1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/tcg.h" 39 #include "sysemu/qtest.h" 40 #include "sysemu/reset.h" 41 #include "sysemu/runstate.h" 42 #include "qemu/log.h" 43 #include "hw/fw-path-provider.h" 44 #include "elf.h" 45 #include "net/net.h" 46 #include "sysemu/device_tree.h" 47 #include "sysemu/cpus.h" 48 #include "sysemu/hw_accel.h" 49 #include "kvm_ppc.h" 50 #include "migration/misc.h" 51 #include "migration/qemu-file-types.h" 52 #include "migration/global_state.h" 53 #include "migration/register.h" 54 #include "migration/blocker.h" 55 #include "mmu-hash64.h" 56 #include "mmu-book3s-v3.h" 57 #include "cpu-models.h" 58 #include "hw/core/cpu.h" 59 60 #include "hw/ppc/ppc.h" 61 #include "hw/loader.h" 62 63 #include "hw/ppc/fdt.h" 64 #include "hw/ppc/spapr.h" 65 #include "hw/ppc/spapr_nested.h" 66 #include "hw/ppc/spapr_vio.h" 67 #include "hw/ppc/vof.h" 68 #include "hw/qdev-properties.h" 69 #include "hw/pci-host/spapr.h" 70 #include "hw/pci/msi.h" 71 72 #include "hw/pci/pci.h" 73 #include "hw/scsi/scsi.h" 74 #include "hw/virtio/virtio-scsi.h" 75 #include "hw/virtio/vhost-scsi-common.h" 76 77 #include "exec/ram_addr.h" 78 #include "hw/usb.h" 79 #include "qemu/config-file.h" 80 #include "qemu/error-report.h" 81 #include "trace.h" 82 #include "hw/nmi.h" 83 #include "hw/intc/intc.h" 84 85 #include "hw/ppc/spapr_cpu_core.h" 86 #include "hw/mem/memory-device.h" 87 #include "hw/ppc/spapr_tpm_proxy.h" 88 #include "hw/ppc/spapr_nvdimm.h" 89 #include "hw/ppc/spapr_numa.h" 90 #include "hw/ppc/pef.h" 91 92 #include "monitor/monitor.h" 93 94 #include <libfdt.h> 95 96 /* SLOF memory layout: 97 * 98 * SLOF raw image loaded at 0, copies its romfs right below the flat 99 * device-tree, then position SLOF itself 31M below that 100 * 101 * So we set FW_OVERHEAD to 40MB which should account for all of that 102 * and more 103 * 104 * We load our kernel at 4M, leaving space for SLOF initial image 105 */ 106 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 107 #define FW_MAX_SIZE 0x400000 108 #define FW_FILE_NAME "slof.bin" 109 #define FW_FILE_NAME_VOF "vof.bin" 110 #define FW_OVERHEAD 0x2800000 111 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 112 113 #define MIN_RMA_SLOF (128 * MiB) 114 115 #define PHANDLE_INTC 0x00001111 116 117 /* These two functions implement the VCPU id numbering: one to compute them 118 * all and one to identify thread 0 of a VCORE. Any change to the first one 119 * is likely to have an impact on the second one, so let's keep them close. 120 */ 121 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 122 { 123 MachineState *ms = MACHINE(spapr); 124 unsigned int smp_threads = ms->smp.threads; 125 126 assert(spapr->vsmt); 127 return 128 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 129 } 130 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 131 PowerPCCPU *cpu) 132 { 133 assert(spapr->vsmt); 134 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 135 } 136 137 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 138 { 139 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 140 * and newer QEMUs don't even have them. In both cases, we don't want 141 * to send anything on the wire. 142 */ 143 return false; 144 } 145 146 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 147 /* 148 * Hack ahead. We can't have two devices with the same name and 149 * instance id. So I rename this to pass make check. 150 * Real help from people who knows the hardware is needed. 151 */ 152 .name = "icp/server", 153 .version_id = 1, 154 .minimum_version_id = 1, 155 .needed = pre_2_10_vmstate_dummy_icp_needed, 156 .fields = (const VMStateField[]) { 157 VMSTATE_UNUSED(4), /* uint32_t xirr */ 158 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 159 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 160 VMSTATE_END_OF_LIST() 161 }, 162 }; 163 164 /* 165 * See comment in hw/intc/xics.c:icp_realize() 166 * 167 * You have to remove vmstate_replace_hack_for_ppc() when you remove 168 * the machine types that need the following function. 169 */ 170 static void pre_2_10_vmstate_register_dummy_icp(int i) 171 { 172 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 173 (void *)(uintptr_t) i); 174 } 175 176 /* 177 * See comment in hw/intc/xics.c:icp_realize() 178 * 179 * You have to remove vmstate_replace_hack_for_ppc() when you remove 180 * the machine types that need the following function. 181 */ 182 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 183 { 184 /* 185 * This used to be: 186 * 187 * vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 188 * (void *)(uintptr_t) i); 189 */ 190 } 191 192 int spapr_max_server_number(SpaprMachineState *spapr) 193 { 194 MachineState *ms = MACHINE(spapr); 195 196 assert(spapr->vsmt); 197 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 198 } 199 200 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 201 int smt_threads) 202 { 203 int i, ret = 0; 204 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 205 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 206 int index = spapr_get_vcpu_id(cpu); 207 208 if (cpu->compat_pvr) { 209 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 210 if (ret < 0) { 211 return ret; 212 } 213 } 214 215 /* Build interrupt servers and gservers properties */ 216 for (i = 0; i < smt_threads; i++) { 217 servers_prop[i] = cpu_to_be32(index + i); 218 /* Hack, direct the group queues back to cpu 0 */ 219 gservers_prop[i*2] = cpu_to_be32(index + i); 220 gservers_prop[i*2 + 1] = 0; 221 } 222 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 223 servers_prop, sizeof(*servers_prop) * smt_threads); 224 if (ret < 0) { 225 return ret; 226 } 227 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 228 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 229 230 return ret; 231 } 232 233 static void spapr_dt_pa_features(SpaprMachineState *spapr, 234 PowerPCCPU *cpu, 235 void *fdt, int offset) 236 { 237 /* 238 * SSO (SAO) ordering is supported on KVM and thread=single hosts, 239 * but not MTTCG, so disable it. To advertise it, a cap would have 240 * to be added, or support implemented for MTTCG. 241 * 242 * Copy/paste is not supported by TCG, so it is not advertised. KVM 243 * can execute them but it has no accelerator drivers which are usable, 244 * so there isn't much need for it anyway. 245 */ 246 247 /* These should be kept in sync with pnv */ 248 uint8_t pa_features_206[] = { 6, 0, 249 0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 }; 250 uint8_t pa_features_207[] = { 24, 0, 251 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, 252 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 253 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 255 uint8_t pa_features_300[] = { 66, 0, 256 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 257 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 258 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 259 /* 6: DS207 */ 260 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 261 /* 16: Vector */ 262 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 263 /* 18: Vec. Scalar, 20: Vec. XOR */ 264 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 265 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 266 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 267 /* 32: LE atomic, 34: EBB + ext EBB */ 268 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 269 /* 40: Radix MMU */ 270 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 271 /* 42: PM, 44: PC RA, 46: SC vec'd */ 272 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 273 /* 48: SIMD, 50: QP BFP, 52: String */ 274 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 275 /* 54: DecFP, 56: DecI, 58: SHA */ 276 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 277 /* 60: NM atomic, 62: RNG */ 278 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 279 }; 280 /* 3.1 removes SAO, HTM support */ 281 uint8_t pa_features_31[] = { 74, 0, 282 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 283 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 284 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 285 /* 6: DS207 */ 286 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 287 /* 16: Vector */ 288 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 289 /* 18: Vec. Scalar, 20: Vec. XOR */ 290 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 291 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 292 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 293 /* 32: LE atomic, 34: EBB + ext EBB */ 294 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 295 /* 40: Radix MMU */ 296 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 297 /* 42: PM, 44: PC RA, 46: SC vec'd */ 298 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 299 /* 48: SIMD, 50: QP BFP, 52: String */ 300 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 301 /* 54: DecFP, 56: DecI, 58: SHA */ 302 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 303 /* 60: NM atomic, 62: RNG */ 304 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 305 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */ 306 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */ 307 /* 72: [P]HASHST/[P]HASHCHK */ 308 0x80, 0x00, /* 72 - 73 */ 309 }; 310 uint8_t *pa_features = NULL; 311 size_t pa_size; 312 313 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 314 pa_features = pa_features_206; 315 pa_size = sizeof(pa_features_206); 316 } 317 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 318 pa_features = pa_features_207; 319 pa_size = sizeof(pa_features_207); 320 } 321 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 322 pa_features = pa_features_300; 323 pa_size = sizeof(pa_features_300); 324 } 325 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) { 326 pa_features = pa_features_31; 327 pa_size = sizeof(pa_features_31); 328 } 329 if (!pa_features) { 330 return; 331 } 332 333 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 334 /* 335 * Note: we keep CI large pages off by default because a 64K capable 336 * guest provisioned with large pages might otherwise try to map a qemu 337 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 338 * even if that qemu runs on a 4k host. 339 * We dd this bit back here if we are confident this is not an issue 340 */ 341 pa_features[3] |= 0x20; 342 } 343 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 344 pa_features[24] |= 0x80; /* Transactional memory support */ 345 } 346 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 347 /* Workaround for broken kernels that attempt (guest) radix 348 * mode when they can't handle it, if they see the radix bit set 349 * in pa-features. So hide it from them. */ 350 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 351 } 352 353 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 354 } 355 356 static hwaddr spapr_node0_size(MachineState *machine) 357 { 358 if (machine->numa_state->num_nodes) { 359 int i; 360 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 361 if (machine->numa_state->nodes[i].node_mem) { 362 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 363 machine->ram_size); 364 } 365 } 366 } 367 return machine->ram_size; 368 } 369 370 static void add_str(GString *s, const gchar *s1) 371 { 372 g_string_append_len(s, s1, strlen(s1) + 1); 373 } 374 375 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 376 hwaddr start, hwaddr size) 377 { 378 char mem_name[32]; 379 uint64_t mem_reg_property[2]; 380 int off; 381 382 mem_reg_property[0] = cpu_to_be64(start); 383 mem_reg_property[1] = cpu_to_be64(size); 384 385 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 386 off = fdt_add_subnode(fdt, 0, mem_name); 387 _FDT(off); 388 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 389 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 390 sizeof(mem_reg_property)))); 391 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 392 return off; 393 } 394 395 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 396 { 397 MemoryDeviceInfoList *info; 398 399 for (info = list; info; info = info->next) { 400 MemoryDeviceInfo *value = info->value; 401 402 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 403 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 404 405 if (addr >= pcdimm_info->addr && 406 addr < (pcdimm_info->addr + pcdimm_info->size)) { 407 return pcdimm_info->node; 408 } 409 } 410 } 411 412 return -1; 413 } 414 415 struct sPAPRDrconfCellV2 { 416 uint32_t seq_lmbs; 417 uint64_t base_addr; 418 uint32_t drc_index; 419 uint32_t aa_index; 420 uint32_t flags; 421 } QEMU_PACKED; 422 423 typedef struct DrconfCellQueue { 424 struct sPAPRDrconfCellV2 cell; 425 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 426 } DrconfCellQueue; 427 428 static DrconfCellQueue * 429 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 430 uint32_t drc_index, uint32_t aa_index, 431 uint32_t flags) 432 { 433 DrconfCellQueue *elem; 434 435 elem = g_malloc0(sizeof(*elem)); 436 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 437 elem->cell.base_addr = cpu_to_be64(base_addr); 438 elem->cell.drc_index = cpu_to_be32(drc_index); 439 elem->cell.aa_index = cpu_to_be32(aa_index); 440 elem->cell.flags = cpu_to_be32(flags); 441 442 return elem; 443 } 444 445 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 446 int offset, MemoryDeviceInfoList *dimms) 447 { 448 MachineState *machine = MACHINE(spapr); 449 uint8_t *int_buf, *cur_index; 450 int ret; 451 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 452 uint64_t addr, cur_addr, size; 453 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 454 uint64_t mem_end = machine->device_memory->base + 455 memory_region_size(&machine->device_memory->mr); 456 uint32_t node, buf_len, nr_entries = 0; 457 SpaprDrc *drc; 458 DrconfCellQueue *elem, *next; 459 MemoryDeviceInfoList *info; 460 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 461 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 462 463 /* Entry to cover RAM and the gap area */ 464 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 465 SPAPR_LMB_FLAGS_RESERVED | 466 SPAPR_LMB_FLAGS_DRC_INVALID); 467 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 468 nr_entries++; 469 470 cur_addr = machine->device_memory->base; 471 for (info = dimms; info; info = info->next) { 472 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 473 474 addr = di->addr; 475 size = di->size; 476 node = di->node; 477 478 /* 479 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 480 * area is marked hotpluggable in the next iteration for the bigger 481 * chunk including the NVDIMM occupied area. 482 */ 483 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 484 continue; 485 486 /* Entry for hot-pluggable area */ 487 if (cur_addr < addr) { 488 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 489 g_assert(drc); 490 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 491 cur_addr, spapr_drc_index(drc), -1, 0); 492 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 493 nr_entries++; 494 } 495 496 /* Entry for DIMM */ 497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 498 g_assert(drc); 499 elem = spapr_get_drconf_cell(size / lmb_size, addr, 500 spapr_drc_index(drc), node, 501 (SPAPR_LMB_FLAGS_ASSIGNED | 502 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 503 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 504 nr_entries++; 505 cur_addr = addr + size; 506 } 507 508 /* Entry for remaining hotpluggable area */ 509 if (cur_addr < mem_end) { 510 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 511 g_assert(drc); 512 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 513 cur_addr, spapr_drc_index(drc), -1, 0); 514 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 515 nr_entries++; 516 } 517 518 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 519 int_buf = cur_index = g_malloc0(buf_len); 520 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 521 cur_index += sizeof(nr_entries); 522 523 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 524 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 525 cur_index += sizeof(elem->cell); 526 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 527 g_free(elem); 528 } 529 530 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 531 g_free(int_buf); 532 if (ret < 0) { 533 return -1; 534 } 535 return 0; 536 } 537 538 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 539 int offset, MemoryDeviceInfoList *dimms) 540 { 541 MachineState *machine = MACHINE(spapr); 542 int i, ret; 543 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 544 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 545 uint32_t nr_lmbs = (machine->device_memory->base + 546 memory_region_size(&machine->device_memory->mr)) / 547 lmb_size; 548 uint32_t *int_buf, *cur_index, buf_len; 549 550 /* 551 * Allocate enough buffer size to fit in ibm,dynamic-memory 552 */ 553 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 554 cur_index = int_buf = g_malloc0(buf_len); 555 int_buf[0] = cpu_to_be32(nr_lmbs); 556 cur_index++; 557 for (i = 0; i < nr_lmbs; i++) { 558 uint64_t addr = i * lmb_size; 559 uint32_t *dynamic_memory = cur_index; 560 561 if (i >= device_lmb_start) { 562 SpaprDrc *drc; 563 564 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 565 g_assert(drc); 566 567 dynamic_memory[0] = cpu_to_be32(addr >> 32); 568 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 569 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 570 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 571 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 572 if (memory_region_present(get_system_memory(), addr)) { 573 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 574 } else { 575 dynamic_memory[5] = cpu_to_be32(0); 576 } 577 } else { 578 /* 579 * LMB information for RMA, boot time RAM and gap b/n RAM and 580 * device memory region -- all these are marked as reserved 581 * and as having no valid DRC. 582 */ 583 dynamic_memory[0] = cpu_to_be32(addr >> 32); 584 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 585 dynamic_memory[2] = cpu_to_be32(0); 586 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 587 dynamic_memory[4] = cpu_to_be32(-1); 588 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 589 SPAPR_LMB_FLAGS_DRC_INVALID); 590 } 591 592 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 593 } 594 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 595 g_free(int_buf); 596 if (ret < 0) { 597 return -1; 598 } 599 return 0; 600 } 601 602 /* 603 * Adds ibm,dynamic-reconfiguration-memory node. 604 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 605 * of this device tree node. 606 */ 607 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 608 void *fdt) 609 { 610 MachineState *machine = MACHINE(spapr); 611 int ret, offset; 612 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 613 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 614 cpu_to_be32(lmb_size & 0xffffffff)}; 615 MemoryDeviceInfoList *dimms = NULL; 616 617 /* Don't create the node if there is no device memory. */ 618 if (!machine->device_memory) { 619 return 0; 620 } 621 622 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 623 624 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 625 sizeof(prop_lmb_size)); 626 if (ret < 0) { 627 return ret; 628 } 629 630 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 631 if (ret < 0) { 632 return ret; 633 } 634 635 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 636 if (ret < 0) { 637 return ret; 638 } 639 640 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 641 dimms = qmp_memory_device_list(); 642 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 643 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 644 } else { 645 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 646 } 647 qapi_free_MemoryDeviceInfoList(dimms); 648 649 if (ret < 0) { 650 return ret; 651 } 652 653 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 654 655 return ret; 656 } 657 658 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 659 { 660 MachineState *machine = MACHINE(spapr); 661 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 662 hwaddr mem_start, node_size; 663 int i, nb_nodes = machine->numa_state->num_nodes; 664 NodeInfo *nodes = machine->numa_state->nodes; 665 666 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 667 if (!nodes[i].node_mem) { 668 continue; 669 } 