 1940 exit(1); 1941 } 1942 boot_cores_nr = possible_cpus->len; 1943 } 1944 1945 for (i = 0; i < possible_cpus->len; i++) { 1946 int core_id = i * smp_threads; 1947 1948 if (mc->has_hotpluggable_cpus) { 1949 sPAPRDRConnector *drc = 1950 spapr_dr_connector_new(OBJECT(spapr), 1951 SPAPR_DR_CONNECTOR_TYPE_CPU, 1952 (core_id / smp_threads) * smt); 1953 1954 qemu_register_reset(spapr_drc_reset, drc); 1955 } 1956 1957 if (i < boot_cores_nr) { 1958 Object *core = object_new(type); 1959 int nr_threads = smp_threads; 1960 1961 /* Handle the partially filled core for older machine types */ 1962 if ((i + 1) * smp_threads >= smp_cpus) { 1963 nr_threads = smp_cpus - i * smp_threads; 1964 } 1965 1966 object_property_set_int(core, nr_threads, "nr-threads", 1967 &error_fatal); 1968 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 1969 &error_fatal); 1970 object_property_set_bool(core, true, "realized", &error_fatal); 1971 } 1972 } 1973 g_free(type); 1974 } 1975 1976 /* pSeries LPAR / sPAPR hardware init */ 1977 static void ppc_spapr_init(MachineState *machine) 1978 { 1979 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1980 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1981 const char *kernel_filename = machine->kernel_filename; 1982 const char *initrd_filename = machine->initrd_filename; 1983 PCIHostState *phb; 1984 int i; 1985 MemoryRegion *sysmem = get_system_memory(); 1986 MemoryRegion *ram = g_new(MemoryRegion, 1); 1987 MemoryRegion *rma_region; 1988 void *rma = NULL; 1989 hwaddr rma_alloc_size; 1990 hwaddr node0_size = spapr_node0_size(); 1991 long load_limit, fw_size; 1992 char *filename; 1993 int smt = kvmppc_smt_threads(); 1994 1995 msi_nonbroken = true; 1996 1997 QLIST_INIT(&spapr->phbs); 1998 1999 /* Allocate RMA if necessary */ 2000 rma_alloc_size = kvmppc_alloc_rma(&rma); 2001 2002 if (rma_alloc_size == -1) { 2003 error_report("Unable to create RMA"); 2004 exit(1); 2005 } 2006 2007 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 2008 spapr->rma_size = rma_alloc_size; 2009 } else { 2010 spapr->rma_size = node0_size; 2011 2012 /* With KVM, we don't actually know whether KVM supports an 2013 * unbounded RMA (PR KVM) or is limited by the hash table size 2014 * (HV KVM using VRMA), so we always assume the latter 2015 * 2016 * In that case, we also limit the initial allocations for RTAS 2017 * etc... to 256M since we have no way to know what the VRMA size 2018 * is going to be as it depends on the size of the hash table 2019 * isn't determined yet. 2020 */ 2021 if (kvm_enabled()) { 2022 spapr->vrma_adjust = 1; 2023 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2024 } 2025 2026 /* Actually we don't support unbounded RMA anymore since we 2027 * added proper emulation of HV mode. The max we can get is 2028 * 16G which also happens to be what we configure for PAPR 2029 * mode so make sure we don't do anything bigger than that 2030 */ 2031 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2032 } 2033 2034 if (spapr->rma_size > node0_size) { 2035 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2036 spapr->rma_size); 2037 exit(1); 2038 } 2039 2040 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2041 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2042 2043 /* Set up Interrupt Controller before we create the VCPUs */ 2044 xics_system_init(machine, DIV_ROUND_UP(max_cpus * smt, smp_threads), 2045 XICS_IRQS_SPAPR, &error_fatal); 2046 2047 /* Set up containers for ibm,client-set-architecture negotiated options */ 2048 spapr->ov5 = spapr_ovec_new(); 2049 spapr->ov5_cas = spapr_ovec_new(); 2050 2051 if (smc->dr_lmb_enabled) { 2052 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2053 spapr_validate_node_memory(machine, &error_fatal); 2054 } 2055 2056 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2057 2058 /* advertise support for dedicated HP event source to guests */ 2059 if (spapr->use_hotplug_event_source) { 2060 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2061 } 2062 2063 /* init CPUs */ 2064 if (machine->cpu_model == NULL) { 2065 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu; 2066 } 2067 2068 ppc_cpu_parse_features(machine->cpu_model); 2069 2070 spapr_init_cpus(spapr); 2071 2072 if (kvm_enabled()) { 2073 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2074 kvmppc_enable_logical_ci_hcalls(); 2075 kvmppc_enable_set_mode_hcall(); 2076 2077 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2078 kvmppc_enable_clear_ref_mod_hcalls(); 2079 } 2080 2081 /* allocate RAM */ 2082 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2083 machine->ram_size); 2084 memory_region_add_subregion(sysmem, 0, ram); 2085 2086 if (rma_alloc_size && rma) { 2087 rma_region = g_new(MemoryRegion, 1); 2088 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", 2089 rma_alloc_size, rma); 2090 vmstate_register_ram_global(rma_region); 2091 memory_region_add_subregion(sysmem, 0, rma_region); 2092 } 2093 2094 /* initialize hotplug memory address space */ 2095 if (machine->ram_size < machine->maxram_size) { 2096 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; 2097 /* 2098 * Limit the number of hotpluggable memory slots to half the number 2099 * slots that KVM supports, leaving the other half for PCI and other 2100 * devices. However ensure that number of slots doesn't drop below 32. 