1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/numa.h" 31 #include "hw/hw.h" 32 #include "qemu/log.h" 33 #include "hw/fw-path-provider.h" 34 #include "elf.h" 35 #include "net/net.h" 36 #include "sysemu/device_tree.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/migration.h" 42 #include "mmu-hash64.h" 43 #include "qom/cpu.h" 44 45 #include "hw/boards.h" 46 #include "hw/ppc/ppc.h" 47 #include "hw/loader.h" 48 49 #include "hw/ppc/fdt.h" 50 #include "hw/ppc/spapr.h" 51 #include "hw/ppc/spapr_vio.h" 52 #include "hw/pci-host/spapr.h" 53 #include "hw/ppc/xics.h" 54 #include "hw/pci/msi.h" 55 56 #include "hw/pci/pci.h" 57 #include "hw/scsi/scsi.h" 58 #include "hw/virtio/virtio-scsi.h" 59 60 #include "exec/address-spaces.h" 61 #include "hw/usb.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "trace.h" 65 #include "hw/nmi.h" 66 67 #include "hw/compat.h" 68 #include "qemu/cutils.h" 69 #include "hw/ppc/spapr_cpu_core.h" 70 #include "qmp-commands.h" 71 72 #include <libfdt.h> 73 74 /* SLOF memory layout: 75 * 76 * SLOF raw image loaded at 0, copies its romfs right below the flat 77 * device-tree, then position SLOF itself 31M below that 78 * 79 * So we set FW_OVERHEAD to 40MB which should account for all of that 80 * and more 81 * 82 * We load our kernel at 4M, leaving space for SLOF initial image 83 */ 84 #define FDT_MAX_SIZE 0x100000 85 #define RTAS_MAX_SIZE 0x10000 86 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 87 #define FW_MAX_SIZE 0x400000 88 #define FW_FILE_NAME "slof.bin" 89 #define FW_OVERHEAD 0x2800000 90 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 91 92 #define MIN_RMA_SLOF 128UL 93 94 #define PHANDLE_XICP 0x00001111 95 96 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) 97 98 static XICSState *try_create_xics(const char *type, int nr_servers, 99 int nr_irqs, Error **errp) 100 { 101 Error *err = NULL; 102 DeviceState *dev; 103 104 dev = qdev_create(NULL, type); 105 qdev_prop_set_uint32(dev, "nr_servers", nr_servers); 106 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs); 107 object_property_set_bool(OBJECT(dev), true, "realized", &err); 108 if (err) { 109 error_propagate(errp, err); 110 object_unparent(OBJECT(dev)); 111 return NULL; 112 } 113 return XICS_COMMON(dev); 114 } 115 116 static XICSState *xics_system_init(MachineState *machine, 117 int nr_servers, int nr_irqs, Error **errp) 118 { 119 XICSState *xics = NULL; 120 121 if (kvm_enabled()) { 122 Error *err = NULL; 123 124 if (machine_kernel_irqchip_allowed(machine)) { 125 xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs, 126 &err); 127 } 128 if (machine_kernel_irqchip_required(machine) && !xics) { 129 error_reportf_err(err, 130 "kernel_irqchip requested but unavailable: "); 131 } else { 132 error_free(err); 133 } 134 } 135 136 if (!xics) { 137 xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp); 138 } 139 140 return xics; 141 } 142 143 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 144 int smt_threads) 145 { 146 int i, ret = 0; 147 uint32_t servers_prop[smt_threads]; 148 uint32_t gservers_prop[smt_threads * 2]; 149 int index = ppc_get_vcpu_dt_id(cpu); 150 151 if (cpu->compat_pvr) { 152 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 153 if (ret < 0) { 154 return ret; 155 } 156 } 157 158 /* Build interrupt servers and gservers properties */ 159 for (i = 0; i < smt_threads; i++) { 160 servers_prop[i] = cpu_to_be32(index + i); 161 /* Hack, direct the group queues back to cpu 0 */ 162 gservers_prop[i*2] = cpu_to_be32(index + i); 163 gservers_prop[i*2 + 1] = 0; 164 } 165 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 166 servers_prop, sizeof(servers_prop)); 167 if (ret < 0) { 168 return ret; 169 } 170 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 171 gservers_prop, sizeof(gservers_prop)); 172 173 return ret; 174 } 175 176 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs) 177 { 178 int ret = 0; 179 PowerPCCPU *cpu = POWERPC_CPU(cs); 180 int index = ppc_get_vcpu_dt_id(cpu); 181 uint32_t associativity[] = {cpu_to_be32(0x5), 182 cpu_to_be32(0x0), 183 cpu_to_be32(0x0), 184 cpu_to_be32(0x0), 185 cpu_to_be32(cs->numa_node), 186 cpu_to_be32(index)}; 187 188 /* Advertise NUMA via ibm,associativity */ 189 if (nb_numa_nodes > 1) { 190 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, 191 sizeof(associativity)); 192 } 193 194 return ret; 195 } 196 197 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 198 { 199 int ret = 0, offset, cpus_offset; 200 CPUState *cs; 201 char cpu_model[32]; 202 int smt = kvmppc_smt_threads(); 203 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 204 205 CPU_FOREACH(cs) { 206 PowerPCCPU *cpu = POWERPC_CPU(cs); 207 DeviceClass *dc = DEVICE_GET_CLASS(cs); 208 int index = ppc_get_vcpu_dt_id(cpu); 209 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 210 211 if ((index % smt) != 0) { 212 continue; 213 } 214 215 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 216 217 cpus_offset = fdt_path_offset(fdt, "/cpus"); 218 if (cpus_offset < 0) { 219 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), 220 "cpus"); 221 if (cpus_offset < 0) { 222 return cpus_offset; 223 } 224 } 225 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 226 if (offset < 0) { 227 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 228 if (offset < 0) { 229 return offset; 230 } 231 } 232 233 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 234 pft_size_prop, sizeof(pft_size_prop)); 235 if (ret < 0) { 236 return ret; 237 } 238 239 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs); 240 if (ret < 0) { 241 return ret; 242 } 243 244 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 245 if (ret < 0) { 246 return ret; 247 } 248 } 249 return ret; 250 } 251 252 static hwaddr spapr_node0_size(void) 253 { 254 MachineState *machine = MACHINE(qdev_get_machine()); 255 256 if (nb_numa_nodes) { 257 int i; 258 for (i = 0; i < nb_numa_nodes; ++i) { 259 if (numa_info[i].node_mem) { 260 return MIN(pow2floor(numa_info[i].node_mem), 261 machine->ram_size); 262 } 263 } 264 } 265 return machine->ram_size; 266 } 267 268 static void add_str(GString *s, const gchar *s1) 269 { 270 g_string_append_len(s, s1, strlen(s1) + 1); 271 } 272 273 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 274 hwaddr size) 275 { 276 uint32_t associativity[] = { 277 cpu_to_be32(0x4), /* length */ 278 cpu_to_be32(0x0), cpu_to_be32(0x0), 279 cpu_to_be32(0x0), cpu_to_be32(nodeid) 280 }; 281 char mem_name[32]; 282 uint64_t mem_reg_property[2]; 283 int off; 284 285 mem_reg_property[0] = cpu_to_be64(start); 286 mem_reg_property[1] = cpu_to_be64(size); 287 288 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 289 off = fdt_add_subnode(fdt, 0, mem_name); 290 _FDT(off); 291 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 292 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 293 sizeof(mem_reg_property)))); 294 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 295 sizeof(associativity)))); 296 return off; 297 } 298 299 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 300 { 301 MachineState *machine = MACHINE(spapr); 302 hwaddr mem_start, node_size; 303 int i, nb_nodes = nb_numa_nodes; 304 NodeInfo *nodes = numa_info; 305 NodeInfo ramnode; 306 307 /* No NUMA nodes, assume there is just one node with whole RAM */ 308 if (!nb_numa_nodes) { 309 nb_nodes = 1; 310 ramnode.node_mem = machine->ram_size; 311 nodes = &ramnode; 312 } 313 314 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 315 if (!nodes[i].node_mem) { 316 continue; 317 } 318 if (mem_start >= machine->ram_size) { 319 node_size = 0; 320 } else { 321 node_size = nodes[i].node_mem; 322 if (node_size > machine->ram_size - mem_start) { 323 node_size = machine->ram_size - mem_start; 324 } 325 } 326 if (!mem_start) { 327 /* ppc_spapr_init() checks for rma_size <= node0_size already */ 328 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 329 mem_start += spapr->rma_size; 330 node_size -= spapr->rma_size; 331 } 332 for ( ; node_size; ) { 333 hwaddr sizetmp = pow2floor(node_size); 334 335 /* mem_start != 0 here */ 336 if (ctzl(mem_start) < ctzl(sizetmp)) { 337 sizetmp = 1ULL << ctzl(mem_start); 338 } 339 340 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 341 node_size -= sizetmp; 342 mem_start += sizetmp; 343 } 344 } 345 346 return 0; 347 } 348 349 /* Populate the "ibm,pa-features" property */ 350 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset) 351 { 352 uint8_t pa_features_206[] = { 6, 0, 353 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 354 uint8_t pa_features_207[] = { 24, 0, 355 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 356 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 357 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 358 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 359 uint8_t *pa_features; 360 size_t pa_size; 361 362 switch (env->mmu_model) { 363 case POWERPC_MMU_2_06: 364 case POWERPC_MMU_2_06a: 365 pa_features = pa_features_206; 366 pa_size = sizeof(pa_features_206); 367 break; 368 case POWERPC_MMU_2_07: 369 case POWERPC_MMU_2_07a: 370 pa_features = pa_features_207; 371 pa_size = sizeof(pa_features_207); 372 break; 373 default: 374 return; 375 } 376 377 if (env->ci_large_pages) { 378 /* 379 * Note: we keep CI large pages off by default because a 64K capable 380 * guest provisioned with large pages might otherwise try to map a qemu 381 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 382 * even if that qemu runs on a 4k host. 383 * We dd this bit back here if we are confident this is not an issue 384 */ 385 pa_features[3] |= 0x20; 386 } 387 if (kvmppc_has_cap_htm() && pa_size > 24) { 388 pa_features[24] |= 0x80; /* Transactional memory support */ 389 } 390 391 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 392 } 393 394 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 395 sPAPRMachineState *spapr) 396 { 397 PowerPCCPU *cpu = POWERPC_CPU(cs); 398 CPUPPCState *env = &cpu->env; 399 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 400 int index = ppc_get_vcpu_dt_id(cpu); 401 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 402 0xffffffff, 0xffffffff}; 403 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 404 : SPAPR_TIMEBASE_FREQ; 405 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 406 uint32_t page_sizes_prop[64]; 407 size_t page_sizes_prop_size; 408 uint32_t vcpus_per_socket = smp_threads * smp_cores; 409 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 410 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 411 sPAPRDRConnector *drc; 412 sPAPRDRConnectorClass *drck; 413 int drc_index; 414 415 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index); 416 if (drc) { 417 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 418 drc_index = drck->get_index(drc); 419 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 420 } 421 422 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 423 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 424 425 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 426 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 427 env->dcache_line_size))); 428 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 429 env->dcache_line_size))); 430 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 431 env->icache_line_size))); 432 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 433 env->icache_line_size))); 434 435 if (pcc->l1_dcache_size) { 436 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 437 pcc->l1_dcache_size))); 438 } else { 439 error_report("Warning: Unknown L1 dcache size for cpu"); 440 } 441 if (pcc->l1_icache_size) { 442 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 443 pcc->l1_icache_size))); 444 } else { 445 error_report("Warning: Unknown L1 icache size for cpu"); 446 } 447 448 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 449 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 450 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); 451 