670 if (mem_start >= machine->ram_size) { 671 node_size = 0; 672 } else { 673 node_size = nodes[i].node_mem; 674 if (node_size > machine->ram_size - mem_start) { 675 node_size = machine->ram_size - mem_start; 676 } 677 } 678 if (!mem_start) { 679 /* spapr_machine_init() checks for rma_size <= node0_size 680 * already */ 681 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 682 mem_start += spapr->rma_size; 683 node_size -= spapr->rma_size; 684 } 685 for ( ; node_size; ) { 686 hwaddr sizetmp = pow2floor(node_size); 687 688 /* mem_start != 0 here */ 689 if (ctzl(mem_start) < ctzl(sizetmp)) { 690 sizetmp = 1ULL << ctzl(mem_start); 691 } 692 693 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 694 node_size -= sizetmp; 695 mem_start += sizetmp; 696 } 697 } 698 699 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 700 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 701 int ret; 702 703 g_assert(smc->dr_lmb_enabled); 704 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 705 if (ret) { 706 return ret; 707 } 708 } 709 710 return 0; 711 } 712 713 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 714 SpaprMachineState *spapr) 715 { 716 MachineState *ms = MACHINE(spapr); 717 PowerPCCPU *cpu = POWERPC_CPU(cs); 718 CPUPPCState *env = &cpu->env; 719 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 720 int index = spapr_get_vcpu_id(cpu); 721 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 722 0xffffffff, 0xffffffff}; 723 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 724 : SPAPR_TIMEBASE_FREQ; 725 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 726 uint32_t page_sizes_prop[64]; 727 size_t page_sizes_prop_size; 728 unsigned int smp_threads = ms->smp.threads; 729 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 730 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 731 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 732 SpaprDrc *drc; 733 int drc_index; 734 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 735 int i; 736 737 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 738 if (drc) { 739 drc_index = spapr_drc_index(drc); 740 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 741 } 742 743 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 744 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 745 746 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 747 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 748 env->dcache_line_size))); 749 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 750 env->dcache_line_size))); 751 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 752 env->icache_line_size))); 753 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 754 env->icache_line_size))); 755 756 if (pcc->l1_dcache_size) { 757 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 758 pcc->l1_dcache_size))); 759 } else { 760 warn_report("Unknown L1 dcache size for cpu"); 761 } 762 if (pcc->l1_icache_size) { 763 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 764 pcc->l1_icache_size))); 765 } else { 766 warn_report("Unknown L1 icache size for cpu"); 767 } 768 769 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 770 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 771 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 772 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 773 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 774 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 775 776 if (ppc_has_spr(cpu, SPR_PURR)) { 777 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 778 } 779 if (ppc_has_spr(cpu, SPR_PURR)) { 780 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 781 } 782 783 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 784 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 785 segs, sizeof(segs)))); 786 } 787 788 /* Advertise VSX (vector extensions) if available 789 * 1 == VMX / Altivec available 790 * 2 == VSX available 791 * 792 * Only CPUs for which we create core types in spapr_cpu_core.c 793 * are possible, and all of those have VMX */ 794 if (env->insns_flags & PPC_ALTIVEC) { 795 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 796 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 797 } else { 798 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 799 } 800 } 801 802 /* Advertise DFP (Decimal Floating Point) if available 803 * 0 / no property == no DFP 804 * 1 == DFP available */ 805 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 806 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 807 } 808 809 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 810 sizeof(page_sizes_prop)); 811 if (page_sizes_prop_size) { 812 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 813 page_sizes_prop, page_sizes_prop_size))); 814 } 815 816 spapr_dt_pa_features(spapr, cpu, fdt, offset); 817 818 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 819 cs->cpu_index / vcpus_per_socket))); 820 821 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 822 pft_size_prop, sizeof(pft_size_prop)))); 823 824 if (ms->numa_state->num_nodes > 1) { 825 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 826 } 827 828 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 829 830 if (pcc->radix_page_info) { 831 for (i = 0; i < pcc->radix_page_info->count; i++) { 832 radix_AP_encodings[i] = 833 cpu_to_be32(pcc->radix_page_info->entries[i]); 834 } 835 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 836 radix_AP_encodings, 837 pcc->radix_page_info->count * 838 sizeof(radix_AP_encodings[0])))); 839 } 840 841 /* 842 * We set this property to let the guest know that it can use the large 843 * decrementer and its width in bits. 844 */ 845 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 846 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 847 pcc->lrg_decr_bits))); 848 } 849 850 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs, 851 int cpus_offset) 852 { 853 PowerPCCPU *cpu = POWERPC_CPU(cs); 854 int index = spapr_get_vcpu_id(cpu); 855 DeviceClass *dc = DEVICE_GET_CLASS(cs); 856 g_autofree char *nodename = NULL; 857 int offset; 858 859 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 860 return; 861 } 862 863 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 864 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 865 _FDT(offset); 866 spapr_dt_cpu(cs, fdt, offset, spapr); 867 } 868 869 870 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 871 { 872 CPUState **rev; 873 CPUState *cs; 874 int n_cpus; 875 int cpus_offset; 876 int i; 877 878 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 879 _FDT(cpus_offset); 880 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 881 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 882 883 /* 884 * We walk the CPUs in reverse order to ensure that CPU DT nodes 885 * created by fdt_add_subnode() end up in the right order in FDT 886 * for the guest kernel the enumerate the CPUs correctly. 887 * 888 * The CPU list cannot be traversed in reverse order, so we need 889 * to do extra work. 890 */ 891 n_cpus = 0; 892 rev = NULL; 893 CPU_FOREACH(cs) { 894 rev = g_renew(CPUState *, rev, n_cpus + 1); 895 rev[n_cpus++] = cs; 896 } 897 898 for (i = n_cpus - 1; i >= 0; i--) { 899 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset); 900 } 901 902 g_free(rev); 903 } 904 905 static int spapr_dt_rng(void *fdt) 906 { 907 int node; 908 int ret; 909 910 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 911 if (node <= 0) { 912 return -1; 913 } 914 ret = fdt_setprop_string(fdt, node, "device_type", 915 "ibm,platform-facilities"); 916 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 917 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 918 919 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 920 if (node <= 0) { 921 return -1; 922 } 923 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 924 925 return ret ? -1 : 0; 926 } 927 928 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 929 { 930 MachineState *ms = MACHINE(spapr); 931 int rtas; 932 GString *hypertas = g_string_sized_new(256); 933 GString *qemu_hypertas = g_string_sized_new(256); 934 uint32_t lrdr_capacity[] = { 935 0, 936 0, 937 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 938 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 939 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 940 }; 941 942 /* Do we have device memory? */ 943 if (MACHINE(spapr)->device_memory) { 944 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 945 memory_region_size(&MACHINE(spapr)->device_memory->mr); 946 947 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 948 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 949 } 950 951 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 952 953 /* hypertas */ 954 add_str(hypertas, "hcall-pft"); 955 add_str(hypertas, "hcall-term"); 956 add_str(hypertas, "hcall-dabr"); 957 add_str(hypertas, "hcall-interrupt"); 958 add_str(hypertas, "hcall-tce"); 959 add_str(hypertas, "hcall-vio"); 960 add_str(hypertas, "hcall-splpar"); 961 add_str(hypertas, "hcall-join"); 962 add_str(hypertas, "hcall-bulk"); 963 add_str(hypertas, "hcall-set-mode"); 964 add_str(hypertas, "hcall-sprg0"); 965 add_str(hypertas, "hcall-copy"); 966 add_str(hypertas, "hcall-debug"); 967 add_str(hypertas, "hcall-vphn"); 968 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 969 add_str(hypertas, "hcall-rpt-invalidate"); 970 } 971 972 add_str(qemu_hypertas, "hcall-memop1"); 973 974 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 975 add_str(hypertas, "hcall-multi-tce"); 976 } 977 978 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 979 add_str(hypertas, "hcall-hpt-resize"); 980 } 981 982 add_str(hypertas, "hcall-watchdog"); 983 984 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 985 hypertas->str, hypertas->len)); 986 g_string_free(hypertas, TRUE); 987 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 988 qemu_hypertas->str, qemu_hypertas->len)); 989 g_string_free(qemu_hypertas, TRUE); 990 991 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 992 993 /* 994 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 995 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 996 * 997 * The system reset requirements are driven by existing Linux and PowerVM 998 * implementation which (contrary to PAPR) saves r3 in the error log 999 * structure like machine check, so Linux expects to find the saved r3 1000 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 1001 * does not look at the error value). 1002 * 1003 * System reset interrupts are not subject to interlock like machine 1004 * check, so this memory area could be corrupted if the sreset is 1005 * interrupted by a machine check (or vice versa) if it was shared. To 1006 * prevent this, system reset uses per-CPU areas for the sreset save 1007 * area. A system reset that interrupts a system reset handler could 1008 * still overwrite this area, but Linux doesn't try to recover in that 1009 * case anyway. 1010 * 1011 * The extra 8 bytes is required because Linux's FWNMI error log check 1012 * is off-by-one. 1013 * 1014 * RTAS_MIN_SIZE is required for the RTAS blob itself. 1015 */ 1016 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 1017 RTAS_ERROR_LOG_MAX + 1018 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 1019 sizeof(uint64_t))); 1020 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1021 RTAS_ERROR_LOG_MAX)); 1022 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1023 RTAS_EVENT_SCAN_RATE)); 1024 1025 g_assert(msi_nonbroken); 1026 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1027 1028 /* 1029 * According to PAPR, rtas ibm,os-term does not guarantee a return 1030 * back to the guest cpu. 1031 * 1032 * While an additional ibm,extended-os-term property indicates 1033 * that rtas call return will always occur. Set this property. 1034 */ 1035 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1036 1037 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1038 lrdr_capacity, sizeof(lrdr_capacity))); 1039 1040 spapr_dt_rtas_tokens(fdt, rtas); 1041 } 1042 1043 /* 1044 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1045 * and the XIVE features that the guest may request and thus the valid 1046 * values for bytes 23..26 of option vector 5: 1047 */ 1048 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1049 int chosen) 1050 { 1051 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1052 1053 char val[2 * 4] = { 1054 23, 0x00, /* XICS / XIVE mode */ 1055 24, 0x00, /* Hash/Radix, filled in below. */ 1056 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1057 26, 0x40, /* Radix options: GTSE == yes. */ 1058 }; 1059 1060 if (spapr->irq->xics && spapr->irq->xive) { 1061 val[1] = SPAPR_OV5_XIVE_BOTH; 1062 } else if (spapr->irq->xive) { 1063 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1064 } else { 1065 assert(spapr->irq->xics); 1066 val[1] = SPAPR_OV5_XIVE_LEGACY; 1067 } 1068 1069 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1070 first_ppc_cpu->compat_pvr)) { 1071 /* 1072 * If we're in a pre POWER9 compat mode then the guest should 1073 * do hash and use the legacy interrupt mode 1074 */ 1075 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1076 val[3] = 0x00; /* Hash */ 1077 spapr_check_mmu_mode(false); 1078 } else if (kvm_enabled()) { 1079 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1080 val[3] = 0x80; /* OV5_MMU_BOTH */ 1081 } else if (kvmppc_has_cap_mmu_radix()) { 1082 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1083 } else { 1084 val[3] = 0x00; /* Hash */ 1085 } 1086 } else { 1087 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1088 val[3] = 0xC0; 1089 } 1090 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1091 val, sizeof(val))); 1092 } 1093 1094 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1095 { 1096 MachineState *machine = MACHINE(spapr); 1097 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1098 int chosen; 1099 1100 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1101 1102 if (reset) { 1103 const char *boot_device = spapr->boot_device; 1104 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1105 size_t cb = 0; 1106 g_autofree char *bootlist = get_boot_devices_list(&cb); 1107 1108 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1109 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1110 machine->kernel_cmdline)); 1111 } 1112 1113 if (spapr->initrd_size) { 1114 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1115 spapr->initrd_base)); 1116 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1117 spapr->initrd_base + spapr->initrd_size)); 1118 } 1119 1120 if (spapr->kernel_size) { 1121 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1122 cpu_to_be64(spapr->kernel_size) }; 1123 1124 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1125 &kprop, sizeof(kprop))); 1126 if (spapr->kernel_le) { 1127 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1128 } 1129 } 1130 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1131 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1132 } 1133 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1134 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1135 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1136 1137 if (cb && bootlist) { 1138 int i; 1139 1140 for (i = 0; i < cb; i++) { 1141 if (bootlist[i] == '\n') { 1142 bootlist[i] = ' '; 1143 } 1144 } 1145 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1146 } 1147 1148 if (boot_device && strlen(boot_device)) { 1149 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1150 } 1151 1152 if (spapr->want_stdout_path && stdout_path) { 1153 /* 1154 * "linux,stdout-path" and "stdout" properties are 1155 * deprecated by linux kernel. New platforms should only 1156 * use the "stdout-path" property. Set the new property 1157 * and continue using older property to remain compatible 1158 * with the existing firmware. 1159 */ 1160 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1161 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1162 } 1163 1164 /* 1165 * We can deal with BAR reallocation just fine, advertise it 1166 * to the guest 1167 */ 1168 if (smc->linux_pci_probe) { 1169 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1170 } 1171 1172 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1173 } 1174 1175 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); 1176 1177 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1178 } 1179 1180 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1181 { 1182 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1183 * KVM to work under pHyp with some guest co-operation */ 1184 int hypervisor; 1185 uint8_t hypercall[16]; 1186 1187 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1188 /* indicate KVM hypercall interface */ 1189 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1190 if (kvmppc_has_cap_fixup_hcalls()) { 1191 /* 1192 * Older KVM versions with older guest kernels were broken 1193 * with the magic page, don't allow the guest to map it. 1194 */ 1195 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall, 1196 sizeof(hypercall))) { 1197 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1198 hypercall, sizeof(hypercall))); 1199 } 1200 } 1201 } 1202 1203 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1204 { 1205 MachineState *machine = MACHINE(spapr); 1206 MachineClass *mc = MACHINE_GET_CLASS(machine); 1207 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1208 uint32_t root_drc_type_mask = 0; 1209 int ret; 1210 void *fdt; 1211 SpaprPhbState *phb; 1212 char *buf; 1213 1214 fdt = g_malloc0(space); 1215 _FDT((fdt_create_empty_tree(fdt, space))); 1216 1217 /* Root node */ 1218 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1219 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1220 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1221 1222 /* Guest UUID & Name*/ 1223 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1224 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1225 if (qemu_uuid_set) { 1226 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1227 } 1228 g_free(buf); 1229 1230 if (qemu_get_vm_name()) { 1231 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1232 qemu_get_vm_name())); 1233 } 1234 1235 /* Host Model & Serial Number */ 1236 if (spapr->host_model) { 1237 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1238 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1239 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1240 g_free(buf); 1241 } 1242 1243 if (spapr->host_serial) { 1244 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1245 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1246 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1247 g_free(buf); 1248 } 1249 1250 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1251 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1252 1253 /* /interrupt controller */ 1254 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1255 1256 ret = spapr_dt_memory(spapr, fdt); 1257 if (ret < 0) { 1258 error_report("couldn't setup memory nodes in fdt"); 1259 exit(1); 1260 } 1261 1262 /* /vdevice */ 1263 spapr_dt_vdevice(spapr->vio_bus, fdt); 1264 1265 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1266 ret = spapr_dt_rng(fdt); 1267 if (ret < 0) { 1268 error_report("could not set up rng device in the fdt"); 1269 exit(1); 1270 } 1271 } 1272 1273 QLIST_FOREACH(phb, &spapr->phbs, list) { 1274 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1275 if (ret < 0) { 1276 error_report("couldn't setup PCI devices in fdt"); 1277 exit(1); 1278 } 1279 } 1280 1281 spapr_dt_cpus(fdt, spapr); 1282 1283 /* ibm,drc-indexes and friends */ 1284 if (smc->dr_lmb_enabled) { 1285 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1286 } 1287 if (smc->dr_phb_enabled) { 1288 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1289 } 1290 if (mc->nvdimm_supported) { 1291 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1292 } 1293 if (root_drc_type_mask) { 1294 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1295 } 1296 1297 if (mc->has_hotpluggable_cpus) { 1298 int offset = fdt_path_offset(fdt, "/cpus"); 1299 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1300 if (ret < 0) { 1301 error_report("Couldn't set up CPU DR device tree properties"); 1302 exit(1); 1303 } 1304 } 1305 1306 /* /event-sources */ 1307 spapr_dt_events(spapr, fdt); 1308 1309 /* /rtas */ 