xref: /openbmc/qemu/hw/ppc/spapr.c (revision 39164c13)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "qom/cpu.h"
44 
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
48 
49 #include "hw/ppc/fdt.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
55 
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
59 
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66 
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 #include "hw/ppc/spapr_cpu_core.h"
70 #include "qmp-commands.h"
71 
72 #include <libfdt.h>
73 
74 /* SLOF memory layout:
75  *
76  * SLOF raw image loaded at 0, copies its romfs right below the flat
77  * device-tree, then position SLOF itself 31M below that
78  *
79  * So we set FW_OVERHEAD to 40MB which should account for all of that
80  * and more
81  *
82  * We load our kernel at 4M, leaving space for SLOF initial image
83  */
84 #define FDT_MAX_SIZE            0x100000
85 #define RTAS_MAX_SIZE           0x10000
86 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
87 #define FW_MAX_SIZE             0x400000
88 #define FW_FILE_NAME            "slof.bin"
89 #define FW_OVERHEAD             0x2800000
90 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
91 
92 #define MIN_RMA_SLOF            128UL
93 
94 #define PHANDLE_XICP            0x00001111
95 
96 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
97 
98 static XICSState *try_create_xics(const char *type, int nr_servers,
99                                   int nr_irqs, Error **errp)
100 {
101     Error *err = NULL;
102     DeviceState *dev;
103 
104     dev = qdev_create(NULL, type);
105     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
106     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
107     object_property_set_bool(OBJECT(dev), true, "realized", &err);
108     if (err) {
109         error_propagate(errp, err);
110         object_unparent(OBJECT(dev));
111         return NULL;
112     }
113     return XICS_COMMON(dev);
114 }
115 
116 static XICSState *xics_system_init(MachineState *machine,
117                                    int nr_servers, int nr_irqs, Error **errp)
118 {
119     XICSState *xics = NULL;
120 
121     if (kvm_enabled()) {
122         Error *err = NULL;
123 
124         if (machine_kernel_irqchip_allowed(machine)) {
125             xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
126                                    &err);
127         }
128         if (machine_kernel_irqchip_required(machine) && !xics) {
129             error_reportf_err(err,
130                               "kernel_irqchip requested but unavailable: ");
131         } else {
132             error_free(err);
133         }
134     }
135 
136     if (!xics) {
137         xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
138     }
139 
140     return xics;
141 }
142 
143 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
144                                   int smt_threads)
145 {
146     int i, ret = 0;
147     uint32_t servers_prop[smt_threads];
148     uint32_t gservers_prop[smt_threads * 2];
149     int index = ppc_get_vcpu_dt_id(cpu);
150 
151     if (cpu->compat_pvr) {
152         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
153         if (ret < 0) {
154             return ret;
155         }
156     }
157 
158     /* Build interrupt servers and gservers properties */
159     for (i = 0; i < smt_threads; i++) {
160         servers_prop[i] = cpu_to_be32(index + i);
161         /* Hack, direct the group queues back to cpu 0 */
162         gservers_prop[i*2] = cpu_to_be32(index + i);
163         gservers_prop[i*2 + 1] = 0;
164     }
165     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
166                       servers_prop, sizeof(servers_prop));
167     if (ret < 0) {
168         return ret;
169     }
170     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
171                       gservers_prop, sizeof(gservers_prop));
172 
173     return ret;
174 }
175 
176 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
177 {
178     int ret = 0;
179     PowerPCCPU *cpu = POWERPC_CPU(cs);
180     int index = ppc_get_vcpu_dt_id(cpu);
181     uint32_t associativity[] = {cpu_to_be32(0x5),
182                                 cpu_to_be32(0x0),
183                                 cpu_to_be32(0x0),
184                                 cpu_to_be32(0x0),
185                                 cpu_to_be32(cs->numa_node),
186                                 cpu_to_be32(index)};
187 
188     /* Advertise NUMA via ibm,associativity */
189     if (nb_numa_nodes > 1) {
190         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
191                           sizeof(associativity));
192     }
193 
194     return ret;
195 }
196 
197 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
198 {
199     int ret = 0, offset, cpus_offset;
200     CPUState *cs;
201     char cpu_model[32];
202     int smt = kvmppc_smt_threads();
203     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
204 
205     CPU_FOREACH(cs) {
206         PowerPCCPU *cpu = POWERPC_CPU(cs);
207         DeviceClass *dc = DEVICE_GET_CLASS(cs);
208         int index = ppc_get_vcpu_dt_id(cpu);
209         int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
210 
211         if ((index % smt) != 0) {
212             continue;
213         }
214 
215         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
216 
217         cpus_offset = fdt_path_offset(fdt, "/cpus");
218         if (cpus_offset < 0) {
219             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
220                                           "cpus");
221             if (cpus_offset < 0) {
222                 return cpus_offset;
223             }
224         }
225         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
226         if (offset < 0) {
227             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
228             if (offset < 0) {
229                 return offset;
230             }
231         }
232 
233         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
234                           pft_size_prop, sizeof(pft_size_prop));
235         if (ret < 0) {
236             return ret;
237         }
238 
239         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
240         if (ret < 0) {
241             return ret;
242         }
243 
244         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
245         if (ret < 0) {
246             return ret;
247         }
248     }
249     return ret;
250 }
251 
252 static hwaddr spapr_node0_size(void)
253 {
254     MachineState *machine = MACHINE(qdev_get_machine());
255 
256     if (nb_numa_nodes) {
257         int i;
258         for (i = 0; i < nb_numa_nodes; ++i) {
259             if (numa_info[i].node_mem) {
260                 return MIN(pow2floor(numa_info[i].node_mem),
261                            machine->ram_size);
262             }
263         }
264     }
265     return machine->ram_size;
266 }
267 
268 static void add_str(GString *s, const gchar *s1)
269 {
270     g_string_append_len(s, s1, strlen(s1) + 1);
271 }
272 
273 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
274                                        hwaddr size)
275 {
276     uint32_t associativity[] = {
277         cpu_to_be32(0x4), /* length */
278         cpu_to_be32(0x0), cpu_to_be32(0x0),
279         cpu_to_be32(0x0), cpu_to_be32(nodeid)
280     };
281     char mem_name[32];
282     uint64_t mem_reg_property[2];
283     int off;
284 
285     mem_reg_property[0] = cpu_to_be64(start);
286     mem_reg_property[1] = cpu_to_be64(size);
287 
288     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
289     off = fdt_add_subnode(fdt, 0, mem_name);
290     _FDT(off);
291     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
292     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
293                       sizeof(mem_reg_property))));
294     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
295                       sizeof(associativity))));
296     return off;
297 }
298 
299 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
300 {
301     MachineState *machine = MACHINE(spapr);
302     hwaddr mem_start, node_size;
303     int i, nb_nodes = nb_numa_nodes;
304     NodeInfo *nodes = numa_info;
305     NodeInfo ramnode;
306 
307     /* No NUMA nodes, assume there is just one node with whole RAM */
308     if (!nb_numa_nodes) {
309         nb_nodes = 1;
310         ramnode.node_mem = machine->ram_size;
311         nodes = &ramnode;
312     }
313 
314     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
315         if (!nodes[i].node_mem) {
316             continue;
317         }
318         if (mem_start >= machine->ram_size) {
319             node_size = 0;
320         } else {
321             node_size = nodes[i].node_mem;
322             if (node_size > machine->ram_size - mem_start) {
323                 node_size = machine->ram_size - mem_start;
324             }
325         }
326         if (!mem_start) {
327             /* ppc_spapr_init() checks for rma_size <= node0_size already */
328             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
329             mem_start += spapr->rma_size;
330             node_size -= spapr->rma_size;
331         }
332         for ( ; node_size; ) {
333             hwaddr sizetmp = pow2floor(node_size);
334 
335             /* mem_start != 0 here */
336             if (ctzl(mem_start) < ctzl(sizetmp)) {
337                 sizetmp = 1ULL << ctzl(mem_start);
338             }
339 
340             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
341             node_size -= sizetmp;
342             mem_start += sizetmp;
343         }
344     }
345 
346     return 0;
347 }
348 
349 /* Populate the "ibm,pa-features" property */
350 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
351 {
352     uint8_t pa_features_206[] = { 6, 0,
353         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
354     uint8_t pa_features_207[] = { 24, 0,
355         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
356         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
357         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
358         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
359     uint8_t *pa_features;
360     size_t pa_size;
361 
362     switch (env->mmu_model) {
363     case POWERPC_MMU_2_06:
364     case POWERPC_MMU_2_06a:
365         pa_features = pa_features_206;
366         pa_size = sizeof(pa_features_206);
367         break;
368     case POWERPC_MMU_2_07:
369     case POWERPC_MMU_2_07a:
370         pa_features = pa_features_207;
371         pa_size = sizeof(pa_features_207);
372         break;
373     default:
374         return;
375     }
376 
377     if (env->ci_large_pages) {
378         /*
379          * Note: we keep CI large pages off by default because a 64K capable
380          * guest provisioned with large pages might otherwise try to map a qemu
381          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
382          * even if that qemu runs on a 4k host.
383          * We dd this bit back here if we are confident this is not an issue
384          */
385         pa_features[3] |= 0x20;
386     }
387     if (kvmppc_has_cap_htm() && pa_size > 24) {
388         pa_features[24] |= 0x80;    /* Transactional memory support */
389     }
390 
391     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
392 }
393 
394 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
395                                   sPAPRMachineState *spapr)
396 {
397     PowerPCCPU *cpu = POWERPC_CPU(cs);
398     CPUPPCState *env = &cpu->env;
399     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
400     int index = ppc_get_vcpu_dt_id(cpu);
401     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
402                        0xffffffff, 0xffffffff};
403     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
404         : SPAPR_TIMEBASE_FREQ;
405     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
406     uint32_t page_sizes_prop[64];
407     size_t page_sizes_prop_size;
408     uint32_t vcpus_per_socket = smp_threads * smp_cores;
409     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
410     int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
411     sPAPRDRConnector *drc;
412     sPAPRDRConnectorClass *drck;
413     int drc_index;
414 
415     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
416     if (drc) {
417         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
418         drc_index = drck->get_index(drc);
419         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
420     }
421 
422     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
423     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
424 
425     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
426     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
427                            env->dcache_line_size)));
428     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
429                            env->dcache_line_size)));
430     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
431                            env->icache_line_size)));
432     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
433                            env->icache_line_size)));
434 
435     if (pcc->l1_dcache_size) {
436         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
437                                pcc->l1_dcache_size)));
438     } else {
439         error_report("Warning: Unknown L1 dcache size for cpu");
440     }
441     if (pcc->l1_icache_size) {
442         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
443                                pcc->l1_icache_size)));
444     } else {
445         error_report("Warning: Unknown L1 icache size for cpu");
446     }
447 
448     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
449     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
450     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
451     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
452     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
453     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
454 
455     if (env->spr_cb[SPR_PURR].oea_read) {
456         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
457     }
458 
459     if (env->mmu_model & POWERPC_MMU_1TSEG) {
460         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
461                           segs, sizeof(segs))));
462     }
463 
464     /* Advertise VMX/VSX (vector extensions) if available
465      *   0 / no property == no vector extensions
466      *   1               == VMX / Altivec available
467      *   2               == VSX available */
468     if (env->insns_flags & PPC_ALTIVEC) {
469         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
470 
471         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
472     }
473 
474     /* Advertise DFP (Decimal Floating Point) if available
475      *   0 / no property == no DFP
476      *   1               == DFP available */
477     if (env->insns_flags2 & PPC2_DFP) {
478         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
479     }
480 
481     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
482                                                   sizeof(page_sizes_prop));
483     if (page_sizes_prop_size) {
484         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
485                           page_sizes_prop, page_sizes_prop_size)));
486     }
487 
488     spapr_populate_pa_features(env, fdt, offset);
489 
490     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
491                            cs->cpu_index / vcpus_per_socket)));
492 
493     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
494                       pft_size_prop, sizeof(pft_size_prop))));
495 
496     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
497 
498     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
499 }
500 
501 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
502 {
503     CPUState *cs;
504     int cpus_offset;
505     char *nodename;
506     int smt = kvmppc_smt_threads();
507 
508     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
509     _FDT(cpus_offset);
510     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
511     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
512 
513     /*
514      * We walk the CPUs in reverse order to ensure that CPU DT nodes
515      * created by fdt_add_subnode() end up in the right order in FDT
516      * for the guest kernel the enumerate the CPUs correctly.
