1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/numa.h" 33 #include "sysemu/qtest.h" 34 #include "hw/hw.h" 35 #include "qemu/log.h" 36 #include "hw/fw-path-provider.h" 37 #include "elf.h" 38 #include "net/net.h" 39 #include "sysemu/device_tree.h" 40 #include "sysemu/cpus.h" 41 #include "sysemu/hw_accel.h" 42 #include "kvm_ppc.h" 43 #include "migration/misc.h" 44 #include "migration/global_state.h" 45 #include "migration/register.h" 46 #include "mmu-hash64.h" 47 #include "mmu-book3s-v3.h" 48 #include "cpu-models.h" 49 #include "qom/cpu.h" 50 51 #include "hw/boards.h" 52 #include "hw/ppc/ppc.h" 53 #include "hw/loader.h" 54 55 #include "hw/ppc/fdt.h" 56 #include "hw/ppc/spapr.h" 57 #include "hw/ppc/spapr_vio.h" 58 #include "hw/pci-host/spapr.h" 59 #include "hw/pci/msi.h" 60 61 #include "hw/pci/pci.h" 62 #include "hw/scsi/scsi.h" 63 #include "hw/virtio/virtio-scsi.h" 64 #include "hw/virtio/vhost-scsi-common.h" 65 66 #include "exec/address-spaces.h" 67 #include "exec/ram_addr.h" 68 #include "hw/usb.h" 69 #include "qemu/config-file.h" 70 #include "qemu/error-report.h" 71 #include "trace.h" 72 #include "hw/nmi.h" 73 #include "hw/intc/intc.h" 74 75 #include "qemu/cutils.h" 76 #include "hw/ppc/spapr_cpu_core.h" 77 #include "hw/mem/memory-device.h" 78 79 #include <libfdt.h> 80 81 /* SLOF memory layout: 82 * 83 * SLOF raw image loaded at 0, copies its romfs right below the flat 84 * device-tree, then position SLOF itself 31M below that 85 * 86 * So we set FW_OVERHEAD to 40MB which should account for all of that 87 * and more 88 * 89 * We load our kernel at 4M, leaving space for SLOF initial image 90 */ 91 #define FDT_MAX_SIZE 0x100000 92 #define RTAS_MAX_SIZE 0x10000 93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 94 #define FW_MAX_SIZE 0x400000 95 #define FW_FILE_NAME "slof.bin" 96 #define FW_OVERHEAD 0x2800000 97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 98 99 #define MIN_RMA_SLOF 128UL 100 101 #define PHANDLE_INTC 0x00001111 102 103 /* These two functions implement the VCPU id numbering: one to compute them 104 * all and one to identify thread 0 of a VCORE. Any change to the first one 105 * is likely to have an impact on the second one, so let's keep them close. 106 */ 107 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 108 { 109 assert(spapr->vsmt); 110 return 111 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 112 } 113 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 114 PowerPCCPU *cpu) 115 { 116 assert(spapr->vsmt); 117 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 118 } 119 120 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 121 { 122 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 123 * and newer QEMUs don't even have them. In both cases, we don't want 124 * to send anything on the wire. 125 */ 126 return false; 127 } 128 129 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 130 .name = "icp/server", 131 .version_id = 1, 132 .minimum_version_id = 1, 133 .needed = pre_2_10_vmstate_dummy_icp_needed, 134 .fields = (VMStateField[]) { 135 VMSTATE_UNUSED(4), /* uint32_t xirr */ 136 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 137 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 138 VMSTATE_END_OF_LIST() 139 }, 140 }; 141 142 static void pre_2_10_vmstate_register_dummy_icp(int i) 143 { 144 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 145 (void *)(uintptr_t) i); 146 } 147 148 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 149 { 150 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 151 (void *)(uintptr_t) i); 152 } 153 154 int spapr_max_server_number(SpaprMachineState *spapr) 155 { 156 assert(spapr->vsmt); 157 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 158 } 159 160 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 161 int smt_threads) 162 { 163 int i, ret = 0; 164 uint32_t servers_prop[smt_threads]; 165 uint32_t gservers_prop[smt_threads * 2]; 166 int index = spapr_get_vcpu_id(cpu); 167 168 if (cpu->compat_pvr) { 169 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 170 if (ret < 0) { 171 return ret; 172 } 173 } 174 175 /* Build interrupt servers and gservers properties */ 176 for (i = 0; i < smt_threads; i++) { 177 servers_prop[i] = cpu_to_be32(index + i); 178 /* Hack, direct the group queues back to cpu 0 */ 179 gservers_prop[i*2] = cpu_to_be32(index + i); 180 gservers_prop[i*2 + 1] = 0; 181 } 182 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 183 servers_prop, sizeof(servers_prop)); 184 if (ret < 0) { 185 return ret; 186 } 187 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 188 gservers_prop, sizeof(gservers_prop)); 189 190 return ret; 191 } 192 193 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 194 { 195 int index = spapr_get_vcpu_id(cpu); 196 uint32_t associativity[] = {cpu_to_be32(0x5), 197 cpu_to_be32(0x0), 198 cpu_to_be32(0x0), 199 cpu_to_be32(0x0), 200 cpu_to_be32(cpu->node_id), 201 cpu_to_be32(index)}; 202 203 /* Advertise NUMA via ibm,associativity */ 204 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 205 sizeof(associativity)); 206 } 207 208 /* Populate the "ibm,pa-features" property */ 209 static void spapr_populate_pa_features(SpaprMachineState *spapr, 210 PowerPCCPU *cpu, 211 void *fdt, int offset, 212 bool legacy_guest) 213 { 214 uint8_t pa_features_206[] = { 6, 0, 215 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 216 uint8_t pa_features_207[] = { 24, 0, 217 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 218 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 219 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 220 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 221 uint8_t pa_features_300[] = { 66, 0, 222 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 223 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 224 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 225 /* 6: DS207 */ 226 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 227 /* 16: Vector */ 228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 229 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 231 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 233 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 234 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 235 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 237 /* 42: PM, 44: PC RA, 46: SC vec'd */ 238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 239 /* 48: SIMD, 50: QP BFP, 52: String */ 240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 241 /* 54: DecFP, 56: DecI, 58: SHA */ 242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 243 /* 60: NM atomic, 62: RNG */ 244 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 245 }; 246 uint8_t *pa_features = NULL; 247 size_t pa_size; 248 249 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 250 pa_features = pa_features_206; 251 pa_size = sizeof(pa_features_206); 252 } 253 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 254 pa_features = pa_features_207; 255 pa_size = sizeof(pa_features_207); 256 } 257 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 258 pa_features = pa_features_300; 259 pa_size = sizeof(pa_features_300); 260 } 261 if (!pa_features) { 262 return; 263 } 264 265 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 266 /* 267 * Note: we keep CI large pages off by default because a 64K capable 268 * guest provisioned with large pages might otherwise try to map a qemu 269 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 270 * even if that qemu runs on a 4k host. 271 * We dd this bit back here if we are confident this is not an issue 272 */ 273 pa_features[3] |= 0x20; 274 } 275 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 276 pa_features[24] |= 0x80; /* Transactional memory support */ 277 } 278 if (legacy_guest && pa_size > 40) { 279 /* Workaround for broken kernels that attempt (guest) radix 280 * mode when they can't handle it, if they see the radix bit set 281 * in pa-features. So hide it from them. */ 282 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 283 } 284 285 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 286 } 287 288 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 289 { 290 int ret = 0, offset, cpus_offset; 291 CPUState *cs; 292 char cpu_model[32]; 293 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 294 295 CPU_FOREACH(cs) { 296 PowerPCCPU *cpu = POWERPC_CPU(cs); 297 DeviceClass *dc = DEVICE_GET_CLASS(cs); 298 int index = spapr_get_vcpu_id(cpu); 299 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 300 301 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 302 continue; 303 } 304 305 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 306 307 cpus_offset = fdt_path_offset(fdt, "/cpus"); 308 if (cpus_offset < 0) { 309 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 310 if (cpus_offset < 0) { 311 return cpus_offset; 312 } 313 } 314 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 315 if (offset < 0) { 316 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 317 if (offset < 0) { 318 return offset; 319 } 320 } 321 322 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 323 pft_size_prop, sizeof(pft_size_prop)); 324 if (ret < 0) { 325 return ret; 326 } 327 328 if (nb_numa_nodes > 1) { 329 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 330 if (ret < 0) { 331 return ret; 332 } 333 } 334 335 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 336 if (ret < 0) { 337 return ret; 338 } 339 340 spapr_populate_pa_features(spapr, cpu, fdt, offset, 341 spapr->cas_legacy_guest_workaround); 342 } 343 return ret; 344 } 345 346 static hwaddr spapr_node0_size(MachineState *machine) 347 { 348 if (nb_numa_nodes) { 349 int i; 350 for (i = 0; i < nb_numa_nodes; ++i) { 351 if (numa_info[i].node_mem) { 352 return MIN(pow2floor(numa_info[i].node_mem), 353 machine->ram_size); 354 } 355 } 356 } 357 return machine->ram_size; 358 } 359 360 static void add_str(GString *s, const gchar *s1) 361 { 362 g_string_append_len(s, s1, strlen(s1) + 1); 363 } 364 365 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 366 hwaddr size) 367 { 368 uint32_t associativity[] = { 369 cpu_to_be32(0x4), /* length */ 370 cpu_to_be32(0x0), cpu_to_be32(0x0), 371 cpu_to_be32(0x0), cpu_to_be32(nodeid) 372 }; 373 char mem_name[32]; 374 uint64_t mem_reg_property[2]; 375 int off; 376 377 mem_reg_property[0] = cpu_to_be64(start); 378 mem_reg_property[1] = cpu_to_be64(size); 379 380 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 381 off = fdt_add_subnode(fdt, 0, mem_name); 382 _FDT(off); 383 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 384 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 385 sizeof(mem_reg_property)))); 386 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 387 sizeof(associativity)))); 388 return off; 389 } 390 391 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 392 { 393 MachineState *machine = MACHINE(spapr); 394 hwaddr mem_start, node_size; 395 int i, nb_nodes = nb_numa_nodes; 396 NodeInfo *nodes = numa_info; 397 NodeInfo ramnode; 398 399 /* No NUMA nodes, assume there is just one node with whole RAM */ 400 if (!nb_numa_nodes) { 401 nb_nodes = 1; 402 ramnode.node_mem = machine->ram_size; 403 nodes = &ramnode; 404 } 405 406 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 407 if (!nodes[i].node_mem) { 408 continue; 409 } 410 if (mem_start >= machine->ram_size) { 411 node_size = 0; 412 } else { 413 node_size = nodes[i].node_mem; 414 if (node_size > machine->ram_size - mem_start) { 415 node_size = machine->ram_size - mem_start; 416 } 417 } 418 if (!mem_start) { 419 /* spapr_machine_init() checks for rma_size <= node0_size 420 * already */ 421 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 422 mem_start += spapr->rma_size; 423 node_size -= spapr->rma_size; 424 } 425 for ( ; node_size; ) { 426 hwaddr sizetmp = pow2floor(node_size); 427 428 /* mem_start != 0 here */ 429 if (ctzl(mem_start) < ctzl(sizetmp)) { 430 sizetmp = 1ULL << ctzl(mem_start); 431 } 432 433 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 434 node_size -= sizetmp; 435 mem_start += sizetmp; 436 } 437 } 438 439 return 0; 440 } 441 442 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 443 SpaprMachineState *spapr) 444 { 445 PowerPCCPU *cpu = POWERPC_CPU(cs); 446 CPUPPCState *env = &cpu->env; 447 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 448 int index = spapr_get_vcpu_id(cpu); 449 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 450 0xffffffff, 0xffffffff}; 451 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 452 : SPAPR_TIMEBASE_FREQ; 453 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 454 uint32_t page_sizes_prop[64]; 455 size_t page_sizes_prop_size; 456 uint32_t vcpus_per_socket = smp_threads * smp_cores; 457 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 458 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 459 SpaprDrc *drc; 460 int drc_index; 461 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 462 int i; 463 464 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 465 if (drc) { 466 drc_index = spapr_drc_index(drc); 467 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 468 } 469 470 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 471 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 472 473 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 475 env->dcache_line_size))); 476 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 477 env->dcache_line_size))); 478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 479 env->icache_line_size))); 480 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 481 env->icache_line_size))); 482 483 if (pcc->l1_dcache_size) { 484 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 485 pcc->l1_dcache_size))); 486 } else { 487 warn_report("Unknown L1 dcache size for cpu"); 488 } 489 if (pcc->l1_icache_size) { 490 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 491 pcc->l1_icache_size))); 492 } else { 493 warn_report("Unknown L1 icache size for cpu"); 494 } 495 496 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 497 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 498 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 499 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 500 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 501 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 502 503 if (env->spr_cb[SPR_PURR].oea_read) { 504 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 505 } 506 if (env->spr_cb[SPR_SPURR].oea_read) { 507 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 508 } 509 510 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 511 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 512 segs, sizeof(segs)))); 513 } 514 515 /* Advertise VSX (vector extensions) if available 516 * 1 == VMX / Altivec available 517 * 2 == VSX available 518 * 519 * Only CPUs for which we create core types in spapr_cpu_core.c 520 * are possible, and all of those have VMX */ 521 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 522 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 523 } else { 524 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 525 } 526 527 /* Advertise DFP (Decimal Floating Point) if available 528 * 0 / no property == no DFP 529 * 1 == DFP available */ 530 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 531 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 532 } 533 534 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 535 sizeof(page_sizes_prop)); 536 if (page_sizes_prop_size) { 537 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 538 page_sizes_prop, page_sizes_prop_size))); 539 } 540 541 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 542 543 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 544 cs->cpu_index / vcpus_per_socket))); 545 546 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 547 pft_size_prop, sizeof(pft_size_prop)))); 548 549 if (nb_numa_nodes > 1) { 550 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 551 } 552 553 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 554 555 if (pcc->radix_page_info) { 556 for (i = 0; i < pcc->radix_page_info->count; i++) { 557 radix_AP_encodings[i] = 558 cpu_to_be32(pcc->radix_page_info->entries[i]); 559 } 560 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 561 radix_AP_encodings, 562 pcc->radix_page_info->count * 563 sizeof(radix_AP_encodings[0])))); 564 } 565 566 /* 567 * We set this property to let the guest know that it can use the large 568 * decrementer and its width in bits. 569 */ 570 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 571 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 572 pcc->lrg_decr_bits))); 573 } 574 575 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 576 { 577 CPUState **rev; 578 CPUState *cs; 579 int n_cpus; 580 int cpus_offset; 581 char *nodename; 582 int i; 583 584 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 585 _FDT(cpus_offset); 586 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 587 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 588 589 /* 590 * We walk the CPUs in reverse order to ensure that CPU DT nodes 591 * created by fdt_add_subnode() end up in the right order in FDT 592 * for the guest kernel the enumerate the CPUs correctly. 