1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "qom/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "qemu/cutils.h" 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 #include "hw/ppc/spapr_tpm_proxy.h" 83 84 #include <libfdt.h> 85 86 /* SLOF memory layout: 87 * 88 * SLOF raw image loaded at 0, copies its romfs right below the flat 89 * device-tree, then position SLOF itself 31M below that 90 * 91 * So we set FW_OVERHEAD to 40MB which should account for all of that 92 * and more 93 * 94 * We load our kernel at 4M, leaving space for SLOF initial image 95 */ 96 #define FDT_MAX_SIZE 0x100000 97 #define RTAS_MAX_SIZE 0x10000 98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 99 #define FW_MAX_SIZE 0x400000 100 #define FW_FILE_NAME "slof.bin" 101 #define FW_OVERHEAD 0x2800000 102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 103 104 #define MIN_RMA_SLOF 128UL 105 106 #define PHANDLE_INTC 0x00001111 107 108 /* These two functions implement the VCPU id numbering: one to compute them 109 * all and one to identify thread 0 of a VCORE. Any change to the first one 110 * is likely to have an impact on the second one, so let's keep them close. 111 */ 112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 113 { 114 MachineState *ms = MACHINE(spapr); 115 unsigned int smp_threads = ms->smp.threads; 116 117 assert(spapr->vsmt); 118 return 119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 120 } 121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 122 PowerPCCPU *cpu) 123 { 124 assert(spapr->vsmt); 125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 126 } 127 128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 129 { 130 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 131 * and newer QEMUs don't even have them. In both cases, we don't want 132 * to send anything on the wire. 133 */ 134 return false; 135 } 136 137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 138 .name = "icp/server", 139 .version_id = 1, 140 .minimum_version_id = 1, 141 .needed = pre_2_10_vmstate_dummy_icp_needed, 142 .fields = (VMStateField[]) { 143 VMSTATE_UNUSED(4), /* uint32_t xirr */ 144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 145 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 146 VMSTATE_END_OF_LIST() 147 }, 148 }; 149 150 static void pre_2_10_vmstate_register_dummy_icp(int i) 151 { 152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 153 (void *)(uintptr_t) i); 154 } 155 156 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 157 { 158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 159 (void *)(uintptr_t) i); 160 } 161 162 int spapr_max_server_number(SpaprMachineState *spapr) 163 { 164 MachineState *ms = MACHINE(spapr); 165 166 assert(spapr->vsmt); 167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 168 } 169 170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 171 int smt_threads) 172 { 173 int i, ret = 0; 174 uint32_t servers_prop[smt_threads]; 175 uint32_t gservers_prop[smt_threads * 2]; 176 int index = spapr_get_vcpu_id(cpu); 177 178 if (cpu->compat_pvr) { 179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 180 if (ret < 0) { 181 return ret; 182 } 183 } 184 185 /* Build interrupt servers and gservers properties */ 186 for (i = 0; i < smt_threads; i++) { 187 servers_prop[i] = cpu_to_be32(index + i); 188 /* Hack, direct the group queues back to cpu 0 */ 189 gservers_prop[i*2] = cpu_to_be32(index + i); 190 gservers_prop[i*2 + 1] = 0; 191 } 192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 193 servers_prop, sizeof(servers_prop)); 194 if (ret < 0) { 195 return ret; 196 } 197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 198 gservers_prop, sizeof(gservers_prop)); 199 200 return ret; 201 } 202 203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 204 { 205 int index = spapr_get_vcpu_id(cpu); 206 uint32_t associativity[] = {cpu_to_be32(0x5), 207 cpu_to_be32(0x0), 208 cpu_to_be32(0x0), 209 cpu_to_be32(0x0), 210 cpu_to_be32(cpu->node_id), 211 cpu_to_be32(index)}; 212 213 /* Advertise NUMA via ibm,associativity */ 214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 215 sizeof(associativity)); 216 } 217 218 /* Populate the "ibm,pa-features" property */ 219 static void spapr_populate_pa_features(SpaprMachineState *spapr, 220 PowerPCCPU *cpu, 221 void *fdt, int offset, 222 bool legacy_guest) 223 { 224 uint8_t pa_features_206[] = { 6, 0, 225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 226 uint8_t pa_features_207[] = { 24, 0, 227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 231 uint8_t pa_features_300[] = { 66, 0, 232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 235 /* 6: DS207 */ 236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 237 /* 16: Vector */ 238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 247 /* 42: PM, 44: PC RA, 46: SC vec'd */ 248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 249 /* 48: SIMD, 50: QP BFP, 52: String */ 250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 251 /* 54: DecFP, 56: DecI, 58: SHA */ 252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 253 /* 60: NM atomic, 62: RNG */ 254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 255 }; 256 uint8_t *pa_features = NULL; 257 size_t pa_size; 258 259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 260 pa_features = pa_features_206; 261 pa_size = sizeof(pa_features_206); 262 } 263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 264 pa_features = pa_features_207; 265 pa_size = sizeof(pa_features_207); 266 } 267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 268 pa_features = pa_features_300; 269 pa_size = sizeof(pa_features_300); 270 } 271 if (!pa_features) { 272 return; 273 } 274 275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 276 /* 277 * Note: we keep CI large pages off by default because a 64K capable 278 * guest provisioned with large pages might otherwise try to map a qemu 279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 280 * even if that qemu runs on a 4k host. 281 * We dd this bit back here if we are confident this is not an issue 282 */ 283 pa_features[3] |= 0x20; 284 } 285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 286 pa_features[24] |= 0x80; /* Transactional memory support */ 287 } 288 if (legacy_guest && pa_size > 40) { 289 /* Workaround for broken kernels that attempt (guest) radix 290 * mode when they can't handle it, if they see the radix bit set 291 * in pa-features. So hide it from them. */ 292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 293 } 294 295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 296 } 297 298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 299 { 300 MachineState *ms = MACHINE(spapr); 301 int ret = 0, offset, cpus_offset; 302 CPUState *cs; 303 char cpu_model[32]; 304 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 305 306 CPU_FOREACH(cs) { 307 PowerPCCPU *cpu = POWERPC_CPU(cs); 308 DeviceClass *dc = DEVICE_GET_CLASS(cs); 309 int index = spapr_get_vcpu_id(cpu); 310 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu)); 311 312 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 313 continue; 314 } 315 316 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 317 318 cpus_offset = fdt_path_offset(fdt, "/cpus"); 319 if (cpus_offset < 0) { 320 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 321 if (cpus_offset < 0) { 322 return cpus_offset; 323 } 324 } 325 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 326 if (offset < 0) { 327 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 328 if (offset < 0) { 329 return offset; 330 } 331 } 332 333 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 334 pft_size_prop, sizeof(pft_size_prop)); 335 if (ret < 0) { 336 return ret; 337 } 338 339 if (nb_numa_nodes > 1) { 340 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 341 if (ret < 0) { 342 return ret; 343 } 344 } 345 346 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 347 if (ret < 0) { 348 return ret; 349 } 350 351 spapr_populate_pa_features(spapr, cpu, fdt, offset, 352 spapr->cas_legacy_guest_workaround); 353 } 354 return ret; 355 } 356 357 static hwaddr spapr_node0_size(MachineState *machine) 358 { 359 if (nb_numa_nodes) { 360 int i; 361 for (i = 0; i < nb_numa_nodes; ++i) { 362 if (numa_info[i].node_mem) { 363 return MIN(pow2floor(numa_info[i].node_mem), 364 machine->ram_size); 365 } 366 } 367 } 368 return machine->ram_size; 369 } 370 371 static void add_str(GString *s, const gchar *s1) 372 { 373 g_string_append_len(s, s1, strlen(s1) + 1); 374 } 375 376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 377 hwaddr size) 378 { 379 uint32_t associativity[] = { 380 cpu_to_be32(0x4), /* length */ 381 cpu_to_be32(0x0), cpu_to_be32(0x0), 382 cpu_to_be32(0x0), cpu_to_be32(nodeid) 383 }; 384 char mem_name[32]; 385 uint64_t mem_reg_property[2]; 386 int off; 387 388 mem_reg_property[0] = cpu_to_be64(start); 389 mem_reg_property[1] = cpu_to_be64(size); 390 391 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 392 off = fdt_add_subnode(fdt, 0, mem_name); 393 _FDT(off); 394 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 395 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 396 sizeof(mem_reg_property)))); 397 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 398 sizeof(associativity)))); 399 return off; 400 } 401 402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 403 { 404 MachineState *machine = MACHINE(spapr); 405 hwaddr mem_start, node_size; 406 int i, nb_nodes = nb_numa_nodes; 407 NodeInfo *nodes = numa_info; 408 NodeInfo ramnode; 409 410 /* No NUMA nodes, assume there is just one node with whole RAM */ 411 if (!nb_numa_nodes) { 412 nb_nodes = 1; 413 ramnode.node_mem = machine->ram_size; 414 nodes = &ramnode; 415 } 416 417 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 418 if (!nodes[i].node_mem) { 419 continue; 420 } 421 if (mem_start >= machine->ram_size) { 422 node_size = 0; 423 } else { 424 node_size = nodes[i].node_mem; 425 if (node_size > machine->ram_size - mem_start) { 426 node_size = machine->ram_size - mem_start; 427 } 428 } 429 if (!mem_start) { 430 /* spapr_machine_init() checks for rma_size <= node0_size 431 * already */ 432 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 433 mem_start += spapr->rma_size; 434 node_size -= spapr->rma_size; 435 } 436 for ( ; node_size; ) { 437 hwaddr sizetmp = pow2floor(node_size); 438 439 /* mem_start != 0 here */ 440 if (ctzl(mem_start) < ctzl(sizetmp)) { 441 sizetmp = 1ULL << ctzl(mem_start); 442 } 443 444 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 445 node_size -= sizetmp; 446 mem_start += sizetmp; 447 } 448 } 449 450 return 0; 451 } 452 453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 454 SpaprMachineState *spapr) 455 { 456 MachineState *ms = MACHINE(spapr); 457 PowerPCCPU *cpu = POWERPC_CPU(cs); 458 CPUPPCState *env = &cpu->env; 459 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 460 int index = spapr_get_vcpu_id(cpu); 461 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 462 0xffffffff, 0xffffffff}; 463 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 464 : SPAPR_TIMEBASE_FREQ; 465 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 466 uint32_t page_sizes_prop[64]; 467 size_t page_sizes_prop_size; 468 unsigned int smp_threads = ms->smp.threads; 469 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 470 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 471 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 472 SpaprDrc *drc; 473 int drc_index; 474 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 475 int i; 476 477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 478 if (drc) { 479 drc_index = spapr_drc_index(drc); 480 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 481 } 482 483 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 484 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 485 486 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 488 env->dcache_line_size))); 489 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 490 env->dcache_line_size))); 491 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 492 env->icache_line_size))); 493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 494 env->icache_line_size))); 495 496 if (pcc->l1_dcache_size) { 497 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 498 pcc->l1_dcache_size))); 499 } else { 500 warn_report("Unknown L1 dcache size for cpu"); 501 } 502 if (pcc->l1_icache_size) { 503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 504 pcc->l1_icache_size))); 505 } else { 506 warn_report("Unknown L1 icache size for cpu"); 507 } 508 509 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 510 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 511 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 513 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 514 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 515 516 if (env->spr_cb[SPR_PURR].oea_read) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 518 } 519 if (env->spr_cb[SPR_SPURR].oea_read) { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 521 } 522 523 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 524 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 525 segs, sizeof(segs)))); 526 } 527 528 /* Advertise VSX (vector extensions) if available 529 * 1 == VMX / Altivec available 530 * 2 == VSX available 531 * 532 * Only CPUs for which we create core types in spapr_cpu_core.c 533 * are possible, and all of those have VMX */ 534 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 536 } else { 537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 538 } 539 540 /* Advertise DFP (Decimal Floating Point) if available 541 * 0 / no property == no DFP 542 * 1 == DFP available */ 543 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 545 } 546 547 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 548 sizeof(page_sizes_prop)); 549 if (page_sizes_prop_size) { 550 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 551 page_sizes_prop, page_sizes_prop_size))); 552 } 553 554 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 555 556 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 557 cs->cpu_index / vcpus_per_socket))); 558 559 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 560 pft_size_prop, sizeof(pft_size_prop)))); 561 562 if (nb_numa_nodes > 1) { 563 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 564 } 565 566 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 567 568 if (pcc->radix_page_info) { 569 for (i = 0; i < pcc->radix_page_info->count; i++) { 570 radix_AP_encodings[i] = 571 cpu_to_be32(pcc->radix_page_info->entries[i]); 572 } 573 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 574 radix_AP_encodings, 575 pcc->radix_page_info->count * 576 sizeof(radix_AP_encodings[0])))); 577 } 578 579 /* 580 * We set this property to let the guest know that it can use the large 581 * decrementer and its width in bits. 582 */ 583 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 584 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 585 pcc->lrg_decr_bits))); 586 } 587 588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 589 { 590 CPUState **rev; 591 CPUState *cs; 592 int n_cpus; 593 int cpus_offset; 594 char *nodename; 595 int i; 596 597 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 598 _FDT(cpus_offset); 599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 600 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 601 602 /* 603 * We walk the CPUs in reverse order to ensure that CPU DT nodes 604 * created by fdt_add_subnode() end up in the right order in FDT 605 * for the guest kernel the enumerate the CPUs correctly. 