517      */
518     CPU_FOREACH_REVERSE(cs) {
519         PowerPCCPU *cpu = POWERPC_CPU(cs);
520         int index = ppc_get_vcpu_dt_id(cpu);
521         DeviceClass *dc = DEVICE_GET_CLASS(cs);
522         int offset;
523 
524         if ((index % smt) != 0) {
525             continue;
526         }
527 
528         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
529         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
530         g_free(nodename);
531         _FDT(offset);
532         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
533     }
534 
535 }
536 
537 /*
538  * Adds ibm,dynamic-reconfiguration-memory node.
539  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
540  * of this device tree node.
541  */
542 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
543 {
544     MachineState *machine = MACHINE(spapr);
545     int ret, i, offset;
546     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
547     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
548     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
549     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
550                        memory_region_size(&spapr->hotplug_memory.mr)) /
551                        lmb_size;
552     uint32_t *int_buf, *cur_index, buf_len;
553     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
554 
555     /*
556      * Don't create the node if there is no hotpluggable memory
557      */
558     if (machine->ram_size == machine->maxram_size) {
559         return 0;
560     }
561 
562     /*
563      * Allocate enough buffer size to fit in ibm,dynamic-memory
564      * or ibm,associativity-lookup-arrays
565      */
566     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
567               * sizeof(uint32_t);
568     cur_index = int_buf = g_malloc0(buf_len);
569 
570     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
571 
572     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
573                     sizeof(prop_lmb_size));
574     if (ret < 0) {
575         goto out;
576     }
577 
578     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
579     if (ret < 0) {
580         goto out;
581     }
582 
583     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
584     if (ret < 0) {
585         goto out;
586     }
587 
588     /* ibm,dynamic-memory */
589     int_buf[0] = cpu_to_be32(nr_lmbs);
590     cur_index++;
591     for (i = 0; i < nr_lmbs; i++) {
592         uint64_t addr = i * lmb_size;
593         uint32_t *dynamic_memory = cur_index;
594 
595         if (i >= hotplug_lmb_start) {
596             sPAPRDRConnector *drc;
597             sPAPRDRConnectorClass *drck;
598 
599             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
600             g_assert(drc);
601             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
602 
603             dynamic_memory[0] = cpu_to_be32(addr >> 32);
604             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
605             dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
606             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
607             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
608             if (memory_region_present(get_system_memory(), addr)) {
609                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
610             } else {
611                 dynamic_memory[5] = cpu_to_be32(0);
612             }
613         } else {
614             /*
615              * LMB information for RMA, boot time RAM and gap b/n RAM and
616              * hotplug memory region -- all these are marked as reserved
617              * and as having no valid DRC.
618              */
619             dynamic_memory[0] = cpu_to_be32(addr >> 32);
620             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
621             dynamic_memory[2] = cpu_to_be32(0);
622             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
623             dynamic_memory[4] = cpu_to_be32(-1);
624             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
625                                             SPAPR_LMB_FLAGS_DRC_INVALID);
626         }
627 
628         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
629     }
630     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
631     if (ret < 0) {
632         goto out;
633     }
634 
635     /* ibm,associativity-lookup-arrays */
636     cur_index = int_buf;
637     int_buf[0] = cpu_to_be32(nr_nodes);
638     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
639     cur_index += 2;
640     for (i = 0; i < nr_nodes; i++) {
641         uint32_t associativity[] = {
642             cpu_to_be32(0x0),
643             cpu_to_be32(0x0),
644             cpu_to_be32(0x0),
645             cpu_to_be32(i)
646         };
647         memcpy(cur_index, associativity, sizeof(associativity));
648         cur_index += 4;
649     }
650     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
651             (cur_index - int_buf) * sizeof(uint32_t));
652 out:
653     g_free(int_buf);
654     return ret;
655 }
656 
657 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
658                                 sPAPROptionVector *ov5_updates)
659 {
660     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
661     int ret = 0, offset;
662 
663     /* Generate ibm,dynamic-reconfiguration-memory node if required */
664     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
665         g_assert(smc->dr_lmb_enabled);
666         ret = spapr_populate_drconf_memory(spapr, fdt);
667         if (ret) {
668             goto out;
669         }
670     }
671 
672     offset = fdt_path_offset(fdt, "/chosen");
673     if (offset < 0) {
674         offset = fdt_add_subnode(fdt, 0, "chosen");
675         if (offset < 0) {
676             return offset;
677         }
678     }
679     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
680                                  "ibm,architecture-vec-5");
681 
682 out:
683     return ret;
684 }
685 
686 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
687                                  target_ulong addr, target_ulong size,
688                                  sPAPROptionVector *ov5_updates)
689 {
690     void *fdt, *fdt_skel;
691     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
692 
693     size -= sizeof(hdr);
694 
695     /* Create sceleton */
696     fdt_skel = g_malloc0(size);
697     _FDT((fdt_create(fdt_skel, size)));
698     _FDT((fdt_begin_node(fdt_skel, "")));
699     _FDT((fdt_end_node(fdt_skel)));
700     _FDT((fdt_finish(fdt_skel)));
701     fdt = g_malloc0(size);
702     _FDT((fdt_open_into(fdt_skel, fdt, size)));
703     g_free(fdt_skel);
704 
705     /* Fixup cpu nodes */
706     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
707 
708     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
709         return -1;
710     }
711 
712     /* Pack resulting tree */
713     _FDT((fdt_pack(fdt)));
714 
715     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
716         trace_spapr_cas_failed(size);
717         return -1;
718     }
719 
720     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
721     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
722     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
723     g_free(fdt);
724 
725     return 0;
726 }
727 
728 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
729 {
730     int rtas;
731     GString *hypertas = g_string_sized_new(256);
732     GString *qemu_hypertas = g_string_sized_new(256);
733     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
734     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
735         memory_region_size(&spapr->hotplug_memory.mr);
736     uint32_t lrdr_capacity[] = {
737         cpu_to_be32(max_hotplug_addr >> 32),
738         cpu_to_be32(max_hotplug_addr & 0xffffffff),
739         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
740         cpu_to_be32(max_cpus / smp_threads),
741     };
742 
743     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
744 
745     /* hypertas */
746     add_str(hypertas, "hcall-pft");
747     add_str(hypertas, "hcall-term");
748     add_str(hypertas, "hcall-dabr");
749     add_str(hypertas, "hcall-interrupt");
750     add_str(hypertas, "hcall-tce");
751     add_str(hypertas, "hcall-vio");
752     add_str(hypertas, "hcall-splpar");
753     add_str(hypertas, "hcall-bulk");
754     add_str(hypertas, "hcall-set-mode");
755     add_str(hypertas, "hcall-sprg0");
756     add_str(hypertas, "hcall-copy");
757     add_str(hypertas, "hcall-debug");
758     add_str(qemu_hypertas, "hcall-memop1");
759 
760     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
761         add_str(hypertas, "hcall-multi-tce");
762     }
763     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
764                      hypertas->str, hypertas->len));
765     g_string_free(hypertas, TRUE);
766     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
767                      qemu_hypertas->str, qemu_hypertas->len));
768     g_string_free(qemu_hypertas, TRUE);
769 
770     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
771                      refpoints, sizeof(refpoints)));
772 
773     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
774                           RTAS_ERROR_LOG_MAX));
775     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
776                           RTAS_EVENT_SCAN_RATE));
777 
778     if (msi_nonbroken) {
779         _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
780     }
781 
782     /*
783      * According to PAPR, rtas ibm,os-term does not guarantee a return
784      * back to the guest cpu.
785      *
786      * While an additional ibm,extended-os-term property indicates
787      * that rtas call return will always occur. Set this property.
788      */
789     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
790 
791     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
792                      lrdr_capacity, sizeof(lrdr_capacity)));
793 
794     spapr_dt_rtas_tokens(fdt, rtas);
795 }
796 
797 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
798 {
799     MachineState *machine = MACHINE(spapr);
800     int chosen;
801     const char *boot_device = machine->boot_order;
802     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
803     size_t cb = 0;
804     char *bootlist = get_boot_devices_list(&cb, true);
805 
806     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
807 
808     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
809     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
810                           spapr->initrd_base));
811     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
812                           spapr->initrd_base + spapr->initrd_size));
813 
814     if (spapr->kernel_size) {
815         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
816                               cpu_to_be64(spapr->kernel_size) };
817 
818         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
819                          &kprop, sizeof(kprop)));
820         if (spapr->kernel_le) {
821             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
822         }
823     }
824     if (boot_menu) {
825         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
826     }
827     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
828     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
829     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
830 
831     if (cb && bootlist) {
832         int i;
833 
834         for (i = 0; i < cb; i++) {
835             if (bootlist[i] == '\n') {
836                 bootlist[i] = ' ';
837             }
838         }
839         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
840     }
841 
842     if (boot_device && strlen(boot_device)) {
843         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
844     }
845 
846     if (!spapr->has_graphics && stdout_path) {
847         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
848     }
849 
850     g_free(stdout_path);
851     g_free(bootlist);
852 }
853 
854 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
855 {
856     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
857      * KVM to work under pHyp with some guest co-operation */
858     int hypervisor;
859     uint8_t hypercall[16];
860 
861     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
862     /* indicate KVM hypercall interface */
863     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
864     if (kvmppc_has_cap_fixup_hcalls()) {
865         /*
866          * Older KVM versions with older guest kernels were broken
867          * with the magic page, don't allow the guest to map it.