593 * 594 * The CPU list cannot be traversed in reverse order, so we need 595 * to do extra work. 596 */ 597 n_cpus = 0; 598 rev = NULL; 599 CPU_FOREACH(cs) { 600 rev = g_renew(CPUState *, rev, n_cpus + 1); 601 rev[n_cpus++] = cs; 602 } 603 604 for (i = n_cpus - 1; i >= 0; i--) { 605 CPUState *cs = rev[i]; 606 PowerPCCPU *cpu = POWERPC_CPU(cs); 607 int index = spapr_get_vcpu_id(cpu); 608 DeviceClass *dc = DEVICE_GET_CLASS(cs); 609 int offset; 610 611 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 612 continue; 613 } 614 615 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 616 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 617 g_free(nodename); 618 _FDT(offset); 619 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 620 } 621 622 g_free(rev); 623 } 624 625 static int spapr_rng_populate_dt(void *fdt) 626 { 627 int node; 628 int ret; 629 630 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 631 if (node <= 0) { 632 return -1; 633 } 634 ret = fdt_setprop_string(fdt, node, "device_type", 635 "ibm,platform-facilities"); 636 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 637 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 638 639 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 640 if (node <= 0) { 641 return -1; 642 } 643 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 644 645 return ret ? -1 : 0; 646 } 647 648 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 649 { 650 MemoryDeviceInfoList *info; 651 652 for (info = list; info; info = info->next) { 653 MemoryDeviceInfo *value = info->value; 654 655 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 656 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 657 658 if (addr >= pcdimm_info->addr && 659 addr < (pcdimm_info->addr + pcdimm_info->size)) { 660 return pcdimm_info->node; 661 } 662 } 663 } 664 665 return -1; 666 } 667 668 struct sPAPRDrconfCellV2 { 669 uint32_t seq_lmbs; 670 uint64_t base_addr; 671 uint32_t drc_index; 672 uint32_t aa_index; 673 uint32_t flags; 674 } QEMU_PACKED; 675 676 typedef struct DrconfCellQueue { 677 struct sPAPRDrconfCellV2 cell; 678 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 679 } DrconfCellQueue; 680 681 static DrconfCellQueue * 682 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 683 uint32_t drc_index, uint32_t aa_index, 684 uint32_t flags) 685 { 686 DrconfCellQueue *elem; 687 688 elem = g_malloc0(sizeof(*elem)); 689 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 690 elem->cell.base_addr = cpu_to_be64(base_addr); 691 elem->cell.drc_index = cpu_to_be32(drc_index); 692 elem->cell.aa_index = cpu_to_be32(aa_index); 693 elem->cell.flags = cpu_to_be32(flags); 694 695 return elem; 696 } 697 698 /* ibm,dynamic-memory-v2 */ 699 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 700 int offset, MemoryDeviceInfoList *dimms) 701 { 702 MachineState *machine = MACHINE(spapr); 703 uint8_t *int_buf, *cur_index; 704 int ret; 705 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 706 uint64_t addr, cur_addr, size; 707 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 708 uint64_t mem_end = machine->device_memory->base + 709 memory_region_size(&machine->device_memory->mr); 710 uint32_t node, buf_len, nr_entries = 0; 711 SpaprDrc *drc; 712 DrconfCellQueue *elem, *next; 713 MemoryDeviceInfoList *info; 714 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 715 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 716 717 /* Entry to cover RAM and the gap area */ 718 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 719 SPAPR_LMB_FLAGS_RESERVED | 720 SPAPR_LMB_FLAGS_DRC_INVALID); 721 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 722 nr_entries++; 723 724 cur_addr = machine->device_memory->base; 725 for (info = dimms; info; info = info->next) { 726 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 727 728 addr = di->addr; 729 size = di->size; 730 node = di->node; 731 732 /* Entry for hot-pluggable area */ 733 if (cur_addr < addr) { 734 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 735 g_assert(drc); 736 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 737 cur_addr, spapr_drc_index(drc), -1, 0); 738 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 739 nr_entries++; 740 } 741 742 /* Entry for DIMM */ 743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 744 g_assert(drc); 745 elem = spapr_get_drconf_cell(size / lmb_size, addr, 746 spapr_drc_index(drc), node, 747 SPAPR_LMB_FLAGS_ASSIGNED); 748 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 749 nr_entries++; 750 cur_addr = addr + size; 751 } 752 753 /* Entry for remaining hotpluggable area */ 754 if (cur_addr < mem_end) { 755 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 756 g_assert(drc); 757 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 758 cur_addr, spapr_drc_index(drc), -1, 0); 759 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 760 nr_entries++; 761 } 762 763 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 764 int_buf = cur_index = g_malloc0(buf_len); 765 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 766 cur_index += sizeof(nr_entries); 767 768 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 769 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 770 cur_index += sizeof(elem->cell); 771 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 772 g_free(elem); 773 } 774 775 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 776 g_free(int_buf); 777 if (ret < 0) { 778 return -1; 779 } 780 return 0; 781 } 782 783 /* ibm,dynamic-memory */ 784 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 785 int offset, MemoryDeviceInfoList *dimms) 786 { 787 MachineState *machine = MACHINE(spapr); 788 int i, ret; 789 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 790 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 791 uint32_t nr_lmbs = (machine->device_memory->base + 792 memory_region_size(&machine->device_memory->mr)) / 793 lmb_size; 794 uint32_t *int_buf, *cur_index, buf_len; 795 796 /* 797 * Allocate enough buffer size to fit in ibm,dynamic-memory 798 */ 799 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 800 cur_index = int_buf = g_malloc0(buf_len); 801 int_buf[0] = cpu_to_be32(nr_lmbs); 802 cur_index++; 803 for (i = 0; i < nr_lmbs; i++) { 804 uint64_t addr = i * lmb_size; 805 uint32_t *dynamic_memory = cur_index; 806 807 if (i >= device_lmb_start) { 808 SpaprDrc *drc; 809 810 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 811 g_assert(drc); 812 813 dynamic_memory[0] = cpu_to_be32(addr >> 32); 814 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 815 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 816 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 817 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 818 if (memory_region_present(get_system_memory(), addr)) { 819 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 820 } else { 821 dynamic_memory[5] = cpu_to_be32(0); 822 } 823 } else { 824 /* 825 * LMB information for RMA, boot time RAM and gap b/n RAM and 826 * device memory region -- all these are marked as reserved 827 * and as having no valid DRC. 828 */ 829 dynamic_memory[0] = cpu_to_be32(addr >> 32); 830 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 831 dynamic_memory[2] = cpu_to_be32(0); 832 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 833 dynamic_memory[4] = cpu_to_be32(-1); 834 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 835 SPAPR_LMB_FLAGS_DRC_INVALID); 836 } 837 838 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 839 } 840 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 841 g_free(int_buf); 842 if (ret < 0) { 843 return -1; 844 } 845 return 0; 846 } 847 848 /* 849 * Adds ibm,dynamic-reconfiguration-memory node. 850 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 851 * of this device tree node. 852 */ 853 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 854 { 855 MachineState *machine = MACHINE(spapr); 856 int ret, i, offset; 857 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 858 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 859 uint32_t *int_buf, *cur_index, buf_len; 860 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 861 MemoryDeviceInfoList *dimms = NULL; 862 863 /* 864 * Don't create the node if there is no device memory 865 */ 866 if (machine->ram_size == machine->maxram_size) { 867 return 0; 868 } 869 870 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 871 872 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 873 sizeof(prop_lmb_size)); 874 if (ret < 0) { 875 return ret; 876 } 877 878 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 879 if (ret < 0) { 880 return ret; 881 } 882 883 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 884 if (ret < 0) { 885 return ret; 886 } 887 888 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 889 dimms = qmp_memory_device_list(); 890 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 891 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 892 } else { 893 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 894 } 895 qapi_free_MemoryDeviceInfoList(dimms); 896 897 if (ret < 0) { 898 return ret; 899 } 900 901 /* ibm,associativity-lookup-arrays */ 902 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 903 cur_index = int_buf = g_malloc0(buf_len); 904 int_buf[0] = cpu_to_be32(nr_nodes); 905 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 906 cur_index += 2; 907 for (i = 0; i < nr_nodes; i++) { 908 uint32_t associativity[] = { 909 cpu_to_be32(0x0), 910 cpu_to_be32(0x0), 911 cpu_to_be32(0x0), 912 cpu_to_be32(i) 913 }; 914 memcpy(cur_index, associativity, sizeof(associativity)); 915 cur_index += 4; 916 } 917 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 918 (cur_index - int_buf) * sizeof(uint32_t)); 919 g_free(int_buf); 920 921 return ret; 922 } 923 924 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 925 SpaprOptionVector *ov5_updates) 926 { 927 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 928 int ret = 0, offset; 929 930 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 931 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 932 g_assert(smc->dr_lmb_enabled); 933 ret = spapr_populate_drconf_memory(spapr, fdt); 934 if (ret) { 935 goto out; 936 } 937 } 938 939 offset = fdt_path_offset(fdt, "/chosen"); 940 if (offset < 0) { 941 offset = fdt_add_subnode(fdt, 0, "chosen"); 942 if (offset < 0) { 943 return offset; 944 } 945 } 946 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 947 "ibm,architecture-vec-5"); 948 949 out: 950 return ret; 951 } 952 953 static bool spapr_hotplugged_dev_before_cas(void) 954 { 955 Object *drc_container, *obj; 956 ObjectProperty *prop; 957 ObjectPropertyIterator iter; 958 959 drc_container = container_get(object_get_root(), "/dr-connector"); 960 object_property_iter_init(&iter, drc_container); 961 while ((prop = object_property_iter_next(&iter))) { 962 if (!strstart(prop->type, "link<", NULL)) { 963 continue; 964 } 965 obj = object_property_get_link(drc_container, prop->name, NULL); 966 if (spapr_drc_needed(obj)) { 967 return true; 968 } 969 } 970 return false; 971 } 972 973 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 974 target_ulong addr, target_ulong size, 975 SpaprOptionVector *ov5_updates) 976 { 977 void *fdt, *fdt_skel; 978 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 979 980 if (spapr_hotplugged_dev_before_cas()) { 981 return 1; 982 } 983 984 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 985 error_report("SLOF provided an unexpected CAS buffer size " 986 TARGET_FMT_lu " (min: %zu, max: %u)", 987 size, sizeof(hdr), FW_MAX_SIZE); 988 exit(EXIT_FAILURE); 989 } 990 991 size -= sizeof(hdr); 992 993 /* Create skeleton */ 994 fdt_skel = g_malloc0(size); 995 _FDT((fdt_create(fdt_skel, size))); 996 _FDT((fdt_finish_reservemap(fdt_skel))); 997 _FDT((fdt_begin_node(fdt_skel, ""))); 998 _FDT((fdt_end_node(fdt_skel))); 999 _FDT((fdt_finish(fdt_skel))); 1000 fdt = g_malloc0(size); 1001 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1002 g_free(fdt_skel); 1003 1004 /* Fixup cpu nodes */ 1005 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1006 1007 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1008 return -1; 1009 } 1010 1011 /* Pack resulting tree */ 1012 _FDT((fdt_pack(fdt))); 1013 1014 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1015 trace_spapr_cas_failed(size); 1016 return -1; 1017 } 1018 1019 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1020 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1021 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1022 g_free(fdt); 1023 1024 return 0; 1025 } 1026 1027 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1028 { 1029 int rtas; 1030 GString *hypertas = g_string_sized_new(256); 1031 GString *qemu_hypertas = g_string_sized_new(256); 1032 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1033 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1034 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1035 uint32_t lrdr_capacity[] = { 1036 cpu_to_be32(max_device_addr >> 32), 1037 cpu_to_be32(max_device_addr & 0xffffffff), 1038 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1039 cpu_to_be32(max_cpus / smp_threads), 1040 }; 1041 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1042 uint32_t maxdomains[] = { 1043 cpu_to_be32(4), 1044 maxdomain, 1045 maxdomain, 1046 maxdomain, 1047 cpu_to_be32(spapr->gpu_numa_id), 1048 }; 1049 1050 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1051 1052 /* hypertas */ 1053 add_str(hypertas, "hcall-pft"); 1054 add_str(hypertas, "hcall-term"); 1055 add_str(hypertas, "hcall-dabr"); 1056 add_str(hypertas, "hcall-interrupt"); 1057 add_str(hypertas, "hcall-tce"); 1058 add_str(hypertas, "hcall-vio"); 1059 add_str(hypertas, "hcall-splpar"); 1060 add_str(hypertas, "hcall-bulk"); 1061 add_str(hypertas, "hcall-set-mode"); 1062 add_str(hypertas, "hcall-sprg0"); 1063 add_str(hypertas, "hcall-copy"); 1064 add_str(hypertas, "hcall-debug"); 1065 add_str(hypertas, "hcall-vphn"); 1066 add_str(qemu_hypertas, "hcall-memop1"); 1067 1068 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1069 add_str(hypertas, "hcall-multi-tce"); 1070 } 1071 1072 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1073 add_str(hypertas, "hcall-hpt-resize"); 1074 } 1075 1076 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1077 hypertas->str, hypertas->len)); 1078 g_string_free(hypertas, TRUE); 1079 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1080 qemu_hypertas->str, qemu_hypertas->len)); 1081 g_string_free(qemu_hypertas, TRUE); 1082 1083 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1084 refpoints, sizeof(refpoints))); 1085 1086 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1087 maxdomains, sizeof(maxdomains))); 1088 1089 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1090 RTAS_ERROR_LOG_MAX)); 1091 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1092 RTAS_EVENT_SCAN_RATE)); 1093 1094 g_assert(msi_nonbroken); 1095 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1096 1097 /* 1098 * According to PAPR, rtas ibm,os-term does not guarantee a return 1099 * back to the guest cpu. 1100 * 1101 * While an additional ibm,extended-os-term property indicates 1102 * that rtas call return will always occur. Set this property. 1103 */ 1104 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1105 1106 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1107 lrdr_capacity, sizeof(lrdr_capacity))); 1108 1109 spapr_dt_rtas_tokens(fdt, rtas); 1110 } 1111 1112 /* 1113 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1114 * and the XIVE features that the guest may request and thus the valid 1115 * values for bytes 23..26 of option vector 5: 1116 */ 1117 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1118 int chosen) 1119 { 1120 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1121 1122 char val[2 * 4] = { 1123 23, spapr->irq->ov5, /* Xive mode. */ 1124 24, 0x00, /* Hash/Radix, filled in below. */ 1125 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1126 26, 0x40, /* Radix options: GTSE == yes. */ 1127 }; 1128 1129 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1130 first_ppc_cpu->compat_pvr)) { 1131 /* 1132 * If we're in a pre POWER9 compat mode then the guest should 1133 * do hash and use the legacy interrupt mode 1134 */ 1135 val[1] = 0x00; /* XICS */ 1136 val[3] = 0x00; /* Hash */ 1137 } else if (kvm_enabled()) { 1138 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1139 val[3] = 0x80; /* OV5_MMU_BOTH */ 1140 } else if (kvmppc_has_cap_mmu_radix()) { 1141 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1142 } else { 1143 val[3] = 0x00; /* Hash */ 1144 } 1145 } else { 1146 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1147 val[3] = 0xC0; 1148 } 1149 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1150 val, sizeof(val))); 1151 } 1152 1153 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1154 { 1155 MachineState *machine = MACHINE(spapr); 1156 int chosen; 1157 const char *boot_device = machine->boot_order; 1158 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1159 size_t cb = 0; 1160 char *bootlist = get_boot_devices_list(&cb); 1161 1162 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1163 1164 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1165 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1166 spapr->initrd_base)); 1167 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1168 spapr->initrd_base + spapr->initrd_size)); 1169 1170 if (spapr->kernel_size) { 1171 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1172 cpu_to_be64(spapr->kernel_size) }; 1173 1174 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1175 &kprop, sizeof(kprop))); 1176 if (spapr->kernel_le) { 1177 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1178 } 1179 } 1180 if (boot_menu) { 1181 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1182 } 1183 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1184 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1185 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1186 1187 if (cb && bootlist) { 1188 int i; 1189 1190 for (i = 0; i < cb; i++) { 1191 if (bootlist[i] == '\n') { 1192 bootlist[i] = ' '; 1193 } 1194 } 1195 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1196 } 1197 1198 if (boot_device && strlen(boot_device)) { 1199 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1200 } 1201 1202 if (!spapr->has_graphics && stdout_path) { 1203 /* 1204 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1205 * kernel. New platforms should only use the "stdout-path" property. Set 1206 * the new property and continue using older property to remain 1207 * compatible with the existing firmware. 