1310 spapr_dt_rtas(spapr, fdt); 1311 1312 /* /chosen */ 1313 spapr_dt_chosen(spapr, fdt, reset); 1314 1315 /* /hypervisor */ 1316 if (kvm_enabled()) { 1317 spapr_dt_hypervisor(spapr, fdt); 1318 } 1319 1320 /* Build memory reserve map */ 1321 if (reset) { 1322 if (spapr->kernel_size) { 1323 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1324 spapr->kernel_size))); 1325 } 1326 if (spapr->initrd_size) { 1327 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1328 spapr->initrd_size))); 1329 } 1330 } 1331 1332 /* NVDIMM devices */ 1333 if (mc->nvdimm_supported) { 1334 spapr_dt_persistent_memory(spapr, fdt); 1335 } 1336 1337 return fdt; 1338 } 1339 1340 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1341 { 1342 SpaprMachineState *spapr = opaque; 1343 1344 return (addr & 0x0fffffff) + spapr->kernel_addr; 1345 } 1346 1347 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1348 PowerPCCPU *cpu) 1349 { 1350 CPUPPCState *env = &cpu->env; 1351 1352 /* The TCG path should also be holding the BQL at this point */ 1353 g_assert(bql_locked()); 1354 1355 g_assert(!vhyp_cpu_in_nested(cpu)); 1356 1357 if (FIELD_EX64(env->msr, MSR, PR)) { 1358 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1359 env->gpr[3] = H_PRIVILEGE; 1360 } else { 1361 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1362 } 1363 } 1364 1365 struct LPCRSyncState { 1366 target_ulong value; 1367 target_ulong mask; 1368 }; 1369 1370 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1371 { 1372 struct LPCRSyncState *s = arg.host_ptr; 1373 PowerPCCPU *cpu = POWERPC_CPU(cs); 1374 CPUPPCState *env = &cpu->env; 1375 target_ulong lpcr; 1376 1377 cpu_synchronize_state(cs); 1378 lpcr = env->spr[SPR_LPCR]; 1379 lpcr &= ~s->mask; 1380 lpcr |= s->value; 1381 ppc_store_lpcr(cpu, lpcr); 1382 } 1383 1384 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1385 { 1386 CPUState *cs; 1387 struct LPCRSyncState s = { 1388 .value = value, 1389 .mask = mask 1390 }; 1391 CPU_FOREACH(cs) { 1392 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1393 } 1394 } 1395 1396 /* May be used when the machine is not running */ 1397 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1398 { 1399 CPUState *cs; 1400 CPU_FOREACH(cs) { 1401 PowerPCCPU *cpu = POWERPC_CPU(cs); 1402 CPUPPCState *env = &cpu->env; 1403 target_ulong lpcr; 1404 1405 lpcr = env->spr[SPR_LPCR]; 1406 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1407 ppc_store_lpcr(cpu, lpcr); 1408 } 1409 } 1410 1411 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1412 target_ulong lpid, ppc_v3_pate_t *entry) 1413 { 1414 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1415 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1416 1417 if (!spapr_cpu->in_nested) { 1418 assert(lpid == 0); 1419 1420 /* Copy PATE1:GR into PATE0:HR */ 1421 entry->dw0 = spapr->patb_entry & PATE0_HR; 1422 entry->dw1 = spapr->patb_entry; 1423 return true; 1424 } else { 1425 if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) { 1426 return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry); 1427 } else if (spapr_nested_api(spapr) == NESTED_API_PAPR) { 1428 return spapr_get_pate_nested_papr(spapr, cpu, lpid, entry); 1429 } else { 1430 g_assert_not_reached(); 1431 } 1432 } 1433 } 1434 1435 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1436 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1437 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1438 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1439 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1440 1441 /* 1442 * Get the fd to access the kernel htab, re-opening it if necessary 1443 */ 1444 static int get_htab_fd(SpaprMachineState *spapr) 1445 { 1446 Error *local_err = NULL; 1447 1448 if (spapr->htab_fd >= 0) { 1449 return spapr->htab_fd; 1450 } 1451 1452 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1453 if (spapr->htab_fd < 0) { 1454 error_report_err(local_err); 1455 } 1456 1457 return spapr->htab_fd; 1458 } 1459 1460 void close_htab_fd(SpaprMachineState *spapr) 1461 { 1462 if (spapr->htab_fd >= 0) { 1463 close(spapr->htab_fd); 1464 } 1465 spapr->htab_fd = -1; 1466 } 1467 1468 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1469 { 1470 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1471 1472 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1473 } 1474 1475 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1476 { 1477 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1478 1479 assert(kvm_enabled()); 1480 1481 if (!spapr->htab) { 1482 return 0; 1483 } 1484 1485 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1486 } 1487 1488 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1489 hwaddr ptex, int n) 1490 { 1491 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1492 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1493 1494 if (!spapr->htab) { 1495 /* 1496 * HTAB is controlled by KVM. Fetch into temporary buffer 1497 */ 1498 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1499 kvmppc_read_hptes(hptes, ptex, n); 1500 return hptes; 1501 } 1502 1503 /* 1504 * HTAB is controlled by QEMU. Just point to the internally 1505 * accessible PTEG. 1506 */ 1507 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1508 } 1509 1510 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1511 const ppc_hash_pte64_t *hptes, 1512 hwaddr ptex, int n) 1513 { 1514 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1515 1516 if (!spapr->htab) { 1517 g_free((void *)hptes); 1518 } 1519 1520 /* Nothing to do for qemu managed HPT */ 1521 } 1522 1523 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1524 uint64_t pte0, uint64_t pte1) 1525 { 1526 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1527 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1528 1529 if (!spapr->htab) { 1530 kvmppc_write_hpte(ptex, pte0, pte1); 1531 } else { 1532 if (pte0 & HPTE64_V_VALID) { 1533 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1534 /* 1535 * When setting valid, we write PTE1 first. This ensures 1536 * proper synchronization with the reading code in 1537 * ppc_hash64_pteg_search() 1538 */ 1539 smp_wmb(); 1540 stq_p(spapr->htab + offset, pte0); 1541 } else { 1542 stq_p(spapr->htab + offset, pte0); 1543 /* 1544 * When clearing it we set PTE0 first. This ensures proper 1545 * synchronization with the reading code in 1546 * ppc_hash64_pteg_search() 1547 */ 1548 smp_wmb(); 1549 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1550 } 1551 } 1552 } 1553 1554 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1555 uint64_t pte1) 1556 { 1557 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1558 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1559 1560 if (!spapr->htab) { 1561 /* There should always be a hash table when this is called */ 1562 error_report("spapr_hpte_set_c called with no hash table !"); 1563 return; 1564 } 1565 1566 /* The HW performs a non-atomic byte update */ 1567 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1568 } 1569 1570 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1571 uint64_t pte1) 1572 { 1573 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1574 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1575 1576 if (!spapr->htab) { 1577 /* There should always be a hash table when this is called */ 1578 error_report("spapr_hpte_set_r called with no hash table !"); 1579 return; 1580 } 1581 1582 /* The HW performs a non-atomic byte update */ 1583 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1584 } 1585 1586 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1587 { 1588 int shift; 1589 1590 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1591 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1592 * that's much more than is needed for Linux guests */ 1593 shift = ctz64(pow2ceil(ramsize)) - 7; 1594 shift = MAX(shift, 18); /* Minimum architected size */ 1595 shift = MIN(shift, 46); /* Maximum architected size */ 1596 return shift; 1597 } 1598 1599 void spapr_free_hpt(SpaprMachineState *spapr) 1600 { 1601 qemu_vfree(spapr->htab); 1602 spapr->htab = NULL; 1603 spapr->htab_shift = 0; 1604 close_htab_fd(spapr); 1605 } 1606 1607 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1608 { 1609 ERRP_GUARD(); 1610 long rc; 1611 1612 /* Clean up any HPT info from a previous boot */ 1613 spapr_free_hpt(spapr); 1614 1615 rc = kvmppc_reset_htab(shift); 1616 1617 if (rc == -EOPNOTSUPP) { 1618 error_setg(errp, "HPT not supported in nested guests"); 1619 return -EOPNOTSUPP; 1620 } 1621 1622 if (rc < 0) { 1623 /* kernel-side HPT needed, but couldn't allocate one */ 1624 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1625 shift); 1626 error_append_hint(errp, "Try smaller maxmem?\n"); 1627 return -errno; 1628 } else if (rc > 0) { 1629 /* kernel-side HPT allocated */ 1630 if (rc != shift) { 1631 error_setg(errp, 1632 "Requested order %d HPT, but kernel allocated order %ld", 1633 shift, rc); 1634 error_append_hint(errp, "Try smaller maxmem?\n"); 1635 return -ENOSPC; 1636 } 1637 1638 spapr->htab_shift = shift; 1639 spapr->htab = NULL; 1640 } else { 1641 /* kernel-side HPT not needed, allocate in userspace instead */ 1642 size_t size = 1ULL << shift; 1643 int i; 1644 1645 spapr->htab = qemu_memalign(size, size); 1646 memset(spapr->htab, 0, size); 1647 spapr->htab_shift = shift; 1648 1649 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1650 DIRTY_HPTE(HPTE(spapr->htab, i)); 1651 } 1652 } 1653 /* We're setting up a hash table, so that means we're not radix */ 1654 spapr->patb_entry = 0; 1655 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1656 return 0; 1657 } 1658 1659 void spapr_setup_hpt(SpaprMachineState *spapr) 1660 { 1661 int hpt_shift; 1662 1663 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1664 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1665 } else { 1666 uint64_t current_ram_size; 1667 1668 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1669 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1670 } 1671 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1672 1673 if (kvm_enabled()) { 1674 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1675 1676 /* Check our RMA fits in the possible VRMA */ 1677 if (vrma_limit < spapr->rma_size) { 1678 error_report("Unable to create %" HWADDR_PRIu 1679 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1680 spapr->rma_size / MiB, vrma_limit / MiB); 1681 exit(EXIT_FAILURE); 1682 } 1683 } 1684 } 1685 1686 void spapr_check_mmu_mode(bool guest_radix) 1687 { 1688 if (guest_radix) { 1689 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1690 error_report("Guest requested unavailable MMU mode (radix)."); 1691 exit(EXIT_FAILURE); 1692 } 1693 } else { 1694 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1695 && !kvmppc_has_cap_mmu_hash_v3()) { 1696 error_report("Guest requested unavailable MMU mode (hash)."); 1697 exit(EXIT_FAILURE); 1698 } 1699 } 1700 } 1701 1702 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1703 { 1704 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1705 PowerPCCPU *first_ppc_cpu; 1706 hwaddr fdt_addr; 1707 void *fdt; 1708 int rc; 1709 1710 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) { 1711 /* 1712 * Record-replay snapshot load must not consume random, this was 1713 * already replayed from initial machine reset. 1714 */ 1715 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); 1716 } 1717 1718 pef_kvm_reset(machine->cgs, &error_fatal); 1719 spapr_caps_apply(spapr); 1720 spapr_nested_reset(spapr); 1721 1722 first_ppc_cpu = POWERPC_CPU(first_cpu); 1723 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1724 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1725 spapr->max_compat_pvr)) { 1726 /* 1727 * If using KVM with radix mode available, VCPUs can be started 1728 * without a HPT because KVM will start them in radix mode. 1729 * Set the GR bit in PATE so that we know there is no HPT. 1730 */ 1731 spapr->patb_entry = PATE1_GR; 1732 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1733 } else { 1734 spapr_setup_hpt(spapr); 1735 } 1736 1737 qemu_devices_reset(reason); 1738 1739 spapr_ovec_cleanup(spapr->ov5_cas); 1740 spapr->ov5_cas = spapr_ovec_new(); 1741 1742 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1743 1744 /* 1745 * This is fixing some of the default configuration of the XIVE 1746 * devices. To be called after the reset of the machine devices. 1747 */ 1748 spapr_irq_reset(spapr, &error_fatal); 1749 1750 /* 1751 * There is no CAS under qtest. Simulate one to please the code that 1752 * depends on spapr->ov5_cas. This is especially needed to test device 1753 * unplug, so we do that before resetting the DRCs. 1754 */ 1755 if (qtest_enabled()) { 1756 spapr_ovec_cleanup(spapr->ov5_cas); 1757 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1758 } 1759 1760 spapr_nvdimm_finish_flushes(); 1761 1762 /* DRC reset may cause a device to be unplugged. This will cause troubles 1763 * if this device is used by another device (eg, a running vhost backend 1764 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1765 * situations, we reset DRCs after all devices have been reset. 1766 */ 1767 spapr_drc_reset_all(spapr); 1768 1769 spapr_clear_pending_events(spapr); 1770 1771 /* 1772 * We place the device tree just below either the top of the RMA, 1773 * or just below 2GB, whichever is lower, so that it can be 1774 * processed with 32-bit real mode code if necessary 1775 */ 1776 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1777 1778 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1779 if (spapr->vof) { 1780 spapr_vof_reset(spapr, fdt, &error_fatal); 1781 /* 1782 * Do not pack the FDT as the client may change properties. 1783 * VOF client does not expect the FDT so we do not load it to the VM. 1784 */ 1785 } else { 1786 rc = fdt_pack(fdt); 1787 /* Should only fail if we've built a corrupted tree */ 1788 assert(rc == 0); 1789 1790 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1791 0, fdt_addr, 0); 1792 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1793 } 1794 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1795 1796 g_free(spapr->fdt_blob); 1797 spapr->fdt_size = fdt_totalsize(fdt); 1798 spapr->fdt_initial_size = spapr->fdt_size; 1799 spapr->fdt_blob = fdt; 1800 1801 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1802 machine->fdt = fdt; 1803 1804 /* Set up the entry state */ 1805 first_ppc_cpu->env.gpr[5] = 0; 1806 1807 spapr->fwnmi_system_reset_addr = -1; 1808 spapr->fwnmi_machine_check_addr = -1; 1809 spapr->fwnmi_machine_check_interlock = -1; 1810 1811 /* Signal all vCPUs waiting on this condition */ 1812 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1813 1814 migrate_del_blocker(&spapr->fwnmi_migration_blocker); 1815 } 1816 1817 static void spapr_create_nvram(SpaprMachineState *spapr) 1818 { 1819 DeviceState *dev = qdev_new("spapr-nvram"); 1820 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1821 1822 if (dinfo) { 1823 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1824 &error_fatal); 1825 } 1826 1827 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1828 1829 spapr->nvram = (struct SpaprNvram *)dev; 1830 } 1831 1832 static void spapr_rtc_create(SpaprMachineState *spapr) 1833 { 1834 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1835 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1836 &error_fatal, NULL); 1837 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1838 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1839 "date"); 1840 } 1841 1842 /* Returns whether we want to use VGA or not */ 1843 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1844 { 1845 vga_interface_created = true; 1846 switch (vga_interface_type) { 1847 case VGA_NONE: 1848 return false; 1849 case VGA_DEVICE: 1850 return true; 1851 case VGA_STD: 1852 case VGA_VIRTIO: 1853 case VGA_CIRRUS: 1854 return pci_vga_init(pci_bus) != NULL; 1855 default: 1856 error_setg(errp, 1857 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1858 return false; 1859 } 1860 } 1861 1862 static int spapr_pre_load(void *opaque) 1863 { 1864 int rc; 1865 1866 rc = spapr_caps_pre_load(opaque); 1867 if (rc) { 1868 return rc; 1869 } 1870 1871 return 0; 1872 } 1873 1874 static int spapr_post_load(void *opaque, int version_id) 1875 { 1876 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1877 int err = 0; 1878 1879 err = spapr_caps_post_migration(spapr); 1880 if (err) { 1881 return err; 1882 } 1883 1884 /* 1885 * In earlier versions, there was no separate qdev for the PAPR 1886 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1887 * So when migrating from those versions, poke the incoming offset 1888 * value into the RTC device 1889 */ 1890 if (version_id < 3) { 1891 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1892 if (err) { 1893 return err; 1894 } 1895 } 1896 1897 if (kvm_enabled() && spapr->patb_entry) { 1898 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1899 bool radix = !!(spapr->patb_entry & PATE1_GR); 1900 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1901 1902 /* 1903 * Update LPCR:HR and UPRT as they may not be set properly in 1904 * the stream 1905 */ 1906 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1907 LPCR_HR | LPCR_UPRT); 1908 1909 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1910 if (err) { 1911 error_report("Process table config unsupported by the host"); 1912 return -EINVAL; 1913 } 1914 } 1915 1916 err = spapr_irq_post_load(spapr, version_id); 1917 if (err) { 1918 return err; 1919 } 1920 1921 return err; 1922 } 1923 1924 static int spapr_pre_save(void *opaque) 1925 { 1926 int rc; 1927 1928 rc = spapr_caps_pre_save(opaque); 1929 if (rc) { 1930 return rc; 1931 } 1932 1933 return 0; 1934 } 1935 1936 static bool version_before_3(void *opaque, int version_id) 1937 { 1938 return version_id < 3; 1939 } 1940 1941 static bool spapr_pending_events_needed(void *opaque) 1942 { 1943 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1944 return !QTAILQ_EMPTY(&spapr->pending_events); 1945 } 1946 1947 static const VMStateDescription vmstate_spapr_event_entry = { 1948 .name = "spapr_event_log_entry", 1949 .version_id = 1, 1950 .minimum_version_id = 1, 1951 .fields = (const VMStateField[]) { 1952 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1953 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1954 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1955 NULL, extended_length), 1956 VMSTATE_END_OF_LIST() 1957 }, 1958 }; 1959 1960 static const VMStateDescription vmstate_spapr_pending_events = { 1961 .name = "spapr_pending_events", 1962 .version_id = 1, 1963 .minimum_version_id = 1, 1964 .needed = spapr_pending_events_needed, 1965 .fields = (const VMStateField[]) { 1966 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1967 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1968 VMSTATE_END_OF_LIST() 1969 }, 1970 }; 1971 1972 static bool spapr_ov5_cas_needed(void *opaque) 1973 { 1974 SpaprMachineState *spapr = opaque; 1975 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1976 bool cas_needed; 1977 1978 /* Prior to the introduction of SpaprOptionVector, we had two option 1979 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1980 * Both of these options encode machine topology into the device-tree 1981 * in such a way that the now-booted OS should still be able to interact 1982 * appropriately with QEMU regardless of what options were actually 1983 * negotiatied on the source side. 1984 * 1985 * As such, we can avoid migrating the CAS-negotiated options if these 1986 * are the only options available on the current machine/platform. 1987 * Since these are the only options available for pseries-2.7 and 1988 * earlier, this allows us to maintain old->new/new->old migration 1989 * compatibility. 1990 * 1991 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1992 * via default pseries-2.8 machines and explicit command-line parameters. 