868          */
869         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
870                                   sizeof(hypercall))) {
871             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
872                              hypercall, sizeof(hypercall)));
873         }
874     }
875 }
876 
877 static void *spapr_build_fdt(sPAPRMachineState *spapr,
878                              hwaddr rtas_addr,
879                              hwaddr rtas_size)
880 {
881     MachineState *machine = MACHINE(qdev_get_machine());
882     MachineClass *mc = MACHINE_GET_CLASS(machine);
883     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
884     int ret;
885     void *fdt;
886     sPAPRPHBState *phb;
887     char *buf;
888 
889     fdt = g_malloc0(FDT_MAX_SIZE);
890     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
891 
892     /* Root node */
893     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
894     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
895     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
896 
897     /*
898      * Add info to guest to indentify which host is it being run on
899      * and what is the uuid of the guest
900      */
901     if (kvmppc_get_host_model(&buf)) {
902         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
903         g_free(buf);
904     }
905     if (kvmppc_get_host_serial(&buf)) {
906         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
907         g_free(buf);
908     }
909 
910     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
911 
912     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
913     if (qemu_uuid_set) {
914         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
915     }
916     g_free(buf);
917 
918     if (qemu_get_vm_name()) {
919         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
920                                 qemu_get_vm_name()));
921     }
922 
923     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
924     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
925 
926     /* /interrupt controller */
927     spapr_dt_xics(spapr->xics, fdt, PHANDLE_XICP);
928 
929     ret = spapr_populate_memory(spapr, fdt);
930     if (ret < 0) {
931         error_report("couldn't setup memory nodes in fdt");
932         exit(1);
933     }
934 
935     /* /vdevice */
936     spapr_dt_vdevice(spapr->vio_bus, fdt);
937 
938     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
939         ret = spapr_rng_populate_dt(fdt);
940         if (ret < 0) {
941             error_report("could not set up rng device in the fdt");
942             exit(1);
943         }
944     }
945 
946     QLIST_FOREACH(phb, &spapr->phbs, list) {
947         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
948         if (ret < 0) {
949             error_report("couldn't setup PCI devices in fdt");
950             exit(1);
951         }
952     }
953 
954     /* cpus */
955     spapr_populate_cpus_dt_node(fdt, spapr);
956 
957     if (smc->dr_lmb_enabled) {
958         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
959     }
960 
961     if (mc->has_hotpluggable_cpus) {
962         int offset = fdt_path_offset(fdt, "/cpus");
963         ret = spapr_drc_populate_dt(fdt, offset, NULL,
964                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
965         if (ret < 0) {
966             error_report("Couldn't set up CPU DR device tree properties");
967             exit(1);
968         }
969     }
970 
971     /* /event-sources */
972     spapr_dt_events(spapr, fdt);
973 
974     /* /rtas */
975     spapr_dt_rtas(spapr, fdt);
976 
977     /* /chosen */
978     spapr_dt_chosen(spapr, fdt);
979 
980     /* /hypervisor */
981     if (kvm_enabled()) {
982         spapr_dt_hypervisor(spapr, fdt);
983     }
984 
985     /* Build memory reserve map */
986     if (spapr->kernel_size) {
987         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
988     }
989     if (spapr->initrd_size) {
990         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
991     }
992 
993     /* ibm,client-architecture-support updates */
994     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
995     if (ret < 0) {
996         error_report("couldn't setup CAS properties fdt");
997         exit(1);
998     }
999 
1000     return fdt;
1001 }
1002 
1003 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1004 {
1005     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1006 }
1007 
1008 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1009                                     PowerPCCPU *cpu)
1010 {
1011     CPUPPCState *env = &cpu->env;
1012 
1013     /* The TCG path should also be holding the BQL at this point */
1014     g_assert(qemu_mutex_iothread_locked());
1015 
1016     if (msr_pr) {
1017         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1018         env->gpr[3] = H_PRIVILEGE;
1019     } else {
1020         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1021     }
1022 }
1023 
1024 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1025 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1026 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1027 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1028 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1029 
1030 /*
1031  * Get the fd to access the kernel htab, re-opening it if necessary
1032  */
1033 static int get_htab_fd(sPAPRMachineState *spapr)
1034 {
1035     if (spapr->htab_fd >= 0) {
1036         return spapr->htab_fd;
1037     }
1038 
1039     spapr->htab_fd = kvmppc_get_htab_fd(false);
1040     if (spapr->htab_fd < 0) {
1041         error_report("Unable to open fd for reading hash table from KVM: %s",
1042                      strerror(errno));
1043     }
1044 
1045     return spapr->htab_fd;
1046 }
1047 
1048 static void close_htab_fd(sPAPRMachineState *spapr)
1049 {
1050     if (spapr->htab_fd >= 0) {
1051         close(spapr->htab_fd);
1052     }
1053     spapr->htab_fd = -1;
1054 }
1055 
1056 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1057 {
1058     int shift;
1059 
1060     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1061      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1062      * that's much more than is needed for Linux guests */
1063     shift = ctz64(pow2ceil(ramsize)) - 7;
1064     shift = MAX(shift, 18); /* Minimum architected size */
1065     shift = MIN(shift, 46); /* Maximum architected size */
1066     return shift;
1067 }
1068 
1069 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1070                                  Error **errp)
1071 {
1072     long rc;
1073 
1074     /* Clean up any HPT info from a previous boot */
1075     g_free(spapr->htab);
1076     spapr->htab = NULL;
1077     spapr->htab_shift = 0;
1078     close_htab_fd(spapr);
1079 
1080     rc = kvmppc_reset_htab(shift);
1081     if (rc < 0) {
1082         /* kernel-side HPT needed, but couldn't allocate one */
1083         error_setg_errno(errp, errno,
1084                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1085                          shift);
1086         /* This is almost certainly fatal, but if the caller really
1087          * wants to carry on with shift == 0, it's welcome to try */
1088     } else if (rc > 0) {
1089         /* kernel-side HPT allocated */
1090         if (rc != shift) {
1091             error_setg(errp,
1092                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1093                        shift, rc);
1094         }
1095 
1096         spapr->htab_shift = shift;
1097         spapr->htab = NULL;
1098     } else {
1099         /* kernel-side HPT not needed, allocate in userspace instead */
1100         size_t size = 1ULL << shift;
1101         int i;
1102 
1103         spapr->htab = qemu_memalign(size, size);
1104         if (!spapr->htab) {
1105             error_setg_errno(errp, errno,
1106                              "Could not allocate HPT of order %d", shift);
1107             return;
1108         }
1109 
1110         memset(spapr->htab, 0, size);
1111         spapr->htab_shift = shift;
1112 
1113         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1114             DIRTY_HPTE(HPTE(spapr->htab, i));
1115         }
1116     }
1117 }
1118 
1119 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1120 {
1121     bool matched = false;
1122 
1123     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1124         matched = true;
1125     }
1126 
1127     if (!matched) {
1128         error_report("Device %s is not supported by this machine yet.",
1129                      qdev_fw_name(DEVICE(sbdev)));
1130         exit(1);
1131     }
1132 }
1133 
1134 static void ppc_spapr_reset(void)
1135 {
1136     MachineState *machine = MACHINE(qdev_get_machine());
1137     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1138     PowerPCCPU *first_ppc_cpu;
1139     uint32_t rtas_limit;
1140     hwaddr rtas_addr, fdt_addr;
1141     void *fdt;
1142     int rc;
1143 
1144     /* Check for unknown sysbus devices */
1145     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1146 
1147     /* Allocate and/or reset the hash page table */
1148     spapr_reallocate_hpt(spapr,
1149                          spapr_hpt_shift_for_ramsize(machine->maxram_size),
1150                          &error_fatal);
1151 
1152     /* Update the RMA size if necessary */
1153     if (spapr->vrma_adjust) {
1154         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1155                                           spapr->htab_shift);
1156     }
1157 
1158     qemu_devices_reset();
1159 
1160     /*
1161      * We place the device tree and RTAS just below either the top of the RMA,
1162      * or just below 2GB, whichever is lowere, so that it can be
1163      * processed with 32-bit real mode code if necessary
1164      */
1165     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1166     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1167     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1168 
1169     /* if this reset wasn't generated by CAS, we should reset our
1170      * negotiated options and start from scratch */
1171     if (!spapr->cas_reboot) {
1172         spapr_ovec_cleanup(spapr->ov5_cas);
1173         spapr->ov5_cas = spapr_ovec_new();
1174     }
1175 
1176     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1177 
1178     spapr_load_rtas(spapr, fdt, rtas_addr);
1179 
1180     rc = fdt_pack(fdt);
1181 
1182     /* Should only fail if we've built a corrupted tree */
1183     assert(rc == 0);
1184 
1185     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1186         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1187                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1188         exit(1);
1189     }
1190 
1191     /* Load the fdt */
1192     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1193     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1194     g_free(fdt);
1195 
1196     /* Set up the entry state */
1197     first_ppc_cpu = POWERPC_CPU(first_cpu);
1198     first_ppc_cpu->env.gpr[3] = fdt_addr;
1199     first_ppc_cpu->env.gpr[5] = 0;
1200     first_cpu->halted = 0;
1201     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1202 
1203     spapr->cas_reboot = false;
1204 }
1205 
1206 static void spapr_create_nvram(sPAPRMachineState *spapr)
1207 {
1208     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1209     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1210 
1211     if (dinfo) {
1212         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1213                             &error_fatal);
1214     }
1215 
1216     qdev_init_nofail(dev);
1217 
1218     spapr->nvram = (struct sPAPRNVRAM *)dev;
1219 }
1220 
1221 static void spapr_rtc_create(sPAPRMachineState *spapr)
1222 {
1223     DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1224 
1225     qdev_init_nofail(dev);
1226     spapr->rtc = dev;
1227 
1228     object_property_add_alias(qdev_get_machine(), "rtc-time",
1229                               OBJECT(spapr->rtc), "date", NULL);
1230 }
1231 
1232 /* Returns whether we want to use VGA or not */
1233 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1234 {
1235     switch (vga_interface_type) {
1236     case VGA_NONE:
1237         return false;
1238     case VGA_DEVICE:
1239         return true;
1240     case VGA_STD:
1241     case VGA_VIRTIO:
1242         return pci_vga_init(pci_bus) != NULL;
1243     default:
1244         error_setg(errp,
1245                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1246         return false;
1247     }
1248 }
1249 
1250 static int spapr_post_load(void *opaque, int version_id)
1251 {
1252     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1253     int err = 0;
1254 
1255     /* In earlier versions, there was no separate qdev for the PAPR
1256      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1257      * So when migrating from those versions, poke the incoming offset
1258      * value into the RTC device */
1259     if (version_id < 3) {
1260         err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1261     }
1262 
1263     return err;
1264 }
1265 
1266 static bool version_before_3(void *opaque, int version_id)
1267 {
1268     return version_id < 3;
1269 }
1270 
1271 static bool spapr_ov5_cas_needed(void *opaque)
1272 {
1273     sPAPRMachineState *spapr = opaque;
1274     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1275     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1276     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1277     bool cas_needed;
1278 
1279     /* Prior to the introduction of sPAPROptionVector, we had two option
1280      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1281      * Both of these options encode machine topology into the device-tree
1282      * in such a way that the now-booted OS should still be able to interact
1283      * appropriately with QEMU regardless of what options were actually
1284      * negotiatied on the source side.
1285      *
1286      * As such, we can avoid migrating the CAS-negotiated options if these
1287      * are the only options available on the current machine/platform.
1288      * Since these are the only options available for pseries-2.7 and
1289      * earlier, this allows us to maintain old->new/new->old migration
1290      * compatibility.
1291      *
1292      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1293      * via default pseries-2.8 machines and explicit command-line parameters.
1294      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1295      * of the actual CAS-negotiated values to continue working properly. For
1296      * example, availability of memory unplug depends on knowing whether
1297      * OV5_HP_EVT was negotiated via CAS.