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); 452 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 453 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 454 455 if (env->spr_cb[SPR_PURR].oea_read) { 456 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 457 } 458 459 if (env->mmu_model & POWERPC_MMU_1TSEG) { 460 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 461 segs, sizeof(segs)))); 462 } 463 464 /* Advertise VMX/VSX (vector extensions) if available 465 * 0 / no property == no vector extensions 466 * 1 == VMX / Altivec available 467 * 2 == VSX available */ 468 if (env->insns_flags & PPC_ALTIVEC) { 469 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 470 471 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 472 } 473 474 /* Advertise DFP (Decimal Floating Point) if available 475 * 0 / no property == no DFP 476 * 1 == DFP available */ 477 if (env->insns_flags2 & PPC2_DFP) { 478 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 479 } 480 481 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, 482 sizeof(page_sizes_prop)); 483 if (page_sizes_prop_size) { 484 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 485 page_sizes_prop, page_sizes_prop_size))); 486 } 487 488 spapr_populate_pa_features(env, fdt, offset); 489 490 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 491 cs->cpu_index / vcpus_per_socket))); 492 493 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 494 pft_size_prop, sizeof(pft_size_prop)))); 495 496 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs)); 497 498 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 499 } 500 501 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 502 { 503 CPUState *cs; 504 int cpus_offset; 505 char *nodename; 506 int smt = kvmppc_smt_threads(); 507 508 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 509 _FDT(cpus_offset); 510 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 511 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 512 513 /* 514 * We walk the CPUs in reverse order to ensure that CPU DT nodes 515 * created by fdt_add_subnode() end up in the right order in FDT 516 * for the guest kernel the enumerate the CPUs correctly. 517 */ 518 CPU_FOREACH_REVERSE(cs) { 519 PowerPCCPU *cpu = POWERPC_CPU(cs); 520 int index = ppc_get_vcpu_dt_id(cpu); 521 DeviceClass *dc = DEVICE_GET_CLASS(cs); 522 int offset; 523 524 if ((index % smt) != 0) { 525 continue; 526 } 527 528 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 529 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 530 g_free(nodename); 531 _FDT(offset); 532 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 533 } 534 535 } 536 537 /* 538 * Adds ibm,dynamic-reconfiguration-memory node. 539 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 540 * of this device tree node. 541 */ 542 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 543 { 544 MachineState *machine = MACHINE(spapr); 545 int ret, i, offset; 546 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 547 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 548 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; 549 uint32_t nr_lmbs = (spapr->hotplug_memory.base + 550 memory_region_size(&spapr->hotplug_memory.mr)) / 551 lmb_size; 552 uint32_t *int_buf, *cur_index, buf_len; 553 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 554 555 /* 556 * Don't create the node if there is no hotpluggable memory 557 */ 558 if (machine->ram_size == machine->maxram_size) { 559 return 0; 560 } 561 562 /* 563 * Allocate enough buffer size to fit in ibm,dynamic-memory 564 * or ibm,associativity-lookup-arrays 565 */ 566 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) 567 * sizeof(uint32_t); 568 cur_index = int_buf = g_malloc0(buf_len); 569 570 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 571 572 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 573 sizeof(prop_lmb_size)); 574 if (ret < 0) { 575 goto out; 576 } 577 578 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 579 if (ret < 0) { 580 goto out; 581 } 582 583 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 584 if (ret < 0) { 585 goto out; 586 } 587 588 /* ibm,dynamic-memory */ 589 int_buf[0] = cpu_to_be32(nr_lmbs); 590 cur_index++; 591 for (i = 0; i < nr_lmbs; i++) { 592 uint64_t addr = i * lmb_size; 593 uint32_t *dynamic_memory = cur_index; 594 595 if (i >= hotplug_lmb_start) { 596 sPAPRDRConnector *drc; 597 sPAPRDRConnectorClass *drck; 598 599 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i); 600 g_assert(drc); 601 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 602 603 dynamic_memory[0] = cpu_to_be32(addr >> 32); 604 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 605 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc)); 606 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 607 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL)); 608 if (memory_region_present(get_system_memory(), addr)) { 609 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 610 } else { 611 dynamic_memory[5] = cpu_to_be32(0); 612 } 613 } else { 614 /* 615 * LMB information for RMA, boot time RAM and gap b/n RAM and 616 * hotplug memory region -- all these are marked as reserved 617 * and as having no valid DRC. 618 */ 619 dynamic_memory[0] = cpu_to_be32(addr >> 32); 620 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 621 dynamic_memory[2] = cpu_to_be32(0); 622 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 623 dynamic_memory[4] = cpu_to_be32(-1); 624 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 625 SPAPR_LMB_FLAGS_DRC_INVALID); 626 } 627 628 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 629 } 630 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 631 if (ret < 0) { 632 goto out; 633 } 634 635 /* ibm,associativity-lookup-arrays */ 636 cur_index = int_buf; 637 int_buf[0] = cpu_to_be32(nr_nodes); 638 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 639 cur_index += 2; 640 for (i = 0; i < nr_nodes; i++) { 641 uint32_t associativity[] = { 642 cpu_to_be32(0x0), 643 cpu_to_be32(0x0), 644 cpu_to_be32(0x0), 645 cpu_to_be32(i) 646 }; 647 memcpy(cur_index, associativity, sizeof(associativity)); 648 cur_index += 4; 649 } 650 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 651 (cur_index - int_buf) * sizeof(uint32_t)); 652 out: 653 g_free(int_buf); 654 return ret; 655 } 656 657 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 658 sPAPROptionVector *ov5_updates) 659 { 660 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 661 int ret = 0, offset; 662 663 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 664 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 665 g_assert(smc->dr_lmb_enabled); 666 ret = spapr_populate_drconf_memory(spapr, fdt); 667 if (ret) { 668 goto out; 669 } 670 } 671 672 offset = fdt_path_offset(fdt, "/chosen"); 673 if (offset < 0) { 674 offset = fdt_add_subnode(fdt, 0, "chosen"); 675 if (offset < 0) { 676 return offset; 677 } 678 } 679 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 680 "ibm,architecture-vec-5"); 681 682 out: 683 return ret; 684 } 685 686 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 687 target_ulong addr, target_ulong size, 688 sPAPROptionVector *ov5_updates) 689 { 690 void *fdt, *fdt_skel; 691 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 692 693 size -= sizeof(hdr); 694 695 /* Create sceleton */ 696 fdt_skel = g_malloc0(size); 697 _FDT((fdt_create(fdt_skel, size))); 698 _FDT((fdt_begin_node(fdt_skel, ""))); 699 _FDT((fdt_end_node(fdt_skel))); 700 _FDT((fdt_finish(fdt_skel))); 701 fdt = g_malloc0(size); 702 _FDT((fdt_open_into(fdt_skel, fdt, size))); 703 g_free(fdt_skel); 704 705 /* Fixup cpu nodes */ 706 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 707 708 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 709 return -1; 710 } 711 712 /* Pack resulting tree */ 713 _FDT((fdt_pack(fdt))); 714 715 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 716 trace_spapr_cas_failed(size); 717 return -1; 718 } 719 720 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 721 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 722 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 723 g_free(fdt); 724 725 return 0; 726 } 727 728 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 729 { 730 int rtas; 731 GString *hypertas = g_string_sized_new(256); 732 GString *qemu_hypertas = g_string_sized_new(256); 733 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 734 uint64_t max_hotplug_addr = spapr->hotplug_memory.base + 735 memory_region_size(&spapr->hotplug_memory.mr); 736 uint32_t lrdr_capacity[] = { 737 cpu_to_be32(max_hotplug_addr >> 32), 738 cpu_to_be32(max_hotplug_addr & 0xffffffff), 739 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 740 cpu_to_be32(max_cpus / smp_threads), 741 }; 742 743 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 744 745 /* hypertas */ 746 add_str(hypertas, "hcall-pft"); 747 add_str(hypertas, "hcall-term"); 748 add_str(hypertas, "hcall-dabr"); 749 add_str(hypertas, "hcall-interrupt"); 750 add_str(hypertas, "hcall-tce"); 751 add_str(hypertas, "hcall-vio"); 752 add_str(hypertas, "hcall-splpar"); 753 add_str(hypertas, "hcall-bulk"); 754 add_str(hypertas, "hcall-set-mode"); 755 add_str(hypertas, "hcall-sprg0"); 756 add_str(hypertas, "hcall-copy"); 757 add_str(hypertas, "hcall-debug"); 758 add_str(qemu_hypertas, "hcall-memop1"); 759 760 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 761 add_str(hypertas, "hcall-multi-tce"); 762 } 763 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 764 hypertas->str, hypertas->len)); 765 g_string_free(hypertas, TRUE); 766 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 767 qemu_hypertas->str, qemu_hypertas->len)); 768 g_string_free(qemu_hypertas, TRUE); 769 770 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 771 refpoints, sizeof(refpoints))); 772 773 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 774 RTAS_ERROR_LOG_MAX)); 775 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 776 RTAS_EVENT_SCAN_RATE)); 777 778 if (msi_nonbroken) { 779 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 780 } 781 782 /* 783 * According to PAPR, rtas ibm,os-term does not guarantee a return 784 * back to the guest cpu. 785 * 786 * While an additional ibm,extended-os-term property indicates 787 * that rtas call return will always occur. Set this property. 