1208 */ 1209 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1210 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1211 } 1212 1213 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1214 1215 g_free(stdout_path); 1216 g_free(bootlist); 1217 } 1218 1219 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1220 { 1221 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1222 * KVM to work under pHyp with some guest co-operation */ 1223 int hypervisor; 1224 uint8_t hypercall[16]; 1225 1226 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1227 /* indicate KVM hypercall interface */ 1228 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1229 if (kvmppc_has_cap_fixup_hcalls()) { 1230 /* 1231 * Older KVM versions with older guest kernels were broken 1232 * with the magic page, don't allow the guest to map it. 1233 */ 1234 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1235 sizeof(hypercall))) { 1236 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1237 hypercall, sizeof(hypercall))); 1238 } 1239 } 1240 } 1241 1242 static void *spapr_build_fdt(SpaprMachineState *spapr) 1243 { 1244 MachineState *machine = MACHINE(spapr); 1245 MachineClass *mc = MACHINE_GET_CLASS(machine); 1246 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1247 int ret; 1248 void *fdt; 1249 SpaprPhbState *phb; 1250 char *buf; 1251 1252 fdt = g_malloc0(FDT_MAX_SIZE); 1253 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1254 1255 /* Root node */ 1256 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1257 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1258 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1259 1260 /* Guest UUID & Name*/ 1261 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1262 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1263 if (qemu_uuid_set) { 1264 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1265 } 1266 g_free(buf); 1267 1268 if (qemu_get_vm_name()) { 1269 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1270 qemu_get_vm_name())); 1271 } 1272 1273 /* Host Model & Serial Number */ 1274 if (spapr->host_model) { 1275 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1276 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1277 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1278 g_free(buf); 1279 } 1280 1281 if (spapr->host_serial) { 1282 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1283 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1284 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1285 g_free(buf); 1286 } 1287 1288 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1289 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1290 1291 /* /interrupt controller */ 1292 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1293 PHANDLE_INTC); 1294 1295 ret = spapr_populate_memory(spapr, fdt); 1296 if (ret < 0) { 1297 error_report("couldn't setup memory nodes in fdt"); 1298 exit(1); 1299 } 1300 1301 /* /vdevice */ 1302 spapr_dt_vdevice(spapr->vio_bus, fdt); 1303 1304 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1305 ret = spapr_rng_populate_dt(fdt); 1306 if (ret < 0) { 1307 error_report("could not set up rng device in the fdt"); 1308 exit(1); 1309 } 1310 } 1311 1312 QLIST_FOREACH(phb, &spapr->phbs, list) { 1313 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt, 1314 spapr->irq->nr_msis, NULL); 1315 if (ret < 0) { 1316 error_report("couldn't setup PCI devices in fdt"); 1317 exit(1); 1318 } 1319 } 1320 1321 /* cpus */ 1322 spapr_populate_cpus_dt_node(fdt, spapr); 1323 1324 if (smc->dr_lmb_enabled) { 1325 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1326 } 1327 1328 if (mc->has_hotpluggable_cpus) { 1329 int offset = fdt_path_offset(fdt, "/cpus"); 1330 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1331 SPAPR_DR_CONNECTOR_TYPE_CPU); 1332 if (ret < 0) { 1333 error_report("Couldn't set up CPU DR device tree properties"); 1334 exit(1); 1335 } 1336 } 1337 1338 /* /event-sources */ 1339 spapr_dt_events(spapr, fdt); 1340 1341 /* /rtas */ 1342 spapr_dt_rtas(spapr, fdt); 1343 1344 /* /chosen */ 1345 spapr_dt_chosen(spapr, fdt); 1346 1347 /* /hypervisor */ 1348 if (kvm_enabled()) { 1349 spapr_dt_hypervisor(spapr, fdt); 1350 } 1351 1352 /* Build memory reserve map */ 1353 if (spapr->kernel_size) { 1354 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1355 } 1356 if (spapr->initrd_size) { 1357 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1358 } 1359 1360 /* ibm,client-architecture-support updates */ 1361 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1362 if (ret < 0) { 1363 error_report("couldn't setup CAS properties fdt"); 1364 exit(1); 1365 } 1366 1367 if (smc->dr_phb_enabled) { 1368 ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1369 if (ret < 0) { 1370 error_report("Couldn't set up PHB DR device tree properties"); 1371 exit(1); 1372 } 1373 } 1374 1375 return fdt; 1376 } 1377 1378 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1379 { 1380 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1381 } 1382 1383 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1384 PowerPCCPU *cpu) 1385 { 1386 CPUPPCState *env = &cpu->env; 1387 1388 /* The TCG path should also be holding the BQL at this point */ 1389 g_assert(qemu_mutex_iothread_locked()); 1390 1391 if (msr_pr) { 1392 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1393 env->gpr[3] = H_PRIVILEGE; 1394 } else { 1395 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1396 } 1397 } 1398 1399 struct LPCRSyncState { 1400 target_ulong value; 1401 target_ulong mask; 1402 }; 1403 1404 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1405 { 1406 struct LPCRSyncState *s = arg.host_ptr; 1407 PowerPCCPU *cpu = POWERPC_CPU(cs); 1408 CPUPPCState *env = &cpu->env; 1409 target_ulong lpcr; 1410 1411 cpu_synchronize_state(cs); 1412 lpcr = env->spr[SPR_LPCR]; 1413 lpcr &= ~s->mask; 1414 lpcr |= s->value; 1415 ppc_store_lpcr(cpu, lpcr); 1416 } 1417 1418 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1419 { 1420 CPUState *cs; 1421 struct LPCRSyncState s = { 1422 .value = value, 1423 .mask = mask 1424 }; 1425 CPU_FOREACH(cs) { 1426 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1427 } 1428 } 1429 1430 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1431 { 1432 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1433 1434 /* Copy PATE1:GR into PATE0:HR */ 1435 entry->dw0 = spapr->patb_entry & PATE0_HR; 1436 entry->dw1 = spapr->patb_entry; 1437 } 1438 1439 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1440 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1441 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1442 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1443 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1444 1445 /* 1446 * Get the fd to access the kernel htab, re-opening it if necessary 1447 */ 1448 static int get_htab_fd(SpaprMachineState *spapr) 1449 { 1450 Error *local_err = NULL; 1451 1452 if (spapr->htab_fd >= 0) { 1453 return spapr->htab_fd; 1454 } 1455 1456 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1457 if (spapr->htab_fd < 0) { 1458 error_report_err(local_err); 1459 } 1460 1461 return spapr->htab_fd; 1462 } 1463 1464 void close_htab_fd(SpaprMachineState *spapr) 1465 { 1466 if (spapr->htab_fd >= 0) { 1467 close(spapr->htab_fd); 1468 } 1469 spapr->htab_fd = -1; 1470 } 1471 1472 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1473 { 1474 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1475 1476 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1477 } 1478 1479 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1480 { 1481 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1482 1483 assert(kvm_enabled()); 1484 1485 if (!spapr->htab) { 1486 return 0; 1487 } 1488 1489 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1490 } 1491 1492 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1493 hwaddr ptex, int n) 1494 { 1495 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1496 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1497 1498 if (!spapr->htab) { 1499 /* 1500 * HTAB is controlled by KVM. Fetch into temporary buffer 1501 */ 1502 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1503 kvmppc_read_hptes(hptes, ptex, n); 1504 return hptes; 1505 } 1506 1507 /* 1508 * HTAB is controlled by QEMU. Just point to the internally 1509 * accessible PTEG. 1510 */ 1511 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1512 } 1513 1514 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1515 const ppc_hash_pte64_t *hptes, 1516 hwaddr ptex, int n) 1517 { 1518 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1519 1520 if (!spapr->htab) { 1521 g_free((void *)hptes); 1522 } 1523 1524 /* Nothing to do for qemu managed HPT */ 1525 } 1526 1527 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1528 uint64_t pte0, uint64_t pte1) 1529 { 1530 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1531 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1532 1533 if (!spapr->htab) { 1534 kvmppc_write_hpte(ptex, pte0, pte1); 1535 } else { 1536 if (pte0 & HPTE64_V_VALID) { 1537 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1538 /* 1539 * When setting valid, we write PTE1 first. This ensures 1540 * proper synchronization with the reading code in 1541 * ppc_hash64_pteg_search() 1542 */ 1543 smp_wmb(); 1544 stq_p(spapr->htab + offset, pte0); 1545 } else { 1546 stq_p(spapr->htab + offset, pte0); 1547 /* 1548 * When clearing it we set PTE0 first. This ensures proper 1549 * synchronization with the reading code in 1550 * ppc_hash64_pteg_search() 1551 */ 1552 smp_wmb(); 1553 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1554 } 1555 } 1556 } 1557 1558 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1559 uint64_t pte1) 1560 { 1561 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1562 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1563 1564 if (!spapr->htab) { 1565 /* There should always be a hash table when this is called */ 1566 error_report("spapr_hpte_set_c called with no hash table !"); 1567 return; 1568 } 1569 1570 /* The HW performs a non-atomic byte update */ 1571 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1572 } 1573 1574 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1575 uint64_t pte1) 1576 { 1577 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1578 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1579 1580 if (!spapr->htab) { 1581 /* There should always be a hash table when this is called */ 1582 error_report("spapr_hpte_set_r called with no hash table !"); 1583 return; 1584 } 1585 1586 /* The HW performs a non-atomic byte update */ 1587 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1588 } 1589 1590 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1591 { 1592 int shift; 1593 1594 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1595 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1596 * that's much more than is needed for Linux guests */ 1597 shift = ctz64(pow2ceil(ramsize)) - 7; 1598 shift = MAX(shift, 18); /* Minimum architected size */ 1599 shift = MIN(shift, 46); /* Maximum architected size */ 1600 return shift; 1601 } 1602 1603 void spapr_free_hpt(SpaprMachineState *spapr) 1604 { 1605 g_free(spapr->htab); 1606 spapr->htab = NULL; 1607 spapr->htab_shift = 0; 1608 close_htab_fd(spapr); 1609 } 1610 1611 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1612 Error **errp) 1613 { 1614 long rc; 1615 1616 /* Clean up any HPT info from a previous boot */ 1617 spapr_free_hpt(spapr); 1618 1619 rc = kvmppc_reset_htab(shift); 1620 if (rc < 0) { 1621 /* kernel-side HPT needed, but couldn't allocate one */ 1622 error_setg_errno(errp, errno, 1623 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1624 shift); 1625 /* This is almost certainly fatal, but if the caller really 1626 * wants to carry on with shift == 0, it's welcome to try */ 1627 } else if (rc > 0) { 1628 /* kernel-side HPT allocated */ 1629 if (rc != shift) { 1630 error_setg(errp, 1631 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1632 shift, rc); 1633 } 1634 1635 spapr->htab_shift = shift; 1636 spapr->htab = NULL; 1637 } else { 1638 /* kernel-side HPT not needed, allocate in userspace instead */ 1639 size_t size = 1ULL << shift; 1640 int i; 1641 1642 spapr->htab = qemu_memalign(size, size); 1643 if (!spapr->htab) { 1644 error_setg_errno(errp, errno, 1645 "Could not allocate HPT of order %d", shift); 1646 return; 1647 } 1648 1649 memset(spapr->htab, 0, size); 1650 spapr->htab_shift = shift; 1651 1652 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1653 DIRTY_HPTE(HPTE(spapr->htab, i)); 1654 } 1655 } 1656 /* We're setting up a hash table, so that means we're not radix */ 1657 spapr->patb_entry = 0; 1658 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1659 } 1660 1661 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1662 { 1663 int hpt_shift; 1664 1665 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1666 || (spapr->cas_reboot 1667 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1668 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1669 } else { 1670 uint64_t current_ram_size; 1671 1672 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1673 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1674 } 1675 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1676 1677 if (spapr->vrma_adjust) { 1678 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1679 spapr->htab_shift); 1680 } 1681 } 1682 1683 static int spapr_reset_drcs(Object *child, void *opaque) 1684 { 1685 SpaprDrc *drc = 1686 (SpaprDrc *) object_dynamic_cast(child, 1687 TYPE_SPAPR_DR_CONNECTOR); 1688 1689 if (drc) { 1690 spapr_drc_reset(drc); 1691 } 1692 1693 return 0; 1694 } 1695 1696 static void spapr_machine_reset(void) 1697 { 1698 MachineState *machine = MACHINE(qdev_get_machine()); 1699 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1700 PowerPCCPU *first_ppc_cpu; 1701 uint32_t rtas_limit; 1702 hwaddr rtas_addr, fdt_addr; 1703 void *fdt; 1704 int rc; 1705 1706 spapr_caps_apply(spapr); 1707 1708 first_ppc_cpu = POWERPC_CPU(first_cpu); 1709 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1710 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1711 spapr->max_compat_pvr)) { 1712 /* 1713 * If using KVM with radix mode available, VCPUs can be started 1714 * without a HPT because KVM will start them in radix mode. 1715 * Set the GR bit in PATE so that we know there is no HPT. 1716 */ 1717 spapr->patb_entry = PATE1_GR; 1718 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1719 } else { 1720 spapr_setup_hpt_and_vrma(spapr); 1721 } 1722 1723 /* 1724 * If this reset wasn't generated by CAS, we should reset our 1725 * negotiated options and start from scratch 1726 */ 1727 if (!spapr->cas_reboot) { 1728 spapr_ovec_cleanup(spapr->ov5_cas); 1729 spapr->ov5_cas = spapr_ovec_new(); 1730 1731 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1732 } 1733 1734 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1735 spapr_irq_msi_reset(spapr); 1736 } 1737 1738 /* 1739 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1740 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1741 * called from vPHB reset handler so we initialize the counter here. 1742 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1743 * must be equally distant from any other node. 1744 * The final value of spapr->gpu_numa_id is going to be written to 1745 * max-associativity-domains in spapr_build_fdt(). 1746 */ 1747 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1748 qemu_devices_reset(); 1749 1750 /* 1751 * This is fixing some of the default configuration of the XIVE 1752 * devices. To be called after the reset of the machine devices. 1753 */ 1754 spapr_irq_reset(spapr, &error_fatal); 1755 1756 /* 1757 * There is no CAS under qtest. Simulate one to please the code that 1758 * depends on spapr->ov5_cas. This is especially needed to test device 1759 * unplug, so we do that before resetting the DRCs. 1760 */ 1761 if (qtest_enabled()) { 1762 spapr_ovec_cleanup(spapr->ov5_cas); 1763 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1764 } 1765 1766 /* DRC reset may cause a device to be unplugged. This will cause troubles 1767 * if this device is used by another device (eg, a running vhost backend 1768 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1769 * situations, we reset DRCs after all devices have been reset. 