xref: /openbmc/qemu/hw/ppc/spapr.c (revision 3aff6c2f)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 
38 #include "hw/boards.h"
39 #include "hw/ppc/ppc.h"
40 #include "hw/loader.h"
41 
42 #include "hw/ppc/spapr.h"
43 #include "hw/ppc/spapr_vio.h"
44 #include "hw/pci-host/spapr.h"
45 #include "hw/ppc/xics.h"
46 #include "hw/pci/msi.h"
47 
48 #include "hw/pci/pci.h"
49 #include "hw/scsi/scsi.h"
50 #include "hw/virtio/virtio-scsi.h"
51 
52 #include "exec/address-spaces.h"
53 #include "hw/usb.h"
54 #include "qemu/config-file.h"
55 #include "qemu/error-report.h"
56 
57 #include <libfdt.h>
58 
59 /* SLOF memory layout:
60  *
61  * SLOF raw image loaded at 0, copies its romfs right below the flat
62  * device-tree, then position SLOF itself 31M below that
63  *
64  * So we set FW_OVERHEAD to 40MB which should account for all of that
65  * and more
66  *
67  * We load our kernel at 4M, leaving space for SLOF initial image
68  */
69 #define FDT_MAX_SIZE            0x40000
70 #define RTAS_MAX_SIZE           0x10000
71 #define FW_MAX_SIZE             0x400000
72 #define FW_FILE_NAME            "slof.bin"
73 #define FW_OVERHEAD             0x2800000
74 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
75 
76 #define MIN_RMA_SLOF            128UL
77 
78 #define TIMEBASE_FREQ           512000000ULL
79 
80 #define MAX_CPUS                256
81 #define XICS_IRQS               1024
82 
83 #define PHANDLE_XICP            0x00001111
84 
85 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
86 
87 #define TYPE_SPAPR_MACHINE      "spapr-machine"
88 
89 sPAPREnvironment *spapr;
90 
91 int spapr_allocate_irq(int hint, bool lsi)
92 {
93     int irq;
94 
95     if (hint) {
96         irq = hint;
97         if (hint >= spapr->next_irq) {
98             spapr->next_irq = hint + 1;
99         }
100         /* FIXME: we should probably check for collisions somehow */
101     } else {
102         irq = spapr->next_irq++;
103     }
104 
105     /* Configure irq type */
106     if (!xics_get_qirq(spapr->icp, irq)) {
107         return 0;
108     }
109 
110     xics_set_irq_type(spapr->icp, irq, lsi);
111 
112     return irq;
113 }
114 
115 /*
116  * Allocate block of consequtive IRQs, returns a number of the first.
117  * If msi==true, aligns the first IRQ number to num.
118  */
119 int spapr_allocate_irq_block(int num, bool lsi, bool msi)
120 {
121     int first = -1;
122     int i, hint = 0;
123 
124     /*
125      * MSIMesage::data is used for storing VIRQ so
126      * it has to be aligned to num to support multiple
127      * MSI vectors. MSI-X is not affected by this.
128      * The hint is used for the first IRQ, the rest should
129      * be allocated continuously.
130      */
131     if (msi) {
132         assert((num == 1) || (num == 2) || (num == 4) ||
133                (num == 8) || (num == 16) || (num == 32));
134         hint = (spapr->next_irq + num - 1) & ~(num - 1);
135     }
136 
137     for (i = 0; i < num; ++i) {
138         int irq;
139 
140         irq = spapr_allocate_irq(hint, lsi);
141         if (!irq) {
142             return -1;
143         }
144 
145         if (0 == i) {
146             first = irq;
147             hint = 0;
148         }
149 
150         /* If the above doesn't create a consecutive block then that's
151          * an internal bug */
152         assert(irq == (first + i));
153     }
154 
155     return first;
156 }
157 
158 static XICSState *try_create_xics(const char *type, int nr_servers,
159                                   int nr_irqs)
160 {
161     DeviceState *dev;
162 
163     dev = qdev_create(NULL, type);
164     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
165     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
166     if (qdev_init(dev) < 0) {
167         return NULL;
168     }
169 
170     return XICS_COMMON(dev);
171 }
172 
173 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
174 {
175     XICSState *icp = NULL;
176 
177     if (kvm_enabled()) {
178         QemuOpts *machine_opts = qemu_get_machine_opts();
179         bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
180                                                 "kernel_irqchip", true);
181         bool irqchip_required = qemu_opt_get_bool(machine_opts,
182                                                   "kernel_irqchip", false);
183         if (irqchip_allowed) {
184             icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
185         }
186 
187         if (irqchip_required && !icp) {
188             perror("Failed to create in-kernel XICS\n");
189             abort();
190         }
191     }
192 
193     if (!icp) {
194         icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
195     }
196 
197     if (!icp) {
198         perror("Failed to create XICS\n");
199         abort();
200     }
201 
202     return icp;
203 }
204 
205 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
206 {
207     int ret = 0, offset;
208     CPUState *cpu;
209     char cpu_model[32];
210     int smt = kvmppc_smt_threads();
211     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
212 
213     CPU_FOREACH(cpu) {
214         DeviceClass *dc = DEVICE_GET_CLASS(cpu);
215         int index = ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
216         uint32_t associativity[] = {cpu_to_be32(0x5),
217                                     cpu_to_be32(0x0),
218                                     cpu_to_be32(0x0),
219                                     cpu_to_be32(0x0),
220                                     cpu_to_be32(cpu->numa_node),
221                                     cpu_to_be32(index)};
222 
223         if ((index % smt) != 0) {
224             continue;
225         }
226 
227         snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name,
228                  index);
229 
230         offset = fdt_path_offset(fdt, cpu_model);
231         if (offset < 0) {
232             return offset;
233         }
234 
235         if (nb_numa_nodes > 1) {
236             ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
237                               sizeof(associativity));
238             if (ret < 0) {
239                 return ret;
240             }
241         }
242 
243         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
244                           pft_size_prop, sizeof(pft_size_prop));
245         if (ret < 0) {
246             return ret;
247         }
248     }
249     return ret;
250 }
251 
252 
253 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
254                                      size_t maxsize)