788 */ 789 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 790 791 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 792 lrdr_capacity, sizeof(lrdr_capacity))); 793 794 spapr_dt_rtas_tokens(fdt, rtas); 795 } 796 797 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 798 { 799 MachineState *machine = MACHINE(spapr); 800 int chosen; 801 const char *boot_device = machine->boot_order; 802 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 803 size_t cb = 0; 804 char *bootlist = get_boot_devices_list(&cb, true); 805 806 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 807 808 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 809 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 810 spapr->initrd_base)); 811 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 812 spapr->initrd_base + spapr->initrd_size)); 813 814 if (spapr->kernel_size) { 815 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 816 cpu_to_be64(spapr->kernel_size) }; 817 818 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 819 &kprop, sizeof(kprop))); 820 if (spapr->kernel_le) { 821 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 822 } 823 } 824 if (boot_menu) { 825 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 826 } 827 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 828 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 829 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 830 831 if (cb && bootlist) { 832 int i; 833 834 for (i = 0; i < cb; i++) { 835 if (bootlist[i] == '\n') { 836 bootlist[i] = ' '; 837 } 838 } 839 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 840 } 841 842 if (boot_device && strlen(boot_device)) { 843 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 844 } 845 846 if (!spapr->has_graphics && stdout_path) { 847 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 848 } 849 850 g_free(stdout_path); 851 g_free(bootlist); 852 } 853 854 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 855 { 856 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 857 * KVM to work under pHyp with some guest co-operation */ 858 int hypervisor; 859 uint8_t hypercall[16]; 860 861 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 862 /* indicate KVM hypercall interface */ 863 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 864 if (kvmppc_has_cap_fixup_hcalls()) { 865 /* 866 * Older KVM versions with older guest kernels were broken 867 * with the magic page, don't allow the guest to map it. 868 */ 869 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 870 sizeof(hypercall))) { 871 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 872 hypercall, sizeof(hypercall))); 873 } 874 } 875 } 876 877 static void *spapr_build_fdt(sPAPRMachineState *spapr, 878 hwaddr rtas_addr, 879 hwaddr rtas_size) 880 { 881 MachineState *machine = MACHINE(qdev_get_machine()); 882 MachineClass *mc = MACHINE_GET_CLASS(machine); 883 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 884 int ret; 885 void *fdt; 886 sPAPRPHBState *phb; 887 char *buf; 888 889 fdt = g_malloc0(FDT_MAX_SIZE); 890 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 891 892 /* Root node */ 893 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 894 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 895 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 896 897 /* 898 * Add info to guest to indentify which host is it being run on 899 * and what is the uuid of the guest 900 */ 901 if (kvmppc_get_host_model(&buf)) { 902 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 903 g_free(buf); 904 } 905 if (kvmppc_get_host_serial(&buf)) { 906 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 907 g_free(buf); 908 } 909 910 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 911 912 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 913 if (qemu_uuid_set) { 914 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 915 } 916 g_free(buf); 917 918 if (qemu_get_vm_name()) { 919 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 920 qemu_get_vm_name())); 921 } 922 923 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 924 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 925 926 /* /interrupt controller */ 927 spapr_dt_xics(spapr->xics, fdt, PHANDLE_XICP); 928 929 ret = spapr_populate_memory(spapr, fdt); 930 if (ret < 0) { 931 error_report("couldn't setup memory nodes in fdt"); 932 exit(1); 933 } 934 935 /* /vdevice */ 936 spapr_dt_vdevice(spapr->vio_bus, fdt); 937 938 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 939 ret = spapr_rng_populate_dt(fdt); 940 if (ret < 0) { 941 error_report("could not set up rng device in the fdt"); 942 exit(1); 943 } 944 } 945 946 QLIST_FOREACH(phb, &spapr->phbs, list) { 947 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 948 if (ret < 0) { 949 error_report("couldn't setup PCI devices in fdt"); 950 exit(1); 951 } 952 } 953 954 /* cpus */ 955 spapr_populate_cpus_dt_node(fdt, spapr); 956 957 if (smc->dr_lmb_enabled) { 958 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 959 } 960 961 if (mc->has_hotpluggable_cpus) { 962 int offset = fdt_path_offset(fdt, "/cpus"); 963 ret = spapr_drc_populate_dt(fdt, offset, NULL, 964 SPAPR_DR_CONNECTOR_TYPE_CPU); 965 if (ret < 0) { 966 error_report("Couldn't set up CPU DR device tree properties"); 967 exit(1); 968 } 969 } 970 971 /* /event-sources */ 972 spapr_dt_events(spapr, fdt); 973 974 /* /rtas */ 975 spapr_dt_rtas(spapr, fdt); 976 977 /* /chosen */ 978 spapr_dt_chosen(spapr, fdt); 979 980 /* /hypervisor */ 981 if (kvm_enabled()) { 982 spapr_dt_hypervisor(spapr, fdt); 983 } 984 985 /* Build memory reserve map */ 986 if (spapr->kernel_size) { 987 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 988 } 989 if (spapr->initrd_size) { 990 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 991 } 992 993 /* ibm,client-architecture-support updates */ 994 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 995 if (ret < 0) { 996 error_report("couldn't setup CAS properties fdt"); 997 exit(1); 998 } 999 1000 return fdt; 1001 } 1002 1003 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1004 { 1005 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1006 } 1007 1008 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1009 PowerPCCPU *cpu) 1010 { 1011 CPUPPCState *env = &cpu->env; 1012 1013 /* The TCG path should also be holding the BQL at this point */ 1014 g_assert(qemu_mutex_iothread_locked()); 1015 1016 if (msr_pr) { 1017 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1018 env->gpr[3] = H_PRIVILEGE; 1019 } else { 1020 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1021 } 1022 } 1023 1024 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1025 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1026 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1027 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1028 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1029 1030 /* 1031 * Get the fd to access the kernel htab, re-opening it if necessary 1032 */ 1033 static int get_htab_fd(sPAPRMachineState *spapr) 1034 { 1035 if (spapr->htab_fd >= 0) { 1036 return spapr->htab_fd; 1037 } 1038 1039 spapr->htab_fd = kvmppc_get_htab_fd(false); 1040 if (spapr->htab_fd < 0) { 1041 error_report("Unable to open fd for reading hash table from KVM: %s", 1042 strerror(errno)); 1043 } 1044 1045 return spapr->htab_fd; 1046 } 1047 1048 static void close_htab_fd(sPAPRMachineState *spapr) 1049 { 1050 if (spapr->htab_fd >= 0) { 1051 close(spapr->htab_fd); 1052 } 1053 spapr->htab_fd = -1; 1054 } 1055 1056 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1057 { 1058 int shift; 1059 1060 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1061 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1062 * that's much more than is needed for Linux guests */ 1063 shift = ctz64(pow2ceil(ramsize)) - 7; 1064 shift = MAX(shift, 18); /* Minimum architected size */ 1065 shift = MIN(shift, 46); /* Maximum architected size */ 1066 return shift; 1067 } 1068 1069 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1070 Error **errp) 1071 { 1072 long rc; 1073 1074 /* Clean up any HPT info from a previous boot */ 1075 g_free(spapr->htab); 1076 spapr->htab = NULL; 1077 spapr->htab_shift = 0; 1078 close_htab_fd(spapr); 1079 1080 rc = kvmppc_reset_htab(shift); 1081 if (rc < 0) { 1082 /* kernel-side HPT needed, but couldn't allocate one */ 1083 error_setg_errno(errp, errno, 1084 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1085 shift); 1086 /* This is almost certainly fatal, but if the caller really 1087 * wants to carry on with shift == 0, it's welcome to try */ 1088 } else if (rc > 0) { 1089 /* kernel-side HPT allocated */ 1090 if (rc != shift) { 1091 error_setg(errp, 1092 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1093 shift, rc); 1094 } 1095 1096 spapr->htab_shift = shift; 1097 spapr->htab = NULL; 1098 } else { 1099 /* kernel-side HPT not needed, allocate in userspace instead */ 1100 size_t size = 1ULL << shift; 1101 int i; 1102 1103 spapr->htab = qemu_memalign(size, size); 1104 if (!spapr->htab) { 1105 error_setg_errno(errp, errno, 1106 "Could not allocate HPT of order %d", shift); 1107 return; 1108 } 1109 1110 memset(spapr->htab, 0, size); 1111 spapr->htab_shift = shift; 1112 1113 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1114 DIRTY_HPTE(HPTE(spapr->htab, i)); 1115 } 1116 } 1117 } 1118 1119 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) 1120 { 1121 bool matched = false; 1122 1123 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 1124 matched = true; 1125 } 1126 1127 if (!matched) { 1128 error_report("Device %s is not supported by this machine yet.", 1129 qdev_fw_name(DEVICE(sbdev))); 1130 exit(1); 1131 } 1132 } 1133 1134 static void ppc_spapr_reset(void) 1135 { 1136 MachineState *machine = MACHINE(qdev_get_machine()); 1137 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1138 PowerPCCPU *first_ppc_cpu; 1139 uint32_t rtas_limit; 1140 hwaddr rtas_addr, fdt_addr; 1141 void *fdt; 1142 int rc; 1143 1144 /* Check for unknown sysbus devices */ 1145 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); 1146 1147 /* Allocate and/or reset the hash page table */ 1148 spapr_reallocate_hpt(spapr, 1149 spapr_hpt_shift_for_ramsize(machine->maxram_size), 1150 &error_fatal); 1151 1152 /* Update the RMA size if necessary */ 1153 if (spapr->vrma_adjust) { 1154 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(), 1155 spapr->htab_shift); 1156 } 1157 1158 qemu_devices_reset(); 1159 1160 /* 1161 * We place the device tree and RTAS just below either the top of the RMA, 1162 * or just below 2GB, whichever is lowere, so that it can be 1163 * processed with 32-bit real mode code if necessary 1164 */ 1165 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1166 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1167 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1168 1169 /* if this reset wasn't generated by CAS, we should reset our 1170 * negotiated options and start from scratch */ 1171 if (!spapr->cas_reboot) { 1172 spapr_ovec_cleanup(spapr->ov5_cas); 1173 spapr->ov5_cas = spapr_ovec_new(); 1174 } 1175 1176 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1177 1178 spapr_load_rtas(spapr, fdt, rtas_addr); 1179 1180 rc = fdt_pack(fdt); 1181 1182 /* Should only fail if we've built a corrupted tree */ 1183 assert(rc == 0); 1184 1185 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1186 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1187 fdt_totalsize(fdt), FDT_MAX_SIZE); 1188 exit(1); 1189 } 1190 1191 /* Load the fdt */ 1192 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1193 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1194 g_free(fdt); 1195 1196 /* Set up the entry state */ 1197 first_ppc_cpu = POWERPC_CPU(first_cpu); 1198 first_ppc_cpu->env.gpr[3] = fdt_addr; 1199 first_ppc_cpu->env.gpr[5] = 0; 1200 first_cpu->halted = 0; 1201 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; 1202 1203 spapr->cas_reboot = false; 1204 } 1205 1206 static void spapr_create_nvram(sPAPRMachineState *spapr) 1207 { 1208 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1209 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1210 1211 if (dinfo) { 1212 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1213 &error_fatal); 1214 } 1215 1216 qdev_init_nofail(dev); 1217 1218 spapr->nvram = (struct sPAPRNVRAM *)dev; 1219 } 1220 1221 static void spapr_rtc_create(sPAPRMachineState *spapr) 1222 { 1223 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC); 1224 1225 qdev_init_nofail(dev); 1226 spapr->rtc = dev; 1227 1228 object_property_add_alias(qdev_get_machine(), "rtc-time", 1229 OBJECT(spapr->rtc), "date", NULL); 1230 } 1231 1232 /* Returns whether we want to use VGA or not */ 1233 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1234 { 1235 switch (vga_interface_type) { 1236 case VGA_NONE: 1237 return false; 1238 case VGA_DEVICE: 1239 return true; 1240 case VGA_STD: 1241 case VGA_VIRTIO: 1242 return pci_vga_init(pci_bus) != NULL; 1243 default: 1244 error_setg(errp, 1245 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1246 return false; 1247 } 1248 } 1249 1250 static int spapr_post_load(void *opaque, int version_id) 1251 { 1252 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1253 int err = 0; 1254 1255 /* In earlier versions, there was no separate qdev for the PAPR 1256 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1257 * So when migrating from those versions, poke the incoming offset 1258 * value into the RTC device */ 1259 if (version_id < 3) { 1260 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset); 1261 } 1262 1263 return err; 1264 } 1265 1266 static bool version_before_3(void *opaque, int version_id) 1267 { 1268 return version_id < 3; 1269 } 1270 1271 static bool spapr_ov5_cas_needed(void *opaque) 1272 { 1273 sPAPRMachineState *spapr = opaque; 1274 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1275 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1276 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1277 bool cas_needed; 1278 1279 /* Prior to the introduction of sPAPROptionVector, we had two option 1280 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1281 * Both of these options encode machine topology into the device-tree 1282 * in such a way that the now-booted OS should still be able to interact 1283 * appropriately with QEMU regardless of what options were actually 1284 * negotiatied on the source side. 1285 * 1286 * As such, we can avoid migrating the CAS-negotiated options if these 1287 * are the only options available on the current machine/platform. 