1770 */ 1771 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1772 1773 spapr_clear_pending_events(spapr); 1774 1775 /* 1776 * We place the device tree and RTAS just below either the top of the RMA, 1777 * or just below 2GB, whichever is lower, so that it can be 1778 * processed with 32-bit real mode code if necessary 1779 */ 1780 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1781 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1782 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1783 1784 fdt = spapr_build_fdt(spapr); 1785 1786 spapr_load_rtas(spapr, fdt, rtas_addr); 1787 1788 rc = fdt_pack(fdt); 1789 1790 /* Should only fail if we've built a corrupted tree */ 1791 assert(rc == 0); 1792 1793 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1794 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1795 fdt_totalsize(fdt), FDT_MAX_SIZE); 1796 exit(1); 1797 } 1798 1799 /* Load the fdt */ 1800 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1801 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1802 g_free(spapr->fdt_blob); 1803 spapr->fdt_size = fdt_totalsize(fdt); 1804 spapr->fdt_initial_size = spapr->fdt_size; 1805 spapr->fdt_blob = fdt; 1806 1807 /* Set up the entry state */ 1808 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1809 first_ppc_cpu->env.gpr[5] = 0; 1810 1811 spapr->cas_reboot = false; 1812 } 1813 1814 static void spapr_create_nvram(SpaprMachineState *spapr) 1815 { 1816 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1817 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1818 1819 if (dinfo) { 1820 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1821 &error_fatal); 1822 } 1823 1824 qdev_init_nofail(dev); 1825 1826 spapr->nvram = (struct SpaprNvram *)dev; 1827 } 1828 1829 static void spapr_rtc_create(SpaprMachineState *spapr) 1830 { 1831 object_initialize_child(OBJECT(spapr), "rtc", 1832 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1833 &error_fatal, NULL); 1834 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1835 &error_fatal); 1836 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1837 "date", &error_fatal); 1838 } 1839 1840 /* Returns whether we want to use VGA or not */ 1841 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1842 { 1843 switch (vga_interface_type) { 1844 case VGA_NONE: 1845 return false; 1846 case VGA_DEVICE: 1847 return true; 1848 case VGA_STD: 1849 case VGA_VIRTIO: 1850 case VGA_CIRRUS: 1851 return pci_vga_init(pci_bus) != NULL; 1852 default: 1853 error_setg(errp, 1854 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1855 return false; 1856 } 1857 } 1858 1859 static int spapr_pre_load(void *opaque) 1860 { 1861 int rc; 1862 1863 rc = spapr_caps_pre_load(opaque); 1864 if (rc) { 1865 return rc; 1866 } 1867 1868 return 0; 1869 } 1870 1871 static int spapr_post_load(void *opaque, int version_id) 1872 { 1873 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1874 int err = 0; 1875 1876 err = spapr_caps_post_migration(spapr); 1877 if (err) { 1878 return err; 1879 } 1880 1881 /* 1882 * In earlier versions, there was no separate qdev for the PAPR 1883 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1884 * So when migrating from those versions, poke the incoming offset 1885 * value into the RTC device 1886 */ 1887 if (version_id < 3) { 1888 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1889 if (err) { 1890 return err; 1891 } 1892 } 1893 1894 if (kvm_enabled() && spapr->patb_entry) { 1895 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1896 bool radix = !!(spapr->patb_entry & PATE1_GR); 1897 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1898 1899 /* 1900 * Update LPCR:HR and UPRT as they may not be set properly in 1901 * the stream 1902 */ 1903 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1904 LPCR_HR | LPCR_UPRT); 1905 1906 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1907 if (err) { 1908 error_report("Process table config unsupported by the host"); 1909 return -EINVAL; 1910 } 1911 } 1912 1913 err = spapr_irq_post_load(spapr, version_id); 1914 if (err) { 1915 return err; 1916 } 1917 1918 return err; 1919 } 1920 1921 static int spapr_pre_save(void *opaque) 1922 { 1923 int rc; 1924 1925 rc = spapr_caps_pre_save(opaque); 1926 if (rc) { 1927 return rc; 1928 } 1929 1930 return 0; 1931 } 1932 1933 static bool version_before_3(void *opaque, int version_id) 1934 { 1935 return version_id < 3; 1936 } 1937 1938 static bool spapr_pending_events_needed(void *opaque) 1939 { 1940 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1941 return !QTAILQ_EMPTY(&spapr->pending_events); 1942 } 1943 1944 static const VMStateDescription vmstate_spapr_event_entry = { 1945 .name = "spapr_event_log_entry", 1946 .version_id = 1, 1947 .minimum_version_id = 1, 1948 .fields = (VMStateField[]) { 1949 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1950 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1951 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1952 NULL, extended_length), 1953 VMSTATE_END_OF_LIST() 1954 }, 1955 }; 1956 1957 static const VMStateDescription vmstate_spapr_pending_events = { 1958 .name = "spapr_pending_events", 1959 .version_id = 1, 1960 .minimum_version_id = 1, 1961 .needed = spapr_pending_events_needed, 1962 .fields = (VMStateField[]) { 1963 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1964 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1965 VMSTATE_END_OF_LIST() 1966 }, 1967 }; 1968 1969 static bool spapr_ov5_cas_needed(void *opaque) 1970 { 1971 SpaprMachineState *spapr = opaque; 1972 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1973 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1974 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1975 bool cas_needed; 1976 1977 /* Prior to the introduction of SpaprOptionVector, we had two option 1978 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1979 * Both of these options encode machine topology into the device-tree 1980 * in such a way that the now-booted OS should still be able to interact 1981 * appropriately with QEMU regardless of what options were actually 1982 * negotiatied on the source side. 1983 * 1984 * As such, we can avoid migrating the CAS-negotiated options if these 1985 * are the only options available on the current machine/platform. 1986 * Since these are the only options available for pseries-2.7 and 1987 * earlier, this allows us to maintain old->new/new->old migration 1988 * compatibility. 1989 * 1990 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1991 * via default pseries-2.8 machines and explicit command-line parameters. 1992 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1993 * of the actual CAS-negotiated values to continue working properly. For 1994 * example, availability of memory unplug depends on knowing whether 1995 * OV5_HP_EVT was negotiated via CAS. 1996 * 1997 * Thus, for any cases where the set of available CAS-negotiatable 1998 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1999 * include the CAS-negotiated options in the migration stream, unless 2000 * if they affect boot time behaviour only. 2001 */ 2002 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2003 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2004 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2005 2006 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2007 * the mask itself since in the future it's possible "legacy" bits may be 2008 * removed via machine options, which could generate a false positive 2009 * that breaks migration. 2010 */ 2011 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2012 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2013 2014 spapr_ovec_cleanup(ov5_mask); 2015 spapr_ovec_cleanup(ov5_legacy); 2016 spapr_ovec_cleanup(ov5_removed); 2017 2018 return cas_needed; 2019 } 2020 2021 static const VMStateDescription vmstate_spapr_ov5_cas = { 2022 .name = "spapr_option_vector_ov5_cas", 2023 .version_id = 1, 2024 .minimum_version_id = 1, 2025 .needed = spapr_ov5_cas_needed, 2026 .fields = (VMStateField[]) { 2027 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2028 vmstate_spapr_ovec, SpaprOptionVector), 2029 VMSTATE_END_OF_LIST() 2030 }, 2031 }; 2032 2033 static bool spapr_patb_entry_needed(void *opaque) 2034 { 2035 SpaprMachineState *spapr = opaque; 2036 2037 return !!spapr->patb_entry; 2038 } 2039 2040 static const VMStateDescription vmstate_spapr_patb_entry = { 2041 .name = "spapr_patb_entry", 2042 .version_id = 1, 2043 .minimum_version_id = 1, 2044 .needed = spapr_patb_entry_needed, 2045 .fields = (VMStateField[]) { 2046 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2047 VMSTATE_END_OF_LIST() 2048 }, 2049 }; 2050 2051 static bool spapr_irq_map_needed(void *opaque) 2052 { 2053 SpaprMachineState *spapr = opaque; 2054 2055 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2056 } 2057 2058 static const VMStateDescription vmstate_spapr_irq_map = { 2059 .name = "spapr_irq_map", 2060 .version_id = 1, 2061 .minimum_version_id = 1, 2062 .needed = spapr_irq_map_needed, 2063 .fields = (VMStateField[]) { 2064 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2065 VMSTATE_END_OF_LIST() 2066 }, 2067 }; 2068 2069 static bool spapr_dtb_needed(void *opaque) 2070 { 2071 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2072 2073 return smc->update_dt_enabled; 2074 } 2075 2076 static int spapr_dtb_pre_load(void *opaque) 2077 { 2078 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2079 2080 g_free(spapr->fdt_blob); 2081 spapr->fdt_blob = NULL; 2082 spapr->fdt_size = 0; 2083 2084 return 0; 2085 } 2086 2087 static const VMStateDescription vmstate_spapr_dtb = { 2088 .name = "spapr_dtb", 2089 .version_id = 1, 2090 .minimum_version_id = 1, 2091 .needed = spapr_dtb_needed, 2092 .pre_load = spapr_dtb_pre_load, 2093 .fields = (VMStateField[]) { 2094 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2095 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2096 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2097 fdt_size), 2098 VMSTATE_END_OF_LIST() 2099 }, 2100 }; 2101 2102 static const VMStateDescription vmstate_spapr = { 2103 .name = "spapr", 2104 .version_id = 3, 2105 .minimum_version_id = 1, 2106 .pre_load = spapr_pre_load, 2107 .post_load = spapr_post_load, 2108 .pre_save = spapr_pre_save, 2109 .fields = (VMStateField[]) { 2110 /* used to be @next_irq */ 2111 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2112 2113 /* RTC offset */ 2114 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2115 2116 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2117 VMSTATE_END_OF_LIST() 2118 }, 2119 .subsections = (const VMStateDescription*[]) { 2120 &vmstate_spapr_ov5_cas, 2121 &vmstate_spapr_patb_entry, 2122 &vmstate_spapr_pending_events, 2123 &vmstate_spapr_cap_htm, 2124 &vmstate_spapr_cap_vsx, 2125 &vmstate_spapr_cap_dfp, 2126 &vmstate_spapr_cap_cfpc, 2127 &vmstate_spapr_cap_sbbc, 2128 &vmstate_spapr_cap_ibs, 2129 &vmstate_spapr_cap_hpt_maxpagesize, 2130 &vmstate_spapr_irq_map, 2131 &vmstate_spapr_cap_nested_kvm_hv, 2132 &vmstate_spapr_dtb, 2133 &vmstate_spapr_cap_large_decr, 2134 &vmstate_spapr_cap_ccf_assist, 2135 NULL 2136 } 2137 }; 2138 2139 static int htab_save_setup(QEMUFile *f, void *opaque) 2140 { 2141 SpaprMachineState *spapr = opaque; 2142 2143 /* "Iteration" header */ 2144 if (!spapr->htab_shift) { 2145 qemu_put_be32(f, -1); 2146 } else { 2147 qemu_put_be32(f, spapr->htab_shift); 2148 } 2149 2150 if (spapr->htab) { 2151 spapr->htab_save_index = 0; 2152 spapr->htab_first_pass = true; 2153 } else { 2154 if (spapr->htab_shift) { 2155 assert(kvm_enabled()); 2156 } 2157 } 2158 2159 2160 return 0; 2161 } 2162 2163 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2164 int chunkstart, int n_valid, int n_invalid) 2165 { 2166 qemu_put_be32(f, chunkstart); 2167 qemu_put_be16(f, n_valid); 2168 qemu_put_be16(f, n_invalid); 2169 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2170 HASH_PTE_SIZE_64 * n_valid); 2171 } 2172 2173 static void htab_save_end_marker(QEMUFile *f) 2174 { 2175 qemu_put_be32(f, 0); 2176 qemu_put_be16(f, 0); 2177 qemu_put_be16(f, 0); 2178 } 2179 2180 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2181 int64_t max_ns) 2182 { 2183 bool has_timeout = max_ns != -1; 2184 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2185 int index = spapr->htab_save_index; 2186 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2187 2188 assert(spapr->htab_first_pass); 2189 2190 do { 2191 int chunkstart; 2192 2193 /* Consume invalid HPTEs */ 2194 while ((index < htabslots) 2195 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2196 CLEAN_HPTE(HPTE(spapr->htab, index)); 2197 index++; 2198 } 2199 2200 /* Consume valid HPTEs */ 2201 chunkstart = index; 2202 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2203 && HPTE_VALID(HPTE(spapr->htab, index))) { 2204 CLEAN_HPTE(HPTE(spapr->htab, index)); 2205 index++; 2206 } 2207 2208 if (index > chunkstart) { 2209 int n_valid = index - chunkstart; 2210 2211 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2212 2213 if (has_timeout && 2214 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2215 break; 2216 } 2217 } 2218 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2219 2220 if (index >= htabslots) { 2221 assert(index == htabslots); 2222 index = 0; 2223 spapr->htab_first_pass = false; 2224 } 2225 spapr->htab_save_index = index; 2226 } 2227 2228 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2229 int64_t max_ns) 2230 { 2231 bool final = max_ns < 0; 2232 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2233 int examined = 0, sent = 0; 2234 int index = spapr->htab_save_index; 2235 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2236 2237 assert(!spapr->htab_first_pass); 2238 2239 do { 2240 int chunkstart, invalidstart; 2241 2242 /* Consume non-dirty HPTEs */ 2243 while ((index < htabslots) 2244 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2245 index++; 2246 examined++; 2247 } 2248 2249 chunkstart = index; 2250 /* Consume valid dirty HPTEs */ 2251 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2252 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2253 && HPTE_VALID(HPTE(spapr->htab, index))) { 2254 CLEAN_HPTE(HPTE(spapr->htab, index)); 2255 index++; 2256 examined++; 2257 } 2258 2259 invalidstart = index; 2260 /* Consume invalid dirty HPTEs */ 2261 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2262 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2263 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2264 CLEAN_HPTE(HPTE(spapr->htab, index)); 2265 index++; 2266 examined++; 2267 } 2268 2269 if (index > chunkstart) { 2270 int n_valid = invalidstart - chunkstart; 2271 int n_invalid = index - invalidstart; 2272 2273 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2274 sent += index - chunkstart; 2275 2276 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2277 break; 2278 } 2279 } 2280 2281 if (examined >= htabslots) { 2282 break; 2283 } 2284 2285 if (index >= htabslots) { 2286 assert(index == htabslots); 2287 index = 0; 2288 } 2289 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2290 2291 if (index >= htabslots) { 2292 assert(index == htabslots); 2293 index = 0; 2294 } 2295 2296 spapr->htab_save_index = index; 2297 2298 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2299 } 2300 2301 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2302 #define MAX_KVM_BUF_SIZE 2048 2303 2304 static int htab_save_iterate(QEMUFile *f, void *opaque) 2305 { 2306 SpaprMachineState *spapr = opaque; 2307 int fd; 2308 int rc = 0; 2309 2310 /* Iteration header */ 2311 if (!spapr->htab_shift) { 2312 qemu_put_be32(f, -1); 2313 return 1; 2314 } else { 2315 qemu_put_be32(f, 0); 2316 } 2317 2318 if (!spapr->htab) { 2319 assert(kvm_enabled()); 2320 2321 fd = get_htab_fd(spapr); 2322 if (fd < 0) { 2323 return fd; 2324 } 2325 2326 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2327 if (rc < 0) { 2328 return rc; 2329 } 2330 } else if (spapr->htab_first_pass) { 2331 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2332 } else { 2333 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2334 } 2335 2336 htab_save_end_marker(f); 2337 2338 return rc; 2339 } 2340 2341 static int htab_save_complete(QEMUFile *f, void *opaque) 2342 { 2343 SpaprMachineState *spapr = opaque; 2344 int fd; 2345 2346 /* Iteration header */ 2347 if (!spapr->htab_shift) { 2348 qemu_put_be32(f, -1); 2349 return 0; 2350 } else { 2351 qemu_put_be32(f, 0); 2352 } 2353 2354 if (!spapr->htab) { 2355 int rc; 2356 2357 assert(kvm_enabled()); 2358 2359 fd = get_htab_fd(spapr); 2360 if (fd < 0) { 2361 return fd; 2362 } 2363 2364 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2365 if (rc < 0) { 2366 return rc; 2367 } 2368 } else { 2369 if (spapr->htab_first_pass) { 2370 htab_save_first_pass(f, spapr, -1); 2371 } 2372 htab_save_later_pass(f, spapr, -1); 2373 } 2374 2375 /* End marker */ 2376 htab_save_end_marker(f); 2377 2378 return 0; 2379 } 2380 2381 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2382 { 2383 SpaprMachineState *spapr = opaque; 2384 uint32_t section_hdr; 2385 int fd = -1; 2386 Error *local_err = NULL; 2387 2388 if (version_id < 1 || version_id > 1) { 2389 error_report("htab_load() bad version"); 2390 return -EINVAL; 2391 } 2392 2393 section_hdr = qemu_get_be32(f); 2394 2395 if (section_hdr == -1) { 2396 spapr_free_hpt(spapr); 2397 return 0; 2398 } 2399 2400 if (section_hdr) { 2401 /* First section gives the htab size */ 2402 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2403 if (local_err) { 2404 error_report_err(local_err); 2405 return -EINVAL; 2406 } 2407 return 0; 2408 } 2409 2410 if (!spapr->htab) { 2411 assert(kvm_enabled()); 2412 2413 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2414 if (fd < 0) { 2415 error_report_err(local_err); 2416 return fd; 2417 } 2418 } 2419 2420 while (true) { 2421 uint32_t index; 2422 uint16_t n_valid, n_invalid; 2423 2424 index = qemu_get_be32(f); 2425 n_valid = qemu_get_be16(f); 2426 n_invalid = qemu_get_be16(f); 2427 2428 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2429 /* End of Stream */ 2430 break; 2431 } 2432 2433 if ((index + n_valid + n_invalid) > 2434 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2435 /* Bad index in stream */ 2436 error_report( 2437 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2438 index, n_valid, n_invalid, spapr->htab_shift); 2439 return -EINVAL; 2440 } 2441 2442 if (spapr->htab) { 2443 if (n_valid) { 2444 qemu_get_buffer(f, HPTE(spapr->htab, index), 2445 HASH_PTE_SIZE_64 * n_valid); 2446 } 2447 if (n_invalid) { 2448 memset(HPTE(spapr->htab, index + n_valid), 0, 2449 HASH_PTE_SIZE_64 * n_invalid); 2450 } 2451 } else { 2452 int rc; 2453 2454 assert(fd >= 0); 2455 2456 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2457 if (rc < 0) { 2458 return rc; 2459 } 2460 } 2461 } 2462 2463 if (!spapr->htab) { 2464 assert(fd >= 0); 2465 close(fd); 2466 } 2467 2468 return 0; 2469 } 2470 2471 static void htab_save_cleanup(void *opaque) 2472 { 2473 SpaprMachineState *spapr = opaque; 2474 2475 close_htab_fd(spapr); 2476 } 2477 2478 static SaveVMHandlers