606 * 607 * The CPU list cannot be traversed in reverse order, so we need 608 * to do extra work. 609 */ 610 n_cpus = 0; 611 rev = NULL; 612 CPU_FOREACH(cs) { 613 rev = g_renew(CPUState *, rev, n_cpus + 1); 614 rev[n_cpus++] = cs; 615 } 616 617 for (i = n_cpus - 1; i >= 0; i--) { 618 CPUState *cs = rev[i]; 619 PowerPCCPU *cpu = POWERPC_CPU(cs); 620 int index = spapr_get_vcpu_id(cpu); 621 DeviceClass *dc = DEVICE_GET_CLASS(cs); 622 int offset; 623 624 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 625 continue; 626 } 627 628 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 629 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 630 g_free(nodename); 631 _FDT(offset); 632 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 633 } 634 635 g_free(rev); 636 } 637 638 static int spapr_rng_populate_dt(void *fdt) 639 { 640 int node; 641 int ret; 642 643 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 644 if (node <= 0) { 645 return -1; 646 } 647 ret = fdt_setprop_string(fdt, node, "device_type", 648 "ibm,platform-facilities"); 649 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 650 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 651 652 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 653 if (node <= 0) { 654 return -1; 655 } 656 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 657 658 return ret ? -1 : 0; 659 } 660 661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 662 { 663 MemoryDeviceInfoList *info; 664 665 for (info = list; info; info = info->next) { 666 MemoryDeviceInfo *value = info->value; 667 668 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 669 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 670 671 if (addr >= pcdimm_info->addr && 672 addr < (pcdimm_info->addr + pcdimm_info->size)) { 673 return pcdimm_info->node; 674 } 675 } 676 } 677 678 return -1; 679 } 680 681 struct sPAPRDrconfCellV2 { 682 uint32_t seq_lmbs; 683 uint64_t base_addr; 684 uint32_t drc_index; 685 uint32_t aa_index; 686 uint32_t flags; 687 } QEMU_PACKED; 688 689 typedef struct DrconfCellQueue { 690 struct sPAPRDrconfCellV2 cell; 691 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 692 } DrconfCellQueue; 693 694 static DrconfCellQueue * 695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 696 uint32_t drc_index, uint32_t aa_index, 697 uint32_t flags) 698 { 699 DrconfCellQueue *elem; 700 701 elem = g_malloc0(sizeof(*elem)); 702 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 703 elem->cell.base_addr = cpu_to_be64(base_addr); 704 elem->cell.drc_index = cpu_to_be32(drc_index); 705 elem->cell.aa_index = cpu_to_be32(aa_index); 706 elem->cell.flags = cpu_to_be32(flags); 707 708 return elem; 709 } 710 711 /* ibm,dynamic-memory-v2 */ 712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 713 int offset, MemoryDeviceInfoList *dimms) 714 { 715 MachineState *machine = MACHINE(spapr); 716 uint8_t *int_buf, *cur_index; 717 int ret; 718 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 719 uint64_t addr, cur_addr, size; 720 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 721 uint64_t mem_end = machine->device_memory->base + 722 memory_region_size(&machine->device_memory->mr); 723 uint32_t node, buf_len, nr_entries = 0; 724 SpaprDrc *drc; 725 DrconfCellQueue *elem, *next; 726 MemoryDeviceInfoList *info; 727 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 728 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 729 730 /* Entry to cover RAM and the gap area */ 731 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 732 SPAPR_LMB_FLAGS_RESERVED | 733 SPAPR_LMB_FLAGS_DRC_INVALID); 734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 735 nr_entries++; 736 737 cur_addr = machine->device_memory->base; 738 for (info = dimms; info; info = info->next) { 739 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 740 741 addr = di->addr; 742 size = di->size; 743 node = di->node; 744 745 /* Entry for hot-pluggable area */ 746 if (cur_addr < addr) { 747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 748 g_assert(drc); 749 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 750 cur_addr, spapr_drc_index(drc), -1, 0); 751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 752 nr_entries++; 753 } 754 755 /* Entry for DIMM */ 756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 757 g_assert(drc); 758 elem = spapr_get_drconf_cell(size / lmb_size, addr, 759 spapr_drc_index(drc), node, 760 SPAPR_LMB_FLAGS_ASSIGNED); 761 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 762 nr_entries++; 763 cur_addr = addr + size; 764 } 765 766 /* Entry for remaining hotpluggable area */ 767 if (cur_addr < mem_end) { 768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 769 g_assert(drc); 770 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 771 cur_addr, spapr_drc_index(drc), -1, 0); 772 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 773 nr_entries++; 774 } 775 776 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 777 int_buf = cur_index = g_malloc0(buf_len); 778 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 779 cur_index += sizeof(nr_entries); 780 781 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 782 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 783 cur_index += sizeof(elem->cell); 784 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 785 g_free(elem); 786 } 787 788 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 789 g_free(int_buf); 790 if (ret < 0) { 791 return -1; 792 } 793 return 0; 794 } 795 796 /* ibm,dynamic-memory */ 797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 798 int offset, MemoryDeviceInfoList *dimms) 799 { 800 MachineState *machine = MACHINE(spapr); 801 int i, ret; 802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 803 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 804 uint32_t nr_lmbs = (machine->device_memory->base + 805 memory_region_size(&machine->device_memory->mr)) / 806 lmb_size; 807 uint32_t *int_buf, *cur_index, buf_len; 808 809 /* 810 * Allocate enough buffer size to fit in ibm,dynamic-memory 811 */ 812 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 813 cur_index = int_buf = g_malloc0(buf_len); 814 int_buf[0] = cpu_to_be32(nr_lmbs); 815 cur_index++; 816 for (i = 0; i < nr_lmbs; i++) { 817 uint64_t addr = i * lmb_size; 818 uint32_t *dynamic_memory = cur_index; 819 820 if (i >= device_lmb_start) { 821 SpaprDrc *drc; 822 823 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 824 g_assert(drc); 825 826 dynamic_memory[0] = cpu_to_be32(addr >> 32); 827 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 828 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 829 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 830 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 831 if (memory_region_present(get_system_memory(), addr)) { 832 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 833 } else { 834 dynamic_memory[5] = cpu_to_be32(0); 835 } 836 } else { 837 /* 838 * LMB information for RMA, boot time RAM and gap b/n RAM and 839 * device memory region -- all these are marked as reserved 840 * and as having no valid DRC. 841 */ 842 dynamic_memory[0] = cpu_to_be32(addr >> 32); 843 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 844 dynamic_memory[2] = cpu_to_be32(0); 845 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 846 dynamic_memory[4] = cpu_to_be32(-1); 847 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 848 SPAPR_LMB_FLAGS_DRC_INVALID); 849 } 850 851 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 852 } 853 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 854 g_free(int_buf); 855 if (ret < 0) { 856 return -1; 857 } 858 return 0; 859 } 860 861 /* 862 * Adds ibm,dynamic-reconfiguration-memory node. 863 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 864 * of this device tree node. 865 */ 866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 867 { 868 MachineState *machine = MACHINE(spapr); 869 int ret, i, offset; 870 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 871 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 872 uint32_t *int_buf, *cur_index, buf_len; 873 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 874 MemoryDeviceInfoList *dimms = NULL; 875 876 /* 877 * Don't create the node if there is no device memory 878 */ 879 if (machine->ram_size == machine->maxram_size) { 880 return 0; 881 } 882 883 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 884 885 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 886 sizeof(prop_lmb_size)); 887 if (ret < 0) { 888 return ret; 889 } 890 891 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 892 if (ret < 0) { 893 return ret; 894 } 895 896 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 897 if (ret < 0) { 898 return ret; 899 } 900 901 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 902 dimms = qmp_memory_device_list(); 903 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 904 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 905 } else { 906 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 907 } 908 qapi_free_MemoryDeviceInfoList(dimms); 909 910 if (ret < 0) { 911 return ret; 912 } 913 914 /* ibm,associativity-lookup-arrays */ 915 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 916 cur_index = int_buf = g_malloc0(buf_len); 917 int_buf[0] = cpu_to_be32(nr_nodes); 918 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 919 cur_index += 2; 920 for (i = 0; i < nr_nodes; i++) { 921 uint32_t associativity[] = { 922 cpu_to_be32(0x0), 923 cpu_to_be32(0x0), 924 cpu_to_be32(0x0), 925 cpu_to_be32(i) 926 }; 927 memcpy(cur_index, associativity, sizeof(associativity)); 928 cur_index += 4; 929 } 930 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 931 (cur_index - int_buf) * sizeof(uint32_t)); 932 g_free(int_buf); 933 934 return ret; 935 } 936 937 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 938 SpaprOptionVector *ov5_updates) 939 { 940 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 941 int ret = 0, offset; 942 943 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 944 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 945 g_assert(smc->dr_lmb_enabled); 946 ret = spapr_populate_drconf_memory(spapr, fdt); 947 if (ret) { 948 goto out; 949 } 950 } 951 952 offset = fdt_path_offset(fdt, "/chosen"); 953 if (offset < 0) { 954 offset = fdt_add_subnode(fdt, 0, "chosen"); 955 if (offset < 0) { 956 return offset; 957 } 958 } 959 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 960 "ibm,architecture-vec-5"); 961 962 out: 963 return ret; 964 } 965 966 static bool spapr_hotplugged_dev_before_cas(void) 967 { 968 Object *drc_container, *obj; 969 ObjectProperty *prop; 970 ObjectPropertyIterator iter; 971 972 drc_container = container_get(object_get_root(), "/dr-connector"); 973 object_property_iter_init(&iter, drc_container); 974 while ((prop = object_property_iter_next(&iter))) { 975 if (!strstart(prop->type, "link<", NULL)) { 976 continue; 977 } 978 obj = object_property_get_link(drc_container, prop->name, NULL); 979 if (spapr_drc_needed(obj)) { 980 return true; 981 } 982 } 983 return false; 984 } 985 986 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 987 target_ulong addr, target_ulong size, 988 SpaprOptionVector *ov5_updates) 989 { 990 void *fdt, *fdt_skel; 991 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 992 993 if (spapr_hotplugged_dev_before_cas()) { 994 return 1; 995 } 996 997 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 998 error_report("SLOF provided an unexpected CAS buffer size " 999 TARGET_FMT_lu " (min: %zu, max: %u)", 1000 size, sizeof(hdr), FW_MAX_SIZE); 1001 exit(EXIT_FAILURE); 1002 } 1003 1004 size -= sizeof(hdr); 1005 1006 /* Create skeleton */ 1007 fdt_skel = g_malloc0(size); 1008 _FDT((fdt_create(fdt_skel, size))); 1009 _FDT((fdt_finish_reservemap(fdt_skel))); 1010 _FDT((fdt_begin_node(fdt_skel, ""))); 1011 _FDT((fdt_end_node(fdt_skel))); 1012 _FDT((fdt_finish(fdt_skel))); 1013 fdt = g_malloc0(size); 1014 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1015 g_free(fdt_skel); 1016 1017 /* Fixup cpu nodes */ 1018 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1019 1020 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1021 return -1; 1022 } 1023 1024 /* Pack resulting tree */ 1025 _FDT((fdt_pack(fdt))); 1026 1027 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1028 trace_spapr_cas_failed(size); 1029 return -1; 1030 } 1031 1032 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1033 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1034 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1035 g_free(fdt); 1036 1037 return 0; 1038 } 1039 1040 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1041 { 1042 MachineState *ms = MACHINE(spapr); 1043 int rtas; 1044 GString *hypertas = g_string_sized_new(256); 1045 GString *qemu_hypertas = g_string_sized_new(256); 1046 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1047 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1048 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1049 uint32_t lrdr_capacity[] = { 1050 cpu_to_be32(max_device_addr >> 32), 1051 cpu_to_be32(max_device_addr & 0xffffffff), 1052 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1053 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 1054 }; 1055 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1056 uint32_t maxdomains[] = { 1057 cpu_to_be32(4), 1058 maxdomain, 1059 maxdomain, 1060 maxdomain, 1061 cpu_to_be32(spapr->gpu_numa_id), 1062 }; 1063 1064 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1065 1066 /* hypertas */ 1067 add_str(hypertas, "hcall-pft"); 1068 add_str(hypertas, "hcall-term"); 1069 add_str(hypertas, "hcall-dabr"); 1070 add_str(hypertas, "hcall-interrupt"); 1071 add_str(hypertas, "hcall-tce"); 1072 add_str(hypertas, "hcall-vio"); 1073 add_str(hypertas, "hcall-splpar"); 1074 add_str(hypertas, "hcall-join"); 1075 add_str(hypertas, "hcall-bulk"); 1076 add_str(hypertas, "hcall-set-mode"); 1077 add_str(hypertas, "hcall-sprg0"); 1078 add_str(hypertas, "hcall-copy"); 1079 add_str(hypertas, "hcall-debug"); 1080 add_str(hypertas, "hcall-vphn"); 1081 add_str(qemu_hypertas, "hcall-memop1"); 1082 1083 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1084 add_str(hypertas, "hcall-multi-tce"); 1085 } 1086 1087 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1088 add_str(hypertas, "hcall-hpt-resize"); 1089 } 1090 1091 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1092 hypertas->str, hypertas->len)); 1093 g_string_free(hypertas, TRUE); 1094 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1095 qemu_hypertas->str, qemu_hypertas->len)); 1096 g_string_free(qemu_hypertas, TRUE); 1097 1098 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1099 refpoints, sizeof(refpoints))); 1100 1101 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1102 maxdomains, sizeof(maxdomains))); 1103 1104 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1105 RTAS_ERROR_LOG_MAX)); 1106 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1107 RTAS_EVENT_SCAN_RATE)); 1108 1109 g_assert(msi_nonbroken); 1110 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1111 1112 /* 1113 * According to PAPR, rtas ibm,os-term does not guarantee a return 1114 * back to the guest cpu. 1115 * 1116 * While an additional ibm,extended-os-term property indicates 1117 * that rtas call return will always occur. Set this property. 1118 */ 1119 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1120 1121 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1122 lrdr_capacity, sizeof(lrdr_capacity))); 1123 1124 spapr_dt_rtas_tokens(fdt, rtas); 1125 } 1126 1127 /* 1128 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1129 * and the XIVE features that the guest may request and thus the valid 1130 * values for bytes 23..26 of option vector 5: 1131 */ 1132 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1133 int chosen) 1134 { 1135 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1136 1137 char val[2 * 4] = { 1138 23, spapr->irq->ov5, /* Xive mode. */ 1139 24, 0x00, /* Hash/Radix, filled in below. */ 1140 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1141 26, 0x40, /* Radix options: GTSE == yes. */ 1142 }; 1143 1144 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1145 first_ppc_cpu->compat_pvr)) { 1146 /* 1147 * If we're in a pre POWER9 compat mode then the guest should 1148 * do hash and use the legacy interrupt mode 1149 */ 1150 val[1] = 0x00; /* XICS */ 1151 val[3] = 0x00; /* Hash */ 1152 } else if (kvm_enabled()) { 1153 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1154 val[3] = 0x80; /* OV5_MMU_BOTH */ 1155 } else if (kvmppc_has_cap_mmu_radix()) { 1156 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1157 } else { 1158 val[3] = 0x00; /* Hash */ 1159 } 1160 } else { 1161 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1162 val[3] = 0xC0; 1163 } 1164 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1165 val, sizeof(val))); 1166 } 1167 1168 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1169 { 1170 MachineState *machine = MACHINE(spapr); 1171 int chosen; 1172 const char *boot_device = machine->boot_order; 1173 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1174 size_t cb = 0; 1175 char *bootlist = get_boot_devices_list(&cb); 1176 1177 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1178 1179 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1180 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1181 spapr->initrd_base)); 1182 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1183 spapr->initrd_base + spapr->initrd_size)); 1184 1185 if (spapr->kernel_size) { 1186 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1187 cpu_to_be64(spapr->kernel_size) }; 1188 1189 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1190 &kprop, sizeof(kprop))); 1191 if (spapr->kernel_le) { 1192 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1193 } 1194 } 1195 if (boot_menu) { 1196 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1197 } 1198 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1199 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1200 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1201 1202 if (cb && bootlist) { 1203 int i; 1204 1205 for (i = 0; i < cb; i++) { 1206 if (bootlist[i] == '\n') { 1207 bootlist[i] = ' '; 1208 } 1209 } 1210 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1211 } 1212 1213 if (boot_device && strlen(boot_device)) { 1214 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1215 } 1216 1217 if (!spapr->has_graphics && stdout_path) { 1218 /* 1219 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1220 * kernel. New platforms should only use the "stdout-path" property. Set 1221 * the new property and continue using older property to remain 1222 * compatible with the existing firmware. 