1288 * Since these are the only options available for pseries-2.7 and 1289 * earlier, this allows us to maintain old->new/new->old migration 1290 * compatibility. 1291 * 1292 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1293 * via default pseries-2.8 machines and explicit command-line parameters. 1294 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1295 * of the actual CAS-negotiated values to continue working properly. For 1296 * example, availability of memory unplug depends on knowing whether 1297 * OV5_HP_EVT was negotiated via CAS. 1298 * 1299 * Thus, for any cases where the set of available CAS-negotiatable 1300 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1301 * include the CAS-negotiated options in the migration stream. 1302 */ 1303 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1304 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1305 1306 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1307 * the mask itself since in the future it's possible "legacy" bits may be 1308 * removed via machine options, which could generate a false positive 1309 * that breaks migration. 1310 */ 1311 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1312 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1313 1314 spapr_ovec_cleanup(ov5_mask); 1315 spapr_ovec_cleanup(ov5_legacy); 1316 spapr_ovec_cleanup(ov5_removed); 1317 1318 return cas_needed; 1319 } 1320 1321 static const VMStateDescription vmstate_spapr_ov5_cas = { 1322 .name = "spapr_option_vector_ov5_cas", 1323 .version_id = 1, 1324 .minimum_version_id = 1, 1325 .needed = spapr_ov5_cas_needed, 1326 .fields = (VMStateField[]) { 1327 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1328 vmstate_spapr_ovec, sPAPROptionVector), 1329 VMSTATE_END_OF_LIST() 1330 }, 1331 }; 1332 1333 static const VMStateDescription vmstate_spapr = { 1334 .name = "spapr", 1335 .version_id = 3, 1336 .minimum_version_id = 1, 1337 .post_load = spapr_post_load, 1338 .fields = (VMStateField[]) { 1339 /* used to be @next_irq */ 1340 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1341 1342 /* RTC offset */ 1343 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1344 1345 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1346 VMSTATE_END_OF_LIST() 1347 }, 1348 .subsections = (const VMStateDescription*[]) { 1349 &vmstate_spapr_ov5_cas, 1350 NULL 1351 } 1352 }; 1353 1354 static int htab_save_setup(QEMUFile *f, void *opaque) 1355 { 1356 sPAPRMachineState *spapr = opaque; 1357 1358 /* "Iteration" header */ 1359 qemu_put_be32(f, spapr->htab_shift); 1360 1361 if (spapr->htab) { 1362 spapr->htab_save_index = 0; 1363 spapr->htab_first_pass = true; 1364 } else { 1365 assert(kvm_enabled()); 1366 } 1367 1368 1369 return 0; 1370 } 1371 1372 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1373 int64_t max_ns) 1374 { 1375 bool has_timeout = max_ns != -1; 1376 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1377 int index = spapr->htab_save_index; 1378 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1379 1380 assert(spapr->htab_first_pass); 1381 1382 do { 1383 int chunkstart; 1384 1385 /* Consume invalid HPTEs */ 1386 while ((index < htabslots) 1387 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1388 index++; 1389 CLEAN_HPTE(HPTE(spapr->htab, index)); 1390 } 1391 1392 /* Consume valid HPTEs */ 1393 chunkstart = index; 1394 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1395 && HPTE_VALID(HPTE(spapr->htab, index))) { 1396 index++; 1397 CLEAN_HPTE(HPTE(spapr->htab, index)); 1398 } 1399 1400 if (index > chunkstart) { 1401 int n_valid = index - chunkstart; 1402 1403 qemu_put_be32(f, chunkstart); 1404 qemu_put_be16(f, n_valid); 1405 qemu_put_be16(f, 0); 1406 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1407 HASH_PTE_SIZE_64 * n_valid); 1408 1409 if (has_timeout && 1410 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1411 break; 1412 } 1413 } 1414 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 1415 1416 if (index >= htabslots) { 1417 assert(index == htabslots); 1418 index = 0; 1419 spapr->htab_first_pass = false; 1420 } 1421 spapr->htab_save_index = index; 1422 } 1423 1424 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 1425 int64_t max_ns) 1426 { 1427 bool final = max_ns < 0; 1428 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1429 int examined = 0, sent = 0; 1430 int index = spapr->htab_save_index; 1431 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1432 1433 assert(!spapr->htab_first_pass); 1434 1435 do { 1436 int chunkstart, invalidstart; 1437 1438 /* Consume non-dirty HPTEs */ 1439 while ((index < htabslots) 1440 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 1441 index++; 1442 examined++; 1443 } 1444 1445 chunkstart = index; 1446 /* Consume valid dirty HPTEs */ 1447 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1448 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1449 && HPTE_VALID(HPTE(spapr->htab, index))) { 1450 CLEAN_HPTE(HPTE(spapr->htab, index)); 1451 index++; 1452 examined++; 1453 } 1454 1455 invalidstart = index; 1456 /* Consume invalid dirty HPTEs */ 1457 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 1458 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1459 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1460 CLEAN_HPTE(HPTE(spapr->htab, index)); 1461 index++; 1462 examined++; 1463 } 1464 1465 if (index > chunkstart) { 1466 int n_valid = invalidstart - chunkstart; 1467 int n_invalid = index - invalidstart; 1468 1469 qemu_put_be32(f, chunkstart); 1470 qemu_put_be16(f, n_valid); 1471 qemu_put_be16(f, n_invalid); 1472 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1473 HASH_PTE_SIZE_64 * n_valid); 1474 sent += index - chunkstart; 1475 1476 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1477 break; 1478 } 1479 } 1480 1481 if (examined >= htabslots) { 1482 break; 1483 } 1484 1485 if (index >= htabslots) { 1486 assert(index == htabslots); 1487 index = 0; 1488 } 1489 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 1490 1491 if (index >= htabslots) { 1492 assert(index == htabslots); 1493 index = 0; 1494 } 1495 1496 spapr->htab_save_index = index; 1497 1498 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 1499 } 1500 1501 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 1502 #define MAX_KVM_BUF_SIZE 2048 1503 1504 static int htab_save_iterate(QEMUFile *f, void *opaque) 1505 { 1506 sPAPRMachineState *spapr = opaque; 1507 int fd; 1508 int rc = 0; 1509 1510 /* Iteration header */ 1511 qemu_put_be32(f, 0); 1512 1513 if (!spapr->htab) { 1514 assert(kvm_enabled()); 1515 1516 fd = get_htab_fd(spapr); 1517 if (fd < 0) { 1518 return fd; 1519 } 1520 1521 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 1522 if (rc < 0) { 1523 return rc; 1524 } 1525 } else if (spapr->htab_first_pass) { 1526 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 1527 } else { 1528 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 1529 } 1530 1531 /* End marker */ 1532 qemu_put_be32(f, 0); 1533 qemu_put_be16(f, 0); 1534 qemu_put_be16(f, 0); 1535 1536 return rc; 1537 } 1538 1539 static int htab_save_complete(QEMUFile *f, void *opaque) 1540 { 1541 sPAPRMachineState *spapr = opaque; 1542 int fd; 1543 1544 /* Iteration header */ 1545 qemu_put_be32(f, 0); 1546 1547 if (!spapr->htab) { 1548 int rc; 1549 1550 assert(kvm_enabled()); 1551 1552 fd = get_htab_fd(spapr); 1553 if (fd < 0) { 1554 return fd; 1555 } 1556 1557 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 1558 if (rc < 0) { 1559 return rc; 1560 } 1561 } else { 1562 if (spapr->htab_first_pass) { 1563 htab_save_first_pass(f, spapr, -1); 1564 } 1565 htab_save_later_pass(f, spapr, -1); 1566 } 1567 1568 /* End marker */ 1569 qemu_put_be32(f, 0); 1570 qemu_put_be16(f, 0); 1571 qemu_put_be16(f, 0); 1572 1573 return 0; 1574 } 1575 1576 static int htab_load(QEMUFile *f, void *opaque, int version_id) 1577 { 1578 sPAPRMachineState *spapr = opaque; 1579 uint32_t section_hdr; 1580 int fd = -1; 1581 1582 if (version_id < 1 || version_id > 1) { 1583 error_report("htab_load() bad version"); 1584 return -EINVAL; 1585 } 1586 1587 section_hdr = qemu_get_be32(f); 1588 1589 if (section_hdr) { 1590 Error *local_err = NULL; 1591 1592 /* First section gives the htab size */ 1593 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 1594 if (local_err) { 1595 error_report_err(local_err); 1596 return -EINVAL; 1597 } 1598 return 0; 1599 } 1600 1601 if (!spapr->htab) { 1602 assert(kvm_enabled()); 1603 1604 fd = kvmppc_get_htab_fd(true); 1605 if (fd < 0) { 1606 error_report("Unable to open fd to restore KVM hash table: %s", 1607 strerror(errno)); 1608 } 1609 } 1610 1611 while (true) { 1612 uint32_t index; 1613 uint16_t n_valid, n_invalid; 1614 1615 index = qemu_get_be32(f); 1616 n_valid = qemu_get_be16(f); 1617 n_invalid = qemu_get_be16(f); 1618 1619 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 1620 /* End of Stream */ 1621 break; 1622 } 1623 1624 if ((index + n_valid + n_invalid) > 1625 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 1626 /* Bad index in stream */ 1627 error_report( 1628 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 1629 index, n_valid, n_invalid, spapr->htab_shift); 1630 return -EINVAL; 1631 } 1632 1633 if (spapr->htab) { 1634 if (n_valid) { 1635 qemu_get_buffer(f, HPTE(spapr->htab, index), 1636 HASH_PTE_SIZE_64 * n_valid); 1637 } 1638 if (n_invalid) { 1639 memset(HPTE(spapr->htab, index + n_valid), 0, 1640 HASH_PTE_SIZE_64 * n_invalid); 1641 } 1642 } else { 1643 int rc; 1644 1645 assert(fd >= 0); 1646 1647 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 1648 if (rc < 0) { 1649 return rc; 1650 } 1651 } 1652 } 1653 1654 if (!spapr->htab) { 1655 assert(fd >= 0); 1656 close(fd); 1657 } 1658 1659 return 0; 1660 } 1661 1662 static void htab_cleanup(void *opaque) 1663 { 1664 sPAPRMachineState *spapr = opaque; 1665 1666 close_htab_fd(spapr); 1667 } 1668 1669 static SaveVMHandlers savevm_htab_handlers = { 1670 .save_live_setup = htab_save_setup, 1671 .save_live_iterate = htab_save_iterate, 1672 .save_live_complete_precopy = htab_save_complete, 1673 .cleanup = htab_cleanup, 1674 .load_state = htab_load, 1675 }; 1676 1677 static void spapr_boot_set(void *opaque, const char *boot_device, 1678 Error **errp) 1679 { 1680 MachineState *machine = MACHINE(qdev_get_machine()); 1681 machine->boot_order = g_strdup(boot_device); 1682 } 1683 1684 /* 1685 * Reset routine for LMB DR devices. 1686 * 1687 * Unlike PCI DR devices, LMB DR devices explicitly register this reset 1688 * routine. Reset for PCI DR devices will be handled by PHB reset routine 1689 * when it walks all its children devices. LMB devices reset occurs 1690 * as part of spapr_ppc_reset(). 