savevm_htab_handlers = { 2479 .save_setup = htab_save_setup, 2480 .save_live_iterate = htab_save_iterate, 2481 .save_live_complete_precopy = htab_save_complete, 2482 .save_cleanup = htab_save_cleanup, 2483 .load_state = htab_load, 2484 }; 2485 2486 static void spapr_boot_set(void *opaque, const char *boot_device, 2487 Error **errp) 2488 { 2489 MachineState *machine = MACHINE(opaque); 2490 machine->boot_order = g_strdup(boot_device); 2491 } 2492 2493 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2494 { 2495 MachineState *machine = MACHINE(spapr); 2496 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2497 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2498 int i; 2499 2500 for (i = 0; i < nr_lmbs; i++) { 2501 uint64_t addr; 2502 2503 addr = i * lmb_size + machine->device_memory->base; 2504 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2505 addr / lmb_size); 2506 } 2507 } 2508 2509 /* 2510 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2511 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2512 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2513 */ 2514 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2515 { 2516 int i; 2517 2518 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2519 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2520 " is not aligned to %" PRIu64 " MiB", 2521 machine->ram_size, 2522 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2523 return; 2524 } 2525 2526 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2527 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2528 " is not aligned to %" PRIu64 " MiB", 2529 machine->ram_size, 2530 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2531 return; 2532 } 2533 2534 for (i = 0; i < nb_numa_nodes; i++) { 2535 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2536 error_setg(errp, 2537 "Node %d memory size 0x%" PRIx64 2538 " is not aligned to %" PRIu64 " MiB", 2539 i, numa_info[i].node_mem, 2540 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2541 return; 2542 } 2543 } 2544 } 2545 2546 /* find cpu slot in machine->possible_cpus by core_id */ 2547 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2548 { 2549 int index = id / smp_threads; 2550 2551 if (index >= ms->possible_cpus->len) { 2552 return NULL; 2553 } 2554 if (idx) { 2555 *idx = index; 2556 } 2557 return &ms->possible_cpus->cpus[index]; 2558 } 2559 2560 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2561 { 2562 Error *local_err = NULL; 2563 bool vsmt_user = !!spapr->vsmt; 2564 int kvm_smt = kvmppc_smt_threads(); 2565 int ret; 2566 2567 if (!kvm_enabled() && (smp_threads > 1)) { 2568 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2569 "on a pseries machine"); 2570 goto out; 2571 } 2572 if (!is_power_of_2(smp_threads)) { 2573 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2574 "machine because it must be a power of 2", smp_threads); 2575 goto out; 2576 } 2577 2578 /* Detemine the VSMT mode to use: */ 2579 if (vsmt_user) { 2580 if (spapr->vsmt < smp_threads) { 2581 error_setg(&local_err, "Cannot support VSMT mode %d" 2582 " because it must be >= threads/core (%d)", 2583 spapr->vsmt, smp_threads); 2584 goto out; 2585 } 2586 /* In this case, spapr->vsmt has been set by the command line */ 2587 } else { 2588 /* 2589 * Default VSMT value is tricky, because we need it to be as 2590 * consistent as possible (for migration), but this requires 2591 * changing it for at least some existing cases. We pick 8 as 2592 * the value that we'd get with KVM on POWER8, the 2593 * overwhelmingly common case in production systems. 2594 */ 2595 spapr->vsmt = MAX(8, smp_threads); 2596 } 2597 2598 /* KVM: If necessary, set the SMT mode: */ 2599 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2600 ret = kvmppc_set_smt_threads(spapr->vsmt); 2601 if (ret) { 2602 /* Looks like KVM isn't able to change VSMT mode */ 2603 error_setg(&local_err, 2604 "Failed to set KVM's VSMT mode to %d (errno %d)", 2605 spapr->vsmt, ret); 2606 /* We can live with that if the default one is big enough 2607 * for the number of threads, and a submultiple of the one 2608 * we want. In this case we'll waste some vcpu ids, but 2609 * behaviour will be correct */ 2610 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2611 warn_report_err(local_err); 2612 local_err = NULL; 2613 goto out; 2614 } else { 2615 if (!vsmt_user) { 2616 error_append_hint(&local_err, 2617 "On PPC, a VM with %d threads/core" 2618 " on a host with %d threads/core" 2619 " requires the use of VSMT mode %d.\n", 2620 smp_threads, kvm_smt, spapr->vsmt); 2621 } 2622 kvmppc_hint_smt_possible(&local_err); 2623 goto out; 2624 } 2625 } 2626 } 2627 /* else TCG: nothing to do currently */ 2628 out: 2629 error_propagate(errp, local_err); 2630 } 2631 2632 static void spapr_init_cpus(SpaprMachineState *spapr) 2633 { 2634 MachineState *machine = MACHINE(spapr); 2635 MachineClass *mc = MACHINE_GET_CLASS(machine); 2636 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2637 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2638 const CPUArchIdList *possible_cpus; 2639 int boot_cores_nr = smp_cpus / smp_threads; 2640 int i; 2641 2642 possible_cpus = mc->possible_cpu_arch_ids(machine); 2643 if (mc->has_hotpluggable_cpus) { 2644 if (smp_cpus % smp_threads) { 2645 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2646 smp_cpus, smp_threads); 2647 exit(1); 2648 } 2649 if (max_cpus % smp_threads) { 2650 error_report("max_cpus (%u) must be multiple of threads (%u)", 2651 max_cpus, smp_threads); 2652 exit(1); 2653 } 2654 } else { 2655 if (max_cpus != smp_cpus) { 2656 error_report("This machine version does not support CPU hotplug"); 2657 exit(1); 2658 } 2659 boot_cores_nr = possible_cpus->len; 2660 } 2661 2662 if (smc->pre_2_10_has_unused_icps) { 2663 int i; 2664 2665 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2666 /* Dummy entries get deregistered when real ICPState objects 2667 * are registered during CPU core hotplug. 2668 */ 2669 pre_2_10_vmstate_register_dummy_icp(i); 2670 } 2671 } 2672 2673 for (i = 0; i < possible_cpus->len; i++) { 2674 int core_id = i * smp_threads; 2675 2676 if (mc->has_hotpluggable_cpus) { 2677 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2678 spapr_vcpu_id(spapr, core_id)); 2679 } 2680 2681 if (i < boot_cores_nr) { 2682 Object *core = object_new(type); 2683 int nr_threads = smp_threads; 2684 2685 /* Handle the partially filled core for older machine types */ 2686 if ((i + 1) * smp_threads >= smp_cpus) { 2687 nr_threads = smp_cpus - i * smp_threads; 2688 } 2689 2690 object_property_set_int(core, nr_threads, "nr-threads", 2691 &error_fatal); 2692 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2693 &error_fatal); 2694 object_property_set_bool(core, true, "realized", &error_fatal); 2695 2696 object_unref(core); 2697 } 2698 } 2699 } 2700 2701 static PCIHostState *spapr_create_default_phb(void) 2702 { 2703 DeviceState *dev; 2704 2705 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2706 qdev_prop_set_uint32(dev, "index", 0); 2707 qdev_init_nofail(dev); 2708 2709 return PCI_HOST_BRIDGE(dev); 2710 } 2711 2712 /* pSeries LPAR / sPAPR hardware init */ 2713 static void spapr_machine_init(MachineState *machine) 2714 { 2715 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2716 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2717 const char *kernel_filename = machine->kernel_filename; 2718 const char *initrd_filename = machine->initrd_filename; 2719 PCIHostState *phb; 2720 int i; 2721 MemoryRegion *sysmem = get_system_memory(); 2722 MemoryRegion *ram = g_new(MemoryRegion, 1); 2723 hwaddr node0_size = spapr_node0_size(machine); 2724 long load_limit, fw_size; 2725 char *filename; 2726 Error *resize_hpt_err = NULL; 2727 2728 msi_nonbroken = true; 2729 2730 QLIST_INIT(&spapr->phbs); 2731 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2732 2733 /* Determine capabilities to run with */ 2734 spapr_caps_init(spapr); 2735 2736 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2737 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2738 /* 2739 * If the user explicitly requested a mode we should either 2740 * supply it, or fail completely (which we do below). But if 2741 * it's not set explicitly, we reset our mode to something 2742 * that works 2743 */ 2744 if (resize_hpt_err) { 2745 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2746 error_free(resize_hpt_err); 2747 resize_hpt_err = NULL; 2748 } else { 2749 spapr->resize_hpt = smc->resize_hpt_default; 2750 } 2751 } 2752 2753 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2754 2755 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2756 /* 2757 * User requested HPT resize, but this host can't supply it. Bail out 2758 */ 2759 error_report_err(resize_hpt_err); 2760 exit(1); 2761 } 2762 2763 spapr->rma_size = node0_size; 2764 2765 /* With KVM, we don't actually know whether KVM supports an 2766 * unbounded RMA (PR KVM) or is limited by the hash table size 2767 * (HV KVM using VRMA), so we always assume the latter 2768 * 2769 * In that case, we also limit the initial allocations for RTAS 2770 * etc... to 256M since we have no way to know what the VRMA size 2771 * is going to be as it depends on the size of the hash table 2772 * which isn't determined yet. 2773 */ 2774 if (kvm_enabled()) { 2775 spapr->vrma_adjust = 1; 2776 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2777 } 2778 2779 /* Actually we don't support unbounded RMA anymore since we added 2780 * proper emulation of HV mode. The max we can get is 16G which 2781 * also happens to be what we configure for PAPR mode so make sure 2782 * we don't do anything bigger than that 2783 */ 2784 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2785 2786 if (spapr->rma_size > node0_size) { 2787 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2788 spapr->rma_size); 2789 exit(1); 2790 } 2791 2792 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2793 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2794 2795 /* 2796 * VSMT must be set in order to be able to compute VCPU ids, ie to 2797 * call spapr_max_server_number() or spapr_vcpu_id(). 2798 */ 2799 spapr_set_vsmt_mode(spapr, &error_fatal); 2800 2801 /* Set up Interrupt Controller before we create the VCPUs */ 2802 spapr_irq_init(spapr, &error_fatal); 2803 2804 /* Set up containers for ibm,client-architecture-support negotiated options 2805 */ 2806 spapr->ov5 = spapr_ovec_new(); 2807 spapr->ov5_cas = spapr_ovec_new(); 2808 2809 if (smc->dr_lmb_enabled) { 2810 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2811 spapr_validate_node_memory(machine, &error_fatal); 2812 } 2813 2814 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2815 2816 /* advertise support for dedicated HP event source to guests */ 2817 if (spapr->use_hotplug_event_source) { 2818 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2819 } 2820 2821 /* advertise support for HPT resizing */ 2822 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2823 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2824 } 2825 2826 /* advertise support for ibm,dyamic-memory-v2 */ 2827 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2828 2829 /* advertise XIVE on POWER9 machines */ 2830 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2831 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2832 } 2833 2834 /* init CPUs */ 2835 spapr_init_cpus(spapr); 2836 2837 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2838 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2839 spapr->max_compat_pvr)) { 2840 /* KVM and TCG always allow GTSE with radix... */ 2841 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2842 } 2843 /* ... but not with hash (currently). */ 2844 2845 if (kvm_enabled()) { 2846 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2847 kvmppc_enable_logical_ci_hcalls(); 2848 kvmppc_enable_set_mode_hcall(); 2849 2850 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2851 kvmppc_enable_clear_ref_mod_hcalls(); 2852 2853 /* Enable H_PAGE_INIT */ 2854 kvmppc_enable_h_page_init(); 2855 } 2856 2857 /* allocate RAM */ 2858 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2859 machine->ram_size); 2860 memory_region_add_subregion(sysmem, 0, ram); 2861 2862 /* always allocate the device memory information */ 2863 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2864 2865 /* initialize hotplug memory address space */ 2866 if (machine->ram_size < machine->maxram_size) { 2867 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2868 /* 2869 * Limit the number of hotpluggable memory slots to half the number 2870 * slots that KVM supports, leaving the other half for PCI and other 2871 * devices. However ensure that number of slots doesn't drop below 32. 2872 */ 2873 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2874 SPAPR_MAX_RAM_SLOTS; 2875 2876 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2877 max_memslots = SPAPR_MAX_RAM_SLOTS; 2878 } 2879 if (machine->ram_slots > max_memslots) { 2880 error_report("Specified number of memory slots %" 2881 PRIu64" exceeds max supported %d", 2882 machine->ram_slots, max_memslots); 2883 exit(1); 2884 } 2885 2886 machine->device_memory->base = ROUND_UP(machine->ram_size, 2887 SPAPR_DEVICE_MEM_ALIGN); 2888 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2889 "device-memory", device_mem_size); 2890 memory_region_add_subregion(sysmem, machine->device_memory->base, 2891 &machine->device_memory->mr); 2892 } 2893 2894 if (smc->dr_lmb_enabled) { 2895 spapr_create_lmb_dr_connectors(spapr); 2896 } 2897 2898 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2899 if (!filename) { 2900 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2901 exit(1); 2902 } 2903 spapr->rtas_size = get_image_size(filename); 2904 if (spapr->rtas_size < 0) { 2905 error_report("Could not get size of LPAR rtas '%s'", filename); 2906 exit(1); 2907 } 2908 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2909 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2910 error_report("Could not load LPAR rtas '%s'", filename); 2911 exit(1); 2912 } 2913 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2914 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2915 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2916 exit(1); 2917 } 2918 g_free(filename); 2919 2920 /* Set up RTAS event infrastructure */ 2921 spapr_events_init(spapr); 2922 2923 /* Set up the RTC RTAS interfaces */ 2924 spapr_rtc_create(spapr); 2925 2926 /* Set up VIO bus */ 2927 spapr->vio_bus = spapr_vio_bus_init(); 2928 2929 for (i = 0; i < serial_max_hds(); i++) { 2930 if (serial_hd(i)) { 2931 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2932 } 2933 } 2934 2935 /* We always have at least the nvram device on VIO */ 2936 spapr_create_nvram(spapr); 2937 2938 /* 2939 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2940 * connectors (described in root DT node's "ibm,drc-types" property) 2941 * are pre-initialized here. additional child connectors (such as 2942 * connectors for a PHBs PCI slots) are added as needed during their 2943 * parent's realization. 2944 */ 2945 if (smc->dr_phb_enabled) { 2946 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2947 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2948 } 2949 } 2950 2951 /* Set up PCI */ 2952 spapr_pci_rtas_init(); 2953 2954 phb = spapr_create_default_phb(); 2955 2956 for (i = 0; i < nb_nics; i++) { 2957 NICInfo *nd = &nd_table[i]; 2958 2959 if (!nd->model) { 2960 nd->model = g_strdup("spapr-vlan"); 2961 } 2962 2963 if (g_str_equal(nd->model, "spapr-vlan") || 2964 g_str_equal(nd->model, "ibmveth")) { 2965 spapr_vlan_create(spapr->vio_bus, nd); 2966 } else { 2967 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2968 } 2969 } 2970 2971 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2972 spapr_vscsi_create(spapr->vio_bus); 2973 } 2974 2975 /* Graphics */ 2976 if (spapr_vga_init(phb->bus, &error_fatal)) { 2977 spapr->has_graphics = true; 2978 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2979 } 2980 2981 if (machine->usb) { 2982 if (smc->use_ohci_by_default) { 2983 pci_create_simple(phb->bus, -1, "pci-ohci"); 2984 } else { 2985 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2986 } 2987 2988 if (spapr->has_graphics) { 2989 USBBus *usb_bus = usb_bus_find(-1); 2990 2991 usb_create_simple(usb_bus, "usb-kbd"); 2992 usb_create_simple(usb_bus, "usb-mouse"); 2993 } 2994 } 2995 2996 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2997 error_report( 2998 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2999 MIN_RMA_SLOF); 3000 exit(1); 3001 } 3002 3003 if (kernel_filename) { 3004 uint64_t lowaddr = 0; 3005 3006 spapr->kernel_size = load_elf(kernel_filename, NULL, 3007 translate_kernel_address, NULL, 3008 NULL, &lowaddr, NULL, 1, 3009 PPC_ELF_MACHINE, 0, 0); 3010 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3011 spapr->kernel_size = load_elf(kernel_filename, NULL, 3012 translate_kernel_address, NULL, NULL, 3013 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3014 0, 0); 3015 spapr->kernel_le = spapr->kernel_size > 0; 3016 } 3017 if (spapr->kernel_size < 0) { 3018 error_report("error loading %s: %s", kernel_filename, 3019 load_elf_strerror(spapr->kernel_size)); 3020 exit(1); 3021 } 3022 3023 /* load initrd */ 3024 if (initrd_filename) { 3025 /* Try to locate the initrd in the gap between the kernel 3026 * and the firmware. Add a bit of space just in case 3027 */ 3028 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3029 + 0x1ffff) & ~0xffff; 3030 spapr->initrd_size = load_image_targphys(initrd_filename, 3031 spapr->initrd_base, 3032 load_limit 3033 - spapr->initrd_base); 3034 if (spapr->initrd_size < 0) { 3035 error_report("could not load initial ram disk '%s'", 3036 initrd_filename); 3037 exit(1); 3038 } 3039 } 3040 } 3041 3042 if (bios_name == NULL) { 3043 bios_name = FW_FILE_NAME; 3044 } 3045 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3046 if (!filename) { 3047 error_report("Could not find LPAR firmware '%s'", bios_name); 3048 exit(1); 3049 } 3050 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3051 if (fw_size <= 0) { 3052 error_report("Could not load LPAR firmware '%s'", filename); 3053 exit(1); 3054 } 3055 g_free(filename); 3056 3057 /* FIXME: Should register things through the MachineState's qdev 3058 * interface, this is a legacy from the sPAPREnvironment structure 3059 * which predated MachineState but had a similar function */ 3060 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3061 register_savevm_live(NULL, "spapr/htab", -1, 1, 3062 &savevm_htab_handlers, spapr); 3063 3064 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3065 &error_fatal); 3066 3067 qemu_register_boot_set(spapr_boot_set, spapr); 3068 3069 if (kvm_enabled()) { 3070 /* to stop and start vmclock */ 3071 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3072 &spapr->tb); 3073 3074 kvmppc_spapr_enable_inkernel_multitce(); 3075 } 3076 } 3077 3078 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3079 { 3080 if (!vm_type) { 3081 return 0; 3082 } 3083 3084 if (!strcmp(vm_type, "HV")) { 3085 return 1; 3086 } 3087 3088 if (!strcmp(vm_type, "PR")) { 3089 return 2; 3090 } 3091 3092 error_report("Unknown kvm-type specified '%s'", vm_type); 3093 exit(1); 3094 } 3095 3096 /* 3097 * Implementation of an interface to adjust firmware path 3098 * for the bootindex property handling. 