1298      *
1299      * Thus, for any cases where the set of available CAS-negotiatable
1300      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1301      * include the CAS-negotiated options in the migration stream.
1302      */
1303     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1304     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1305 
1306     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1307      * the mask itself since in the future it's possible "legacy" bits may be
1308      * removed via machine options, which could generate a false positive
1309      * that breaks migration.
1310      */
1311     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1312     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1313 
1314     spapr_ovec_cleanup(ov5_mask);
1315     spapr_ovec_cleanup(ov5_legacy);
1316     spapr_ovec_cleanup(ov5_removed);
1317 
1318     return cas_needed;
1319 }
1320 
1321 static const VMStateDescription vmstate_spapr_ov5_cas = {
1322     .name = "spapr_option_vector_ov5_cas",
1323     .version_id = 1,
1324     .minimum_version_id = 1,
1325     .needed = spapr_ov5_cas_needed,
1326     .fields = (VMStateField[]) {
1327         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1328                                  vmstate_spapr_ovec, sPAPROptionVector),
1329         VMSTATE_END_OF_LIST()
1330     },
1331 };
1332 
1333 static const VMStateDescription vmstate_spapr = {
1334     .name = "spapr",
1335     .version_id = 3,
1336     .minimum_version_id = 1,
1337     .post_load = spapr_post_load,
1338     .fields = (VMStateField[]) {
1339         /* used to be @next_irq */
1340         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1341 
1342         /* RTC offset */
1343         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1344 
1345         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1346         VMSTATE_END_OF_LIST()
1347     },
1348     .subsections = (const VMStateDescription*[]) {
1349         &vmstate_spapr_ov5_cas,
1350         NULL
1351     }
1352 };
1353 
1354 static int htab_save_setup(QEMUFile *f, void *opaque)
1355 {
1356     sPAPRMachineState *spapr = opaque;
1357 
1358     /* "Iteration" header */
1359     qemu_put_be32(f, spapr->htab_shift);
1360 
1361     if (spapr->htab) {
1362         spapr->htab_save_index = 0;
1363         spapr->htab_first_pass = true;
1364     } else {
1365         assert(kvm_enabled());
1366     }
1367 
1368 
1369     return 0;
1370 }
1371 
1372 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1373                                  int64_t max_ns)
1374 {
1375     bool has_timeout = max_ns != -1;
1376     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1377     int index = spapr->htab_save_index;
1378     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1379 
1380     assert(spapr->htab_first_pass);
1381 
1382     do {
1383         int chunkstart;
1384 
1385         /* Consume invalid HPTEs */
1386         while ((index < htabslots)
1387                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1388             index++;
1389             CLEAN_HPTE(HPTE(spapr->htab, index));
1390         }
1391 
1392         /* Consume valid HPTEs */
1393         chunkstart = index;
1394         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1395                && HPTE_VALID(HPTE(spapr->htab, index))) {
1396             index++;
1397             CLEAN_HPTE(HPTE(spapr->htab, index));
1398         }
1399 
1400         if (index > chunkstart) {
1401             int n_valid = index - chunkstart;
1402 
1403             qemu_put_be32(f, chunkstart);
1404             qemu_put_be16(f, n_valid);
1405             qemu_put_be16(f, 0);
1406             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1407                             HASH_PTE_SIZE_64 * n_valid);
1408 
1409             if (has_timeout &&
1410                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1411                 break;
1412             }
1413         }
1414     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1415 
1416     if (index >= htabslots) {
1417         assert(index == htabslots);
1418         index = 0;
1419         spapr->htab_first_pass = false;
1420     }
1421     spapr->htab_save_index = index;
1422 }
1423 
1424 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1425                                 int64_t max_ns)
1426 {
1427     bool final = max_ns < 0;
1428     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1429     int examined = 0, sent = 0;
1430     int index = spapr->htab_save_index;
1431     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1432 
1433     assert(!spapr->htab_first_pass);
1434 
1435     do {
1436         int chunkstart, invalidstart;
1437 
1438         /* Consume non-dirty HPTEs */
1439         while ((index < htabslots)
1440                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1441             index++;
1442             examined++;
1443         }
1444 
1445         chunkstart = index;
1446         /* Consume valid dirty HPTEs */
1447         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1448                && HPTE_DIRTY(HPTE(spapr->htab, index))
1449                && HPTE_VALID(HPTE(spapr->htab, index))) {
1450             CLEAN_HPTE(HPTE(spapr->htab, index));
1451             index++;
1452             examined++;
1453         }
1454 
1455         invalidstart = index;
1456         /* Consume invalid dirty HPTEs */
1457         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1458                && HPTE_DIRTY(HPTE(spapr->htab, index))
1459                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1460             CLEAN_HPTE(HPTE(spapr->htab, index));
1461             index++;
1462             examined++;
1463         }
1464 
1465         if (index > chunkstart) {
1466             int n_valid = invalidstart - chunkstart;
1467             int n_invalid = index - invalidstart;
1468 
1469             qemu_put_be32(f, chunkstart);
1470             qemu_put_be16(f, n_valid);
1471             qemu_put_be16(f, n_invalid);
1472             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1473                             HASH_PTE_SIZE_64 * n_valid);
1474             sent += index - chunkstart;
1475 
1476             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1477                 break;
1478             }
1479         }
1480 
1481         if (examined >= htabslots) {
1482             break;
1483         }
1484 
1485         if (index >= htabslots) {
1486             assert(index == htabslots);
1487             index = 0;
1488         }
1489     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1490 
1491     if (index >= htabslots) {
1492         assert(index == htabslots);
1493         index = 0;
1494     }
1495 
1496     spapr->htab_save_index = index;
1497 
1498     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1499 }
1500 
1501 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1502 #define MAX_KVM_BUF_SIZE    2048
1503 
1504 static int htab_save_iterate(QEMUFile *f, void *opaque)
1505 {
1506     sPAPRMachineState *spapr = opaque;
1507     int fd;
1508     int rc = 0;
1509 
1510     /* Iteration header */
1511     qemu_put_be32(f, 0);
1512 
1513     if (!spapr->htab) {
1514         assert(kvm_enabled());
1515 
1516         fd = get_htab_fd(spapr);
1517         if (fd < 0) {
1518             return fd;
1519         }
1520 
1521         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1522         if (rc < 0) {
1523             return rc;
1524         }
1525     } else  if (spapr->htab_first_pass) {
1526         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1527     } else {
1528         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1529     }
1530 
1531     /* End marker */
1532     qemu_put_be32(f, 0);
1533     qemu_put_be16(f, 0);
1534     qemu_put_be16(f, 0);
1535 
1536     return rc;
1537 }
1538 
1539 static int htab_save_complete(QEMUFile *f, void *opaque)
1540 {
1541     sPAPRMachineState *spapr = opaque;
1542     int fd;
1543 
1544     /* Iteration header */
1545     qemu_put_be32(f, 0);
1546 
1547     if (!spapr->htab) {
1548         int rc;
1549 
1550         assert(kvm_enabled());
1551 
1552         fd = get_htab_fd(spapr);
1553         if (fd < 0) {
1554             return fd;
1555         }
1556 
1557         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1558         if (rc < 0) {
1559             return rc;
1560         }
1561     } else {
1562         if (spapr->htab_first_pass) {
1563             htab_save_first_pass(f, spapr, -1);
1564         }
1565         htab_save_later_pass(f, spapr, -1);
1566     }
1567 
1568     /* End marker */
1569     qemu_put_be32(f, 0);
1570     qemu_put_be16(f, 0);
1571     qemu_put_be16(f, 0);
1572 
1573     return 0;
1574 }
1575 
1576 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1577 {
1578     sPAPRMachineState *spapr = opaque;
1579     uint32_t section_hdr;
1580     int fd = -1;
1581 
1582     if (version_id < 1 || version_id > 1) {
1583         error_report("htab_load() bad version");
1584         return -EINVAL;
1585     }
1586 
1587     section_hdr = qemu_get_be32(f);
1588 
1589     if (section_hdr) {
1590         Error *local_err = NULL;
1591 
1592         /* First section gives the htab size */
1593         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1594         if (local_err) {
1595             error_report_err(local_err);
1596             return -EINVAL;
1597         }
1598         return 0;
1599     }
1600 
1601     if (!spapr->htab) {
1602         assert(kvm_enabled());
1603 
1604         fd = kvmppc_get_htab_fd(true);
1605         if (fd < 0) {
1606             error_report("Unable to open fd to restore KVM hash table: %s",
1607                          strerror(errno));
1608         }
1609     }
1610 
1611     while (true) {
1612         uint32_t index;
1613         uint16_t n_valid, n_invalid;
1614 
1615         index = qemu_get_be32(f);
1616         n_valid = qemu_get_be16(f);
1617         n_invalid = qemu_get_be16(f);
1618 
1619         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1620             /* End of Stream */
1621             break;
1622         }
1623 
1624         if ((index + n_valid + n_invalid) >
1625             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1626             /* Bad index in stream */
1627             error_report(
1628                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1629                 index, n_valid, n_invalid, spapr->htab_shift);
1630             return -EINVAL;
1631         }
1632 
1633         if (spapr->htab) {
1634             if (n_valid) {
1635                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1636                                 HASH_PTE_SIZE_64 * n_valid);
1637             }
1638             if (n_invalid) {
1639                 memset(HPTE(spapr->htab, index + n_valid), 0,
1640                        HASH_PTE_SIZE_64 * n_invalid);
1641             }
1642         } else {
1643             int rc;
1644 
1645             assert(fd >= 0);
1646 
1647             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1648             if (rc < 0) {
1649                 return rc;
1650             }
1651         }
1652     }
1653 
1654     if (!spapr->htab) {
1655         assert(fd >= 0);
1656         close(fd);
1657     }
1658 
1659     return 0;
1660 }
1661 
1662 static void htab_cleanup(void *opaque)
1663 {
1664     sPAPRMachineState *spapr = opaque;
1665 
1666     close_htab_fd(spapr);
1667 }
1668 
1669 static SaveVMHandlers savevm_htab_handlers = {
1670     .save_live_setup = htab_save_setup,
1671     .save_live_iterate = htab_save_iterate,
1672     .save_live_complete_precopy = htab_save_complete,
1673     .cleanup = htab_cleanup,
1674     .load_state = htab_load,
1675 };
1676 
1677 static void spapr_boot_set(void *opaque, const char *boot_device,
1678                            Error **errp)
1679 {
1680     MachineState *machine = MACHINE(qdev_get_machine());
1681     machine->boot_order = g_strdup(boot_device);
1682 }
1683 
1684 /*
1685  * Reset routine for LMB DR devices.
1686  *
1687  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1688  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1689  * when it walks all its children devices. LMB devices reset occurs
1690  * as part of spapr_ppc_reset().