1691 */ 1692 static void spapr_drc_reset(void *opaque) 1693 { 1694 sPAPRDRConnector *drc = opaque; 1695 DeviceState *d = DEVICE(drc); 1696 1697 if (d) { 1698 device_reset(d); 1699 } 1700 } 1701 1702 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 1703 { 1704 MachineState *machine = MACHINE(spapr); 1705 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 1706 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 1707 int i; 1708 1709 for (i = 0; i < nr_lmbs; i++) { 1710 sPAPRDRConnector *drc; 1711 uint64_t addr; 1712 1713 addr = i * lmb_size + spapr->hotplug_memory.base; 1714 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB, 1715 addr/lmb_size); 1716 qemu_register_reset(spapr_drc_reset, drc); 1717 } 1718 } 1719 1720 /* 1721 * If RAM size, maxmem size and individual node mem sizes aren't aligned 1722 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 1723 * since we can't support such unaligned sizes with DRCONF_MEMORY. 1724 */ 1725 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 1726 { 1727 int i; 1728 1729 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1730 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 1731 " is not aligned to %llu MiB", 1732 machine->ram_size, 1733 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1734 return; 1735 } 1736 1737 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1738 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 1739 " is not aligned to %llu MiB", 1740 machine->ram_size, 1741 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1742 return; 1743 } 1744 1745 for (i = 0; i < nb_numa_nodes; i++) { 1746 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 1747 error_setg(errp, 1748 "Node %d memory size 0x%" PRIx64 1749 " is not aligned to %llu MiB", 1750 i, numa_info[i].node_mem, 1751 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1752 return; 1753 } 1754 } 1755 } 1756 1757 /* find cpu slot in machine->possible_cpus by core_id */ 1758 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1759 { 1760 int index = id / smp_threads; 1761 1762 if (index >= ms->possible_cpus->len) { 1763 return NULL; 1764 } 1765 if (idx) { 1766 *idx = index; 1767 } 1768 return &ms->possible_cpus->cpus[index]; 1769 } 1770 1771 static void spapr_init_cpus(sPAPRMachineState *spapr) 1772 { 1773 MachineState *machine = MACHINE(spapr); 1774 MachineClass *mc = MACHINE_GET_CLASS(machine); 1775 char *type = spapr_get_cpu_core_type(machine->cpu_model); 1776 int smt = kvmppc_smt_threads(); 1777 const CPUArchIdList *possible_cpus; 1778 int boot_cores_nr = smp_cpus / smp_threads; 1779 int i; 1780 1781 if (!type) { 1782 error_report("Unable to find sPAPR CPU Core definition"); 1783 exit(1); 1784 } 1785 1786 possible_cpus = mc->possible_cpu_arch_ids(machine); 1787 if (mc->has_hotpluggable_cpus) { 1788 if (smp_cpus % smp_threads) { 1789 error_report("smp_cpus (%u) must be multiple of threads (%u)", 1790 smp_cpus, smp_threads); 1791 exit(1); 1792 } 1793 if (max_cpus % smp_threads) { 1794 error_report("max_cpus (%u) must be multiple of threads (%u)", 1795 max_cpus, smp_threads); 1796 exit(1); 1797 } 1798 } else { 1799 if (max_cpus != smp_cpus) { 1800 error_report("This machine version does not support CPU hotplug"); 1801 exit(1); 1802 } 1803 boot_cores_nr = possible_cpus->len; 1804 } 1805 1806 for (i = 0; i < possible_cpus->len; i++) { 1807 int core_id = i * smp_threads; 1808 1809 if (mc->has_hotpluggable_cpus) { 1810 sPAPRDRConnector *drc = 1811 spapr_dr_connector_new(OBJECT(spapr), 1812 SPAPR_DR_CONNECTOR_TYPE_CPU, 1813 (core_id / smp_threads) * smt); 1814 1815 qemu_register_reset(spapr_drc_reset, drc); 1816 } 1817 1818 if (i < boot_cores_nr) { 1819 Object *core = object_new(type); 1820 int nr_threads = smp_threads; 1821 1822 /* Handle the partially filled core for older machine types */ 1823 if ((i + 1) * smp_threads >= smp_cpus) { 1824 nr_threads = smp_cpus - i * smp_threads; 1825 } 1826 1827 object_property_set_int(core, nr_threads, "nr-threads", 1828 &error_fatal); 1829 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 1830 &error_fatal); 1831 object_property_set_bool(core, true, "realized", &error_fatal); 1832 } 1833 } 1834 g_free(type); 1835 } 1836 1837 /* pSeries LPAR / sPAPR hardware init */ 1838 static void ppc_spapr_init(MachineState *machine) 1839 { 1840 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1841 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1842 const char *kernel_filename = machine->kernel_filename; 1843 const char *initrd_filename = machine->initrd_filename; 1844 PCIHostState *phb; 1845 int i; 1846 MemoryRegion *sysmem = get_system_memory(); 1847 MemoryRegion *ram = g_new(MemoryRegion, 1); 1848 MemoryRegion *rma_region; 1849 void *rma = NULL; 1850 hwaddr rma_alloc_size; 1851 hwaddr node0_size = spapr_node0_size(); 1852 long load_limit, fw_size; 1853 char *filename; 1854 int smt = kvmppc_smt_threads(); 1855 1856 msi_nonbroken = true; 1857 1858 QLIST_INIT(&spapr->phbs); 1859 1860 /* Allocate RMA if necessary */ 1861 rma_alloc_size = kvmppc_alloc_rma(&rma); 1862 1863 if (rma_alloc_size == -1) { 1864 error_report("Unable to create RMA"); 1865 exit(1); 1866 } 1867 1868 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 1869 spapr->rma_size = rma_alloc_size; 1870 } else { 1871 spapr->rma_size = node0_size; 1872 1873 /* With KVM, we don't actually know whether KVM supports an 1874 * unbounded RMA (PR KVM) or is limited by the hash table size 1875 * (HV KVM using VRMA), so we always assume the latter 1876 * 1877 * In that case, we also limit the initial allocations for RTAS 1878 * etc... to 256M since we have no way to know what the VRMA size 1879 * is going to be as it depends on the size of the hash table 1880 * isn't determined yet. 1881 */ 1882 if (kvm_enabled()) { 1883 spapr->vrma_adjust = 1; 1884 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 1885 } 1886 1887 /* Actually we don't support unbounded RMA anymore since we 1888 * added proper emulation of HV mode. The max we can get is 1889 * 16G which also happens to be what we configure for PAPR 1890 * mode so make sure we don't do anything bigger than that 1891 */ 1892 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 1893 } 1894 1895 if (spapr->rma_size > node0_size) { 1896 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 1897 spapr->rma_size); 1898 exit(1); 1899 } 1900 1901 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 1902 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 1903 1904 /* Set up Interrupt Controller before we create the VCPUs */ 1905 spapr->xics = xics_system_init(machine, 1906 DIV_ROUND_UP(max_cpus * smt, smp_threads), 1907 XICS_IRQS_SPAPR, &error_fatal); 1908 1909 /* Set up containers for ibm,client-set-architecture negotiated options */ 1910 spapr->ov5 = spapr_ovec_new(); 1911 spapr->ov5_cas = spapr_ovec_new(); 1912 1913 if (smc->dr_lmb_enabled) { 1914 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 1915 spapr_validate_node_memory(machine, &error_fatal); 1916 } 1917 1918 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 1919 1920 /* advertise support for dedicated HP event source to guests */ 1921 if (spapr->use_hotplug_event_source) { 1922 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 1923 } 1924 1925 /* init CPUs */ 1926 if (machine->cpu_model == NULL) { 1927 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu; 1928 } 1929 1930 ppc_cpu_parse_features(machine->cpu_model); 1931 1932 spapr_init_cpus(spapr); 1933 1934 if (kvm_enabled()) { 1935 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 1936 kvmppc_enable_logical_ci_hcalls(); 1937 kvmppc_enable_set_mode_hcall(); 1938 1939 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 1940 kvmppc_enable_clear_ref_mod_hcalls(); 1941 } 1942 1943 /* allocate RAM */ 1944 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 1945 machine->ram_size); 1946 memory_region_add_subregion(sysmem, 0, ram); 1947 1948 if (rma_alloc_size && rma) { 1949 rma_region = g_new(MemoryRegion, 1); 1950 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", 1951 rma_alloc_size, rma); 1952 vmstate_register_ram_global(rma_region); 1953 memory_region_add_subregion(sysmem, 0, rma_region); 1954 } 1955 1956 /* initialize hotplug memory address space */ 1957 if (machine->ram_size < machine->maxram_size) { 1958 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; 1959 /* 1960 * Limit the number of hotpluggable memory slots to half the number 1961 * slots that KVM supports, leaving the other half for PCI and other 1962 * devices. However ensure that number of slots doesn't drop below 32. 1963 */ 1964 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 1965 SPAPR_MAX_RAM_SLOTS; 1966 1967 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 1968 max_memslots = SPAPR_MAX_RAM_SLOTS; 1969 } 1970 if (machine->ram_slots > max_memslots) { 1971 error_report("Specified number of memory slots %" 1972 PRIu64" exceeds max supported %d", 1973 machine->ram_slots, max_memslots); 1974 exit(1); 1975 } 1976 1977 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, 1978 SPAPR_HOTPLUG_MEM_ALIGN); 1979 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), 1980 "hotplug-memory", hotplug_mem_size); 1981 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, 1982 &spapr->hotplug_memory.mr); 1983 } 1984 1985 if (smc->dr_lmb_enabled) { 1986 spapr_create_lmb_dr_connectors(spapr); 1987 } 1988 1989 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 1990 if (!filename) { 1991 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 1992 exit(1); 1993 } 1994 spapr->rtas_size = get_image_size(filename); 1995 if (spapr->rtas_size < 0) { 1996 error_report("Could not get size of LPAR rtas '%s'", filename); 1997 exit(1); 1998 } 1999 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2000 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2001 error_report("Could not load LPAR rtas '%s'", filename); 2002 exit(1); 2003 } 2004 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2005 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2006 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2007 exit(1); 2008 } 2009 g_free(filename); 2010 2011 /* Set up RTAS event infrastructure */ 2012 spapr_events_init(spapr); 2013 2014 /* Set up the RTC RTAS interfaces */ 2015 spapr_rtc_create(spapr); 2016 2017 /* Set up VIO bus */ 2018 spapr->vio_bus = spapr_vio_bus_init(); 2019 2020 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 2021 if (serial_hds[i]) { 2022 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 2023 } 2024 } 2025 2026 /* We always have at least the nvram device on VIO */ 2027 spapr_create_nvram(spapr); 2028 2029 /* Set up PCI */ 2030 spapr_pci_rtas_init(); 2031 2032 phb = spapr_create_phb(spapr, 0); 2033 2034 for (i = 0; i < nb_nics; i++) { 2035 NICInfo *nd = &nd_table[i]; 2036 2037 if (!nd->model) { 2038 nd->model = g_strdup("ibmveth"); 2039 } 2040 2041 if (strcmp(nd->model, "ibmveth") == 0) { 2042 spapr_vlan_create(spapr->vio_bus, nd); 2043 } else { 2044 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2045 } 2046 } 2047 2048 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2049 spapr_vscsi_create(spapr->vio_bus); 2050 } 2051 2052 /* Graphics */ 2053 if (spapr_vga_init(phb->bus, &error_fatal)) { 2054 spapr->has_graphics = true; 2055 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2056 } 2057 2058 if (machine->usb) { 2059 if (smc->use_ohci_by_default) { 2060 pci_create_simple(phb->bus, -1, "pci-ohci"); 2061 } else { 2062 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2063 } 2064 2065 if (spapr->has_graphics) { 2066 USBBus *usb_bus = usb_bus_find(-1); 2067 2068 usb_create_simple(usb_bus, "usb-kbd"); 2069 usb_create_simple(usb_bus, "usb-mouse"); 2070 } 2071 } 2072 2073 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 2074 error_report( 2075 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2076 MIN_RMA_SLOF); 2077 exit(1); 2078 } 2079 2080 if (kernel_filename) { 2081 uint64_t lowaddr = 0; 2082 2083 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2084 NULL, NULL, &lowaddr, NULL, 1, 2085 PPC_ELF_MACHINE, 0, 0); 2086 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2087 spapr->kernel_size = load_elf(kernel_filename, 2088 