3099 */ 3100 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3101 DeviceState *dev) 3102 { 3103 #define CAST(type, obj, name) \ 3104 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3105 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3106 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3107 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3108 3109 if (d) { 3110 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3111 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3112 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3113 3114 if (spapr) { 3115 /* 3116 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3117 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3118 * 0x8000 | (target << 8) | (bus << 5) | lun 3119 * (see the "Logical unit addressing format" table in SAM5) 3120 */ 3121 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3122 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3123 (uint64_t)id << 48); 3124 } else if (virtio) { 3125 /* 3126 * We use SRP luns of the form 01000000 | (target << 8) | lun 3127 * in the top 32 bits of the 64-bit LUN 3128 * Note: the quote above is from SLOF and it is wrong, 3129 * the actual binding is: 3130 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3131 */ 3132 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3133 if (d->lun >= 256) { 3134 /* Use the LUN "flat space addressing method" */ 3135 id |= 0x4000; 3136 } 3137 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3138 (uint64_t)id << 32); 3139 } else if (usb) { 3140 /* 3141 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3142 * in the top 32 bits of the 64-bit LUN 3143 */ 3144 unsigned usb_port = atoi(usb->port->path); 3145 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3146 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3147 (uint64_t)id << 32); 3148 } 3149 } 3150 3151 /* 3152 * SLOF probes the USB devices, and if it recognizes that the device is a 3153 * storage device, it changes its name to "storage" instead of "usb-host", 3154 * and additionally adds a child node for the SCSI LUN, so the correct 3155 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3156 */ 3157 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3158 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3159 if (usb_host_dev_is_scsi_storage(usbdev)) { 3160 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3161 } 3162 } 3163 3164 if (phb) { 3165 /* Replace "pci" with "pci@800000020000000" */ 3166 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3167 } 3168 3169 if (vsc) { 3170 /* Same logic as virtio above */ 3171 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3172 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3173 } 3174 3175 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3176 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3177 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3178 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3179 } 3180 3181 return NULL; 3182 } 3183 3184 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3185 { 3186 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3187 3188 return g_strdup(spapr->kvm_type); 3189 } 3190 3191 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3192 { 3193 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3194 3195 g_free(spapr->kvm_type); 3196 spapr->kvm_type = g_strdup(value); 3197 } 3198 3199 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3200 { 3201 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3202 3203 return spapr->use_hotplug_event_source; 3204 } 3205 3206 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3207 Error **errp) 3208 { 3209 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3210 3211 spapr->use_hotplug_event_source = value; 3212 } 3213 3214 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3215 { 3216 return true; 3217 } 3218 3219 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3220 { 3221 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3222 3223 switch (spapr->resize_hpt) { 3224 case SPAPR_RESIZE_HPT_DEFAULT: 3225 return g_strdup("default"); 3226 case SPAPR_RESIZE_HPT_DISABLED: 3227 return g_strdup("disabled"); 3228 case SPAPR_RESIZE_HPT_ENABLED: 3229 return g_strdup("enabled"); 3230 case SPAPR_RESIZE_HPT_REQUIRED: 3231 return g_strdup("required"); 3232 } 3233 g_assert_not_reached(); 3234 } 3235 3236 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3237 { 3238 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3239 3240 if (strcmp(value, "default") == 0) { 3241 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3242 } else if (strcmp(value, "disabled") == 0) { 3243 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3244 } else if (strcmp(value, "enabled") == 0) { 3245 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3246 } else if (strcmp(value, "required") == 0) { 3247 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3248 } else { 3249 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3250 } 3251 } 3252 3253 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3254 void *opaque, Error **errp) 3255 { 3256 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3257 } 3258 3259 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3260 void *opaque, Error **errp) 3261 { 3262 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3263 } 3264 3265 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3266 { 3267 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3268 3269 if (spapr->irq == &spapr_irq_xics_legacy) { 3270 return g_strdup("legacy"); 3271 } else if (spapr->irq == &spapr_irq_xics) { 3272 return g_strdup("xics"); 3273 } else if (spapr->irq == &spapr_irq_xive) { 3274 return g_strdup("xive"); 3275 } else if (spapr->irq == &spapr_irq_dual) { 3276 return g_strdup("dual"); 3277 } 3278 g_assert_not_reached(); 3279 } 3280 3281 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3282 { 3283 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3284 3285 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3286 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3287 return; 3288 } 3289 3290 /* The legacy IRQ backend can not be set */ 3291 if (strcmp(value, "xics") == 0) { 3292 spapr->irq = &spapr_irq_xics; 3293 } else if (strcmp(value, "xive") == 0) { 3294 spapr->irq = &spapr_irq_xive; 3295 } else if (strcmp(value, "dual") == 0) { 3296 spapr->irq = &spapr_irq_dual; 3297 } else { 3298 error_setg(errp, "Bad value for \"ic-mode\" property"); 3299 } 3300 } 3301 3302 static char *spapr_get_host_model(Object *obj, Error **errp) 3303 { 3304 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3305 3306 return g_strdup(spapr->host_model); 3307 } 3308 3309 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3310 { 3311 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3312 3313 g_free(spapr->host_model); 3314 spapr->host_model = g_strdup(value); 3315 } 3316 3317 static char *spapr_get_host_serial(Object *obj, Error **errp) 3318 { 3319 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3320 3321 return g_strdup(spapr->host_serial); 3322 } 3323 3324 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3325 { 3326 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3327 3328 g_free(spapr->host_serial); 3329 spapr->host_serial = g_strdup(value); 3330 } 3331 3332 static void spapr_instance_init(Object *obj) 3333 { 3334 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3335 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3336 3337 spapr->htab_fd = -1; 3338 spapr->use_hotplug_event_source = true; 3339 object_property_add_str(obj, "kvm-type", 3340 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3341 object_property_set_description(obj, "kvm-type", 3342 "Specifies the KVM virtualization mode (HV, PR)", 3343 NULL); 3344 object_property_add_bool(obj, "modern-hotplug-events", 3345 spapr_get_modern_hotplug_events, 3346 spapr_set_modern_hotplug_events, 3347 NULL); 3348 object_property_set_description(obj, "modern-hotplug-events", 3349 "Use dedicated hotplug event mechanism in" 3350 " place of standard EPOW events when possible" 3351 " (required for memory hot-unplug support)", 3352 NULL); 3353 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3354 "Maximum permitted CPU compatibility mode", 3355 &error_fatal); 3356 3357 object_property_add_str(obj, "resize-hpt", 3358 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3359 object_property_set_description(obj, "resize-hpt", 3360 "Resizing of the Hash Page Table (enabled, disabled, required)", 3361 NULL); 3362 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3363 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3364 object_property_set_description(obj, "vsmt", 3365 "Virtual SMT: KVM behaves as if this were" 3366 " the host's SMT mode", &error_abort); 3367 object_property_add_bool(obj, "vfio-no-msix-emulation", 3368 spapr_get_msix_emulation, NULL, NULL); 3369 3370 /* The machine class defines the default interrupt controller mode */ 3371 spapr->irq = smc->irq; 3372 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3373 spapr_set_ic_mode, NULL); 3374 object_property_set_description(obj, "ic-mode", 3375 "Specifies the interrupt controller mode (xics, xive, dual)", 3376 NULL); 3377 3378 object_property_add_str(obj, "host-model", 3379 spapr_get_host_model, spapr_set_host_model, 3380 &error_abort); 3381 object_property_set_description(obj, "host-model", 3382 "Host model to advertise in guest device tree", &error_abort); 3383 object_property_add_str(obj, "host-serial", 3384 spapr_get_host_serial, spapr_set_host_serial, 3385 &error_abort); 3386 object_property_set_description(obj, "host-serial", 3387 "Host serial number to advertise in guest device tree", &error_abort); 3388 } 3389 3390 static void spapr_machine_finalizefn(Object *obj) 3391 { 3392 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3393 3394 g_free(spapr->kvm_type); 3395 } 3396 3397 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3398 { 3399 cpu_synchronize_state(cs); 3400 ppc_cpu_do_system_reset(cs); 3401 } 3402 3403 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3404 { 3405 CPUState *cs; 3406 3407 CPU_FOREACH(cs) { 3408 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3409 } 3410 } 3411 3412 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3413 void *fdt, int *fdt_start_offset, Error **errp) 3414 { 3415 uint64_t addr; 3416 uint32_t node; 3417 3418 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3419 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3420 &error_abort); 3421 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3422 SPAPR_MEMORY_BLOCK_SIZE); 3423 return 0; 3424 } 3425 3426 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3427 bool dedicated_hp_event_source, Error **errp) 3428 { 3429 SpaprDrc *drc; 3430 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3431 int i; 3432 uint64_t addr = addr_start; 3433 bool hotplugged = spapr_drc_hotplugged(dev); 3434 Error *local_err = NULL; 3435 3436 for (i = 0; i < nr_lmbs; i++) { 3437 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3438 addr / SPAPR_MEMORY_BLOCK_SIZE); 3439 g_assert(drc); 3440 3441 spapr_drc_attach(drc, dev, &local_err); 3442 if (local_err) { 3443 while (addr > addr_start) { 3444 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3445 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3446 addr / SPAPR_MEMORY_BLOCK_SIZE); 3447 spapr_drc_detach(drc); 3448 } 3449 error_propagate(errp, local_err); 3450 return; 3451 } 3452 if (!hotplugged) { 3453 spapr_drc_reset(drc); 3454 } 3455 addr += SPAPR_MEMORY_BLOCK_SIZE; 3456 } 3457 /* send hotplug notification to the 3458 * guest only in case of hotplugged memory 3459 */ 3460 if (hotplugged) { 3461 if (dedicated_hp_event_source) { 3462 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3463 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3464 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3465 nr_lmbs, 3466 spapr_drc_index(drc)); 3467 } else { 3468 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3469 nr_lmbs); 3470 } 3471 } 3472 } 3473 3474 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3475 Error **errp) 3476 { 3477 Error *local_err = NULL; 3478 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3479 PCDIMMDevice *dimm = PC_DIMM(dev); 3480 uint64_t size, addr; 3481 3482 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3483 3484 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3485 if (local_err) { 3486 goto out; 3487 } 3488 3489 addr = object_property_get_uint(OBJECT(dimm), 3490 PC_DIMM_ADDR_PROP, &local_err); 3491 if (local_err) { 3492 goto out_unplug; 3493 } 3494 3495 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3496 &local_err); 3497 if (local_err) { 3498 goto out_unplug; 3499 } 3500 3501 return; 3502 3503 out_unplug: 3504 pc_dimm_unplug(dimm, MACHINE(ms)); 3505 out: 3506 error_propagate(errp, local_err); 3507 } 3508 3509 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3510 Error **errp) 3511 { 3512 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3513 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3514 PCDIMMDevice *dimm = PC_DIMM(dev); 3515 Error *local_err = NULL; 3516 uint64_t size; 3517 Object *memdev; 3518 hwaddr pagesize; 3519 3520 if (!smc->dr_lmb_enabled) { 3521 error_setg(errp, "Memory hotplug not supported for this machine"); 3522 return; 3523 } 3524 3525 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3526 if (local_err) { 3527 error_propagate(errp, local_err); 3528 return; 3529 } 3530 3531 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3532 error_setg(errp, "Hotplugged memory size must be a multiple of " 3533 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3534 return; 3535 } 3536 3537 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3538 &error_abort); 3539 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3540 spapr_check_pagesize(spapr, pagesize, &local_err); 3541 if (local_err) { 3542 error_propagate(errp, local_err); 3543 return; 3544 } 3545 3546 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3547 } 3548 3549 struct SpaprDimmState { 3550 PCDIMMDevice *dimm; 3551 uint32_t nr_lmbs; 3552 QTAILQ_ENTRY(SpaprDimmState) next; 3553 }; 3554 3555 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3556 PCDIMMDevice *dimm) 3557 { 3558 SpaprDimmState *dimm_state = NULL; 3559 3560 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3561 if (dimm_state->dimm == dimm) { 3562 break; 3563 } 3564 } 3565 return dimm_state; 3566 } 3567 3568 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3569 uint32_t nr_lmbs, 3570 PCDIMMDevice *dimm) 3571 { 3572 SpaprDimmState *ds = NULL; 3573 3574 /* 3575 * If this request is for a DIMM whose removal had failed earlier 3576 * (due to guest's refusal to remove the LMBs), we would have this 3577 * dimm already in the pending_dimm_unplugs list. In that 3578 * case don't add again. 