1691  */
1692 static void spapr_drc_reset(void *opaque)
1693 {
1694     sPAPRDRConnector *drc = opaque;
1695     DeviceState *d = DEVICE(drc);
1696 
1697     if (d) {
1698         device_reset(d);
1699     }
1700 }
1701 
1702 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1703 {
1704     MachineState *machine = MACHINE(spapr);
1705     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1706     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1707     int i;
1708 
1709     for (i = 0; i < nr_lmbs; i++) {
1710         sPAPRDRConnector *drc;
1711         uint64_t addr;
1712 
1713         addr = i * lmb_size + spapr->hotplug_memory.base;
1714         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1715                                      addr/lmb_size);
1716         qemu_register_reset(spapr_drc_reset, drc);
1717     }
1718 }
1719 
1720 /*
1721  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1722  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1723  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1724  */
1725 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1726 {
1727     int i;
1728 
1729     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1730         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1731                    " is not aligned to %llu MiB",
1732                    machine->ram_size,
1733                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1734         return;
1735     }
1736 
1737     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1738         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1739                    " is not aligned to %llu MiB",
1740                    machine->ram_size,
1741                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1742         return;
1743     }
1744 
1745     for (i = 0; i < nb_numa_nodes; i++) {
1746         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1747             error_setg(errp,
1748                        "Node %d memory size 0x%" PRIx64
1749                        " is not aligned to %llu MiB",
1750                        i, numa_info[i].node_mem,
1751                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1752             return;
1753         }
1754     }
1755 }
1756 
1757 /* find cpu slot in machine->possible_cpus by core_id */
1758 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1759 {
1760     int index = id / smp_threads;
1761 
1762     if (index >= ms->possible_cpus->len) {
1763         return NULL;
1764     }
1765     if (idx) {
1766         *idx = index;
1767     }
1768     return &ms->possible_cpus->cpus[index];
1769 }
1770 
1771 static void spapr_init_cpus(sPAPRMachineState *spapr)
1772 {
1773     MachineState *machine = MACHINE(spapr);
1774     MachineClass *mc = MACHINE_GET_CLASS(machine);
1775     char *type = spapr_get_cpu_core_type(machine->cpu_model);
1776     int smt = kvmppc_smt_threads();
1777     const CPUArchIdList *possible_cpus;
1778     int boot_cores_nr = smp_cpus / smp_threads;
1779     int i;
1780 
1781     if (!type) {
1782         error_report("Unable to find sPAPR CPU Core definition");
1783         exit(1);
1784     }
1785 
1786     possible_cpus = mc->possible_cpu_arch_ids(machine);
1787     if (mc->has_hotpluggable_cpus) {
1788         if (smp_cpus % smp_threads) {
1789             error_report("smp_cpus (%u) must be multiple of threads (%u)",
1790                          smp_cpus, smp_threads);
1791             exit(1);
1792         }
1793         if (max_cpus % smp_threads) {
1794             error_report("max_cpus (%u) must be multiple of threads (%u)",
1795                          max_cpus, smp_threads);
1796             exit(1);
1797         }
1798     } else {
1799         if (max_cpus != smp_cpus) {
1800             error_report("This machine version does not support CPU hotplug");
1801             exit(1);
1802         }
1803         boot_cores_nr = possible_cpus->len;
1804     }
1805 
1806     for (i = 0; i < possible_cpus->len; i++) {
1807         int core_id = i * smp_threads;
1808 
1809         if (mc->has_hotpluggable_cpus) {
1810             sPAPRDRConnector *drc =
1811                 spapr_dr_connector_new(OBJECT(spapr),
1812                                        SPAPR_DR_CONNECTOR_TYPE_CPU,
1813                                        (core_id / smp_threads) * smt);
1814 
1815             qemu_register_reset(spapr_drc_reset, drc);
1816         }
1817 
1818         if (i < boot_cores_nr) {
1819             Object *core  = object_new(type);
1820             int nr_threads = smp_threads;
1821 
1822             /* Handle the partially filled core for older machine types */
1823             if ((i + 1) * smp_threads >= smp_cpus) {
1824                 nr_threads = smp_cpus - i * smp_threads;
1825             }
1826 
1827             object_property_set_int(core, nr_threads, "nr-threads",
1828                                     &error_fatal);
1829             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1830                                     &error_fatal);
1831             object_property_set_bool(core, true, "realized", &error_fatal);
1832         }
1833     }
1834     g_free(type);
1835 }
1836 
1837 /* pSeries LPAR / sPAPR hardware init */
1838 static void ppc_spapr_init(MachineState *machine)
1839 {
1840     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1841     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1842     const char *kernel_filename = machine->kernel_filename;
1843     const char *initrd_filename = machine->initrd_filename;
1844     PCIHostState *phb;
1845     int i;
1846     MemoryRegion *sysmem = get_system_memory();
1847     MemoryRegion *ram = g_new(MemoryRegion, 1);
1848     MemoryRegion *rma_region;
1849     void *rma = NULL;
1850     hwaddr rma_alloc_size;
1851     hwaddr node0_size = spapr_node0_size();
1852     long load_limit, fw_size;
1853     char *filename;
1854     int smt = kvmppc_smt_threads();
1855 
1856     msi_nonbroken = true;
1857 
1858     QLIST_INIT(&spapr->phbs);
1859 
1860     /* Allocate RMA if necessary */
1861     rma_alloc_size = kvmppc_alloc_rma(&rma);
1862 
1863     if (rma_alloc_size == -1) {
1864         error_report("Unable to create RMA");
1865         exit(1);
1866     }
1867 
1868     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1869         spapr->rma_size = rma_alloc_size;
1870     } else {
1871         spapr->rma_size = node0_size;
1872 
1873         /* With KVM, we don't actually know whether KVM supports an
1874          * unbounded RMA (PR KVM) or is limited by the hash table size
1875          * (HV KVM using VRMA), so we always assume the latter
1876          *
1877          * In that case, we also limit the initial allocations for RTAS
1878          * etc... to 256M since we have no way to know what the VRMA size
1879          * is going to be as it depends on the size of the hash table
1880          * isn't determined yet.
1881          */
1882         if (kvm_enabled()) {
1883             spapr->vrma_adjust = 1;
1884             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1885         }
1886 
1887         /* Actually we don't support unbounded RMA anymore since we
1888          * added proper emulation of HV mode. The max we can get is
1889          * 16G which also happens to be what we configure for PAPR
1890          * mode so make sure we don't do anything bigger than that
1891          */
1892         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1893     }
1894 
1895     if (spapr->rma_size > node0_size) {
1896         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1897                      spapr->rma_size);
1898         exit(1);
1899     }
1900 
1901     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1902     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1903 
1904     /* Set up Interrupt Controller before we create the VCPUs */
1905     spapr->xics = xics_system_init(machine,
1906                                    DIV_ROUND_UP(max_cpus * smt, smp_threads),
1907                                    XICS_IRQS_SPAPR, &error_fatal);
1908 
1909     /* Set up containers for ibm,client-set-architecture negotiated options */
1910     spapr->ov5 = spapr_ovec_new();
1911     spapr->ov5_cas = spapr_ovec_new();
1912 
1913     if (smc->dr_lmb_enabled) {
1914         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
1915         spapr_validate_node_memory(machine, &error_fatal);
1916     }
1917 
1918     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
1919 
1920     /* advertise support for dedicated HP event source to guests */
1921     if (spapr->use_hotplug_event_source) {
1922         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
1923     }
1924 
1925     /* init CPUs */
1926     if (machine->cpu_model == NULL) {
1927         machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
1928     }
1929 
1930     ppc_cpu_parse_features(machine->cpu_model);
1931 
1932     spapr_init_cpus(spapr);
1933 
1934     if (kvm_enabled()) {
1935         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1936         kvmppc_enable_logical_ci_hcalls();
1937         kvmppc_enable_set_mode_hcall();
1938 
1939         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
1940         kvmppc_enable_clear_ref_mod_hcalls();
1941     }
1942 
1943     /* allocate RAM */
1944     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1945                                          machine->ram_size);
1946     memory_region_add_subregion(sysmem, 0, ram);
1947 
1948     if (rma_alloc_size && rma) {
1949         rma_region = g_new(MemoryRegion, 1);
1950         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1951                                    rma_alloc_size, rma);
1952         vmstate_register_ram_global(rma_region);
1953         memory_region_add_subregion(sysmem, 0, rma_region);
1954     }
1955 
1956     /* initialize hotplug memory address space */
1957     if (machine->ram_size < machine->maxram_size) {
1958         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1959         /*
1960          * Limit the number of hotpluggable memory slots to half the number
1961          * slots that KVM supports, leaving the other half for PCI and other
1962          * devices. However ensure that number of slots doesn't drop below 32.