1223 */ 1224 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1225 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1226 } 1227 1228 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1229 1230 g_free(stdout_path); 1231 g_free(bootlist); 1232 } 1233 1234 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1235 { 1236 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1237 * KVM to work under pHyp with some guest co-operation */ 1238 int hypervisor; 1239 uint8_t hypercall[16]; 1240 1241 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1242 /* indicate KVM hypercall interface */ 1243 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1244 if (kvmppc_has_cap_fixup_hcalls()) { 1245 /* 1246 * Older KVM versions with older guest kernels were broken 1247 * with the magic page, don't allow the guest to map it. 1248 */ 1249 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1250 sizeof(hypercall))) { 1251 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1252 hypercall, sizeof(hypercall))); 1253 } 1254 } 1255 } 1256 1257 static void *spapr_build_fdt(SpaprMachineState *spapr) 1258 { 1259 MachineState *machine = MACHINE(spapr); 1260 MachineClass *mc = MACHINE_GET_CLASS(machine); 1261 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1262 int ret; 1263 void *fdt; 1264 SpaprPhbState *phb; 1265 char *buf; 1266 1267 fdt = g_malloc0(FDT_MAX_SIZE); 1268 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1269 1270 /* Root node */ 1271 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1272 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1273 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1274 1275 /* Guest UUID & Name*/ 1276 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1277 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1278 if (qemu_uuid_set) { 1279 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1280 } 1281 g_free(buf); 1282 1283 if (qemu_get_vm_name()) { 1284 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1285 qemu_get_vm_name())); 1286 } 1287 1288 /* Host Model & Serial Number */ 1289 if (spapr->host_model) { 1290 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1291 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1292 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1293 g_free(buf); 1294 } 1295 1296 if (spapr->host_serial) { 1297 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1298 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1299 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1300 g_free(buf); 1301 } 1302 1303 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1304 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1305 1306 /* /interrupt controller */ 1307 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1308 PHANDLE_INTC); 1309 1310 ret = spapr_populate_memory(spapr, fdt); 1311 if (ret < 0) { 1312 error_report("couldn't setup memory nodes in fdt"); 1313 exit(1); 1314 } 1315 1316 /* /vdevice */ 1317 spapr_dt_vdevice(spapr->vio_bus, fdt); 1318 1319 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1320 ret = spapr_rng_populate_dt(fdt); 1321 if (ret < 0) { 1322 error_report("could not set up rng device in the fdt"); 1323 exit(1); 1324 } 1325 } 1326 1327 QLIST_FOREACH(phb, &spapr->phbs, list) { 1328 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1329 if (ret < 0) { 1330 error_report("couldn't setup PCI devices in fdt"); 1331 exit(1); 1332 } 1333 } 1334 1335 /* cpus */ 1336 spapr_populate_cpus_dt_node(fdt, spapr); 1337 1338 if (smc->dr_lmb_enabled) { 1339 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1340 } 1341 1342 if (mc->has_hotpluggable_cpus) { 1343 int offset = fdt_path_offset(fdt, "/cpus"); 1344 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1345 if (ret < 0) { 1346 error_report("Couldn't set up CPU DR device tree properties"); 1347 exit(1); 1348 } 1349 } 1350 1351 /* /event-sources */ 1352 spapr_dt_events(spapr, fdt); 1353 1354 /* /rtas */ 1355 spapr_dt_rtas(spapr, fdt); 1356 1357 /* /chosen */ 1358 spapr_dt_chosen(spapr, fdt); 1359 1360 /* /hypervisor */ 1361 if (kvm_enabled()) { 1362 spapr_dt_hypervisor(spapr, fdt); 1363 } 1364 1365 /* Build memory reserve map */ 1366 if (spapr->kernel_size) { 1367 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1368 } 1369 if (spapr->initrd_size) { 1370 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1371 } 1372 1373 /* ibm,client-architecture-support updates */ 1374 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1375 if (ret < 0) { 1376 error_report("couldn't setup CAS properties fdt"); 1377 exit(1); 1378 } 1379 1380 if (smc->dr_phb_enabled) { 1381 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1382 if (ret < 0) { 1383 error_report("Couldn't set up PHB DR device tree properties"); 1384 exit(1); 1385 } 1386 } 1387 1388 return fdt; 1389 } 1390 1391 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1392 { 1393 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1394 } 1395 1396 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1397 PowerPCCPU *cpu) 1398 { 1399 CPUPPCState *env = &cpu->env; 1400 1401 /* The TCG path should also be holding the BQL at this point */ 1402 g_assert(qemu_mutex_iothread_locked()); 1403 1404 if (msr_pr) { 1405 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1406 env->gpr[3] = H_PRIVILEGE; 1407 } else { 1408 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1409 } 1410 } 1411 1412 struct LPCRSyncState { 1413 target_ulong value; 1414 target_ulong mask; 1415 }; 1416 1417 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1418 { 1419 struct LPCRSyncState *s = arg.host_ptr; 1420 PowerPCCPU *cpu = POWERPC_CPU(cs); 1421 CPUPPCState *env = &cpu->env; 1422 target_ulong lpcr; 1423 1424 cpu_synchronize_state(cs); 1425 lpcr = env->spr[SPR_LPCR]; 1426 lpcr &= ~s->mask; 1427 lpcr |= s->value; 1428 ppc_store_lpcr(cpu, lpcr); 1429 } 1430 1431 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1432 { 1433 CPUState *cs; 1434 struct LPCRSyncState s = { 1435 .value = value, 1436 .mask = mask 1437 }; 1438 CPU_FOREACH(cs) { 1439 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1440 } 1441 } 1442 1443 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1444 { 1445 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1446 1447 /* Copy PATE1:GR into PATE0:HR */ 1448 entry->dw0 = spapr->patb_entry & PATE0_HR; 1449 entry->dw1 = spapr->patb_entry; 1450 } 1451 1452 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1453 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1454 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1455 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1456 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1457 1458 /* 1459 * Get the fd to access the kernel htab, re-opening it if necessary 1460 */ 1461 static int get_htab_fd(SpaprMachineState *spapr) 1462 { 1463 Error *local_err = NULL; 1464 1465 if (spapr->htab_fd >= 0) { 1466 return spapr->htab_fd; 1467 } 1468 1469 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1470 if (spapr->htab_fd < 0) { 1471 error_report_err(local_err); 1472 } 1473 1474 return spapr->htab_fd; 1475 } 1476 1477 void close_htab_fd(SpaprMachineState *spapr) 1478 { 1479 if (spapr->htab_fd >= 0) { 1480 close(spapr->htab_fd); 1481 } 1482 spapr->htab_fd = -1; 1483 } 1484 1485 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1486 { 1487 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1488 1489 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1490 } 1491 1492 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1493 { 1494 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1495 1496 assert(kvm_enabled()); 1497 1498 if (!spapr->htab) { 1499 return 0; 1500 } 1501 1502 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1503 } 1504 1505 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1506 hwaddr ptex, int n) 1507 { 1508 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1509 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1510 1511 if (!spapr->htab) { 1512 /* 1513 * HTAB is controlled by KVM. Fetch into temporary buffer 1514 */ 1515 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1516 kvmppc_read_hptes(hptes, ptex, n); 1517 return hptes; 1518 } 1519 1520 /* 1521 * HTAB is controlled by QEMU. Just point to the internally 1522 * accessible PTEG. 1523 */ 1524 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1525 } 1526 1527 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1528 const ppc_hash_pte64_t *hptes, 1529 hwaddr ptex, int n) 1530 { 1531 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1532 1533 if (!spapr->htab) { 1534 g_free((void *)hptes); 1535 } 1536 1537 /* Nothing to do for qemu managed HPT */ 1538 } 1539 1540 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1541 uint64_t pte0, uint64_t pte1) 1542 { 1543 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1544 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1545 1546 if (!spapr->htab) { 1547 kvmppc_write_hpte(ptex, pte0, pte1); 1548 } else { 1549 if (pte0 & HPTE64_V_VALID) { 1550 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1551 /* 1552 * When setting valid, we write PTE1 first. This ensures 1553 * proper synchronization with the reading code in 1554 * ppc_hash64_pteg_search() 1555 */ 1556 smp_wmb(); 1557 stq_p(spapr->htab + offset, pte0); 1558 } else { 1559 stq_p(spapr->htab + offset, pte0); 1560 /* 1561 * When clearing it we set PTE0 first. This ensures proper 1562 * synchronization with the reading code in 1563 * ppc_hash64_pteg_search() 1564 */ 1565 smp_wmb(); 1566 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1567 } 1568 } 1569 } 1570 1571 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1572 uint64_t pte1) 1573 { 1574 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1575 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1576 1577 if (!spapr->htab) { 1578 /* There should always be a hash table when this is called */ 1579 error_report("spapr_hpte_set_c called with no hash table !"); 1580 return; 1581 } 1582 1583 /* The HW performs a non-atomic byte update */ 1584 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1585 } 1586 1587 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1588 uint64_t pte1) 1589 { 1590 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1591 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1592 1593 if (!spapr->htab) { 1594 /* There should always be a hash table when this is called */ 1595 error_report("spapr_hpte_set_r called with no hash table !"); 1596 return; 1597 } 1598 1599 /* The HW performs a non-atomic byte update */ 1600 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1601 } 1602 1603 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1604 { 1605 int shift; 1606 1607 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1608 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1609 * that's much more than is needed for Linux guests */ 1610 shift = ctz64(pow2ceil(ramsize)) - 7; 1611 shift = MAX(shift, 18); /* Minimum architected size */ 1612 shift = MIN(shift, 46); /* Maximum architected size */ 1613 return shift; 1614 } 1615 1616 void spapr_free_hpt(SpaprMachineState *spapr) 1617 { 1618 g_free(spapr->htab); 1619 spapr->htab = NULL; 1620 spapr->htab_shift = 0; 1621 close_htab_fd(spapr); 1622 } 1623 1624 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1625 Error **errp) 1626 { 1627 long rc; 1628 1629 /* Clean up any HPT info from a previous boot */ 1630 spapr_free_hpt(spapr); 1631 1632 rc = kvmppc_reset_htab(shift); 1633 if (rc < 0) { 1634 /* kernel-side HPT needed, but couldn't allocate one */ 1635 error_setg_errno(errp, errno, 1636 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1637 shift); 1638 /* This is almost certainly fatal, but if the caller really 1639 * wants to carry on with shift == 0, it's welcome to try */ 1640 } else if (rc > 0) { 1641 /* kernel-side HPT allocated */ 1642 if (rc != shift) { 1643 error_setg(errp, 1644 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1645 shift, rc); 1646 } 1647 1648 spapr->htab_shift = shift; 1649 spapr->htab = NULL; 1650 } else { 1651 /* kernel-side HPT not needed, allocate in userspace instead */ 1652 size_t size = 1ULL << shift; 1653 int i; 1654 1655 spapr->htab = qemu_memalign(size, size); 1656 if (!spapr->htab) { 1657 error_setg_errno(errp, errno, 1658 "Could not allocate HPT of order %d", shift); 1659 return; 1660 } 1661 1662 memset(spapr->htab, 0, size); 1663 spapr->htab_shift = shift; 1664 1665 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1666 DIRTY_HPTE(HPTE(spapr->htab, i)); 1667 } 1668 } 1669 /* We're setting up a hash table, so that means we're not radix */ 1670 spapr->patb_entry = 0; 1671 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1672 } 1673 1674 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1675 { 1676 int hpt_shift; 1677 1678 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1679 || (spapr->cas_reboot 1680 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1681 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1682 } else { 1683 uint64_t current_ram_size; 1684 1685 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1686 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1687 } 1688 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1689 1690 if (spapr->vrma_adjust) { 1691 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1692 spapr->htab_shift); 1693 } 1694 } 1695 1696 static int spapr_reset_drcs(Object *child, void *opaque) 1697 { 1698 SpaprDrc *drc = 1699 (SpaprDrc *) object_dynamic_cast(child, 1700 TYPE_SPAPR_DR_CONNECTOR); 1701 1702 if (drc) { 1703 spapr_drc_reset(drc); 1704 } 1705 1706 return 0; 1707 } 1708 1709 static void spapr_machine_reset(MachineState *machine) 1710 { 1711 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1712 PowerPCCPU *first_ppc_cpu; 1713 uint32_t rtas_limit; 1714 hwaddr rtas_addr, fdt_addr; 1715 void *fdt; 1716 int rc; 1717 1718 spapr_caps_apply(spapr); 1719 1720 first_ppc_cpu = POWERPC_CPU(first_cpu); 1721 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1722 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1723 spapr->max_compat_pvr)) { 1724 /* 1725 * If using KVM with radix mode available, VCPUs can be started 1726 * without a HPT because KVM will start them in radix mode. 1727 * Set the GR bit in PATE so that we know there is no HPT. 1728 */ 1729 spapr->patb_entry = PATE1_GR; 1730 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1731 } else { 1732 spapr_setup_hpt_and_vrma(spapr); 1733 } 1734 1735 /* 1736 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1737 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1738 * called from vPHB reset handler so we initialize the counter here. 1739 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1740 * must be equally distant from any other node. 1741 * The final value of spapr->gpu_numa_id is going to be written to 1742 * max-associativity-domains in spapr_build_fdt(). 1743 */ 1744 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1745 qemu_devices_reset(); 1746 1747 /* 1748 * If this reset wasn't generated by CAS, we should reset our 1749 * negotiated options and start from scratch 1750 */ 1751 if (!spapr->cas_reboot) { 1752 spapr_ovec_cleanup(spapr->ov5_cas); 1753 spapr->ov5_cas = spapr_ovec_new(); 1754 1755 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1756 } 1757 1758 /* 1759 * This is fixing some of the default configuration of the XIVE 1760 * devices. To be called after the reset of the machine devices. 1761 */ 1762 spapr_irq_reset(spapr, &error_fatal); 1763 1764 /* 1765 * There is no CAS under qtest. Simulate one to please the code that 1766 * depends on spapr->ov5_cas. This is especially needed to test device 1767 * unplug, so we do that before resetting the DRCs. 1768 */ 1769 if (qtest_enabled()) { 1770 spapr_ovec_cleanup(spapr->ov5_cas); 1771 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1772 } 1773 1774 /* DRC reset may cause a device to be unplugged. This will cause troubles 1775 * if this device is used by another device (eg, a running vhost backend 1776 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1777 * situations, we reset DRCs after all devices have been reset. 1778 */ 1779 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1780 1781 spapr_clear_pending_events(spapr); 1782 1783 /* 1784 * We place the device tree and RTAS just below either the top of the RMA, 1785 * or just below 2GB, whichever is lower, so that it can be 1786 * processed with 32-bit real mode code if necessary 1787 */ 1788 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1789 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1790 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1791 1792 fdt = spapr_build_fdt(spapr); 1793 1794 spapr_load_rtas(spapr, fdt, rtas_addr); 1795 1796 rc = fdt_pack(fdt); 1797 1798 /* Should only fail if we've built a corrupted tree */ 1799 assert(rc == 0); 1800 1801 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1802 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1803 fdt_totalsize(fdt), FDT_MAX_SIZE); 1804 exit(1); 1805 } 1806 1807 /* Load the fdt */ 1808 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1809 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1810 g_free(spapr->fdt_blob); 1811 spapr->fdt_size = fdt_totalsize(fdt); 1812 spapr->fdt_initial_size = spapr->fdt_size; 1813 spapr->fdt_blob = fdt; 1814 1815 /* Set up the entry state */ 1816 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1817 first_ppc_cpu->env.gpr[5] = 0; 1818 1819 spapr->cas_reboot = false; 1820 } 1821 1822 static void spapr_create_nvram(SpaprMachineState *spapr) 1823 { 1824 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1825 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1826 1827 if (dinfo) { 1828 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1829 &error_fatal); 1830 } 1831 1832 qdev_init_nofail(dev); 1833 1834 spapr->nvram = (struct SpaprNvram *)dev; 1835 } 1836 1837 static void spapr_rtc_create(SpaprMachineState *spapr) 1838 { 1839 object_initialize_child(OBJECT(spapr), "rtc", 1840 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1841 &error_fatal, NULL); 1842 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1843 &error_fatal); 1844 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1845 "date", &error_fatal); 1846 } 1847 1848 /* Returns whether we want to use VGA or not */ 1849 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1850 { 1851 switch (vga_interface_type) { 1852 case VGA_NONE: 1853 return false; 1854 case VGA_DEVICE: 1855 return true; 1856 case VGA_STD: 1857 case VGA_VIRTIO: 1858 case VGA_CIRRUS: 1859 return pci_vga_init(pci_bus) != NULL; 1860 default: 1861 error_setg(errp, 1862 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1863 return false; 1864 } 1865 } 1866 1867 static int spapr_pre_load(void *opaque) 1868 { 1869 int rc; 1870 1871 rc = spapr_caps_pre_load(opaque); 1872 if (rc) { 1873 return rc; 1874 } 1875 1876 return 0; 1877 } 1878 1879 static int spapr_post_load(void *opaque, int version_id) 1880 { 1881 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1882 int err = 0; 1883 1884 err = spapr_caps_post_migration(spapr); 1885 if (err) { 1886 return err; 1887 } 1888 1889 /* 1890 * In earlier versions, there was no separate qdev for the PAPR 1891 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1892 * So when migrating from those versions, poke the incoming offset 1893 * value into the RTC device 1894 */ 1895 if (version_id < 3) { 1896 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1897 if (err) { 1898 return err; 1899 } 1900 } 1901 1902 if (kvm_enabled() && spapr->patb_entry) { 1903 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1904 bool radix = !!