xref: /openbmc/qemu/hw/ppc/spapr.c (revision 31eb7ddd)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "qom/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 
84 #include <libfdt.h>
85 
86 /* SLOF memory layout:
87  *
88  * SLOF raw image loaded at 0, copies its romfs right below the flat
89  * device-tree, then position SLOF itself 31M below that
90  *
91  * So we set FW_OVERHEAD to 40MB which should account for all of that
92  * and more
93  *
94  * We load our kernel at 4M, leaving space for SLOF initial image
95  */
96 #define FDT_MAX_SIZE            0x100000
97 #define RTAS_MAX_SIZE           0x10000
98 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
99 #define FW_MAX_SIZE             0x400000
100 #define FW_FILE_NAME            "slof.bin"
101 #define FW_OVERHEAD             0x2800000
102 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
103 
104 #define MIN_RMA_SLOF            128UL
105 
106 #define PHANDLE_INTC            0x00001111
107 
108 /* These two functions implement the VCPU id numbering: one to compute them
109  * all and one to identify thread 0 of a VCORE. Any change to the first one
110  * is likely to have an impact on the second one, so let's keep them close.
111  */
112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
113 {
114     MachineState *ms = MACHINE(spapr);
115     unsigned int smp_threads = ms->smp.threads;
116 
117     assert(spapr->vsmt);
118     return
119         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
120 }
121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
122                                       PowerPCCPU *cpu)
123 {
124     assert(spapr->vsmt);
125     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
126 }
127 
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
129 {
130     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131      * and newer QEMUs don't even have them. In both cases, we don't want
132      * to send anything on the wire.
133      */
134     return false;
135 }
136 
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138     .name = "icp/server",
139     .version_id = 1,
140     .minimum_version_id = 1,
141     .needed = pre_2_10_vmstate_dummy_icp_needed,
142     .fields = (VMStateField[]) {
143         VMSTATE_UNUSED(4), /* uint32_t xirr */
144         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145         VMSTATE_UNUSED(1), /* uint8_t mfrr */
146         VMSTATE_END_OF_LIST()
147     },
148 };
149 
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
151 {
152     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153                      (void *)(uintptr_t) i);
154 }
155 
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
157 {
158     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159                        (void *)(uintptr_t) i);
160 }
161 
162 int spapr_max_server_number(SpaprMachineState *spapr)
163 {
164     MachineState *ms = MACHINE(spapr);
165 
166     assert(spapr->vsmt);
167     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
168 }
169 
170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
171                                   int smt_threads)
172 {
173     int i, ret = 0;
174     uint32_t servers_prop[smt_threads];
175     uint32_t gservers_prop[smt_threads * 2];
176     int index = spapr_get_vcpu_id(cpu);
177 
178     if (cpu->compat_pvr) {
179         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
180         if (ret < 0) {
181             return ret;
182         }
183     }
184 
185     /* Build interrupt servers and gservers properties */
186     for (i = 0; i < smt_threads; i++) {
187         servers_prop[i] = cpu_to_be32(index + i);
188         /* Hack, direct the group queues back to cpu 0 */
189         gservers_prop[i*2] = cpu_to_be32(index + i);
190         gservers_prop[i*2 + 1] = 0;
191     }
192     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
193                       servers_prop, sizeof(servers_prop));
194     if (ret < 0) {
195         return ret;
196     }
197     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
198                       gservers_prop, sizeof(gservers_prop));
199 
200     return ret;
201 }
202 
203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
204 {
205     int index = spapr_get_vcpu_id(cpu);
206     uint32_t associativity[] = {cpu_to_be32(0x5),
207                                 cpu_to_be32(0x0),
208                                 cpu_to_be32(0x0),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(cpu->node_id),
211                                 cpu_to_be32(index)};
212 
213     /* Advertise NUMA via ibm,associativity */
214     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
215                           sizeof(associativity));
216 }
217 
218 /* Populate the "ibm,pa-features" property */
219 static void spapr_populate_pa_features(SpaprMachineState *spapr,
220                                        PowerPCCPU *cpu,
221                                        void *fdt, int offset,
222                                        bool legacy_guest)
223 {
224     uint8_t pa_features_206[] = { 6, 0,
225         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226     uint8_t pa_features_207[] = { 24, 0,
227         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231     uint8_t pa_features_300[] = { 66, 0,
232         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235         /* 6: DS207 */
236         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237         /* 16: Vector */
238         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247         /* 42: PM, 44: PC RA, 46: SC vec'd */
248         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249         /* 48: SIMD, 50: QP BFP, 52: String */
250         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251         /* 54: DecFP, 56: DecI, 58: SHA */
252         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253         /* 60: NM atomic, 62: RNG */
254         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255     };
256     uint8_t *pa_features = NULL;
257     size_t pa_size;
258 
259     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260         pa_features = pa_features_206;
261         pa_size = sizeof(pa_features_206);
262     }
263     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264         pa_features = pa_features_207;
265         pa_size = sizeof(pa_features_207);
266     }
267     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268         pa_features = pa_features_300;
269         pa_size = sizeof(pa_features_300);
270     }
271     if (!pa_features) {
272         return;
273     }
274 
275     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276         /*
277          * Note: we keep CI large pages off by default because a 64K capable
278          * guest provisioned with large pages might otherwise try to map a qemu
279          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280          * even if that qemu runs on a 4k host.
281          * We dd this bit back here if we are confident this is not an issue
282          */
283         pa_features[3] |= 0x20;
284     }
285     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286         pa_features[24] |= 0x80;    /* Transactional memory support */
287     }
288     if (legacy_guest && pa_size > 40) {
289         /* Workaround for broken kernels that attempt (guest) radix
290          * mode when they can't handle it, if they see the radix bit set
291          * in pa-features. So hide it from them. */
292         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293     }
294 
295     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297 
298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
299 {
300     MachineState *ms = MACHINE(spapr);
301     int ret = 0, offset, cpus_offset;
302     CPUState *cs;
303     char cpu_model[32];
304     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
305 
306     CPU_FOREACH(cs) {
307         PowerPCCPU *cpu = POWERPC_CPU(cs);
308         DeviceClass *dc = DEVICE_GET_CLASS(cs);
309         int index = spapr_get_vcpu_id(cpu);
310         int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
311 
312         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
313             continue;
314         }
315 
316         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
317 
318         cpus_offset = fdt_path_offset(fdt, "/cpus");
319         if (cpus_offset < 0) {
320             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
321             if (cpus_offset < 0) {
322                 return cpus_offset;
323             }
324         }
325         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
326         if (offset < 0) {
327             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
328             if (offset < 0) {
329                 return offset;
330             }
331         }
332 
333         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
334                           pft_size_prop, sizeof(pft_size_prop));
335         if (ret < 0) {
336             return ret;
337         }
338 
339         if (nb_numa_nodes > 1) {
340             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
341             if (ret < 0) {
342                 return ret;
343             }
344         }
345 
346         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
347         if (ret < 0) {
348             return ret;
349         }
350 
351         spapr_populate_pa_features(spapr, cpu, fdt, offset,
352                                    spapr->cas_legacy_guest_workaround);
353     }
354     return ret;
355 }
356 
357 static hwaddr spapr_node0_size(MachineState *machine)
358 {
359     if (nb_numa_nodes) {
360         int i;
361         for (i = 0; i < nb_numa_nodes; ++i) {
362             if (numa_info[i].node_mem) {
363                 return MIN(pow2floor(numa_info[i].node_mem),
364                            machine->ram_size);
365             }
366         }
367     }
368     return machine->ram_size;
369 }
370 
371 static void add_str(GString *s, const gchar *s1)
372 {
373     g_string_append_len(s, s1, strlen(s1) + 1);
374 }
375 
376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
377                                        hwaddr size)
378 {
379     uint32_t associativity[] = {
380         cpu_to_be32(0x4), /* length */
381         cpu_to_be32(0x0), cpu_to_be32(0x0),
382         cpu_to_be32(0x0), cpu_to_be32(nodeid)
383     };
384     char mem_name[32];
385     uint64_t mem_reg_property[2];
386     int off;
387 
388     mem_reg_property[0] = cpu_to_be64(start);
389     mem_reg_property[1] = cpu_to_be64(size);
390 
391     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
392     off = fdt_add_subnode(fdt, 0, mem_name);
393     _FDT(off);
394     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
395     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
396                       sizeof(mem_reg_property))));
397     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
398                       sizeof(associativity))));
399     return off;
400 }
401 
402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
403 {
404     MachineState *machine = MACHINE(spapr);
405     hwaddr mem_start, node_size;
406     int i, nb_nodes = nb_numa_nodes;
407     NodeInfo *nodes = numa_info;
408     NodeInfo ramnode;
409 
410     /* No NUMA nodes, assume there is just one node with whole RAM */
411     if (!nb_numa_nodes) {
412         nb_nodes = 1;
413         ramnode.node_mem = machine->ram_size;
414         nodes = &ramnode;
415     }
416 
417     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
418         if (!nodes[i].node_mem) {
419             continue;
420         }
421         if (mem_start >= machine->ram_size) {
422             node_size = 0;
423         } else {
424             node_size = nodes[i].node_mem;
425             if (node_size > machine->ram_size - mem_start) {
426                 node_size = machine->ram_size - mem_start;
427             }
428         }
429         if (!mem_start) {
430             /* spapr_machine_init() checks for rma_size <= node0_size
431              * already */
432             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
433             mem_start += spapr->rma_size;
434             node_size -= spapr->rma_size;
435         }
436         for ( ; node_size; ) {
437             hwaddr sizetmp = pow2floor(node_size);
438 
439             /* mem_start != 0 here */
440             if (ctzl(mem_start) < ctzl(sizetmp)) {
441                 sizetmp = 1ULL << ctzl(mem_start);
442             }
443 
444             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
445             node_size -= sizetmp;
446             mem_start += sizetmp;
447         }
448     }
449 
450     return 0;
451 }
452 
453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
454                                   SpaprMachineState *spapr)
455 {
456     MachineState *ms = MACHINE(spapr);
457     PowerPCCPU *cpu = POWERPC_CPU(cs);
458     CPUPPCState *env = &cpu->env;
459     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
460     int index = spapr_get_vcpu_id(cpu);
461     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
462                        0xffffffff, 0xffffffff};
463     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
464         : SPAPR_TIMEBASE_FREQ;
465     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
466     uint32_t page_sizes_prop[64];
467     size_t page_sizes_prop_size;
468     unsigned int smp_threads = ms->smp.threads;
469     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
470     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
471     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
472     SpaprDrc *drc;
473     int drc_index;
474     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
475     int i;
476 
477     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
478     if (drc) {
479         drc_index = spapr_drc_index(drc);
480         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
481     }
482 
483     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
484     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
485 
486     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
487     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
488                            env->dcache_line_size)));
489     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
490                            env->dcache_line_size)));
491     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
492                            env->icache_line_size)));
493     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
494                            env->icache_line_size)));
495 
496     if (pcc->l1_dcache_size) {
497         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
498                                pcc->l1_dcache_size)));
499     } else {
500         warn_report("Unknown L1 dcache size for cpu");
501     }
502     if (pcc->l1_icache_size) {
503         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
504                                pcc->l1_icache_size)));
505     } else {
506         warn_report("Unknown L1 icache size for cpu");
507     }
508 
509     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
510     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
511     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
512     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
513     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
514     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
515 
516     if (env->spr_cb[SPR_PURR].oea_read) {
517         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
518     }
519     if (env->spr_cb[SPR_SPURR].oea_read) {
520         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
521     }
522 
523     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
524         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
525                           segs, sizeof(segs))));
526     }
527 
528     /* Advertise VSX (vector extensions) if available
529      *   1               == VMX / Altivec available
530      *   2               == VSX available
531      *
532      * Only CPUs for which we create core types in spapr_cpu_core.c
533      * are possible, and all of those have VMX */
534     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
535         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
536     } else {
537         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
538     }
539 
540     /* Advertise DFP (Decimal Floating Point) if available
541      *   0 / no property == no DFP
542      *   1               == DFP available */
543     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
544         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
545     }
546 
547     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
548                                                       sizeof(page_sizes_prop));
549     if (page_sizes_prop_size) {
550         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
551                           page_sizes_prop, page_sizes_prop_size)));
552     }
553 
554     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
555 
556     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
557                            cs->cpu_index / vcpus_per_socket)));
558 
559     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
560                       pft_size_prop, sizeof(pft_size_prop))));
561 
562     if (nb_numa_nodes > 1) {
563         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
564     }
565 
566     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
567 
568     if (pcc->radix_page_info) {
569         for (i = 0; i < pcc->radix_page_info->count; i++) {
570             radix_AP_encodings[i] =
571                 cpu_to_be32(pcc->radix_page_info->entries[i]);
572         }
573         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
574                           radix_AP_encodings,
575                           pcc->radix_page_info->count *
576                           sizeof(radix_AP_encodings[0]))));
577     }
578 
579     /*
580      * We set this property to let the guest know that it can use the large
581      * decrementer and its width in bits.
582      */
583     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
584         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
585                               pcc->lrg_decr_bits)));
586 }
587 
588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
589 {
590     CPUState **rev;
591     CPUState *cs;
592     int n_cpus;
593     int cpus_offset;
594     char *nodename;
595     int i;
596 
597     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
598     _FDT(cpus_offset);
599     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
600     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
601 
602     /*
603      * We walk the CPUs in reverse order to ensure that CPU DT nodes
604      * created by fdt_add_subnode() end up in the right order in FDT
605      * for the guest kernel the enumerate the CPUs correctly.
606      *
607      * The CPU list cannot be traversed in reverse order, so we need
608      * to do extra work.