2101 */ 2102 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2103 SPAPR_MAX_RAM_SLOTS; 2104 2105 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2106 max_memslots = SPAPR_MAX_RAM_SLOTS; 2107 } 2108 if (machine->ram_slots > max_memslots) { 2109 error_report("Specified number of memory slots %" 2110 PRIu64" exceeds max supported %d", 2111 machine->ram_slots, max_memslots); 2112 exit(1); 2113 } 2114 2115 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, 2116 SPAPR_HOTPLUG_MEM_ALIGN); 2117 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), 2118 "hotplug-memory", hotplug_mem_size); 2119 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, 2120 &spapr->hotplug_memory.mr); 2121 } 2122 2123 if (smc->dr_lmb_enabled) { 2124 spapr_create_lmb_dr_connectors(spapr); 2125 } 2126 2127 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2128 if (!filename) { 2129 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2130 exit(1); 2131 } 2132 spapr->rtas_size = get_image_size(filename); 2133 if (spapr->rtas_size < 0) { 2134 error_report("Could not get size of LPAR rtas '%s'", filename); 2135 exit(1); 2136 } 2137 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2138 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2139 error_report("Could not load LPAR rtas '%s'", filename); 2140 exit(1); 2141 } 2142 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2143 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2144 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2145 exit(1); 2146 } 2147 g_free(filename); 2148 2149 /* Set up RTAS event infrastructure */ 2150 spapr_events_init(spapr); 2151 2152 /* Set up the RTC RTAS interfaces */ 2153 spapr_rtc_create(spapr); 2154 2155 /* Set up VIO bus */ 2156 spapr->vio_bus = spapr_vio_bus_init(); 2157 2158 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 2159 if (serial_hds[i]) { 2160 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 2161 } 2162 } 2163 2164 /* We always have at least the nvram device on VIO */ 2165 spapr_create_nvram(spapr); 2166 2167 /* Set up PCI */ 2168 spapr_pci_rtas_init(); 2169 2170 phb = spapr_create_phb(spapr, 0); 2171 2172 for (i = 0; i < nb_nics; i++) { 2173 NICInfo *nd = &nd_table[i]; 2174 2175 if (!nd->model) { 2176 nd->model = g_strdup("ibmveth"); 2177 } 2178 2179 if (strcmp(nd->model, "ibmveth") == 0) { 2180 spapr_vlan_create(spapr->vio_bus, nd); 2181 } else { 2182 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2183 } 2184 } 2185 2186 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2187 spapr_vscsi_create(spapr->vio_bus); 2188 } 2189 2190 /* Graphics */ 2191 if (spapr_vga_init(phb->bus, &error_fatal)) { 2192 spapr->has_graphics = true; 2193 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2194 } 2195 2196 if (machine->usb) { 2197 if (smc->use_ohci_by_default) { 2198 pci_create_simple(phb->bus, -1, "pci-ohci"); 2199 } else { 2200 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2201 } 2202 2203 if (spapr->has_graphics) { 2204 USBBus *usb_bus = usb_bus_find(-1); 2205 2206 usb_create_simple(usb_bus, "usb-kbd"); 2207 usb_create_simple(usb_bus, "usb-mouse"); 2208 } 2209 } 2210 2211 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 2212 error_report( 2213 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2214 MIN_RMA_SLOF); 2215 exit(1); 2216 } 2217 2218 if (kernel_filename) { 2219 uint64_t lowaddr = 0; 2220 2221 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2222 NULL, NULL, &lowaddr, NULL, 1, 2223 PPC_ELF_MACHINE, 0, 0); 2224 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2225 spapr->kernel_size = load_elf(kernel_filename, 2226 translate_kernel_address, NULL, NULL, 2227 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2228 0, 0); 2229 spapr->kernel_le = spapr->kernel_size > 0; 2230 } 2231 if (spapr->kernel_size < 0) { 2232 error_report("error loading %s: %s", kernel_filename, 2233 load_elf_strerror(spapr->kernel_size)); 2234 exit(1); 2235 } 2236 2237 /* load initrd */ 2238 if (initrd_filename) { 2239 /* Try to locate the initrd in the gap between the kernel 2240 * and the firmware. Add a bit of space just in case 2241 */ 2242 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2243 + 0x1ffff) & ~0xffff; 2244 spapr->initrd_size = load_image_targphys(initrd_filename, 2245 spapr->initrd_base, 2246 load_limit 2247 - spapr->initrd_base); 2248 if (spapr->initrd_size < 0) { 2249 error_report("could not load initial ram disk '%s'", 2250 initrd_filename); 2251 exit(1); 2252 } 2253 } 2254 } 2255 2256 if (bios_name == NULL) { 2257 bios_name = FW_FILE_NAME; 2258 } 2259 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2260 if (!filename) { 2261 error_report("Could not find LPAR firmware '%s'", bios_name); 2262 exit(1); 2263 } 2264 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2265 if (fw_size <= 0) { 2266 error_report("Could not load LPAR firmware '%s'", filename); 2267 exit(1); 2268 } 2269 g_free(filename); 2270 2271 /* FIXME: Should register things through the MachineState's qdev 2272 * interface, this is a legacy from the sPAPREnvironment structure 2273 * which predated MachineState but had a similar function */ 2274 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2275 register_savevm_live(NULL, "spapr/htab", -1, 1, 2276 &savevm_htab_handlers, spapr); 2277 2278 /* used by RTAS */ 2279 QTAILQ_INIT(&spapr->ccs_list); 2280 qemu_register_reset(spapr_ccs_reset_hook, spapr); 2281 2282 qemu_register_boot_set(spapr_boot_set, spapr); 2283 2284 /* to stop and start vmclock */ 2285 if (kvm_enabled()) { 2286 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2287 &spapr->tb); 2288 } 2289 } 2290 2291 static int spapr_kvm_type(const char *vm_type) 2292 { 2293 if (!vm_type) { 2294 return 0; 2295 } 2296 2297 if (!strcmp(vm_type, "HV")) { 2298 return 1; 2299 } 2300 2301 if (!strcmp(vm_type, "PR")) { 2302 return 2; 2303 } 2304 2305 error_report("Unknown kvm-type specified '%s'", vm_type); 2306 exit(1); 2307 } 2308 2309 /* 2310 * Implementation of an interface to adjust firmware path 2311 * for the bootindex property handling. 