1993 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1994 * of the actual CAS-negotiated values to continue working properly. For 1995 * example, availability of memory unplug depends on knowing whether 1996 * OV5_HP_EVT was negotiated via CAS. 1997 * 1998 * Thus, for any cases where the set of available CAS-negotiatable 1999 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2000 * include the CAS-negotiated options in the migration stream, unless 2001 * if they affect boot time behaviour only. 2002 */ 2003 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2004 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2005 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2006 2007 /* We need extra information if we have any bits outside the mask 2008 * defined above */ 2009 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 2010 2011 spapr_ovec_cleanup(ov5_mask); 2012 2013 return cas_needed; 2014 } 2015 2016 static const VMStateDescription vmstate_spapr_ov5_cas = { 2017 .name = "spapr_option_vector_ov5_cas", 2018 .version_id = 1, 2019 .minimum_version_id = 1, 2020 .needed = spapr_ov5_cas_needed, 2021 .fields = (const VMStateField[]) { 2022 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2023 vmstate_spapr_ovec, SpaprOptionVector), 2024 VMSTATE_END_OF_LIST() 2025 }, 2026 }; 2027 2028 static bool spapr_patb_entry_needed(void *opaque) 2029 { 2030 SpaprMachineState *spapr = opaque; 2031 2032 return !!spapr->patb_entry; 2033 } 2034 2035 static const VMStateDescription vmstate_spapr_patb_entry = { 2036 .name = "spapr_patb_entry", 2037 .version_id = 1, 2038 .minimum_version_id = 1, 2039 .needed = spapr_patb_entry_needed, 2040 .fields = (const VMStateField[]) { 2041 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2042 VMSTATE_END_OF_LIST() 2043 }, 2044 }; 2045 2046 static bool spapr_irq_map_needed(void *opaque) 2047 { 2048 SpaprMachineState *spapr = opaque; 2049 2050 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2051 } 2052 2053 static const VMStateDescription vmstate_spapr_irq_map = { 2054 .name = "spapr_irq_map", 2055 .version_id = 1, 2056 .minimum_version_id = 1, 2057 .needed = spapr_irq_map_needed, 2058 .fields = (const VMStateField[]) { 2059 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2060 VMSTATE_END_OF_LIST() 2061 }, 2062 }; 2063 2064 static bool spapr_dtb_needed(void *opaque) 2065 { 2066 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2067 2068 return smc->update_dt_enabled; 2069 } 2070 2071 static int spapr_dtb_pre_load(void *opaque) 2072 { 2073 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2074 2075 g_free(spapr->fdt_blob); 2076 spapr->fdt_blob = NULL; 2077 spapr->fdt_size = 0; 2078 2079 return 0; 2080 } 2081 2082 static const VMStateDescription vmstate_spapr_dtb = { 2083 .name = "spapr_dtb", 2084 .version_id = 1, 2085 .minimum_version_id = 1, 2086 .needed = spapr_dtb_needed, 2087 .pre_load = spapr_dtb_pre_load, 2088 .fields = (const VMStateField[]) { 2089 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2090 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2091 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2092 fdt_size), 2093 VMSTATE_END_OF_LIST() 2094 }, 2095 }; 2096 2097 static bool spapr_fwnmi_needed(void *opaque) 2098 { 2099 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2100 2101 return spapr->fwnmi_machine_check_addr != -1; 2102 } 2103 2104 static int spapr_fwnmi_pre_save(void *opaque) 2105 { 2106 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2107 2108 /* 2109 * Check if machine check handling is in progress and print a 2110 * warning message. 2111 */ 2112 if (spapr->fwnmi_machine_check_interlock != -1) { 2113 warn_report("A machine check is being handled during migration. The" 2114 "handler may run and log hardware error on the destination"); 2115 } 2116 2117 return 0; 2118 } 2119 2120 static const VMStateDescription vmstate_spapr_fwnmi = { 2121 .name = "spapr_fwnmi", 2122 .version_id = 1, 2123 .minimum_version_id = 1, 2124 .needed = spapr_fwnmi_needed, 2125 .pre_save = spapr_fwnmi_pre_save, 2126 .fields = (const VMStateField[]) { 2127 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2128 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2129 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2130 VMSTATE_END_OF_LIST() 2131 }, 2132 }; 2133 2134 static const VMStateDescription vmstate_spapr = { 2135 .name = "spapr", 2136 .version_id = 3, 2137 .minimum_version_id = 1, 2138 .pre_load = spapr_pre_load, 2139 .post_load = spapr_post_load, 2140 .pre_save = spapr_pre_save, 2141 .fields = (const VMStateField[]) { 2142 /* used to be @next_irq */ 2143 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2144 2145 /* RTC offset */ 2146 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2147 2148 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2149 VMSTATE_END_OF_LIST() 2150 }, 2151 .subsections = (const VMStateDescription * const []) { 2152 &vmstate_spapr_ov5_cas, 2153 &vmstate_spapr_patb_entry, 2154 &vmstate_spapr_pending_events, 2155 &vmstate_spapr_cap_htm, 2156 &vmstate_spapr_cap_vsx, 2157 &vmstate_spapr_cap_dfp, 2158 &vmstate_spapr_cap_cfpc, 2159 &vmstate_spapr_cap_sbbc, 2160 &vmstate_spapr_cap_ibs, 2161 &vmstate_spapr_cap_hpt_maxpagesize, 2162 &vmstate_spapr_irq_map, 2163 &vmstate_spapr_cap_nested_kvm_hv, 2164 &vmstate_spapr_dtb, 2165 &vmstate_spapr_cap_large_decr, 2166 &vmstate_spapr_cap_ccf_assist, 2167 &vmstate_spapr_cap_fwnmi, 2168 &vmstate_spapr_fwnmi, 2169 &vmstate_spapr_cap_rpt_invalidate, 2170 &vmstate_spapr_cap_nested_papr, 2171 NULL 2172 } 2173 }; 2174 2175 static int htab_save_setup(QEMUFile *f, void *opaque) 2176 { 2177 SpaprMachineState *spapr = opaque; 2178 2179 /* "Iteration" header */ 2180 if (!spapr->htab_shift) { 2181 qemu_put_be32(f, -1); 2182 } else { 2183 qemu_put_be32(f, spapr->htab_shift); 2184 } 2185 2186 if (spapr->htab) { 2187 spapr->htab_save_index = 0; 2188 spapr->htab_first_pass = true; 2189 } else { 2190 if (spapr->htab_shift) { 2191 assert(kvm_enabled()); 2192 } 2193 } 2194 2195 2196 return 0; 2197 } 2198 2199 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2200 int chunkstart, int n_valid, int n_invalid) 2201 { 2202 qemu_put_be32(f, chunkstart); 2203 qemu_put_be16(f, n_valid); 2204 qemu_put_be16(f, n_invalid); 2205 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2206 HASH_PTE_SIZE_64 * n_valid); 2207 } 2208 2209 static void htab_save_end_marker(QEMUFile *f) 2210 { 2211 qemu_put_be32(f, 0); 2212 qemu_put_be16(f, 0); 2213 qemu_put_be16(f, 0); 2214 } 2215 2216 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2217 int64_t max_ns) 2218 { 2219 bool has_timeout = max_ns != -1; 2220 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2221 int index = spapr->htab_save_index; 2222 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2223 2224 assert(spapr->htab_first_pass); 2225 2226 do { 2227 int chunkstart; 2228 2229 /* Consume invalid HPTEs */ 2230 while ((index < htabslots) 2231 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2232 CLEAN_HPTE(HPTE(spapr->htab, index)); 2233 index++; 2234 } 2235 2236 /* Consume valid HPTEs */ 2237 chunkstart = index; 2238 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2239 && HPTE_VALID(HPTE(spapr->htab, index))) { 2240 CLEAN_HPTE(HPTE(spapr->htab, index)); 2241 index++; 2242 } 2243 2244 if (index > chunkstart) { 2245 int n_valid = index - chunkstart; 2246 2247 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2248 2249 if (has_timeout && 2250 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2251 break; 2252 } 2253 } 2254 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2255 2256 if (index >= htabslots) { 2257 assert(index == htabslots); 2258 index = 0; 2259 spapr->htab_first_pass = false; 2260 } 2261 spapr->htab_save_index = index; 2262 } 2263 2264 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2265 int64_t max_ns) 2266 { 2267 bool final = max_ns < 0; 2268 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2269 int examined = 0, sent = 0; 2270 int index = spapr->htab_save_index; 2271 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2272 2273 assert(!spapr->htab_first_pass); 2274 2275 do { 2276 int chunkstart, invalidstart; 2277 2278 /* Consume non-dirty HPTEs */ 2279 while ((index < htabslots) 2280 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2281 index++; 2282 examined++; 2283 } 2284 2285 chunkstart = index; 2286 /* Consume valid dirty HPTEs */ 2287 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2288 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2289 && HPTE_VALID(HPTE(spapr->htab, index))) { 2290 CLEAN_HPTE(HPTE(spapr->htab, index)); 2291 index++; 2292 examined++; 2293 } 2294 2295 invalidstart = index; 2296 /* Consume invalid dirty HPTEs */ 2297 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2298 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2299 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2300 CLEAN_HPTE(HPTE(spapr->htab, index)); 2301 index++; 2302 examined++; 2303 } 2304 2305 if (index > chunkstart) { 2306 int n_valid = invalidstart - chunkstart; 2307 int n_invalid = index - invalidstart; 2308 2309 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2310 sent += index - chunkstart; 2311 2312 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2313 break; 2314 } 2315 } 2316 2317 if (examined >= htabslots) { 2318 break; 2319 } 2320 2321 if (index >= htabslots) { 2322 assert(index == htabslots); 2323 index = 0; 2324 } 2325 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2326 2327 if (index >= htabslots) { 2328 assert(index == htabslots); 2329 index = 0; 2330 } 2331 2332 spapr->htab_save_index = index; 2333 2334 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2335 } 2336 2337 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2338 #define MAX_KVM_BUF_SIZE 2048 2339 2340 static int htab_save_iterate(QEMUFile *f, void *opaque) 2341 { 2342 SpaprMachineState *spapr = opaque; 2343 int fd; 2344 int rc = 0; 2345 2346 /* Iteration header */ 2347 if (!spapr->htab_shift) { 2348 qemu_put_be32(f, -1); 2349 return 1; 2350 } else { 2351 qemu_put_be32(f, 0); 2352 } 2353 2354 if (!spapr->htab) { 2355 assert(kvm_enabled()); 2356 2357 fd = get_htab_fd(spapr); 2358 if (fd < 0) { 2359 return fd; 2360 } 2361 2362 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2363 if (rc < 0) { 2364 return rc; 2365 } 2366 } else if (spapr->htab_first_pass) { 2367 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2368 } else { 2369 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2370 } 2371 2372 htab_save_end_marker(f); 2373 2374 return rc; 2375 } 2376 2377 static int htab_save_complete(QEMUFile *f, void *opaque) 2378 { 2379 SpaprMachineState *spapr = opaque; 2380 int fd; 2381 2382 /* Iteration header */ 2383 if (!spapr->htab_shift) { 2384 qemu_put_be32(f, -1); 2385 return 0; 2386 } else { 2387 qemu_put_be32(f, 0); 2388 } 2389 2390 if (!spapr->htab) { 2391 int rc; 2392 2393 assert(kvm_enabled()); 2394 2395 fd = get_htab_fd(spapr); 2396 if (fd < 0) { 2397 return fd; 2398 } 2399 2400 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2401 if (rc < 0) { 2402 return rc; 2403 } 2404 } else { 2405 if (spapr->htab_first_pass) { 2406 htab_save_first_pass(f, spapr, -1); 2407 } 2408 htab_save_later_pass(f, spapr, -1); 2409 } 2410 2411 /* End marker */ 2412 htab_save_end_marker(f); 2413 2414 return 0; 2415 } 2416 2417 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2418 { 2419 SpaprMachineState *spapr = opaque; 2420 uint32_t section_hdr; 2421 int fd = -1; 2422 Error *local_err = NULL; 2423 2424 if (version_id < 1 || version_id > 1) { 2425 error_report("htab_load() bad version"); 2426 return -EINVAL; 2427 } 2428 2429 section_hdr = qemu_get_be32(f); 2430 2431 if (section_hdr == -1) { 2432 spapr_free_hpt(spapr); 2433 return 0; 2434 } 2435 2436 if (section_hdr) { 2437 int ret; 2438 2439 /* First section gives the htab size */ 2440 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2441 if (ret < 0) { 2442 error_report_err(local_err); 2443 return ret; 2444 } 2445 return 0; 2446 } 2447 2448 if (!spapr->htab) { 2449 assert(kvm_enabled()); 2450 2451 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2452 if (fd < 0) { 2453 error_report_err(local_err); 2454 return fd; 2455 } 2456 } 2457 2458 while (true) { 2459 uint32_t index; 2460 uint16_t n_valid, n_invalid; 2461 2462 index = qemu_get_be32(f); 2463 n_valid = qemu_get_be16(f); 2464 n_invalid = qemu_get_be16(f); 2465 2466 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2467 /* End of Stream */ 2468 break; 2469 } 2470 2471 if ((index + n_valid + n_invalid) > 2472 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2473 /* Bad index in stream */ 2474 error_report( 2475 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2476 index, n_valid, n_invalid, spapr->htab_shift); 2477 return -EINVAL; 2478 } 2479 2480 if (spapr->htab) { 2481 if (n_valid) { 2482 qemu_get_buffer(f, HPTE(spapr->htab, index), 2483 HASH_PTE_SIZE_64 * n_valid); 2484 } 2485 if (n_invalid) { 2486 memset(HPTE(spapr->htab, index + n_valid), 0, 2487 HASH_PTE_SIZE_64 * n_invalid); 2488 } 2489 } else { 2490 int rc; 2491 2492 assert(fd >= 0); 2493 2494 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2495 &local_err); 2496 if (rc < 0) { 2497 error_report_err(local_err); 2498 return rc; 2499 } 2500 } 2501 } 2502 2503 if (!spapr->htab) { 2504 assert(fd >= 0); 2505 close(fd); 2506 } 2507 2508 return 0; 2509 } 2510 2511 static void htab_save_cleanup(void *opaque) 2512 { 2513 SpaprMachineState *spapr = opaque; 2514 2515 close_htab_fd(spapr); 2516 } 2517 2518 static SaveVMHandlers savevm_htab_handlers = { 2519 .save_setup = htab_save_setup, 2520 .save_live_iterate = htab_save_iterate, 2521 .save_live_complete_precopy = htab_save_complete, 2522 .save_cleanup = htab_save_cleanup, 2523 .load_state = htab_load, 2524 }; 2525 2526 static void spapr_boot_set(void *opaque, const char *boot_device, 2527 Error **errp) 2528 { 2529 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2530 2531 g_free(spapr->boot_device); 2532 spapr->boot_device = g_strdup(boot_device); 2533 } 2534 2535 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2536 { 2537 MachineState *machine = MACHINE(spapr); 2538 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2539 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2540 int i; 2541 2542 g_assert(!nr_lmbs || machine->device_memory); 2543 for (i = 0; i < nr_lmbs; i++) { 2544 uint64_t addr; 2545 2546 addr = i * lmb_size + machine->device_memory->base; 2547 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2548 addr / lmb_size); 2549 } 2550 } 2551 2552 /* 2553 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2554 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2555 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2556 */ 2557 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2558 { 2559 int i; 2560 2561 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2562 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2563 " is not aligned to %" PRIu64 " MiB", 2564 machine->ram_size, 2565 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2566 return; 2567 } 2568 2569 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2570 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2571 " is not aligned to %" PRIu64 " MiB", 2572 machine->ram_size, 2573 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2574 return; 2575 } 2576 2577 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2578 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2579 error_setg(errp, 2580 "Node %d memory size 0x%" PRIx64 2581 " is not aligned to %" PRIu64 " MiB", 2582 i, machine->numa_state->nodes[i].node_mem, 2583 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2584 return; 2585 } 2586 } 2587 } 2588 2589 /* find cpu slot in machine->possible_cpus by core_id */ 2590 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2591 { 2592 int index = id / ms->smp.threads; 2593 2594 if (index >= ms->possible_cpus->len) { 2595 return NULL; 2596 } 2597 if (idx) { 2598 *idx = index; 2599 } 2600 return &ms->possible_cpus->cpus[index]; 2601 } 2602 2603 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2604 { 2605 MachineState *ms = MACHINE(spapr); 2606 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2607 Error *local_err = NULL; 2608 bool vsmt_user = !!spapr->vsmt; 2609 int kvm_smt = kvmppc_smt_threads(); 2610 int ret; 2611 unsigned int smp_threads = ms->smp.threads; 2612 2613 if (tcg_enabled()) { 2614 if (smp_threads > 1 && 2615 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2616 spapr->max_compat_pvr)) { 2617 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2618 return; 2619 } 2620 2621 if (smp_threads > 8) { 2622 error_setg(errp, "TCG cannot support more than 8 threads/core " 2623 "on a pseries machine"); 2624 return; 2625 } 2626 } 2627 if (!is_power_of_2(smp_threads)) { 2628 error_setg(errp, "Cannot support %d threads/core on a pseries " 2629 "machine because it must be a power of 2", smp_threads); 2630 return; 2631 } 2632 2633 /* Determine the VSMT mode to use: */ 2634 if (vsmt_user) { 2635 if (spapr->vsmt < smp_threads) { 2636 error_setg(errp, "Cannot support VSMT mode %d" 2637 " because it must be >= threads/core (%d)", 2638 spapr->vsmt, smp_threads); 2639 return; 2640 } 2641 /* In this case, spapr->vsmt has been set by the command line */ 2642 } else if (!smc->smp_threads_vsmt) { 2643 /* 2644 * Default VSMT value is tricky, because we need it to be as 2645 * consistent as possible (for migration), but this requires 2646 * changing it for at least some existing cases. We pick 8 as 2647 * the value that we'd get with KVM on POWER8, the 2648 * overwhelmingly common case in production systems. 2649 */ 2650 spapr->vsmt = MAX(8, smp_threads); 2651 } else { 2652 spapr->vsmt = smp_threads; 2653 } 2654 2655 /* KVM: If necessary, set the SMT mode: */ 2656 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2657 ret = kvmppc_set_smt_threads(spapr->vsmt); 2658 if (ret) { 2659 /* Looks like KVM isn't able to change VSMT mode */ 2660 error_setg(&local_err, 2661 "Failed to set KVM's VSMT mode to %d (errno %d)", 2662 spapr->vsmt, ret); 2663 /* We can live with that if the default one is big enough 2664 * for the number of threads, and a submultiple of the one 2665 * we want. In this case we'll waste some vcpu ids, but 2666 * behaviour will be correct */ 2667 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2668 warn_report_err(local_err); 2669 } else { 2670 if (!vsmt_user) { 2671 error_append_hint(&local_err, 2672 "On PPC, a VM with %d threads/core" 2673 " on a host with %d threads/core" 2674 " requires the use of VSMT mode %d.\n", 2675 smp_threads, kvm_smt, spapr->vsmt); 2676 } 2677 kvmppc_error_append_smt_possible_hint(&local_err); 2678 error_propagate(errp, local_err); 2679 } 2680 } 2681 } 2682 /* else TCG: nothing to do currently */ 2683 } 2684 2685 static void spapr_init_cpus(SpaprMachineState *spapr) 2686 { 2687 MachineState *machine = MACHINE(spapr); 2688 MachineClass *mc = MACHINE_GET_CLASS(machine); 2689 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2690 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2691 const CPUArchIdList *possible_cpus; 2692 unsigned int smp_cpus = machine->smp.cpus; 2693 unsigned int smp_threads = machine->smp.threads; 2694 unsigned int max_cpus = machine->smp.max_cpus; 2695 int boot_cores_nr = smp_cpus / smp_threads; 2696 int i; 2697 2698 possible_cpus = mc->possible_cpu_arch_ids(machine); 2699 if (mc->has_hotpluggable_cpus) { 2700 if (smp_cpus % smp_threads) { 2701 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2702 smp_cpus, smp_threads); 2703 exit(1); 2704 } 2705 if (max_cpus % smp_threads) { 2706 error_report("max_cpus (%u) must be multiple of threads (%u)", 2707 max_cpus, smp_threads); 2708 exit(1); 2709 } 2710 } else { 2711 if (max_cpus != smp_cpus) { 2712 error_report("This machine version does not support CPU hotplug"); 2713 exit(1); 2714 } 2715 boot_cores_nr = possible_cpus->len; 2716 } 2717 2718 if (smc->pre_2_10_has_unused_icps) { 2719 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2720 /* Dummy entries get deregistered when real ICPState objects 2721 * are registered during CPU core hotplug. 