609      */
610     n_cpus = 0;
611     rev = NULL;
612     CPU_FOREACH(cs) {
613         rev = g_renew(CPUState *, rev, n_cpus + 1);
614         rev[n_cpus++] = cs;
615     }
616 
617     for (i = n_cpus - 1; i >= 0; i--) {
618         CPUState *cs = rev[i];
619         PowerPCCPU *cpu = POWERPC_CPU(cs);
620         int index = spapr_get_vcpu_id(cpu);
621         DeviceClass *dc = DEVICE_GET_CLASS(cs);
622         int offset;
623 
624         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
625             continue;
626         }
627 
628         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
629         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
630         g_free(nodename);
631         _FDT(offset);
632         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
633     }
634 
635     g_free(rev);
636 }
637 
638 static int spapr_rng_populate_dt(void *fdt)
639 {
640     int node;
641     int ret;
642 
643     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
644     if (node <= 0) {
645         return -1;
646     }
647     ret = fdt_setprop_string(fdt, node, "device_type",
648                              "ibm,platform-facilities");
649     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
650     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
651 
652     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
653     if (node <= 0) {
654         return -1;
655     }
656     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
657 
658     return ret ? -1 : 0;
659 }
660 
661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
662 {
663     MemoryDeviceInfoList *info;
664 
665     for (info = list; info; info = info->next) {
666         MemoryDeviceInfo *value = info->value;
667 
668         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
669             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
670 
671             if (addr >= pcdimm_info->addr &&
672                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
673                 return pcdimm_info->node;
674             }
675         }
676     }
677 
678     return -1;
679 }
680 
681 struct sPAPRDrconfCellV2 {
682      uint32_t seq_lmbs;
683      uint64_t base_addr;
684      uint32_t drc_index;
685      uint32_t aa_index;
686      uint32_t flags;
687 } QEMU_PACKED;
688 
689 typedef struct DrconfCellQueue {
690     struct sPAPRDrconfCellV2 cell;
691     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
692 } DrconfCellQueue;
693 
694 static DrconfCellQueue *
695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
696                       uint32_t drc_index, uint32_t aa_index,
697                       uint32_t flags)
698 {
699     DrconfCellQueue *elem;
700 
701     elem = g_malloc0(sizeof(*elem));
702     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
703     elem->cell.base_addr = cpu_to_be64(base_addr);
704     elem->cell.drc_index = cpu_to_be32(drc_index);
705     elem->cell.aa_index = cpu_to_be32(aa_index);
706     elem->cell.flags = cpu_to_be32(flags);
707 
708     return elem;
709 }
710 
711 /* ibm,dynamic-memory-v2 */
712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
713                                    int offset, MemoryDeviceInfoList *dimms)
714 {
715     MachineState *machine = MACHINE(spapr);
716     uint8_t *int_buf, *cur_index;
717     int ret;
718     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
719     uint64_t addr, cur_addr, size;
720     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
721     uint64_t mem_end = machine->device_memory->base +
722                        memory_region_size(&machine->device_memory->mr);
723     uint32_t node, buf_len, nr_entries = 0;
724     SpaprDrc *drc;
725     DrconfCellQueue *elem, *next;
726     MemoryDeviceInfoList *info;
727     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
728         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
729 
730     /* Entry to cover RAM and the gap area */
731     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
732                                  SPAPR_LMB_FLAGS_RESERVED |
733                                  SPAPR_LMB_FLAGS_DRC_INVALID);
734     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735     nr_entries++;
736 
737     cur_addr = machine->device_memory->base;
738     for (info = dimms; info; info = info->next) {
739         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
740 
741         addr = di->addr;
742         size = di->size;
743         node = di->node;
744 
745         /* Entry for hot-pluggable area */
746         if (cur_addr < addr) {
747             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
748             g_assert(drc);
749             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
750                                          cur_addr, spapr_drc_index(drc), -1, 0);
751             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
752             nr_entries++;
753         }
754 
755         /* Entry for DIMM */
756         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
757         g_assert(drc);
758         elem = spapr_get_drconf_cell(size / lmb_size, addr,
759                                      spapr_drc_index(drc), node,
760                                      SPAPR_LMB_FLAGS_ASSIGNED);
761         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762         nr_entries++;
763         cur_addr = addr + size;
764     }
765 
766     /* Entry for remaining hotpluggable area */
767     if (cur_addr < mem_end) {
768         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
769         g_assert(drc);
770         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
771                                      cur_addr, spapr_drc_index(drc), -1, 0);
772         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
773         nr_entries++;
774     }
775 
776     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
777     int_buf = cur_index = g_malloc0(buf_len);
778     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
779     cur_index += sizeof(nr_entries);
780 
781     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
782         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
783         cur_index += sizeof(elem->cell);
784         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
785         g_free(elem);
786     }
787 
788     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
789     g_free(int_buf);
790     if (ret < 0) {
791         return -1;
792     }
793     return 0;
794 }
795 
796 /* ibm,dynamic-memory */
797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
798                                    int offset, MemoryDeviceInfoList *dimms)
799 {
800     MachineState *machine = MACHINE(spapr);
801     int i, ret;
802     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
803     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
804     uint32_t nr_lmbs = (machine->device_memory->base +
805                        memory_region_size(&machine->device_memory->mr)) /
806                        lmb_size;
807     uint32_t *int_buf, *cur_index, buf_len;
808 
809     /*
810      * Allocate enough buffer size to fit in ibm,dynamic-memory
811      */
812     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
813     cur_index = int_buf = g_malloc0(buf_len);
814     int_buf[0] = cpu_to_be32(nr_lmbs);
815     cur_index++;
816     for (i = 0; i < nr_lmbs; i++) {
817         uint64_t addr = i * lmb_size;
818         uint32_t *dynamic_memory = cur_index;
819 
820         if (i >= device_lmb_start) {
821             SpaprDrc *drc;
822 
823             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
824             g_assert(drc);
825 
826             dynamic_memory[0] = cpu_to_be32(addr >> 32);
827             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
828             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
829             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
830             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
831             if (memory_region_present(get_system_memory(), addr)) {
832                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
833             } else {
834                 dynamic_memory[5] = cpu_to_be32(0);
835             }
836         } else {
837             /*
838              * LMB information for RMA, boot time RAM and gap b/n RAM and
839              * device memory region -- all these are marked as reserved
840              * and as having no valid DRC.
841              */
842             dynamic_memory[0] = cpu_to_be32(addr >> 32);
843             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
844             dynamic_memory[2] = cpu_to_be32(0);
845             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
846             dynamic_memory[4] = cpu_to_be32(-1);
847             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
848                                             SPAPR_LMB_FLAGS_DRC_INVALID);
849         }
850 
851         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
852     }
853     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
854     g_free(int_buf);
855     if (ret < 0) {
856         return -1;
857     }
858     return 0;
859 }
860 
861 /*
862  * Adds ibm,dynamic-reconfiguration-memory node.
863  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
864  * of this device tree node.
865  */
866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
867 {
868     MachineState *machine = MACHINE(spapr);
869     int ret, i, offset;
870     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
871     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
872     uint32_t *int_buf, *cur_index, buf_len;
873     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
874     MemoryDeviceInfoList *dimms = NULL;
875 
876     /*
877      * Don't create the node if there is no device memory
878      */
879     if (machine->ram_size == machine->maxram_size) {
880         return 0;
881     }
882 
883     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
884 
885     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
886                     sizeof(prop_lmb_size));
887     if (ret < 0) {
888         return ret;
889     }
890 
891     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
892     if (ret < 0) {
893         return ret;
894     }
895 
896     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
897     if (ret < 0) {
898         return ret;
899     }
900 
901     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
902     dimms = qmp_memory_device_list();
903     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
904         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
905     } else {
906         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
907     }
908     qapi_free_MemoryDeviceInfoList(dimms);
909 
910     if (ret < 0) {
911         return ret;
912     }
913 
914     /* ibm,associativity-lookup-arrays */
915     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
916     cur_index = int_buf = g_malloc0(buf_len);
917     int_buf[0] = cpu_to_be32(nr_nodes);
918     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
919     cur_index += 2;
920     for (i = 0; i < nr_nodes; i++) {
921         uint32_t associativity[] = {
922             cpu_to_be32(0x0),
923             cpu_to_be32(0x0),
924             cpu_to_be32(0x0),
925             cpu_to_be32(i)
926         };
927         memcpy(cur_index, associativity, sizeof(associativity));
928         cur_index += 4;
929     }
930     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
931             (cur_index - int_buf) * sizeof(uint32_t));
932     g_free(int_buf);
933 
934     return ret;
935 }
936 
937 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
938                                 SpaprOptionVector *ov5_updates)
939 {
940     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
941     int ret = 0, offset;
942 
943     /* Generate ibm,dynamic-reconfiguration-memory node if required */
944     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
945         g_assert(smc->dr_lmb_enabled);
946         ret = spapr_populate_drconf_memory(spapr, fdt);
947         if (ret) {
948             goto out;
949         }
950     }
951 
952     offset = fdt_path_offset(fdt, "/chosen");
953     if (offset < 0) {
954         offset = fdt_add_subnode(fdt, 0, "chosen");
955         if (offset < 0) {
956             return offset;
957         }
958     }
959     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
960                                  "ibm,architecture-vec-5");
961 
962 out:
963     return ret;
964 }
965 
966 static bool spapr_hotplugged_dev_before_cas(void)
967 {
968     Object *drc_container, *obj;
969     ObjectProperty *prop;
970     ObjectPropertyIterator iter;
971 
972     drc_container = container_get(object_get_root(), "/dr-connector");
973     object_property_iter_init(&iter, drc_container);
974     while ((prop = object_property_iter_next(&iter))) {
975         if (!strstart(prop->type, "link<", NULL)) {
976             continue;
977         }
978         obj = object_property_get_link(drc_container, prop->name, NULL);
979         if (spapr_drc_needed(obj)) {
980             return true;
981         }
982     }
983     return false;
984 }
985 
986 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
987                                  target_ulong addr, target_ulong size,
988                                  SpaprOptionVector *ov5_updates)
989 {
990     void *fdt, *fdt_skel;
991     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
992 
993     if (spapr_hotplugged_dev_before_cas()) {
994         return 1;
995     }
996 
997     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
998         error_report("SLOF provided an unexpected CAS buffer size "
999                      TARGET_FMT_lu " (min: %zu, max: %u)",
1000                      size, sizeof(hdr), FW_MAX_SIZE);
1001         exit(EXIT_FAILURE);
1002     }
1003 
1004     size -= sizeof(hdr);
1005 
1006     /* Create skeleton */
1007     fdt_skel = g_malloc0(size);
1008     _FDT((fdt_create(fdt_skel, size)));
1009     _FDT((fdt_finish_reservemap(fdt_skel)));
1010     _FDT((fdt_begin_node(fdt_skel, "")));
1011     _FDT((fdt_end_node(fdt_skel)));
1012     _FDT((fdt_finish(fdt_skel)));
1013     fdt = g_malloc0(size);
1014     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1015     g_free(fdt_skel);
1016 
1017     /* Fixup cpu nodes */
1018     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1019 
1020     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1021         return -1;
1022     }
1023 
1024     /* Pack resulting tree */
1025     _FDT((fdt_pack(fdt)));
1026 
1027     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1028         trace_spapr_cas_failed(size);
1029         return -1;
1030     }
1031 
1032     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1033     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1034     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1035     g_free(fdt);
1036 
1037     return 0;
1038 }
1039 
1040 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1041 {
1042     MachineState *ms = MACHINE(spapr);
1043     int rtas;
1044     GString *hypertas = g_string_sized_new(256);
1045     GString *qemu_hypertas = g_string_sized_new(256);
1046     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1047     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1048         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1049     uint32_t lrdr_capacity[] = {
1050         cpu_to_be32(max_device_addr >> 32),
1051         cpu_to_be32(max_device_addr & 0xffffffff),
1052         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1053         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1054     };
1055     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1056     uint32_t maxdomains[] = {
1057         cpu_to_be32(4),
1058         maxdomain,
1059         maxdomain,
1060         maxdomain,
1061         cpu_to_be32(spapr->gpu_numa_id),
1062     };
1063 
1064     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1065 
1066     /* hypertas */
1067     add_str(hypertas, "hcall-pft");
1068     add_str(hypertas, "hcall-term");
1069     add_str(hypertas, "hcall-dabr");
1070     add_str(hypertas, "hcall-interrupt");
1071     add_str(hypertas, "hcall-tce");
1072     add_str(hypertas, "hcall-vio");
1073     add_str(hypertas, "hcall-splpar");
1074     add_str(hypertas, "hcall-join");
1075     add_str(hypertas, "hcall-bulk");
1076     add_str(hypertas, "hcall-set-mode");
1077     add_str(hypertas, "hcall-sprg0");
1078     add_str(hypertas, "hcall-copy");
1079     add_str(hypertas, "hcall-debug");
1080     add_str(hypertas, "hcall-vphn");
1081     add_str(qemu_hypertas, "hcall-memop1");
1082 
1083     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1084         add_str(hypertas, "hcall-multi-tce");
1085     }
1086 
1087     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1088         add_str(hypertas, "hcall-hpt-resize");
1089     }
1090 
1091     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1092                      hypertas->str, hypertas->len));
1093     g_string_free(hypertas, TRUE);
1094     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1095                      qemu_hypertas->str, qemu_hypertas->len));
1096     g_string_free(qemu_hypertas, TRUE);
1097 
1098     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1099                      refpoints, sizeof(refpoints)));
1100 
1101     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1102                      maxdomains, sizeof(maxdomains)));
1103 
1104     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1105                           RTAS_ERROR_LOG_MAX));
1106     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1107                           RTAS_EVENT_SCAN_RATE));
1108 
1109     g_assert(msi_nonbroken);
1110     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1111 
1112     /*
1113      * According to PAPR, rtas ibm,os-term does not guarantee a return
1114      * back to the guest cpu.
1115      *
1116      * While an additional ibm,extended-os-term property indicates
1117      * that rtas call return will always occur. Set this property.
1118      */
1119     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1120 
1121     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1122                      lrdr_capacity, sizeof(lrdr_capacity)));
1123 
1124     spapr_dt_rtas_tokens(fdt, rtas);
1125 }
1126 
1127 /*
1128  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1129  * and the XIVE features that the guest may request and thus the valid
1130  * values for bytes 23..26 of option vector 5:
1131  */
1132 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1133                                           int chosen)
1134 {
1135     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1136 
1137     char val[2 * 4] = {
1138         23, spapr->irq->ov5, /* Xive mode. */
1139         24, 0x00, /* Hash/Radix, filled in below. */
1140         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1141         26, 0x40, /* Radix options: GTSE == yes. */
1142     };
1143 
1144     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1145                           first_ppc_cpu->compat_pvr)) {
1146         /*
1147          * If we're in a pre POWER9 compat mode then the guest should
1148          * do hash and use the legacy interrupt mode
1149          */
1150         val[1] = 0x00; /* XICS */
1151         val[3] = 0x00; /* Hash */
1152     } else if (kvm_enabled()) {
1153         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1154             val[3] = 0x80; /* OV5_MMU_BOTH */
1155         } else if (kvmppc_has_cap_mmu_radix()) {
1156             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1157         } else {
1158             val[3] = 0x00; /* Hash */
1159         }
1160     } else {
1161         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1162         val[3] = 0xC0;
1163     }
1164     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1165                      val, sizeof(val)));
1166 }
1167 
1168 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1169 {
1170     MachineState *machine = MACHINE(spapr);
1171     int chosen;
1172     const char *boot_device = machine->boot_order;
1173     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1174     size_t cb = 0;
1175     char *bootlist = get_boot_devices_list(&cb);
1176 
1177     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1178 
1179     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1180     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1181                           spapr->initrd_base));
1182     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1183                           spapr->initrd_base + spapr->initrd_size));
1184 
1185     if (spapr->kernel_size) {
1186         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1187                               cpu_to_be64(spapr->kernel_size) };
1188 
1189         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1190                          &kprop, sizeof(kprop)));
1191         if (spapr->kernel_le) {
1192             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1193         }
1194     }
1195     if (boot_menu) {
1196         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1197     }
1198     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1199     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1200     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1201 
1202     if (cb && bootlist) {
1203         int i;
1204 
1205         for (i = 0; i < cb; i++) {
1206             if (bootlist[i] == '\n') {
1207                 bootlist[i] = ' ';
1208             }
1209         }
1210         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1211     }
1212 
1213     if (boot_device && strlen(boot_device)) {
1214         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1215     }
1216 
1217     if (!spapr->has_graphics && stdout_path) {
1218         /*
1219          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1220          * kernel. New platforms should only use the "stdout-path" property. Set
1221          * the new property and continue using older property to remain
1222          * compatible with the existing firmware.
1223          */
1224         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1225         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1226     }
1227 
1228     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1229 
1230     g_free(stdout_path);
1231     g_free(bootlist);
1232 }
1233 
1234 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1235 {
1236     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1237      * KVM to work under pHyp with some guest co-operation */
1238     int hypervisor;
1239     uint8_t hypercall[16];
1240 
1241     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1242     /* indicate KVM hypercall interface */
1243     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1244     if (kvmppc_has_cap_fixup_hcalls()) {
1245         /*
1246          * Older KVM versions with older guest kernels were broken
1247          * with the magic page, don't allow the guest to map it.