2312 */ 2313 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2314 DeviceState *dev) 2315 { 2316 #define CAST(type, obj, name) \ 2317 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2318 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2319 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2320 2321 if (d) { 2322 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2323 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2324 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2325 2326 if (spapr) { 2327 /* 2328 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2329 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2330 * in the top 16 bits of the 64-bit LUN 2331 */ 2332 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2333 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2334 (uint64_t)id << 48); 2335 } else if (virtio) { 2336 /* 2337 * We use SRP luns of the form 01000000 | (target << 8) | lun 2338 * in the top 32 bits of the 64-bit LUN 2339 * Note: the quote above is from SLOF and it is wrong, 2340 * the actual binding is: 2341 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2342 */ 2343 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2344 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2345 (uint64_t)id << 32); 2346 } else if (usb) { 2347 /* 2348 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2349 * in the top 32 bits of the 64-bit LUN 2350 */ 2351 unsigned usb_port = atoi(usb->port->path); 2352 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2353 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2354 (uint64_t)id << 32); 2355 } 2356 } 2357 2358 /* 2359 * SLOF probes the USB devices, and if it recognizes that the device is a 2360 * storage device, it changes its name to "storage" instead of "usb-host", 2361 * and additionally adds a child node for the SCSI LUN, so the correct 2362 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2363 */ 2364 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2365 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2366 if (usb_host_dev_is_scsi_storage(usbdev)) { 2367 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2368 } 2369 } 2370 2371 if (phb) { 2372 /* Replace "pci" with "pci@800000020000000" */ 2373 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2374 } 2375 2376 return NULL; 2377 } 2378 2379 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2380 { 2381 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2382 2383 return g_strdup(spapr->kvm_type); 2384 } 2385 2386 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2387 { 2388 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2389 2390 g_free(spapr->kvm_type); 2391 spapr->kvm_type = g_strdup(value); 2392 } 2393 2394 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2395 { 2396 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2397 2398 return spapr->use_hotplug_event_source; 2399 } 2400 2401 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2402 Error **errp) 2403 { 2404 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2405 2406 spapr->use_hotplug_event_source = value; 2407 } 2408 2409 static void spapr_machine_initfn(Object *obj) 2410 { 2411 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2412 2413 spapr->htab_fd = -1; 2414 spapr->use_hotplug_event_source = true; 2415 object_property_add_str(obj, "kvm-type", 2416 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 2417 object_property_set_description(obj, "kvm-type", 2418 "Specifies the KVM virtualization mode (HV, PR)", 2419 NULL); 2420 object_property_add_bool(obj, "modern-hotplug-events", 2421 spapr_get_modern_hotplug_events, 2422 spapr_set_modern_hotplug_events, 2423 NULL); 2424 object_property_set_description(obj, "modern-hotplug-events", 2425 "Use dedicated hotplug event mechanism in" 2426 " place of standard EPOW events when possible" 2427 " (required for memory hot-unplug support)", 2428 NULL); 2429 } 2430 2431 static void spapr_machine_finalizefn(Object *obj) 2432 { 2433 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2434 2435 g_free(spapr->kvm_type); 2436 } 2437 2438 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 2439 { 2440 cpu_synchronize_state(cs); 2441 ppc_cpu_do_system_reset(cs); 2442 } 2443 2444 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 2445 { 2446 CPUState *cs; 2447 2448 CPU_FOREACH(cs) { 2449 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 2450 } 2451 } 2452 2453 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2454 uint32_t node, bool dedicated_hp_event_source, 2455 Error **errp) 2456 { 2457 sPAPRDRConnector *drc; 2458 sPAPRDRConnectorClass *drck; 2459 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 2460 int i, fdt_offset, fdt_size; 2461 void *fdt; 2462 uint64_t addr = addr_start; 2463 2464 for (i = 0; i < nr_lmbs; i++) { 2465 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2466 addr/SPAPR_MEMORY_BLOCK_SIZE); 2467 g_assert(drc); 2468 2469 fdt = create_device_tree(&fdt_size); 2470 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 2471 SPAPR_MEMORY_BLOCK_SIZE); 2472 2473 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2474 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp); 2475 addr += SPAPR_MEMORY_BLOCK_SIZE; 2476 if (!dev->hotplugged) { 2477 /* guests expect coldplugged LMBs to be pre-allocated */ 2478 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); 2479 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); 2480 } 2481 } 2482 /* send hotplug notification to the 2483 * guest only in case of hotplugged memory 2484 */ 2485 if (dev->hotplugged) { 2486 if (dedicated_hp_event_source) { 2487 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2488 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2489 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2490 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2491 nr_lmbs, 2492 drck->get_index(drc)); 2493 } else { 2494 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 2495 nr_lmbs); 2496 } 2497 } 2498 } 2499 2500 