(spapr->patb_entry & PATE1_GR); 1905 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1906 1907 /* 1908 * Update LPCR:HR and UPRT as they may not be set properly in 1909 * the stream 1910 */ 1911 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1912 LPCR_HR | LPCR_UPRT); 1913 1914 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1915 if (err) { 1916 error_report("Process table config unsupported by the host"); 1917 return -EINVAL; 1918 } 1919 } 1920 1921 err = spapr_irq_post_load(spapr, version_id); 1922 if (err) { 1923 return err; 1924 } 1925 1926 return err; 1927 } 1928 1929 static int spapr_pre_save(void *opaque) 1930 { 1931 int rc; 1932 1933 rc = spapr_caps_pre_save(opaque); 1934 if (rc) { 1935 return rc; 1936 } 1937 1938 return 0; 1939 } 1940 1941 static bool version_before_3(void *opaque, int version_id) 1942 { 1943 return version_id < 3; 1944 } 1945 1946 static bool spapr_pending_events_needed(void *opaque) 1947 { 1948 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1949 return !QTAILQ_EMPTY(&spapr->pending_events); 1950 } 1951 1952 static const VMStateDescription vmstate_spapr_event_entry = { 1953 .name = "spapr_event_log_entry", 1954 .version_id = 1, 1955 .minimum_version_id = 1, 1956 .fields = (VMStateField[]) { 1957 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1958 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1959 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1960 NULL, extended_length), 1961 VMSTATE_END_OF_LIST() 1962 }, 1963 }; 1964 1965 static const VMStateDescription vmstate_spapr_pending_events = { 1966 .name = "spapr_pending_events", 1967 .version_id = 1, 1968 .minimum_version_id = 1, 1969 .needed = spapr_pending_events_needed, 1970 .fields = (VMStateField[]) { 1971 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1972 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1973 VMSTATE_END_OF_LIST() 1974 }, 1975 }; 1976 1977 static bool spapr_ov5_cas_needed(void *opaque) 1978 { 1979 SpaprMachineState *spapr = opaque; 1980 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1981 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1982 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1983 bool cas_needed; 1984 1985 /* Prior to the introduction of SpaprOptionVector, we had two option 1986 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1987 * Both of these options encode machine topology into the device-tree 1988 * in such a way that the now-booted OS should still be able to interact 1989 * appropriately with QEMU regardless of what options were actually 1990 * negotiatied on the source side. 1991 * 1992 * As such, we can avoid migrating the CAS-negotiated options if these 1993 * are the only options available on the current machine/platform. 1994 * Since these are the only options available for pseries-2.7 and 1995 * earlier, this allows us to maintain old->new/new->old migration 1996 * compatibility. 1997 * 1998 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1999 * via default pseries-2.8 machines and explicit command-line parameters. 2000 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 2001 * of the actual CAS-negotiated values to continue working properly. For 2002 * example, availability of memory unplug depends on knowing whether 2003 * OV5_HP_EVT was negotiated via CAS. 2004 * 2005 * Thus, for any cases where the set of available CAS-negotiatable 2006 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2007 * include the CAS-negotiated options in the migration stream, unless 2008 * if they affect boot time behaviour only. 2009 */ 2010 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2011 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2012 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2013 2014 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2015 * the mask itself since in the future it's possible "legacy" bits may be 2016 * removed via machine options, which could generate a false positive 2017 * that breaks migration. 2018 */ 2019 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2020 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2021 2022 spapr_ovec_cleanup(ov5_mask); 2023 spapr_ovec_cleanup(ov5_legacy); 2024 spapr_ovec_cleanup(ov5_removed); 2025 2026 return cas_needed; 2027 } 2028 2029 static const VMStateDescription vmstate_spapr_ov5_cas = { 2030 .name = "spapr_option_vector_ov5_cas", 2031 .version_id = 1, 2032 .minimum_version_id = 1, 2033 .needed = spapr_ov5_cas_needed, 2034 .fields = (VMStateField[]) { 2035 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2036 vmstate_spapr_ovec, SpaprOptionVector), 2037 VMSTATE_END_OF_LIST() 2038 }, 2039 }; 2040 2041 static bool spapr_patb_entry_needed(void *opaque) 2042 { 2043 SpaprMachineState *spapr = opaque; 2044 2045 return !!spapr->patb_entry; 2046 } 2047 2048 static const VMStateDescription vmstate_spapr_patb_entry = { 2049 .name = "spapr_patb_entry", 2050 .version_id = 1, 2051 .minimum_version_id = 1, 2052 .needed = spapr_patb_entry_needed, 2053 .fields = (VMStateField[]) { 2054 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2055 VMSTATE_END_OF_LIST() 2056 }, 2057 }; 2058 2059 static bool spapr_irq_map_needed(void *opaque) 2060 { 2061 SpaprMachineState *spapr = opaque; 2062 2063 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2064 } 2065 2066 static const VMStateDescription vmstate_spapr_irq_map = { 2067 .name = "spapr_irq_map", 2068 .version_id = 1, 2069 .minimum_version_id = 1, 2070 .needed = spapr_irq_map_needed, 2071 .fields = (VMStateField[]) { 2072 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2073 VMSTATE_END_OF_LIST() 2074 }, 2075 }; 2076 2077 static bool spapr_dtb_needed(void *opaque) 2078 { 2079 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2080 2081 return smc->update_dt_enabled; 2082 } 2083 2084 static int spapr_dtb_pre_load(void *opaque) 2085 { 2086 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2087 2088 g_free(spapr->fdt_blob); 2089 spapr->fdt_blob = NULL; 2090 spapr->fdt_size = 0; 2091 2092 return 0; 2093 } 2094 2095 static const VMStateDescription vmstate_spapr_dtb = { 2096 .name = "spapr_dtb", 2097 .version_id = 1, 2098 .minimum_version_id = 1, 2099 .needed = spapr_dtb_needed, 2100 .pre_load = spapr_dtb_pre_load, 2101 .fields = (VMStateField[]) { 2102 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2103 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2104 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2105 fdt_size), 2106 VMSTATE_END_OF_LIST() 2107 }, 2108 }; 2109 2110 static const VMStateDescription vmstate_spapr = { 2111 .name = "spapr", 2112 .version_id = 3, 2113 .minimum_version_id = 1, 2114 .pre_load = spapr_pre_load, 2115 .post_load = spapr_post_load, 2116 .pre_save = spapr_pre_save, 2117 .fields = (VMStateField[]) { 2118 /* used to be @next_irq */ 2119 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2120 2121 /* RTC offset */ 2122 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2123 2124 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2125 VMSTATE_END_OF_LIST() 2126 }, 2127 .subsections = (const VMStateDescription*[]) { 2128 &vmstate_spapr_ov5_cas, 2129 &vmstate_spapr_patb_entry, 2130 &vmstate_spapr_pending_events, 2131 &vmstate_spapr_cap_htm, 2132 &vmstate_spapr_cap_vsx, 2133 &vmstate_spapr_cap_dfp, 2134 &vmstate_spapr_cap_cfpc, 2135 &vmstate_spapr_cap_sbbc, 2136 &vmstate_spapr_cap_ibs, 2137 &vmstate_spapr_cap_hpt_maxpagesize, 2138 &vmstate_spapr_irq_map, 2139 &vmstate_spapr_cap_nested_kvm_hv, 2140 &vmstate_spapr_dtb, 2141 &vmstate_spapr_cap_large_decr, 2142 &vmstate_spapr_cap_ccf_assist, 2143 NULL 2144 } 2145 }; 2146 2147 static int htab_save_setup(QEMUFile *f, void *opaque) 2148 { 2149 SpaprMachineState *spapr = opaque; 2150 2151 /* "Iteration" header */ 2152 if (!spapr->htab_shift) { 2153 qemu_put_be32(f, -1); 2154 } else { 2155 qemu_put_be32(f, spapr->htab_shift); 2156 } 2157 2158 if (spapr->htab) { 2159 spapr->htab_save_index = 0; 2160 spapr->htab_first_pass = true; 2161 } else { 2162 if (spapr->htab_shift) { 2163 assert(kvm_enabled()); 2164 } 2165 } 2166 2167 2168 return 0; 2169 } 2170 2171 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2172 int chunkstart, int n_valid, int n_invalid) 2173 { 2174 qemu_put_be32(f, chunkstart); 2175 qemu_put_be16(f, n_valid); 2176 qemu_put_be16(f, n_invalid); 2177 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2178 HASH_PTE_SIZE_64 * n_valid); 2179 } 2180 2181 static void htab_save_end_marker(QEMUFile *f) 2182 { 2183 qemu_put_be32(f, 0); 2184 qemu_put_be16(f, 0); 2185 qemu_put_be16(f, 0); 2186 } 2187 2188 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2189 int64_t max_ns) 2190 { 2191 bool has_timeout = max_ns != -1; 2192 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2193 int index = spapr->htab_save_index; 2194 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2195 2196 assert(spapr->htab_first_pass); 2197 2198 do { 2199 int chunkstart; 2200 2201 /* Consume invalid HPTEs */ 2202 while ((index < htabslots) 2203 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2204 CLEAN_HPTE(HPTE(spapr->htab, index)); 2205 index++; 2206 } 2207 2208 /* Consume valid HPTEs */ 2209 chunkstart = index; 2210 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2211 && HPTE_VALID(HPTE(spapr->htab, index))) { 2212 CLEAN_HPTE(HPTE(spapr->htab, index)); 2213 index++; 2214 } 2215 2216 if (index > chunkstart) { 2217 int n_valid = index - chunkstart; 2218 2219 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2220 2221 if (has_timeout && 2222 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2223 break; 2224 } 2225 } 2226 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2227 2228 if (index >= htabslots) { 2229 assert(index == htabslots); 2230 index = 0; 2231 spapr->htab_first_pass = false; 2232 } 2233 spapr->htab_save_index = index; 2234 } 2235 2236 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2237 int64_t max_ns) 2238 { 2239 bool final = max_ns < 0; 2240 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2241 int examined = 0, sent = 0; 2242 int index = spapr->htab_save_index; 2243 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2244 2245 assert(!spapr->htab_first_pass); 2246 2247 do { 2248 int chunkstart, invalidstart; 2249 2250 /* Consume non-dirty HPTEs */ 2251 while ((index < htabslots) 2252 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2253 index++; 2254 examined++; 2255 } 2256 2257 chunkstart = index; 2258 /* Consume valid dirty HPTEs */ 2259 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2260 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2261 && HPTE_VALID(HPTE(spapr->htab, index))) { 2262 CLEAN_HPTE(HPTE(spapr->htab, index)); 2263 index++; 2264 examined++; 2265 } 2266 2267 invalidstart = index; 2268 /* Consume invalid dirty HPTEs */ 2269 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2270 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2271 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2272 CLEAN_HPTE(HPTE(spapr->htab, index)); 2273 index++; 2274 examined++; 2275 } 2276 2277 if (index > chunkstart) { 2278 int n_valid = invalidstart - chunkstart; 2279 int n_invalid = index - invalidstart; 2280 2281 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2282 sent += index - chunkstart; 2283 2284 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2285 break; 2286 } 2287 } 2288 2289 if (examined >= htabslots) { 2290 break; 2291 } 2292 2293 if (index >= htabslots) { 2294 assert(index == htabslots); 2295 index = 0; 2296 } 2297 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2298 2299 if (index >= htabslots) { 2300 assert(index == htabslots); 2301 index = 0; 2302 } 2303 2304 spapr->htab_save_index = index; 2305 2306 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2307 } 2308 2309 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2310 #define MAX_KVM_BUF_SIZE 2048 2311 2312 static int htab_save_iterate(QEMUFile *f, void *opaque) 2313 { 2314 SpaprMachineState *spapr = opaque; 2315 int fd; 2316 int rc = 0; 2317 2318 /* Iteration header */ 2319 if (!spapr->htab_shift) { 2320 qemu_put_be32(f, -1); 2321 return 1; 2322 } else { 2323 qemu_put_be32(f, 0); 2324 } 2325 2326 if (!spapr->htab) { 2327 assert(kvm_enabled()); 2328 2329 fd = get_htab_fd(spapr); 2330 if (fd < 0) { 2331 return fd; 2332 } 2333 2334 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2335 if (rc < 0) { 2336 return rc; 2337 } 2338 } else if (spapr->htab_first_pass) { 2339 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2340 } else { 2341 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2342 } 2343 2344 htab_save_end_marker(f); 2345 2346 return rc; 2347 } 2348 2349 static int htab_save_complete(QEMUFile *f, void *opaque) 2350 { 2351 SpaprMachineState *spapr = opaque; 2352 int fd; 2353 2354 /* Iteration header */ 2355 if (!spapr->htab_shift) { 2356 qemu_put_be32(f, -1); 2357 return 0; 2358 } else { 2359 qemu_put_be32(f, 0); 2360 } 2361 2362 if (!spapr->htab) { 2363 int rc; 2364 2365 assert(kvm_enabled()); 2366 2367 fd = get_htab_fd(spapr); 2368 if (fd < 0) { 2369 return fd; 2370 } 2371 2372 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2373 if (rc < 0) { 2374 return rc; 2375 } 2376 } else { 2377 if (spapr->htab_first_pass) { 2378 htab_save_first_pass(f, spapr, -1); 2379 } 2380 htab_save_later_pass(f, spapr, -1); 2381 } 2382 2383 /* End marker */ 2384 htab_save_end_marker(f); 2385 2386 return 0; 2387 } 2388 2389 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2390 { 2391 SpaprMachineState *spapr = opaque; 2392 uint32_t section_hdr; 2393 int fd = -1; 2394 Error *local_err = NULL; 2395 2396 if (version_id < 1 || version_id > 1) { 2397 error_report("htab_load() bad version"); 2398 return -EINVAL; 2399 } 2400 2401 section_hdr = qemu_get_be32(f); 2402 2403 if (section_hdr == -1) { 2404 spapr_free_hpt(spapr); 2405 return 0; 2406 } 2407 2408 if (section_hdr) { 2409 /* First section gives the htab size */ 2410 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2411 if (local_err) { 2412 error_report_err(local_err); 2413 return -EINVAL; 2414 } 2415 return 0; 2416 } 2417 2418 if (!spapr->htab) { 2419 assert(kvm_enabled()); 2420 2421 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2422 if (fd < 0) { 2423 error_report_err(local_err); 2424 return fd; 2425 } 2426 } 2427 2428 while (true) { 2429 uint32_t index; 2430 uint16_t n_valid, n_invalid; 2431 2432 index = qemu_get_be32(f); 2433 n_valid = qemu_get_be16(f); 2434 n_invalid = qemu_get_be16(f); 2435 2436 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2437 /* End of Stream */ 2438 break; 2439 } 2440 2441 if ((index + n_valid + n_invalid) > 2442 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2443 /* Bad index in stream */ 2444 error_report( 2445 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2446 index, n_valid, n_invalid, spapr->htab_shift); 2447 return -EINVAL; 2448 } 2449 2450 if (spapr->htab) { 2451 if (n_valid) { 2452 qemu_get_buffer(f, HPTE(spapr->htab, index), 2453 HASH_PTE_SIZE_64 * n_valid); 2454 } 2455 if (n_invalid) { 2456 memset(HPTE(spapr->htab, index + n_valid), 0, 2457 HASH_PTE_SIZE_64 * n_invalid); 2458 } 2459 } else { 2460 int rc; 2461 2462 assert(fd >= 0); 2463 2464 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2465 if (rc < 0) { 2466 return rc; 2467 } 2468 } 2469 } 2470 2471 if (!spapr->htab) { 2472 assert(fd >= 0); 2473 close(fd); 2474 } 2475 2476 return 0; 2477 } 2478 2479 static void htab_save_cleanup(void *opaque) 2480 { 2481 SpaprMachineState *spapr = opaque; 2482 2483 close_htab_fd(spapr); 2484 } 2485 2486 static SaveVMHandlers savevm_htab_handlers = { 2487 .save_setup = htab_save_setup, 2488 .save_live_iterate = htab_save_iterate, 2489 .save_live_complete_precopy = htab_save_complete, 2490 .save_cleanup = htab_save_cleanup, 2491 .load_state = htab_load, 2492 }; 2493 2494 static void spapr_boot_set(void *opaque, const char *boot_device, 2495 Error **errp) 2496 { 2497 MachineState *machine = MACHINE(opaque); 2498 machine->boot_order = g_strdup(boot_device); 2499 } 2500 2501 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2502 { 2503 MachineState *machine = MACHINE(spapr); 2504 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2505 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2506 int i; 2507 2508 for (i = 0; i < nr_lmbs; i++) { 2509 uint64_t addr; 2510 2511 addr = i * lmb_size + machine->device_memory->base; 2512 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2513 addr / lmb_size); 2514 } 2515 } 2516 2517 /* 2518 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2519 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2520 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2521 */ 2522 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2523 { 2524 int i; 2525 2526 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2527 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2528 " is not aligned to %" PRIu64 " MiB", 2529 machine->ram_size, 2530 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2531 return; 2532 } 2533 2534 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2535 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2536 " is not aligned to %" PRIu64 " MiB", 2537 machine->ram_size, 2538 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2539 return; 2540 } 2541 2542 for (i = 0; i < nb_numa_nodes; i++) { 2543 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2544 error_setg(errp, 2545 "Node %d memory size 0x%" PRIx64 2546 " is not aligned to %" PRIu64 " MiB", 2547 i, numa_info[i].node_mem, 2548 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2549 return; 2550 } 2551 } 2552 } 2553 2554 /* find cpu slot in machine->possible_cpus by core_id */ 2555 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2556 { 2557 int index = id / ms->smp.threads; 2558 2559 if (index >= ms->possible_cpus->len) { 2560 return NULL; 2561 } 2562 if (idx) { 2563 *idx = index; 2564 } 2565 return &ms->possible_cpus->cpus[index]; 2566 } 2567 2568 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2569 { 2570 MachineState *ms = MACHINE(spapr); 2571 Error *local_err = NULL; 2572 bool vsmt_user = !!spapr->vsmt; 2573 int kvm_smt = kvmppc_smt_threads(); 2574 int ret; 2575 unsigned int smp_threads = ms->smp.threads; 2576 2577 if (!kvm_enabled() && (smp_threads > 1)) { 2578 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2579 "on a pseries machine"); 2580 goto out; 2581 } 2582 if (!is_power_of_2(smp_threads)) { 2583 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2584 "machine because it must be a power of 2", smp_threads); 2585 goto out; 2586 } 2587 2588 /* Detemine the VSMT mode to use: */ 2589 if (vsmt_user) { 2590 if (spapr->vsmt < smp_threads) { 2591 error_setg(&local_err, "Cannot support VSMT mode %d" 2592 " because it must be >= threads/core (%d)", 2593 spapr->vsmt, smp_threads); 2594 goto out; 2595 } 2596 /* In this case, spapr->vsmt has been set by the command line */ 2597 } else { 2598 /* 2599 * Default VSMT value is tricky, because we need it to be as 2600 * consistent as possible (for migration), but this requires 2601 * changing it for at least some existing cases. We pick 8 as 2602 * the value that we'd get with KVM on POWER8, the 2603 * overwhelmingly common case in production systems. 