255 {
256     size_t maxcells = maxsize / sizeof(uint32_t);
257     int i, j, count;
258     uint32_t *p = prop;
259 
260     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
261         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
262 
263         if (!sps->page_shift) {
264             break;
265         }
266         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
267             if (sps->enc[count].page_shift == 0) {
268                 break;
269             }
270         }
271         if ((p - prop) >= (maxcells - 3 - count * 2)) {
272             break;
273         }
274         *(p++) = cpu_to_be32(sps->page_shift);
275         *(p++) = cpu_to_be32(sps->slb_enc);
276         *(p++) = cpu_to_be32(count);
277         for (j = 0; j < count; j++) {
278             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
279             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
280         }
281     }
282 
283     return (p - prop) * sizeof(uint32_t);
284 }
285 
286 #define _FDT(exp) \
287     do { \
288         int ret = (exp);                                           \
289         if (ret < 0) {                                             \
290             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
291                     #exp, fdt_strerror(ret));                      \
292             exit(1);                                               \
293         }                                                          \
294     } while (0)
295 
296 
297 static void *spapr_create_fdt_skel(hwaddr initrd_base,
298                                    hwaddr initrd_size,
299                                    hwaddr kernel_size,
300                                    bool little_endian,
301                                    const char *boot_device,
302                                    const char *kernel_cmdline,
303                                    uint32_t epow_irq)
304 {
305     void *fdt;
306     CPUState *cs;
307     uint32_t start_prop = cpu_to_be32(initrd_base);
308     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
309     char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
310         "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode";
311     char qemu_hypertas_prop[] = "hcall-memop1";
312     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
313     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
314     int i, smt = kvmppc_smt_threads();
315     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
316 
317     fdt = g_malloc0(FDT_MAX_SIZE);
318     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
319 
320     if (kernel_size) {
321         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
322     }
323     if (initrd_size) {
324         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
325     }
326     _FDT((fdt_finish_reservemap(fdt)));
327 
328     /* Root node */
329     _FDT((fdt_begin_node(fdt, "")));
330     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
331     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
332     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
333 
334     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
335     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
336 
337     /* /chosen */
338     _FDT((fdt_begin_node(fdt, "chosen")));
339 
340     /* Set Form1_affinity */
341     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
342 
343     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
344     _FDT((fdt_property(fdt, "linux,initrd-start",
345                        &start_prop, sizeof(start_prop))));
346     _FDT((fdt_property(fdt, "linux,initrd-end",
347                        &end_prop, sizeof(end_prop))));
348     if (kernel_size) {
349         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
350                               cpu_to_be64(kernel_size) };
351 
352         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
353         if (little_endian) {
354             _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
355         }
356     }
357     if (boot_device) {
358         _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
359     }
360     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
361     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
362     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
363 
364     _FDT((fdt_end_node(fdt)));
365 
366     /* cpus */
367     _FDT((fdt_begin_node(fdt, "cpus")));
368 
369     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
370     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
371 
372     CPU_FOREACH(cs) {
373         PowerPCCPU *cpu = POWERPC_CPU(cs);
374         CPUPPCState *env = &cpu->env;
375         DeviceClass *dc = DEVICE_GET_CLASS(cs);
376         PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
377         int index = ppc_get_vcpu_dt_id(cpu);
378         uint32_t servers_prop[smp_threads];
379         uint32_t gservers_prop[smp_threads * 2];
380         char *nodename;
381         uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
382                            0xffffffff, 0xffffffff};
383         uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
384         uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
385         uint32_t page_sizes_prop[64];
386         size_t page_sizes_prop_size;
387 
388         if ((index % smt) != 0) {
389             continue;
390         }
391 
392         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
393 
394         _FDT((fdt_begin_node(fdt, nodename)));
395 
396         g_free(nodename);
397 
398         _FDT((fdt_property_cell(fdt, "reg", index)));
399         _FDT((fdt_property_string(fdt, "device_type", "cpu")));
400 
401         _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
402         _FDT((fdt_property_cell(fdt, "d-cache-block-size",
403                                 env->dcache_line_size)));
404         _FDT((fdt_property_cell(fdt, "d-cache-line-size",
405                                 env->dcache_line_size)));
406         _FDT((fdt_property_cell(fdt, "i-cache-block-size",
407                                 env->icache_line_size)));
408         _FDT((fdt_property_cell(fdt, "i-cache-line-size",
409                                 env->icache_line_size)));
410 
411         if (pcc->l1_dcache_size) {
412             _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
413         } else {
414             fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
415         }
416         if (pcc->l1_icache_size) {