2722 */ 2723 pre_2_10_vmstate_register_dummy_icp(i); 2724 } 2725 } 2726 2727 for (i = 0; i < possible_cpus->len; i++) { 2728 int core_id = i * smp_threads; 2729 2730 if (mc->has_hotpluggable_cpus) { 2731 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2732 spapr_vcpu_id(spapr, core_id)); 2733 } 2734 2735 if (i < boot_cores_nr) { 2736 Object *core = object_new(type); 2737 int nr_threads = smp_threads; 2738 2739 /* Handle the partially filled core for older machine types */ 2740 if ((i + 1) * smp_threads >= smp_cpus) { 2741 nr_threads = smp_cpus - i * smp_threads; 2742 } 2743 2744 object_property_set_int(core, "nr-threads", nr_threads, 2745 &error_fatal); 2746 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2747 &error_fatal); 2748 qdev_realize(DEVICE(core), NULL, &error_fatal); 2749 2750 object_unref(core); 2751 } 2752 } 2753 } 2754 2755 static PCIHostState *spapr_create_default_phb(void) 2756 { 2757 DeviceState *dev; 2758 2759 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2760 qdev_prop_set_uint32(dev, "index", 0); 2761 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2762 2763 return PCI_HOST_BRIDGE(dev); 2764 } 2765 2766 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2767 { 2768 MachineState *machine = MACHINE(spapr); 2769 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2770 hwaddr rma_size = machine->ram_size; 2771 hwaddr node0_size = spapr_node0_size(machine); 2772 2773 /* RMA has to fit in the first NUMA node */ 2774 rma_size = MIN(rma_size, node0_size); 2775 2776 /* 2777 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2778 * never exceed that 2779 */ 2780 rma_size = MIN(rma_size, 1 * TiB); 2781 2782 /* 2783 * Clamp the RMA size based on machine type. This is for 2784 * migration compatibility with older qemu versions, which limited 2785 * the RMA size for complicated and mostly bad reasons. 2786 */ 2787 if (smc->rma_limit) { 2788 rma_size = MIN(rma_size, smc->rma_limit); 2789 } 2790 2791 if (rma_size < MIN_RMA_SLOF) { 2792 error_setg(errp, 2793 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2794 "ldMiB guest RMA (Real Mode Area memory)", 2795 MIN_RMA_SLOF / MiB); 2796 return 0; 2797 } 2798 2799 return rma_size; 2800 } 2801 2802 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2803 { 2804 MachineState *machine = MACHINE(spapr); 2805 int i; 2806 2807 for (i = 0; i < machine->ram_slots; i++) { 2808 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2809 } 2810 } 2811 2812 /* pSeries LPAR / sPAPR hardware init */ 2813 static void spapr_machine_init(MachineState *machine) 2814 { 2815 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2816 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2817 MachineClass *mc = MACHINE_GET_CLASS(machine); 2818 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2819 const char *bios_name = machine->firmware ?: bios_default; 2820 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2821 const char *kernel_filename = machine->kernel_filename; 2822 const char *initrd_filename = machine->initrd_filename; 2823 PCIHostState *phb; 2824 bool has_vga; 2825 int i; 2826 MemoryRegion *sysmem = get_system_memory(); 2827 long load_limit, fw_size; 2828 Error *resize_hpt_err = NULL; 2829 NICInfo *nd; 2830 2831 if (!filename) { 2832 error_report("Could not find LPAR firmware '%s'", bios_name); 2833 exit(1); 2834 } 2835 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2836 if (fw_size <= 0) { 2837 error_report("Could not load LPAR firmware '%s'", filename); 2838 exit(1); 2839 } 2840 2841 /* 2842 * if Secure VM (PEF) support is configured, then initialize it 2843 */ 2844 pef_kvm_init(machine->cgs, &error_fatal); 2845 2846 msi_nonbroken = true; 2847 2848 QLIST_INIT(&spapr->phbs); 2849 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2850 2851 /* Determine capabilities to run with */ 2852 spapr_caps_init(spapr); 2853 2854 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2855 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2856 /* 2857 * If the user explicitly requested a mode we should either 2858 * supply it, or fail completely (which we do below). But if 2859 * it's not set explicitly, we reset our mode to something 2860 * that works 2861 */ 2862 if (resize_hpt_err) { 2863 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2864 error_free(resize_hpt_err); 2865 resize_hpt_err = NULL; 2866 } else { 2867 spapr->resize_hpt = smc->resize_hpt_default; 2868 } 2869 } 2870 2871 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2872 2873 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2874 /* 2875 * User requested HPT resize, but this host can't supply it. Bail out 2876 */ 2877 error_report_err(resize_hpt_err); 2878 exit(1); 2879 } 2880 error_free(resize_hpt_err); 2881 2882 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2883 2884 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2885 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2886 2887 /* 2888 * VSMT must be set in order to be able to compute VCPU ids, ie to 2889 * call spapr_max_server_number() or spapr_vcpu_id(). 2890 */ 2891 spapr_set_vsmt_mode(spapr, &error_fatal); 2892 2893 /* Set up Interrupt Controller before we create the VCPUs */ 2894 spapr_irq_init(spapr, &error_fatal); 2895 2896 /* Set up containers for ibm,client-architecture-support negotiated options 2897 */ 2898 spapr->ov5 = spapr_ovec_new(); 2899 spapr->ov5_cas = spapr_ovec_new(); 2900 2901 if (smc->dr_lmb_enabled) { 2902 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2903 spapr_validate_node_memory(machine, &error_fatal); 2904 } 2905 2906 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2907 2908 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2909 if (!smc->pre_6_2_numa_affinity) { 2910 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2911 } 2912 2913 /* advertise support for dedicated HP event source to guests */ 2914 if (spapr->use_hotplug_event_source) { 2915 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2916 } 2917 2918 /* advertise support for HPT resizing */ 2919 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2920 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2921 } 2922 2923 /* advertise support for ibm,dyamic-memory-v2 */ 2924 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2925 2926 /* advertise XIVE on POWER9 machines */ 2927 if (spapr->irq->xive) { 2928 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2929 } 2930 2931 /* init CPUs */ 2932 spapr_init_cpus(spapr); 2933 2934 /* Init numa_assoc_array */ 2935 spapr_numa_associativity_init(spapr, machine); 2936 2937 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2938 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2939 spapr->max_compat_pvr)) { 2940 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2941 /* KVM and TCG always allow GTSE with radix... */ 2942 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2943 } 2944 /* ... but not with hash (currently). */ 2945 2946 if (kvm_enabled()) { 2947 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2948 kvmppc_enable_logical_ci_hcalls(); 2949 kvmppc_enable_set_mode_hcall(); 2950 2951 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2952 kvmppc_enable_clear_ref_mod_hcalls(); 2953 2954 /* Enable H_PAGE_INIT */ 2955 kvmppc_enable_h_page_init(); 2956 } 2957 2958 /* map RAM */ 2959 memory_region_add_subregion(sysmem, 0, machine->ram); 2960 2961 /* initialize hotplug memory address space */ 2962 if (machine->ram_size < machine->maxram_size) { 2963 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2964 hwaddr device_mem_base; 2965 2966 /* 2967 * Limit the number of hotpluggable memory slots to half the number 2968 * slots that KVM supports, leaving the other half for PCI and other 2969 * devices. However ensure that number of slots doesn't drop below 32. 2970 */ 2971 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2972 SPAPR_MAX_RAM_SLOTS; 2973 2974 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2975 max_memslots = SPAPR_MAX_RAM_SLOTS; 2976 } 2977 if (machine->ram_slots > max_memslots) { 2978 error_report("Specified number of memory slots %" 2979 PRIu64" exceeds max supported %d", 2980 machine->ram_slots, max_memslots); 2981 exit(1); 2982 } 2983 2984 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2985 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2986 } 2987 2988 if (smc->dr_lmb_enabled) { 2989 spapr_create_lmb_dr_connectors(spapr); 2990 } 2991 2992 if (mc->nvdimm_supported) { 2993 spapr_create_nvdimm_dr_connectors(spapr); 2994 } 2995 2996 /* Set up RTAS event infrastructure */ 2997 spapr_events_init(spapr); 2998 2999 /* Set up the RTC RTAS interfaces */ 3000 spapr_rtc_create(spapr); 3001 3002 /* Set up VIO bus */ 3003 spapr->vio_bus = spapr_vio_bus_init(); 3004 3005 for (i = 0; serial_hd(i); i++) { 3006 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 3007 } 3008 3009 /* We always have at least the nvram device on VIO */ 3010 spapr_create_nvram(spapr); 3011 3012 /* 3013 * Setup hotplug / dynamic-reconfiguration connectors. top-level 3014 * connectors (described in root DT node's "ibm,drc-types" property) 3015 * are pre-initialized here. additional child connectors (such as 3016 * connectors for a PHBs PCI slots) are added as needed during their 3017 * parent's realization. 3018 */ 3019 if (smc->dr_phb_enabled) { 3020 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 3021 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 3022 } 3023 } 3024 3025 /* Set up PCI */ 3026 spapr_pci_rtas_init(); 3027 3028 phb = spapr_create_default_phb(); 3029 3030 while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) { 3031 spapr_vlan_create(spapr->vio_bus, nd); 3032 } 3033 3034 pci_init_nic_devices(phb->bus, NULL); 3035 3036 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 3037 spapr_vscsi_create(spapr->vio_bus); 3038 } 3039 3040 /* Graphics */ 3041 has_vga = spapr_vga_init(phb->bus, &error_fatal); 3042 if (has_vga) { 3043 spapr->want_stdout_path = !machine->enable_graphics; 3044 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3045 } else { 3046 spapr->want_stdout_path = true; 3047 } 3048 3049 if (machine->usb) { 3050 if (smc->use_ohci_by_default) { 3051 pci_create_simple(phb->bus, -1, "pci-ohci"); 3052 } else { 3053 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3054 } 3055 3056 if (has_vga) { 3057 USBBus *usb_bus; 3058 3059 usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS, 3060 &error_abort)); 3061 usb_create_simple(usb_bus, "usb-kbd"); 3062 usb_create_simple(usb_bus, "usb-mouse"); 3063 } 3064 } 3065 3066 if (kernel_filename) { 3067 uint64_t loaded_addr = 0; 3068 3069 spapr->kernel_size = load_elf(kernel_filename, NULL, 3070 translate_kernel_address, spapr, 3071 NULL, &loaded_addr, NULL, NULL, 1, 3072 PPC_ELF_MACHINE, 0, 0); 3073 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3074 spapr->kernel_size = load_elf(kernel_filename, NULL, 3075 translate_kernel_address, spapr, 3076 NULL, &loaded_addr, NULL, NULL, 0, 3077 PPC_ELF_MACHINE, 0, 0); 3078 spapr->kernel_le = spapr->kernel_size > 0; 3079 } 3080 if (spapr->kernel_size < 0) { 3081 error_report("error loading %s: %s", kernel_filename, 3082 load_elf_strerror(spapr->kernel_size)); 3083 exit(1); 3084 } 3085 3086 if (spapr->kernel_addr != loaded_addr) { 3087 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3088 " to 0x%"PRIx64, 3089 spapr->kernel_addr, loaded_addr); 3090 spapr->kernel_addr = loaded_addr; 3091 } 3092 3093 /* load initrd */ 3094 if (initrd_filename) { 3095 /* Try to locate the initrd in the gap between the kernel 3096 * and the firmware. Add a bit of space just in case 3097 */ 3098 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3099 + 0x1ffff) & ~0xffff; 3100 spapr->initrd_size = load_image_targphys(initrd_filename, 3101 spapr->initrd_base, 3102 load_limit 3103 - spapr->initrd_base); 3104 if (spapr->initrd_size < 0) { 3105 error_report("could not load initial ram disk '%s'", 3106 initrd_filename); 3107 exit(1); 3108 } 3109 } 3110 } 3111 3112 /* FIXME: Should register things through the MachineState's qdev 3113 * interface, this is a legacy from the sPAPREnvironment structure 3114 * which predated MachineState but had a similar function */ 3115 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3116 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3117 &savevm_htab_handlers, spapr); 3118 3119 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3120 3121 qemu_register_boot_set(spapr_boot_set, spapr); 3122 3123 /* 3124 * Nothing needs to be done to resume a suspended guest because 3125 * suspending does not change the machine state, so no need for 3126 * a ->wakeup method. 3127 */ 3128 qemu_register_wakeup_support(); 3129 3130 if (kvm_enabled()) { 3131 /* to stop and start vmclock */ 3132 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3133 &spapr->tb); 3134 3135 kvmppc_spapr_enable_inkernel_multitce(); 3136 } 3137 3138 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3139 if (spapr->vof) { 3140 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3141 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3142 } 3143 3144 spapr_watchdog_init(spapr); 3145 } 3146 3147 #define DEFAULT_KVM_TYPE "auto" 3148 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3149 { 3150 /* 3151 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3152 * accommodate the 'HV' and 'PV' formats that exists in the 3153 * wild. The 'auto' mode is being introduced already as 3154 * lower-case, thus we don't need to bother checking for 3155 * "AUTO". 3156 */ 3157 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3158 return 0; 3159 } 3160 3161 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3162 return 1; 3163 } 3164 3165 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3166 return 2; 3167 } 3168 3169 error_report("Unknown kvm-type specified '%s'", vm_type); 3170 return -1; 3171 } 3172 3173 /* 3174 * Implementation of an interface to adjust firmware path 3175 * for the bootindex property handling. 3176 */ 3177 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3178 DeviceState *dev) 3179 { 3180 #define CAST(type, obj, name) \ 3181 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3182 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3183 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3184 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3185 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3186 3187 if (d && bus) { 3188 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3189 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3190 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3191 3192 if (spapr) { 3193 /* 3194 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3195 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3196 * 0x8000 | (target << 8) | (bus << 5) | lun 3197 * (see the "Logical unit addressing format" table in SAM5) 3198 */ 3199 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3200 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3201 (uint64_t)id << 48); 3202 } else if (virtio) { 3203 /* 3204 * We use SRP luns of the form 01000000 | (target << 8) | lun 3205 * in the top 32 bits of the 64-bit LUN 3206 * Note: the quote above is from SLOF and it is wrong, 3207 * the actual binding is: 3208 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3209 */ 3210 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3211 if (d->lun >= 256) { 3212 /* Use the LUN "flat space addressing method" */ 3213 id |= 0x4000; 3214 } 3215 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3216 (uint64_t)id << 32); 3217 } else if (usb) { 3218 /* 3219 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3220 * in the top 32 bits of the 64-bit LUN 3221 */ 3222 unsigned usb_port = atoi(usb->port->path); 3223 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3224 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3225 (uint64_t)id << 32); 3226 } 3227 } 3228 3229 /* 3230 * SLOF probes the USB devices, and if it recognizes that the device is a 3231 * storage device, it changes its name to "storage" instead of "usb-host", 3232 * and additionally adds a child node for the SCSI LUN, so the correct 3233 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3234 */ 3235 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3236 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3237 if (usb_device_is_scsi_storage(usbdev)) { 3238 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3239 } 3240 } 3241 3242 if (phb) { 3243 /* Replace "pci" with "pci@800000020000000" */ 3244 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3245 } 3246 3247 if (vsc) { 3248 /* Same logic as virtio above */ 3249 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3250 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3251 } 3252 3253 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3254 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3255 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3256 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn)); 3257 } 3258 3259 if (pcidev) { 3260 return spapr_pci_fw_dev_name(pcidev); 3261 } 3262 3263 return NULL; 3264 } 3265 3266 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3267 { 3268 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3269 3270 return g_strdup(spapr->kvm_type); 3271 } 3272 3273 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3274 { 3275 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3276 3277 g_free(spapr->kvm_type); 3278 spapr->kvm_type = g_strdup(value); 3279 } 3280 3281 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3282 { 3283 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3284 3285 return spapr->use_hotplug_event_source; 3286 } 3287 3288 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3289 Error **errp) 3290 { 3291 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3292 3293 spapr->use_hotplug_event_source = value; 3294 } 3295 3296 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3297 { 3298 return true; 3299 } 3300 3301 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3302 { 3303 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3304 3305 switch (spapr->resize_hpt) { 3306 case SPAPR_RESIZE_HPT_DEFAULT: 3307 return g_strdup("default"); 3308 case SPAPR_RESIZE_HPT_DISABLED: 3309 return g_strdup("disabled"); 3310 case SPAPR_RESIZE_HPT_ENABLED: 3311 return g_strdup("enabled"); 3312 case SPAPR_RESIZE_HPT_REQUIRED: 3313 return g_strdup("required"); 3314 } 3315 g_assert_not_reached(); 3316 } 3317 3318 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3319 { 3320 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3321 3322 if (strcmp(value, "default") == 0) { 3323 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3324 } else if (strcmp(value, "disabled") == 0) { 3325 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3326 } else if (strcmp(value, "enabled") == 0) { 3327 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3328 } else if (strcmp(value, "required") == 0) { 3329 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3330 } else { 3331 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3332 } 3333 } 3334 3335 static bool spapr_get_vof(Object *obj, Error **errp) 3336 { 3337 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3338 3339 return spapr->vof != NULL; 3340 } 3341 3342 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3343 { 3344 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3345 3346 if (spapr->vof) { 3347 vof_cleanup(spapr->vof); 3348 g_free(spapr->vof); 3349 spapr->vof = NULL; 3350 } 3351 if (!value) { 3352 return; 3353 } 3354 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3355 } 3356 3357 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3358 { 3359 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3360 3361 if (spapr->irq == &spapr_irq_xics_legacy) { 3362 return g_strdup("legacy"); 3363 } else if (spapr->irq == &spapr_irq_xics) { 3364 return g_strdup("xics"); 3365 } else if (spapr->irq == &spapr_irq_xive) { 3366 return g_strdup("xive"); 3367 } else if (spapr->irq == &spapr_irq_dual) { 3368 return g_strdup("dual"); 3369 } 3370 g_assert_not_reached(); 3371 } 3372 3373 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3374 { 3375 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3376 3377 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3378 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3379 return; 3380 } 3381 3382 /* The legacy IRQ backend can not be set */ 3383 if (strcmp(value, "xics") == 0) { 3384 spapr->irq = &spapr_irq_xics; 3385 } else if (strcmp(value, "xive") == 0) { 3386 spapr->irq = &spapr_irq_xive; 3387 } else if (strcmp(value, "dual") == 0) { 3388 spapr->irq = &spapr_irq_dual; 3389 } else { 3390 error_setg(errp, "Bad value for \"ic-mode\" property"); 3391 } 3392 } 3393 3394 static char *spapr_get_host_model(Object *obj, Error **errp) 3395 { 3396 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3397 3398 return g_strdup(spapr->host_model); 3399 } 3400 3401 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3402 { 3403 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3404 3405 g_free(spapr->host_model); 3406 spapr->host_model = g_strdup(value); 3407 } 3408 3409 static char *spapr_get_host_serial(Object *obj, Error **errp) 3410 { 3411 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3412 3413 return g_strdup(spapr->host_serial); 3414 } 3415 3416 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3417 { 3418 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3419 3420 g_free(spapr->host_serial); 3421 spapr->host_serial = g_strdup(value); 3422 } 3423 3424 static void spapr_instance_init(Object *obj) 3425 { 3426 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3427 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3428 MachineState *ms = MACHINE(spapr); 3429 MachineClass *mc = MACHINE_GET_CLASS(ms); 3430 3431 /* 3432 * NVDIMM support went live in 5.1 without considering that, in 3433 * other archs, the user needs to enable NVDIMM support with the 3434 * 'nvdimm' machine option and the default behavior is NVDIMM 3435 * support disabled. It is too late to roll back to the standard 3436 * behavior without breaking 5.1 guests. 