2604 */ 2605 spapr->vsmt = MAX(8, smp_threads); 2606 } 2607 2608 /* KVM: If necessary, set the SMT mode: */ 2609 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2610 ret = kvmppc_set_smt_threads(spapr->vsmt); 2611 if (ret) { 2612 /* Looks like KVM isn't able to change VSMT mode */ 2613 error_setg(&local_err, 2614 "Failed to set KVM's VSMT mode to %d (errno %d)", 2615 spapr->vsmt, ret); 2616 /* We can live with that if the default one is big enough 2617 * for the number of threads, and a submultiple of the one 2618 * we want. In this case we'll waste some vcpu ids, but 2619 * behaviour will be correct */ 2620 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2621 warn_report_err(local_err); 2622 local_err = NULL; 2623 goto out; 2624 } else { 2625 if (!vsmt_user) { 2626 error_append_hint(&local_err, 2627 "On PPC, a VM with %d threads/core" 2628 " on a host with %d threads/core" 2629 " requires the use of VSMT mode %d.\n", 2630 smp_threads, kvm_smt, spapr->vsmt); 2631 } 2632 kvmppc_hint_smt_possible(&local_err); 2633 goto out; 2634 } 2635 } 2636 } 2637 /* else TCG: nothing to do currently */ 2638 out: 2639 error_propagate(errp, local_err); 2640 } 2641 2642 static void spapr_init_cpus(SpaprMachineState *spapr) 2643 { 2644 MachineState *machine = MACHINE(spapr); 2645 MachineClass *mc = MACHINE_GET_CLASS(machine); 2646 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2647 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2648 const CPUArchIdList *possible_cpus; 2649 unsigned int smp_cpus = machine->smp.cpus; 2650 unsigned int smp_threads = machine->smp.threads; 2651 unsigned int max_cpus = machine->smp.max_cpus; 2652 int boot_cores_nr = smp_cpus / smp_threads; 2653 int i; 2654 2655 possible_cpus = mc->possible_cpu_arch_ids(machine); 2656 if (mc->has_hotpluggable_cpus) { 2657 if (smp_cpus % smp_threads) { 2658 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2659 smp_cpus, smp_threads); 2660 exit(1); 2661 } 2662 if (max_cpus % smp_threads) { 2663 error_report("max_cpus (%u) must be multiple of threads (%u)", 2664 max_cpus, smp_threads); 2665 exit(1); 2666 } 2667 } else { 2668 if (max_cpus != smp_cpus) { 2669 error_report("This machine version does not support CPU hotplug"); 2670 exit(1); 2671 } 2672 boot_cores_nr = possible_cpus->len; 2673 } 2674 2675 if (smc->pre_2_10_has_unused_icps) { 2676 int i; 2677 2678 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2679 /* Dummy entries get deregistered when real ICPState objects 2680 * are registered during CPU core hotplug. 2681 */ 2682 pre_2_10_vmstate_register_dummy_icp(i); 2683 } 2684 } 2685 2686 for (i = 0; i < possible_cpus->len; i++) { 2687 int core_id = i * smp_threads; 2688 2689 if (mc->has_hotpluggable_cpus) { 2690 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2691 spapr_vcpu_id(spapr, core_id)); 2692 } 2693 2694 if (i < boot_cores_nr) { 2695 Object *core = object_new(type); 2696 int nr_threads = smp_threads; 2697 2698 /* Handle the partially filled core for older machine types */ 2699 if ((i + 1) * smp_threads >= smp_cpus) { 2700 nr_threads = smp_cpus - i * smp_threads; 2701 } 2702 2703 object_property_set_int(core, nr_threads, "nr-threads", 2704 &error_fatal); 2705 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2706 &error_fatal); 2707 object_property_set_bool(core, true, "realized", &error_fatal); 2708 2709 object_unref(core); 2710 } 2711 } 2712 } 2713 2714 static PCIHostState *spapr_create_default_phb(void) 2715 { 2716 DeviceState *dev; 2717 2718 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2719 qdev_prop_set_uint32(dev, "index", 0); 2720 qdev_init_nofail(dev); 2721 2722 return PCI_HOST_BRIDGE(dev); 2723 } 2724 2725 /* pSeries LPAR / sPAPR hardware init */ 2726 static void spapr_machine_init(MachineState *machine) 2727 { 2728 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2729 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2730 const char *kernel_filename = machine->kernel_filename; 2731 const char *initrd_filename = machine->initrd_filename; 2732 PCIHostState *phb; 2733 int i; 2734 MemoryRegion *sysmem = get_system_memory(); 2735 MemoryRegion *ram = g_new(MemoryRegion, 1); 2736 hwaddr node0_size = spapr_node0_size(machine); 2737 long load_limit, fw_size; 2738 char *filename; 2739 Error *resize_hpt_err = NULL; 2740 2741 msi_nonbroken = true; 2742 2743 QLIST_INIT(&spapr->phbs); 2744 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2745 2746 /* Determine capabilities to run with */ 2747 spapr_caps_init(spapr); 2748 2749 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2750 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2751 /* 2752 * If the user explicitly requested a mode we should either 2753 * supply it, or fail completely (which we do below). But if 2754 * it's not set explicitly, we reset our mode to something 2755 * that works 2756 */ 2757 if (resize_hpt_err) { 2758 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2759 error_free(resize_hpt_err); 2760 resize_hpt_err = NULL; 2761 } else { 2762 spapr->resize_hpt = smc->resize_hpt_default; 2763 } 2764 } 2765 2766 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2767 2768 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2769 /* 2770 * User requested HPT resize, but this host can't supply it. Bail out 2771 */ 2772 error_report_err(resize_hpt_err); 2773 exit(1); 2774 } 2775 2776 spapr->rma_size = node0_size; 2777 2778 /* With KVM, we don't actually know whether KVM supports an 2779 * unbounded RMA (PR KVM) or is limited by the hash table size 2780 * (HV KVM using VRMA), so we always assume the latter 2781 * 2782 * In that case, we also limit the initial allocations for RTAS 2783 * etc... to 256M since we have no way to know what the VRMA size 2784 * is going to be as it depends on the size of the hash table 2785 * which isn't determined yet. 2786 */ 2787 if (kvm_enabled()) { 2788 spapr->vrma_adjust = 1; 2789 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2790 } 2791 2792 /* Actually we don't support unbounded RMA anymore since we added 2793 * proper emulation of HV mode. The max we can get is 16G which 2794 * also happens to be what we configure for PAPR mode so make sure 2795 * we don't do anything bigger than that 2796 */ 2797 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2798 2799 if (spapr->rma_size > node0_size) { 2800 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2801 spapr->rma_size); 2802 exit(1); 2803 } 2804 2805 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2806 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2807 2808 /* 2809 * VSMT must be set in order to be able to compute VCPU ids, ie to 2810 * call spapr_max_server_number() or spapr_vcpu_id(). 2811 */ 2812 spapr_set_vsmt_mode(spapr, &error_fatal); 2813 2814 /* Set up Interrupt Controller before we create the VCPUs */ 2815 spapr_irq_init(spapr, &error_fatal); 2816 2817 /* Set up containers for ibm,client-architecture-support negotiated options 2818 */ 2819 spapr->ov5 = spapr_ovec_new(); 2820 spapr->ov5_cas = spapr_ovec_new(); 2821 2822 if (smc->dr_lmb_enabled) { 2823 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2824 spapr_validate_node_memory(machine, &error_fatal); 2825 } 2826 2827 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2828 2829 /* advertise support for dedicated HP event source to guests */ 2830 if (spapr->use_hotplug_event_source) { 2831 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2832 } 2833 2834 /* advertise support for HPT resizing */ 2835 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2836 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2837 } 2838 2839 /* advertise support for ibm,dyamic-memory-v2 */ 2840 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2841 2842 /* advertise XIVE on POWER9 machines */ 2843 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2844 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2845 } 2846 2847 /* init CPUs */ 2848 spapr_init_cpus(spapr); 2849 2850 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2851 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2852 spapr->max_compat_pvr)) { 2853 /* KVM and TCG always allow GTSE with radix... */ 2854 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2855 } 2856 /* ... but not with hash (currently). */ 2857 2858 if (kvm_enabled()) { 2859 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2860 kvmppc_enable_logical_ci_hcalls(); 2861 kvmppc_enable_set_mode_hcall(); 2862 2863 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2864 kvmppc_enable_clear_ref_mod_hcalls(); 2865 2866 /* Enable H_PAGE_INIT */ 2867 kvmppc_enable_h_page_init(); 2868 } 2869 2870 /* allocate RAM */ 2871 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2872 machine->ram_size); 2873 memory_region_add_subregion(sysmem, 0, ram); 2874 2875 /* always allocate the device memory information */ 2876 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2877 2878 /* initialize hotplug memory address space */ 2879 if (machine->ram_size < machine->maxram_size) { 2880 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2881 /* 2882 * Limit the number of hotpluggable memory slots to half the number 2883 * slots that KVM supports, leaving the other half for PCI and other 2884 * devices. However ensure that number of slots doesn't drop below 32. 2885 */ 2886 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2887 SPAPR_MAX_RAM_SLOTS; 2888 2889 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2890 max_memslots = SPAPR_MAX_RAM_SLOTS; 2891 } 2892 if (machine->ram_slots > max_memslots) { 2893 error_report("Specified number of memory slots %" 2894 PRIu64" exceeds max supported %d", 2895 machine->ram_slots, max_memslots); 2896 exit(1); 2897 } 2898 2899 machine->device_memory->base = ROUND_UP(machine->ram_size, 2900 SPAPR_DEVICE_MEM_ALIGN); 2901 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2902 "device-memory", device_mem_size); 2903 memory_region_add_subregion(sysmem, machine->device_memory->base, 2904 &machine->device_memory->mr); 2905 } 2906 2907 if (smc->dr_lmb_enabled) { 2908 spapr_create_lmb_dr_connectors(spapr); 2909 } 2910 2911 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2912 if (!filename) { 2913 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2914 exit(1); 2915 } 2916 spapr->rtas_size = get_image_size(filename); 2917 if (spapr->rtas_size < 0) { 2918 error_report("Could not get size of LPAR rtas '%s'", filename); 2919 exit(1); 2920 } 2921 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2922 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2923 error_report("Could not load LPAR rtas '%s'", filename); 2924 exit(1); 2925 } 2926 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2927 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2928 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2929 exit(1); 2930 } 2931 g_free(filename); 2932 2933 /* Set up RTAS event infrastructure */ 2934 spapr_events_init(spapr); 2935 2936 /* Set up the RTC RTAS interfaces */ 2937 spapr_rtc_create(spapr); 2938 2939 /* Set up VIO bus */ 2940 spapr->vio_bus = spapr_vio_bus_init(); 2941 2942 for (i = 0; i < serial_max_hds(); i++) { 2943 if (serial_hd(i)) { 2944 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2945 } 2946 } 2947 2948 /* We always have at least the nvram device on VIO */ 2949 spapr_create_nvram(spapr); 2950 2951 /* 2952 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2953 * connectors (described in root DT node's "ibm,drc-types" property) 2954 * are pre-initialized here. additional child connectors (such as 2955 * connectors for a PHBs PCI slots) are added as needed during their 2956 * parent's realization. 2957 */ 2958 if (smc->dr_phb_enabled) { 2959 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2960 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2961 } 2962 } 2963 2964 /* Set up PCI */ 2965 spapr_pci_rtas_init(); 2966 2967 phb = spapr_create_default_phb(); 2968 2969 for (i = 0; i < nb_nics; i++) { 2970 NICInfo *nd = &nd_table[i]; 2971 2972 if (!nd->model) { 2973 nd->model = g_strdup("spapr-vlan"); 2974 } 2975 2976 if (g_str_equal(nd->model, "spapr-vlan") || 2977 g_str_equal(nd->model, "ibmveth")) { 2978 spapr_vlan_create(spapr->vio_bus, nd); 2979 } else { 2980 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2981 } 2982 } 2983 2984 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2985 spapr_vscsi_create(spapr->vio_bus); 2986 } 2987 2988 /* Graphics */ 2989 if (spapr_vga_init(phb->bus, &error_fatal)) { 2990 spapr->has_graphics = true; 2991 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2992 } 2993 2994 if (machine->usb) { 2995 if (smc->use_ohci_by_default) { 2996 pci_create_simple(phb->bus, -1, "pci-ohci"); 2997 } else { 2998 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2999 } 3000 3001 if (spapr->has_graphics) { 3002 USBBus *usb_bus = usb_bus_find(-1); 3003 3004 usb_create_simple(usb_bus, "usb-kbd"); 3005 usb_create_simple(usb_bus, "usb-mouse"); 3006 } 3007 } 3008 3009 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 3010 error_report( 3011 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 3012 MIN_RMA_SLOF); 3013 exit(1); 3014 } 3015 3016 if (kernel_filename) { 3017 uint64_t lowaddr = 0; 3018 3019 spapr->kernel_size = load_elf(kernel_filename, NULL, 3020 translate_kernel_address, NULL, 3021 NULL, &lowaddr, NULL, 1, 3022 PPC_ELF_MACHINE, 0, 0); 3023 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3024 spapr->kernel_size = load_elf(kernel_filename, NULL, 3025 translate_kernel_address, NULL, NULL, 3026 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3027 0, 0); 3028 spapr->kernel_le = spapr->kernel_size > 0; 3029 } 3030 if (spapr->kernel_size < 0) { 3031 error_report("error loading %s: %s", kernel_filename, 3032 load_elf_strerror(spapr->kernel_size)); 3033 exit(1); 3034 } 3035 3036 /* load initrd */ 3037 if (initrd_filename) { 3038 /* Try to locate the initrd in the gap between the kernel 3039 * and the firmware. Add a bit of space just in case 3040 */ 3041 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3042 + 0x1ffff) & ~0xffff; 3043 spapr->initrd_size = load_image_targphys(initrd_filename, 3044 spapr->initrd_base, 3045 load_limit 3046 - spapr->initrd_base); 3047 if (spapr->initrd_size < 0) { 3048 error_report("could not load initial ram disk '%s'", 3049 initrd_filename); 3050 exit(1); 3051 } 3052 } 3053 } 3054 3055 if (bios_name == NULL) { 3056 bios_name = FW_FILE_NAME; 3057 } 3058 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3059 if (!filename) { 3060 error_report("Could not find LPAR firmware '%s'", bios_name); 3061 exit(1); 3062 } 3063 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3064 if (fw_size <= 0) { 3065 error_report("Could not load LPAR firmware '%s'", filename); 3066 exit(1); 3067 } 3068 g_free(filename); 3069 3070 /* FIXME: Should register things through the MachineState's qdev 3071 * interface, this is a legacy from the sPAPREnvironment structure 3072 * which predated MachineState but had a similar function */ 3073 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3074 register_savevm_live(NULL, "spapr/htab", -1, 1, 3075 &savevm_htab_handlers, spapr); 3076 3077 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3078 &error_fatal); 3079 3080 qemu_register_boot_set(spapr_boot_set, spapr); 3081 3082 /* 3083 * Nothing needs to be done to resume a suspended guest because 3084 * suspending does not change the machine state, so no need for 3085 * a ->wakeup method. 3086 */ 3087 qemu_register_wakeup_support(); 3088 3089 if (kvm_enabled()) { 3090 /* to stop and start vmclock */ 3091 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3092 &spapr->tb); 3093 3094 kvmppc_spapr_enable_inkernel_multitce(); 3095 } 3096 } 3097 3098 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3099 { 3100 if (!vm_type) { 3101 return 0; 3102 } 3103 3104 if (!strcmp(vm_type, "HV")) { 3105 return 1; 3106 } 3107 3108 if (!strcmp(vm_type, "PR")) { 3109 return 2; 3110 } 3111 3112 error_report("Unknown kvm-type specified '%s'", vm_type); 3113 exit(1); 3114 } 3115 3116 /* 3117 * Implementation of an interface to adjust firmware path 3118 * for the bootindex property handling. 