417             _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
418         } else {
419             fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
420         }
421 
422         _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
423         _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
424         _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
425         _FDT((fdt_property_string(fdt, "status", "okay")));
426         _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
427 
428         /* Build interrupt servers and gservers properties */
429         for (i = 0; i < smp_threads; i++) {
430             servers_prop[i] = cpu_to_be32(index + i);
431             /* Hack, direct the group queues back to cpu 0 */
432             gservers_prop[i*2] = cpu_to_be32(index + i);
433             gservers_prop[i*2 + 1] = 0;
434         }
435         _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
436                            servers_prop, sizeof(servers_prop))));
437         _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
438                            gservers_prop, sizeof(gservers_prop))));
439 
440         if (env->spr_cb[SPR_PURR].oea_read) {
441             _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
442         }
443 
444         if (env->mmu_model & POWERPC_MMU_1TSEG) {
445             _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
446                                segs, sizeof(segs))));
447         }
448 
449         /* Advertise VMX/VSX (vector extensions) if available
450          *   0 / no property == no vector extensions
451          *   1               == VMX / Altivec available
452          *   2               == VSX available */
453         if (env->insns_flags & PPC_ALTIVEC) {
454             uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
455 
456             _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
457         }
458 
459         /* Advertise DFP (Decimal Floating Point) if available
460          *   0 / no property == no DFP
461          *   1               == DFP available */
462         if (env->insns_flags2 & PPC2_DFP) {
463             _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
464         }
465 
466         page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
467                                                       sizeof(page_sizes_prop));
468         if (page_sizes_prop_size) {
469             _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
470                                page_sizes_prop, page_sizes_prop_size)));
471         }
472 
473         _FDT((fdt_end_node(fdt)));
474     }
475 
476     _FDT((fdt_end_node(fdt)));
477 
478     /* RTAS */
479     _FDT((fdt_begin_node(fdt, "rtas")));
480 
481     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
482                        sizeof(hypertas_prop))));
483     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
484                        sizeof(qemu_hypertas_prop))));
485 
486     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
487         refpoints, sizeof(refpoints))));
488 
489     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
490 
491     _FDT((fdt_end_node(fdt)));
492 
493     /* interrupt controller */
494     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
495 
496     _FDT((fdt_property_string(fdt, "device_type",
497                               "PowerPC-External-Interrupt-Presentation")));
498     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
499     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
500     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
501                        interrupt_server_ranges_prop,
502                        sizeof(interrupt_server_ranges_prop))));
503     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
504     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
505     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
506 
507     _FDT((fdt_end_node(fdt)));
508 
509     /* vdevice */
510     _FDT((fdt_begin_node(fdt, "vdevice")));
511 
512     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
513     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
514     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
515     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
516     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
517     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
518 
519     _FDT((fdt_end_node(fdt)));
520 
521     /* event-sources */
522     spapr_events_fdt_skel(fdt, epow_irq);
523 
524     _FDT((fdt_end_node(fdt))); /* close root node */
525     _FDT((fdt_finish(fdt)));
526 
527     return fdt;
528 }
529 
530 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
531 {
532     uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
533                                 cpu_to_be32(0x0), cpu_to_be32(0x0),
534                                 cpu_to_be32(0x0)};
535     char mem_name[32];
536     hwaddr node0_size, mem_start, node_size;
537     uint64_t mem_reg_property[2];
538     int i, off;
539 
540     /* memory node(s) */
541     if (nb_numa_nodes > 1 && node_mem[0] < ram_size) {
542         node0_size = node_mem[0];
543     } else {
544         node0_size = ram_size;
545     }
546 
547     /* RMA */
548     mem_reg_property[0] = 0;
549     mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
550     off = fdt_add_subnode(fdt, 0, "memory@0");
551     _FDT(off);
552     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
553     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
554                       sizeof(mem_reg_property))));
555     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
556                       sizeof(associativity))));
557 
558     /* RAM: Node 0 */
559     if (node0_size > spapr->rma_size) {
560         mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
561         mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
562 
563         sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
564         off = fdt_add_subnode(fdt, 0, mem_name);
565         _FDT(off);
566         _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
567         _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
568                           sizeof(mem_reg_property))));
569         _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
570                           sizeof(associativity))));
571     }
572 
573     /* RAM: Node 1 and beyond */
574     mem_start = node0_size;
575     for (i = 1; i < nb_numa_nodes; i++) {