1963          */
1964         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1965                            SPAPR_MAX_RAM_SLOTS;
1966 
1967         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1968             max_memslots = SPAPR_MAX_RAM_SLOTS;
1969         }
1970         if (machine->ram_slots > max_memslots) {
1971             error_report("Specified number of memory slots %"
1972                          PRIu64" exceeds max supported %d",
1973                          machine->ram_slots, max_memslots);
1974             exit(1);
1975         }
1976 
1977         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1978                                               SPAPR_HOTPLUG_MEM_ALIGN);
1979         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1980                            "hotplug-memory", hotplug_mem_size);
1981         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1982                                     &spapr->hotplug_memory.mr);
1983     }
1984 
1985     if (smc->dr_lmb_enabled) {
1986         spapr_create_lmb_dr_connectors(spapr);
1987     }
1988 
1989     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1990     if (!filename) {
1991         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1992         exit(1);
1993     }
1994     spapr->rtas_size = get_image_size(filename);
1995     if (spapr->rtas_size < 0) {
1996         error_report("Could not get size of LPAR rtas '%s'", filename);
1997         exit(1);
1998     }
1999     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2000     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2001         error_report("Could not load LPAR rtas '%s'", filename);
2002         exit(1);
2003     }
2004     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2005         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2006                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2007         exit(1);
2008     }
2009     g_free(filename);
2010 
2011     /* Set up RTAS event infrastructure */
2012     spapr_events_init(spapr);
2013 
2014     /* Set up the RTC RTAS interfaces */
2015     spapr_rtc_create(spapr);
2016 
2017     /* Set up VIO bus */
2018     spapr->vio_bus = spapr_vio_bus_init();
2019 
2020     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2021         if (serial_hds[i]) {
2022             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2023         }
2024     }
2025 
2026     /* We always have at least the nvram device on VIO */
2027     spapr_create_nvram(spapr);
2028 
2029     /* Set up PCI */
2030     spapr_pci_rtas_init();
2031 
2032     phb = spapr_create_phb(spapr, 0);
2033 
2034     for (i = 0; i < nb_nics; i++) {
2035         NICInfo *nd = &nd_table[i];
2036 
2037         if (!nd->model) {
2038             nd->model = g_strdup("ibmveth");
2039         }
2040 
2041         if (strcmp(nd->model, "ibmveth") == 0) {
2042             spapr_vlan_create(spapr->vio_bus, nd);
2043         } else {
2044             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2045         }
2046     }
2047 
2048     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2049         spapr_vscsi_create(spapr->vio_bus);
2050     }
2051 
2052     /* Graphics */
2053     if (spapr_vga_init(phb->bus, &error_fatal)) {
2054         spapr->has_graphics = true;
2055         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2056     }
2057 
2058     if (machine->usb) {
2059         if (smc->use_ohci_by_default) {
2060             pci_create_simple(phb->bus, -1, "pci-ohci");
2061         } else {
2062             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2063         }
2064 
2065         if (spapr->has_graphics) {
2066             USBBus *usb_bus = usb_bus_find(-1);
2067 
2068             usb_create_simple(usb_bus, "usb-kbd");
2069             usb_create_simple(usb_bus, "usb-mouse");
2070         }
2071     }
2072 
2073     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2074         error_report(
2075             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2076             MIN_RMA_SLOF);
2077         exit(1);
2078     }
2079 
2080     if (kernel_filename) {
2081         uint64_t lowaddr = 0;
2082 
2083         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2084                                       NULL, NULL, &lowaddr, NULL, 1,
2085                                       PPC_ELF_MACHINE, 0, 0);
2086         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2087             spapr->kernel_size = load_elf(kernel_filename,
2088                                           translate_kernel_address, NULL, NULL,
2089                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2090                                           0, 0);
2091             spapr->kernel_le = spapr->kernel_size > 0;
2092         }
2093         if (spapr->kernel_size < 0) {
2094             error_report("error loading %s: %s", kernel_filename,
2095                          load_elf_strerror(spapr->kernel_size));
2096             exit(1);
2097         }
2098 
2099         /* load initrd */
2100         if (initrd_filename) {
2101             /* Try to locate the initrd in the gap between the kernel
2102              * and the firmware. Add a bit of space just in case
2103              */
2104             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2105                                   + 0x1ffff) & ~0xffff;
2106             spapr->initrd_size = load_image_targphys(initrd_filename,
2107                                                      spapr->initrd_base,
2108                                                      load_limit
2109                                                      - spapr->initrd_base);
2110             if (spapr->initrd_size < 0) {
2111                 error_report("could not load initial ram disk '%s'",
2112                              initrd_filename);
2113                 exit(1);
2114             }
2115         }
2116     }
2117 
2118     if (bios_name == NULL) {
2119         bios_name = FW_FILE_NAME;
2120     }
2121     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2122     if (!filename) {
2123         error_report("Could not find LPAR firmware '%s'", bios_name);
2124         exit(1);
2125     }
2126     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2127     if (fw_size <= 0) {
2128         error_report("Could not load LPAR firmware '%s'", filename);
2129         exit(1);
2130     }
2131     g_free(filename);
2132 
2133     /* FIXME: Should register things through the MachineState's qdev
2134      * interface, this is a legacy from the sPAPREnvironment structure
2135      * which predated MachineState but had a similar function */
2136     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2137     register_savevm_live(NULL, "spapr/htab", -1, 1,
2138                          &savevm_htab_handlers, spapr);
2139 
2140     /* used by RTAS */
2141     QTAILQ_INIT(&spapr->ccs_list);
2142     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2143 
2144     qemu_register_boot_set(spapr_boot_set, spapr);
2145 
2146     /* to stop and start vmclock */
2147     if (kvm_enabled()) {
2148         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2149                                          &spapr->tb);
2150     }
2151 }
2152 
2153 static int spapr_kvm_type(const char *vm_type)
2154 {
2155     if (!vm_type) {
2156         return 0;
2157     }
2158 
2159     if (!strcmp(vm_type, "HV")) {
2160         return 1;
2161     }
2162 
2163     if (!strcmp(vm_type, "PR")) {
2164         return 2;
2165     }
2166 
2167     error_report("Unknown kvm-type specified '%s'", vm_type);
2168     exit(1);
2169 }
2170 
2171 /*
2172  * Implementation of an interface to adjust firmware path
2173  * for the bootindex property handling.
2174  */
2175 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2176                                    DeviceState *dev)
2177 {
2178 #define CAST(type, obj, name) \
2179     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2180     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2181     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2182 
2183     if (d) {
2184         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2185         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2186         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2187 
2188         if (spapr) {
2189             /*
2190              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2191              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2192              * in the top 16 bits of the 64-bit LUN
2193              */
2194             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2195             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2196                                    (uint64_t)id << 48);
2197         } else if (virtio) {
2198             /*
2199              * We use SRP luns of the form 01000000 | (target << 8) | lun
2200              * in the top 32 bits of the 64-bit LUN
2201              * Note: the quote above is from SLOF and it is wrong,
2202              * the actual binding is:
2203              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2204              */
2205             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2206             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2207                                    (uint64_t)id << 32);
2208         } else if (usb) {
2209             /*
2210              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2211              * in the top 32 bits of the 64-bit LUN
2212              */
2213             unsigned usb_port = atoi(usb->port->path);
2214             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2215             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2216                                    (uint64_t)id << 32);
2217         }
2218     }
2219 
2220     /*
2221      * SLOF probes the USB devices, and if it recognizes that the device is a
2222      * storage device, it changes its name to "storage" instead of "usb-host",
2223      * and additionally adds a child node for the SCSI LUN, so the correct
2224      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2225      */
2226     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2227         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2228         if (usb_host_dev_is_scsi_storage(usbdev)) {
2229             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2230         }
2231     }
2232 
2233     if (phb) {
2234         /* Replace "pci" with "pci@800000020000000" */
2235         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2236     }
2237 
2238     return NULL;
2239 }
2240 
2241 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2242 {
2243     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2244 
2245     return g_strdup(spapr->kvm_type);
2246 }
2247 
2248 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2249 {
2250     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2251 
2252     g_free(spapr->kvm_type);
2253     spapr->kvm_type = g_strdup(value);
2254 }
2255 
2256 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2257 {
2258     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2259 
2260     return spapr->use_hotplug_event_source;
2261 }
2262 
2263 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2264                                             Error **errp)
2265 {
2266     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2267 
2268     spapr->use_hotplug_event_source = value;
2269 }
2270 
2271 static void spapr_machine_initfn(Object *obj)
2272 {
2273     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2274 
2275     spapr->htab_fd = -1;
2276     spapr->use_hotplug_event_source = true;
2277     object_property_add_str(obj, "kvm-type",
2278                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2279     object_property_set_description(obj, "kvm-type",
2280                                     "Specifies the KVM virtualization mode (HV, PR)",
2281                                     NULL);
2282     object_property_add_bool(obj, "modern-hotplug-events",
2283                             spapr_get_modern_hotplug_events,
2284                             spapr_set_modern_hotplug_events,
2285                             NULL);
2286     object_property_set_description(obj, "modern-hotplug-events",
2287                                     "Use dedicated hotplug event mechanism in"
2288                                     " place of standard EPOW events when possible"
2289                                     " (required for memory hot-unplug support)",
2290                                     NULL);
2291 }
2292 
2293 static void spapr_machine_finalizefn(Object *obj)
2294 {
2295     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2296 
2297     g_free(spapr->kvm_type);
2298 }
2299 
2300 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2301 {
2302     cpu_synchronize_state(cs);
2303     ppc_cpu_do_system_reset(cs);
2304 }
2305 
2306 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2307 {
2308     CPUState *cs;
2309 
2310     CPU_FOREACH(cs) {
2311         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2312     }
2313 }
2314 
2315 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2316                            uint32_t node, bool dedicated_hp_event_source,
2317                            Error **errp)
2318 {
2319     sPAPRDRConnector *drc;
2320     sPAPRDRConnectorClass *drck;
2321     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2322     int i, fdt_offset, fdt_size;
2323     void *fdt;
2324     uint64_t addr = addr_start;
2325 
2326     for (i = 0; i < nr_lmbs; i++) {
2327         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2328                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2329         g_assert(drc);
2330 
2331         fdt = create_device_tree(&fdt_size);
2332         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2333                                                 SPAPR_MEMORY_BLOCK_SIZE);
2334 
2335         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2336         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2337         addr += SPAPR_MEMORY_BLOCK_SIZE;
2338         if (!dev->hotplugged) {
2339             /* guests expect coldplugged LMBs to be pre-allocated */
2340             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2341             drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2342         }
2343     }
2344     /* send hotplug notification to the
2345      * guest only in case of hotplugged memory
2346      */
2347     if (dev->hotplugged) {
2348         if (dedicated_hp_event_source) {
2349             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2350                     addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2351             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2352             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2353                                                    nr_lmbs,
2354                                                    drck->get_index(drc));
2355         } else {
2356             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2357                                            nr_lmbs);
2358         }
2359     }
2360 }
2361 
2362 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2363                               uint32_t node, Error **errp)
2364 {
2365     Error *local_err = NULL;
2366     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2367     PCDIMMDevice *dimm = PC_DIMM(dev);
2368     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2369     MemoryRegion *mr = ddc->get_memory_region(dimm);
2370     uint64_t align = memory_region_get_alignment(mr);
2371     uint64_t size = memory_region_size(mr);
2372     uint64_t addr;
2373     char *mem_dev;
2374 
2375     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2376         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2377                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2378         goto out;
2379     }
2380 
2381     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2382     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2383         error_setg(&local_err, "Memory backend has bad page size. "
2384                    "Use 'memory-backend-file' with correct mem-path.");
2385         goto out;
2386     }
2387 
2388     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2389     if (local_err) {
2390         goto out;
2391     }
2392 
2393     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2394     if (local_err) {
2395         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2396         goto out;
2397     }
2398 
2399     spapr_add_lmbs(dev, addr, size, node,
2400                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2401                    &error_abort);
2402 
2403 out:
2404     error_propagate(errp, local_err);
2405 }
2406 
2407 typedef struct sPAPRDIMMState {
2408     uint32_t nr_lmbs;
2409 } sPAPRDIMMState;
2410 
2411 static void spapr_lmb_release(DeviceState *dev, void *opaque)
2412 {
2413     sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2414     HotplugHandler *hotplug_ctrl;
2415 
2416     if (--ds->nr_lmbs) {
2417         return;
2418     }
2419 
2420     g_free(ds);
2421 
2422     /*
2423      * Now that all the LMBs have been removed by the guest, call the
2424      * pc-dimm unplug handler to cleanup up the pc-dimm device.
