xref: /openbmc/qemu/hw/ppc/spapr.c (revision 31cf4b97)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48 
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52 
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58 
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63 
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72 
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "hw/mem/memory-device.h"
76 
77 #include <libfdt.h>
78 
79 /* SLOF memory layout:
80  *
81  * SLOF raw image loaded at 0, copies its romfs right below the flat
82  * device-tree, then position SLOF itself 31M below that
83  *
84  * So we set FW_OVERHEAD to 40MB which should account for all of that
85  * and more
86  *
87  * We load our kernel at 4M, leaving space for SLOF initial image
88  */
89 #define FDT_MAX_SIZE            0x100000
90 #define RTAS_MAX_SIZE           0x10000
91 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE             0x400000
93 #define FW_FILE_NAME            "slof.bin"
94 #define FW_OVERHEAD             0x2800000
95 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
96 
97 #define MIN_RMA_SLOF            128UL
98 
99 #define PHANDLE_XICP            0x00001111
100 
101 /* These two functions implement the VCPU id numbering: one to compute them
102  * all and one to identify thread 0 of a VCORE. Any change to the first one
103  * is likely to have an impact on the second one, so let's keep them close.
104  */
105 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
106 {
107     assert(spapr->vsmt);
108     return
109         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
110 }
111 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
112                                       PowerPCCPU *cpu)
113 {
114     assert(spapr->vsmt);
115     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
116 }
117 
118 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
119 {
120     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
121      * and newer QEMUs don't even have them. In both cases, we don't want
122      * to send anything on the wire.
123      */
124     return false;
125 }
126 
127 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
128     .name = "icp/server",
129     .version_id = 1,
130     .minimum_version_id = 1,
131     .needed = pre_2_10_vmstate_dummy_icp_needed,
132     .fields = (VMStateField[]) {
133         VMSTATE_UNUSED(4), /* uint32_t xirr */
134         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
135         VMSTATE_UNUSED(1), /* uint8_t mfrr */
136         VMSTATE_END_OF_LIST()
137     },
138 };
139 
140 static void pre_2_10_vmstate_register_dummy_icp(int i)
141 {
142     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
143                      (void *)(uintptr_t) i);
144 }
145 
146 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
147 {
148     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
149                        (void *)(uintptr_t) i);
150 }
151 
152 int spapr_max_server_number(sPAPRMachineState *spapr)
153 {
154     assert(spapr->vsmt);
155     return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
156 }
157 
158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
159                                   int smt_threads)
160 {
161     int i, ret = 0;
162     uint32_t servers_prop[smt_threads];
163     uint32_t gservers_prop[smt_threads * 2];
164     int index = spapr_get_vcpu_id(cpu);
165 
166     if (cpu->compat_pvr) {
167         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
168         if (ret < 0) {
169             return ret;
170         }
171     }
172 
173     /* Build interrupt servers and gservers properties */
174     for (i = 0; i < smt_threads; i++) {
175         servers_prop[i] = cpu_to_be32(index + i);
176         /* Hack, direct the group queues back to cpu 0 */
177         gservers_prop[i*2] = cpu_to_be32(index + i);
178         gservers_prop[i*2 + 1] = 0;
179     }
180     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
181                       servers_prop, sizeof(servers_prop));
182     if (ret < 0) {
183         return ret;
184     }
185     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
186                       gservers_prop, sizeof(gservers_prop));
187 
188     return ret;
189 }
190 
191 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
192 {
193     int index = spapr_get_vcpu_id(cpu);
194     uint32_t associativity[] = {cpu_to_be32(0x5),
195                                 cpu_to_be32(0x0),
196                                 cpu_to_be32(0x0),
197                                 cpu_to_be32(0x0),
198                                 cpu_to_be32(cpu->node_id),
199                                 cpu_to_be32(index)};
200 
201     /* Advertise NUMA via ibm,associativity */
202     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
203                           sizeof(associativity));
204 }
205 
206 /* Populate the "ibm,pa-features" property */
207 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
208                                        PowerPCCPU *cpu,
209                                        void *fdt, int offset,
210                                        bool legacy_guest)
211 {
212     uint8_t pa_features_206[] = { 6, 0,
213         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214     uint8_t pa_features_207[] = { 24, 0,
215         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219     uint8_t pa_features_300[] = { 66, 0,
220         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223         /* 6: DS207 */
224         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225         /* 16: Vector */
226         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235         /* 42: PM, 44: PC RA, 46: SC vec'd */
236         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237         /* 48: SIMD, 50: QP BFP, 52: String */
238         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239         /* 54: DecFP, 56: DecI, 58: SHA */
240         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241         /* 60: NM atomic, 62: RNG */
242         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243     };
244     uint8_t *pa_features = NULL;
245     size_t pa_size;
246 
247     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248         pa_features = pa_features_206;
249         pa_size = sizeof(pa_features_206);
250     }
251     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252         pa_features = pa_features_207;
253         pa_size = sizeof(pa_features_207);
254     }
255     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256         pa_features = pa_features_300;
257         pa_size = sizeof(pa_features_300);
258     }
259     if (!pa_features) {
260         return;
261     }
262 
263     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264         /*
265          * Note: we keep CI large pages off by default because a 64K capable
266          * guest provisioned with large pages might otherwise try to map a qemu
267          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268          * even if that qemu runs on a 4k host.