translate_kernel_address, NULL, NULL, 2089 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2090 0, 0); 2091 spapr->kernel_le = spapr->kernel_size > 0; 2092 } 2093 if (spapr->kernel_size < 0) { 2094 error_report("error loading %s: %s", kernel_filename, 2095 load_elf_strerror(spapr->kernel_size)); 2096 exit(1); 2097 } 2098 2099 /* load initrd */ 2100 if (initrd_filename) { 2101 /* Try to locate the initrd in the gap between the kernel 2102 * and the firmware. Add a bit of space just in case 2103 */ 2104 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2105 + 0x1ffff) & ~0xffff; 2106 spapr->initrd_size = load_image_targphys(initrd_filename, 2107 spapr->initrd_base, 2108 load_limit 2109 - spapr->initrd_base); 2110 if (spapr->initrd_size < 0) { 2111 error_report("could not load initial ram disk '%s'", 2112 initrd_filename); 2113 exit(1); 2114 } 2115 } 2116 } 2117 2118 if (bios_name == NULL) { 2119 bios_name = FW_FILE_NAME; 2120 } 2121 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2122 if (!filename) { 2123 error_report("Could not find LPAR firmware '%s'", bios_name); 2124 exit(1); 2125 } 2126 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2127 if (fw_size <= 0) { 2128 error_report("Could not load LPAR firmware '%s'", filename); 2129 exit(1); 2130 } 2131 g_free(filename); 2132 2133 /* FIXME: Should register things through the MachineState's qdev 2134 * interface, this is a legacy from the sPAPREnvironment structure 2135 * which predated MachineState but had a similar function */ 2136 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2137 register_savevm_live(NULL, "spapr/htab", -1, 1, 2138 &savevm_htab_handlers, spapr); 2139 2140 /* used by RTAS */ 2141 QTAILQ_INIT(&spapr->ccs_list); 2142 qemu_register_reset(spapr_ccs_reset_hook, spapr); 2143 2144 qemu_register_boot_set(spapr_boot_set, spapr); 2145 2146 /* to stop and start vmclock */ 2147 if (kvm_enabled()) { 2148 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2149 &spapr->tb); 2150 } 2151 } 2152 2153 static int spapr_kvm_type(const char *vm_type) 2154 { 2155 if (!vm_type) { 2156 return 0; 2157 } 2158 2159 if (!strcmp(vm_type, "HV")) { 2160 return 1; 2161 } 2162 2163 if (!strcmp(vm_type, "PR")) { 2164 return 2; 2165 } 2166 2167 error_report("Unknown kvm-type specified '%s'", vm_type); 2168 exit(1); 2169 } 2170 2171 /* 2172 * Implementation of an interface to adjust firmware path 2173 * for the bootindex property handling. 2174 */ 2175 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2176 DeviceState *dev) 2177 { 2178 #define CAST(type, obj, name) \ 2179 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2180 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2181 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2182 2183 if (d) { 2184 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2185 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2186 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2187 2188 if (spapr) { 2189 /* 2190 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2191 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2192 * in the top 16 bits of the 64-bit LUN 2193 */ 2194 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2195 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2196 (uint64_t)id << 48); 2197 } else if (virtio) { 2198 /* 2199 * We use SRP luns of the form 01000000 | (target << 8) | lun 2200 * in the top 32 bits of the 64-bit LUN 2201 * Note: the quote above is from SLOF and it is wrong, 2202 * the actual binding is: 2203 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2204 */ 2205 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2206 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2207 (uint64_t)id << 32); 2208 } else if (usb) { 2209 /* 2210 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2211 * in the top 32 bits of the 64-bit LUN 2212 */ 2213 unsigned usb_port = atoi(usb->port->path); 2214 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2215 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2216 (uint64_t)id << 32); 2217 } 2218 } 2219 2220 /* 2221 * SLOF probes the USB devices, and if it recognizes that the device is a 2222 * storage device, it changes its name to "storage" instead of "usb-host", 2223 * and additionally adds a child node for the SCSI LUN, so the correct 2224 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2225 */ 2226 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2227 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2228 if (usb_host_dev_is_scsi_storage(usbdev)) { 2229 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2230 } 2231 } 2232 2233 if (phb) { 2234 /* Replace "pci" with "pci@800000020000000" */ 2235 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2236 } 2237 2238 return NULL; 2239 } 2240 2241 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2242 { 2243 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2244 2245 return g_strdup(spapr->kvm_type); 2246 } 2247 2248 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2249 { 2250 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2251 2252 g_free(spapr->kvm_type); 2253 spapr->kvm_type = g_strdup(value); 2254 } 2255 2256 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2257 { 2258 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2259 2260 return spapr->use_hotplug_event_source; 2261 } 2262 2263 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2264 Error **errp) 2265 { 2266 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2267 2268 spapr->use_hotplug_event_source = value; 2269 } 2270 2271 static void spapr_machine_initfn(Object *obj) 2272 { 2273 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2274 2275 spapr->htab_fd = -1; 2276 spapr->use_hotplug_event_source = true; 2277 object_property_add_str(obj, "kvm-type", 2278 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 2279 object_property_set_description(obj, "kvm-type", 2280 "Specifies the KVM virtualization mode (HV, PR)", 2281 NULL); 2282 object_property_add_bool(obj, "modern-hotplug-events", 2283 spapr_get_modern_hotplug_events, 2284 spapr_set_modern_hotplug_events, 2285 NULL); 2286 object_property_set_description(obj, "modern-hotplug-events", 2287 "Use dedicated hotplug event mechanism in" 2288 " place of standard EPOW events when possible" 2289 " (required for memory hot-unplug support)", 2290 NULL); 2291 } 2292 2293 static void spapr_machine_finalizefn(Object *obj) 2294 { 2295 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2296 2297 g_free(spapr->kvm_type); 2298 } 2299 2300 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 2301 { 2302 cpu_synchronize_state(cs); 2303 ppc_cpu_do_system_reset(cs); 2304 } 2305 2306 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 2307 { 2308 CPUState *cs; 2309 2310 CPU_FOREACH(cs) { 2311 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 2312 } 2313 } 2314 2315 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2316 uint32_t node, bool dedicated_hp_event_source, 2317 Error **errp) 2318 { 2319 sPAPRDRConnector *drc; 2320 sPAPRDRConnectorClass *drck; 2321 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 2322 int i, fdt_offset, fdt_size; 2323 void *fdt; 2324 uint64_t addr = addr_start; 2325 2326 for (i = 0; i < nr_lmbs; i++) { 2327 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2328 addr/SPAPR_MEMORY_BLOCK_SIZE); 2329 g_assert(drc); 2330 2331 fdt = create_device_tree(&fdt_size); 2332 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 2333 SPAPR_MEMORY_BLOCK_SIZE); 2334 2335 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2336 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp); 2337 addr += SPAPR_MEMORY_BLOCK_SIZE; 2338 if (!dev->hotplugged) { 2339 /* guests expect coldplugged LMBs to be pre-allocated */ 2340 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); 2341 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); 2342 } 2343 } 2344 /* send hotplug notification to the 2345 * guest only in case of hotplugged memory 2346 */ 2347 if (dev->hotplugged) { 2348 if (dedicated_hp_event_source) { 2349 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2350 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2351 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2352 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2353 nr_lmbs, 2354 drck->get_index(drc)); 2355 } else { 2356 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 2357 nr_lmbs); 2358 } 2359 } 2360 } 2361 2362 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2363 uint32_t node, Error **errp) 2364 { 2365 Error *local_err = NULL; 2366 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2367 PCDIMMDevice *dimm = PC_DIMM(dev); 2368 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2369 MemoryRegion *mr = ddc->get_memory_region(dimm); 2370 uint64_t align = memory_region_get_alignment(mr); 2371 uint64_t size = memory_region_size(mr); 2372 uint64_t addr; 2373 char *mem_dev; 2374 2375 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 2376 error_setg(&local_err, "Hotplugged memory size must be a multiple of " 2377 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE); 2378 goto out; 2379 } 2380 2381 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); 2382 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { 2383 error_setg(&local_err, "Memory backend has bad page size. " 2384 "Use 'memory-backend-file' with correct mem-path."); 2385 goto out; 2386 } 2387 2388 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); 2389 if (local_err) { 2390 goto out; 2391 } 2392 2393 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); 2394 if (local_err) { 2395 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2396 goto out; 2397 } 2398 2399 spapr_add_lmbs(dev, addr, size, node, 2400 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 2401 &error_abort); 2402 2403 out: 2404 error_propagate(errp, local_err); 2405 } 2406 2407 typedef struct sPAPRDIMMState { 2408 uint32_t nr_lmbs; 2409 } sPAPRDIMMState; 2410 2411 static void spapr_lmb_release(DeviceState *dev, void *opaque) 2412 { 2413 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque; 2414 HotplugHandler *hotplug_ctrl; 2415 2416 if (--ds->nr_lmbs) { 2417 return; 2418 } 2419 2420 g_free(ds); 2421 2422 /* 2423 * Now that all the LMBs have been removed by the guest, call the 2424 * pc-dimm unplug handler to cleanup up the pc-dimm device. 