3437 */ 3438 if (mc->nvdimm_supported) { 3439 ms->nvdimms_state->is_enabled = true; 3440 } 3441 3442 spapr->htab_fd = -1; 3443 spapr->use_hotplug_event_source = true; 3444 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3445 object_property_add_str(obj, "kvm-type", 3446 spapr_get_kvm_type, spapr_set_kvm_type); 3447 object_property_set_description(obj, "kvm-type", 3448 "Specifies the KVM virtualization mode (auto," 3449 " hv, pr). Defaults to 'auto'. This mode will use" 3450 " any available KVM module loaded in the host," 3451 " where kvm_hv takes precedence if both kvm_hv and" 3452 " kvm_pr are loaded."); 3453 object_property_add_bool(obj, "modern-hotplug-events", 3454 spapr_get_modern_hotplug_events, 3455 spapr_set_modern_hotplug_events); 3456 object_property_set_description(obj, "modern-hotplug-events", 3457 "Use dedicated hotplug event mechanism in" 3458 " place of standard EPOW events when possible" 3459 " (required for memory hot-unplug support)"); 3460 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3461 "Maximum permitted CPU compatibility mode"); 3462 3463 object_property_add_str(obj, "resize-hpt", 3464 spapr_get_resize_hpt, spapr_set_resize_hpt); 3465 object_property_set_description(obj, "resize-hpt", 3466 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3467 object_property_add_uint32_ptr(obj, "vsmt", 3468 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3469 object_property_set_description(obj, "vsmt", 3470 "Virtual SMT: KVM behaves as if this were" 3471 " the host's SMT mode"); 3472 3473 object_property_add_bool(obj, "vfio-no-msix-emulation", 3474 spapr_get_msix_emulation, NULL); 3475 3476 object_property_add_uint64_ptr(obj, "kernel-addr", 3477 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3478 object_property_set_description(obj, "kernel-addr", 3479 stringify(KERNEL_LOAD_ADDR) 3480 " for -kernel is the default"); 3481 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3482 3483 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3484 object_property_set_description(obj, "x-vof", 3485 "Enable Virtual Open Firmware (experimental)"); 3486 3487 /* The machine class defines the default interrupt controller mode */ 3488 spapr->irq = smc->irq; 3489 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3490 spapr_set_ic_mode); 3491 object_property_set_description(obj, "ic-mode", 3492 "Specifies the interrupt controller mode (xics, xive, dual)"); 3493 3494 object_property_add_str(obj, "host-model", 3495 spapr_get_host_model, spapr_set_host_model); 3496 object_property_set_description(obj, "host-model", 3497 "Host model to advertise in guest device tree"); 3498 object_property_add_str(obj, "host-serial", 3499 spapr_get_host_serial, spapr_set_host_serial); 3500 object_property_set_description(obj, "host-serial", 3501 "Host serial number to advertise in guest device tree"); 3502 } 3503 3504 static void spapr_machine_finalizefn(Object *obj) 3505 { 3506 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3507 3508 g_free(spapr->kvm_type); 3509 } 3510 3511 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3512 { 3513 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3514 CPUPPCState *env = cpu_env(cs); 3515 3516 cpu_synchronize_state(cs); 3517 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3518 if (spapr->fwnmi_system_reset_addr != -1) { 3519 uint64_t rtas_addr, addr; 3520 3521 /* get rtas addr from fdt */ 3522 rtas_addr = spapr_get_rtas_addr(); 3523 if (!rtas_addr) { 3524 qemu_system_guest_panicked(NULL); 3525 return; 3526 } 3527 3528 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3529 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3530 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3531 env->gpr[3] = addr; 3532 } 3533 ppc_cpu_do_system_reset(cs); 3534 if (spapr->fwnmi_system_reset_addr != -1) { 3535 env->nip = spapr->fwnmi_system_reset_addr; 3536 } 3537 } 3538 3539 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3540 { 3541 CPUState *cs; 3542 3543 CPU_FOREACH(cs) { 3544 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3545 } 3546 } 3547 3548 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3549 void *fdt, int *fdt_start_offset, Error **errp) 3550 { 3551 uint64_t addr; 3552 uint32_t node; 3553 3554 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3555 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3556 &error_abort); 3557 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3558 SPAPR_MEMORY_BLOCK_SIZE); 3559 return 0; 3560 } 3561 3562 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3563 bool dedicated_hp_event_source) 3564 { 3565 SpaprDrc *drc; 3566 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3567 int i; 3568 uint64_t addr = addr_start; 3569 bool hotplugged = spapr_drc_hotplugged(dev); 3570 3571 for (i = 0; i < nr_lmbs; i++) { 3572 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3573 addr / SPAPR_MEMORY_BLOCK_SIZE); 3574 g_assert(drc); 3575 3576 /* 3577 * memory_device_get_free_addr() provided a range of free addresses 3578 * that doesn't overlap with any existing mapping at pre-plug. The 3579 * corresponding LMB DRCs are thus assumed to be all attachable. 3580 */ 3581 spapr_drc_attach(drc, dev); 3582 if (!hotplugged) { 3583 spapr_drc_reset(drc); 3584 } 3585 addr += SPAPR_MEMORY_BLOCK_SIZE; 3586 } 3587 /* send hotplug notification to the 3588 * guest only in case of hotplugged memory 3589 */ 3590 if (hotplugged) { 3591 if (dedicated_hp_event_source) { 3592 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3593 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3594 g_assert(drc); 3595 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3596 nr_lmbs, 3597 spapr_drc_index(drc)); 3598 } else { 3599 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3600 nr_lmbs); 3601 } 3602 } 3603 } 3604 3605 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3606 { 3607 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3608 PCDIMMDevice *dimm = PC_DIMM(dev); 3609 uint64_t size, addr; 3610 int64_t slot; 3611 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3612 3613 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3614 3615 pc_dimm_plug(dimm, MACHINE(ms)); 3616 3617 if (!is_nvdimm) { 3618 addr = object_property_get_uint(OBJECT(dimm), 3619 PC_DIMM_ADDR_PROP, &error_abort); 3620 spapr_add_lmbs(dev, addr, size, 3621 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3622 } else { 3623 slot = object_property_get_int(OBJECT(dimm), 3624 PC_DIMM_SLOT_PROP, &error_abort); 3625 /* We should have valid slot number at this point */ 3626 g_assert(slot >= 0); 3627 spapr_add_nvdimm(dev, slot); 3628 } 3629 } 3630 3631 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3632 Error **errp) 3633 { 3634 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3635 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3636 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3637 PCDIMMDevice *dimm = PC_DIMM(dev); 3638 Error *local_err = NULL; 3639 uint64_t size; 3640 Object *memdev; 3641 hwaddr pagesize; 3642 3643 if (!smc->dr_lmb_enabled) { 3644 error_setg(errp, "Memory hotplug not supported for this machine"); 3645 return; 3646 } 3647 3648 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3649 if (local_err) { 3650 error_propagate(errp, local_err); 3651 return; 3652 } 3653 3654 if (is_nvdimm) { 3655 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3656 return; 3657 } 3658 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3659 error_setg(errp, "Hotplugged memory size must be a multiple of " 3660 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3661 return; 3662 } 3663 3664 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3665 &error_abort); 3666 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3667 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3668 return; 3669 } 3670 3671 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3672 } 3673 3674 struct SpaprDimmState { 3675 PCDIMMDevice *dimm; 3676 uint32_t nr_lmbs; 3677 QTAILQ_ENTRY(SpaprDimmState) next; 3678 }; 3679 3680 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3681 PCDIMMDevice *dimm) 3682 { 3683 SpaprDimmState *dimm_state = NULL; 3684 3685 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3686 if (dimm_state->dimm == dimm) { 3687 break; 3688 } 3689 } 3690 return dimm_state; 3691 } 3692 3693 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3694 uint32_t nr_lmbs, 3695 PCDIMMDevice *dimm) 3696 { 3697 SpaprDimmState *ds = NULL; 3698 3699 /* 3700 * If this request is for a DIMM whose removal had failed earlier 3701 * (due to guest's refusal to remove the LMBs), we would have this 3702 * dimm already in the pending_dimm_unplugs list. In that 3703 * case don't add again. 3704 */ 3705 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3706 if (!ds) { 3707 ds = g_new0(SpaprDimmState, 1); 3708 ds->nr_lmbs = nr_lmbs; 3709 ds->dimm = dimm; 3710 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3711 } 3712 return ds; 3713 } 3714 3715 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3716 SpaprDimmState *dimm_state) 3717 { 3718 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3719 g_free(dimm_state); 3720 } 3721 3722 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3723 PCDIMMDevice *dimm) 3724 { 3725 SpaprDrc *drc; 3726 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3727 &error_abort); 3728 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3729 uint32_t avail_lmbs = 0; 3730 uint64_t addr_start, addr; 3731 int i; 3732 3733 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3734 &error_abort); 3735 3736 addr = addr_start; 3737 for (i = 0; i < nr_lmbs; i++) { 3738 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3739 addr / SPAPR_MEMORY_BLOCK_SIZE); 3740 g_assert(drc); 3741 if (drc->dev) { 3742 avail_lmbs++; 3743 } 3744 addr += SPAPR_MEMORY_BLOCK_SIZE; 3745 } 3746 3747 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3748 } 3749 3750 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3751 { 3752 SpaprDimmState *ds; 3753 PCDIMMDevice *dimm; 3754 SpaprDrc *drc; 3755 uint32_t nr_lmbs; 3756 uint64_t size, addr_start, addr; 3757 g_autofree char *qapi_error = NULL; 3758 int i; 3759 3760 if (!dev) { 3761 return; 3762 } 3763 3764 dimm = PC_DIMM(dev); 3765 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3766 3767 /* 3768 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3769 * unplug state, but one of its DRC is marked as unplug_requested. 3770 * This is bad and weird enough to g_assert() out. 3771 */ 3772 g_assert(ds); 3773 3774 spapr_pending_dimm_unplugs_remove(spapr, ds); 3775 3776 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3777 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3778 3779 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3780 &error_abort); 3781 3782 addr = addr_start; 3783 for (i = 0; i < nr_lmbs; i++) { 3784 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3785 addr / SPAPR_MEMORY_BLOCK_SIZE); 3786 g_assert(drc); 3787 3788 drc->unplug_requested = false; 3789 addr += SPAPR_MEMORY_BLOCK_SIZE; 3790 } 3791 3792 /* 3793 * Tell QAPI that something happened and the memory 3794 * hotunplug wasn't successful. Keep sending 3795 * MEM_UNPLUG_ERROR even while sending 3796 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3797 * MEM_UNPLUG_ERROR is due. 3798 */ 3799 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3800 "for device %s", dev->id); 3801 3802 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3803 3804 qapi_event_send_device_unplug_guest_error(dev->id, 3805 dev->canonical_path); 3806 } 3807 3808 /* Callback to be called during DRC release. */ 3809 void spapr_lmb_release(DeviceState *dev) 3810 { 3811 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3812 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3813 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3814 3815 /* This information will get lost if a migration occurs 3816 * during the unplug process. In this case recover it. */ 3817 if (ds == NULL) { 3818 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3819 g_assert(ds); 3820 /* The DRC being examined by the caller at least must be counted */ 3821 g_assert(ds->nr_lmbs); 3822 } 3823 3824 if (--ds->nr_lmbs) { 3825 return; 3826 } 3827 3828 /* 3829 * Now that all the LMBs have been removed by the guest, call the 3830 * unplug handler chain. This can never fail. 3831 */ 3832 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3833 object_unparent(OBJECT(dev)); 3834 } 3835 3836 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3837 { 3838 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3839 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3840 3841 /* We really shouldn't get this far without anything to unplug */ 3842 g_assert(ds); 3843 3844 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3845 qdev_unrealize(dev); 3846 spapr_pending_dimm_unplugs_remove(spapr, ds); 3847 } 3848 3849 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3850 DeviceState *dev, Error **errp) 3851 { 3852 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3853 PCDIMMDevice *dimm = PC_DIMM(dev); 3854 uint32_t nr_lmbs; 3855 uint64_t size, addr_start, addr; 3856 int i; 3857 SpaprDrc *drc; 3858 3859 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3860 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3861 return; 3862 } 3863 3864 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3865 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3866 3867 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3868 &error_abort); 3869 3870 /* 3871 * An existing pending dimm state for this DIMM means that there is an 3872 * unplug operation in progress, waiting for the spapr_lmb_release 3873 * callback to complete the job (BQL can't cover that far). In this case, 3874 * bail out to avoid detaching DRCs that were already released. 3875 */ 3876 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3877 error_setg(errp, "Memory unplug already in progress for device %s", 3878 dev->id); 3879 return; 3880 } 3881 3882 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3883 3884 addr = addr_start; 3885 for (i = 0; i < nr_lmbs; i++) { 3886 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3887 addr / SPAPR_MEMORY_BLOCK_SIZE); 3888 g_assert(drc); 3889 3890 spapr_drc_unplug_request(drc); 3891 addr += SPAPR_MEMORY_BLOCK_SIZE; 3892 } 3893 3894 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3895 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3896 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3897 nr_lmbs, spapr_drc_index(drc)); 3898 } 3899 3900 /* Callback to be called during DRC release. */ 3901 void spapr_core_release(DeviceState *dev) 3902 { 3903 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3904 3905 /* Call the unplug handler chain. This can never fail. */ 3906 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3907 object_unparent(OBJECT(dev)); 3908 } 3909 3910 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3911 { 3912 MachineState *ms = MACHINE(hotplug_dev); 3913 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3914 CPUCore *cc = CPU_CORE(dev); 3915 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3916 3917 if (smc->pre_2_10_has_unused_icps) { 3918 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3919 int i; 3920 3921 for (i = 0; i < cc->nr_threads; i++) { 3922 CPUState *cs = CPU(sc->threads[i]); 3923 3924 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3925 } 3926 } 3927 3928 assert(core_slot); 3929 core_slot->cpu = NULL; 3930 qdev_unrealize(dev); 3931 } 3932 3933 static 3934 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3935 Error **errp) 3936 { 3937 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3938 int index; 3939 SpaprDrc *drc; 3940 CPUCore *cc = CPU_CORE(dev); 3941 3942 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3943 error_setg(errp, "Unable to find CPU core with core-id: %d", 3944 cc->core_id); 3945 return; 3946 } 3947 if (index == 0) { 3948 error_setg(errp, "Boot CPU core may not be unplugged"); 3949 return; 3950 } 3951 3952 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3953 spapr_vcpu_id(spapr, cc->core_id)); 3954 g_assert(drc); 3955 3956 if (!spapr_drc_unplug_requested(drc)) { 3957 spapr_drc_unplug_request(drc); 3958 } 3959 3960 /* 3961 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3962 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3963 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3964 * attempt (e.g. the kernel will refuse to remove the last online 3965 * CPU), we will never attempt it again because unplug_requested 3966 * will still be 'true' in that case. 3967 */ 3968 spapr_hotplug_req_remove_by_index(drc); 3969 } 3970 3971 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3972 void *fdt, int *fdt_start_offset, Error **errp) 3973 { 3974 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3975 CPUState *cs = CPU(core->threads[0]); 3976 PowerPCCPU *cpu = POWERPC_CPU(cs); 3977 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3978 int id = spapr_get_vcpu_id(cpu); 3979 g_autofree char *nodename = NULL; 3980 int offset; 3981 3982 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3983 offset = fdt_add_subnode(fdt, 0, nodename); 3984 3985 spapr_dt_cpu(cs, fdt, offset, spapr); 3986 3987 /* 3988 * spapr_dt_cpu() does not fill the 'name' property in the 3989 * CPU node. The function is called during boot process, before 3990 * and after CAS, and overwriting the 'name' property written 3991 * by SLOF is not allowed. 3992 * 3993 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3994 * CPUs more compatible with the coldplugged ones, which have 3995 * the 'name' property. Linux Kernel also relies on this 3996 * property to identify CPU nodes. 3997 */ 3998 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3999 4000 *fdt_start_offset = offset; 4001 return 0; 4002 } 4003 4004 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4005 { 4006 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4007 MachineClass *mc = MACHINE_GET_CLASS(spapr); 4008 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4009 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 4010 CPUCore *cc = CPU_CORE(dev); 4011 SpaprDrc *drc; 4012 CPUArchId *core_slot; 4013 int index; 4014 bool hotplugged = spapr_drc_hotplugged(dev); 4015 int i; 4016 4017 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4018 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 4019 4020 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 4021 spapr_vcpu_id(spapr, cc->core_id)); 4022 4023 g_assert(drc || !mc->has_hotpluggable_cpus); 4024 4025 if (drc) { 4026 /* 4027 * spapr_core_pre_plug() already buys us this is a brand new 4028 * core being plugged into a free slot. Nothing should already 4029 * be attached to the corresponding DRC. 4030 */ 4031 spapr_drc_attach(drc, dev); 4032 4033 if (hotplugged) { 4034 /* 4035 * Send hotplug notification interrupt to the guest only 4036 * in case of hotplugged CPUs. 4037 */ 4038 spapr_hotplug_req_add_by_index(drc); 4039 } else { 4040 spapr_drc_reset(drc); 4041 } 4042 } 4043 4044 core_slot->cpu = CPU(dev); 4045 4046 /* 4047 * Set compatibility mode to match the boot CPU, which was either set 4048 * by the machine reset code or by CAS. This really shouldn't fail at 4049 * this point. 