269          * We dd this bit back here if we are confident this is not an issue
270          */
271         pa_features[3] |= 0x20;
272     }
273     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274         pa_features[24] |= 0x80;    /* Transactional memory support */
275     }
276     if (legacy_guest && pa_size > 40) {
277         /* Workaround for broken kernels that attempt (guest) radix
278          * mode when they can't handle it, if they see the radix bit set
279          * in pa-features. So hide it from them. */
280         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281     }
282 
283     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285 
286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
287 {
288     int ret = 0, offset, cpus_offset;
289     CPUState *cs;
290     char cpu_model[32];
291     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
292 
293     CPU_FOREACH(cs) {
294         PowerPCCPU *cpu = POWERPC_CPU(cs);
295         DeviceClass *dc = DEVICE_GET_CLASS(cs);
296         int index = spapr_get_vcpu_id(cpu);
297         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
298 
299         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
300             continue;
301         }
302 
303         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
304 
305         cpus_offset = fdt_path_offset(fdt, "/cpus");
306         if (cpus_offset < 0) {
307             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
308             if (cpus_offset < 0) {
309                 return cpus_offset;
310             }
311         }
312         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
313         if (offset < 0) {
314             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
315             if (offset < 0) {
316                 return offset;
317             }
318         }
319 
320         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
321                           pft_size_prop, sizeof(pft_size_prop));
322         if (ret < 0) {
323             return ret;
324         }
325 
326         if (nb_numa_nodes > 1) {
327             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
328             if (ret < 0) {
329                 return ret;
330             }
331         }
332 
333         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
334         if (ret < 0) {
335             return ret;
336         }
337 
338         spapr_populate_pa_features(spapr, cpu, fdt, offset,
339                                    spapr->cas_legacy_guest_workaround);
340     }
341     return ret;
342 }
343 
344 static hwaddr spapr_node0_size(MachineState *machine)
345 {
346     if (nb_numa_nodes) {
347         int i;
348         for (i = 0; i < nb_numa_nodes; ++i) {
349             if (numa_info[i].node_mem) {
350                 return MIN(pow2floor(numa_info[i].node_mem),
351                            machine->ram_size);
352             }
353         }
354     }
355     return machine->ram_size;
356 }
357 
358 static void add_str(GString *s, const gchar *s1)
359 {
360     g_string_append_len(s, s1, strlen(s1) + 1);
361 }
362 
363 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
364                                        hwaddr size)
365 {
366     uint32_t associativity[] = {
367         cpu_to_be32(0x4), /* length */
368         cpu_to_be32(0x0), cpu_to_be32(0x0),
369         cpu_to_be32(0x0), cpu_to_be32(nodeid)
370     };
371     char mem_name[32];
372     uint64_t mem_reg_property[2];
373     int off;
374 
375     mem_reg_property[0] = cpu_to_be64(start);
376     mem_reg_property[1] = cpu_to_be64(size);
377 
378     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
379     off = fdt_add_subnode(fdt, 0, mem_name);
380     _FDT(off);
381     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
382     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
383                       sizeof(mem_reg_property))));
384     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
385                       sizeof(associativity))));
386     return off;
387 }
388 
389 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
390 {
391     MachineState *machine = MACHINE(spapr);
392     hwaddr mem_start, node_size;
393     int i, nb_nodes = nb_numa_nodes;
394     NodeInfo *nodes = numa_info;
395     NodeInfo ramnode;
396 
397     /* No NUMA nodes, assume there is just one node with whole RAM */
398     if (!nb_numa_nodes) {
399         nb_nodes = 1;
400         ramnode.node_mem = machine->ram_size;
401         nodes = &ramnode;
402     }
403 
404     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
405         if (!nodes[i].node_mem) {
406             continue;
407         }
408         if (mem_start >= machine->ram_size) {
409             node_size = 0;
410         } else {
411             node_size = nodes[i].node_mem;
412             if (node_size > machine->ram_size - mem_start) {
413                 node_size = machine->ram_size - mem_start;
414             }
415         }
416         if (!mem_start) {
417             /* spapr_machine_init() checks for rma_size <= node0_size
418              * already */
419             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
420             mem_start += spapr->rma_size;
421             node_size -= spapr->rma_size;
422         }
423         for ( ; node_size; ) {
424             hwaddr sizetmp = pow2floor(node_size);
425 
426             /* mem_start != 0 here */
427             if (ctzl(mem_start) < ctzl(sizetmp)) {
428                 sizetmp = 1ULL << ctzl(mem_start);
429             }
430 
431             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
432             node_size -= sizetmp;
433             mem_start += sizetmp;
434         }
435     }
436 
437     return 0;
438 }
439 