1248          */
1249         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1250                                   sizeof(hypercall))) {
1251             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1252                              hypercall, sizeof(hypercall)));
1253         }
1254     }
1255 }
1256 
1257 static void *spapr_build_fdt(SpaprMachineState *spapr)
1258 {
1259     MachineState *machine = MACHINE(spapr);
1260     MachineClass *mc = MACHINE_GET_CLASS(machine);
1261     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1262     int ret;
1263     void *fdt;
1264     SpaprPhbState *phb;
1265     char *buf;
1266 
1267     fdt = g_malloc0(FDT_MAX_SIZE);
1268     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1269 
1270     /* Root node */
1271     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1272     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1273     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1274 
1275     /* Guest UUID & Name*/
1276     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1277     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1278     if (qemu_uuid_set) {
1279         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1280     }
1281     g_free(buf);
1282 
1283     if (qemu_get_vm_name()) {
1284         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1285                                 qemu_get_vm_name()));
1286     }
1287 
1288     /* Host Model & Serial Number */
1289     if (spapr->host_model) {
1290         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1291     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1292         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1293         g_free(buf);
1294     }
1295 
1296     if (spapr->host_serial) {
1297         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1298     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1299         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1300         g_free(buf);
1301     }
1302 
1303     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1304     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1305 
1306     /* /interrupt controller */
1307     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1308                           PHANDLE_INTC);
1309 
1310     ret = spapr_populate_memory(spapr, fdt);
1311     if (ret < 0) {
1312         error_report("couldn't setup memory nodes in fdt");
1313         exit(1);
1314     }
1315 
1316     /* /vdevice */
1317     spapr_dt_vdevice(spapr->vio_bus, fdt);
1318 
1319     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1320         ret = spapr_rng_populate_dt(fdt);
1321         if (ret < 0) {
1322             error_report("could not set up rng device in the fdt");
1323             exit(1);
1324         }
1325     }
1326 
1327     QLIST_FOREACH(phb, &spapr->phbs, list) {
1328         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1329         if (ret < 0) {
1330             error_report("couldn't setup PCI devices in fdt");
1331             exit(1);
1332         }
1333     }
1334 
1335     /* cpus */
1336     spapr_populate_cpus_dt_node(fdt, spapr);
1337 
1338     if (smc->dr_lmb_enabled) {
1339         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1340     }
1341 
1342     if (mc->has_hotpluggable_cpus) {
1343         int offset = fdt_path_offset(fdt, "/cpus");
1344         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1345         if (ret < 0) {
1346             error_report("Couldn't set up CPU DR device tree properties");
1347             exit(1);
1348         }
1349     }
1350 
1351     /* /event-sources */
1352     spapr_dt_events(spapr, fdt);
1353 
1354     /* /rtas */
1355     spapr_dt_rtas(spapr, fdt);
1356 
1357     /* /chosen */
1358     spapr_dt_chosen(spapr, fdt);
1359 
1360     /* /hypervisor */
1361     if (kvm_enabled()) {
1362         spapr_dt_hypervisor(spapr, fdt);
1363     }
1364 
1365     /* Build memory reserve map */
1366     if (spapr->kernel_size) {
1367         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1368     }
1369     if (spapr->initrd_size) {
1370         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1371     }
1372 
1373     /* ibm,client-architecture-support updates */
1374     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1375     if (ret < 0) {
1376         error_report("couldn't setup CAS properties fdt");
1377         exit(1);
1378     }
1379 
1380     if (smc->dr_phb_enabled) {
1381         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1382         if (ret < 0) {
1383             error_report("Couldn't set up PHB DR device tree properties");
1384             exit(1);
1385         }
1386     }
1387 
1388     return fdt;
1389 }
1390 
1391 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1392 {
1393     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1394 }
1395 
1396 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1397                                     PowerPCCPU *cpu)
1398 {
1399     CPUPPCState *env = &cpu->env;
1400 
1401     /* The TCG path should also be holding the BQL at this point */
1402     g_assert(qemu_mutex_iothread_locked());
1403 
1404     if (msr_pr) {
1405         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1406         env->gpr[3] = H_PRIVILEGE;
1407     } else {
1408         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1409     }
1410 }
1411 
1412 struct LPCRSyncState {
1413     target_ulong value;
1414     target_ulong mask;
1415 };
1416 
1417 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1418 {
1419     struct LPCRSyncState *s = arg.host_ptr;
1420     PowerPCCPU *cpu = POWERPC_CPU(cs);
1421     CPUPPCState *env = &cpu->env;
1422     target_ulong lpcr;
1423 
1424     cpu_synchronize_state(cs);
1425     lpcr = env->spr[SPR_LPCR];
1426     lpcr &= ~s->mask;
1427     lpcr |= s->value;
1428     ppc_store_lpcr(cpu, lpcr);
1429 }
1430 
1431 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1432 {
1433     CPUState *cs;
1434     struct LPCRSyncState s = {
1435         .value = value,
1436         .mask = mask
1437     };
1438     CPU_FOREACH(cs) {
1439         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1440     }
1441 }
1442 
1443 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1444 {
1445     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1446 
1447     /* Copy PATE1:GR into PATE0:HR */
1448     entry->dw0 = spapr->patb_entry & PATE0_HR;
1449     entry->dw1 = spapr->patb_entry;
1450 }
1451 
1452 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1453 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1454 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1455 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1456 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1457 
1458 /*
1459  * Get the fd to access the kernel htab, re-opening it if necessary
1460  */
1461 static int get_htab_fd(SpaprMachineState *spapr)
1462 {
1463     Error *local_err = NULL;
1464 
1465     if (spapr->htab_fd >= 0) {
1466         return spapr->htab_fd;
1467     }
1468 
1469     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1470     if (spapr->htab_fd < 0) {
1471         error_report_err(local_err);
1472     }
1473 
1474     return spapr->htab_fd;
1475 }
1476 
1477 void close_htab_fd(SpaprMachineState *spapr)
1478 {
1479     if (spapr->htab_fd >= 0) {
1480         close(spapr->htab_fd);
1481     }
1482     spapr->htab_fd = -1;
1483 }
1484 
1485 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1486 {
1487     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1488 
1489     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1490 }
1491 
1492 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1493 {
1494     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1495 
1496     assert(kvm_enabled());
1497 
1498     if (!spapr->htab) {
1499         return 0;
1500     }
1501 
1502     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1503 }
1504 
1505 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1506                                                 hwaddr ptex, int n)
1507 {
1508     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1509     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1510 
1511     if (!spapr->htab) {
1512         /*
1513          * HTAB is controlled by KVM. Fetch into temporary buffer
1514          */
1515         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1516         kvmppc_read_hptes(hptes, ptex, n);
1517         return hptes;
1518     }
1519 
1520     /*
1521      * HTAB is controlled by QEMU. Just point to the internally
1522      * accessible PTEG.
1523      */
1524     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1525 }
1526 
1527 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1528                               const ppc_hash_pte64_t *hptes,
1529                               hwaddr ptex, int n)
1530 {
1531     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1532 
1533     if (!spapr->htab) {
1534         g_free((void *)hptes);
1535     }
1536 
1537     /* Nothing to do for qemu managed HPT */
1538 }
1539 
1540 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1541                       uint64_t pte0, uint64_t pte1)
1542 {
1543     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1544     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1545 
1546     if (!spapr->htab) {
1547         kvmppc_write_hpte(ptex, pte0, pte1);
1548     } else {
1549         if (pte0 & HPTE64_V_VALID) {
1550             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1551             /*
1552              * When setting valid, we write PTE1 first. This ensures
1553              * proper synchronization with the reading code in
1554              * ppc_hash64_pteg_search()
1555              */
1556             smp_wmb();
1557             stq_p(spapr->htab + offset, pte0);
1558         } else {
1559             stq_p(spapr->htab + offset, pte0);
1560             /*
1561              * When clearing it we set PTE0 first. This ensures proper
1562              * synchronization with the reading code in
1563              * ppc_hash64_pteg_search()
1564              */
1565             smp_wmb();
1566             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1567         }
1568     }
1569 }
1570 
1571 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1572                              uint64_t pte1)
1573 {
1574     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1575     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1576 
1577     if (!spapr->htab) {
1578         /* There should always be a hash table when this is called */
1579         error_report("spapr_hpte_set_c called with no hash table !");
1580         return;
1581     }
1582 
1583     /* The HW performs a non-atomic byte update */
1584     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1585 }
1586 
1587 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1588                              uint64_t pte1)
1589 {
1590     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1591     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1592 
1593     if (!spapr->htab) {
1594         /* There should always be a hash table when this is called */
1595         error_report("spapr_hpte_set_r called with no hash table !");
1596         return;
1597     }
1598 
1599     /* The HW performs a non-atomic byte update */
1600     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1601 }
1602 
1603 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1604 {
1605     int shift;
1606 
1607     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1608      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1609      * that's much more than is needed for Linux guests */
1610     shift = ctz64(pow2ceil(ramsize)) - 7;
1611     shift = MAX(shift, 18); /* Minimum architected size */
1612     shift = MIN(shift, 46); /* Maximum architected size */
1613     return shift;
1614 }
1615 
1616 void spapr_free_hpt(SpaprMachineState *spapr)
1617 {
1618     g_free(spapr->htab);
1619     spapr->htab = NULL;
1620     spapr->htab_shift = 0;
1621     close_htab_fd(spapr);
1622 }
1623 
1624 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1625                           Error **errp)
1626 {
1627     long rc;
1628 
1629     /* Clean up any HPT info from a previous boot */
1630     spapr_free_hpt(spapr);
1631 
1632     rc = kvmppc_reset_htab(shift);
1633     if (rc < 0) {
1634         /* kernel-side HPT needed, but couldn't allocate one */
1635         error_setg_errno(errp, errno,
1636                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1637                          shift);
1638         /* This is almost certainly fatal, but if the caller really
1639          * wants to carry on with shift == 0, it's welcome to try */
1640     } else if (rc > 0) {
1641         /* kernel-side HPT allocated */
1642         if (rc != shift) {
1643             error_setg(errp,
1644                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1645                        shift, rc);
1646         }
1647 
1648         spapr->htab_shift = shift;
1649         spapr->htab = NULL;
1650     } else {
1651         /* kernel-side HPT not needed, allocate in userspace instead */
1652         size_t size = 1ULL << shift;
1653         int i;
1654 
1655         spapr->htab = qemu_memalign(size, size);
1656         if (!spapr->htab) {
1657             error_setg_errno(errp, errno,
1658                              "Could not allocate HPT of order %d", shift);
1659             return;
1660         }
1661 
1662         memset(spapr->htab, 0, size);
1663         spapr->htab_shift = shift;
1664 
1665         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1666             DIRTY_HPTE(HPTE(spapr->htab, i));
1667         }
1668     }
1669     /* We're setting up a hash table, so that means we're not radix */
1670     spapr->patb_entry = 0;
1671     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1672 }
1673 
1674 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1675 {
1676     int hpt_shift;
1677 
1678     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1679         || (spapr->cas_reboot
1680             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1681         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1682     } else {
1683         uint64_t current_ram_size;
1684 
1685         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1686         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1687     }
1688     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1689 
1690     if (spapr->vrma_adjust) {
1691         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1692                                           spapr->htab_shift);
1693     }
1694 }
1695 
1696 static int spapr_reset_drcs(Object *child, void *opaque)
1697 {
1698     SpaprDrc *drc =
1699         (SpaprDrc *) object_dynamic_cast(child,
1700                                                  TYPE_SPAPR_DR_CONNECTOR);
1701 
1702     if (drc) {
1703         spapr_drc_reset(drc);
1704     }
1705 
1706     return 0;
1707 }
1708 
1709 static void spapr_machine_reset(MachineState *machine)
1710 {
1711     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1712     PowerPCCPU *first_ppc_cpu;
1713     uint32_t rtas_limit;
1714     hwaddr rtas_addr, fdt_addr;
1715     void *fdt;
1716     int rc;
1717 
1718     spapr_caps_apply(spapr);
1719 
1720     first_ppc_cpu = POWERPC_CPU(first_cpu);
1721     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1722         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1723                               spapr->max_compat_pvr)) {
1724         /*
1725          * If using KVM with radix mode available, VCPUs can be started
1726          * without a HPT because KVM will start them in radix mode.
1727          * Set the GR bit in PATE so that we know there is no HPT.
1728          */
1729         spapr->patb_entry = PATE1_GR;
1730         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1731     } else {
1732         spapr_setup_hpt_and_vrma(spapr);
1733     }
1734 
1735     /*
1736      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1737      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1738      * called from vPHB reset handler so we initialize the counter here.
1739      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1740      * must be equally distant from any other node.
1741      * The final value of spapr->gpu_numa_id is going to be written to
1742      * max-associativity-domains in spapr_build_fdt().
1743      */
1744     spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1745     qemu_devices_reset();
1746 
1747     /*
1748      * If this reset wasn't generated by CAS, we should reset our
1749      * negotiated options and start from scratch
1750      */
1751     if (!spapr->cas_reboot) {
1752         spapr_ovec_cleanup(spapr->ov5_cas);
1753         spapr->ov5_cas = spapr_ovec_new();
1754 
1755         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1756     }
1757 
1758     /*
1759      * This is fixing some of the default configuration of the XIVE
1760      * devices. To be called after the reset of the machine devices.
1761      */
1762     spapr_irq_reset(spapr, &error_fatal);
1763 
1764     /*
1765      * There is no CAS under qtest. Simulate one to please the code that
1766      * depends on spapr->ov5_cas. This is especially needed to test device
1767      * unplug, so we do that before resetting the DRCs.
1768      */
1769     if (qtest_enabled()) {
1770         spapr_ovec_cleanup(spapr->ov5_cas);
1771         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1772     }
1773 
1774     /* DRC reset may cause a device to be unplugged. This will cause troubles
1775      * if this device is used by another device (eg, a running vhost backend
1776      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1777      * situations, we reset DRCs after all devices have been reset.
1778      */
1779     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1780 
1781     spapr_clear_pending_events(spapr);
1782 
1783     /*
1784      * We place the device tree and RTAS just below either the top of the RMA,
1785      * or just below 2GB, whichever is lower, so that it can be
1786      * processed with 32-bit real mode code if necessary
1787      */
1788     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1789     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1790     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1791 
1792     fdt = spapr_build_fdt(spapr);
1793 
1794     spapr_load_rtas(spapr, fdt, rtas_addr);
1795 
1796     rc = fdt_pack(fdt);
1797 
1798     /* Should only fail if we've built a corrupted tree */
1799     assert(rc == 0);
1800 
1801     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1802         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1803                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1804         exit(1);
1805     }
1806 
1807     /* Load the fdt */
1808     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1809     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1810     g_free(spapr->fdt_blob);
1811     spapr->fdt_size = fdt_totalsize(fdt);
1812     spapr->fdt_initial_size = spapr->fdt_size;
1813     spapr->fdt_blob = fdt;
1814 
1815     /* Set up the entry state */
1816     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1817     first_ppc_cpu->env.gpr[5] = 0;
1818 
1819     spapr->cas_reboot = false;
1820 }
1821 
1822 static void spapr_create_nvram(SpaprMachineState *spapr)
1823 {
1824     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1825     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1826 
1827     if (dinfo) {
1828         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1829                             &error_fatal);
1830     }
1831 
1832     qdev_init_nofail(dev);
1833 
1834     spapr->nvram = (struct SpaprNvram *)dev;
1835 }
1836 
1837 static void spapr_rtc_create(SpaprMachineState *spapr)
1838 {
1839     object_initialize_child(OBJECT(spapr), "rtc",
1840                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1841                             &error_fatal, NULL);
1842     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1843                               &error_fatal);
1844     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1845                               "date", &error_fatal);
1846 }
1847 
1848 /* Returns whether we want to use VGA or not */
1849 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1850 {
1851     switch (vga_interface_type) {
1852     case VGA_NONE:
1853         return false;
1854     case VGA_DEVICE:
1855         return true;
1856     case VGA_STD:
1857     case VGA_VIRTIO:
1858     case VGA_CIRRUS:
1859         return pci_vga_init(pci_bus) != NULL;
1860     default:
1861         error_setg(errp,
1862                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1863         return false;
1864     }
1865 }
1866 
1867 static int spapr_pre_load(void *opaque)
1868 {
1869     int rc;
1870 
1871     rc = spapr_caps_pre_load(opaque);
1872     if (rc) {
1873         return rc;
1874     }
1875 
1876     return 0;
1877 }
1878 
1879 static int spapr_post_load(void *opaque, int version_id)
1880 {
1881     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1882     int err = 0;
1883 
1884     err = spapr_caps_post_migration(spapr);
1885     if (err) {
1886         return err;
1887     }
1888 
1889     /*
1890      * In earlier versions, there was no separate qdev for the PAPR
1891      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1892      * So when migrating from those versions, poke the incoming offset
1893      * value into the RTC device
1894      */
1895     if (version_id < 3) {
1896         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1897         if (err) {
1898             return err;
1899         }
1900     }
1901 
1902     if (kvm_enabled() && spapr->patb_entry) {
1903         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1904         bool radix = !!(spapr->patb_entry & PATE1_GR);
1905         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1906 
1907         /*
1908          * Update LPCR:HR and UPRT as they may not be set properly in
1909          * the stream
1910          */
1911         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1912                             LPCR_HR | LPCR_UPRT);
1913 
1914         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1915         if (err) {
1916             error_report("Process table config unsupported by the host");
1917             return -EINVAL;
1918         }
1919     }
1920 
1921     err = spapr_irq_post_load(spapr, version_id);
1922     if (err) {
1923         return err;
1924     }
1925 
1926     return err;
1927 }
1928 
1929 static int spapr_pre_save(void *opaque)
1930 {
1931     int rc;
1932 
1933     rc = spapr_caps_pre_save(opaque);
1934     if (rc) {
1935         return rc;
1936     }
1937 
1938     return 0;
1939 }
1940 
1941 static bool version_before_3(void *opaque, int version_id)
1942 {
1943     return version_id < 3;
1944 }
1945 
1946 static bool spapr_pending_events_needed(void *opaque)
1947 {
1948     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1949     return !QTAILQ_EMPTY(&spapr->pending_events);
1950 }
1951 
1952 static const VMStateDescription vmstate_spapr_event_entry = {
1953     .name = "spapr_event_log_entry",
1954     .version_id = 1,
1955     .minimum_version_id = 1,
1956     .fields = (VMStateField[]) {
1957         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1958         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1959         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1960                                      NULL, extended_length),
1961         VMSTATE_END_OF_LIST()
1962     },
1963 };
1964 
1965 static const VMStateDescription vmstate_spapr_pending_events = {
1966     .name = "spapr_pending_events",
1967     .version_id = 1,
1968     .minimum_version_id = 1,
1969     .needed = spapr_pending_events_needed,
1970     .fields = (VMStateField[]) {
1971         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1972                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1973         VMSTATE_END_OF_LIST()
1974     },
1975 };
1976 
1977 static bool spapr_ov5_cas_needed(void *opaque)
1978 {
1979     SpaprMachineState *spapr = opaque;
1980     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1981     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1982     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1983     bool cas_needed;
1984 
1985     /* Prior to the introduction of SpaprOptionVector, we had two option
1986      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1987      * Both of these options encode machine topology into the device-tree
1988      * in such a way that the now-booted OS should still be able to interact
1989      * appropriately with QEMU regardless of what options were actually
1990      * negotiatied on the source side.