4050 */ 4051 if (hotplugged) { 4052 for (i = 0; i < cc->nr_threads; i++) { 4053 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 4054 &error_abort); 4055 } 4056 } 4057 4058 if (smc->pre_2_10_has_unused_icps) { 4059 for (i = 0; i < cc->nr_threads; i++) { 4060 CPUState *cs = CPU(core->threads[i]); 4061 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4062 } 4063 } 4064 } 4065 4066 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4067 Error **errp) 4068 { 4069 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4070 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4071 CPUCore *cc = CPU_CORE(dev); 4072 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4073 const char *type = object_get_typename(OBJECT(dev)); 4074 CPUArchId *core_slot; 4075 int index; 4076 unsigned int smp_threads = machine->smp.threads; 4077 4078 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4079 error_setg(errp, "CPU hotplug not supported for this machine"); 4080 return; 4081 } 4082 4083 if (strcmp(base_core_type, type)) { 4084 error_setg(errp, "CPU core type should be %s", base_core_type); 4085 return; 4086 } 4087 4088 if (cc->core_id % smp_threads) { 4089 error_setg(errp, "invalid core id %d", cc->core_id); 4090 return; 4091 } 4092 4093 /* 4094 * In general we should have homogeneous threads-per-core, but old 4095 * (pre hotplug support) machine types allow the last core to have 4096 * reduced threads as a compatibility hack for when we allowed 4097 * total vcpus not a multiple of threads-per-core. 4098 */ 4099 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4100 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4101 smp_threads); 4102 return; 4103 } 4104 4105 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4106 if (!core_slot) { 4107 error_setg(errp, "core id %d out of range", cc->core_id); 4108 return; 4109 } 4110 4111 if (core_slot->cpu) { 4112 error_setg(errp, "core %d already populated", cc->core_id); 4113 return; 4114 } 4115 4116 numa_cpu_pre_plug(core_slot, dev, errp); 4117 } 4118 4119 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4120 void *fdt, int *fdt_start_offset, Error **errp) 4121 { 4122 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4123 int intc_phandle; 4124 4125 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4126 if (intc_phandle <= 0) { 4127 return -1; 4128 } 4129 4130 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4131 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4132 return -1; 4133 } 4134 4135 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4136 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4137 4138 return 0; 4139 } 4140 4141 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4142 Error **errp) 4143 { 4144 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4145 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4146 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4147 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4148 SpaprDrc *drc; 4149 4150 if (dev->hotplugged && !smc->dr_phb_enabled) { 4151 error_setg(errp, "PHB hotplug not supported for this machine"); 4152 return false; 4153 } 4154 4155 if (sphb->index == (uint32_t)-1) { 4156 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4157 return false; 4158 } 4159 4160 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4161 if (drc && drc->dev) { 4162 error_setg(errp, "PHB %d already attached", sphb->index); 4163 return false; 4164 } 4165 4166 /* 4167 * This will check that sphb->index doesn't exceed the maximum number of 4168 * PHBs for the current machine type. 4169 */ 4170 return 4171 smc->phb_placement(spapr, sphb->index, 4172 &sphb->buid, &sphb->io_win_addr, 4173 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4174 windows_supported, sphb->dma_liobn, 4175 errp); 4176 } 4177 4178 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4179 { 4180 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4181 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4182 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4183 SpaprDrc *drc; 4184 bool hotplugged = spapr_drc_hotplugged(dev); 4185 4186 if (!smc->dr_phb_enabled) { 4187 return; 4188 } 4189 4190 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4191 /* hotplug hooks should check it's enabled before getting this far */ 4192 assert(drc); 4193 4194 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4195 spapr_drc_attach(drc, dev); 4196 4197 if (hotplugged) { 4198 spapr_hotplug_req_add_by_index(drc); 4199 } else { 4200 spapr_drc_reset(drc); 4201 } 4202 } 4203 4204 void spapr_phb_release(DeviceState *dev) 4205 { 4206 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4207 4208 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4209 object_unparent(OBJECT(dev)); 4210 } 4211 4212 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4213 { 4214 qdev_unrealize(dev); 4215 } 4216 4217 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4218 DeviceState *dev, Error **errp) 4219 { 4220 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4221 SpaprDrc *drc; 4222 4223 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4224 assert(drc); 4225 4226 if (!spapr_drc_unplug_requested(drc)) { 4227 spapr_drc_unplug_request(drc); 4228 spapr_hotplug_req_remove_by_index(drc); 4229 } else { 4230 error_setg(errp, 4231 "PCI Host Bridge unplug already in progress for device %s", 4232 dev->id); 4233 } 4234 } 4235 4236 static 4237 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4238 Error **errp) 4239 { 4240 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4241 4242 if (spapr->tpm_proxy != NULL) { 4243 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4244 return false; 4245 } 4246 4247 return true; 4248 } 4249 4250 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4251 { 4252 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4253 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4254 4255 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4256 g_assert(spapr->tpm_proxy == NULL); 4257 4258 spapr->tpm_proxy = tpm_proxy; 4259 } 4260 4261 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4262 { 4263 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4264 4265 qdev_unrealize(dev); 4266 object_unparent(OBJECT(dev)); 4267 spapr->tpm_proxy = NULL; 4268 } 4269 4270 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4271 DeviceState *dev, Error **errp) 4272 { 4273 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4274 spapr_memory_plug(hotplug_dev, dev); 4275 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4276 spapr_core_plug(hotplug_dev, dev); 4277 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4278 spapr_phb_plug(hotplug_dev, dev); 4279 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4280 spapr_tpm_proxy_plug(hotplug_dev, dev); 4281 } 4282 } 4283 4284 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4285 DeviceState *dev, Error **errp) 4286 { 4287 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4288 spapr_memory_unplug(hotplug_dev, dev); 4289 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4290 spapr_core_unplug(hotplug_dev, dev); 4291 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4292 spapr_phb_unplug(hotplug_dev, dev); 4293 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4294 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4295 } 4296 } 4297 4298 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4299 { 4300 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4301 /* 4302 * CAS will process all pending unplug requests. 4303 * 4304 * HACK: a guest could theoretically have cleared all bits in OV5, 4305 * but none of the guests we care for do. 4306 */ 4307 spapr_ovec_empty(spapr->ov5_cas); 4308 } 4309 4310 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4311 DeviceState *dev, Error **errp) 4312 { 4313 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4314 MachineClass *mc = MACHINE_GET_CLASS(sms); 4315 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4316 4317 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4318 if (spapr_memory_hot_unplug_supported(sms)) { 4319 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4320 } else { 4321 error_setg(errp, "Memory hot unplug not supported for this guest"); 4322 } 4323 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4324 if (!mc->has_hotpluggable_cpus) { 4325 error_setg(errp, "CPU hot unplug not supported on this machine"); 4326 return; 4327 } 4328 spapr_core_unplug_request(hotplug_dev, dev, errp); 4329 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4330 if (!smc->dr_phb_enabled) { 4331 error_setg(errp, "PHB hot unplug not supported on this machine"); 4332 return; 4333 } 4334 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4335 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4336 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4337 } 4338 } 4339 4340 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4341 DeviceState *dev, Error **errp) 4342 { 4343 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4344 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4345 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4346 spapr_core_pre_plug(hotplug_dev, dev, errp); 4347 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4348 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4349 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4350 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4351 } 4352 } 4353 4354 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4355 DeviceState *dev) 4356 { 4357 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4358 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4359 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4360 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4361 return HOTPLUG_HANDLER(machine); 4362 } 4363 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4364 PCIDevice *pcidev = PCI_DEVICE(dev); 4365 PCIBus *root = pci_device_root_bus(pcidev); 4366 SpaprPhbState *phb = 4367 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4368 TYPE_SPAPR_PCI_HOST_BRIDGE); 4369 4370 if (phb) { 4371 return HOTPLUG_HANDLER(phb); 4372 } 4373 } 4374 return NULL; 4375 } 4376 4377 static CpuInstanceProperties 4378 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4379 { 4380 CPUArchId *core_slot; 4381 MachineClass *mc = MACHINE_GET_CLASS(machine); 4382 4383 /* make sure possible_cpu are initialized */ 4384 mc->possible_cpu_arch_ids(machine); 4385 /* get CPU core slot containing thread that matches cpu_index */ 4386 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4387 assert(core_slot); 4388 return core_slot->props; 4389 } 4390 4391 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4392 { 4393 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4394 } 4395 4396 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4397 { 4398 int i; 4399 unsigned int smp_threads = machine->smp.threads; 4400 unsigned int smp_cpus = machine->smp.cpus; 4401 const char *core_type; 4402 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4403 MachineClass *mc = MACHINE_GET_CLASS(machine); 4404 4405 if (!mc->has_hotpluggable_cpus) { 4406 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4407 } 4408 if (machine->possible_cpus) { 4409 assert(machine->possible_cpus->len == spapr_max_cores); 4410 return machine->possible_cpus; 4411 } 4412 4413 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4414 if (!core_type) { 4415 error_report("Unable to find sPAPR CPU Core definition"); 4416 exit(1); 4417 } 4418 4419 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4420 sizeof(CPUArchId) * spapr_max_cores); 4421 machine->possible_cpus->len = spapr_max_cores; 4422 for (i = 0; i < machine->possible_cpus->len; i++) { 4423 int core_id = i * smp_threads; 4424 4425 machine->possible_cpus->cpus[i].type = core_type; 4426 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4427 machine->possible_cpus->cpus[i].arch_id = core_id; 4428 machine->possible_cpus->cpus[i].props.has_core_id = true; 4429 machine->possible_cpus->cpus[i].props.core_id = core_id; 4430 } 4431 return machine->possible_cpus; 4432 } 4433 4434 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4435 uint64_t *buid, hwaddr *pio, 4436 hwaddr *mmio32, hwaddr *mmio64, 4437 unsigned n_dma, uint32_t *liobns, Error **errp) 4438 { 4439 /* 4440 * New-style PHB window placement. 4441 * 4442 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4443 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4444 * windows. 4445 * 4446 * Some guest kernels can't work with MMIO windows above 1<<46 4447 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4448 * 4449 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4450 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4451 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4452 * 1TiB 64-bit MMIO windows for each PHB. 4453 */ 4454 const uint64_t base_buid = 0x800000020000000ULL; 4455 int i; 4456 4457 /* Sanity check natural alignments */ 4458 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4459 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4460 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4461 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4462 /* Sanity check bounds */ 4463 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4464 SPAPR_PCI_MEM32_WIN_SIZE); 4465 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4466 SPAPR_PCI_MEM64_WIN_SIZE); 4467 4468 if (index >= SPAPR_MAX_PHBS) { 4469 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4470 SPAPR_MAX_PHBS - 1); 4471 return false; 4472 } 4473 4474 *buid = base_buid + index; 4475 for (i = 0; i < n_dma; ++i) { 4476 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4477 } 4478 4479 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4480 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4481 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4482 return true; 4483 } 4484 4485 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4486 { 4487 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4488 4489 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4490 } 4491 4492 static void spapr_ics_resend(XICSFabric *dev) 4493 { 4494 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4495 4496 ics_resend(spapr->ics); 4497 } 4498 4499 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4500 { 4501 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4502 4503 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4504 } 4505 4506 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4507 Monitor *mon) 4508 { 4509 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4510 4511 spapr_irq_print_info(spapr, mon); 4512 monitor_printf(mon, "irqchip: %s\n", 4513 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4514 } 4515 4516 /* 4517 * This is a XIVE only operation 4518 */ 4519 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4520 uint8_t nvt_blk, uint32_t nvt_idx, 4521 bool cam_ignore, uint8_t priority, 4522 uint32_t logic_serv, XiveTCTXMatch *match) 4523 { 4524 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4525 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4526 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4527 int count; 4528 4529 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4530 priority, logic_serv, match); 4531 if (count < 0) { 4532 return count; 4533 } 4534 4535 /* 4536 * When we implement the save and restore of the thread interrupt 4537 * contexts in the enter/exit CPU handlers of the machine and the 4538 * escalations in QEMU, we should be able to handle non dispatched 4539 * vCPUs. 4540 * 4541 * Until this is done, the sPAPR machine should find at least one 4542 * matching context always. 4543 */ 4544 if (count == 0) { 4545 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4546 nvt_blk, nvt_idx); 4547 } 4548 4549 return count; 4550 } 4551 4552 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4553 { 4554 return cpu->vcpu_id; 4555 } 4556 4557 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4558 { 4559 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4560 MachineState *ms = MACHINE(spapr); 4561 int vcpu_id; 4562 4563 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4564 4565 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4566 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4567 error_append_hint(errp, "Adjust the number of cpus to %d " 4568 "or try to raise the number of threads per core\n", 4569 vcpu_id * ms->smp.threads / spapr->vsmt); 4570 return false; 4571 } 4572 4573 cpu->vcpu_id = vcpu_id; 4574 return true; 4575 } 4576 4577 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4578 { 4579 CPUState *cs; 4580 4581 CPU_FOREACH(cs) { 4582 PowerPCCPU *cpu = POWERPC_CPU(cs); 4583 4584 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4585 return cpu; 4586 } 4587 } 4588 4589 return NULL; 4590 } 4591 4592 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4593 { 4594 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4595 4596 return spapr_cpu->in_nested; 4597 } 4598 4599 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4600 { 4601 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4602 4603 /* These are only called by TCG, KVM maintains dispatch state */ 4604 4605 spapr_cpu->prod = false; 4606 if (spapr_cpu->vpa_addr) { 4607 CPUState *cs = CPU(cpu); 4608 uint32_t dispatch; 4609 4610 dispatch = ldl_be_phys(cs->as, 4611 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4612 dispatch++; 4613 if ((dispatch & 1) != 0) { 4614 qemu_log_mask(LOG_GUEST_ERROR, 4615 "VPA: incorrect dispatch counter value for " 4616 "dispatched partition %u, correcting.\n", dispatch); 4617 dispatch++; 4618 } 4619 stl_be_phys(cs->as, 4620 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4621 } 4622 } 4623 4624 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4625 { 4626 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4627 4628 if (spapr_cpu->vpa_addr) { 4629 CPUState *cs = CPU(cpu); 4630 uint32_t dispatch; 4631 4632 dispatch = ldl_be_phys(cs->as, 4633 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4634 dispatch++; 4635 if ((dispatch & 1) != 1) { 4636 qemu_log_mask(LOG_GUEST_ERROR, 4637 "VPA: incorrect dispatch counter value for " 4638 "preempted partition %u, correcting.\n", dispatch); 4639 dispatch++; 4640 } 4641 stl_be_phys(cs->as, 4642 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4643 } 4644 } 4645 4646 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4647 { 4648 MachineClass *mc = MACHINE_CLASS(oc); 4649 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4650 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4651 NMIClass *nc = NMI_CLASS(oc); 4652 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4653 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4654 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4655 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4656 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4657 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4658 4659 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4660 mc->ignore_boot_device_suffixes = true; 4661 4662 /* 4663 * We set up the default / latest behaviour here. The class_init 4664 * functions for the specific versioned machine types can override 4665 * these details for backwards compatibility 4666 */ 4667 mc->init = spapr_machine_init; 4668 mc->reset = spapr_machine_reset; 4669 mc->block_default_type = IF_SCSI; 4670 4671 /* 4672 * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(), 4673 * In TCG the limit is restricted by the range of CPU IPIs available. 