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2501 uint32_t node, Error **errp) 2502 { 2503 Error *local_err = NULL; 2504 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2505 PCDIMMDevice *dimm = PC_DIMM(dev); 2506 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2507 MemoryRegion *mr = ddc->get_memory_region(dimm); 2508 uint64_t align = memory_region_get_alignment(mr); 2509 uint64_t size = memory_region_size(mr); 2510 uint64_t addr; 2511 char *mem_dev; 2512 2513 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 2514 error_setg(&local_err, "Hotplugged memory size must be a multiple of " 2515 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE); 2516 goto out; 2517 } 2518 2519 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); 2520 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { 2521 error_setg(&local_err, "Memory backend has bad page size. " 2522 "Use 'memory-backend-file' with correct mem-path."); 2523 goto out; 2524 } 2525 2526 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); 2527 if (local_err) { 2528 goto out; 2529 } 2530 2531 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); 2532 if (local_err) { 2533 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2534 goto out; 2535 } 2536 2537 spapr_add_lmbs(dev, addr, size, node, 2538 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 2539 &error_abort); 2540 2541 out: 2542 error_propagate(errp, local_err); 2543 } 2544 2545 typedef struct sPAPRDIMMState { 2546 uint32_t nr_lmbs; 2547 } sPAPRDIMMState; 2548 2549 static void spapr_lmb_release(DeviceState *dev, void *opaque) 2550 { 2551 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque; 2552 HotplugHandler *hotplug_ctrl; 2553 2554 if (--ds->nr_lmbs) { 2555 return; 2556 } 2557 2558 g_free(ds); 2559 2560 /* 2561 * Now that all the LMBs have been removed by the guest, call the 2562 * pc-dimm unplug handler to cleanup up the pc-dimm device. 2563 */ 2564 hotplug_ctrl = qdev_get_hotplug_handler(dev); 2565 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 2566 } 2567 2568 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2569 Error **errp) 2570 { 2571 sPAPRDRConnector *drc; 2572 sPAPRDRConnectorClass *drck; 2573 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 2574 int i; 2575 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState)); 2576 uint64_t addr = addr_start; 2577 2578 ds->nr_lmbs = nr_lmbs; 2579 for (i = 0; i < nr_lmbs; i++) { 2580 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2581 addr / SPAPR_MEMORY_BLOCK_SIZE); 2582 g_assert(drc); 2583 2584 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2585 drck->detach(drc, dev, spapr_lmb_release, ds, errp); 2586 addr += SPAPR_MEMORY_BLOCK_SIZE; 2587 } 2588 2589 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2590 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2591 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2592 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2593 nr_lmbs, 2594 drck->get_index(drc)); 2595 } 2596 2597 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, 2598 Error **errp) 2599 { 2600 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2601 PCDIMMDevice *dimm = PC_DIMM(dev); 2602 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2603 MemoryRegion *mr = ddc->get_memory_region(dimm); 2604 2605 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2606 object_unparent(OBJECT(dev)); 2607 } 2608 2609 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 2610 DeviceState *dev, Error **errp) 2611 { 2612 Error *local_err = NULL; 2613 PCDIMMDevice *dimm = PC_DIMM(dev); 2614 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2615 MemoryRegion *mr = ddc->get_memory_region(dimm); 2616 uint64_t size = memory_region_size(mr); 2617 uint64_t addr; 2618 2619 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); 2620 if (local_err) { 2621 goto out; 2622 } 2623 2624 spapr_del_lmbs(dev, addr, size, &error_abort); 2625 out: 2626 error_propagate(errp, local_err); 2627 } 2628 2629 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 2630 sPAPRMachineState *spapr) 2631 { 2632 PowerPCCPU *cpu = POWERPC_CPU(cs); 2633 DeviceClass *dc = DEVICE_GET_CLASS(cs); 2634 int id = ppc_get_vcpu_dt_id(cpu); 2635 void *fdt; 2636 int offset, fdt_size; 2637 char *nodename; 2638 2639 fdt = create_device_tree(&fdt_size); 2640 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 2641 offset = fdt_add_subnode(fdt, 0, nodename); 2642 2643 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 2644 g_free(nodename); 2645 2646 *fdt_offset = offset; 2647 return fdt; 2648 } 2649 2650 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, 2651 Error **errp) 2652 { 2653 MachineState *ms = MACHINE(qdev_get_machine()); 2654 CPUCore *cc = CPU_CORE(dev); 2655 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 2656 2657 core_slot->cpu = NULL; 2658 object_unparent(OBJECT(dev)); 2659 } 2660 2661 static void spapr_core_release(DeviceState *dev, void *opaque) 2662 { 2663 HotplugHandler *hotplug_ctrl; 2664 2665 hotplug_ctrl = qdev_get_hotplug_handler(dev); 2666 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 2667 } 2668 2669 static 2670 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 2671 Error **errp) 2672 { 2673 int index; 2674 sPAPRDRConnector *drc; 2675 sPAPRDRConnectorClass *drck; 2676 Error *local_err = NULL; 2677 CPUCore *cc = CPU_CORE(dev); 2678 int smt = kvmppc_smt_threads(); 2679 2680 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 2681 error_setg(errp, "Unable to find CPU core with core-id: %d", 2682 cc->core_id); 2683 return; 2684 } 2685 if (index == 0) { 2686 error_setg(errp, "Boot CPU core may not be unplugged"); 2687 return; 2688 } 2689 2690 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt); 2691 g_assert(drc); 2692 2693 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2694 