2425 */ 2426 hotplug_ctrl = qdev_get_hotplug_handler(dev); 2427 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 2428 } 2429 2430 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2431 Error **errp) 2432 { 2433 sPAPRDRConnector *drc; 2434 sPAPRDRConnectorClass *drck; 2435 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 2436 int i; 2437 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState)); 2438 uint64_t addr = addr_start; 2439 2440 ds->nr_lmbs = nr_lmbs; 2441 for (i = 0; i < nr_lmbs; i++) { 2442 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2443 addr / SPAPR_MEMORY_BLOCK_SIZE); 2444 g_assert(drc); 2445 2446 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2447 drck->detach(drc, dev, spapr_lmb_release, ds, errp); 2448 addr += SPAPR_MEMORY_BLOCK_SIZE; 2449 } 2450 2451 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2452 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2453 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2454 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2455 nr_lmbs, 2456 drck->get_index(drc)); 2457 } 2458 2459 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, 2460 Error **errp) 2461 { 2462 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2463 PCDIMMDevice *dimm = PC_DIMM(dev); 2464 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2465 MemoryRegion *mr = ddc->get_memory_region(dimm); 2466 2467 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2468 object_unparent(OBJECT(dev)); 2469 } 2470 2471 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 2472 DeviceState *dev, Error **errp) 2473 { 2474 Error *local_err = NULL; 2475 PCDIMMDevice *dimm = PC_DIMM(dev); 2476 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2477 MemoryRegion *mr = ddc->get_memory_region(dimm); 2478 uint64_t size = memory_region_size(mr); 2479 uint64_t addr; 2480 2481 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); 2482 if (local_err) { 2483 goto out; 2484 } 2485 2486 spapr_del_lmbs(dev, addr, size, &error_abort); 2487 out: 2488 error_propagate(errp, local_err); 2489 } 2490 2491 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 2492 sPAPRMachineState *spapr) 2493 { 2494 PowerPCCPU *cpu = POWERPC_CPU(cs); 2495 DeviceClass *dc = DEVICE_GET_CLASS(cs); 2496 int id = ppc_get_vcpu_dt_id(cpu); 2497 void *fdt; 2498 int offset, fdt_size; 2499 char *nodename; 2500 2501 fdt = create_device_tree(&fdt_size); 2502 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 2503 offset = fdt_add_subnode(fdt, 0, nodename); 2504 2505 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 2506 g_free(nodename); 2507 2508 *fdt_offset = offset; 2509 return fdt; 2510 } 2511 2512 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, 2513 Error **errp) 2514 { 2515 MachineState *ms = MACHINE(qdev_get_machine()); 2516 CPUCore *cc = CPU_CORE(dev); 2517 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 2518 2519 core_slot->cpu = NULL; 2520 object_unparent(OBJECT(dev)); 2521 } 2522 2523 static void spapr_core_release(DeviceState *dev, void *opaque) 2524 { 2525 HotplugHandler *hotplug_ctrl; 2526 2527 hotplug_ctrl = qdev_get_hotplug_handler(dev); 2528 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 2529 } 2530 2531 static 2532 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 2533 Error **errp) 2534 { 2535 int index; 2536 sPAPRDRConnector *drc; 2537 sPAPRDRConnectorClass *drck; 2538 Error *local_err = NULL; 2539 CPUCore *cc = CPU_CORE(dev); 2540 int smt = kvmppc_smt_threads(); 2541 2542 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 2543 error_setg(errp, "Unable to find CPU core with core-id: %d", 2544 cc->core_id); 2545 return; 2546 } 2547 if (index == 0) { 2548 error_setg(errp, "Boot CPU core may not be unplugged"); 2549 return; 2550 } 2551 2552 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt); 2553 g_assert(drc); 2554 2555 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2556 drck->detach(drc, dev, spapr_core_release, NULL, &local_err); 2557 if (local_err) { 2558 error_propagate(errp, local_err); 2559 return; 2560 } 2561 2562 spapr_hotplug_req_remove_by_index(drc); 2563 } 2564 2565 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2566 Error **errp) 2567 { 2568 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 2569 MachineClass *mc = MACHINE_GET_CLASS(spapr); 2570 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 2571 CPUCore *cc = CPU_CORE(dev); 2572 CPUState *cs = CPU(core->threads); 2573 sPAPRDRConnector *drc; 2574 Error *local_err = NULL; 2575 void *fdt = NULL; 2576 int fdt_offset = 0; 2577 int smt = kvmppc_smt_threads(); 2578 CPUArchId *core_slot; 2579 int index; 2580 2581 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 2582 if (!core_slot) { 2583 error_setg(errp, "Unable to find CPU core with core-id: %d", 2584 cc->core_id); 2585 return; 2586 } 2587 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt); 2588 2589 g_assert(drc || !mc->has_hotpluggable_cpus); 2590 2591 /* 2592 * Setup CPU DT entries only for hotplugged CPUs. For boot time or 2593 * coldplugged CPUs DT entries are setup in spapr_build_fdt(). 2594 */ 2595 if (dev->hotplugged) { 2596 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 2597 } 2598 2599 if (drc) { 2600 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2601 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err); 2602 if (local_err) { 2603 g_free(fdt); 2604 error_propagate(errp, local_err); 2605 return; 2606 } 2607 } 2608 2609 if (dev->hotplugged) { 2610 /* 2611 * Send hotplug notification interrupt to the guest only in case 2612 * of hotplugged CPUs. 2613 */ 2614 spapr_hotplug_req_add_by_index(drc); 2615 } else { 2616 /* 2617 * Set the right DRC states for cold plugged CPU. 2618 */ 2619 if (drc) { 2620 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2621 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); 2622 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); 2623 } 2624 } 2625 core_slot->cpu = OBJECT(dev); 2626 } 2627 2628 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2629 Error **errp) 2630 { 2631 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 2632 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 2633 Error *local_err = NULL; 2634 CPUCore *cc = CPU_CORE(dev); 2635 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model); 2636 const char *type = object_get_typename(OBJECT(dev)); 2637 CPUArchId *core_slot; 2638 int index; 2639 2640 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 2641 error_setg(&local_err, "CPU hotplug not supported for this machine"); 2642 goto out; 2643 } 2644 2645 if (strcmp(base_core_type, type)) { 2646 error_setg(&local_err, "CPU core type should be %s", base_core_type); 2647 goto out; 2648 } 2649 2650 if (cc->core_id % smp_threads) { 2651 error_setg(&local_err, "invalid core id %d", cc->core_id); 2652 goto out; 2653 } 2654 2655 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 2656 if (!core_slot) { 2657 error_setg(&local_err, "core id %d out of range", cc->core_id); 2658 goto out; 2659 } 2660 2661 if (core_slot->cpu) { 2662 error_setg(&local_err, "core %d already populated", cc->core_id); 2663 goto out; 2664 } 2665 2666 out: 2667 g_free(base_core_type); 2668 error_propagate(errp, local_err); 2669 } 2670 2671 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 2672 DeviceState *dev, Error **errp) 2673 { 2674 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); 2675 2676 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2677 int node; 2678 2679 if (!smc->dr_lmb_enabled) { 2680 error_setg(errp, "Memory hotplug not supported for this machine"); 2681 return; 2682 } 2683 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 2684 if (*errp) { 2685 return; 2686 } 2687 if (node < 0 || node >= MAX_NODES) { 2688 error_setg(errp, "Invaild node %d", node); 2689 return; 2690 } 2691 2692 /* 2693 * Currently PowerPC kernel doesn't allow hot-adding memory to 2694 * memory-less node, but instead will silently add the memory 2695 * to the first node that has some memory. This causes two 2696 * unexpected behaviours for the user. 2697 * 2698 * - Memory gets hotplugged to a different node than what the user 2699 * specified. 2700 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs 2701 * to memory-less node, a reboot will set things accordingly 2702 * and the previously hotplugged memory now ends in the right node. 2703 * This appears as if some memory moved from one node to another. 2704 * 2705 * So until kernel starts supporting memory hotplug to memory-less 2706 * nodes, just prevent such attempts upfront in QEMU. 2707 */ 2708 if (nb_numa_nodes && !numa_info[node].node_mem) { 2709 error_setg(errp, "Can't hotplug memory to memory-less node %d", 2710 node); 2711 return; 2712 } 2713 2714 spapr_memory_plug(hotplug_dev, dev, node, errp); 2715 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2716 spapr_core_plug(hotplug_dev, dev, errp); 2717 } 2718 } 2719 2720 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 2721 DeviceState *dev, Error **errp) 2722 { 2723 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); 2724 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 2725 2726 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2727 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 2728 spapr_memory_unplug(hotplug_dev, dev, errp); 2729 } else { 2730 error_setg(errp, "Memory hot unplug not supported for this guest"); 2731 } 2732 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2733 if (!mc->has_hotpluggable_cpus) { 2734 error_setg(errp, "CPU hot unplug not supported on this machine"); 2735 return; 2736 } 2737 spapr_core_unplug(hotplug_dev, dev, errp); 2738 } 2739 } 2740 2741 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 2742 DeviceState *dev, Error **errp) 2743 { 2744 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); 2745 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 2746 2747 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2748 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 2749 spapr_memory_unplug_request(hotplug_dev, dev, errp); 2750 } else { 2751 /* NOTE: this means there is a window after guest reset, prior to 2752 * CAS negotiation, where unplug requests will fail due to the 2753 * capability not being detected yet. This is a bit different than 2754 * the case with PCI unplug, where the events will be queued and 2755 * eventually handled by the guest after boot 2756 */ 2757 error_setg(errp, "Memory hot unplug not supported for this guest"); 2758 } 2759 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2760 if (!mc->has_hotpluggable_cpus) { 2761 error_setg(errp, "CPU hot unplug not supported on this machine"); 2762 return; 2763 } 2764 spapr_core_unplug_request(hotplug_dev, dev, errp); 2765 } 2766 } 2767 2768 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 2769 DeviceState *dev, Error **errp) 2770 { 2771 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2772 spapr_core_pre_plug(hotplug_dev, dev, errp); 2773 } 2774 } 2775 2776 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 2777 DeviceState *dev) 2778 { 2779 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2780 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2781 return HOTPLUG_HANDLER(machine); 2782 } 2783 return NULL; 2784 } 2785 2786 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index) 2787 { 2788 /* Allocate to NUMA nodes on a "socket" basis (not that concept of 2789 * socket means much for the paravirtualized PAPR platform) */ 2790 return cpu_index / smp_threads / smp_cores; 2791 } 2792 2793 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 2794 { 2795 int i; 2796 int spapr_max_cores = max_cpus / smp_threads; 2797 MachineClass *mc = MACHINE_GET_CLASS(machine); 2798 2799 if (!mc->has_hotpluggable_cpus) { 2800 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 2801 } 2802 if (machine->possible_cpus) { 2803 assert(machine->possible_cpus->len == spapr_max_cores); 2804 return machine->possible_cpus; 2805 } 2806 2807 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2808 sizeof(CPUArchId) * spapr_max_cores); 2809 machine->possible_cpus->len = spapr_max_cores; 2810 for (i = 0; i < machine->possible_cpus->len; i++) { 2811 int core_id = i * smp_threads; 2812 2813 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 2814 machine->possible_cpus->cpus[i].arch_id = core_id; 2815 machine->possible_cpus->cpus[i].props.has_core_id = true; 2816 machine->possible_cpus->cpus[i].props.core_id = core_id; 2817 /* TODO: add 'has_node/node' here to describe 2818 to which node core belongs */ 2819 } 2820 return machine->possible_cpus; 2821 } 2822 2823 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 2824 uint64_t *buid, hwaddr *pio, 2825 hwaddr *mmio32, hwaddr *mmio64, 2826 unsigned n_dma, uint32_t *liobns, Error **errp) 2827 { 2828 /* 2829 * New-style PHB window placement. 2830 * 2831 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 2832 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 2833 * windows. 