576         mem_reg_property[0] = cpu_to_be64(mem_start);
577         if (mem_start >= ram_size) {
578             node_size = 0;
579         } else {
580             node_size = node_mem[i];
581             if (node_size > ram_size - mem_start) {
582                 node_size = ram_size - mem_start;
583             }
584         }
585         mem_reg_property[1] = cpu_to_be64(node_size);
586         associativity[3] = associativity[4] = cpu_to_be32(i);
587         sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
588         off = fdt_add_subnode(fdt, 0, mem_name);
589         _FDT(off);
590         _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
591         _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
592                           sizeof(mem_reg_property))));
593         _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
594                           sizeof(associativity))));
595         mem_start += node_size;
596     }
597 
598     return 0;
599 }
600 
601 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
602                                hwaddr fdt_addr,
603                                hwaddr rtas_addr,
604                                hwaddr rtas_size)
605 {
606     int ret, i;
607     size_t cb = 0;
608     char *bootlist;
609     void *fdt;
610     sPAPRPHBState *phb;
611 
612     fdt = g_malloc(FDT_MAX_SIZE);
613 
614     /* open out the base tree into a temp buffer for the final tweaks */
615     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
616 
617     ret = spapr_populate_memory(spapr, fdt);
618     if (ret < 0) {
619         fprintf(stderr, "couldn't setup memory nodes in fdt\n");
620         exit(1);
621     }
622 
623     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
624     if (ret < 0) {
625         fprintf(stderr, "couldn't setup vio devices in fdt\n");
626         exit(1);
627     }
628 
629     QLIST_FOREACH(phb, &spapr->phbs, list) {
630         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
631     }
632 
633     if (ret < 0) {
634         fprintf(stderr, "couldn't setup PCI devices in fdt\n");
635         exit(1);
636     }
637 
638     /* RTAS */
639     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
640     if (ret < 0) {
641         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
642     }
643 
644     /* Advertise NUMA via ibm,associativity */
645     ret = spapr_fixup_cpu_dt(fdt, spapr);
646     if (ret < 0) {
647         fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
648     }
649 
650     bootlist = get_boot_devices_list(&cb, true);
651     if (cb && bootlist) {
652         int offset = fdt_path_offset(fdt, "/chosen");
653         if (offset < 0) {
654             exit(1);
655         }
656         for (i = 0; i < cb; i++) {
657             if (bootlist[i] == '\n') {
658                 bootlist[i] = ' ';
659             }
660 
661         }
662         ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
663     }
664 
665     if (!spapr->has_graphics) {
666         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
667     }
668 
669     _FDT((fdt_pack(fdt)));
670 
671     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
672         hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
673                  fdt_totalsize(fdt), FDT_MAX_SIZE);
674         exit(1);
675     }
676 
677     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
678 
679     g_free(fdt);
680 }
681 
682 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
683 {
684     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
685 }
686 
687 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
688 {
689     CPUPPCState *env = &cpu->env;
690 
691     if (msr_pr) {
692         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
693         env->gpr[3] = H_PRIVILEGE;
694     } else {
695         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
696     }
697 }
698 
699 static void spapr_reset_htab(sPAPREnvironment *spapr)
700 {
701     long shift;
702 
703     /* allocate hash page table.  For now we always make this 16mb,
704      * later we should probably make it scale to the size of guest
705      * RAM */
706 
707     shift = kvmppc_reset_htab(spapr->htab_shift);
708 
709     if (shift > 0) {
710         /* Kernel handles htab, we don't need to allocate one */
711         spapr->htab_shift = shift;
712         kvmppc_kern_htab = true;
713     } else {
714         if (!spapr->htab) {
715             /* Allocate an htab if we don't yet have one */
716             spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
717         }
718 
719         /* And clear it */
720         memset(spapr->htab, 0, HTAB_SIZE(spapr));
721     }
722 
723     /* Update the RMA size if necessary */
724     if (spapr->vrma_adjust) {
725         hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
726         spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
727     }
728 }
729 
730 static void ppc_spapr_reset(void)
731 {
732     PowerPCCPU *first_ppc_cpu;
733 
734     /* Reset the hash table & recalc the RMA */
735     spapr_reset_htab(spapr);
736 
737     qemu_devices_reset();
738 
739     /* Load the fdt */
740     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
741                        spapr->rtas_size);
742 
743     /* Set up the entry state */
744     first_ppc_cpu = POWERPC_CPU(first_cpu);
745     first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
746     first_ppc_cpu->env.gpr[5] = 0;
747     first_cpu->halted = 0;
748     first_ppc_cpu->env.nip = spapr->entry_point;
749 
750 }
751 
752 static void spapr_cpu_reset(void *opaque)
753 {
754     PowerPCCPU *cpu = opaque;
755     CPUState *cs = CPU(cpu);
756     CPUPPCState *env = &cpu->env;
757 
758     cpu_reset(cs);
759 
760     /* All CPUs start halted.  CPU0 is unhalted from the machine level
761      * reset code and the rest are explicitly started up by the guest
762      * using an RTAS call */
763     cs->halted = 1;
764 
765     env->spr[SPR_HIOR] = 0;
766 
767     env->external_htab = (uint8_t *)spapr->htab;
768     if (kvm_enabled() && !env->external_htab) {
769         /*
770          * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
771          * functions do the right thing.
772          */
773         env->external_htab = (void *)1;
774     }
775     env->htab_base = -1;
776     /*
777      * htab_mask is the mask used to normalize hash value to PTEG index.
778      * htab_shift is log2 of hash table size.
779      * We have 8 hpte per group, and each hpte is 16 bytes.
780      * ie have 128 bytes per hpte entry.