1991      *
1992      * As such, we can avoid migrating the CAS-negotiated options if these
1993      * are the only options available on the current machine/platform.
1994      * Since these are the only options available for pseries-2.7 and
1995      * earlier, this allows us to maintain old->new/new->old migration
1996      * compatibility.
1997      *
1998      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1999      * via default pseries-2.8 machines and explicit command-line parameters.
2000      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2001      * of the actual CAS-negotiated values to continue working properly. For
2002      * example, availability of memory unplug depends on knowing whether
2003      * OV5_HP_EVT was negotiated via CAS.
2004      *
2005      * Thus, for any cases where the set of available CAS-negotiatable
2006      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2007      * include the CAS-negotiated options in the migration stream, unless
2008      * if they affect boot time behaviour only.
2009      */
2010     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2011     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2012     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2013 
2014     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2015      * the mask itself since in the future it's possible "legacy" bits may be
2016      * removed via machine options, which could generate a false positive
2017      * that breaks migration.
2018      */
2019     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2020     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2021 
2022     spapr_ovec_cleanup(ov5_mask);
2023     spapr_ovec_cleanup(ov5_legacy);
2024     spapr_ovec_cleanup(ov5_removed);
2025 
2026     return cas_needed;
2027 }
2028 
2029 static const VMStateDescription vmstate_spapr_ov5_cas = {
2030     .name = "spapr_option_vector_ov5_cas",
2031     .version_id = 1,
2032     .minimum_version_id = 1,
2033     .needed = spapr_ov5_cas_needed,
2034     .fields = (VMStateField[]) {
2035         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2036                                  vmstate_spapr_ovec, SpaprOptionVector),
2037         VMSTATE_END_OF_LIST()
2038     },
2039 };
2040 
2041 static bool spapr_patb_entry_needed(void *opaque)
2042 {
2043     SpaprMachineState *spapr = opaque;
2044 
2045     return !!spapr->patb_entry;
2046 }
2047 
2048 static const VMStateDescription vmstate_spapr_patb_entry = {
2049     .name = "spapr_patb_entry",
2050     .version_id = 1,
2051     .minimum_version_id = 1,
2052     .needed = spapr_patb_entry_needed,
2053     .fields = (VMStateField[]) {
2054         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2055         VMSTATE_END_OF_LIST()
2056     },
2057 };
2058 
2059 static bool spapr_irq_map_needed(void *opaque)
2060 {
2061     SpaprMachineState *spapr = opaque;
2062 
2063     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2064 }
2065 
2066 static const VMStateDescription vmstate_spapr_irq_map = {
2067     .name = "spapr_irq_map",
2068     .version_id = 1,
2069     .minimum_version_id = 1,
2070     .needed = spapr_irq_map_needed,
2071     .fields = (VMStateField[]) {
2072         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2073         VMSTATE_END_OF_LIST()
2074     },
2075 };
2076 
2077 static bool spapr_dtb_needed(void *opaque)
2078 {
2079     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2080 
2081     return smc->update_dt_enabled;
2082 }
2083 
2084 static int spapr_dtb_pre_load(void *opaque)
2085 {
2086     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2087 
2088     g_free(spapr->fdt_blob);
2089     spapr->fdt_blob = NULL;
2090     spapr->fdt_size = 0;
2091 
2092     return 0;
2093 }
2094 
2095 static const VMStateDescription vmstate_spapr_dtb = {
2096     .name = "spapr_dtb",
2097     .version_id = 1,
2098     .minimum_version_id = 1,
2099     .needed = spapr_dtb_needed,
2100     .pre_load = spapr_dtb_pre_load,
2101     .fields = (VMStateField[]) {
2102         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2103         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2104         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2105                                      fdt_size),
2106         VMSTATE_END_OF_LIST()
2107     },
2108 };
2109 
2110 static const VMStateDescription vmstate_spapr = {
2111     .name = "spapr",
2112     .version_id = 3,
2113     .minimum_version_id = 1,
2114     .pre_load = spapr_pre_load,
2115     .post_load = spapr_post_load,
2116     .pre_save = spapr_pre_save,
2117     .fields = (VMStateField[]) {
2118         /* used to be @next_irq */
2119         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2120 
2121         /* RTC offset */
2122         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2123 
2124         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2125         VMSTATE_END_OF_LIST()
2126     },
2127     .subsections = (const VMStateDescription*[]) {
2128         &vmstate_spapr_ov5_cas,
2129         &vmstate_spapr_patb_entry,
2130         &vmstate_spapr_pending_events,
2131         &vmstate_spapr_cap_htm,
2132         &vmstate_spapr_cap_vsx,
2133         &vmstate_spapr_cap_dfp,
2134         &vmstate_spapr_cap_cfpc,
2135         &vmstate_spapr_cap_sbbc,
2136         &vmstate_spapr_cap_ibs,
2137         &vmstate_spapr_cap_hpt_maxpagesize,
2138         &vmstate_spapr_irq_map,
2139         &vmstate_spapr_cap_nested_kvm_hv,
2140         &vmstate_spapr_dtb,
2141         &vmstate_spapr_cap_large_decr,
2142         &vmstate_spapr_cap_ccf_assist,
2143         NULL
2144     }
2145 };
2146 
2147 static int htab_save_setup(QEMUFile *f, void *opaque)
2148 {
2149     SpaprMachineState *spapr = opaque;
2150 
2151     /* "Iteration" header */
2152     if (!spapr->htab_shift) {
2153         qemu_put_be32(f, -1);
2154     } else {
2155         qemu_put_be32(f, spapr->htab_shift);
2156     }
2157 
2158     if (spapr->htab) {
2159         spapr->htab_save_index = 0;
2160         spapr->htab_first_pass = true;
2161     } else {
2162         if (spapr->htab_shift) {
2163             assert(kvm_enabled());
2164         }
2165     }
2166 
2167 
2168     return 0;
2169 }
2170 
2171 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2172                             int chunkstart, int n_valid, int n_invalid)
2173 {
2174     qemu_put_be32(f, chunkstart);
2175     qemu_put_be16(f, n_valid);
2176     qemu_put_be16(f, n_invalid);
2177     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2178                     HASH_PTE_SIZE_64 * n_valid);
2179 }
2180 
2181 static void htab_save_end_marker(QEMUFile *f)
2182 {
2183     qemu_put_be32(f, 0);
2184     qemu_put_be16(f, 0);
2185     qemu_put_be16(f, 0);
2186 }
2187 
2188 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2189                                  int64_t max_ns)
2190 {
2191     bool has_timeout = max_ns != -1;
2192     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2193     int index = spapr->htab_save_index;
2194     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2195 
2196     assert(spapr->htab_first_pass);
2197 
2198     do {
2199         int chunkstart;
2200 
2201         /* Consume invalid HPTEs */
2202         while ((index < htabslots)
2203                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2204             CLEAN_HPTE(HPTE(spapr->htab, index));
2205             index++;
2206         }
2207 
2208         /* Consume valid HPTEs */
2209         chunkstart = index;
2210         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2211                && HPTE_VALID(HPTE(spapr->htab, index))) {
2212             CLEAN_HPTE(HPTE(spapr->htab, index));
2213             index++;
2214         }
2215 
2216         if (index > chunkstart) {
2217             int n_valid = index - chunkstart;
2218 
2219             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2220 
2221             if (has_timeout &&
2222                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2223                 break;
2224             }
2225         }
2226     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2227 
2228     if (index >= htabslots) {
2229         assert(index == htabslots);
2230         index = 0;
2231         spapr->htab_first_pass = false;
2232     }
2233     spapr->htab_save_index = index;
2234 }
2235 
2236 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2237                                 int64_t max_ns)
2238 {
2239     bool final = max_ns < 0;
2240     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2241     int examined = 0, sent = 0;
2242     int index = spapr->htab_save_index;
2243     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2244 
2245     assert(!spapr->htab_first_pass);
2246 
2247     do {
2248         int chunkstart, invalidstart;
2249 
2250         /* Consume non-dirty HPTEs */
2251         while ((index < htabslots)
2252                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2253             index++;
2254             examined++;
2255         }
2256 
2257         chunkstart = index;
2258         /* Consume valid dirty HPTEs */
2259         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2260                && HPTE_DIRTY(HPTE(spapr->htab, index))
2261                && HPTE_VALID(HPTE(spapr->htab, index))) {
2262             CLEAN_HPTE(HPTE(spapr->htab, index));
2263             index++;
2264             examined++;
2265         }
2266 
2267         invalidstart = index;
2268         /* Consume invalid dirty HPTEs */
2269         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2270                && HPTE_DIRTY(HPTE(spapr->htab, index))
2271                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2272             CLEAN_HPTE(HPTE(spapr->htab, index));
2273             index++;
2274             examined++;
2275         }
2276 
2277         if (index > chunkstart) {
2278             int n_valid = invalidstart - chunkstart;
2279             int n_invalid = index - invalidstart;
2280 
2281             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2282             sent += index - chunkstart;
2283 
2284             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2285                 break;
2286             }
2287         }
2288 
2289         if (examined >= htabslots) {
2290             break;
2291         }
2292 
2293         if (index >= htabslots) {
2294             assert(index == htabslots);
2295             index = 0;
2296         }
2297     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2298 
2299     if (index >= htabslots) {
2300         assert(index == htabslots);
2301         index = 0;
2302     }
2303 
2304     spapr->htab_save_index = index;
2305 
2306     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2307 }
2308 
2309 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2310 #define MAX_KVM_BUF_SIZE    2048
2311 
2312 static int htab_save_iterate(QEMUFile *f, void *opaque)
2313 {
2314     SpaprMachineState *spapr = opaque;
2315     int fd;
2316     int rc = 0;
2317 
2318     /* Iteration header */
2319     if (!spapr->htab_shift) {
2320         qemu_put_be32(f, -1);
2321         return 1;
2322     } else {
2323         qemu_put_be32(f, 0);
2324     }
2325 
2326     if (!spapr->htab) {
2327         assert(kvm_enabled());
2328 
2329         fd = get_htab_fd(spapr);
2330         if (fd < 0) {
2331             return fd;
2332         }
2333 
2334         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2335         if (rc < 0) {
2336             return rc;
2337         }
2338     } else  if (spapr->htab_first_pass) {
2339         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2340     } else {
2341         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2342     }
2343 
2344     htab_save_end_marker(f);
2345 
2346     return rc;
2347 }
2348 
2349 static int htab_save_complete(QEMUFile *f, void *opaque)
2350 {
2351     SpaprMachineState *spapr = opaque;
2352     int fd;
2353 
2354     /* Iteration header */
2355     if (!spapr->htab_shift) {
2356         qemu_put_be32(f, -1);
2357         return 0;
2358     } else {
2359         qemu_put_be32(f, 0);
2360     }
2361 
2362     if (!spapr->htab) {
2363         int rc;
2364 
2365         assert(kvm_enabled());
2366 
2367         fd = get_htab_fd(spapr);
2368         if (fd < 0) {
2369             return fd;
2370         }
2371 
2372         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2373         if (rc < 0) {
2374             return rc;
2375         }
2376     } else {
2377         if (spapr->htab_first_pass) {
2378             htab_save_first_pass(f, spapr, -1);
2379         }
2380         htab_save_later_pass(f, spapr, -1);
2381     }
2382 
2383     /* End marker */
2384     htab_save_end_marker(f);
2385 
2386     return 0;
2387 }
2388 
2389 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2390 {
2391     SpaprMachineState *spapr = opaque;
2392     uint32_t section_hdr;
2393     int fd = -1;
2394     Error *local_err = NULL;
2395 
2396     if (version_id < 1 || version_id > 1) {
2397         error_report("htab_load() bad version");
2398         return -EINVAL;
2399     }
2400 
2401     section_hdr = qemu_get_be32(f);
2402 
2403     if (section_hdr == -1) {
2404         spapr_free_hpt(spapr);
2405         return 0;
2406     }
2407 
2408     if (section_hdr) {
2409         /* First section gives the htab size */
2410         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2411         if (local_err) {
2412             error_report_err(local_err);
2413             return -EINVAL;
2414         }
2415         return 0;
2416     }
2417 
2418     if (!spapr->htab) {
2419         assert(kvm_enabled());
2420 
2421         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2422         if (fd < 0) {
2423             error_report_err(local_err);
2424             return fd;
2425         }
2426     }
2427 
2428     while (true) {
2429         uint32_t index;
2430         uint16_t n_valid, n_invalid;
2431 
2432         index = qemu_get_be32(f);
2433         n_valid = qemu_get_be16(f);
2434         n_invalid = qemu_get_be16(f);
2435 
2436         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2437             /* End of Stream */
2438             break;
2439         }
2440 
2441         if ((index + n_valid + n_invalid) >
2442             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2443             /* Bad index in stream */
2444             error_report(
2445                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2446                 index, n_valid, n_invalid, spapr->htab_shift);
2447             return -EINVAL;
2448         }
2449 
2450         if (spapr->htab) {
2451             if (n_valid) {
2452                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2453                                 HASH_PTE_SIZE_64 * n_valid);
2454             }
2455             if (n_invalid) {
2456                 memset(HPTE(spapr->htab, index + n_valid), 0,
2457                        HASH_PTE_SIZE_64 * n_invalid);
2458             }
2459         } else {
2460             int rc;
2461 
2462             assert(fd >= 0);
2463 
2464             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2465             if (rc < 0) {
2466                 return rc;
2467             }
2468         }
2469     }
2470 
2471     if (!spapr->htab) {
2472         assert(fd >= 0);
2473         close(fd);
2474     }
2475 
2476     return 0;
2477 }
2478 
2479 static void htab_save_cleanup(void *opaque)
2480 {
2481     SpaprMachineState *spapr = opaque;
2482 
2483     close_htab_fd(spapr);
2484 }
2485 
2486 static SaveVMHandlers savevm_htab_handlers = {
2487     .save_setup = htab_save_setup,
2488     .save_live_iterate = htab_save_iterate,
2489     .save_live_complete_precopy = htab_save_complete,
2490     .save_cleanup = htab_save_cleanup,
2491     .load_state = htab_load,
2492 };
2493 
2494 static void spapr_boot_set(void *opaque, const char *boot_device,
2495                            Error **errp)
2496 {
2497     MachineState *machine = MACHINE(opaque);
2498     machine->boot_order = g_strdup(boot_device);
2499 }
2500 
2501 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2502 {
2503     MachineState *machine = MACHINE(spapr);
2504     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2505     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2506     int i;
2507 
2508     for (i = 0; i < nr_lmbs; i++) {
2509         uint64_t addr;
2510 
2511         addr = i * lmb_size + machine->device_memory->base;
2512         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2513                                addr / lmb_size);
2514     }
2515 }
2516 
2517 /*
2518  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2519  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2520  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2521  */
2522 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2523 {
2524     int i;
2525 
2526     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2527         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2528                    " is not aligned to %" PRIu64 " MiB",
2529                    machine->ram_size,
2530                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2531         return;
2532     }
2533 
2534     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2535         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2536                    " is not aligned to %" PRIu64 " MiB",
2537                    machine->ram_size,
2538                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2539         return;
2540     }
2541 
2542     for (i = 0; i < nb_numa_nodes; i++) {
2543         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2544             error_setg(errp,
2545                        "Node %d memory size 0x%" PRIx64
2546                        " is not aligned to %" PRIu64 " MiB",
2547                        i, numa_info[i].node_mem,
2548                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2549             return;
2550         }
2551     }
2552 }
2553 
2554 /* find cpu slot in machine->possible_cpus by core_id */
2555 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2556 {
2557     int index = id / ms->smp.threads;
2558 
2559     if (index >= ms->possible_cpus->len) {
2560         return NULL;
2561     }
2562     if (idx) {
2563         *idx = index;
2564     }
2565     return &ms->possible_cpus->cpus[index];
2566 }
2567 
2568 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2569 {
2570     MachineState *ms = MACHINE(spapr);
2571     Error *local_err = NULL;
2572     bool vsmt_user = !!spapr->vsmt;
2573     int kvm_smt = kvmppc_smt_threads();
2574     int ret;
2575     unsigned int smp_threads = ms->smp.threads;
2576 
2577     if (!kvm_enabled() && (smp_threads > 1)) {
2578         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2579                      "on a pseries machine");
2580         goto out;
2581     }
2582     if (!is_power_of_2(smp_threads)) {
2583         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2584                      "machine because it must be a power of 2", smp_threads);
2585         goto out;
2586     }
2587 
2588     /* Detemine the VSMT mode to use: */
2589     if (vsmt_user) {
2590         if (spapr->vsmt < smp_threads) {
2591             error_setg(&local_err, "Cannot support VSMT mode %d"
2592                          " because it must be >= threads/core (%d)",
2593                          spapr->vsmt, smp_threads);
2594             goto out;
2595         }
2596         /* In this case, spapr->vsmt has been set by the command line */
2597     } else {
2598         /*
2599          * Default VSMT value is tricky, because we need it to be as
2600          * consistent as possible (for migration), but this requires
2601          * changing it for at least some existing cases.  We pick 8 as
2602          * the value that we'd get with KVM on POWER8, the
2603          * overwhelmingly common case in production systems.