3119 */ 3120 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3121 DeviceState *dev) 3122 { 3123 #define CAST(type, obj, name) \ 3124 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3125 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3126 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3127 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3128 3129 if (d) { 3130 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3131 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3132 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3133 3134 if (spapr) { 3135 /* 3136 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3137 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3138 * 0x8000 | (target << 8) | (bus << 5) | lun 3139 * (see the "Logical unit addressing format" table in SAM5) 3140 */ 3141 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3142 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3143 (uint64_t)id << 48); 3144 } else if (virtio) { 3145 /* 3146 * We use SRP luns of the form 01000000 | (target << 8) | lun 3147 * in the top 32 bits of the 64-bit LUN 3148 * Note: the quote above is from SLOF and it is wrong, 3149 * the actual binding is: 3150 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3151 */ 3152 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3153 if (d->lun >= 256) { 3154 /* Use the LUN "flat space addressing method" */ 3155 id |= 0x4000; 3156 } 3157 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3158 (uint64_t)id << 32); 3159 } else if (usb) { 3160 /* 3161 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3162 * in the top 32 bits of the 64-bit LUN 3163 */ 3164 unsigned usb_port = atoi(usb->port->path); 3165 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3166 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3167 (uint64_t)id << 32); 3168 } 3169 } 3170 3171 /* 3172 * SLOF probes the USB devices, and if it recognizes that the device is a 3173 * storage device, it changes its name to "storage" instead of "usb-host", 3174 * and additionally adds a child node for the SCSI LUN, so the correct 3175 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3176 */ 3177 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3178 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3179 if (usb_host_dev_is_scsi_storage(usbdev)) { 3180 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3181 } 3182 } 3183 3184 if (phb) { 3185 /* Replace "pci" with "pci@800000020000000" */ 3186 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3187 } 3188 3189 if (vsc) { 3190 /* Same logic as virtio above */ 3191 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3192 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3193 } 3194 3195 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3196 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3197 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3198 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3199 } 3200 3201 return NULL; 3202 } 3203 3204 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3205 { 3206 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3207 3208 return g_strdup(spapr->kvm_type); 3209 } 3210 3211 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3212 { 3213 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3214 3215 g_free(spapr->kvm_type); 3216 spapr->kvm_type = g_strdup(value); 3217 } 3218 3219 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3220 { 3221 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3222 3223 return spapr->use_hotplug_event_source; 3224 } 3225 3226 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3227 Error **errp) 3228 { 3229 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3230 3231 spapr->use_hotplug_event_source = value; 3232 } 3233 3234 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3235 { 3236 return true; 3237 } 3238 3239 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3240 { 3241 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3242 3243 switch (spapr->resize_hpt) { 3244 case SPAPR_RESIZE_HPT_DEFAULT: 3245 return g_strdup("default"); 3246 case SPAPR_RESIZE_HPT_DISABLED: 3247 return g_strdup("disabled"); 3248 case SPAPR_RESIZE_HPT_ENABLED: 3249 return g_strdup("enabled"); 3250 case SPAPR_RESIZE_HPT_REQUIRED: 3251 return g_strdup("required"); 3252 } 3253 g_assert_not_reached(); 3254 } 3255 3256 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3257 { 3258 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3259 3260 if (strcmp(value, "default") == 0) { 3261 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3262 } else if (strcmp(value, "disabled") == 0) { 3263 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3264 } else if (strcmp(value, "enabled") == 0) { 3265 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3266 } else if (strcmp(value, "required") == 0) { 3267 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3268 } else { 3269 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3270 } 3271 } 3272 3273 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3274 void *opaque, Error **errp) 3275 { 3276 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3277 } 3278 3279 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3280 void *opaque, Error **errp) 3281 { 3282 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3283 } 3284 3285 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3286 { 3287 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3288 3289 if (spapr->irq == &spapr_irq_xics_legacy) { 3290 return g_strdup("legacy"); 3291 } else if (spapr->irq == &spapr_irq_xics) { 3292 return g_strdup("xics"); 3293 } else if (spapr->irq == &spapr_irq_xive) { 3294 return g_strdup("xive"); 3295 } else if (spapr->irq == &spapr_irq_dual) { 3296 return g_strdup("dual"); 3297 } 3298 g_assert_not_reached(); 3299 } 3300 3301 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3302 { 3303 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3304 3305 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3306 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3307 return; 3308 } 3309 3310 /* The legacy IRQ backend can not be set */ 3311 if (strcmp(value, "xics") == 0) { 3312 spapr->irq = &spapr_irq_xics; 3313 } else if (strcmp(value, "xive") == 0) { 3314 spapr->irq = &spapr_irq_xive; 3315 } else if (strcmp(value, "dual") == 0) { 3316 spapr->irq = &spapr_irq_dual; 3317 } else { 3318 error_setg(errp, "Bad value for \"ic-mode\" property"); 3319 } 3320 } 3321 3322 static char *spapr_get_host_model(Object *obj, Error **errp) 3323 { 3324 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3325 3326 return g_strdup(spapr->host_model); 3327 } 3328 3329 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3330 { 3331 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3332 3333 g_free(spapr->host_model); 3334 spapr->host_model = g_strdup(value); 3335 } 3336 3337 static char *spapr_get_host_serial(Object *obj, Error **errp) 3338 { 3339 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3340 3341 return g_strdup(spapr->host_serial); 3342 } 3343 3344 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3345 { 3346 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3347 3348 g_free(spapr->host_serial); 3349 spapr->host_serial = g_strdup(value); 3350 } 3351 3352 static void spapr_instance_init(Object *obj) 3353 { 3354 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3355 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3356 3357 spapr->htab_fd = -1; 3358 spapr->use_hotplug_event_source = true; 3359 object_property_add_str(obj, "kvm-type", 3360 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3361 object_property_set_description(obj, "kvm-type", 3362 "Specifies the KVM virtualization mode (HV, PR)", 3363 NULL); 3364 object_property_add_bool(obj, "modern-hotplug-events", 3365 spapr_get_modern_hotplug_events, 3366 spapr_set_modern_hotplug_events, 3367 NULL); 3368 object_property_set_description(obj, "modern-hotplug-events", 3369 "Use dedicated hotplug event mechanism in" 3370 " place of standard EPOW events when possible" 3371 " (required for memory hot-unplug support)", 3372 NULL); 3373 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3374 "Maximum permitted CPU compatibility mode", 3375 &error_fatal); 3376 3377 object_property_add_str(obj, "resize-hpt", 3378 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3379 object_property_set_description(obj, "resize-hpt", 3380 "Resizing of the Hash Page Table (enabled, disabled, required)", 3381 NULL); 3382 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3383 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3384 object_property_set_description(obj, "vsmt", 3385 "Virtual SMT: KVM behaves as if this were" 3386 " the host's SMT mode", &error_abort); 3387 object_property_add_bool(obj, "vfio-no-msix-emulation", 3388 spapr_get_msix_emulation, NULL, NULL); 3389 3390 /* The machine class defines the default interrupt controller mode */ 3391 spapr->irq = smc->irq; 3392 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3393 spapr_set_ic_mode, NULL); 3394 object_property_set_description(obj, "ic-mode", 3395 "Specifies the interrupt controller mode (xics, xive, dual)", 3396 NULL); 3397 3398 object_property_add_str(obj, "host-model", 3399 spapr_get_host_model, spapr_set_host_model, 3400 &error_abort); 3401 object_property_set_description(obj, "host-model", 3402 "Host model to advertise in guest device tree", &error_abort); 3403 object_property_add_str(obj, "host-serial", 3404 spapr_get_host_serial, spapr_set_host_serial, 3405 &error_abort); 3406 object_property_set_description(obj, "host-serial", 3407 "Host serial number to advertise in guest device tree", &error_abort); 3408 } 3409 3410 static void spapr_machine_finalizefn(Object *obj) 3411 { 3412 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3413 3414 g_free(spapr->kvm_type); 3415 } 3416 3417 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3418 { 3419 cpu_synchronize_state(cs); 3420 ppc_cpu_do_system_reset(cs); 3421 } 3422 3423 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3424 { 3425 CPUState *cs; 3426 3427 CPU_FOREACH(cs) { 3428 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3429 } 3430 } 3431 3432 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3433 void *fdt, int *fdt_start_offset, Error **errp) 3434 { 3435 uint64_t addr; 3436 uint32_t node; 3437 3438 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3439 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3440 &error_abort); 3441 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3442 SPAPR_MEMORY_BLOCK_SIZE); 3443 return 0; 3444 } 3445 3446 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3447 bool dedicated_hp_event_source, Error **errp) 3448 { 3449 SpaprDrc *drc; 3450 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3451 int i; 3452 uint64_t addr = addr_start; 3453 bool hotplugged = spapr_drc_hotplugged(dev); 3454 Error *local_err = NULL; 3455 3456 for (i = 0; i < nr_lmbs; i++) { 3457 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3458 addr / SPAPR_MEMORY_BLOCK_SIZE); 3459 g_assert(drc); 3460 3461 spapr_drc_attach(drc, dev, &local_err); 3462 if (local_err) { 3463 while (addr > addr_start) { 3464 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3465 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3466 addr / SPAPR_MEMORY_BLOCK_SIZE); 3467 spapr_drc_detach(drc); 3468 } 3469 error_propagate(errp, local_err); 3470 return; 3471 } 3472 if (!hotplugged) { 3473 spapr_drc_reset(drc); 3474 } 3475 addr += SPAPR_MEMORY_BLOCK_SIZE; 3476 } 3477 /* send hotplug notification to the 3478 * guest only in case of hotplugged memory 3479 */ 3480 if (hotplugged) { 3481 if (dedicated_hp_event_source) { 3482 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3483 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3484 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3485 nr_lmbs, 3486 spapr_drc_index(drc)); 3487 } else { 3488 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3489 nr_lmbs); 3490 } 3491 } 3492 } 3493 3494 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3495 Error **errp) 3496 { 3497 Error *local_err = NULL; 3498 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3499 PCDIMMDevice *dimm = PC_DIMM(dev); 3500 uint64_t size, addr; 3501 3502 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3503 3504 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3505 if (local_err) { 3506 goto out; 3507 } 3508 3509 addr = object_property_get_uint(OBJECT(dimm), 3510 PC_DIMM_ADDR_PROP, &local_err); 3511 if (local_err) { 3512 goto out_unplug; 3513 } 3514 3515 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3516 &local_err); 3517 if (local_err) { 3518 goto out_unplug; 3519 } 3520 3521 return; 3522 3523 out_unplug: 3524 pc_dimm_unplug(dimm, MACHINE(ms)); 3525 out: 3526 error_propagate(errp, local_err); 3527 } 3528 3529 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3530 Error **errp) 3531 { 3532 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3533 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3534 PCDIMMDevice *dimm = PC_DIMM(dev); 3535 Error *local_err = NULL; 3536 uint64_t size; 3537 Object *memdev; 3538 hwaddr pagesize; 3539 3540 if (!smc->dr_lmb_enabled) { 3541 error_setg(errp, "Memory hotplug not supported for this machine"); 3542 return; 3543 } 3544 3545 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3546 if (local_err) { 3547 error_propagate(errp, local_err); 3548 return; 3549 } 3550 3551 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3552 error_setg(errp, "Hotplugged memory size must be a multiple of " 3553 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3554 return; 3555 } 3556 3557 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3558 &error_abort); 3559 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3560 spapr_check_pagesize(spapr, pagesize, &local_err); 3561 if (local_err) { 3562 error_propagate(errp, local_err); 3563 return; 3564 } 3565 3566 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3567 } 3568 3569 struct SpaprDimmState { 3570 PCDIMMDevice *dimm; 3571 uint32_t nr_lmbs; 3572 QTAILQ_ENTRY(SpaprDimmState) next; 3573 }; 3574 3575 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3576 PCDIMMDevice *dimm) 3577 { 3578 SpaprDimmState *dimm_state = NULL; 3579 3580 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3581 if (dimm_state->dimm == dimm) { 3582 break; 3583 } 3584 } 3585 return dimm_state; 3586 } 3587 3588 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3589 uint32_t nr_lmbs, 3590 PCDIMMDevice *dimm) 3591 { 3592 SpaprDimmState *ds = NULL; 3593 3594 /* 3595 * If this request is for a DIMM whose removal had failed earlier 3596 * (due to guest's refusal to remove the LMBs), we would have this 3597 * dimm already in the pending_dimm_unplugs list. In that 3598 * case don't add again. 3599 */ 3600 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3601 if (!ds) { 3602 ds = g_malloc0(sizeof(SpaprDimmState)); 3603 ds->nr_lmbs = nr_lmbs; 3604 ds->dimm = dimm; 3605 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3606 } 3607 return ds; 3608 } 3609 3610 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3611 SpaprDimmState *dimm_state) 3612 { 3613 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3614 g_free(dimm_state); 3615 } 3616 3617 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3618 PCDIMMDevice *dimm) 3619 { 3620 SpaprDrc *drc; 3621 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3622 &error_abort); 3623 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3624 uint32_t avail_lmbs = 0; 3625 uint64_t addr_start, addr; 3626 int i; 3627 3628 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3629 &error_abort); 3630 3631 addr = addr_start; 3632 for (i = 0; i < nr_lmbs; i++) { 3633 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3634 addr / SPAPR_MEMORY_BLOCK_SIZE); 3635 g_assert(drc); 3636 if (drc->dev) { 3637 avail_lmbs++; 3638 } 3639 addr += SPAPR_MEMORY_BLOCK_SIZE; 3640 } 3641 3642 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3643 } 3644 3645 /* Callback to be called during DRC release. */ 3646 void spapr_lmb_release(DeviceState *dev) 3647 { 3648 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3649 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3650 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3651 3652 /* This information will get lost if a migration occurs 3653 * during the unplug process. In this case recover it. */ 3654 if (ds == NULL) { 3655 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3656 g_assert(ds); 3657 /* The DRC being examined by the caller at least must be counted */ 3658 g_assert(ds->nr_lmbs); 3659 } 3660 3661 if (--ds->nr_lmbs) { 3662 return; 3663 } 3664 3665 /* 3666 * Now that all the LMBs have been removed by the guest, call the 3667 * unplug handler chain. This can never fail. 3668 */ 3669 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3670 object_unparent(OBJECT(dev)); 3671 } 3672 3673 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3674 { 3675 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3676 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3677 3678 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3679 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3680 spapr_pending_dimm_unplugs_remove(spapr, ds); 3681 } 3682 3683 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3684 DeviceState *dev, Error **errp) 3685 { 3686 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3687 Error *local_err = NULL; 3688 PCDIMMDevice *dimm = PC_DIMM(dev); 3689 uint32_t nr_lmbs; 3690 uint64_t size, addr_start, addr; 3691 int i; 3692 SpaprDrc *drc; 3693 3694 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3695 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3696 3697 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3698 &local_err); 3699 if (local_err) { 3700 goto out; 3701 } 3702 3703 /* 3704 * An existing pending dimm state for this DIMM means that there is an 3705 * unplug operation in progress, waiting for the spapr_lmb_release 3706 * callback to complete the job (BQL can't cover that far). In this case, 3707 * bail out to avoid detaching DRCs that were already released. 