781      */
782     env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
783     env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
784         (spapr->htab_shift - 18);
785 }
786 
787 static void spapr_create_nvram(sPAPREnvironment *spapr)
788 {
789     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
790     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
791 
792     if (dinfo) {
793         qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
794     }
795 
796     qdev_init_nofail(dev);
797 
798     spapr->nvram = (struct sPAPRNVRAM *)dev;
799 }
800 
801 /* Returns whether we want to use VGA or not */
802 static int spapr_vga_init(PCIBus *pci_bus)
803 {
804     switch (vga_interface_type) {
805     case VGA_NONE:
806         return false;
807     case VGA_DEVICE:
808         return true;
809     case VGA_STD:
810         return pci_vga_init(pci_bus) != NULL;
811     default:
812         fprintf(stderr, "This vga model is not supported,"
813                 "currently it only supports -vga std\n");
814         exit(0);
815     }
816 }
817 
818 static const VMStateDescription vmstate_spapr = {
819     .name = "spapr",
820     .version_id = 1,
821     .minimum_version_id = 1,
822     .fields = (VMStateField[]) {
823         VMSTATE_UINT32(next_irq, sPAPREnvironment),
824 
825         /* RTC offset */
826         VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
827 
828         VMSTATE_END_OF_LIST()
829     },
830 };
831 
832 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
833 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
834 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
835 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
836 
837 static int htab_save_setup(QEMUFile *f, void *opaque)
838 {
839     sPAPREnvironment *spapr = opaque;
840 
841     /* "Iteration" header */
842     qemu_put_be32(f, spapr->htab_shift);
843 
844     if (spapr->htab) {
845         spapr->htab_save_index = 0;
846         spapr->htab_first_pass = true;
847     } else {
848         assert(kvm_enabled());
849 
850         spapr->htab_fd = kvmppc_get_htab_fd(false);
851         if (spapr->htab_fd < 0) {
852             fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
853                     strerror(errno));
854             return -1;
855         }
856     }
857 
858 
859     return 0;
860 }
861 
862 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
863                                  int64_t max_ns)
864 {
865     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
866     int index = spapr->htab_save_index;
867     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
868 
869     assert(spapr->htab_first_pass);
870 
871     do {
872         int chunkstart;
873 
874         /* Consume invalid HPTEs */
875         while ((index < htabslots)
876                && !HPTE_VALID(HPTE(spapr->htab, index))) {
877             index++;
878             CLEAN_HPTE(HPTE(spapr->htab, index));
879         }
880 
881         /* Consume valid HPTEs */
882         chunkstart = index;
883         while ((index < htabslots)
884                && HPTE_VALID(HPTE(spapr->htab, index))) {
885             index++;
886             CLEAN_HPTE(HPTE(spapr->htab, index));
887         }
888 
889         if (index > chunkstart) {
890             int n_valid = index - chunkstart;
891 
892             qemu_put_be32(f, chunkstart);
893             qemu_put_be16(f, n_valid);
894             qemu_put_be16(f, 0);
895             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
896                             HASH_PTE_SIZE_64 * n_valid);
897 
898             if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
899                 break;
900             }
901         }
902     } while ((index < htabslots) && !qemu_file_rate_limit(f));
903 
904     if (index >= htabslots) {
905         assert(index == htabslots);
906         index = 0;
907         spapr->htab_first_pass = false;
908     }
909     spapr->htab_save_index = index;
910 }
911 
912 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
913                                 int64_t max_ns)
914 {
915     bool final = max_ns < 0;
916     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
917     int examined = 0, sent = 0;
918     int index = spapr->htab_save_index;
919     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
920 
921     assert(!spapr->htab_first_pass);
922 
923     do {
924         int chunkstart, invalidstart;
925 
926         /* Consume non-dirty HPTEs */
927         while ((index < htabslots)
928                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
929             index++;
930             examined++;
931         }
932 
933         chunkstart = index;
934         /* Consume valid dirty HPTEs */
935         while ((index < htabslots)
936                && HPTE_DIRTY(HPTE(spapr->htab, index))
937                && HPTE_VALID(HPTE(spapr->htab, index))) {
938             CLEAN_HPTE(HPTE(spapr->htab, index));
939             index++;
940             examined++;
941         }
942 
943         invalidstart = index;
944         /* Consume invalid dirty HPTEs */
945         while ((index < htabslots)
946                && HPTE_DIRTY(HPTE(spapr->htab, index))
947                && !HPTE_VALID(HPTE(spapr->htab, index))) {
948             CLEAN_HPTE(HPTE(spapr->htab, index));
949             index++;
950             examined++;
951         }
952 
953         if (index > chunkstart) {
954             int n_valid = invalidstart - chunkstart;
955             int n_invalid = index - invalidstart;
956 
957             qemu_put_be32(f, chunkstart);
958             qemu_put_be16(f, n_valid);
959             qemu_put_be16(f, n_invalid);
960             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
961                             HASH_PTE_SIZE_64 * n_valid);
962             sent += index - chunkstart;
963 
964             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
965                 break;
966             }
967         }
968 
969         if (examined >= htabslots) {
970             break;
971         }
972 
973         if (index >= htabslots) {
974             assert(index == htabslots);
975             index = 0;
976         }
977     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
978 
979     if (index >= htabslots) {
980         assert(index == htabslots);
981         index = 0;
982     }
983 
984     spapr->htab_save_index = index;
985 