440 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
441                                   sPAPRMachineState *spapr)
442 {
443     PowerPCCPU *cpu = POWERPC_CPU(cs);
444     CPUPPCState *env = &cpu->env;
445     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
446     int index = spapr_get_vcpu_id(cpu);
447     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
448                        0xffffffff, 0xffffffff};
449     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
450         : SPAPR_TIMEBASE_FREQ;
451     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
452     uint32_t page_sizes_prop[64];
453     size_t page_sizes_prop_size;
454     uint32_t vcpus_per_socket = smp_threads * smp_cores;
455     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
456     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
457     sPAPRDRConnector *drc;
458     int drc_index;
459     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
460     int i;
461 
462     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
463     if (drc) {
464         drc_index = spapr_drc_index(drc);
465         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
466     }
467 
468     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
469     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
470 
471     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
472     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
473                            env->dcache_line_size)));
474     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
475                            env->dcache_line_size)));
476     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
477                            env->icache_line_size)));
478     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
479                            env->icache_line_size)));
480 
481     if (pcc->l1_dcache_size) {
482         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
483                                pcc->l1_dcache_size)));
484     } else {
485         warn_report("Unknown L1 dcache size for cpu");
486     }
487     if (pcc->l1_icache_size) {
488         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
489                                pcc->l1_icache_size)));
490     } else {
491         warn_report("Unknown L1 icache size for cpu");
492     }
493 
494     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
495     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
496     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
497     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
498     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
499     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
500 
501     if (env->spr_cb[SPR_PURR].oea_read) {
502         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
503     }
504 
505     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
506         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
507                           segs, sizeof(segs))));
508     }
509 
510     /* Advertise VSX (vector extensions) if available
511      *   1               == VMX / Altivec available
512      *   2               == VSX available
513      *
514      * Only CPUs for which we create core types in spapr_cpu_core.c
515      * are possible, and all of those have VMX */
516     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
517         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
518     } else {
519         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
520     }
521 
522     /* Advertise DFP (Decimal Floating Point) if available
523      *   0 / no property == no DFP
524      *   1               == DFP available */
525     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
526         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
527     }
528 
529     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
530                                                       sizeof(page_sizes_prop));
531     if (page_sizes_prop_size) {
532         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
533                           page_sizes_prop, page_sizes_prop_size)));
534     }
535 
536     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
537 
538     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
539                            cs->cpu_index / vcpus_per_socket)));
540 
541     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
542                       pft_size_prop, sizeof(pft_size_prop))));
543 
544     if (nb_numa_nodes > 1) {
545         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
546     }
547 
548     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
549 
550     if (pcc->radix_page_info) {
551         for (i = 0; i < pcc->radix_page_info->count; i++) {
552             radix_AP_encodings[i] =
553                 cpu_to_be32(pcc->radix_page_info->entries[i]);
554         }
555         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
556                           radix_AP_encodings,
557                           pcc->radix_page_info->count *
558                           sizeof(radix_AP_encodings[0]))));
559     }
560 }
561 
562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
563 {
564     CPUState **rev;
565     CPUState *cs;
566     int n_cpus;
567     int cpus_offset;
568     char *nodename;
569     int i;
570 
571     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
572     _FDT(cpus_offset);
573     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
574     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
575 
576     /*
577      * We walk the CPUs in reverse order to ensure that CPU DT nodes
578      * created by fdt_add_subnode() end up in the right order in FDT
579      * for the guest kernel the enumerate the CPUs correctly.