2604          */
2605         spapr->vsmt = MAX(8, smp_threads);
2606     }
2607 
2608     /* KVM: If necessary, set the SMT mode: */
2609     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2610         ret = kvmppc_set_smt_threads(spapr->vsmt);
2611         if (ret) {
2612             /* Looks like KVM isn't able to change VSMT mode */
2613             error_setg(&local_err,
2614                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2615                        spapr->vsmt, ret);
2616             /* We can live with that if the default one is big enough
2617              * for the number of threads, and a submultiple of the one
2618              * we want.  In this case we'll waste some vcpu ids, but
2619              * behaviour will be correct */
2620             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2621                 warn_report_err(local_err);
2622                 local_err = NULL;
2623                 goto out;
2624             } else {
2625                 if (!vsmt_user) {
2626                     error_append_hint(&local_err,
2627                                       "On PPC, a VM with %d threads/core"
2628                                       " on a host with %d threads/core"
2629                                       " requires the use of VSMT mode %d.\n",
2630                                       smp_threads, kvm_smt, spapr->vsmt);
2631                 }
2632                 kvmppc_hint_smt_possible(&local_err);
2633                 goto out;
2634             }
2635         }
2636     }
2637     /* else TCG: nothing to do currently */
2638 out:
2639     error_propagate(errp, local_err);
2640 }
2641 
2642 static void spapr_init_cpus(SpaprMachineState *spapr)
2643 {
2644     MachineState *machine = MACHINE(spapr);
2645     MachineClass *mc = MACHINE_GET_CLASS(machine);
2646     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2647     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2648     const CPUArchIdList *possible_cpus;
2649     unsigned int smp_cpus = machine->smp.cpus;
2650     unsigned int smp_threads = machine->smp.threads;
2651     unsigned int max_cpus = machine->smp.max_cpus;
2652     int boot_cores_nr = smp_cpus / smp_threads;
2653     int i;
2654 
2655     possible_cpus = mc->possible_cpu_arch_ids(machine);
2656     if (mc->has_hotpluggable_cpus) {
2657         if (smp_cpus % smp_threads) {
2658             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2659                          smp_cpus, smp_threads);
2660             exit(1);
2661         }
2662         if (max_cpus % smp_threads) {
2663             error_report("max_cpus (%u) must be multiple of threads (%u)",
2664                          max_cpus, smp_threads);
2665             exit(1);
2666         }
2667     } else {
2668         if (max_cpus != smp_cpus) {
2669             error_report("This machine version does not support CPU hotplug");
2670             exit(1);
2671         }
2672         boot_cores_nr = possible_cpus->len;
2673     }
2674 
2675     if (smc->pre_2_10_has_unused_icps) {
2676         int i;
2677 
2678         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2679             /* Dummy entries get deregistered when real ICPState objects
2680              * are registered during CPU core hotplug.
2681              */
2682             pre_2_10_vmstate_register_dummy_icp(i);
2683         }
2684     }
2685 
2686     for (i = 0; i < possible_cpus->len; i++) {
2687         int core_id = i * smp_threads;
2688 
2689         if (mc->has_hotpluggable_cpus) {
2690             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2691                                    spapr_vcpu_id(spapr, core_id));
2692         }
2693 
2694         if (i < boot_cores_nr) {
2695             Object *core  = object_new(type);
2696             int nr_threads = smp_threads;
2697 
2698             /* Handle the partially filled core for older machine types */
2699             if ((i + 1) * smp_threads >= smp_cpus) {
2700                 nr_threads = smp_cpus - i * smp_threads;
2701             }
2702 
2703             object_property_set_int(core, nr_threads, "nr-threads",
2704                                     &error_fatal);
2705             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2706                                     &error_fatal);
2707             object_property_set_bool(core, true, "realized", &error_fatal);
2708 
2709             object_unref(core);
2710         }
2711     }
2712 }
2713 
2714 static PCIHostState *spapr_create_default_phb(void)
2715 {
2716     DeviceState *dev;
2717 
2718     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2719     qdev_prop_set_uint32(dev, "index", 0);
2720     qdev_init_nofail(dev);
2721 
2722     return PCI_HOST_BRIDGE(dev);
2723 }
2724 
2725 /* pSeries LPAR / sPAPR hardware init */
2726 static void spapr_machine_init(MachineState *machine)
2727 {
2728     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2729     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2730     const char *kernel_filename = machine->kernel_filename;
2731     const char *initrd_filename = machine->initrd_filename;
2732     PCIHostState *phb;
2733     int i;
2734     MemoryRegion *sysmem = get_system_memory();
2735     MemoryRegion *ram = g_new(MemoryRegion, 1);
2736     hwaddr node0_size = spapr_node0_size(machine);
2737     long load_limit, fw_size;
2738     char *filename;
2739     Error *resize_hpt_err = NULL;
2740 
2741     msi_nonbroken = true;
2742 
2743     QLIST_INIT(&spapr->phbs);
2744     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2745 
2746     /* Determine capabilities to run with */
2747     spapr_caps_init(spapr);
2748 
2749     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2750     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2751         /*
2752          * If the user explicitly requested a mode we should either
2753          * supply it, or fail completely (which we do below).  But if
2754          * it's not set explicitly, we reset our mode to something
2755          * that works
2756          */
2757         if (resize_hpt_err) {
2758             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2759             error_free(resize_hpt_err);
2760             resize_hpt_err = NULL;
2761         } else {
2762             spapr->resize_hpt = smc->resize_hpt_default;
2763         }
2764     }
2765 
2766     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2767 
2768     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2769         /*
2770          * User requested HPT resize, but this host can't supply it.  Bail out
2771          */
2772         error_report_err(resize_hpt_err);
2773         exit(1);
2774     }
2775 
2776     spapr->rma_size = node0_size;
2777 
2778     /* With KVM, we don't actually know whether KVM supports an
2779      * unbounded RMA (PR KVM) or is limited by the hash table size
2780      * (HV KVM using VRMA), so we always assume the latter
2781      *
2782      * In that case, we also limit the initial allocations for RTAS
2783      * etc... to 256M since we have no way to know what the VRMA size
2784      * is going to be as it depends on the size of the hash table
2785      * which isn't determined yet.
2786      */
2787     if (kvm_enabled()) {
2788         spapr->vrma_adjust = 1;
2789         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2790     }
2791 
2792     /* Actually we don't support unbounded RMA anymore since we added
2793      * proper emulation of HV mode. The max we can get is 16G which
2794      * also happens to be what we configure for PAPR mode so make sure
2795      * we don't do anything bigger than that
2796      */
2797     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2798 
2799     if (spapr->rma_size > node0_size) {
2800         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2801                      spapr->rma_size);
2802         exit(1);
2803     }
2804 
2805     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2806     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2807 
2808     /*
2809      * VSMT must be set in order to be able to compute VCPU ids, ie to
2810      * call spapr_max_server_number() or spapr_vcpu_id().
2811      */
2812     spapr_set_vsmt_mode(spapr, &error_fatal);
2813 
2814     /* Set up Interrupt Controller before we create the VCPUs */
2815     spapr_irq_init(spapr, &error_fatal);
2816 
2817     /* Set up containers for ibm,client-architecture-support negotiated options
2818      */
2819     spapr->ov5 = spapr_ovec_new();
2820     spapr->ov5_cas = spapr_ovec_new();
2821 
2822     if (smc->dr_lmb_enabled) {
2823         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2824         spapr_validate_node_memory(machine, &error_fatal);
2825     }
2826 
2827     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2828 
2829     /* advertise support for dedicated HP event source to guests */
2830     if (spapr->use_hotplug_event_source) {
2831         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2832     }
2833 
2834     /* advertise support for HPT resizing */
2835     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2836         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2837     }
2838 
2839     /* advertise support for ibm,dyamic-memory-v2 */
2840     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2841 
2842     /* advertise XIVE on POWER9 machines */
2843     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2844         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2845     }
2846 
2847     /* init CPUs */
2848     spapr_init_cpus(spapr);
2849 
2850     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2851         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2852                               spapr->max_compat_pvr)) {
2853         /* KVM and TCG always allow GTSE with radix... */
2854         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2855     }
2856     /* ... but not with hash (currently). */
2857 
2858     if (kvm_enabled()) {
2859         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2860         kvmppc_enable_logical_ci_hcalls();
2861         kvmppc_enable_set_mode_hcall();
2862 
2863         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2864         kvmppc_enable_clear_ref_mod_hcalls();
2865 
2866         /* Enable H_PAGE_INIT */
2867         kvmppc_enable_h_page_init();
2868     }
2869 
2870     /* allocate RAM */
2871     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2872                                          machine->ram_size);
2873     memory_region_add_subregion(sysmem, 0, ram);
2874 
2875     /* always allocate the device memory information */
2876     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2877 
2878     /* initialize hotplug memory address space */
2879     if (machine->ram_size < machine->maxram_size) {
2880         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2881         /*
2882          * Limit the number of hotpluggable memory slots to half the number
2883          * slots that KVM supports, leaving the other half for PCI and other
2884          * devices. However ensure that number of slots doesn't drop below 32.
2885          */
2886         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2887                            SPAPR_MAX_RAM_SLOTS;
2888 
2889         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2890             max_memslots = SPAPR_MAX_RAM_SLOTS;
2891         }
2892         if (machine->ram_slots > max_memslots) {
2893             error_report("Specified number of memory slots %"
2894                          PRIu64" exceeds max supported %d",
2895                          machine->ram_slots, max_memslots);
2896             exit(1);
2897         }
2898 
2899         machine->device_memory->base = ROUND_UP(machine->ram_size,
2900                                                 SPAPR_DEVICE_MEM_ALIGN);
2901         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2902                            "device-memory", device_mem_size);
2903         memory_region_add_subregion(sysmem, machine->device_memory->base,
2904                                     &machine->device_memory->mr);
2905     }
2906 
2907     if (smc->dr_lmb_enabled) {
2908         spapr_create_lmb_dr_connectors(spapr);
2909     }
2910 
2911     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2912     if (!filename) {
2913         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2914         exit(1);
2915     }
2916     spapr->rtas_size = get_image_size(filename);
2917     if (spapr->rtas_size < 0) {
2918         error_report("Could not get size of LPAR rtas '%s'", filename);
2919         exit(1);
2920     }
2921     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2922     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2923         error_report("Could not load LPAR rtas '%s'", filename);
2924         exit(1);
2925     }
2926     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2927         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2928                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2929         exit(1);
2930     }
2931     g_free(filename);
2932 
2933     /* Set up RTAS event infrastructure */
2934     spapr_events_init(spapr);
2935 
2936     /* Set up the RTC RTAS interfaces */
2937     spapr_rtc_create(spapr);
2938 
2939     /* Set up VIO bus */
2940     spapr->vio_bus = spapr_vio_bus_init();
2941 
2942     for (i = 0; i < serial_max_hds(); i++) {
2943         if (serial_hd(i)) {
2944             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2945         }
2946     }
2947 
2948     /* We always have at least the nvram device on VIO */
2949     spapr_create_nvram(spapr);
2950 
2951     /*
2952      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2953      * connectors (described in root DT node's "ibm,drc-types" property)
2954      * are pre-initialized here. additional child connectors (such as
2955      * connectors for a PHBs PCI slots) are added as needed during their
2956      * parent's realization.
2957      */
2958     if (smc->dr_phb_enabled) {
2959         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2960             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2961         }
2962     }
2963 
2964     /* Set up PCI */
2965     spapr_pci_rtas_init();
2966 
2967     phb = spapr_create_default_phb();
2968 
2969     for (i = 0; i < nb_nics; i++) {
2970         NICInfo *nd = &nd_table[i];
2971 
2972         if (!nd->model) {
2973             nd->model = g_strdup("spapr-vlan");
2974         }
2975 
2976         if (g_str_equal(nd->model, "spapr-vlan") ||
2977             g_str_equal(nd->model, "ibmveth")) {
2978             spapr_vlan_create(spapr->vio_bus, nd);
2979         } else {
2980             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2981         }
2982     }
2983 
2984     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2985         spapr_vscsi_create(spapr->vio_bus);
2986     }
2987 
2988     /* Graphics */
2989     if (spapr_vga_init(phb->bus, &error_fatal)) {
2990         spapr->has_graphics = true;
2991         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2992     }
2993 
2994     if (machine->usb) {
2995         if (smc->use_ohci_by_default) {
2996             pci_create_simple(phb->bus, -1, "pci-ohci");
2997         } else {
2998             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2999         }
3000 
3001         if (spapr->has_graphics) {
3002             USBBus *usb_bus = usb_bus_find(-1);
3003 
3004             usb_create_simple(usb_bus, "usb-kbd");
3005             usb_create_simple(usb_bus, "usb-mouse");
3006         }
3007     }
3008 
3009     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3010         error_report(
3011             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3012             MIN_RMA_SLOF);
3013         exit(1);
3014     }
3015 
3016     if (kernel_filename) {
3017         uint64_t lowaddr = 0;
3018 
3019         spapr->kernel_size = load_elf(kernel_filename, NULL,
3020                                       translate_kernel_address, NULL,
3021                                       NULL, &lowaddr, NULL, 1,
3022                                       PPC_ELF_MACHINE, 0, 0);
3023         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3024             spapr->kernel_size = load_elf(kernel_filename, NULL,
3025                                           translate_kernel_address, NULL, NULL,
3026                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3027                                           0, 0);
3028             spapr->kernel_le = spapr->kernel_size > 0;
3029         }
3030         if (spapr->kernel_size < 0) {
3031             error_report("error loading %s: %s", kernel_filename,
3032                          load_elf_strerror(spapr->kernel_size));
3033             exit(1);
3034         }
3035 
3036         /* load initrd */
3037         if (initrd_filename) {
3038             /* Try to locate the initrd in the gap between the kernel
3039              * and the firmware. Add a bit of space just in case
3040              */
3041             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3042                                   + 0x1ffff) & ~0xffff;
3043             spapr->initrd_size = load_image_targphys(initrd_filename,
3044                                                      spapr->initrd_base,
3045                                                      load_limit
3046                                                      - spapr->initrd_base);
3047             if (spapr->initrd_size < 0) {
3048                 error_report("could not load initial ram disk '%s'",
3049                              initrd_filename);
3050                 exit(1);
3051             }
3052         }
3053     }
3054 
3055     if (bios_name == NULL) {
3056         bios_name = FW_FILE_NAME;
3057     }
3058     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3059     if (!filename) {
3060         error_report("Could not find LPAR firmware '%s'", bios_name);
3061         exit(1);
3062     }
3063     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3064     if (fw_size <= 0) {
3065         error_report("Could not load LPAR firmware '%s'", filename);
3066         exit(1);
3067     }
3068     g_free(filename);
3069 
3070     /* FIXME: Should register things through the MachineState's qdev
3071      * interface, this is a legacy from the sPAPREnvironment structure
3072      * which predated MachineState but had a similar function */
3073     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3074     register_savevm_live(NULL, "spapr/htab", -1, 1,
3075                          &savevm_htab_handlers, spapr);
3076 
3077     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3078                              &error_fatal);
3079 
3080     qemu_register_boot_set(spapr_boot_set, spapr);
3081 
3082     /*
3083      * Nothing needs to be done to resume a suspended guest because
3084      * suspending does not change the machine state, so no need for
3085      * a ->wakeup method.