drck->detach(drc, dev, spapr_core_release, NULL, &local_err); 2695 if (local_err) { 2696 error_propagate(errp, local_err); 2697 return; 2698 } 2699 2700 spapr_hotplug_req_remove_by_index(drc); 2701 } 2702 2703 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2704 Error **errp) 2705 { 2706 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 2707 MachineClass *mc = MACHINE_GET_CLASS(spapr); 2708 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 2709 CPUCore *cc = CPU_CORE(dev); 2710 CPUState *cs = CPU(core->threads); 2711 sPAPRDRConnector *drc; 2712 Error *local_err = NULL; 2713 void *fdt = NULL; 2714 int fdt_offset = 0; 2715 int smt = kvmppc_smt_threads(); 2716 CPUArchId *core_slot; 2717 int index; 2718 2719 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 2720 if (!core_slot) { 2721 error_setg(errp, "Unable to find CPU core with core-id: %d", 2722 cc->core_id); 2723 return; 2724 } 2725 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt); 2726 2727 g_assert(drc || !mc->has_hotpluggable_cpus); 2728 2729 /* 2730 * Setup CPU DT entries only for hotplugged CPUs. For boot time or 2731 * coldplugged CPUs DT entries are setup in spapr_build_fdt(). 2732 */ 2733 if (dev->hotplugged) { 2734 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 2735 } 2736 2737 if (drc) { 2738 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2739 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err); 2740 if (local_err) { 2741 g_free(fdt); 2742 error_propagate(errp, local_err); 2743 return; 2744 } 2745 } 2746 2747 if (dev->hotplugged) { 2748 /* 2749 * Send hotplug notification interrupt to the guest only in case 2750 * of hotplugged CPUs. 2751 */ 2752 spapr_hotplug_req_add_by_index(drc); 2753 } else { 2754 /* 2755 * Set the right DRC states for cold plugged CPU. 2756 */ 2757 if (drc) { 2758 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2759 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); 2760 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); 2761 } 2762 } 2763 core_slot->cpu = OBJECT(dev); 2764 } 2765 2766 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2767 Error **errp) 2768 { 2769 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 2770 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 2771 Error *local_err = NULL; 2772 CPUCore *cc = CPU_CORE(dev); 2773 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model); 2774 const char *type = object_get_typename(OBJECT(dev)); 2775 CPUArchId *core_slot; 2776 int index; 2777 2778 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 2779 error_setg(&local_err, "CPU hotplug not supported for this machine"); 2780 goto out; 2781 } 2782 2783 if (strcmp(base_core_type, type)) { 2784 error_setg(&local_err, "CPU core type should be %s", base_core_type); 2785 goto out; 2786 } 2787 2788 if (cc->core_id % smp_threads) { 2789 error_setg(&local_err, "invalid core id %d", cc->core_id); 2790 goto out; 2791 } 2792 2793 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 2794 if (!core_slot) { 2795 error_setg(&local_err, "core id %d out of range", cc->core_id); 2796 goto out; 2797 } 2798 2799 if (core_slot->cpu) { 2800 error_setg(&local_err, "core %d already populated", cc->core_id); 2801 goto out; 2802 } 2803 2804 out: 2805 g_free(base_core_type); 2806 error_propagate(errp, local_err); 2807 } 2808 2809 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 2810 DeviceState *dev, Error **errp) 2811 { 2812 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); 2813 2814 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2815 int node; 2816 2817 if (!smc->dr_lmb_enabled) { 2818 error_setg(errp, "Memory hotplug not supported for this machine"); 2819 return; 2820 } 2821 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 2822 if (*errp) { 2823 return; 2824 } 2825 if (node < 0 || node >= MAX_NODES) { 2826 error_setg(errp, "Invaild node %d", node); 2827 return; 2828 } 2829 2830 /* 2831 * Currently PowerPC kernel doesn't allow hot-adding memory to 2832 * memory-less node, but instead will silently add the memory 2833 * to the first node that has some memory. This causes two 2834 * unexpected behaviours for the user. 2835 * 2836 * - Memory gets hotplugged to a different node than what the user 2837 * specified. 2838 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs 2839 * to memory-less node, a reboot will set things accordingly 2840 * and the previously hotplugged memory now ends in the right node. 2841 * This appears as if some memory moved from one node to another. 2842 * 2843 * So until kernel starts supporting memory hotplug to memory-less 2844 * nodes, just prevent such attempts upfront in QEMU. 2845 */ 2846 if (nb_numa_nodes && !numa_info[node].node_mem) { 2847 error_setg(errp, "Can't hotplug memory to memory-less node %d", 2848 node); 2849 return; 2850 } 2851 2852 spapr_memory_plug(hotplug_dev, dev, node, errp); 2853 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2854 spapr_core_plug(hotplug_dev, dev, errp); 2855 } 2856 } 2857 2858 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 2859 DeviceState *dev, Error **errp) 2860 { 2861 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); 2862 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 2863 2864 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2865 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 2866 spapr_memory_unplug(hotplug_dev, dev, errp); 2867 } else { 2868 error_setg(errp, "Memory hot unplug not supported for this guest"); 2869 } 2870 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2871 if (!mc->has_hotpluggable_cpus) { 2872 error_setg(errp, "CPU hot unplug not supported on this machine"); 2873 return; 2874 } 2875 spapr_core_unplug(hotplug_dev, dev, errp); 2876 } 2877 } 2878 2879 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 