986     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
987 }
988 
989 #define MAX_ITERATION_NS    5000000 /* 5 ms */
990 #define MAX_KVM_BUF_SIZE    2048
991 
992 static int htab_save_iterate(QEMUFile *f, void *opaque)
993 {
994     sPAPREnvironment *spapr = opaque;
995     int rc = 0;
996 
997     /* Iteration header */
998     qemu_put_be32(f, 0);
999 
1000     if (!spapr->htab) {
1001         assert(kvm_enabled());
1002 
1003         rc = kvmppc_save_htab(f, spapr->htab_fd,
1004                               MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1005         if (rc < 0) {
1006             return rc;
1007         }
1008     } else  if (spapr->htab_first_pass) {
1009         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1010     } else {
1011         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1012     }
1013 
1014     /* End marker */
1015     qemu_put_be32(f, 0);
1016     qemu_put_be16(f, 0);
1017     qemu_put_be16(f, 0);
1018 
1019     return rc;
1020 }
1021 
1022 static int htab_save_complete(QEMUFile *f, void *opaque)
1023 {
1024     sPAPREnvironment *spapr = opaque;
1025 
1026     /* Iteration header */
1027     qemu_put_be32(f, 0);
1028 
1029     if (!spapr->htab) {
1030         int rc;
1031 
1032         assert(kvm_enabled());
1033 
1034         rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1035         if (rc < 0) {
1036             return rc;
1037         }
1038         close(spapr->htab_fd);
1039         spapr->htab_fd = -1;
1040     } else {
1041         htab_save_later_pass(f, spapr, -1);
1042     }
1043 
1044     /* End marker */
1045     qemu_put_be32(f, 0);
1046     qemu_put_be16(f, 0);
1047     qemu_put_be16(f, 0);
1048 
1049     return 0;
1050 }
1051 
1052 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1053 {
1054     sPAPREnvironment *spapr = opaque;
1055     uint32_t section_hdr;
1056     int fd = -1;
1057 
1058     if (version_id < 1 || version_id > 1) {
1059         fprintf(stderr, "htab_load() bad version\n");
1060         return -EINVAL;
1061     }
1062 
1063     section_hdr = qemu_get_be32(f);
1064 
1065     if (section_hdr) {
1066         /* First section, just the hash shift */
1067         if (spapr->htab_shift != section_hdr) {
1068             return -EINVAL;
1069         }
1070         return 0;
1071     }
1072 
1073     if (!spapr->htab) {
1074         assert(kvm_enabled());
1075 
1076         fd = kvmppc_get_htab_fd(true);
1077         if (fd < 0) {
1078             fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1079                     strerror(errno));
1080         }
1081     }
1082 
1083     while (true) {
1084         uint32_t index;
1085         uint16_t n_valid, n_invalid;
1086 
1087         index = qemu_get_be32(f);
1088         n_valid = qemu_get_be16(f);
1089         n_invalid = qemu_get_be16(f);
1090 
1091         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1092             /* End of Stream */
1093             break;
1094         }
1095 
1096         if ((index + n_valid + n_invalid) >
1097             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1098             /* Bad index in stream */
1099             fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1100                     "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1101                     spapr->htab_shift);
1102             return -EINVAL;
1103         }
1104 
1105         if (spapr->htab) {
1106             if (n_valid) {
1107                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1108                                 HASH_PTE_SIZE_64 * n_valid);
1109             }
1110             if (n_invalid) {
1111                 memset(HPTE(spapr->htab, index + n_valid), 0,
1112                        HASH_PTE_SIZE_64 * n_invalid);
1113             }
1114         } else {
1115             int rc;
1116 
1117             assert(fd >= 0);
1118 
1119             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1120             if (rc < 0) {
1121                 return rc;
1122             }
1123         }
1124     }
1125 
1126     if (!spapr->htab) {
1127         assert(fd >= 0);
1128         close(fd);
1129     }
1130 
1131     return 0;
1132 }
1133 
1134 static SaveVMHandlers savevm_htab_handlers = {
1135     .save_live_setup = htab_save_setup,
1136     .save_live_iterate = htab_save_iterate,
1137     .save_live_complete = htab_save_complete,
1138     .load_state = htab_load,
1139 };
1140 
1141 /* pSeries LPAR / sPAPR hardware init */
1142 static void ppc_spapr_init(MachineState *machine)
1143 {
1144     ram_addr_t ram_size = machine->ram_size;
1145     const char *cpu_model = machine->cpu_model;
1146     const char *kernel_filename = machine->kernel_filename;
1147     const char *kernel_cmdline = machine->kernel_cmdline;
1148     const char *initrd_filename = machine->initrd_filename;
1149     const char *boot_device = machine->boot_order;
1150     PowerPCCPU *cpu;
1151     CPUPPCState *env;
1152     PCIHostState *phb;
1153     int i;
1154     MemoryRegion *sysmem = get_system_memory();
1155     MemoryRegion *ram = g_new(MemoryRegion, 1);
1156     hwaddr rma_alloc_size;
1157     hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
1158     uint32_t initrd_base = 0;
1159     long kernel_size = 0, initrd_size = 0;
1160     long load_limit, rtas_limit, fw_size;
1161     bool kernel_le = false;
1162     char *filename;
1163 
1164     msi_supported = true;
1165 
1166     spapr = g_malloc0(sizeof(*spapr));
1167     QLIST_INIT(&spapr->phbs);
1168 
1169     cpu_ppc_hypercall = emulate_spapr_hypercall;
1170 
1171     /* Allocate RMA if necessary */
1172     rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
1173 
1174     if (rma_alloc_size == -1) {
1175         hw_error("qemu: Unable to create RMA\n");
1176         exit(1);
1177     }
1178 
1179     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1180         spapr->rma_size = rma_alloc_size;
1181     } else {
1182         spapr->rma_size = node0_size;
1183 
1184         /* With KVM, we don't actually know whether KVM supports an
1185          * unbounded RMA (PR KVM) or is limited by the hash table size
1186          * (HV KVM using VRMA), so we always assume the latter
1187          *
1188          * In that case, we also limit the initial allocations for RTAS
1189          * etc... to 256M since we have no way to know what the VRMA size
1190          * is going to be as it depends on the size of the hash table
1191          * isn't determined yet.