3086      */
3087     qemu_register_wakeup_support();
3088 
3089     if (kvm_enabled()) {
3090         /* to stop and start vmclock */
3091         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3092                                          &spapr->tb);
3093 
3094         kvmppc_spapr_enable_inkernel_multitce();
3095     }
3096 }
3097 
3098 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3099 {
3100     if (!vm_type) {
3101         return 0;
3102     }
3103 
3104     if (!strcmp(vm_type, "HV")) {
3105         return 1;
3106     }
3107 
3108     if (!strcmp(vm_type, "PR")) {
3109         return 2;
3110     }
3111 
3112     error_report("Unknown kvm-type specified '%s'", vm_type);
3113     exit(1);
3114 }
3115 
3116 /*
3117  * Implementation of an interface to adjust firmware path
3118  * for the bootindex property handling.
3119  */
3120 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3121                                    DeviceState *dev)
3122 {
3123 #define CAST(type, obj, name) \
3124     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3125     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3126     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3127     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3128 
3129     if (d) {
3130         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3131         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3132         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3133 
3134         if (spapr) {
3135             /*
3136              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3137              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3138              * 0x8000 | (target << 8) | (bus << 5) | lun
3139              * (see the "Logical unit addressing format" table in SAM5)
3140              */
3141             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3142             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3143                                    (uint64_t)id << 48);
3144         } else if (virtio) {
3145             /*
3146              * We use SRP luns of the form 01000000 | (target << 8) | lun
3147              * in the top 32 bits of the 64-bit LUN
3148              * Note: the quote above is from SLOF and it is wrong,
3149              * the actual binding is:
3150              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3151              */
3152             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3153             if (d->lun >= 256) {
3154                 /* Use the LUN "flat space addressing method" */
3155                 id |= 0x4000;
3156             }
3157             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3158                                    (uint64_t)id << 32);
3159         } else if (usb) {
3160             /*
3161              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3162              * in the top 32 bits of the 64-bit LUN
3163              */
3164             unsigned usb_port = atoi(usb->port->path);
3165             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3166             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3167                                    (uint64_t)id << 32);
3168         }
3169     }
3170 
3171     /*
3172      * SLOF probes the USB devices, and if it recognizes that the device is a
3173      * storage device, it changes its name to "storage" instead of "usb-host",
3174      * and additionally adds a child node for the SCSI LUN, so the correct
3175      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3176      */
3177     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3178         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3179         if (usb_host_dev_is_scsi_storage(usbdev)) {
3180             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3181         }
3182     }
3183 
3184     if (phb) {
3185         /* Replace "pci" with "pci@800000020000000" */
3186         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3187     }
3188 
3189     if (vsc) {
3190         /* Same logic as virtio above */
3191         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3192         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3193     }
3194 
3195     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3196         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3197         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3198         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3199     }
3200 
3201     return NULL;
3202 }
3203 
3204 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3205 {
3206     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207 
3208     return g_strdup(spapr->kvm_type);
3209 }
3210 
3211 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3212 {
3213     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3214 
3215     g_free(spapr->kvm_type);
3216     spapr->kvm_type = g_strdup(value);
3217 }
3218 
3219 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3220 {
3221     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3222 
3223     return spapr->use_hotplug_event_source;
3224 }
3225 
3226 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3227                                             Error **errp)
3228 {
3229     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3230 
3231     spapr->use_hotplug_event_source = value;
3232 }
3233 
3234 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3235 {
3236     return true;
3237 }
3238 
3239 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3240 {
3241     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3242 
3243     switch (spapr->resize_hpt) {
3244     case SPAPR_RESIZE_HPT_DEFAULT:
3245         return g_strdup("default");
3246     case SPAPR_RESIZE_HPT_DISABLED:
3247         return g_strdup("disabled");
3248     case SPAPR_RESIZE_HPT_ENABLED:
3249         return g_strdup("enabled");
3250     case SPAPR_RESIZE_HPT_REQUIRED:
3251         return g_strdup("required");
3252     }
3253     g_assert_not_reached();
3254 }
3255 
3256 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3257 {
3258     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259 
3260     if (strcmp(value, "default") == 0) {
3261         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3262     } else if (strcmp(value, "disabled") == 0) {
3263         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3264     } else if (strcmp(value, "enabled") == 0) {
3265         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3266     } else if (strcmp(value, "required") == 0) {
3267         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3268     } else {
3269         error_setg(errp, "Bad value for \"resize-hpt\" property");
3270     }
3271 }
3272 
3273 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3274                                    void *opaque, Error **errp)
3275 {
3276     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3277 }
3278 
3279 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3280                                    void *opaque, Error **errp)
3281 {
3282     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3283 }
3284 
3285 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3286 {
3287     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3288 
3289     if (spapr->irq == &spapr_irq_xics_legacy) {
3290         return g_strdup("legacy");
3291     } else if (spapr->irq == &spapr_irq_xics) {
3292         return g_strdup("xics");
3293     } else if (spapr->irq == &spapr_irq_xive) {
3294         return g_strdup("xive");
3295     } else if (spapr->irq == &spapr_irq_dual) {
3296         return g_strdup("dual");
3297     }
3298     g_assert_not_reached();
3299 }
3300 
3301 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3302 {
3303     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3304 
3305     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3306         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3307         return;
3308     }
3309 
3310     /* The legacy IRQ backend can not be set */
3311     if (strcmp(value, "xics") == 0) {
3312         spapr->irq = &spapr_irq_xics;
3313     } else if (strcmp(value, "xive") == 0) {
3314         spapr->irq = &spapr_irq_xive;
3315     } else if (strcmp(value, "dual") == 0) {
3316         spapr->irq = &spapr_irq_dual;
3317     } else {
3318         error_setg(errp, "Bad value for \"ic-mode\" property");
3319     }
3320 }
3321 
3322 static char *spapr_get_host_model(Object *obj, Error **errp)
3323 {
3324     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3325 
3326     return g_strdup(spapr->host_model);
3327 }
3328 
3329 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3330 {
3331     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3332 
3333     g_free(spapr->host_model);
3334     spapr->host_model = g_strdup(value);
3335 }
3336 
3337 static char *spapr_get_host_serial(Object *obj, Error **errp)
3338 {
3339     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3340 
3341     return g_strdup(spapr->host_serial);
3342 }
3343 
3344 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3345 {
3346     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3347 
3348     g_free(spapr->host_serial);
3349     spapr->host_serial = g_strdup(value);
3350 }
3351 
3352 static void spapr_instance_init(Object *obj)
3353 {
3354     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3355     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3356 
3357     spapr->htab_fd = -1;
3358     spapr->use_hotplug_event_source = true;
3359     object_property_add_str(obj, "kvm-type",
3360                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3361     object_property_set_description(obj, "kvm-type",
3362                                     "Specifies the KVM virtualization mode (HV, PR)",
3363                                     NULL);
3364     object_property_add_bool(obj, "modern-hotplug-events",
3365                             spapr_get_modern_hotplug_events,
3366                             spapr_set_modern_hotplug_events,
3367                             NULL);
3368     object_property_set_description(obj, "modern-hotplug-events",
3369                                     "Use dedicated hotplug event mechanism in"
3370                                     " place of standard EPOW events when possible"
3371                                     " (required for memory hot-unplug support)",
3372                                     NULL);
3373     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3374                             "Maximum permitted CPU compatibility mode",
3375                             &error_fatal);
3376 
3377     object_property_add_str(obj, "resize-hpt",
3378                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3379     object_property_set_description(obj, "resize-hpt",
3380                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3381                                     NULL);
3382     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3383                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3384     object_property_set_description(obj, "vsmt",
3385                                     "Virtual SMT: KVM behaves as if this were"
3386                                     " the host's SMT mode", &error_abort);
3387     object_property_add_bool(obj, "vfio-no-msix-emulation",
3388                              spapr_get_msix_emulation, NULL, NULL);
3389 
3390     /* The machine class defines the default interrupt controller mode */
3391     spapr->irq = smc->irq;
3392     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3393                             spapr_set_ic_mode, NULL);
3394     object_property_set_description(obj, "ic-mode",
3395                  "Specifies the interrupt controller mode (xics, xive, dual)",
3396                  NULL);
3397 
3398     object_property_add_str(obj, "host-model",
3399         spapr_get_host_model, spapr_set_host_model,
3400         &error_abort);
3401     object_property_set_description(obj, "host-model",
3402         "Host model to advertise in guest device tree", &error_abort);
3403     object_property_add_str(obj, "host-serial",
3404         spapr_get_host_serial, spapr_set_host_serial,
3405         &error_abort);
3406     object_property_set_description(obj, "host-serial",
3407         "Host serial number to advertise in guest device tree", &error_abort);
3408 }
3409 
3410 static void spapr_machine_finalizefn(Object *obj)
3411 {
3412     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3413 
3414     g_free(spapr->kvm_type);
3415 }
3416 
3417 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3418 {
3419     cpu_synchronize_state(cs);
3420     ppc_cpu_do_system_reset(cs);
3421 }
3422 
3423 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3424 {
3425     CPUState *cs;
3426 
3427     CPU_FOREACH(cs) {
3428         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3429     }
3430 }
3431 
3432 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3433                           void *fdt, int *fdt_start_offset, Error **errp)
3434 {
3435     uint64_t addr;
3436     uint32_t node;
3437 
3438     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3439     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3440                                     &error_abort);
3441     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3442                                                    SPAPR_MEMORY_BLOCK_SIZE);
3443     return 0;
3444 }
3445 
3446 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3447                            bool dedicated_hp_event_source, Error **errp)
3448 {
3449     SpaprDrc *drc;
3450     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3451     int i;
3452     uint64_t addr = addr_start;
3453     bool hotplugged = spapr_drc_hotplugged(dev);
3454     Error *local_err = NULL;
3455 
3456     for (i = 0; i < nr_lmbs; i++) {
3457         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3458                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3459         g_assert(drc);
3460 
3461         spapr_drc_attach(drc, dev, &local_err);
3462         if (local_err) {
3463             while (addr > addr_start) {
3464                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3465                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3466                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3467                 spapr_drc_detach(drc);
3468             }
3469             error_propagate(errp, local_err);
3470             return;
3471         }
3472         if (!hotplugged) {
3473             spapr_drc_reset(drc);
3474         }
3475         addr += SPAPR_MEMORY_BLOCK_SIZE;
3476     }
3477     /* send hotplug notification to the
3478      * guest only in case of hotplugged memory
3479      */
3480     if (hotplugged) {
3481         if (dedicated_hp_event_source) {
3482             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3483                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3484             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3485                                                    nr_lmbs,
3486                                                    spapr_drc_index(drc));
3487         } else {
3488             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3489                                            nr_lmbs);
3490         }
3491     }
3492 }
3493 
3494 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3495                               Error **errp)
3496 {
3497     Error *local_err = NULL;
3498     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3499     PCDIMMDevice *dimm = PC_DIMM(dev);
3500     uint64_t size, addr;
3501 
3502     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3503 
3504     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3505     if (local_err) {
3506         goto out;
3507     }
3508 
3509     addr = object_property_get_uint(OBJECT(dimm),
3510                                     PC_DIMM_ADDR_PROP, &local_err);
3511     if (local_err) {
3512         goto out_unplug;
3513     }
3514 
3515     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3516                    &local_err);
3517     if (local_err) {
3518         goto out_unplug;
3519     }
3520 
3521     return;
3522 
3523 out_unplug:
3524     pc_dimm_unplug(dimm, MACHINE(ms));
3525 out:
3526     error_propagate(errp, local_err);
3527 }
3528 
3529 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3530                                   Error **errp)
3531 {
3532     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3533     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3534     PCDIMMDevice *dimm = PC_DIMM(dev);
3535     Error *local_err = NULL;
3536     uint64_t size;
3537     Object *memdev;
3538     hwaddr pagesize;
3539 
3540     if (!smc->dr_lmb_enabled) {
3541         error_setg(errp, "Memory hotplug not supported for this machine");
3542         return;
3543     }
3544 
3545     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3546     if (local_err) {
3547         error_propagate(errp, local_err);
3548         return;
3549     }
3550 
3551     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3552         error_setg(errp, "Hotplugged memory size must be a multiple of "
3553                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3554         return;
3555     }
3556 
3557     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3558                                       &error_abort);
3559     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3560     spapr_check_pagesize(spapr, pagesize, &local_err);
3561     if (local_err) {
3562         error_propagate(errp, local_err);
3563         return;
3564     }
3565 
3566     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3567 }
3568 
3569 struct SpaprDimmState {
3570     PCDIMMDevice *dimm;
3571     uint32_t nr_lmbs;
3572     QTAILQ_ENTRY(SpaprDimmState) next;
3573 };
3574 
3575 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3576                                                        PCDIMMDevice *dimm)
3577 {
3578     SpaprDimmState *dimm_state = NULL;
3579 
3580     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3581         if (dimm_state->dimm == dimm) {
3582             break;
3583         }
3584     }
3585     return dimm_state;
3586 }
3587 
3588 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3589                                                       uint32_t nr_lmbs,
3590                                                       PCDIMMDevice *dimm)
3591 {
3592     SpaprDimmState *ds = NULL;
3593 
3594     /*
3595      * If this request is for a DIMM whose removal had failed earlier
3596      * (due to guest's refusal to remove the LMBs), we would have this
3597      * dimm already in the pending_dimm_unplugs list. In that
3598      * case don't add again.
3599      */
3600     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3601     if (!ds) {
3602         ds = g_malloc0(sizeof(SpaprDimmState));
3603         ds->nr_lmbs = nr_lmbs;
3604         ds->dimm = dimm;
3605         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3606     }
3607     return ds;
3608 }
3609 
3610 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3611                                               SpaprDimmState *dimm_state)
3612 {
3613     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3614     g_free(dimm_state);
3615 }
3616 
3617 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3618                                                         PCDIMMDevice *dimm)
3619 {
3620     SpaprDrc *drc;
3621     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3622                                                   &error_abort);
3623     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3624     uint32_t avail_lmbs = 0;
3625     uint64_t addr_start, addr;
3626     int i;
3627 
3628     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3629                                          &error_abort);
3630 
3631     addr = addr_start;
3632     for (i = 0; i < nr_lmbs; i++) {
3633         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3634                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3635         g_assert(drc);
3636         if (drc->dev) {
3637             avail_lmbs++;
3638         }
3639         addr += SPAPR_MEMORY_BLOCK_SIZE;
3640     }
3641 
3642     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3643 }
3644 
3645 /* Callback to be called during DRC release. */
3646 void spapr_lmb_release(DeviceState *dev)
3647 {
3648     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3649     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3650     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3651 
3652     /* This information will get lost if a migration occurs
3653      * during the unplug process. In this case recover it. */
3654     if (ds == NULL) {
3655         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3656         g_assert(ds);
3657         /* The DRC being examined by the caller at least must be counted */
3658         g_assert(ds->nr_lmbs);
3659     }
3660 
3661     if (--ds->nr_lmbs) {
3662         return;
3663     }
3664 
3665     /*
3666      * Now that all the LMBs have been removed by the guest, call the
3667      * unplug handler chain. This can never fail.