2834 * 2835 * Some guest kernels can't work with MMIO windows above 1<<46 2836 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 2837 * 2838 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 2839 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 2840 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 2841 * 1TiB 64-bit MMIO windows for each PHB. 2842 */ 2843 const uint64_t base_buid = 0x800000020000000ULL; 2844 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 2845 SPAPR_PCI_MEM64_WIN_SIZE - 1) 2846 int i; 2847 2848 /* Sanity check natural alignments */ 2849 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 2850 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 2851 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 2852 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 2853 /* Sanity check bounds */ 2854 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 2855 SPAPR_PCI_MEM32_WIN_SIZE); 2856 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 2857 SPAPR_PCI_MEM64_WIN_SIZE); 2858 2859 if (index >= SPAPR_MAX_PHBS) { 2860 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 2861 SPAPR_MAX_PHBS - 1); 2862 return; 2863 } 2864 2865 *buid = base_buid + index; 2866 for (i = 0; i < n_dma; ++i) { 2867 liobns[i] = SPAPR_PCI_LIOBN(index, i); 2868 } 2869 2870 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 2871 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 2872 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 2873 } 2874 2875 static void spapr_machine_class_init(ObjectClass *oc, void *data) 2876 { 2877 MachineClass *mc = MACHINE_CLASS(oc); 2878 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 2879 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 2880 NMIClass *nc = NMI_CLASS(oc); 2881 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2882 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 2883 2884 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 2885 2886 /* 2887 * We set up the default / latest behaviour here. The class_init 2888 * functions for the specific versioned machine types can override 2889 * these details for backwards compatibility 2890 */ 2891 mc->init = ppc_spapr_init; 2892 mc->reset = ppc_spapr_reset; 2893 mc->block_default_type = IF_SCSI; 2894 mc->max_cpus = 255; 2895 mc->no_parallel = 1; 2896 mc->default_boot_order = ""; 2897 mc->default_ram_size = 512 * M_BYTE; 2898 mc->kvm_type = spapr_kvm_type; 2899 mc->has_dynamic_sysbus = true; 2900 mc->pci_allow_0_address = true; 2901 mc->get_hotplug_handler = spapr_get_hotplug_handler; 2902 hc->pre_plug = spapr_machine_device_pre_plug; 2903 hc->plug = spapr_machine_device_plug; 2904 hc->unplug = spapr_machine_device_unplug; 2905 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id; 2906 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 2907 hc->unplug_request = spapr_machine_device_unplug_request; 2908 2909 smc->dr_lmb_enabled = true; 2910 smc->tcg_default_cpu = "POWER8"; 2911 mc->has_hotpluggable_cpus = true; 2912 fwc->get_dev_path = spapr_get_fw_dev_path; 2913 nc->nmi_monitor_handler = spapr_nmi; 2914 smc->phb_placement = spapr_phb_placement; 2915 vhc->hypercall = emulate_spapr_hypercall; 2916 } 2917 2918 static const TypeInfo spapr_machine_info = { 2919 .name = TYPE_SPAPR_MACHINE, 2920 .parent = TYPE_MACHINE, 2921 .abstract = true, 2922 .instance_size = sizeof(sPAPRMachineState), 2923 .instance_init = spapr_machine_initfn, 2924 .instance_finalize = spapr_machine_finalizefn, 2925 .class_size = sizeof(sPAPRMachineClass), 2926 .class_init = spapr_machine_class_init, 2927 .interfaces = (InterfaceInfo[]) { 2928 { TYPE_FW_PATH_PROVIDER }, 2929 { TYPE_NMI }, 2930 { TYPE_HOTPLUG_HANDLER }, 2931 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 2932 { } 2933 }, 2934 }; 2935 2936 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 2937 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 2938 void *data) \ 2939 { \ 2940 MachineClass *mc = MACHINE_CLASS(oc); \ 2941 spapr_machine_##suffix##_class_options(mc); \ 2942 if (latest) { \ 2943 mc->alias = "pseries"; \ 2944 mc->is_default = 1; \ 2945 } \ 2946 } \ 2947 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 2948 { \ 2949 MachineState *machine = MACHINE(obj); \ 2950 spapr_machine_##suffix##_instance_options(machine); \ 2951 } \ 2952 static const TypeInfo spapr_machine_##suffix##_info = { \ 2953 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 2954 .parent = TYPE_SPAPR_MACHINE, \ 2955 .class_init = spapr_machine_##suffix##_class_init, \ 2956 .instance_init = spapr_machine_##suffix##_instance_init, \ 2957 }; \ 2958 static void spapr_machine_register_##suffix(void) \ 2959 { \ 2960 type_register(&spapr_machine_##suffix##_info); \ 2961 } \ 2962 type_init(spapr_machine_register_##suffix) 2963 2964 /* 2965 * pseries-2.9 2966 */ 2967 static void spapr_machine_2_9_instance_options(MachineState *machine) 2968 { 2969 } 2970 2971 static void spapr_machine_2_9_class_options(MachineClass *mc) 2972 { 2973 /* Defaults for the latest behaviour inherited from the base class */ 2974 } 2975 2976 DEFINE_SPAPR_MACHINE(2_9, "2.9", true); 2977 2978 /* 2979 * pseries-2.8 2980 */ 2981 #define SPAPR_COMPAT_2_8 \ 2982 HW_COMPAT_2_8 2983 2984 static void spapr_machine_2_8_instance_options(MachineState *machine) 2985 { 2986 spapr_machine_2_9_instance_options(machine); 2987 } 2988 2989 static void spapr_machine_2_8_class_options(MachineClass *mc) 2990 { 2991 spapr_machine_2_9_class_options(mc); 2992 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 2993 } 2994 2995 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 2996 2997 /* 2998 * pseries-2.7 2999 */ 3000 #define SPAPR_COMPAT_2_7 \ 3001 HW_COMPAT_2_7 \ 3002 { \ 3003 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3004 .property = "mem_win_size", \ 3005 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 3006 }, \ 3007 { \ 3008 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3009 .property = "mem64_win_size", \ 3010 .value = "0", \ 3011 }, \ 3012 { \ 3013 .driver = TYPE_POWERPC_CPU, \ 3014 .property = "pre-2.8-migration", \ 3015 .value = "on", \ 3016 }, \ 3017 { \ 3018 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3019 .property = "pre-2.8-migration", \ 3020 .value = "on", \ 3021 }, 3022 3023 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 3024 uint64_t *buid, hwaddr *pio, 3025 hwaddr *mmio32, hwaddr *mmio64, 3026 unsigned n_dma, uint32_t *liobns, Error **errp) 3027 { 3028 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 3029 const uint64_t base_buid = 0x800000020000000ULL; 3030 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 3031 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 3032 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 3033 const uint32_t max_index = 255; 3034 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 3035 3036 uint64_t ram_top = MACHINE(spapr)->ram_size; 3037 hwaddr phb0_base, phb_base; 3038 int i; 3039 3040 /* Do we have hotpluggable memory? */ 3041 if (MACHINE(spapr)->maxram_size > ram_top) { 3042 /* Can't just use maxram_size, because there may be an 3043 * alignment gap between normal and hotpluggable memory 3044 * regions */ 3045 ram_top = spapr->hotplug_memory.base + 3046 memory_region_size(&spapr->hotplug_memory.mr); 3047 } 3048 3049 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 3050 3051 if (index > max_index) { 3052 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 3053 max_index); 3054 return; 3055 } 3056 3057 *buid = base_buid + index; 3058 for (i = 0; i < n_dma; ++i) { 3059 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3060 } 3061 3062 phb_base = phb0_base + index * phb_spacing; 3063 *pio = phb_base + pio_offset; 3064 *mmio32 = phb_base + mmio_offset; 3065 /* 3066 * We don't set the 64-bit MMIO window, relying on the PHB's 3067 * fallback behaviour of automatically splitting a large "32-bit" 3068 * window into contiguous 32-bit and 64-bit windows 3069 */ 3070 } 3071 3072 static void spapr_machine_2_7_instance_options(MachineState *machine) 3073 { 3074 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 3075 3076 spapr_machine_2_8_instance_options(machine); 3077 spapr->use_hotplug_event_source = false; 3078 } 3079 3080 static void spapr_machine_2_7_class_options(MachineClass *mc) 3081 { 3082 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3083 3084 spapr_machine_2_8_class_options(mc); 3085 smc->tcg_default_cpu = "POWER7"; 3086 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 3087 smc->phb_placement = phb_placement_2_7; 3088 } 3089 3090 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 3091 3092 /* 3093 * pseries-2.6 3094 */ 3095 #define SPAPR_COMPAT_2_6 \ 3096 HW_COMPAT_2_6 \ 3097 { \ 3098 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3099 .property = "ddw",\ 3100 .value = stringify(off),\ 3101 }, 3102 3103 static void spapr_machine_2_6_instance_options(MachineState *machine) 3104 { 3105 spapr_machine_2_7_instance_options(machine); 3106 } 3107 3108 static void spapr_machine_2_6_class_options(MachineClass *mc) 3109 { 3110 spapr_machine_2_7_class_options(mc); 3111 mc->has_hotpluggable_cpus = false; 3112 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 3113 } 3114 3115 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 3116 3117 /* 3118 * pseries-2.5 3119 */ 3120 #define SPAPR_COMPAT_2_5 \ 3121 HW_COMPAT_2_5 \ 3122 { \ 3123 .driver = "spapr-vlan", \ 3124 .property = "use-rx-buffer-pools", \ 3125 .value = "off", \ 3126 }, 3127 3128 static void spapr_machine_2_5_instance_options(MachineState *machine) 3129 { 3130 spapr_machine_2_6_instance_options(machine); 3131 } 3132 3133 static void spapr_machine_2_5_class_options(MachineClass *mc) 3134 { 3135 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3136 3137 spapr_machine_2_6_class_options(mc); 3138 smc->use_ohci_by_default = true; 3139 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 3140 } 3141 3142 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 3143 3144 /* 3145 * pseries-2.4 3146 */ 3147 #define SPAPR_COMPAT_2_4 \ 3148 HW_COMPAT_2_4 3149 3150 static void spapr_machine_2_4_instance_options(MachineState *machine) 3151 { 3152 spapr_machine_2_5_instance_options(machine); 3153 } 3154 3155 static void spapr_machine_2_4_class_options(MachineClass *mc) 3156 { 3157 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3158 3159 spapr_machine_2_5_class_options(mc); 3160 smc->dr_lmb_enabled = false; 3161 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 3162 } 3163 3164 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 3165 3166 /* 3167 * pseries-2.3 3168 */ 3169 #define SPAPR_COMPAT_2_3 \ 3170 HW_COMPAT_2_3 \ 3171 {\ 3172 .driver = "spapr-pci-host-bridge",\ 3173 .property = "dynamic-reconfiguration",\ 3174 .value = "off",\ 3175 }, 3176 3177 static void spapr_machine_2_3_instance_options(MachineState *machine) 3178 { 3179 spapr_machine_2_4_instance_options(machine); 3180 savevm_skip_section_footers(); 3181 global_state_set_optional(); 3182 savevm_skip_configuration(); 3183 } 3184 3185 static void spapr_machine_2_3_class_options(MachineClass *mc) 3186 { 3187 spapr_machine_2_4_class_options(mc); 3188 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 3189 } 3190 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 3191 3192 /* 3193 * pseries-2.2 3194 */ 3195 3196 #define SPAPR_COMPAT_2_2 \ 3197 HW_COMPAT_2_2 \ 3198 {\ 3199 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3200 .property = "mem_win_size",\ 3201 .value = "0x20000000",\ 3202 }, 3203 3204 static void spapr_machine_2_2_instance_options(MachineState *machine) 3205 { 3206 spapr_machine_2_3_instance_options(machine); 3207 machine->suppress_vmdesc = true; 3208 } 3209 3210 static void spapr_machine_2_2_class_options(MachineClass *mc) 3211 { 3212 spapr_machine_2_3_class_options(mc); 3213 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 3214 } 3215 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 3216 3217 /* 3218 * pseries-2.1 3219 */ 3220 #define SPAPR_COMPAT_2_1 \ 3221 HW_COMPAT_2_1 3222 3223 static void spapr_machine_2_1_instance_options(MachineState *machine) 3224 { 3225 spapr_machine_2_2_instance_options(machine); 3226 } 3227 3228 static void spapr_machine_2_1_class_options(MachineClass *mc) 3229 { 3230 spapr_machine_2_2_class_options(mc); 3231 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 3232 } 3233 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 3234 3235 static void spapr_machine_register_types(void) 3236 { 3237 type_register_static(&spapr_machine_info); 3238 } 3239 3240 type_init(spapr_machine_register_types) 3241