1192          */
1193         if (kvm_enabled()) {
1194             spapr->vrma_adjust = 1;
1195             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1196         }
1197     }
1198 
1199     if (spapr->rma_size > node0_size) {
1200         fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1201                 spapr->rma_size);
1202         exit(1);
1203     }
1204 
1205     /* We place the device tree and RTAS just below either the top of the RMA,
1206      * or just below 2GB, whichever is lowere, so that it can be
1207      * processed with 32-bit real mode code if necessary */
1208     rtas_limit = MIN(spapr->rma_size, 0x80000000);
1209     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1210     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1211     load_limit = spapr->fdt_addr - FW_OVERHEAD;
1212 
1213     /* We aim for a hash table of size 1/128 the size of RAM.  The
1214      * normal rule of thumb is 1/64 the size of RAM, but that's much
1215      * more than needed for the Linux guests we support. */
1216     spapr->htab_shift = 18; /* Minimum architected size */
1217     while (spapr->htab_shift <= 46) {
1218         if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1219             break;
1220         }
1221         spapr->htab_shift++;
1222     }
1223 
1224     /* Set up Interrupt Controller before we create the VCPUs */
1225     spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1226                                   XICS_IRQS);
1227     spapr->next_irq = XICS_IRQ_BASE;
1228 
1229     /* init CPUs */
1230     if (cpu_model == NULL) {
1231         cpu_model = kvm_enabled() ? "host" : "POWER7";
1232     }
1233     for (i = 0; i < smp_cpus; i++) {
1234         cpu = cpu_ppc_init(cpu_model);
1235         if (cpu == NULL) {
1236             fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1237             exit(1);
1238         }
1239         env = &cpu->env;
1240 
1241         /* Set time-base frequency to 512 MHz */
1242         cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1243 
1244         /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1245          * MSR[IP] should never be set.
1246          */
1247         env->msr_mask &= ~(1 << 6);
1248 
1249         /* Tell KVM that we're in PAPR mode */
1250         if (kvm_enabled()) {
1251             kvmppc_set_papr(cpu);
1252         }
1253 
1254         xics_cpu_setup(spapr->icp, cpu);
1255 
1256         qemu_register_reset(spapr_cpu_reset, cpu);
1257     }
1258 
1259     /* allocate RAM */
1260     spapr->ram_limit = ram_size;
1261     if (spapr->ram_limit > rma_alloc_size) {
1262         ram_addr_t nonrma_base = rma_alloc_size;
1263         ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
1264 
1265         memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1266         vmstate_register_ram_global(ram);
1267         memory_region_add_subregion(sysmem, nonrma_base, ram);
1268     }
1269 
1270     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1271     spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1272                                            rtas_limit - spapr->rtas_addr);
1273     if (spapr->rtas_size < 0) {
1274         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1275         exit(1);
1276     }
1277     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1278         hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1279                  spapr->rtas_size, RTAS_MAX_SIZE);
1280         exit(1);
1281     }
1282     g_free(filename);
1283 
1284     /* Set up EPOW events infrastructure */
1285     spapr_events_init(spapr);
1286 
1287     /* Set up VIO bus */
1288     spapr->vio_bus = spapr_vio_bus_init();
1289 
1290     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1291         if (serial_hds[i]) {
1292             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1293         }
1294     }
1295 
1296     /* We always have at least the nvram device on VIO */
1297     spapr_create_nvram(spapr);
1298 
1299     /* Set up PCI */
1300     spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1301     spapr_pci_rtas_init();
1302 
1303     phb = spapr_create_phb(spapr, 0);
1304 
1305     for (i = 0; i < nb_nics; i++) {
1306         NICInfo *nd = &nd_table[i];
1307 
1308         if (!nd->model) {
1309             nd->model = g_strdup("ibmveth");
1310         }
1311 
1312         if (strcmp(nd->model, "ibmveth") == 0) {
1313             spapr_vlan_create(spapr->vio_bus, nd);
1314         } else {
1315             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1316         }
1317     }
1318 
1319     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1320         spapr_vscsi_create(spapr->vio_bus);
1321     }
1322 
1323     /* Graphics */
1324     if (spapr_vga_init(phb->bus)) {
1325         spapr->has_graphics = true;
1326     }
1327 
1328     if (usb_enabled(spapr->has_graphics)) {
1329         pci_create_simple(phb->bus, -1, "pci-ohci");
1330         if (spapr->has_graphics) {
1331             usbdevice_create("keyboard");
1332             usbdevice_create("mouse");
1333         }
1334     }
1335 
1336     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1337         fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1338                 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1339         exit(1);
1340     }
1341 
1342     if (kernel_filename) {
1343         uint64_t lowaddr = 0;
1344 
1345         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1346                                NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1347         if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1348             kernel_size = load_elf(kernel_filename,
1349                                    translate_kernel_address, NULL,
1350                                    NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1351             kernel_le = kernel_size > 0;