580      *
581      * The CPU list cannot be traversed in reverse order, so we need
582      * to do extra work.
583      */
584     n_cpus = 0;
585     rev = NULL;
586     CPU_FOREACH(cs) {
587         rev = g_renew(CPUState *, rev, n_cpus + 1);
588         rev[n_cpus++] = cs;
589     }
590 
591     for (i = n_cpus - 1; i >= 0; i--) {
592         CPUState *cs = rev[i];
593         PowerPCCPU *cpu = POWERPC_CPU(cs);
594         int index = spapr_get_vcpu_id(cpu);
595         DeviceClass *dc = DEVICE_GET_CLASS(cs);
596         int offset;
597 
598         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
599             continue;
600         }
601 
602         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
603         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
604         g_free(nodename);
605         _FDT(offset);
606         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
607     }
608 
609     g_free(rev);
610 }
611 
612 static int spapr_rng_populate_dt(void *fdt)
613 {
614     int node;
615     int ret;
616 
617     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
618     if (node <= 0) {
619         return -1;
620     }
621     ret = fdt_setprop_string(fdt, node, "device_type",
622                              "ibm,platform-facilities");
623     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
624     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
625 
626     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
627     if (node <= 0) {
628         return -1;
629     }
630     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
631 
632     return ret ? -1 : 0;
633 }
634 
635 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
636 {
637     MemoryDeviceInfoList *info;
638 
639     for (info = list; info; info = info->next) {
640         MemoryDeviceInfo *value = info->value;
641 
642         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
643             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
644 
645             if (addr >= pcdimm_info->addr &&
646                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
647                 return pcdimm_info->node;
648             }
649         }
650     }
651 
652     return -1;
653 }
654 
655 struct sPAPRDrconfCellV2 {
656      uint32_t seq_lmbs;
657      uint64_t base_addr;
658      uint32_t drc_index;
659      uint32_t aa_index;
660      uint32_t flags;
661 } QEMU_PACKED;
662 
663 typedef struct DrconfCellQueue {
664     struct sPAPRDrconfCellV2 cell;
665     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
666 } DrconfCellQueue;
667 
668 static DrconfCellQueue *
669 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
670                       uint32_t drc_index, uint32_t aa_index,
671                       uint32_t flags)
672 {
673     DrconfCellQueue *elem;
674 
675     elem = g_malloc0(sizeof(*elem));
676     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
677     elem->cell.base_addr = cpu_to_be64(base_addr);
678     elem->cell.drc_index = cpu_to_be32(drc_index);
679     elem->cell.aa_index = cpu_to_be32(aa_index);
680     elem->cell.flags = cpu_to_be32(flags);
681 
682     return elem;
683 }
684 
685 /* ibm,dynamic-memory-v2 */
686 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
687                                    int offset, MemoryDeviceInfoList *dimms)
688 {
689     MachineState *machine = MACHINE(spapr);
690     uint8_t *int_buf, *cur_index, buf_len;
691     int ret;
692     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
693     uint64_t addr, cur_addr, size;
694     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
695     uint64_t mem_end = machine->device_memory->base +
696                        memory_region_size(&machine->device_memory->mr);
697     uint32_t node, nr_entries = 0;
698     sPAPRDRConnector *drc;
699     DrconfCellQueue *elem, *next;
700     MemoryDeviceInfoList *info;
701     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
702         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
703 
704     /* Entry to cover RAM and the gap area */
705     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
706                                  SPAPR_LMB_FLAGS_RESERVED |
707                                  SPAPR_LMB_FLAGS_DRC_INVALID);
708     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
709     nr_entries++;
710 
711     cur_addr = machine->device_memory->base;
712     for (info = dimms; info; info = info->next) {
713         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
714 
715         addr = di->addr;
716         size = di->size;
717         node = di->node;
718 
719         /* Entry for hot-pluggable area */
720         if (cur_addr < addr) {