4674 */ 4675 mc->max_cpus = SPAPR_IRQ_NR_IPIS; 4676 4677 mc->no_parallel = 1; 4678 mc->default_boot_order = ""; 4679 mc->default_ram_size = 512 * MiB; 4680 mc->default_ram_id = "ppc_spapr.ram"; 4681 mc->default_display = "std"; 4682 mc->kvm_type = spapr_kvm_type; 4683 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4684 mc->pci_allow_0_address = true; 4685 assert(!mc->get_hotplug_handler); 4686 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4687 hc->pre_plug = spapr_machine_device_pre_plug; 4688 hc->plug = spapr_machine_device_plug; 4689 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4690 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4691 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4692 hc->unplug_request = spapr_machine_device_unplug_request; 4693 hc->unplug = spapr_machine_device_unplug; 4694 4695 smc->dr_lmb_enabled = true; 4696 smc->update_dt_enabled = true; 4697 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 4698 mc->has_hotpluggable_cpus = true; 4699 mc->nvdimm_supported = true; 4700 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4701 fwc->get_dev_path = spapr_get_fw_dev_path; 4702 nc->nmi_monitor_handler = spapr_nmi; 4703 smc->phb_placement = spapr_phb_placement; 4704 vhc->cpu_in_nested = spapr_cpu_in_nested; 4705 vhc->deliver_hv_excp = spapr_exit_nested; 4706 vhc->hypercall = emulate_spapr_hypercall; 4707 vhc->hpt_mask = spapr_hpt_mask; 4708 vhc->map_hptes = spapr_map_hptes; 4709 vhc->unmap_hptes = spapr_unmap_hptes; 4710 vhc->hpte_set_c = spapr_hpte_set_c; 4711 vhc->hpte_set_r = spapr_hpte_set_r; 4712 vhc->get_pate = spapr_get_pate; 4713 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4714 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4715 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4716 xic->ics_get = spapr_ics_get; 4717 xic->ics_resend = spapr_ics_resend; 4718 xic->icp_get = spapr_icp_get; 4719 ispc->print_info = spapr_pic_print_info; 4720 /* Force NUMA node memory size to be a multiple of 4721 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4722 * in which LMBs are represented and hot-added 4723 */ 4724 mc->numa_mem_align_shift = 28; 4725 mc->auto_enable_numa = true; 4726 4727 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4728 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4729 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4730 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4731 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4732 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4733 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4734 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4735 smc->default_caps.caps[SPAPR_CAP_NESTED_PAPR] = SPAPR_CAP_OFF; 4736 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4737 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4738 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4739 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4740 4741 /* 4742 * This cap specifies whether the AIL 3 mode for 4743 * H_SET_RESOURCE is supported. The default is modified 4744 * by default_caps_with_cpu(). 4745 */ 4746 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4747 spapr_caps_add_properties(smc); 4748 smc->irq = &spapr_irq_dual; 4749 smc->dr_phb_enabled = true; 4750 smc->linux_pci_probe = true; 4751 smc->smp_threads_vsmt = true; 4752 smc->nr_xirqs = SPAPR_NR_XIRQS; 4753 xfc->match_nvt = spapr_match_nvt; 4754 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4755 vmc->quiesce = spapr_vof_quiesce; 4756 vmc->setprop = spapr_vof_setprop; 4757 } 4758 4759 static const TypeInfo spapr_machine_info = { 4760 .name = TYPE_SPAPR_MACHINE, 4761 .parent = TYPE_MACHINE, 4762 .abstract = true, 4763 .instance_size = sizeof(SpaprMachineState), 4764 .instance_init = spapr_instance_init, 4765 .instance_finalize = spapr_machine_finalizefn, 4766 .class_size = sizeof(SpaprMachineClass), 4767 .class_init = spapr_machine_class_init, 4768 .interfaces = (InterfaceInfo[]) { 4769 { TYPE_FW_PATH_PROVIDER }, 4770 { TYPE_NMI }, 4771 { TYPE_HOTPLUG_HANDLER }, 4772 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4773 { TYPE_XICS_FABRIC }, 4774 { TYPE_INTERRUPT_STATS_PROVIDER }, 4775 { TYPE_XIVE_FABRIC }, 4776 { TYPE_VOF_MACHINE_IF }, 4777 { } 4778 }, 4779 }; 4780 4781 static void spapr_machine_latest_class_options(MachineClass *mc) 4782 { 4783 mc->alias = "pseries"; 4784 mc->is_default = true; 4785 } 4786 4787 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4788 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4789 void *data) \ 4790 { \ 4791 MachineClass *mc = MACHINE_CLASS(oc); \ 4792 spapr_machine_##suffix##_class_options(mc); \ 4793 if (latest) { \ 4794 spapr_machine_latest_class_options(mc); \ 4795 } \ 4796 } \ 4797 static const TypeInfo spapr_machine_##suffix##_info = { \ 4798 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4799 .parent = TYPE_SPAPR_MACHINE, \ 4800 .class_init = spapr_machine_##suffix##_class_init, \ 4801 }; \ 4802 static void spapr_machine_register_##suffix(void) \ 4803 { \ 4804 type_register(&spapr_machine_##suffix##_info); \ 4805 } \ 4806 type_init(spapr_machine_register_##suffix) 4807 4808 /* 4809 * pseries-9.0 4810 */ 4811 static void spapr_machine_9_0_class_options(MachineClass *mc) 4812 { 4813 /* Defaults for the latest behaviour inherited from the base class */ 4814 } 4815 4816 DEFINE_SPAPR_MACHINE(9_0, "9.0", true); 4817 4818 /* 4819 * pseries-8.2 4820 */ 4821 static void spapr_machine_8_2_class_options(MachineClass *mc) 4822 { 4823 spapr_machine_9_0_class_options(mc); 4824 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 4825 } 4826 4827 DEFINE_SPAPR_MACHINE(8_2, "8.2", false); 4828 4829 /* 4830 * pseries-8.1 4831 */ 4832 static void spapr_machine_8_1_class_options(MachineClass *mc) 4833 { 4834 spapr_machine_8_2_class_options(mc); 4835 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4836 } 4837 4838 DEFINE_SPAPR_MACHINE(8_1, "8.1", false); 4839 4840 /* 4841 * pseries-8.0 4842 */ 4843 static void spapr_machine_8_0_class_options(MachineClass *mc) 4844 { 4845 spapr_machine_8_1_class_options(mc); 4846 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4847 } 4848 4849 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4850 4851 /* 4852 * pseries-7.2 4853 */ 4854 static void spapr_machine_7_2_class_options(MachineClass *mc) 4855 { 4856 spapr_machine_8_0_class_options(mc); 4857 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4858 } 4859 4860 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4861 4862 /* 4863 * pseries-7.1 4864 */ 4865 static void spapr_machine_7_1_class_options(MachineClass *mc) 4866 { 4867 spapr_machine_7_2_class_options(mc); 4868 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4869 } 4870 4871 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4872 4873 /* 4874 * pseries-7.0 4875 */ 4876 static void spapr_machine_7_0_class_options(MachineClass *mc) 4877 { 4878 spapr_machine_7_1_class_options(mc); 4879 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4880 } 4881 4882 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4883 4884 /* 4885 * pseries-6.2 4886 */ 4887 static void spapr_machine_6_2_class_options(MachineClass *mc) 4888 { 4889 spapr_machine_7_0_class_options(mc); 4890 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4891 } 4892 4893 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4894 4895 /* 4896 * pseries-6.1 4897 */ 4898 static void spapr_machine_6_1_class_options(MachineClass *mc) 4899 { 4900 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4901 4902 spapr_machine_6_2_class_options(mc); 4903 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4904 smc->pre_6_2_numa_affinity = true; 4905 mc->smp_props.prefer_sockets = true; 4906 } 4907 4908 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4909 4910 /* 4911 * pseries-6.0 4912 */ 4913 static void spapr_machine_6_0_class_options(MachineClass *mc) 4914 { 4915 spapr_machine_6_1_class_options(mc); 4916 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4917 } 4918 4919 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4920 4921 /* 4922 * pseries-5.2 4923 */ 4924 static void spapr_machine_5_2_class_options(MachineClass *mc) 4925 { 4926 spapr_machine_6_0_class_options(mc); 4927 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4928 } 4929 4930 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4931 4932 /* 4933 * pseries-5.1 4934 */ 4935 static void spapr_machine_5_1_class_options(MachineClass *mc) 4936 { 4937 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4938 4939 spapr_machine_5_2_class_options(mc); 4940 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4941 smc->pre_5_2_numa_associativity = true; 4942 } 4943 4944 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4945 4946 /* 4947 * pseries-5.0 4948 */ 4949 static void spapr_machine_5_0_class_options(MachineClass *mc) 4950 { 4951 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4952 static GlobalProperty compat[] = { 4953 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4954 }; 4955 4956 spapr_machine_5_1_class_options(mc); 4957 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4958 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4959 mc->numa_mem_supported = true; 4960 smc->pre_5_1_assoc_refpoints = true; 4961 } 4962 4963 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4964 4965 /* 4966 * pseries-4.2 4967 */ 4968 static void spapr_machine_4_2_class_options(MachineClass *mc) 4969 { 4970 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4971 4972 spapr_machine_5_0_class_options(mc); 4973 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4974 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4975 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4976 smc->rma_limit = 16 * GiB; 4977 mc->nvdimm_supported = false; 4978 } 4979 4980 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4981 4982 /* 4983 * pseries-4.1 4984 */ 4985 static void spapr_machine_4_1_class_options(MachineClass *mc) 4986 { 4987 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4988 static GlobalProperty compat[] = { 4989 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4990 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4991 }; 4992 4993 spapr_machine_4_2_class_options(mc); 4994 smc->linux_pci_probe = false; 4995 smc->smp_threads_vsmt = false; 4996 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4997 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4998 } 4999 5000 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 5001 5002 /* 5003 * pseries-4.0 5004 */ 5005 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 5006 uint64_t *buid, hwaddr *pio, 5007 hwaddr *mmio32, hwaddr *mmio64, 5008 unsigned n_dma, uint32_t *liobns, Error **errp) 5009 { 5010 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 5011 liobns, errp)) { 5012 return false; 5013 } 5014 return true; 5015 } 5016 static void spapr_machine_4_0_class_options(MachineClass *mc) 5017 { 5018 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5019 5020 spapr_machine_4_1_class_options(mc); 5021 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 5022 smc->phb_placement = phb_placement_4_0; 5023 smc->irq = &spapr_irq_xics; 5024 smc->pre_4_1_migration = true; 5025 } 5026 5027 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 5028 5029 /* 5030 * pseries-3.1 5031 */ 5032 static void spapr_machine_3_1_class_options(MachineClass *mc) 5033 { 5034 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5035 5036 spapr_machine_4_0_class_options(mc); 5037 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 5038 5039 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 5040 smc->update_dt_enabled = false; 5041 smc->dr_phb_enabled = false; 5042 smc->broken_host_serial_model = true; 5043 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 5044 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 5045 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 5046 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 5047 } 5048 5049 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 5050 5051 /* 5052 * pseries-3.0 5053 */ 5054 5055 static void spapr_machine_3_0_class_options(MachineClass *mc) 5056 { 5057 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5058 5059 spapr_machine_3_1_class_options(mc); 5060 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5061 5062 smc->legacy_irq_allocation = true; 5063 smc->nr_xirqs = 0x400; 5064 smc->irq = &spapr_irq_xics_legacy; 5065 } 5066 5067 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 5068 5069 /* 5070 * pseries-2.12 5071 */ 5072 static void spapr_machine_2_12_class_options(MachineClass *mc) 5073 { 5074 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5075 static GlobalProperty compat[] = { 5076 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5077 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5078 }; 5079 5080 spapr_machine_3_0_class_options(mc); 5081 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5082 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5083 5084 /* We depend on kvm_enabled() to choose a default value for the 5085 * hpt-max-page-size capability. Of course we can't do it here 5086 * because this is too early and the HW accelerator isn't initialized 5087 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5088 */ 5089 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5090 } 5091 5092 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5093 5094 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5095 { 5096 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5097 5098 spapr_machine_2_12_class_options(mc); 5099 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5100 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5101 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5102 } 5103 5104 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5105 5106 /* 5107 * pseries-2.11 5108 */ 5109 5110 static void spapr_machine_2_11_class_options(MachineClass *mc) 5111 { 5112 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5113 5114 spapr_machine_2_12_class_options(mc); 5115 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5116 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5117 mc->deprecation_reason = "old and not maintained - use a 2.12+ version"; 5118 } 5119 5120 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5121 5122 /* 5123 * pseries-2.10 5124 */ 5125 5126 static void spapr_machine_2_10_class_options(MachineClass *mc) 5127 { 5128 spapr_machine_2_11_class_options(mc); 5129 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5130 } 5131 5132 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5133 5134 /* 5135 * pseries-2.9 5136 */ 5137 5138 static void spapr_machine_2_9_class_options(MachineClass *mc) 5139 { 5140 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5141 static GlobalProperty compat[] = { 5142 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5143 }; 5144 5145 spapr_machine_2_10_class_options(mc); 5146 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5147 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5148 smc->pre_2_10_has_unused_icps = true; 5149 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5150 } 5151 5152 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5153 5154 /* 5155 * pseries-2.8 5156 */ 5157 5158 static void spapr_machine_2_8_class_options(MachineClass *mc) 5159 { 5160 static GlobalProperty compat[] = { 5161 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5162 }; 5163 5164 spapr_machine_2_9_class_options(mc); 5165 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5166 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5167 mc->numa_mem_align_shift = 23; 5168 } 5169 5170 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5171 5172 /* 5173 * pseries-2.7 5174 */ 5175 5176 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5177 uint64_t *buid, hwaddr *pio, 5178 hwaddr *mmio32, hwaddr *mmio64, 5179 unsigned n_dma, uint32_t *liobns, Error **errp) 5180 { 5181 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5182 const uint64_t base_buid = 0x800000020000000ULL; 5183 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5184 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5185 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5186 const uint32_t max_index = 255; 5187 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5188 5189 uint64_t ram_top = MACHINE(spapr)->ram_size; 5190 hwaddr phb0_base, phb_base; 5191 int i; 5192 5193 /* Do we have device memory? */ 5194 if (MACHINE(spapr)->device_memory) { 5195 /* Can't just use maxram_size, because there may be an 5196 * alignment gap between normal and device memory regions 5197 */ 5198 ram_top = MACHINE(spapr)->device_memory->base + 5199 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5200 } 5201 5202 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5203 5204 if (index > max_index) { 5205 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5206 max_index); 5207 return false; 5208 } 5209 5210 *buid = base_buid + index; 5211 for (i = 0; i < n_dma; ++i) { 5212 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5213 } 5214 5215 phb_base = phb0_base + index * phb_spacing; 5216 *pio = phb_base + pio_offset; 5217 *mmio32 = phb_base + mmio_offset; 5218 /* 5219 * We don't set the 64-bit MMIO window, relying on the PHB's 5220 * fallback behaviour of automatically splitting a large "32-bit" 5221 * window into contiguous 32-bit and 64-bit windows 5222 */ 5223 5224 return true; 5225 } 5226 5227 static void spapr_machine_2_7_class_options(MachineClass *mc) 5228 { 5229 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5230 static GlobalProperty compat[] = { 5231 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5232 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5233 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5234 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5235 }; 5236 5237 spapr_machine_2_8_class_options(mc); 5238 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5239 mc->default_machine_opts = "modern-hotplug-events=off"; 5240 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5241 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5242 smc->phb_placement = phb_placement_2_7; 5243 } 5244 5245 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5246 5247 /* 5248 * pseries-2.6 5249 */ 5250 5251 static void spapr_machine_2_6_class_options(MachineClass *mc) 5252 { 5253 static GlobalProperty compat[] = { 5254 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5255 }; 5256 5257 spapr_machine_2_7_class_options(mc); 5258 mc->has_hotpluggable_cpus = false; 5259 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5260 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5261 } 5262 5263 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5264 5265 /* 5266 * pseries-2.5 5267 */ 5268 5269 static void spapr_machine_2_5_class_options(MachineClass *mc) 5270 { 5271 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5272 static GlobalProperty compat[] = { 5273 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5274 }; 5275 5276 spapr_machine_2_6_class_options(mc); 5277 smc->use_ohci_by_default = true; 5278 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5279 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5280 } 5281 5282 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5283 5284 /* 5285 * pseries-2.4 5286 */ 5287 5288 static void spapr_machine_2_4_class_options(MachineClass *mc) 5289 { 5290 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5291 5292 spapr_machine_2_5_class_options(mc); 5293 smc->dr_lmb_enabled = false; 5294 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5295 } 5296 5297 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5298 5299 /* 5300 * pseries-2.3 5301 */ 5302 5303 static void spapr_machine_2_3_class_options(MachineClass *mc) 5304 { 5305 static GlobalProperty compat[] = { 5306 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5307 }; 5308 spapr_machine_2_4_class_options(mc); 5309 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5310 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5311 } 5312 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5313 5314 /* 5315 * pseries-2.2 5316 */ 5317 5318 static void spapr_machine_2_2_class_options(MachineClass *mc) 5319 { 5320 static GlobalProperty compat[] = { 5321 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5322 }; 5323 5324 spapr_machine_2_3_class_options(mc); 5325 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5326 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5327 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5328 } 5329 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5330 5331 /* 5332 * pseries-2.1 5333 */ 5334 5335 static void spapr_machine_2_1_class_options(MachineClass *mc) 5336 { 5337 spapr_machine_2_2_class_options(mc); 5338 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5339 } 5340 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5341 5342 static void spapr_machine_register_types(void) 5343 { 5344 type_register_static(&spapr_machine_info); 5345 } 5346 5347 type_init(spapr_machine_register_types) 5348