2425      */
2426     hotplug_ctrl = qdev_get_hotplug_handler(dev);
2427     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2428 }
2429 
2430 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2431                            Error **errp)
2432 {
2433     sPAPRDRConnector *drc;
2434     sPAPRDRConnectorClass *drck;
2435     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2436     int i;
2437     sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2438     uint64_t addr = addr_start;
2439 
2440     ds->nr_lmbs = nr_lmbs;
2441     for (i = 0; i < nr_lmbs; i++) {
2442         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2443                 addr / SPAPR_MEMORY_BLOCK_SIZE);
2444         g_assert(drc);
2445 
2446         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2447         drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2448         addr += SPAPR_MEMORY_BLOCK_SIZE;
2449     }
2450 
2451     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2452                                    addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2453     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2454     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2455                                               nr_lmbs,
2456                                               drck->get_index(drc));
2457 }
2458 
2459 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2460                                 Error **errp)
2461 {
2462     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2463     PCDIMMDevice *dimm = PC_DIMM(dev);
2464     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2465     MemoryRegion *mr = ddc->get_memory_region(dimm);
2466 
2467     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2468     object_unparent(OBJECT(dev));
2469 }
2470 
2471 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2472                                         DeviceState *dev, Error **errp)
2473 {
2474     Error *local_err = NULL;
2475     PCDIMMDevice *dimm = PC_DIMM(dev);
2476     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2477     MemoryRegion *mr = ddc->get_memory_region(dimm);
2478     uint64_t size = memory_region_size(mr);
2479     uint64_t addr;
2480 
2481     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2482     if (local_err) {
2483         goto out;
2484     }
2485 
2486     spapr_del_lmbs(dev, addr, size, &error_abort);
2487 out:
2488     error_propagate(errp, local_err);
2489 }
2490 
2491 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2492                                     sPAPRMachineState *spapr)
2493 {
2494     PowerPCCPU *cpu = POWERPC_CPU(cs);
2495     DeviceClass *dc = DEVICE_GET_CLASS(cs);
2496     int id = ppc_get_vcpu_dt_id(cpu);
2497     void *fdt;
2498     int offset, fdt_size;
2499     char *nodename;
2500 
2501     fdt = create_device_tree(&fdt_size);
2502     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2503     offset = fdt_add_subnode(fdt, 0, nodename);
2504 
2505     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2506     g_free(nodename);
2507 
2508     *fdt_offset = offset;
2509     return fdt;
2510 }
2511 
2512 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2513                               Error **errp)
2514 {
2515     MachineState *ms = MACHINE(qdev_get_machine());
2516     CPUCore *cc = CPU_CORE(dev);
2517     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2518 
2519     core_slot->cpu = NULL;
2520     object_unparent(OBJECT(dev));
2521 }
2522 
2523 static void spapr_core_release(DeviceState *dev, void *opaque)
2524 {
2525     HotplugHandler *hotplug_ctrl;
2526 
2527     hotplug_ctrl = qdev_get_hotplug_handler(dev);
2528     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2529 }
2530 
2531 static
2532 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2533                                Error **errp)
2534 {
2535     int index;
2536     sPAPRDRConnector *drc;
2537     sPAPRDRConnectorClass *drck;
2538     Error *local_err = NULL;
2539     CPUCore *cc = CPU_CORE(dev);
2540     int smt = kvmppc_smt_threads();
2541 
2542     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2543         error_setg(errp, "Unable to find CPU core with core-id: %d",
2544                    cc->core_id);
2545         return;
2546     }
2547     if (index == 0) {
2548         error_setg(errp, "Boot CPU core may not be unplugged");
2549         return;
2550     }
2551 
2552     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2553     g_assert(drc);
2554 
2555     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2556     drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2557     if (local_err) {
2558         error_propagate(errp, local_err);
2559         return;
2560     }
2561 
2562     spapr_hotplug_req_remove_by_index(drc);
2563 }
2564 
2565 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2566                             Error **errp)
2567 {
2568     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2569     MachineClass *mc = MACHINE_GET_CLASS(spapr);
2570     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2571     CPUCore *cc = CPU_CORE(dev);
2572     CPUState *cs = CPU(core->threads);
2573     sPAPRDRConnector *drc;
2574     Error *local_err = NULL;
2575     void *fdt = NULL;
2576     int fdt_offset = 0;
2577     int smt = kvmppc_smt_threads();
2578     CPUArchId *core_slot;
2579     int index;
2580 
2581     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2582     if (!core_slot) {
2583         error_setg(errp, "Unable to find CPU core with core-id: %d",
2584                    cc->core_id);
2585         return;
2586     }
2587     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2588 
2589     g_assert(drc || !mc->has_hotpluggable_cpus);
2590 
2591     /*
2592      * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2593      * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2594      */
2595     if (dev->hotplugged) {
2596         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2597     }
2598 
2599     if (drc) {
2600         sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2601         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2602         if (local_err) {
2603             g_free(fdt);
2604             error_propagate(errp, local_err);
2605             return;
2606         }
2607     }
2608 
2609     if (dev->hotplugged) {
2610         /*
2611          * Send hotplug notification interrupt to the guest only in case
2612          * of hotplugged CPUs.
2613          */
2614         spapr_hotplug_req_add_by_index(drc);
2615     } else {
2616         /*
2617          * Set the right DRC states for cold plugged CPU.
2618          */
2619         if (drc) {
2620             sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2621             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2622             drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2623         }
2624     }
2625     core_slot->cpu = OBJECT(dev);
2626 }
2627 
2628 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2629                                 Error **errp)
2630 {
2631     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2632     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2633     Error *local_err = NULL;
2634     CPUCore *cc = CPU_CORE(dev);
2635     char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2636     const char *type = object_get_typename(OBJECT(dev));
2637     CPUArchId *core_slot;
2638     int index;
2639 
2640     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2641         error_setg(&local_err, "CPU hotplug not supported for this machine");
2642         goto out;
2643     }
2644 
2645     if (strcmp(base_core_type, type)) {
2646         error_setg(&local_err, "CPU core type should be %s", base_core_type);
2647         goto out;
2648     }
2649 
2650     if (cc->core_id % smp_threads) {
2651         error_setg(&local_err, "invalid core id %d", cc->core_id);
2652         goto out;
2653     }
2654 
2655     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2656     if (!core_slot) {
2657         error_setg(&local_err, "core id %d out of range", cc->core_id);
2658         goto out;
2659     }
2660 
2661     if (core_slot->cpu) {
2662         error_setg(&local_err, "core %d already populated", cc->core_id);
2663         goto out;
2664     }
2665 
2666 out:
2667     g_free(base_core_type);
2668     error_propagate(errp, local_err);
2669 }
2670 
2671 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2672                                       DeviceState *dev, Error **errp)
2673 {
2674     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2675 
2676     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2677         int node;
2678 
2679         if (!smc->dr_lmb_enabled) {
2680             error_setg(errp, "Memory hotplug not supported for this machine");
2681             return;
2682         }
2683         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2684         if (*errp) {
2685             return;
2686         }
2687         if (node < 0 || node >= MAX_NODES) {
2688             error_setg(errp, "Invaild node %d", node);
2689             return;
2690         }
2691 
2692         /*
2693          * Currently PowerPC kernel doesn't allow hot-adding memory to
2694          * memory-less node, but instead will silently add the memory
2695          * to the first node that has some memory. This causes two
2696          * unexpected behaviours for the user.
2697          *
2698          * - Memory gets hotplugged to a different node than what the user
2699          *   specified.
2700          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2701          *   to memory-less node, a reboot will set things accordingly
2702          *   and the previously hotplugged memory now ends in the right node.
2703          *   This appears as if some memory moved from one node to another.
2704          *
2705          * So until kernel starts supporting memory hotplug to memory-less
2706          * nodes, just prevent such attempts upfront in QEMU.
2707          */
2708         if (nb_numa_nodes && !numa_info[node].node_mem) {
2709             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2710                        node);
2711             return;
2712         }
2713 
2714         spapr_memory_plug(hotplug_dev, dev, node, errp);
2715     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2716         spapr_core_plug(hotplug_dev, dev, errp);
2717     }
2718 }
2719 
2720 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2721                                       DeviceState *dev, Error **errp)
2722 {
2723     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2724     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2725 
2726     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2727         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2728             spapr_memory_unplug(hotplug_dev, dev, errp);
2729         } else {
2730             error_setg(errp, "Memory hot unplug not supported for this guest");
2731         }
2732     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2733         if (!mc->has_hotpluggable_cpus) {
2734             error_setg(errp, "CPU hot unplug not supported on this machine");
2735             return;
2736         }
2737         spapr_core_unplug(hotplug_dev, dev, errp);
2738     }
2739 }
2740 
2741 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2742                                                 DeviceState *dev, Error **errp)
2743 {
2744     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2745     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2746 
2747     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2748         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2749             spapr_memory_unplug_request(hotplug_dev, dev, errp);
2750         } else {
2751             /* NOTE: this means there is a window after guest reset, prior to
2752              * CAS negotiation, where unplug requests will fail due to the
2753              * capability not being detected yet. This is a bit different than
2754              * the case with PCI unplug, where the events will be queued and
2755              * eventually handled by the guest after boot
2756              */
2757             error_setg(errp, "Memory hot unplug not supported for this guest");
2758         }
2759     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2760         if (!mc->has_hotpluggable_cpus) {
2761             error_setg(errp, "CPU hot unplug not supported on this machine");
2762             return;
2763         }
2764         spapr_core_unplug_request(hotplug_dev, dev, errp);
2765     }
2766 }
2767 
2768 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2769                                           DeviceState *dev, Error **errp)
2770 {
2771     if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2772         spapr_core_pre_plug(hotplug_dev, dev, errp);
2773     }
2774 }
2775 
2776 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2777                                                  DeviceState *dev)
2778 {
2779     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2780         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2781         return HOTPLUG_HANDLER(machine);
2782     }
2783     return NULL;
2784 }
2785 
2786 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2787 {
2788     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2789      * socket means much for the paravirtualized PAPR platform) */
2790     return cpu_index / smp_threads / smp_cores;
2791 }
2792 
2793 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
2794 {
2795     int i;
2796     int spapr_max_cores = max_cpus / smp_threads;
2797     MachineClass *mc = MACHINE_GET_CLASS(machine);
2798 
2799     if (!mc->has_hotpluggable_cpus) {
2800         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
2801     }
2802     if (machine->possible_cpus) {
2803         assert(machine->possible_cpus->len == spapr_max_cores);
2804         return machine->possible_cpus;
2805     }
2806 
2807     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2808                              sizeof(CPUArchId) * spapr_max_cores);
2809     machine->possible_cpus->len = spapr_max_cores;
2810     for (i = 0; i < machine->possible_cpus->len; i++) {
2811         int core_id = i * smp_threads;
2812 
2813         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
2814         machine->possible_cpus->cpus[i].arch_id = core_id;
2815         machine->possible_cpus->cpus[i].props.has_core_id = true;
2816         machine->possible_cpus->cpus[i].props.core_id = core_id;
2817         /* TODO: add 'has_node/node' here to describe
2818            to which node core belongs */
2819     }
2820     return machine->possible_cpus;
2821 }
2822 
2823 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2824                                 uint64_t *buid, hwaddr *pio,
2825                                 hwaddr *mmio32, hwaddr *mmio64,
2826                                 unsigned n_dma, uint32_t *liobns, Error **errp)
2827 {
2828     /*
2829      * New-style PHB window placement.
2830      *
2831      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2832      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2833      * windows.
2834      *
2835      * Some guest kernels can't work with MMIO windows above 1<<46
2836      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2837      *
2838      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2839      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
2840      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
2841      * 1TiB 64-bit MMIO windows for each PHB.