3708 */ 3709 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3710 error_setg(&local_err, 3711 "Memory unplug already in progress for device %s", 3712 dev->id); 3713 goto out; 3714 } 3715 3716 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3717 3718 addr = addr_start; 3719 for (i = 0; i < nr_lmbs; i++) { 3720 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3721 addr / SPAPR_MEMORY_BLOCK_SIZE); 3722 g_assert(drc); 3723 3724 spapr_drc_detach(drc); 3725 addr += SPAPR_MEMORY_BLOCK_SIZE; 3726 } 3727 3728 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3729 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3730 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3731 nr_lmbs, spapr_drc_index(drc)); 3732 out: 3733 error_propagate(errp, local_err); 3734 } 3735 3736 /* Callback to be called during DRC release. */ 3737 void spapr_core_release(DeviceState *dev) 3738 { 3739 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3740 3741 /* Call the unplug handler chain. This can never fail. */ 3742 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3743 object_unparent(OBJECT(dev)); 3744 } 3745 3746 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3747 { 3748 MachineState *ms = MACHINE(hotplug_dev); 3749 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3750 CPUCore *cc = CPU_CORE(dev); 3751 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3752 3753 if (smc->pre_2_10_has_unused_icps) { 3754 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3755 int i; 3756 3757 for (i = 0; i < cc->nr_threads; i++) { 3758 CPUState *cs = CPU(sc->threads[i]); 3759 3760 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3761 } 3762 } 3763 3764 assert(core_slot); 3765 core_slot->cpu = NULL; 3766 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3767 } 3768 3769 static 3770 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3771 Error **errp) 3772 { 3773 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3774 int index; 3775 SpaprDrc *drc; 3776 CPUCore *cc = CPU_CORE(dev); 3777 3778 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3779 error_setg(errp, "Unable to find CPU core with core-id: %d", 3780 cc->core_id); 3781 return; 3782 } 3783 if (index == 0) { 3784 error_setg(errp, "Boot CPU core may not be unplugged"); 3785 return; 3786 } 3787 3788 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3789 spapr_vcpu_id(spapr, cc->core_id)); 3790 g_assert(drc); 3791 3792 spapr_drc_detach(drc); 3793 3794 spapr_hotplug_req_remove_by_index(drc); 3795 } 3796 3797 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3798 void *fdt, int *fdt_start_offset, Error **errp) 3799 { 3800 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3801 CPUState *cs = CPU(core->threads[0]); 3802 PowerPCCPU *cpu = POWERPC_CPU(cs); 3803 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3804 int id = spapr_get_vcpu_id(cpu); 3805 char *nodename; 3806 int offset; 3807 3808 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3809 offset = fdt_add_subnode(fdt, 0, nodename); 3810 g_free(nodename); 3811 3812 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3813 3814 *fdt_start_offset = offset; 3815 return 0; 3816 } 3817 3818 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3819 Error **errp) 3820 { 3821 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3822 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3823 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3824 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3825 CPUCore *cc = CPU_CORE(dev); 3826 CPUState *cs; 3827 SpaprDrc *drc; 3828 Error *local_err = NULL; 3829 CPUArchId *core_slot; 3830 int index; 3831 bool hotplugged = spapr_drc_hotplugged(dev); 3832 3833 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3834 if (!core_slot) { 3835 error_setg(errp, "Unable to find CPU core with core-id: %d", 3836 cc->core_id); 3837 return; 3838 } 3839 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3840 spapr_vcpu_id(spapr, cc->core_id)); 3841 3842 g_assert(drc || !mc->has_hotpluggable_cpus); 3843 3844 if (drc) { 3845 spapr_drc_attach(drc, dev, &local_err); 3846 if (local_err) { 3847 error_propagate(errp, local_err); 3848 return; 3849 } 3850 3851 if (hotplugged) { 3852 /* 3853 * Send hotplug notification interrupt to the guest only 3854 * in case of hotplugged CPUs. 3855 */ 3856 spapr_hotplug_req_add_by_index(drc); 3857 } else { 3858 spapr_drc_reset(drc); 3859 } 3860 } 3861 3862 core_slot->cpu = OBJECT(dev); 3863 3864 if (smc->pre_2_10_has_unused_icps) { 3865 int i; 3866 3867 for (i = 0; i < cc->nr_threads; i++) { 3868 cs = CPU(core->threads[i]); 3869 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3870 } 3871 } 3872 } 3873 3874 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3875 Error **errp) 3876 { 3877 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3878 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3879 Error *local_err = NULL; 3880 CPUCore *cc = CPU_CORE(dev); 3881 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3882 const char *type = object_get_typename(OBJECT(dev)); 3883 CPUArchId *core_slot; 3884 int index; 3885 unsigned int smp_threads = machine->smp.threads; 3886 3887 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3888 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3889 goto out; 3890 } 3891 3892 if (strcmp(base_core_type, type)) { 3893 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3894 goto out; 3895 } 3896 3897 if (cc->core_id % smp_threads) { 3898 error_setg(&local_err, "invalid core id %d", cc->core_id); 3899 goto out; 3900 } 3901 3902 /* 3903 * In general we should have homogeneous threads-per-core, but old 3904 * (pre hotplug support) machine types allow the last core to have 3905 * reduced threads as a compatibility hack for when we allowed 3906 * total vcpus not a multiple of threads-per-core. 3907 */ 3908 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3909 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3910 cc->nr_threads, smp_threads); 3911 goto out; 3912 } 3913 3914 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3915 if (!core_slot) { 3916 error_setg(&local_err, "core id %d out of range", cc->core_id); 3917 goto out; 3918 } 3919 3920 if (core_slot->cpu) { 3921 error_setg(&local_err, "core %d already populated", cc->core_id); 3922 goto out; 3923 } 3924 3925 numa_cpu_pre_plug(core_slot, dev, &local_err); 3926 3927 out: 3928 error_propagate(errp, local_err); 3929 } 3930 3931 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3932 void *fdt, int *fdt_start_offset, Error **errp) 3933 { 3934 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3935 int intc_phandle; 3936 3937 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3938 if (intc_phandle <= 0) { 3939 return -1; 3940 } 3941 3942 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3943 fdt_start_offset)) { 3944 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3945 return -1; 3946 } 3947 3948 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3949 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3950 3951 return 0; 3952 } 3953 3954 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3955 Error **errp) 3956 { 3957 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3958 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3959 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3960 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3961 3962 if (dev->hotplugged && !smc->dr_phb_enabled) { 3963 error_setg(errp, "PHB hotplug not supported for this machine"); 3964 return; 3965 } 3966 3967 if (sphb->index == (uint32_t)-1) { 3968 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3969 return; 3970 } 3971 3972 /* 3973 * This will check that sphb->index doesn't exceed the maximum number of 3974 * PHBs for the current machine type. 3975 */ 3976 smc->phb_placement(spapr, sphb->index, 3977 &sphb->buid, &sphb->io_win_addr, 3978 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3979 windows_supported, sphb->dma_liobn, 3980 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3981 errp); 3982 } 3983 3984 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3985 Error **errp) 3986 { 3987 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3988 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3989 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3990 SpaprDrc *drc; 3991 bool hotplugged = spapr_drc_hotplugged(dev); 3992 Error *local_err = NULL; 3993 3994 if (!smc->dr_phb_enabled) { 3995 return; 3996 } 3997 3998 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3999 /* hotplug hooks should check it's enabled before getting this far */ 4000 assert(drc); 4001 4002 spapr_drc_attach(drc, DEVICE(dev), &local_err); 4003 if (local_err) { 4004 error_propagate(errp, local_err); 4005 return; 4006 } 4007 4008 if (hotplugged) { 4009 spapr_hotplug_req_add_by_index(drc); 4010 } else { 4011 spapr_drc_reset(drc); 4012 } 4013 } 4014 4015 void spapr_phb_release(DeviceState *dev) 4016 { 4017 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4018 4019 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4020 object_unparent(OBJECT(dev)); 4021 } 4022 4023 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4024 { 4025 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4026 } 4027 4028 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4029 DeviceState *dev, Error **errp) 4030 { 4031 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4032 SpaprDrc *drc; 4033 4034 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4035 assert(drc); 4036 4037 if (!spapr_drc_unplug_requested(drc)) { 4038 spapr_drc_detach(drc); 4039 spapr_hotplug_req_remove_by_index(drc); 4040 } 4041 } 4042 4043 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4044 Error **errp) 4045 { 4046 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4047 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4048 4049 if (spapr->tpm_proxy != NULL) { 4050 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4051 return; 4052 } 4053 4054 spapr->tpm_proxy = tpm_proxy; 4055 } 4056 4057 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4058 { 4059 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4060 4061 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4062 object_unparent(OBJECT(dev)); 4063 spapr->tpm_proxy = NULL; 4064 } 4065 4066 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4067 DeviceState *dev, Error **errp) 4068 { 4069 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4070 spapr_memory_plug(hotplug_dev, dev, errp); 4071 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4072 spapr_core_plug(hotplug_dev, dev, errp); 4073 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4074 spapr_phb_plug(hotplug_dev, dev, errp); 4075 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4076 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 4077 } 4078 } 4079 4080 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4081 DeviceState *dev, Error **errp) 4082 { 4083 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4084 spapr_memory_unplug(hotplug_dev, dev); 4085 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4086 spapr_core_unplug(hotplug_dev, dev); 4087 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4088 spapr_phb_unplug(hotplug_dev, dev); 4089 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4090 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4091 } 4092 } 4093 4094 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4095 DeviceState *dev, Error **errp) 4096 { 4097 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4098 MachineClass *mc = MACHINE_GET_CLASS(sms); 4099 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4100 4101 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4102 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4103 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4104 } else { 4105 /* NOTE: this means there is a window after guest reset, prior to 4106 * CAS negotiation, where unplug requests will fail due to the 4107 * capability not being detected yet. This is a bit different than 4108 * the case with PCI unplug, where the events will be queued and 4109 * eventually handled by the guest after boot 4110 */ 4111 error_setg(errp, "Memory hot unplug not supported for this guest"); 4112 } 4113 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4114 if (!mc->has_hotpluggable_cpus) { 4115 error_setg(errp, "CPU hot unplug not supported on this machine"); 4116 return; 4117 } 4118 spapr_core_unplug_request(hotplug_dev, dev, errp); 4119 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4120 if (!smc->dr_phb_enabled) { 4121 error_setg(errp, "PHB hot unplug not supported on this machine"); 4122 return; 4123 } 4124 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4125 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4126 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4127 } 4128 } 4129 4130 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4131 DeviceState *dev, Error **errp) 4132 { 4133 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4134 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4135 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4136 spapr_core_pre_plug(hotplug_dev, dev, errp); 4137 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4138 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4139 } 4140 } 4141 4142 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4143 DeviceState *dev) 4144 { 4145 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4146 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4147 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4148 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4149 return HOTPLUG_HANDLER(machine); 4150 } 4151 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4152 PCIDevice *pcidev = PCI_DEVICE(dev); 4153 PCIBus *root = pci_device_root_bus(pcidev); 4154 SpaprPhbState *phb = 4155 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4156 TYPE_SPAPR_PCI_HOST_BRIDGE); 4157 4158 if (phb) { 4159 return HOTPLUG_HANDLER(phb); 4160 } 4161 } 4162 return NULL; 4163 } 4164 4165 static CpuInstanceProperties 4166 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4167 { 4168 CPUArchId *core_slot; 4169 MachineClass *mc = MACHINE_GET_CLASS(machine); 4170 4171 /* make sure possible_cpu are intialized */ 4172 mc->possible_cpu_arch_ids(machine); 4173 /* get CPU core slot containing thread that matches cpu_index */ 4174 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4175 assert(core_slot); 4176 return core_slot->props; 4177 } 4178 4179 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4180 { 4181 return idx / ms->smp.cores % nb_numa_nodes; 4182 } 4183 4184 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4185 { 4186 int i; 4187 unsigned int smp_threads = machine->smp.threads; 4188 unsigned int smp_cpus = machine->smp.cpus; 4189 const char *core_type; 4190 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4191 MachineClass *mc = MACHINE_GET_CLASS(machine); 4192 4193 if (!mc->has_hotpluggable_cpus) { 4194 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4195 } 4196 if (machine->possible_cpus) { 4197 assert(machine->possible_cpus->len == spapr_max_cores); 4198 return machine->possible_cpus; 4199 } 4200 4201 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4202 if (!core_type) { 4203 error_report("Unable to find sPAPR CPU Core definition"); 4204 exit(1); 4205 } 4206 4207 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4208 sizeof(CPUArchId) * spapr_max_cores); 4209 machine->possible_cpus->len = spapr_max_cores; 4210 for (i = 0; i < machine->possible_cpus->len; i++) { 4211 int core_id = i * smp_threads; 4212 4213 machine->possible_cpus->cpus[i].type = core_type; 4214 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4215 machine->possible_cpus->cpus[i].arch_id = core_id; 4216 machine->possible_cpus->cpus[i].props.has_core_id = true; 4217 machine->possible_cpus->cpus[i].props.core_id = core_id; 4218 } 4219 return machine->possible_cpus; 4220 } 4221 4222 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4223 uint64_t *buid, hwaddr *pio, 4224 hwaddr *mmio32, hwaddr *mmio64, 4225 unsigned n_dma, uint32_t *liobns, 4226 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4227 { 4228 /* 4229 * New-style PHB window placement. 4230 * 4231 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4232 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4233 * windows. 4234 * 4235 * Some guest kernels can't work with MMIO windows above 1<<46 4236 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4237 * 4238 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4239 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4240 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4241 * 1TiB 64-bit MMIO windows for each PHB. 4242 */ 4243 const uint64_t base_buid = 0x800000020000000ULL; 4244 int i; 4245 4246 /* Sanity check natural alignments */ 4247 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4248 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4249 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4250 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4251 /* Sanity check bounds */ 4252 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4253 SPAPR_PCI_MEM32_WIN_SIZE); 4254 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4255 SPAPR_PCI_MEM64_WIN_SIZE); 4256 4257 if (index >= SPAPR_MAX_PHBS) { 4258 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4259 SPAPR_MAX_PHBS - 1); 4260 return; 4261 } 4262 4263 *buid = base_buid + index; 4264 for (i = 0; i < n_dma; ++i) { 4265 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4266 } 4267 4268 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4269 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4270 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4271 4272 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4273 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4274 } 4275 4276 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4277 { 4278 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4279 4280 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4281 } 4282 4283 static void spapr_ics_resend(XICSFabric *dev) 4284 { 4285 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4286 4287 ics_resend(spapr->ics); 4288 } 4289 4290 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4291 { 4292 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4293 4294 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4295 } 4296 4297 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4298 Monitor *mon) 4299 { 4300 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4301 4302 spapr->irq->print_info(spapr, mon); 4303 } 4304 4305 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4306 { 4307 return cpu->vcpu_id; 4308 } 4309 4310 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4311 { 4312 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4313 MachineState *ms = MACHINE(spapr); 4314 int vcpu_id; 4315 4316 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4317 4318 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4319 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4320 error_append_hint(errp, "Adjust the number of cpus to %d " 4321 "or try to raise the number of threads per core\n", 4322 vcpu_id * ms->smp.threads / spapr->vsmt); 4323 return; 4324 } 4325 4326 cpu->vcpu_id = vcpu_id; 4327 } 4328 4329 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4330 { 4331 CPUState *cs; 4332 4333 CPU_FOREACH(cs) { 4334 PowerPCCPU *cpu = POWERPC_CPU(cs); 4335 4336 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4337 return cpu; 4338 } 4339 } 4340 4341 return NULL; 4342 } 4343 4344 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4345 { 4346 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4347 4348 /* These are only called by TCG, KVM maintains dispatch state */ 4349 4350 spapr_cpu->prod = false; 4351 if (spapr_cpu->vpa_addr) { 4352 CPUState *cs = CPU(cpu); 4353 uint32_t dispatch; 4354 4355 dispatch = ldl_be_phys(cs->as, 4356 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4357 dispatch++; 4358 if ((dispatch & 1) != 0) { 4359 qemu_log_mask(LOG_GUEST_ERROR, 4360 "VPA: incorrect dispatch counter value for " 4361 "dispatched partition %u, correcting.