2880 DeviceState *dev, Error **errp) 2881 { 2882 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); 2883 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 2884 2885 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2886 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 2887 spapr_memory_unplug_request(hotplug_dev, dev, errp); 2888 } else { 2889 /* NOTE: this means there is a window after guest reset, prior to 2890 * CAS negotiation, where unplug requests will fail due to the 2891 * capability not being detected yet. This is a bit different than 2892 * the case with PCI unplug, where the events will be queued and 2893 * eventually handled by the guest after boot 2894 */ 2895 error_setg(errp, "Memory hot unplug not supported for this guest"); 2896 } 2897 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2898 if (!mc->has_hotpluggable_cpus) { 2899 error_setg(errp, "CPU hot unplug not supported on this machine"); 2900 return; 2901 } 2902 spapr_core_unplug_request(hotplug_dev, dev, errp); 2903 } 2904 } 2905 2906 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 2907 DeviceState *dev, Error **errp) 2908 { 2909 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2910 spapr_core_pre_plug(hotplug_dev, dev, errp); 2911 } 2912 } 2913 2914 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 2915 DeviceState *dev) 2916 { 2917 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2918 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2919 return HOTPLUG_HANDLER(machine); 2920 } 2921 return NULL; 2922 } 2923 2924 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index) 2925 { 2926 /* Allocate to NUMA nodes on a "socket" basis (not that concept of 2927 * socket means much for the paravirtualized PAPR platform) */ 2928 return cpu_index / smp_threads / smp_cores; 2929 } 2930 2931 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 2932 { 2933 int i; 2934 int spapr_max_cores = max_cpus / smp_threads; 2935 MachineClass *mc = MACHINE_GET_CLASS(machine); 2936 2937 if (!mc->has_hotpluggable_cpus) { 2938 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 2939 } 2940 if (machine->possible_cpus) { 2941 assert(machine->possible_cpus->len == spapr_max_cores); 2942 return machine->possible_cpus; 2943 } 2944 2945 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2946 sizeof(CPUArchId) * spapr_max_cores); 2947 machine->possible_cpus->len = spapr_max_cores; 2948 for (i = 0; i < machine->possible_cpus->len; i++) { 2949 int core_id = i * smp_threads; 2950 2951 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 2952 machine->possible_cpus->cpus[i].arch_id = core_id; 2953 machine->possible_cpus->cpus[i].props.has_core_id = true; 2954 machine->possible_cpus->cpus[i].props.core_id = core_id; 2955 /* TODO: add 'has_node/node' here to describe 2956 to which node core belongs */ 2957 } 2958 return machine->possible_cpus; 2959 } 2960 2961 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 2962 uint64_t *buid, hwaddr *pio, 2963 hwaddr *mmio32, hwaddr *mmio64, 2964 unsigned n_dma, uint32_t *liobns, Error **errp) 2965 { 2966 /* 2967 * New-style PHB window placement. 2968 * 2969 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 2970 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 2971 * windows. 2972 * 2973 * Some guest kernels can't work with MMIO windows above 1<<46 2974 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 2975 * 2976 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 2977 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 2978 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 2979 * 1TiB 64-bit MMIO windows for each PHB. 2980 */ 2981 const uint64_t base_buid = 0x800000020000000ULL; 2982 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 2983 SPAPR_PCI_MEM64_WIN_SIZE - 1) 2984 int i; 2985 2986 /* Sanity check natural alignments */ 2987 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 2988 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 2989 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 2990 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 2991 /* Sanity check bounds */ 2992 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 2993 SPAPR_PCI_MEM32_WIN_SIZE); 2994 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 2995 SPAPR_PCI_MEM64_WIN_SIZE); 2996 2997 if (index >= SPAPR_MAX_PHBS) { 2998 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 2999 SPAPR_MAX_PHBS - 1); 3000 return; 3001 } 3002 3003 *buid = base_buid + index; 3004 for (i = 0; i < n_dma; ++i) { 3005 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3006 } 3007 3008 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3009 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3010 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3011 } 3012 3013 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3014 { 3015 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3016 3017 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3018 } 3019 3020 static void spapr_ics_resend(XICSFabric *dev) 3021 { 3022 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3023 3024 ics_resend(spapr->ics); 3025 } 3026 3027 static ICPState *spapr_icp_get(XICSFabric *xi, int server) 3028 { 3029 sPAPRMachineState *spapr = SPAPR_MACHINE(xi); 3030 3031 return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL; 3032 } 3033 3034 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3035 Monitor *mon) 3036 { 3037 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3038 int i; 3039 3040 for (i = 0; i < spapr->nr_servers; i++) { 3041 icp_pic_print_info(&spapr->icps[i], mon); 3042 } 3043 3044 ics_pic_print_info(spapr->ics, mon); 3045 } 3046 3047 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3048 { 3049 MachineClass *mc = MACHINE_CLASS(oc); 3050 