2842      */
2843     const uint64_t base_buid = 0x800000020000000ULL;
2844 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
2845                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
2846     int i;
2847 
2848     /* Sanity check natural alignments */
2849     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2850     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2851     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2852     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2853     /* Sanity check bounds */
2854     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
2855                       SPAPR_PCI_MEM32_WIN_SIZE);
2856     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
2857                       SPAPR_PCI_MEM64_WIN_SIZE);
2858 
2859     if (index >= SPAPR_MAX_PHBS) {
2860         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
2861                    SPAPR_MAX_PHBS - 1);
2862         return;
2863     }
2864 
2865     *buid = base_buid + index;
2866     for (i = 0; i < n_dma; ++i) {
2867         liobns[i] = SPAPR_PCI_LIOBN(index, i);
2868     }
2869 
2870     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
2871     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
2872     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
2873 }
2874 
2875 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2876 {
2877     MachineClass *mc = MACHINE_CLASS(oc);
2878     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2879     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2880     NMIClass *nc = NMI_CLASS(oc);
2881     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2882     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
2883 
2884     mc->desc = "pSeries Logical Partition (PAPR compliant)";
2885 
2886     /*
2887      * We set up the default / latest behaviour here.  The class_init
2888      * functions for the specific versioned machine types can override
2889      * these details for backwards compatibility
2890      */
2891     mc->init = ppc_spapr_init;
2892     mc->reset = ppc_spapr_reset;
2893     mc->block_default_type = IF_SCSI;
2894     mc->max_cpus = 255;
2895     mc->no_parallel = 1;
2896     mc->default_boot_order = "";
2897     mc->default_ram_size = 512 * M_BYTE;
2898     mc->kvm_type = spapr_kvm_type;
2899     mc->has_dynamic_sysbus = true;
2900     mc->pci_allow_0_address = true;
2901     mc->get_hotplug_handler = spapr_get_hotplug_handler;
2902     hc->pre_plug = spapr_machine_device_pre_plug;
2903     hc->plug = spapr_machine_device_plug;
2904     hc->unplug = spapr_machine_device_unplug;
2905     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2906     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
2907     hc->unplug_request = spapr_machine_device_unplug_request;
2908 
2909     smc->dr_lmb_enabled = true;
2910     smc->tcg_default_cpu = "POWER8";
2911     mc->has_hotpluggable_cpus = true;
2912     fwc->get_dev_path = spapr_get_fw_dev_path;
2913     nc->nmi_monitor_handler = spapr_nmi;
2914     smc->phb_placement = spapr_phb_placement;
2915     vhc->hypercall = emulate_spapr_hypercall;
2916 }
2917 
2918 static const TypeInfo spapr_machine_info = {
2919     .name          = TYPE_SPAPR_MACHINE,
2920     .parent        = TYPE_MACHINE,
2921     .abstract      = true,
2922     .instance_size = sizeof(sPAPRMachineState),
2923     .instance_init = spapr_machine_initfn,
2924     .instance_finalize = spapr_machine_finalizefn,
2925     .class_size    = sizeof(sPAPRMachineClass),
2926     .class_init    = spapr_machine_class_init,
2927     .interfaces = (InterfaceInfo[]) {
2928         { TYPE_FW_PATH_PROVIDER },
2929         { TYPE_NMI },
2930         { TYPE_HOTPLUG_HANDLER },
2931         { TYPE_PPC_VIRTUAL_HYPERVISOR },
2932         { }
2933     },
2934 };
2935 
2936 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2937     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2938                                                     void *data)      \
2939     {                                                                \
2940         MachineClass *mc = MACHINE_CLASS(oc);                        \
2941         spapr_machine_##suffix##_class_options(mc);                  \
2942         if (latest) {                                                \
2943             mc->alias = "pseries";                                   \
2944             mc->is_default = 1;                                      \
2945         }                                                            \
2946     }                                                                \
2947     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2948     {                                                                \
2949         MachineState *machine = MACHINE(obj);                        \
2950         spapr_machine_##suffix##_instance_options(machine);          \
2951     }                                                                \
2952     static const TypeInfo spapr_machine_##suffix##_info = {          \
2953         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2954         .parent = TYPE_SPAPR_MACHINE,                                \
2955         .class_init = spapr_machine_##suffix##_class_init,           \
2956         .instance_init = spapr_machine_##suffix##_instance_init,     \
2957     };                                                               \
2958     static void spapr_machine_register_##suffix(void)                \
2959     {                                                                \
2960         type_register(&spapr_machine_##suffix##_info);               \
2961     }                                                                \
2962     type_init(spapr_machine_register_##suffix)
2963 
2964 /*
2965  * pseries-2.9
2966  */
2967 static void spapr_machine_2_9_instance_options(MachineState *machine)
2968 {
2969 }
2970 
2971 static void spapr_machine_2_9_class_options(MachineClass *mc)
2972 {
2973     /* Defaults for the latest behaviour inherited from the base class */
2974 }
2975 
2976 DEFINE_SPAPR_MACHINE(2_9, "2.9", true);
2977 
2978 /*
2979  * pseries-2.8
2980  */
2981 #define SPAPR_COMPAT_2_8                            \
2982     HW_COMPAT_2_8
2983 
2984 static void spapr_machine_2_8_instance_options(MachineState *machine)
2985 {
2986     spapr_machine_2_9_instance_options(machine);
2987 }
2988 
2989 static void spapr_machine_2_8_class_options(MachineClass *mc)
2990 {
2991     spapr_machine_2_9_class_options(mc);
2992     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
2993 }
2994 
2995 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
2996 
2997 /*
2998  * pseries-2.7
2999  */
3000 #define SPAPR_COMPAT_2_7                            \
3001     HW_COMPAT_2_7                                   \
3002     {                                               \
3003         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3004         .property = "mem_win_size",                 \
3005         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3006     },                                              \
3007     {                                               \
3008         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3009         .property = "mem64_win_size",               \
3010         .value    = "0",                            \
3011     },                                              \
3012     {                                               \
3013         .driver = TYPE_POWERPC_CPU,                 \
3014         .property = "pre-2.8-migration",            \
3015         .value    = "on",                           \
3016     },                                              \
3017     {                                               \
3018         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3019         .property = "pre-2.8-migration",            \
3020         .value    = "on",                           \
3021     },
3022 
3023 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3024                               uint64_t *buid, hwaddr *pio,
3025                               hwaddr *mmio32, hwaddr *mmio64,
3026                               unsigned n_dma, uint32_t *liobns, Error **errp)
3027 {
3028     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3029     const uint64_t base_buid = 0x800000020000000ULL;
3030     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3031     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3032     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3033     const uint32_t max_index = 255;
3034     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3035 
3036     uint64_t ram_top = MACHINE(spapr)->ram_size;
3037     hwaddr phb0_base, phb_base;
3038     int i;
3039 
3040     /* Do we have hotpluggable memory? */
3041     if (MACHINE(spapr)->maxram_size > ram_top) {
3042         /* Can't just use maxram_size, because there may be an
3043          * alignment gap between normal and hotpluggable memory
3044          * regions */
3045         ram_top = spapr->hotplug_memory.base +
3046             memory_region_size(&spapr->hotplug_memory.mr);
3047     }
3048 
3049     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3050 
3051     if (index > max_index) {
3052         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3053                    max_index);
3054         return;
3055     }
3056 
3057     *buid = base_buid + index;
3058     for (i = 0; i < n_dma; ++i) {
3059         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3060     }
3061 
3062     phb_base = phb0_base + index * phb_spacing;
3063     *pio = phb_base + pio_offset;
3064     *mmio32 = phb_base + mmio_offset;
3065     /*
3066      * We don't set the 64-bit MMIO window, relying on the PHB's
3067      * fallback behaviour of automatically splitting a large "32-bit"
3068      * window into contiguous 32-bit and 64-bit windows
3069      */
3070 }
3071 
3072 static void spapr_machine_2_7_instance_options(MachineState *machine)
3073 {
3074     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3075 
3076     spapr_machine_2_8_instance_options(machine);
3077     spapr->use_hotplug_event_source = false;
3078 }
3079 
3080 static void spapr_machine_2_7_class_options(MachineClass *mc)
3081 {
3082     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3083 
3084     spapr_machine_2_8_class_options(mc);
3085     smc->tcg_default_cpu = "POWER7";
3086     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3087     smc->phb_placement = phb_placement_2_7;
3088 }
3089 
3090 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3091 
3092 /*
3093  * pseries-2.6
3094  */
3095 #define SPAPR_COMPAT_2_6 \
3096     HW_COMPAT_2_6 \
3097     { \
3098         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3099         .property = "ddw",\
3100         .value    = stringify(off),\
3101     },
3102 
3103 static void spapr_machine_2_6_instance_options(MachineState *machine)
3104 {
3105     spapr_machine_2_7_instance_options(machine);
3106 }
3107 
3108 static void spapr_machine_2_6_class_options(MachineClass *mc)
3109 {
3110     spapr_machine_2_7_class_options(mc);
3111     mc->has_hotpluggable_cpus = false;
3112     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3113 }
3114 
3115 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3116 
3117 /*
3118  * pseries-2.5
3119  */
3120 #define SPAPR_COMPAT_2_5 \
3121     HW_COMPAT_2_5 \
3122     { \
3123         .driver   = "spapr-vlan", \
3124         .property = "use-rx-buffer-pools", \
3125         .value    = "off", \
3126     },
3127 
3128 static void spapr_machine_2_5_instance_options(MachineState *machine)
3129 {
3130     spapr_machine_2_6_instance_options(machine);
3131 }
3132 
3133 static void spapr_machine_2_5_class_options(MachineClass *mc)
3134 {
3135     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3136 
3137     spapr_machine_2_6_class_options(mc);
3138     smc->use_ohci_by_default = true;
3139     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3140 }
3141 
3142 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3143 
3144 /*
3145  * pseries-2.4
3146  */
3147 #define SPAPR_COMPAT_2_4 \
3148         HW_COMPAT_2_4
3149 
3150 static void spapr_machine_2_4_instance_options(MachineState *machine)
3151 {
3152     spapr_machine_2_5_instance_options(machine);
3153 }
3154 
3155 static void spapr_machine_2_4_class_options(MachineClass *mc)
3156 {
3157     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3158 
3159     spapr_machine_2_5_class_options(mc);
3160     smc->dr_lmb_enabled = false;
3161     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3162 }
3163 
3164 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3165 
3166 /*
3167  * pseries-2.3
3168  */
3169 #define SPAPR_COMPAT_2_3 \
3170         HW_COMPAT_2_3 \
3171         {\
3172             .driver   = "spapr-pci-host-bridge",\
3173             .property = "dynamic-reconfiguration",\
3174             .value    = "off",\
3175         },
3176 
3177 static void spapr_machine_2_3_instance_options(MachineState *machine)
3178 {
3179     spapr_machine_2_4_instance_options(machine);
3180     savevm_skip_section_footers();
3181     global_state_set_optional();
3182     savevm_skip_configuration();
3183 }
3184 
3185 static void spapr_machine_2_3_class_options(MachineClass *mc)
3186 {
3187     spapr_machine_2_4_class_options(mc);
3188     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3189 }
3190 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3191 
3192 /*
3193  * pseries-2.2
3194  */
3195 
3196 #define SPAPR_COMPAT_2_2 \
3197         HW_COMPAT_2_2 \
3198         {\
3199             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3200             .property = "mem_win_size",\
3201             .value    = "0x20000000",\
3202         },
3203 
3204 static void spapr_machine_2_2_instance_options(MachineState *machine)
3205 {
3206     spapr_machine_2_3_instance_options(machine);
3207     machine->suppress_vmdesc = true;
3208 }
3209 
3210 static void spapr_machine_2_2_class_options(MachineClass *mc)
3211 {
3212     spapr_machine_2_3_class_options(mc);
3213     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3214 }
3215 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3216 
3217 /*
3218  * pseries-2.1
3219  */
3220 #define SPAPR_COMPAT_2_1 \
3221         HW_COMPAT_2_1
3222 
3223 static void spapr_machine_2_1_instance_options(MachineState *machine)
3224 {
3225     spapr_machine_2_2_instance_options(machine);
3226 }
3227 
3228 static void spapr_machine_2_1_class_options(MachineClass *mc)
3229 {
3230     spapr_machine_2_2_class_options(mc);
3231     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3232 }
3233 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3234 
3235 static void spapr_machine_register_types(void)
3236 {
3237     type_register_static(&spapr_machine_info);
3238 }
3239 
3240 type_init(spapr_machine_register_types)
3241