3579 */ 3580 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3581 if (!ds) { 3582 ds = g_malloc0(sizeof(SpaprDimmState)); 3583 ds->nr_lmbs = nr_lmbs; 3584 ds->dimm = dimm; 3585 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3586 } 3587 return ds; 3588 } 3589 3590 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3591 SpaprDimmState *dimm_state) 3592 { 3593 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3594 g_free(dimm_state); 3595 } 3596 3597 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3598 PCDIMMDevice *dimm) 3599 { 3600 SpaprDrc *drc; 3601 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3602 &error_abort); 3603 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3604 uint32_t avail_lmbs = 0; 3605 uint64_t addr_start, addr; 3606 int i; 3607 3608 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3609 &error_abort); 3610 3611 addr = addr_start; 3612 for (i = 0; i < nr_lmbs; i++) { 3613 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3614 addr / SPAPR_MEMORY_BLOCK_SIZE); 3615 g_assert(drc); 3616 if (drc->dev) { 3617 avail_lmbs++; 3618 } 3619 addr += SPAPR_MEMORY_BLOCK_SIZE; 3620 } 3621 3622 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3623 } 3624 3625 /* Callback to be called during DRC release. */ 3626 void spapr_lmb_release(DeviceState *dev) 3627 { 3628 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3629 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3630 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3631 3632 /* This information will get lost if a migration occurs 3633 * during the unplug process. In this case recover it. */ 3634 if (ds == NULL) { 3635 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3636 g_assert(ds); 3637 /* The DRC being examined by the caller at least must be counted */ 3638 g_assert(ds->nr_lmbs); 3639 } 3640 3641 if (--ds->nr_lmbs) { 3642 return; 3643 } 3644 3645 /* 3646 * Now that all the LMBs have been removed by the guest, call the 3647 * unplug handler chain. This can never fail. 3648 */ 3649 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3650 object_unparent(OBJECT(dev)); 3651 } 3652 3653 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3654 { 3655 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3656 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3657 3658 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3659 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3660 spapr_pending_dimm_unplugs_remove(spapr, ds); 3661 } 3662 3663 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3664 DeviceState *dev, Error **errp) 3665 { 3666 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3667 Error *local_err = NULL; 3668 PCDIMMDevice *dimm = PC_DIMM(dev); 3669 uint32_t nr_lmbs; 3670 uint64_t size, addr_start, addr; 3671 int i; 3672 SpaprDrc *drc; 3673 3674 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3675 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3676 3677 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3678 &local_err); 3679 if (local_err) { 3680 goto out; 3681 } 3682 3683 /* 3684 * An existing pending dimm state for this DIMM means that there is an 3685 * unplug operation in progress, waiting for the spapr_lmb_release 3686 * callback to complete the job (BQL can't cover that far). In this case, 3687 * bail out to avoid detaching DRCs that were already released. 3688 */ 3689 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3690 error_setg(&local_err, 3691 "Memory unplug already in progress for device %s", 3692 dev->id); 3693 goto out; 3694 } 3695 3696 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3697 3698 addr = addr_start; 3699 for (i = 0; i < nr_lmbs; i++) { 3700 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3701 addr / SPAPR_MEMORY_BLOCK_SIZE); 3702 g_assert(drc); 3703 3704 spapr_drc_detach(drc); 3705 addr += SPAPR_MEMORY_BLOCK_SIZE; 3706 } 3707 3708 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3709 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3710 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3711 nr_lmbs, spapr_drc_index(drc)); 3712 out: 3713 error_propagate(errp, local_err); 3714 } 3715 3716 /* Callback to be called during DRC release. */ 3717 void spapr_core_release(DeviceState *dev) 3718 { 3719 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3720 3721 /* Call the unplug handler chain. This can never fail. */ 3722 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3723 object_unparent(OBJECT(dev)); 3724 } 3725 3726 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3727 { 3728 MachineState *ms = MACHINE(hotplug_dev); 3729 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3730 CPUCore *cc = CPU_CORE(dev); 3731 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3732 3733 if (smc->pre_2_10_has_unused_icps) { 3734 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3735 int i; 3736 3737 for (i = 0; i < cc->nr_threads; i++) { 3738 CPUState *cs = CPU(sc->threads[i]); 3739 3740 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3741 } 3742 } 3743 3744 assert(core_slot); 3745 core_slot->cpu = NULL; 3746 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3747 } 3748 3749 static 3750 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3751 Error **errp) 3752 { 3753 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3754 int index; 3755 SpaprDrc *drc; 3756 CPUCore *cc = CPU_CORE(dev); 3757 3758 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3759 error_setg(errp, "Unable to find CPU core with core-id: %d", 3760 cc->core_id); 3761 return; 3762 } 3763 if (index == 0) { 3764 error_setg(errp, "Boot CPU core may not be unplugged"); 3765 return; 3766 } 3767 3768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3769 spapr_vcpu_id(spapr, cc->core_id)); 3770 g_assert(drc); 3771 3772 spapr_drc_detach(drc); 3773 3774 spapr_hotplug_req_remove_by_index(drc); 3775 } 3776 3777 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3778 void *fdt, int *fdt_start_offset, Error **errp) 3779 { 3780 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3781 CPUState *cs = CPU(core->threads[0]); 3782 PowerPCCPU *cpu = POWERPC_CPU(cs); 3783 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3784 int id = spapr_get_vcpu_id(cpu); 3785 char *nodename; 3786 int offset; 3787 3788 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3789 offset = fdt_add_subnode(fdt, 0, nodename); 3790 g_free(nodename); 3791 3792 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3793 3794 *fdt_start_offset = offset; 3795 return 0; 3796 } 3797 3798 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3799 Error **errp) 3800 { 3801 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3802 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3803 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3804 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3805 CPUCore *cc = CPU_CORE(dev); 3806 CPUState *cs; 3807 SpaprDrc *drc; 3808 Error *local_err = NULL; 3809 CPUArchId *core_slot; 3810 int index; 3811 bool hotplugged = spapr_drc_hotplugged(dev); 3812 3813 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3814 if (!core_slot) { 3815 error_setg(errp, "Unable to find CPU core with core-id: %d", 3816 cc->core_id); 3817 return; 3818 } 3819 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3820 spapr_vcpu_id(spapr, cc->core_id)); 3821 3822 g_assert(drc || !mc->has_hotpluggable_cpus); 3823 3824 if (drc) { 3825 spapr_drc_attach(drc, dev, &local_err); 3826 if (local_err) { 3827 error_propagate(errp, local_err); 3828 return; 3829 } 3830 3831 if (hotplugged) { 3832 /* 3833 * Send hotplug notification interrupt to the guest only 3834 * in case of hotplugged CPUs. 3835 */ 3836 spapr_hotplug_req_add_by_index(drc); 3837 } else { 3838 spapr_drc_reset(drc); 3839 } 3840 } 3841 3842 core_slot->cpu = OBJECT(dev); 3843 3844 if (smc->pre_2_10_has_unused_icps) { 3845 int i; 3846 3847 for (i = 0; i < cc->nr_threads; i++) { 3848 cs = CPU(core->threads[i]); 3849 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3850 } 3851 } 3852 } 3853 3854 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3855 Error **errp) 3856 { 3857 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3858 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3859 Error *local_err = NULL; 3860 CPUCore *cc = CPU_CORE(dev); 3861 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3862 const char *type = object_get_typename(OBJECT(dev)); 3863 CPUArchId *core_slot; 3864 int index; 3865 3866 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3867 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3868 goto out; 3869 } 3870 3871 if (strcmp(base_core_type, type)) { 3872 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3873 goto out; 3874 } 3875 3876 if (cc->core_id % smp_threads) { 3877 error_setg(&local_err, "invalid core id %d", cc->core_id); 3878 goto out; 3879 } 3880 3881 /* 3882 * In general we should have homogeneous threads-per-core, but old 3883 * (pre hotplug support) machine types allow the last core to have 3884 * reduced threads as a compatibility hack for when we allowed 3885 * total vcpus not a multiple of threads-per-core. 3886 */ 3887 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3888 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3889 cc->nr_threads, smp_threads); 3890 goto out; 3891 } 3892 3893 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3894 if (!core_slot) { 3895 error_setg(&local_err, "core id %d out of range", cc->core_id); 3896 goto out; 3897 } 3898 3899 if (core_slot->cpu) { 3900 error_setg(&local_err, "core %d already populated", cc->core_id); 3901 goto out; 3902 } 3903 3904 numa_cpu_pre_plug(core_slot, dev, &local_err); 3905 3906 out: 3907 error_propagate(errp, local_err); 3908 } 3909 3910 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3911 void *fdt, int *fdt_start_offset, Error **errp) 3912 { 3913 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3914 int intc_phandle; 3915 3916 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3917 if (intc_phandle <= 0) { 3918 return -1; 3919 } 3920 3921 if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3922 fdt_start_offset)) { 3923 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3924 return -1; 3925 } 3926 3927 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3928 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3929 3930 return 0; 3931 } 3932 3933 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3934 Error **errp) 3935 { 3936 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3937 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3938 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3939 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3940 3941 if (dev->hotplugged && !smc->dr_phb_enabled) { 3942 error_setg(errp, "PHB hotplug not supported for this machine"); 3943 return; 3944 } 3945 3946 if (sphb->index == (uint32_t)-1) { 3947 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3948 return; 3949 } 3950 3951 /* 3952 * This will check that sphb->index doesn't exceed the maximum number of 3953 * PHBs for the current machine type. 3954 */ 3955 smc->phb_placement(spapr, sphb->index, 3956 &sphb->buid, &sphb->io_win_addr, 3957 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3958 windows_supported, sphb->dma_liobn, 3959 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3960 errp); 3961 } 3962 3963 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3964 Error **errp) 3965 { 3966 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3967 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3968 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3969 SpaprDrc *drc; 3970 bool hotplugged = spapr_drc_hotplugged(dev); 3971 Error *local_err = NULL; 3972 3973 if (!smc->dr_phb_enabled) { 3974 return; 3975 } 3976 3977 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3978 /* hotplug hooks should check it's enabled before getting this far */ 3979 assert(drc); 3980 3981 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3982 if (local_err) { 3983 error_propagate(errp, local_err); 3984 return; 3985 } 3986 3987 if (hotplugged) { 3988 spapr_hotplug_req_add_by_index(drc); 3989 } else { 3990 spapr_drc_reset(drc); 3991 } 3992 } 3993 3994 void spapr_phb_release(DeviceState *dev) 3995 { 3996 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3997 3998 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3999 object_unparent(OBJECT(dev)); 4000 } 4001 4002 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4003 { 4004 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4005 } 4006 4007 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4008 DeviceState *dev, Error **errp) 4009 { 4010 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4011 SpaprDrc *drc; 4012 4013 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4014 assert(drc); 4015 4016 if (!spapr_drc_unplug_requested(drc)) { 4017 spapr_drc_detach(drc); 4018 spapr_hotplug_req_remove_by_index(drc); 4019 } 4020 } 4021 4022 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4023 DeviceState *dev, Error **errp) 4024 { 4025 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4026 spapr_memory_plug(hotplug_dev, dev, errp); 4027 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4028 spapr_core_plug(hotplug_dev, dev, errp); 4029 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4030 spapr_phb_plug(hotplug_dev, dev, errp); 4031 } 4032 } 4033 4034 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4035 DeviceState *dev, Error **errp) 4036 { 4037 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4038 spapr_memory_unplug(hotplug_dev, dev); 4039 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4040 spapr_core_unplug(hotplug_dev, dev); 4041 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4042 spapr_phb_unplug(hotplug_dev, dev); 4043 } 4044 } 4045 4046 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4047 DeviceState *dev, Error **errp) 4048 { 4049 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4050 MachineClass *mc = MACHINE_GET_CLASS(sms); 4051 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4052 4053 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4054 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4055 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4056 } else { 4057 /* NOTE: this means there is a window after guest reset, prior to 4058 * CAS negotiation, where unplug requests will fail due to the 4059 * capability not being detected yet. This is a bit different than 4060 * the case with PCI unplug, where the events will be queued and 4061 * eventually handled by the guest after boot 4062 */ 4063 error_setg(errp, "Memory hot unplug not supported for this guest"); 4064 } 4065 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4066 if (!mc->has_hotpluggable_cpus) { 4067 error_setg(errp, "CPU hot unplug not supported on this machine"); 4068 return; 4069 } 4070 spapr_core_unplug_request(hotplug_dev, dev, errp); 4071 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4072 if (!smc->dr_phb_enabled) { 4073 error_setg(errp, "PHB hot unplug not supported on this machine"); 4074 return; 4075 } 4076 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4077 } 4078 } 4079 4080 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4081 DeviceState *dev, Error **errp) 4082 { 4083 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4084 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4085 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4086 spapr_core_pre_plug(hotplug_dev, dev, errp); 4087 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4088 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4089 } 4090 } 4091 4092 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4093 DeviceState *dev) 4094 { 4095 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4096 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4097 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4098 return HOTPLUG_HANDLER(machine); 4099 } 4100 return NULL; 4101 } 4102 4103 static CpuInstanceProperties 4104 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4105 { 4106 CPUArchId *core_slot; 4107 MachineClass *mc = MACHINE_GET_CLASS(machine); 4108 4109 /* make sure possible_cpu are intialized */ 4110 mc->possible_cpu_arch_ids(machine); 4111 /* get CPU core slot containing thread that matches cpu_index */ 4112 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4113 assert(core_slot); 4114 return core_slot->props; 4115 } 4116 4117 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4118 { 4119 return idx / smp_cores % nb_numa_nodes; 4120 } 4121 4122 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4123 { 4124 int i; 4125 const char *core_type; 4126 int spapr_max_cores = max_cpus / smp_threads; 4127 MachineClass *mc = MACHINE_GET_CLASS(machine); 4128 4129 if (!mc->has_hotpluggable_cpus) { 4130 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4131 } 4132 if (machine->possible_cpus) { 4133 assert(machine->possible_cpus->len == spapr_max_cores); 4134 return machine->possible_cpus; 4135 } 4136 4137 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4138 if (!core_type) { 4139 error_report("Unable to find sPAPR CPU Core definition"); 4140 exit(1); 4141 } 4142 4143 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4144 sizeof(CPUArchId) * spapr_max_cores); 4145 machine->possible_cpus->len = spapr_max_cores; 4146 for (i = 0; i < machine->possible_cpus->len; i++) { 4147 int core_id = i * smp_threads; 4148 4149 machine->possible_cpus->cpus[i].type = core_type; 4150 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4151 machine->possible_cpus->cpus[i].arch_id = core_id; 4152 machine->possible_cpus->cpus[i].props.has_core_id = true; 4153 machine->possible_cpus->cpus[i].props.core_id = core_id; 4154 } 4155 return machine->possible_cpus; 4156 } 4157 4158 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4159 uint64_t *buid, hwaddr *pio, 4160 hwaddr *mmio32, hwaddr *mmio64, 4161 unsigned n_dma, uint32_t *liobns, 4162 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4163 { 4164 /* 4165 * New-style PHB window placement. 4166 * 4167 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4168 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4169 * windows. 