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3051 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3052 NMIClass *nc = NMI_CLASS(oc); 3053 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3054 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3055 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3056 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3057 3058 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3059 3060 /* 3061 * We set up the default / latest behaviour here. The class_init 3062 * functions for the specific versioned machine types can override 3063 * these details for backwards compatibility 3064 */ 3065 mc->init = ppc_spapr_init; 3066 mc->reset = ppc_spapr_reset; 3067 mc->block_default_type = IF_SCSI; 3068 mc->max_cpus = 1024; 3069 mc->no_parallel = 1; 3070 mc->default_boot_order = ""; 3071 mc->default_ram_size = 512 * M_BYTE; 3072 mc->kvm_type = spapr_kvm_type; 3073 mc->has_dynamic_sysbus = true; 3074 mc->pci_allow_0_address = true; 3075 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3076 hc->pre_plug = spapr_machine_device_pre_plug; 3077 hc->plug = spapr_machine_device_plug; 3078 hc->unplug = spapr_machine_device_unplug; 3079 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id; 3080 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3081 hc->unplug_request = spapr_machine_device_unplug_request; 3082 3083 smc->dr_lmb_enabled = true; 3084 smc->tcg_default_cpu = "POWER8"; 3085 mc->has_hotpluggable_cpus = true; 3086 fwc->get_dev_path = spapr_get_fw_dev_path; 3087 nc->nmi_monitor_handler = spapr_nmi; 3088 smc->phb_placement = spapr_phb_placement; 3089 vhc->hypercall = emulate_spapr_hypercall; 3090 vhc->hpt_mask = spapr_hpt_mask; 3091 vhc->map_hptes = spapr_map_hptes; 3092 vhc->unmap_hptes = spapr_unmap_hptes; 3093 vhc->store_hpte = spapr_store_hpte; 3094 vhc->get_patbe = spapr_get_patbe; 3095 xic->ics_get = spapr_ics_get; 3096 xic->ics_resend = spapr_ics_resend; 3097 xic->icp_get = spapr_icp_get; 3098 ispc->print_info = spapr_pic_print_info; 3099 } 3100 3101 static const TypeInfo spapr_machine_info = { 3102 .name = TYPE_SPAPR_MACHINE, 3103 .parent = TYPE_MACHINE, 3104 .abstract = true, 3105 .instance_size = sizeof(sPAPRMachineState), 3106 .instance_init = spapr_machine_initfn, 3107 .instance_finalize = spapr_machine_finalizefn, 3108 .class_size = sizeof(sPAPRMachineClass), 3109 .class_init = spapr_machine_class_init, 3110 .interfaces = (InterfaceInfo[]) { 3111 { TYPE_FW_PATH_PROVIDER }, 3112 { TYPE_NMI }, 3113 { TYPE_HOTPLUG_HANDLER }, 3114 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 3115 { TYPE_XICS_FABRIC }, 3116 { TYPE_INTERRUPT_STATS_PROVIDER }, 3117 { } 3118 }, 3119 }; 3120 3121 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 3122 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 3123 void *data) \ 3124 { \ 3125 MachineClass *mc = MACHINE_CLASS(oc); \ 3126 spapr_machine_##suffix##_class_options(mc); \ 3127 if (latest) { \ 3128 mc->alias = "pseries"; \ 3129 mc->is_default = 1; \ 3130 } \ 3131 } \ 3132 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 3133 { \ 3134 MachineState *machine = MACHINE(obj); \ 3135 spapr_machine_##suffix##_instance_options(machine); \ 3136 } \ 3137 static const TypeInfo spapr_machine_##suffix##_info = { \ 3138 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 3139 .parent = TYPE_SPAPR_MACHINE, \ 3140 .class_init = spapr_machine_##suffix##_class_init, \ 3141 .instance_init = spapr_machine_##suffix##_instance_init, \ 3142 }; \ 3143 static void spapr_machine_register_##suffix(void) \ 3144 { \ 3145 type_register(&spapr_machine_##suffix##_info); \ 3146 } \ 3147 type_init(spapr_machine_register_##suffix) 3148 3149 /* 3150 * pseries-2.9 3151 */ 3152 static void spapr_machine_2_9_instance_options(MachineState *machine) 3153 { 3154 } 3155 3156 static void spapr_machine_2_9_class_options(MachineClass *mc) 3157 { 3158 /* Defaults for the latest behaviour inherited from the base class */ 3159 } 3160 3161 DEFINE_SPAPR_MACHINE(2_9, "2.9", true); 3162 3163 /* 3164 * pseries-2.8 3165 */ 3166 #define SPAPR_COMPAT_2_8 \ 3167 HW_COMPAT_2_8 \ 3168 { \ 3169 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3170 .property = "pcie-extended-configuration-space", \ 3171 .value = "off", \ 3172 }, 3173 3174 static void spapr_machine_2_8_instance_options(MachineState *machine) 3175 { 3176 spapr_machine_2_9_instance_options(machine); 3177 } 3178 3179 static void spapr_machine_2_8_class_options(MachineClass *mc) 3180 { 3181 spapr_machine_2_9_class_options(mc); 3182 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 3183 } 3184 3185 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 3186 3187 /* 3188 * pseries-2.7 3189 */ 3190 #define SPAPR_COMPAT_2_7 \ 3191 HW_COMPAT_2_7 \ 3192 { \ 3193 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3194 .property = "mem_win_size", \ 3195 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 3196 }, \ 3197 { \ 3198 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3199 .property = "mem64_win_size", \ 3200 .value = "0", \ 3201 }, \ 3202 { \ 3203 .driver = TYPE_POWERPC_CPU, \ 3204 .property = "pre-2.8-migration", \ 3205 .value = "on", \ 3206 }, \ 3207 { \ 3208 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3209 .property = "pre-2.8-migration", \ 3210 .value = "on", \ 3211 }, 3212 3213 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 3214 uint64_t *buid, hwaddr *pio, 3215 hwaddr *mmio32, hwaddr *mmio64, 3216 unsigned n_dma, uint32_t *liobns, Error **errp) 3217 { 3218 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 3219 const uint64_t base_buid = 0x800000020000000ULL; 3220 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 3221 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 3222 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 3223 const uint32_t max_index = 255; 3224 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 3225 3226 uint64_t ram_top = MACHINE(spapr)->ram_size; 3227 hwaddr phb0_base, phb_base; 3228 int i; 3229 3230 /* Do we have hotpluggable memory? */ 3231 if (MACHINE(spapr)->maxram_size > ram_top) { 3232 /* Can't just use maxram_size, because there may be an 3233 * alignment gap between normal and hotpluggable memory 3234 * regions */ 3235 ram_top = spapr->hotplug_memory.base + 3236 memory_region_size(&spapr->hotplug_memory.mr); 3237 } 3238 3239 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 3240 3241 if (index > max_index) { 3242 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 3243 max_index); 3244 return; 3245 } 3246 3247 *buid = base_buid + index; 3248 for (i = 0; i < n_dma; ++i) { 3249 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3250 } 3251 3252 phb_base = phb0_base + index * phb_spacing; 3253 *pio = phb_base + pio_offset; 3254 *mmio32 = phb_base + mmio_offset; 3255 /* 3256 * We don't set the 64-bit MMIO window, relying on the PHB's 3257 * fallback behaviour of automatically splitting a large "32-bit" 3258 * window into contiguous 32-bit and 64-bit windows 3259 */ 3260 } 3261 3262 static void spapr_machine_2_7_instance_options(MachineState *machine) 3263 { 3264 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 3265 3266 spapr_machine_2_8_instance_options(machine); 3267 spapr->use_hotplug_event_source = false; 3268 } 3269 3270 static void spapr_machine_2_7_class_options(MachineClass *mc) 3271 { 3272 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3273 3274 spapr_machine_2_8_class_options(mc); 3275 smc->tcg_default_cpu = "POWER7"; 3276 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 3277 smc->phb_placement = phb_placement_2_7; 3278 } 3279 3280 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 3281 3282 /* 3283 * pseries-2.6 3284 */ 3285 #define SPAPR_COMPAT_2_6 \ 3286 HW_COMPAT_2_6 \ 3287 { \ 3288 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3289 .property = "ddw",\ 3290 .value = stringify(off),\ 3291 }, 3292 3293 static void spapr_machine_2_6_instance_options(MachineState *machine) 3294 { 3295 spapr_machine_2_7_instance_options(machine); 3296 } 3297 3298 static void spapr_machine_2_6_class_options(MachineClass *mc) 3299 { 3300 spapr_machine_2_7_class_options(mc); 3301 mc->has_hotpluggable_cpus = false; 3302 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 3303 } 3304 3305 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 3306 3307 /* 3308 * pseries-2.5 3309 */ 3310 #define SPAPR_COMPAT_2_5 \ 3311 HW_COMPAT_2_5 \ 3312 { \ 3313 .driver = "spapr-vlan", \ 3314 .property = "use-rx-buffer-pools", \ 3315 .value = "off", \ 3316 }, 3317 3318 static void spapr_machine_2_5_instance_options(MachineState *machine) 3319 { 3320 spapr_machine_2_6_instance_options(machine); 3321 } 3322 3323 static void spapr_machine_2_5_class_options(MachineClass *mc) 3324 { 3325 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3326 3327 spapr_machine_2_6_class_options(mc); 3328 smc->use_ohci_by_default = true; 3329 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 3330 } 3331 3332 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 3333 3334 /* 3335 * pseries-2.4 3336 */ 3337 #define SPAPR_COMPAT_2_4 \ 3338 HW_COMPAT_2_4 3339 3340 static void spapr_machine_2_4_instance_options(MachineState *machine) 3341 { 3342 spapr_machine_2_5_instance_options(machine); 3343 } 3344 3345 static void spapr_machine_2_4_class_options(MachineClass *mc) 3346 { 3347 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3348 3349 spapr_machine_2_5_class_options(mc); 3350 smc->dr_lmb_enabled = false; 3351 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 3352 } 3353 3354 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 3355 3356 /* 3357 * pseries-2.3 3358 */ 3359 #define SPAPR_COMPAT_2_3 \ 3360 HW_COMPAT_2_3 \ 3361 {\ 3362 .driver = "spapr-pci-host-bridge",\ 3363 .property = "dynamic-reconfiguration",\ 3364 .value = "off",\ 3365 }, 3366 3367 static void spapr_machine_2_3_instance_options(MachineState *machine) 3368 { 3369 spapr_machine_2_4_instance_options(machine); 3370 savevm_skip_section_footers(); 3371 global_state_set_optional(); 3372 savevm_skip_configuration(); 3373 } 3374 3375 static void spapr_machine_2_3_class_options(MachineClass *mc) 3376 { 3377 spapr_machine_2_4_class_options(mc); 3378 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 3379 } 3380 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 3381 3382 /* 3383 * pseries-2.2 3384 */ 3385 3386 #define SPAPR_COMPAT_2_2 \ 3387 HW_COMPAT_2_2 \ 3388 {\ 3389 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3390 .property = "mem_win_size",\ 3391 .value = "0x20000000",\ 3392 }, 3393 3394 static void spapr_machine_2_2_instance_options(MachineState *machine) 3395 { 3396 spapr_machine_2_3_instance_options(machine); 3397 machine->suppress_vmdesc = true; 3398 } 3399 3400 static void spapr_machine_2_2_class_options(MachineClass *mc) 3401 { 3402 spapr_machine_2_3_class_options(mc); 3403 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 3404 } 3405 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 3406 3407 /* 3408 * pseries-2.1 3409 */ 3410 #define SPAPR_COMPAT_2_1 \ 3411 HW_COMPAT_2_1 3412 3413 static void spapr_machine_2_1_instance_options(MachineState *machine) 3414 { 3415 spapr_machine_2_2_instance_options(machine); 3416 } 3417 3418 static void spapr_machine_2_1_class_options(MachineClass *mc) 3419 { 3420 spapr_machine_2_2_class_options(mc); 3421 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 3422 } 3423 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 3424 3425 static void spapr_machine_register_types(void) 3426 { 3427 type_register_static(&spapr_machine_info); 3428 } 3429 3430 type_init(spapr_machine_register_types) 3431