\n", dispatch); 4362 dispatch++; 4363 } 4364 stl_be_phys(cs->as, 4365 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4366 } 4367 } 4368 4369 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4370 { 4371 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4372 4373 if (spapr_cpu->vpa_addr) { 4374 CPUState *cs = CPU(cpu); 4375 uint32_t dispatch; 4376 4377 dispatch = ldl_be_phys(cs->as, 4378 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4379 dispatch++; 4380 if ((dispatch & 1) != 1) { 4381 qemu_log_mask(LOG_GUEST_ERROR, 4382 "VPA: incorrect dispatch counter value for " 4383 "preempted partition %u, correcting.\n", dispatch); 4384 dispatch++; 4385 } 4386 stl_be_phys(cs->as, 4387 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4388 } 4389 } 4390 4391 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4392 { 4393 MachineClass *mc = MACHINE_CLASS(oc); 4394 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4395 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4396 NMIClass *nc = NMI_CLASS(oc); 4397 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4398 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4399 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4400 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4401 4402 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4403 mc->ignore_boot_device_suffixes = true; 4404 4405 /* 4406 * We set up the default / latest behaviour here. The class_init 4407 * functions for the specific versioned machine types can override 4408 * these details for backwards compatibility 4409 */ 4410 mc->init = spapr_machine_init; 4411 mc->reset = spapr_machine_reset; 4412 mc->block_default_type = IF_SCSI; 4413 mc->max_cpus = 1024; 4414 mc->no_parallel = 1; 4415 mc->default_boot_order = ""; 4416 mc->default_ram_size = 512 * MiB; 4417 mc->default_display = "std"; 4418 mc->kvm_type = spapr_kvm_type; 4419 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4420 mc->pci_allow_0_address = true; 4421 assert(!mc->get_hotplug_handler); 4422 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4423 hc->pre_plug = spapr_machine_device_pre_plug; 4424 hc->plug = spapr_machine_device_plug; 4425 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4426 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4427 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4428 hc->unplug_request = spapr_machine_device_unplug_request; 4429 hc->unplug = spapr_machine_device_unplug; 4430 4431 smc->dr_lmb_enabled = true; 4432 smc->update_dt_enabled = true; 4433 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4434 mc->has_hotpluggable_cpus = true; 4435 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4436 fwc->get_dev_path = spapr_get_fw_dev_path; 4437 nc->nmi_monitor_handler = spapr_nmi; 4438 smc->phb_placement = spapr_phb_placement; 4439 vhc->hypercall = emulate_spapr_hypercall; 4440 vhc->hpt_mask = spapr_hpt_mask; 4441 vhc->map_hptes = spapr_map_hptes; 4442 vhc->unmap_hptes = spapr_unmap_hptes; 4443 vhc->hpte_set_c = spapr_hpte_set_c; 4444 vhc->hpte_set_r = spapr_hpte_set_r; 4445 vhc->get_pate = spapr_get_pate; 4446 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4447 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4448 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4449 xic->ics_get = spapr_ics_get; 4450 xic->ics_resend = spapr_ics_resend; 4451 xic->icp_get = spapr_icp_get; 4452 ispc->print_info = spapr_pic_print_info; 4453 /* Force NUMA node memory size to be a multiple of 4454 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4455 * in which LMBs are represented and hot-added 4456 */ 4457 mc->numa_mem_align_shift = 28; 4458 mc->numa_mem_supported = true; 4459 4460 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4461 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4462 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4463 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4464 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4465 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4466 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4467 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4468 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4469 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4470 spapr_caps_add_properties(smc, &error_abort); 4471 smc->irq = &spapr_irq_dual; 4472 smc->dr_phb_enabled = true; 4473 } 4474 4475 static const TypeInfo spapr_machine_info = { 4476 .name = TYPE_SPAPR_MACHINE, 4477 .parent = TYPE_MACHINE, 4478 .abstract = true, 4479 .instance_size = sizeof(SpaprMachineState), 4480 .instance_init = spapr_instance_init, 4481 .instance_finalize = spapr_machine_finalizefn, 4482 .class_size = sizeof(SpaprMachineClass), 4483 .class_init = spapr_machine_class_init, 4484 .interfaces = (InterfaceInfo[]) { 4485 { TYPE_FW_PATH_PROVIDER }, 4486 { TYPE_NMI }, 4487 { TYPE_HOTPLUG_HANDLER }, 4488 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4489 { TYPE_XICS_FABRIC }, 4490 { TYPE_INTERRUPT_STATS_PROVIDER }, 4491 { } 4492 }, 4493 }; 4494 4495 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4496 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4497 void *data) \ 4498 { \ 4499 MachineClass *mc = MACHINE_CLASS(oc); \ 4500 spapr_machine_##suffix##_class_options(mc); \ 4501 if (latest) { \ 4502 mc->alias = "pseries"; \ 4503 mc->is_default = 1; \ 4504 } \ 4505 } \ 4506 static const TypeInfo spapr_machine_##suffix##_info = { \ 4507 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4508 .parent = TYPE_SPAPR_MACHINE, \ 4509 .class_init = spapr_machine_##suffix##_class_init, \ 4510 }; \ 4511 static void spapr_machine_register_##suffix(void) \ 4512 { \ 4513 type_register(&spapr_machine_##suffix##_info); \ 4514 } \ 4515 type_init(spapr_machine_register_##suffix) 4516 4517 /* 4518 * pseries-4.2 4519 */ 4520 static void spapr_machine_4_2_class_options(MachineClass *mc) 4521 { 4522 /* Defaults for the latest behaviour inherited from the base class */ 4523 } 4524 4525 DEFINE_SPAPR_MACHINE(4_2, "4.2", true); 4526 4527 /* 4528 * pseries-4.1 4529 */ 4530 static void spapr_machine_4_1_class_options(MachineClass *mc) 4531 { 4532 static GlobalProperty compat[] = { 4533 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4534 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4535 }; 4536 4537 spapr_machine_4_2_class_options(mc); 4538 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4539 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4540 } 4541 4542 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4543 4544 /* 4545 * pseries-4.0 4546 */ 4547 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4548 uint64_t *buid, hwaddr *pio, 4549 hwaddr *mmio32, hwaddr *mmio64, 4550 unsigned n_dma, uint32_t *liobns, 4551 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4552 { 4553 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4554 nv2gpa, nv2atsd, errp); 4555 *nv2gpa = 0; 4556 *nv2atsd = 0; 4557 } 4558 4559 static void spapr_machine_4_0_class_options(MachineClass *mc) 4560 { 4561 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4562 4563 spapr_machine_4_1_class_options(mc); 4564 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4565 smc->phb_placement = phb_placement_4_0; 4566 smc->irq = &spapr_irq_xics; 4567 smc->pre_4_1_migration = true; 4568 } 4569 4570 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4571 4572 /* 4573 * pseries-3.1 4574 */ 4575 static void spapr_machine_3_1_class_options(MachineClass *mc) 4576 { 4577 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4578 4579 spapr_machine_4_0_class_options(mc); 4580 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4581 4582 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4583 smc->update_dt_enabled = false; 4584 smc->dr_phb_enabled = false; 4585 smc->broken_host_serial_model = true; 4586 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4587 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4588 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4589 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4590 } 4591 4592 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4593 4594 /* 4595 * pseries-3.0 4596 */ 4597 4598 static void spapr_machine_3_0_class_options(MachineClass *mc) 4599 { 4600 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4601 4602 spapr_machine_3_1_class_options(mc); 4603 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4604 4605 smc->legacy_irq_allocation = true; 4606 smc->irq = &spapr_irq_xics_legacy; 4607 } 4608 4609 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4610 4611 /* 4612 * pseries-2.12 4613 */ 4614 static void spapr_machine_2_12_class_options(MachineClass *mc) 4615 { 4616 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4617 static GlobalProperty compat[] = { 4618 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4619 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4620 }; 4621 4622 spapr_machine_3_0_class_options(mc); 4623 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4624 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4625 4626 /* We depend on kvm_enabled() to choose a default value for the 4627 * hpt-max-page-size capability. Of course we can't do it here 4628 * because this is too early and the HW accelerator isn't initialzed 4629 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4630 */ 4631 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4632 } 4633 4634 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4635 4636 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4637 { 4638 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4639 4640 spapr_machine_2_12_class_options(mc); 4641 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4642 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4643 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4644 } 4645 4646 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4647 4648 /* 4649 * pseries-2.11 4650 */ 4651 4652 static void spapr_machine_2_11_class_options(MachineClass *mc) 4653 { 4654 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4655 4656 spapr_machine_2_12_class_options(mc); 4657 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4658 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4659 } 4660 4661 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4662 4663 /* 4664 * pseries-2.10 4665 */ 4666 4667 static void spapr_machine_2_10_class_options(MachineClass *mc) 4668 { 4669 spapr_machine_2_11_class_options(mc); 4670 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4671 } 4672 4673 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4674 4675 /* 4676 * pseries-2.9 4677 */ 4678 4679 static void spapr_machine_2_9_class_options(MachineClass *mc) 4680 { 4681 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4682 static GlobalProperty compat[] = { 4683 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4684 }; 4685 4686 spapr_machine_2_10_class_options(mc); 4687 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4688 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4689 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4690 smc->pre_2_10_has_unused_icps = true; 4691 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4692 } 4693 4694 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4695 4696 /* 4697 * pseries-2.8 4698 */ 4699 4700 static void spapr_machine_2_8_class_options(MachineClass *mc) 4701 { 4702 static GlobalProperty compat[] = { 4703 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4704 }; 4705 4706 spapr_machine_2_9_class_options(mc); 4707 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4708 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4709 mc->numa_mem_align_shift = 23; 4710 } 4711 4712 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4713 4714 /* 4715 * pseries-2.7 4716 */ 4717 4718 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4719 uint64_t *buid, hwaddr *pio, 4720 hwaddr *mmio32, hwaddr *mmio64, 4721 unsigned n_dma, uint32_t *liobns, 4722 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4723 { 4724 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4725 const uint64_t base_buid = 0x800000020000000ULL; 4726 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4727 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4728 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4729 const uint32_t max_index = 255; 4730 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4731 4732 uint64_t ram_top = MACHINE(spapr)->ram_size; 4733 hwaddr phb0_base, phb_base; 4734 int i; 4735 4736 /* Do we have device memory? */ 4737 if (MACHINE(spapr)->maxram_size > ram_top) { 4738 /* Can't just use maxram_size, because there may be an 4739 * alignment gap between normal and device memory regions 4740 */ 4741 ram_top = MACHINE(spapr)->device_memory->base + 4742 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4743 } 4744 4745 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4746 4747 if (index > max_index) { 4748 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4749 max_index); 4750 return; 4751 } 4752 4753 *buid = base_buid + index; 4754 for (i = 0; i < n_dma; ++i) { 4755 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4756 } 4757 4758 phb_base = phb0_base + index * phb_spacing; 4759 *pio = phb_base + pio_offset; 4760 *mmio32 = phb_base + mmio_offset; 4761 /* 4762 * We don't set the 64-bit MMIO window, relying on the PHB's 4763 * fallback behaviour of automatically splitting a large "32-bit" 4764 * window into contiguous 32-bit and 64-bit windows 4765 */ 4766 4767 *nv2gpa = 0; 4768 *nv2atsd = 0; 4769 } 4770 4771 static void spapr_machine_2_7_class_options(MachineClass *mc) 4772 { 4773 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4774 static GlobalProperty compat[] = { 4775 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4776 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4777 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4778 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4779 }; 4780 4781 spapr_machine_2_8_class_options(mc); 4782 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4783 mc->default_machine_opts = "modern-hotplug-events=off"; 4784 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4785 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4786 smc->phb_placement = phb_placement_2_7; 4787 } 4788 4789 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4790 4791 /* 4792 * pseries-2.6 4793 */ 4794 4795 static void spapr_machine_2_6_class_options(MachineClass *mc) 4796 { 4797 static GlobalProperty compat[] = { 4798 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4799 }; 4800 4801 spapr_machine_2_7_class_options(mc); 4802 mc->has_hotpluggable_cpus = false; 4803 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4804 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4805 } 4806 4807 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4808 4809 /* 4810 * pseries-2.5 4811 */ 4812 4813 static void spapr_machine_2_5_class_options(MachineClass *mc) 4814 { 4815 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4816 static GlobalProperty compat[] = { 4817 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4818 }; 4819 4820 spapr_machine_2_6_class_options(mc); 4821 smc->use_ohci_by_default = true; 4822 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4823 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4824 } 4825 4826 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4827 4828 /* 4829 * pseries-2.4 4830 */ 4831 4832 static void spapr_machine_2_4_class_options(MachineClass *mc) 4833 { 4834 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4835 4836 spapr_machine_2_5_class_options(mc); 4837 smc->dr_lmb_enabled = false; 4838 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4839 } 4840 4841 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4842 4843 /* 4844 * pseries-2.3 4845 */ 4846 4847 static void spapr_machine_2_3_class_options(MachineClass *mc) 4848 { 4849 static GlobalProperty compat[] = { 4850 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4851 }; 4852 spapr_machine_2_4_class_options(mc); 4853 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4854 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4855 } 4856 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4857 4858 /* 4859 * pseries-2.2 4860 */ 4861 4862 static void spapr_machine_2_2_class_options(MachineClass *mc) 4863 { 4864 static GlobalProperty compat[] = { 4865 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4866 }; 4867 4868 spapr_machine_2_3_class_options(mc); 4869 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4870 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4871 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4872 } 4873 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4874 4875 /* 4876 * pseries-2.1 4877 */ 4878 4879 static void spapr_machine_2_1_class_options(MachineClass *mc) 4880 { 4881 spapr_machine_2_2_class_options(mc); 4882 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4883 } 4884 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4885 4886 static void spapr_machine_register_types(void) 4887 { 4888 type_register_static(&spapr_machine_info); 4889 } 4890 4891 type_init(spapr_machine_register_types) 4892