1352         }
1353         if (kernel_size < 0) {
1354             fprintf(stderr, "qemu: error loading %s: %s\n",
1355                     kernel_filename, load_elf_strerror(kernel_size));
1356             exit(1);
1357         }
1358 
1359         /* load initrd */
1360         if (initrd_filename) {
1361             /* Try to locate the initrd in the gap between the kernel
1362              * and the firmware. Add a bit of space just in case
1363              */
1364             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1365             initrd_size = load_image_targphys(initrd_filename, initrd_base,
1366                                               load_limit - initrd_base);
1367             if (initrd_size < 0) {
1368                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1369                         initrd_filename);
1370                 exit(1);
1371             }
1372         } else {
1373             initrd_base = 0;
1374             initrd_size = 0;
1375         }
1376     }
1377 
1378     if (bios_name == NULL) {
1379         bios_name = FW_FILE_NAME;
1380     }
1381     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1382     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1383     if (fw_size < 0) {
1384         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1385         exit(1);
1386     }
1387     g_free(filename);
1388 
1389     spapr->entry_point = 0x100;
1390 
1391     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1392     register_savevm_live(NULL, "spapr/htab", -1, 1,
1393                          &savevm_htab_handlers, spapr);
1394 
1395     /* Prepare the device tree */
1396     spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1397                                             kernel_size, kernel_le,
1398                                             boot_device, kernel_cmdline,
1399                                             spapr->epow_irq);
1400     assert(spapr->fdt_skel != NULL);
1401 }
1402 
1403 static int spapr_kvm_type(const char *vm_type)
1404 {
1405     if (!vm_type) {
1406         return 0;
1407     }
1408 
1409     if (!strcmp(vm_type, "HV")) {
1410         return 1;
1411     }
1412 
1413     if (!strcmp(vm_type, "PR")) {
1414         return 2;
1415     }
1416 
1417     error_report("Unknown kvm-type specified '%s'", vm_type);
1418     exit(1);
1419 }
1420 
1421 /*
1422  * Implementation of an interface to adjust firmware patch
1423  * for the bootindex property handling.
1424  */
1425 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1426                                    DeviceState *dev)
1427 {
1428 #define CAST(type, obj, name) \
1429     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1430     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
1431     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1432 
1433     if (d) {
1434         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1435         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1436         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1437 
1438         if (spapr) {
1439             /*
1440              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1441              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1442              * in the top 16 bits of the 64-bit LUN
1443              */
1444             unsigned id = 0x8000 | (d->id << 8) | d->lun;
1445             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1446                                    (uint64_t)id << 48);
1447         } else if (virtio) {
1448             /*
1449              * We use SRP luns of the form 01000000 | (target << 8) | lun
1450              * in the top 32 bits of the 64-bit LUN
1451              * Note: the quote above is from SLOF and it is wrong,
1452              * the actual binding is:
1453              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1454              */
1455             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1456             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1457                                    (uint64_t)id << 32);
1458         } else if (usb) {
1459             /*
1460              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1461              * in the top 32 bits of the 64-bit LUN
1462              */
1463             unsigned usb_port = atoi(usb->port->path);
1464             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1465             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1466                                    (uint64_t)id << 32);
1467         }
1468     }
1469 
1470     if (phb) {
1471         /* Replace "pci" with "pci@800000020000000" */
1472         return g_strdup_printf("pci@%"PRIX64, phb->buid);
1473     }
1474 
1475     return NULL;
1476 }
1477 
1478 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1479 {
1480     MachineClass *mc = MACHINE_CLASS(oc);
1481     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1482 
1483     mc->name = "pseries";
1484     mc->desc = "pSeries Logical Partition (PAPR compliant)";
1485     mc->is_default = 1;
1486     mc->init = ppc_spapr_init;
1487     mc->reset = ppc_spapr_reset;
1488     mc->block_default_type = IF_SCSI;
1489     mc->max_cpus = MAX_CPUS;
1490     mc->no_parallel = 1;
1491     mc->default_boot_order = NULL;
1492     mc->kvm_type = spapr_kvm_type;
1493 
1494     fwc->get_dev_path = spapr_get_fw_dev_path;
1495 }
1496 
1497 static const TypeInfo spapr_machine_info = {
1498     .name          = TYPE_SPAPR_MACHINE,
1499     .parent        = TYPE_MACHINE,
1500     .class_init    = spapr_machine_class_init,
1501     .interfaces = (InterfaceInfo[]) {
1502         { TYPE_FW_PATH_PROVIDER },
1503         { }
1504     },
1505 };
1506 
1507 static void spapr_machine_register_types(void)
1508 {
1509     type_register_static(&spapr_machine_info);
1510 }
1511 
1512 type_init(spapr_machine_register_types)
1513