3668      */
3669     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3670     object_unparent(OBJECT(dev));
3671 }
3672 
3673 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3674 {
3675     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3676     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3677 
3678     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3679     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3680     spapr_pending_dimm_unplugs_remove(spapr, ds);
3681 }
3682 
3683 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3684                                         DeviceState *dev, Error **errp)
3685 {
3686     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3687     Error *local_err = NULL;
3688     PCDIMMDevice *dimm = PC_DIMM(dev);
3689     uint32_t nr_lmbs;
3690     uint64_t size, addr_start, addr;
3691     int i;
3692     SpaprDrc *drc;
3693 
3694     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3695     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3696 
3697     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3698                                          &local_err);
3699     if (local_err) {
3700         goto out;
3701     }
3702 
3703     /*
3704      * An existing pending dimm state for this DIMM means that there is an
3705      * unplug operation in progress, waiting for the spapr_lmb_release
3706      * callback to complete the job (BQL can't cover that far). In this case,
3707      * bail out to avoid detaching DRCs that were already released.
3708      */
3709     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3710         error_setg(&local_err,
3711                    "Memory unplug already in progress for device %s",
3712                    dev->id);
3713         goto out;
3714     }
3715 
3716     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3717 
3718     addr = addr_start;
3719     for (i = 0; i < nr_lmbs; i++) {
3720         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3721                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3722         g_assert(drc);
3723 
3724         spapr_drc_detach(drc);
3725         addr += SPAPR_MEMORY_BLOCK_SIZE;
3726     }
3727 
3728     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3729                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3730     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3731                                               nr_lmbs, spapr_drc_index(drc));
3732 out:
3733     error_propagate(errp, local_err);
3734 }
3735 
3736 /* Callback to be called during DRC release. */
3737 void spapr_core_release(DeviceState *dev)
3738 {
3739     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3740 
3741     /* Call the unplug handler chain. This can never fail. */
3742     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3743     object_unparent(OBJECT(dev));
3744 }
3745 
3746 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3747 {
3748     MachineState *ms = MACHINE(hotplug_dev);
3749     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3750     CPUCore *cc = CPU_CORE(dev);
3751     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3752 
3753     if (smc->pre_2_10_has_unused_icps) {
3754         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3755         int i;
3756 
3757         for (i = 0; i < cc->nr_threads; i++) {
3758             CPUState *cs = CPU(sc->threads[i]);
3759 
3760             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3761         }
3762     }
3763 
3764     assert(core_slot);
3765     core_slot->cpu = NULL;
3766     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3767 }
3768 
3769 static
3770 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3771                                Error **errp)
3772 {
3773     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3774     int index;
3775     SpaprDrc *drc;
3776     CPUCore *cc = CPU_CORE(dev);
3777 
3778     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3779         error_setg(errp, "Unable to find CPU core with core-id: %d",
3780                    cc->core_id);
3781         return;
3782     }
3783     if (index == 0) {
3784         error_setg(errp, "Boot CPU core may not be unplugged");
3785         return;
3786     }
3787 
3788     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3789                           spapr_vcpu_id(spapr, cc->core_id));
3790     g_assert(drc);
3791 
3792     spapr_drc_detach(drc);
3793 
3794     spapr_hotplug_req_remove_by_index(drc);
3795 }
3796 
3797 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3798                            void *fdt, int *fdt_start_offset, Error **errp)
3799 {
3800     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3801     CPUState *cs = CPU(core->threads[0]);
3802     PowerPCCPU *cpu = POWERPC_CPU(cs);
3803     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3804     int id = spapr_get_vcpu_id(cpu);
3805     char *nodename;
3806     int offset;
3807 
3808     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3809     offset = fdt_add_subnode(fdt, 0, nodename);
3810     g_free(nodename);
3811 
3812     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3813 
3814     *fdt_start_offset = offset;
3815     return 0;
3816 }
3817 
3818 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3819                             Error **errp)
3820 {
3821     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3822     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3823     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3824     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3825     CPUCore *cc = CPU_CORE(dev);
3826     CPUState *cs;
3827     SpaprDrc *drc;
3828     Error *local_err = NULL;
3829     CPUArchId *core_slot;
3830     int index;
3831     bool hotplugged = spapr_drc_hotplugged(dev);
3832 
3833     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3834     if (!core_slot) {
3835         error_setg(errp, "Unable to find CPU core with core-id: %d",
3836                    cc->core_id);
3837         return;
3838     }
3839     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3840                           spapr_vcpu_id(spapr, cc->core_id));
3841 
3842     g_assert(drc || !mc->has_hotpluggable_cpus);
3843 
3844     if (drc) {
3845         spapr_drc_attach(drc, dev, &local_err);
3846         if (local_err) {
3847             error_propagate(errp, local_err);
3848             return;
3849         }
3850 
3851         if (hotplugged) {
3852             /*
3853              * Send hotplug notification interrupt to the guest only
3854              * in case of hotplugged CPUs.
3855              */
3856             spapr_hotplug_req_add_by_index(drc);
3857         } else {
3858             spapr_drc_reset(drc);
3859         }
3860     }
3861 
3862     core_slot->cpu = OBJECT(dev);
3863 
3864     if (smc->pre_2_10_has_unused_icps) {
3865         int i;
3866 
3867         for (i = 0; i < cc->nr_threads; i++) {
3868             cs = CPU(core->threads[i]);
3869             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3870         }
3871     }
3872 }
3873 
3874 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3875                                 Error **errp)
3876 {
3877     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3878     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3879     Error *local_err = NULL;
3880     CPUCore *cc = CPU_CORE(dev);
3881     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3882     const char *type = object_get_typename(OBJECT(dev));
3883     CPUArchId *core_slot;
3884     int index;
3885     unsigned int smp_threads = machine->smp.threads;
3886 
3887     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3888         error_setg(&local_err, "CPU hotplug not supported for this machine");
3889         goto out;
3890     }
3891 
3892     if (strcmp(base_core_type, type)) {
3893         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3894         goto out;
3895     }
3896 
3897     if (cc->core_id % smp_threads) {
3898         error_setg(&local_err, "invalid core id %d", cc->core_id);
3899         goto out;
3900     }
3901 
3902     /*
3903      * In general we should have homogeneous threads-per-core, but old
3904      * (pre hotplug support) machine types allow the last core to have
3905      * reduced threads as a compatibility hack for when we allowed
3906      * total vcpus not a multiple of threads-per-core.
3907      */
3908     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3909         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3910                    cc->nr_threads, smp_threads);
3911         goto out;
3912     }
3913 
3914     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3915     if (!core_slot) {
3916         error_setg(&local_err, "core id %d out of range", cc->core_id);
3917         goto out;
3918     }
3919 
3920     if (core_slot->cpu) {
3921         error_setg(&local_err, "core %d already populated", cc->core_id);
3922         goto out;
3923     }
3924 
3925     numa_cpu_pre_plug(core_slot, dev, &local_err);
3926 
3927 out:
3928     error_propagate(errp, local_err);
3929 }
3930 
3931 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3932                           void *fdt, int *fdt_start_offset, Error **errp)
3933 {
3934     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3935     int intc_phandle;
3936 
3937     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3938     if (intc_phandle <= 0) {
3939         return -1;
3940     }
3941 
3942     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3943                      fdt_start_offset)) {
3944         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3945         return -1;
3946     }
3947 
3948     /* generally SLOF creates these, for hotplug it's up to QEMU */
3949     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3950 
3951     return 0;
3952 }
3953 
3954 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3955                                Error **errp)
3956 {
3957     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3958     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3959     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3960     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3961 
3962     if (dev->hotplugged && !smc->dr_phb_enabled) {
3963         error_setg(errp, "PHB hotplug not supported for this machine");
3964         return;
3965     }
3966 
3967     if (sphb->index == (uint32_t)-1) {
3968         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3969         return;
3970     }
3971 
3972     /*
3973      * This will check that sphb->index doesn't exceed the maximum number of
3974      * PHBs for the current machine type.
3975      */
3976     smc->phb_placement(spapr, sphb->index,
3977                        &sphb->buid, &sphb->io_win_addr,
3978                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3979                        windows_supported, sphb->dma_liobn,
3980                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3981                        errp);
3982 }
3983 
3984 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3985                            Error **errp)
3986 {
3987     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3988     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3989     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3990     SpaprDrc *drc;
3991     bool hotplugged = spapr_drc_hotplugged(dev);
3992     Error *local_err = NULL;
3993 
3994     if (!smc->dr_phb_enabled) {
3995         return;
3996     }
3997 
3998     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3999     /* hotplug hooks should check it's enabled before getting this far */
4000     assert(drc);
4001 
4002     spapr_drc_attach(drc, DEVICE(dev), &local_err);
4003     if (local_err) {
4004         error_propagate(errp, local_err);
4005         return;
4006     }
4007 
4008     if (hotplugged) {
4009         spapr_hotplug_req_add_by_index(drc);
4010     } else {
4011         spapr_drc_reset(drc);
4012     }
4013 }
4014 
4015 void spapr_phb_release(DeviceState *dev)
4016 {
4017     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4018 
4019     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4020     object_unparent(OBJECT(dev));
4021 }
4022 
4023 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4024 {
4025     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4026 }
4027 
4028 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4029                                      DeviceState *dev, Error **errp)
4030 {
4031     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4032     SpaprDrc *drc;
4033 
4034     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4035     assert(drc);
4036 
4037     if (!spapr_drc_unplug_requested(drc)) {
4038         spapr_drc_detach(drc);
4039         spapr_hotplug_req_remove_by_index(drc);
4040     }
4041 }
4042 
4043 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4044                                  Error **errp)
4045 {
4046     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4047     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4048 
4049     if (spapr->tpm_proxy != NULL) {
4050         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4051         return;
4052     }
4053 
4054     spapr->tpm_proxy = tpm_proxy;
4055 }
4056 
4057 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4058 {
4059     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4060 
4061     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4062     object_unparent(OBJECT(dev));
4063     spapr->tpm_proxy = NULL;
4064 }
4065 
4066 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4067                                       DeviceState *dev, Error **errp)
4068 {
4069     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4070         spapr_memory_plug(hotplug_dev, dev, errp);
4071     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4072         spapr_core_plug(hotplug_dev, dev, errp);
4073     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4074         spapr_phb_plug(hotplug_dev, dev, errp);
4075     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4076         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4077     }
4078 }
4079 
4080 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4081                                         DeviceState *dev, Error **errp)
4082 {
4083     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4084         spapr_memory_unplug(hotplug_dev, dev);
4085     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4086         spapr_core_unplug(hotplug_dev, dev);
4087     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4088         spapr_phb_unplug(hotplug_dev, dev);
4089     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4090         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4091     }
4092 }
4093 
4094 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4095                                                 DeviceState *dev, Error **errp)
4096 {
4097     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4098     MachineClass *mc = MACHINE_GET_CLASS(sms);
4099     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4100 
4101     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4102         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4103             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4104         } else {
4105             /* NOTE: this means there is a window after guest reset, prior to
4106              * CAS negotiation, where unplug requests will fail due to the
4107              * capability not being detected yet. This is a bit different than
4108              * the case with PCI unplug, where the events will be queued and
4109              * eventually handled by the guest after boot
4110              */
4111             error_setg(errp, "Memory hot unplug not supported for this guest");
4112         }
4113     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4114         if (!mc->has_hotpluggable_cpus) {
4115             error_setg(errp, "CPU hot unplug not supported on this machine");
4116             return;
4117         }
4118         spapr_core_unplug_request(hotplug_dev, dev, errp);
4119     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4120         if (!smc->dr_phb_enabled) {
4121             error_setg(errp, "PHB hot unplug not supported on this machine");
4122             return;
4123         }
4124         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4125     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4126         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4127     }
4128 }
4129 
4130 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4131                                           DeviceState *dev, Error **errp)
4132 {
4133     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4134         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4135     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4136         spapr_core_pre_plug(hotplug_dev, dev, errp);
4137     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4138         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4139     }
4140 }
4141 
4142 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4143                                                  DeviceState *dev)
4144 {
4145     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4146         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4147         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4148         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4149         return HOTPLUG_HANDLER(machine);
4150     }
4151     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4152         PCIDevice *pcidev = PCI_DEVICE(dev);
4153         PCIBus *root = pci_device_root_bus(pcidev);
4154         SpaprPhbState *phb =
4155             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4156                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4157 
4158         if (phb) {
4159             return HOTPLUG_HANDLER(phb);
4160         }
4161     }
4162     return NULL;
4163 }
4164 
4165 static CpuInstanceProperties
4166 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4167 {
4168     CPUArchId *core_slot;
4169     MachineClass *mc = MACHINE_GET_CLASS(machine);
4170 
4171     /* make sure possible_cpu are intialized */
4172     mc->possible_cpu_arch_ids(machine);
4173     /* get CPU core slot containing thread that matches cpu_index */
4174     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4175     assert(core_slot);
4176     return core_slot->props;
4177 }
4178 
4179 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4180 {
4181     return idx / ms->smp.cores % nb_numa_nodes;
4182 }
4183 
4184 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4185 {
4186     int i;
4187     unsigned int smp_threads = machine->smp.threads;
4188     unsigned int smp_cpus = machine->smp.cpus;
4189     const char *core_type;
4190     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4191     MachineClass *mc = MACHINE_GET_CLASS(machine);
4192 
4193     if (!mc->has_hotpluggable_cpus) {
4194         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4195     }
4196     if (machine->possible_cpus) {
4197         assert(machine->possible_cpus->len == spapr_max_cores);
4198         return machine->possible_cpus;
4199     }
4200 
4201     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4202     if (!core_type) {
4203         error_report("Unable to find sPAPR CPU Core definition");
4204         exit(1);
4205     }
4206 
4207     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4208                              sizeof(CPUArchId) * spapr_max_cores);
4209     machine->possible_cpus->len = spapr_max_cores;
4210     for (i = 0; i < machine->possible_cpus->len; i++) {
4211         int core_id = i * smp_threads;
4212 
4213         machine->possible_cpus->cpus[i].type = core_type;
4214         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4215         machine->possible_cpus->cpus[i].arch_id = core_id;
4216         machine->possible_cpus->cpus[i].props.has_core_id = true;
4217         machine->possible_cpus->cpus[i].props.core_id = core_id;
4218     }
4219     return machine->possible_cpus;
4220 }
4221 
4222 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4223                                 uint64_t *buid, hwaddr *pio,
4224                                 hwaddr *mmio32, hwaddr *mmio64,
4225                                 unsigned n_dma, uint32_t *liobns,
4226                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4227 {
4228     /*
4229      * New-style PHB window placement.
4230      *
4231      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4232      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4233      * windows.
4234      *
4235      * Some guest kernels can't work with MMIO windows above 1<<46
4236      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4237      *
4238      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4239      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4240      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4241      * 1TiB 64-bit MMIO windows for each PHB.