4170 * 4171 * Some guest kernels can't work with MMIO windows above 1<<46 4172 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4173 * 4174 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4175 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4176 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4177 * 1TiB 64-bit MMIO windows for each PHB. 4178 */ 4179 const uint64_t base_buid = 0x800000020000000ULL; 4180 int i; 4181 4182 /* Sanity check natural alignments */ 4183 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4184 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4185 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4186 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4187 /* Sanity check bounds */ 4188 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4189 SPAPR_PCI_MEM32_WIN_SIZE); 4190 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4191 SPAPR_PCI_MEM64_WIN_SIZE); 4192 4193 if (index >= SPAPR_MAX_PHBS) { 4194 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4195 SPAPR_MAX_PHBS - 1); 4196 return; 4197 } 4198 4199 *buid = base_buid + index; 4200 for (i = 0; i < n_dma; ++i) { 4201 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4202 } 4203 4204 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4205 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4206 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4207 4208 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4209 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4210 } 4211 4212 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4213 { 4214 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4215 4216 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4217 } 4218 4219 static void spapr_ics_resend(XICSFabric *dev) 4220 { 4221 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4222 4223 ics_resend(spapr->ics); 4224 } 4225 4226 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4227 { 4228 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4229 4230 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4231 } 4232 4233 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4234 Monitor *mon) 4235 { 4236 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4237 4238 spapr->irq->print_info(spapr, mon); 4239 } 4240 4241 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4242 { 4243 return cpu->vcpu_id; 4244 } 4245 4246 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4247 { 4248 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4249 int vcpu_id; 4250 4251 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4252 4253 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4254 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4255 error_append_hint(errp, "Adjust the number of cpus to %d " 4256 "or try to raise the number of threads per core\n", 4257 vcpu_id * smp_threads / spapr->vsmt); 4258 return; 4259 } 4260 4261 cpu->vcpu_id = vcpu_id; 4262 } 4263 4264 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4265 { 4266 CPUState *cs; 4267 4268 CPU_FOREACH(cs) { 4269 PowerPCCPU *cpu = POWERPC_CPU(cs); 4270 4271 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4272 return cpu; 4273 } 4274 } 4275 4276 return NULL; 4277 } 4278 4279 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4280 { 4281 MachineClass *mc = MACHINE_CLASS(oc); 4282 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4283 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4284 NMIClass *nc = NMI_CLASS(oc); 4285 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4286 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4287 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4288 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4289 4290 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4291 mc->ignore_boot_device_suffixes = true; 4292 4293 /* 4294 * We set up the default / latest behaviour here. The class_init 4295 * functions for the specific versioned machine types can override 4296 * these details for backwards compatibility 4297 */ 4298 mc->init = spapr_machine_init; 4299 mc->reset = spapr_machine_reset; 4300 mc->block_default_type = IF_SCSI; 4301 mc->max_cpus = 1024; 4302 mc->no_parallel = 1; 4303 mc->default_boot_order = ""; 4304 mc->default_ram_size = 512 * MiB; 4305 mc->default_display = "std"; 4306 mc->kvm_type = spapr_kvm_type; 4307 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4308 mc->pci_allow_0_address = true; 4309 assert(!mc->get_hotplug_handler); 4310 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4311 hc->pre_plug = spapr_machine_device_pre_plug; 4312 hc->plug = spapr_machine_device_plug; 4313 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4314 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4315 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4316 hc->unplug_request = spapr_machine_device_unplug_request; 4317 hc->unplug = spapr_machine_device_unplug; 4318 4319 smc->dr_lmb_enabled = true; 4320 smc->update_dt_enabled = true; 4321 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4322 mc->has_hotpluggable_cpus = true; 4323 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4324 fwc->get_dev_path = spapr_get_fw_dev_path; 4325 nc->nmi_monitor_handler = spapr_nmi; 4326 smc->phb_placement = spapr_phb_placement; 4327 vhc->hypercall = emulate_spapr_hypercall; 4328 vhc->hpt_mask = spapr_hpt_mask; 4329 vhc->map_hptes = spapr_map_hptes; 4330 vhc->unmap_hptes = spapr_unmap_hptes; 4331 vhc->hpte_set_c = spapr_hpte_set_c; 4332 vhc->hpte_set_r = spapr_hpte_set_r; 4333 vhc->get_pate = spapr_get_pate; 4334 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4335 xic->ics_get = spapr_ics_get; 4336 xic->ics_resend = spapr_ics_resend; 4337 xic->icp_get = spapr_icp_get; 4338 ispc->print_info = spapr_pic_print_info; 4339 /* Force NUMA node memory size to be a multiple of 4340 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4341 * in which LMBs are represented and hot-added 4342 */ 4343 mc->numa_mem_align_shift = 28; 4344 4345 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4346 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4347 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4348 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4349 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4350 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4351 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4352 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4353 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4354 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4355 spapr_caps_add_properties(smc, &error_abort); 4356 smc->irq = &spapr_irq_dual; 4357 smc->dr_phb_enabled = true; 4358 } 4359 4360 static const TypeInfo spapr_machine_info = { 4361 .name = TYPE_SPAPR_MACHINE, 4362 .parent = TYPE_MACHINE, 4363 .abstract = true, 4364 .instance_size = sizeof(SpaprMachineState), 4365 .instance_init = spapr_instance_init, 4366 .instance_finalize = spapr_machine_finalizefn, 4367 .class_size = sizeof(SpaprMachineClass), 4368 .class_init = spapr_machine_class_init, 4369 .interfaces = (InterfaceInfo[]) { 4370 { TYPE_FW_PATH_PROVIDER }, 4371 { TYPE_NMI }, 4372 { TYPE_HOTPLUG_HANDLER }, 4373 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4374 { TYPE_XICS_FABRIC }, 4375 { TYPE_INTERRUPT_STATS_PROVIDER }, 4376 { } 4377 }, 4378 }; 4379 4380 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4381 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4382 void *data) \ 4383 { \ 4384 MachineClass *mc = MACHINE_CLASS(oc); \ 4385 spapr_machine_##suffix##_class_options(mc); \ 4386 if (latest) { \ 4387 mc->alias = "pseries"; \ 4388 mc->is_default = 1; \ 4389 } \ 4390 } \ 4391 static const TypeInfo spapr_machine_##suffix##_info = { \ 4392 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4393 .parent = TYPE_SPAPR_MACHINE, \ 4394 .class_init = spapr_machine_##suffix##_class_init, \ 4395 }; \ 4396 static void spapr_machine_register_##suffix(void) \ 4397 { \ 4398 type_register(&spapr_machine_##suffix##_info); \ 4399 } \ 4400 type_init(spapr_machine_register_##suffix) 4401 4402 /* 4403 * pseries-4.1 4404 */ 4405 static void spapr_machine_4_1_class_options(MachineClass *mc) 4406 { 4407 /* Defaults for the latest behaviour inherited from the base class */ 4408 } 4409 4410 DEFINE_SPAPR_MACHINE(4_1, "4.1", true); 4411 4412 /* 4413 * pseries-4.0 4414 */ 4415 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4416 uint64_t *buid, hwaddr *pio, 4417 hwaddr *mmio32, hwaddr *mmio64, 4418 unsigned n_dma, uint32_t *liobns, 4419 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4420 { 4421 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4422 nv2gpa, nv2atsd, errp); 4423 *nv2gpa = 0; 4424 *nv2atsd = 0; 4425 } 4426 4427 static void spapr_machine_4_0_class_options(MachineClass *mc) 4428 { 4429 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4430 4431 spapr_machine_4_1_class_options(mc); 4432 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4433 smc->phb_placement = phb_placement_4_0; 4434 smc->irq = &spapr_irq_xics; 4435 smc->pre_4_1_migration = true; 4436 } 4437 4438 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4439 4440 /* 4441 * pseries-3.1 4442 */ 4443 static void spapr_machine_3_1_class_options(MachineClass *mc) 4444 { 4445 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4446 4447 spapr_machine_4_0_class_options(mc); 4448 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4449 4450 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4451 smc->update_dt_enabled = false; 4452 smc->dr_phb_enabled = false; 4453 smc->broken_host_serial_model = true; 4454 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4455 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4456 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4457 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4458 } 4459 4460 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4461 4462 /* 4463 * pseries-3.0 4464 */ 4465 4466 static void spapr_machine_3_0_class_options(MachineClass *mc) 4467 { 4468 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4469 4470 spapr_machine_3_1_class_options(mc); 4471 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4472 4473 smc->legacy_irq_allocation = true; 4474 smc->irq = &spapr_irq_xics_legacy; 4475 } 4476 4477 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4478 4479 /* 4480 * pseries-2.12 4481 */ 4482 static void spapr_machine_2_12_class_options(MachineClass *mc) 4483 { 4484 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4485 static GlobalProperty compat[] = { 4486 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4487 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4488 }; 4489 4490 spapr_machine_3_0_class_options(mc); 4491 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4492 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4493 4494 /* We depend on kvm_enabled() to choose a default value for the 4495 * hpt-max-page-size capability. Of course we can't do it here 4496 * because this is too early and the HW accelerator isn't initialzed 4497 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4498 */ 4499 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4500 } 4501 4502 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4503 4504 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4505 { 4506 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4507 4508 spapr_machine_2_12_class_options(mc); 4509 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4510 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4511 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4512 } 4513 4514 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4515 4516 /* 4517 * pseries-2.11 4518 */ 4519 4520 static void spapr_machine_2_11_class_options(MachineClass *mc) 4521 { 4522 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4523 4524 spapr_machine_2_12_class_options(mc); 4525 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4526 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4527 } 4528 4529 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4530 4531 /* 4532 * pseries-2.10 4533 */ 4534 4535 static void spapr_machine_2_10_class_options(MachineClass *mc) 4536 { 4537 spapr_machine_2_11_class_options(mc); 4538 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4539 } 4540 4541 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4542 4543 /* 4544 * pseries-2.9 4545 */ 4546 4547 static void spapr_machine_2_9_class_options(MachineClass *mc) 4548 { 4549 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4550 static GlobalProperty compat[] = { 4551 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4552 }; 4553 4554 spapr_machine_2_10_class_options(mc); 4555 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4556 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4557 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4558 smc->pre_2_10_has_unused_icps = true; 4559 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4560 } 4561 4562 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4563 4564 /* 4565 * pseries-2.8 4566 */ 4567 4568 static void spapr_machine_2_8_class_options(MachineClass *mc) 4569 { 4570 static GlobalProperty compat[] = { 4571 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4572 }; 4573 4574 spapr_machine_2_9_class_options(mc); 4575 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4576 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4577 mc->numa_mem_align_shift = 23; 4578 } 4579 4580 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4581 4582 /* 4583 * pseries-2.7 4584 */ 4585 4586 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4587 uint64_t *buid, hwaddr *pio, 4588 hwaddr *mmio32, hwaddr *mmio64, 4589 unsigned n_dma, uint32_t *liobns, 4590 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4591 { 4592 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4593 const uint64_t base_buid = 0x800000020000000ULL; 4594 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4595 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4596 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4597 const uint32_t max_index = 255; 4598 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4599 4600 uint64_t ram_top = MACHINE(spapr)->ram_size; 4601 hwaddr phb0_base, phb_base; 4602 int i; 4603 4604 /* Do we have device memory? */ 4605 if (MACHINE(spapr)->maxram_size > ram_top) { 4606 /* Can't just use maxram_size, because there may be an 4607 * alignment gap between normal and device memory regions 4608 */ 4609 ram_top = MACHINE(spapr)->device_memory->base + 4610 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4611 } 4612 4613 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4614 4615 if (index > max_index) { 4616 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4617 max_index); 4618 return; 4619 } 4620 4621 *buid = base_buid + index; 4622 for (i = 0; i < n_dma; ++i) { 4623 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4624 } 4625 4626 phb_base = phb0_base + index * phb_spacing; 4627 *pio = phb_base + pio_offset; 4628 *mmio32 = phb_base + mmio_offset; 4629 /* 4630 * We don't set the 64-bit MMIO window, relying on the PHB's 4631 * fallback behaviour of automatically splitting a large "32-bit" 4632 * window into contiguous 32-bit and 64-bit windows 4633 */ 4634 4635 *nv2gpa = 0; 4636 *nv2atsd = 0; 4637 } 4638 4639 static void spapr_machine_2_7_class_options(MachineClass *mc) 4640 { 4641 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4642 static GlobalProperty compat[] = { 4643 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4644 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4645 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4646 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4647 }; 4648 4649 spapr_machine_2_8_class_options(mc); 4650 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4651 mc->default_machine_opts = "modern-hotplug-events=off"; 4652 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4653 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4654 smc->phb_placement = phb_placement_2_7; 4655 } 4656 4657 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4658 4659 /* 4660 * pseries-2.6 4661 */ 4662 4663 static void spapr_machine_2_6_class_options(MachineClass *mc) 4664 { 4665 static GlobalProperty compat[] = { 4666 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4667 }; 4668 4669 spapr_machine_2_7_class_options(mc); 4670 mc->has_hotpluggable_cpus = false; 4671 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4672 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4673 } 4674 4675 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4676 4677 /* 4678 * pseries-2.5 4679 */ 4680 4681 static void spapr_machine_2_5_class_options(MachineClass *mc) 4682 { 4683 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4684 static GlobalProperty compat[] = { 4685 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4686 }; 4687 4688 spapr_machine_2_6_class_options(mc); 4689 smc->use_ohci_by_default = true; 4690 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4691 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4692 } 4693 4694 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4695 4696 /* 4697 * pseries-2.4 4698 */ 4699 4700 static void spapr_machine_2_4_class_options(MachineClass *mc) 4701 { 4702 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4703 4704 spapr_machine_2_5_class_options(mc); 4705 smc->dr_lmb_enabled = false; 4706 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4707 } 4708 4709 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4710 4711 /* 4712 * pseries-2.3 4713 */ 4714 4715 static void spapr_machine_2_3_class_options(MachineClass *mc) 4716 { 4717 static GlobalProperty compat[] = { 4718 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4719 }; 4720 spapr_machine_2_4_class_options(mc); 4721 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4722 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4723 } 4724 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4725 4726 /* 4727 * pseries-2.2 4728 */ 4729 4730 static void spapr_machine_2_2_class_options(MachineClass *mc) 4731 { 4732 static GlobalProperty compat[] = { 4733 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4734 }; 4735 4736 spapr_machine_2_3_class_options(mc); 4737 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4738 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4739 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4740 } 4741 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4742 4743 /* 4744 * pseries-2.1 4745 */ 4746 4747 static void spapr_machine_2_1_class_options(MachineClass *mc) 4748 { 4749 spapr_machine_2_2_class_options(mc); 4750 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4751 } 4752 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4753 4754 static void spapr_machine_register_types(void) 4755 { 4756 type_register_static(&spapr_machine_info); 4757 } 4758 4759 type_init(spapr_machine_register_types) 4760