4242      */
4243     const uint64_t base_buid = 0x800000020000000ULL;
4244     int i;
4245 
4246     /* Sanity check natural alignments */
4247     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4248     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4249     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4250     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4251     /* Sanity check bounds */
4252     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4253                       SPAPR_PCI_MEM32_WIN_SIZE);
4254     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4255                       SPAPR_PCI_MEM64_WIN_SIZE);
4256 
4257     if (index >= SPAPR_MAX_PHBS) {
4258         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4259                    SPAPR_MAX_PHBS - 1);
4260         return;
4261     }
4262 
4263     *buid = base_buid + index;
4264     for (i = 0; i < n_dma; ++i) {
4265         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4266     }
4267 
4268     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4269     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4270     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4271 
4272     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4273     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4274 }
4275 
4276 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4277 {
4278     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4279 
4280     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4281 }
4282 
4283 static void spapr_ics_resend(XICSFabric *dev)
4284 {
4285     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4286 
4287     ics_resend(spapr->ics);
4288 }
4289 
4290 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4291 {
4292     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4293 
4294     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4295 }
4296 
4297 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4298                                  Monitor *mon)
4299 {
4300     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4301 
4302     spapr->irq->print_info(spapr, mon);
4303 }
4304 
4305 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4306 {
4307     return cpu->vcpu_id;
4308 }
4309 
4310 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4311 {
4312     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4313     MachineState *ms = MACHINE(spapr);
4314     int vcpu_id;
4315 
4316     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4317 
4318     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4319         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4320         error_append_hint(errp, "Adjust the number of cpus to %d "
4321                           "or try to raise the number of threads per core\n",
4322                           vcpu_id * ms->smp.threads / spapr->vsmt);
4323         return;
4324     }
4325 
4326     cpu->vcpu_id = vcpu_id;
4327 }
4328 
4329 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4330 {
4331     CPUState *cs;
4332 
4333     CPU_FOREACH(cs) {
4334         PowerPCCPU *cpu = POWERPC_CPU(cs);
4335 
4336         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4337             return cpu;
4338         }
4339     }
4340 
4341     return NULL;
4342 }
4343 
4344 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4345 {
4346     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4347 
4348     /* These are only called by TCG, KVM maintains dispatch state */
4349 
4350     spapr_cpu->prod = false;
4351     if (spapr_cpu->vpa_addr) {
4352         CPUState *cs = CPU(cpu);
4353         uint32_t dispatch;
4354 
4355         dispatch = ldl_be_phys(cs->as,
4356                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4357         dispatch++;
4358         if ((dispatch & 1) != 0) {
4359             qemu_log_mask(LOG_GUEST_ERROR,
4360                           "VPA: incorrect dispatch counter value for "
4361                           "dispatched partition %u, correcting.\n", dispatch);
4362             dispatch++;
4363         }
4364         stl_be_phys(cs->as,
4365                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4366     }
4367 }
4368 
4369 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4370 {
4371     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4372 
4373     if (spapr_cpu->vpa_addr) {
4374         CPUState *cs = CPU(cpu);
4375         uint32_t dispatch;
4376 
4377         dispatch = ldl_be_phys(cs->as,
4378                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4379         dispatch++;
4380         if ((dispatch & 1) != 1) {
4381             qemu_log_mask(LOG_GUEST_ERROR,
4382                           "VPA: incorrect dispatch counter value for "
4383                           "preempted partition %u, correcting.\n", dispatch);
4384             dispatch++;
4385         }
4386         stl_be_phys(cs->as,
4387                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4388     }
4389 }
4390 
4391 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4392 {
4393     MachineClass *mc = MACHINE_CLASS(oc);
4394     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4395     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4396     NMIClass *nc = NMI_CLASS(oc);
4397     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4398     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4399     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4400     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4401 
4402     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4403     mc->ignore_boot_device_suffixes = true;
4404 
4405     /*
4406      * We set up the default / latest behaviour here.  The class_init
4407      * functions for the specific versioned machine types can override
4408      * these details for backwards compatibility
4409      */
4410     mc->init = spapr_machine_init;
4411     mc->reset = spapr_machine_reset;
4412     mc->block_default_type = IF_SCSI;
4413     mc->max_cpus = 1024;
4414     mc->no_parallel = 1;
4415     mc->default_boot_order = "";
4416     mc->default_ram_size = 512 * MiB;
4417     mc->default_display = "std";
4418     mc->kvm_type = spapr_kvm_type;
4419     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4420     mc->pci_allow_0_address = true;
4421     assert(!mc->get_hotplug_handler);
4422     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4423     hc->pre_plug = spapr_machine_device_pre_plug;
4424     hc->plug = spapr_machine_device_plug;
4425     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4426     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4427     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4428     hc->unplug_request = spapr_machine_device_unplug_request;
4429     hc->unplug = spapr_machine_device_unplug;
4430 
4431     smc->dr_lmb_enabled = true;
4432     smc->update_dt_enabled = true;
4433     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4434     mc->has_hotpluggable_cpus = true;
4435     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4436     fwc->get_dev_path = spapr_get_fw_dev_path;
4437     nc->nmi_monitor_handler = spapr_nmi;
4438     smc->phb_placement = spapr_phb_placement;
4439     vhc->hypercall = emulate_spapr_hypercall;
4440     vhc->hpt_mask = spapr_hpt_mask;
4441     vhc->map_hptes = spapr_map_hptes;
4442     vhc->unmap_hptes = spapr_unmap_hptes;
4443     vhc->hpte_set_c = spapr_hpte_set_c;
4444     vhc->hpte_set_r = spapr_hpte_set_r;
4445     vhc->get_pate = spapr_get_pate;
4446     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4447     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4448     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4449     xic->ics_get = spapr_ics_get;
4450     xic->ics_resend = spapr_ics_resend;
4451     xic->icp_get = spapr_icp_get;
4452     ispc->print_info = spapr_pic_print_info;
4453     /* Force NUMA node memory size to be a multiple of
4454      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4455      * in which LMBs are represented and hot-added
4456      */
4457     mc->numa_mem_align_shift = 28;
4458     mc->numa_mem_supported = true;
4459 
4460     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4461     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4462     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4463     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4464     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4465     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4466     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4467     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4468     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4469     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4470     spapr_caps_add_properties(smc, &error_abort);
4471     smc->irq = &spapr_irq_dual;
4472     smc->dr_phb_enabled = true;
4473 }
4474 
4475 static const TypeInfo spapr_machine_info = {
4476     .name          = TYPE_SPAPR_MACHINE,
4477     .parent        = TYPE_MACHINE,
4478     .abstract      = true,
4479     .instance_size = sizeof(SpaprMachineState),
4480     .instance_init = spapr_instance_init,
4481     .instance_finalize = spapr_machine_finalizefn,
4482     .class_size    = sizeof(SpaprMachineClass),
4483     .class_init    = spapr_machine_class_init,
4484     .interfaces = (InterfaceInfo[]) {
4485         { TYPE_FW_PATH_PROVIDER },
4486         { TYPE_NMI },
4487         { TYPE_HOTPLUG_HANDLER },
4488         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4489         { TYPE_XICS_FABRIC },
4490         { TYPE_INTERRUPT_STATS_PROVIDER },
4491         { }
4492     },
4493 };
4494 
4495 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4496     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4497                                                     void *data)      \
4498     {                                                                \
4499         MachineClass *mc = MACHINE_CLASS(oc);                        \
4500         spapr_machine_##suffix##_class_options(mc);                  \
4501         if (latest) {                                                \
4502             mc->alias = "pseries";                                   \
4503             mc->is_default = 1;                                      \
4504         }                                                            \
4505     }                                                                \
4506     static const TypeInfo spapr_machine_##suffix##_info = {          \
4507         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4508         .parent = TYPE_SPAPR_MACHINE,                                \
4509         .class_init = spapr_machine_##suffix##_class_init,           \
4510     };                                                               \
4511     static void spapr_machine_register_##suffix(void)                \
4512     {                                                                \
4513         type_register(&spapr_machine_##suffix##_info);               \
4514     }                                                                \
4515     type_init(spapr_machine_register_##suffix)
4516 
4517 /*
4518  * pseries-4.2
4519  */
4520 static void spapr_machine_4_2_class_options(MachineClass *mc)
4521 {
4522     /* Defaults for the latest behaviour inherited from the base class */
4523 }
4524 
4525 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4526 
4527 /*
4528  * pseries-4.1
4529  */
4530 static void spapr_machine_4_1_class_options(MachineClass *mc)
4531 {
4532     static GlobalProperty compat[] = {
4533         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4534         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4535     };
4536 
4537     spapr_machine_4_2_class_options(mc);
4538     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4539     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4540 }
4541 
4542 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4543 
4544 /*
4545  * pseries-4.0
4546  */
4547 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4548                               uint64_t *buid, hwaddr *pio,
4549                               hwaddr *mmio32, hwaddr *mmio64,
4550                               unsigned n_dma, uint32_t *liobns,
4551                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4552 {
4553     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4554                         nv2gpa, nv2atsd, errp);
4555     *nv2gpa = 0;
4556     *nv2atsd = 0;
4557 }
4558 
4559 static void spapr_machine_4_0_class_options(MachineClass *mc)
4560 {
4561     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4562 
4563     spapr_machine_4_1_class_options(mc);
4564     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4565     smc->phb_placement = phb_placement_4_0;
4566     smc->irq = &spapr_irq_xics;
4567     smc->pre_4_1_migration = true;
4568 }
4569 
4570 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4571 
4572 /*
4573  * pseries-3.1
4574  */
4575 static void spapr_machine_3_1_class_options(MachineClass *mc)
4576 {
4577     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4578 
4579     spapr_machine_4_0_class_options(mc);
4580     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4581 
4582     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4583     smc->update_dt_enabled = false;
4584     smc->dr_phb_enabled = false;
4585     smc->broken_host_serial_model = true;
4586     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4587     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4588     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4589     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4590 }
4591 
4592 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4593 
4594 /*
4595  * pseries-3.0
4596  */
4597 
4598 static void spapr_machine_3_0_class_options(MachineClass *mc)
4599 {
4600     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4601 
4602     spapr_machine_3_1_class_options(mc);
4603     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4604 
4605     smc->legacy_irq_allocation = true;
4606     smc->irq = &spapr_irq_xics_legacy;
4607 }
4608 
4609 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4610 
4611 /*
4612  * pseries-2.12
4613  */
4614 static void spapr_machine_2_12_class_options(MachineClass *mc)
4615 {
4616     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4617     static GlobalProperty compat[] = {
4618         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4619         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4620     };
4621 
4622     spapr_machine_3_0_class_options(mc);
4623     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4624     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4625 
4626     /* We depend on kvm_enabled() to choose a default value for the
4627      * hpt-max-page-size capability. Of course we can't do it here
4628      * because this is too early and the HW accelerator isn't initialzed
4629      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4630      */
4631     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4632 }
4633 
4634 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4635 
4636 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4637 {
4638     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4639 
4640     spapr_machine_2_12_class_options(mc);
4641     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4642     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4643     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4644 }
4645 
4646 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4647 
4648 /*
4649  * pseries-2.11
4650  */
4651 
4652 static void spapr_machine_2_11_class_options(MachineClass *mc)
4653 {
4654     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4655 
4656     spapr_machine_2_12_class_options(mc);
4657     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4658     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4659 }
4660 
4661 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4662 
4663 /*
4664  * pseries-2.10
4665  */
4666 
4667 static void spapr_machine_2_10_class_options(MachineClass *mc)
4668 {
4669     spapr_machine_2_11_class_options(mc);
4670     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4671 }
4672 
4673 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4674 
4675 /*
4676  * pseries-2.9
4677  */
4678 
4679 static void spapr_machine_2_9_class_options(MachineClass *mc)
4680 {
4681     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4682     static GlobalProperty compat[] = {
4683         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4684     };
4685 
4686     spapr_machine_2_10_class_options(mc);
4687     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4688     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4689     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4690     smc->pre_2_10_has_unused_icps = true;
4691     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4692 }
4693 
4694 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4695 
4696 /*
4697  * pseries-2.8
4698  */
4699 
4700 static void spapr_machine_2_8_class_options(MachineClass *mc)
4701 {
4702     static GlobalProperty compat[] = {
4703         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4704     };
4705 
4706     spapr_machine_2_9_class_options(mc);
4707     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4708     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4709     mc->numa_mem_align_shift = 23;
4710 }
4711 
4712 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4713 
4714 /*
4715  * pseries-2.7
4716  */
4717 
4718 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4719                               uint64_t *buid, hwaddr *pio,
4720                               hwaddr *mmio32, hwaddr *mmio64,
4721                               unsigned n_dma, uint32_t *liobns,
4722                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4723 {
4724     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4725     const uint64_t base_buid = 0x800000020000000ULL;
4726     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4727     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4728     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4729     const uint32_t max_index = 255;
4730     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4731 
4732     uint64_t ram_top = MACHINE(spapr)->ram_size;
4733     hwaddr phb0_base, phb_base;
4734     int i;
4735 
4736     /* Do we have device memory? */
4737     if (MACHINE(spapr)->maxram_size > ram_top) {
4738         /* Can't just use maxram_size, because there may be an
4739          * alignment gap between normal and device memory regions
4740          */
4741         ram_top = MACHINE(spapr)->device_memory->base +
4742             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4743     }
4744 
4745     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4746 
4747     if (index > max_index) {
4748         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4749                    max_index);
4750         return;
4751     }
4752 
4753     *buid = base_buid + index;
4754     for (i = 0; i < n_dma; ++i) {
4755         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4756     }
4757 
4758     phb_base = phb0_base + index * phb_spacing;
4759     *pio = phb_base + pio_offset;
4760     *mmio32 = phb_base + mmio_offset;
4761     /*
4762      * We don't set the 64-bit MMIO window, relying on the PHB's
4763      * fallback behaviour of automatically splitting a large "32-bit"
4764      * window into contiguous 32-bit and 64-bit windows
4765      */
4766 
4767     *nv2gpa = 0;
4768     *nv2atsd = 0;
4769 }
4770 
4771 static void spapr_machine_2_7_class_options(MachineClass *mc)
4772 {
4773     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4774     static GlobalProperty compat[] = {
4775         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4776         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4777         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4778         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4779     };
4780 
4781     spapr_machine_2_8_class_options(mc);
4782     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4783     mc->default_machine_opts = "modern-hotplug-events=off";
4784     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4785     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4786     smc->phb_placement = phb_placement_2_7;
4787 }
4788 
4789 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4790 
4791 /*
4792  * pseries-2.6
4793  */
4794 
4795 static void spapr_machine_2_6_class_options(MachineClass *mc)
4796 {
4797     static GlobalProperty compat[] = {
4798         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4799     };
4800 
4801     spapr_machine_2_7_class_options(mc);
4802     mc->has_hotpluggable_cpus = false;
4803     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4804     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4805 }
4806 
4807 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4808 
4809 /*
4810  * pseries-2.5
4811  */
4812 
4813 static void spapr_machine_2_5_class_options(MachineClass *mc)
4814 {
4815     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4816     static GlobalProperty compat[] = {
4817         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4818     };
4819 
4820     spapr_machine_2_6_class_options(mc);
4821     smc->use_ohci_by_default = true;
4822     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4823     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4824 }
4825 
4826 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4827 
4828 /*
4829  * pseries-2.4
4830  */
4831 
4832 static void spapr_machine_2_4_class_options(MachineClass *mc)
4833 {
4834     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4835 
4836     spapr_machine_2_5_class_options(mc);
4837     smc->dr_lmb_enabled = false;
4838     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4839 }
4840 
4841 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4842 
4843 /*
4844  * pseries-2.3
4845  */
4846 
4847 static void spapr_machine_2_3_class_options(MachineClass *mc)
4848 {
4849     static GlobalProperty compat[] = {
4850         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4851     };
4852     spapr_machine_2_4_class_options(mc);
4853     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4854     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4855 }
4856 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4857 
4858 /*
4859  * pseries-2.2
4860  */
4861 
4862 static void spapr_machine_2_2_class_options(MachineClass *mc)
4863 {
4864     static GlobalProperty compat[] = {
4865         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4866     };
4867 
4868     spapr_machine_2_3_class_options(mc);
4869     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4870     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4871     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4872 }
4873 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4874 
4875 /*
4876  * pseries-2.1
4877  */
4878 
4879 static void spapr_machine_2_1_class_options(MachineClass *mc)
4880 {
4881     spapr_machine_2_2_class_options(mc);
4882     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4883 }
4884 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4885 
4886 static void spapr_machine_register_types(void)
4887 {
4888     type_register_static(&spapr_machine_info);
4889 }
4890 
4891 type_init(spapr_machine_register_types)
4892