721             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
722             g_assert(drc);
723             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
724                                          cur_addr, spapr_drc_index(drc), -1, 0);
725             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
726             nr_entries++;
727         }
728 
729         /* Entry for DIMM */
730         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
731         g_assert(drc);
732         elem = spapr_get_drconf_cell(size / lmb_size, addr,
733                                      spapr_drc_index(drc), node,
734                                      SPAPR_LMB_FLAGS_ASSIGNED);
735         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
736         nr_entries++;
737         cur_addr = addr + size;
738     }
739 
740     /* Entry for remaining hotpluggable area */
741     if (cur_addr < mem_end) {
742         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
743         g_assert(drc);
744         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
745                                      cur_addr, spapr_drc_index(drc), -1, 0);
746         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
747         nr_entries++;
748     }
749 
750     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
751     int_buf = cur_index = g_malloc0(buf_len);
752     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
753     cur_index += sizeof(nr_entries);
754 
755     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
756         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
757         cur_index += sizeof(elem->cell);
758         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
759         g_free(elem);
760     }
761 
762     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
763     g_free(int_buf);
764     if (ret < 0) {
765         return -1;
766     }
767     return 0;
768 }
769 
770 /* ibm,dynamic-memory */
771 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
772                                    int offset, MemoryDeviceInfoList *dimms)
773 {
774     MachineState *machine = MACHINE(spapr);
775     int i, ret;
776     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
777     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
778     uint32_t nr_lmbs = (machine->device_memory->base +
779                        memory_region_size(&machine->device_memory->mr)) /
780                        lmb_size;
781     uint32_t *int_buf, *cur_index, buf_len;
782 
783     /*
784      * Allocate enough buffer size to fit in ibm,dynamic-memory
785      */
786     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
787     cur_index = int_buf = g_malloc0(buf_len);
788     int_buf[0] = cpu_to_be32(nr_lmbs);
789     cur_index++;
790     for (i = 0; i < nr_lmbs; i++) {
791         uint64_t addr = i * lmb_size;
792         uint32_t *dynamic_memory = cur_index;
793 
794         if (i >= device_lmb_start) {
795             sPAPRDRConnector *drc;
796 
797             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
798             g_assert(drc);
799 
800             dynamic_memory[0] = cpu_to_be32(addr >> 32);
801             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
802             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
803             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
804             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
805             if (memory_region_present(get_system_memory(), addr)) {
806                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
807             } else {
808                 dynamic_memory[5] = cpu_to_be32(0);
809             }
810         } else {
811             /*
812              * LMB information for RMA, boot time RAM and gap b/n RAM and
813              * device memory region -- all these are marked as reserved
814              * and as having no valid DRC.
815              */
816             dynamic_memory[0] = cpu_to_be32(addr >> 32);
817             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
818             dynamic_memory[2] = cpu_to_be32(0);
819             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
820             dynamic_memory[4] = cpu_to_be32(-1);
821             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
822                                             SPAPR_LMB_FLAGS_DRC_INVALID);
823         }
824 
825         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
826     }
827     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
828     g_free(int_buf);
829     if (ret < 0) {
830         return -1;
831     }
832     return 0;
833 }
834 
835 /*
836  * Adds ibm,dynamic-reconfiguration-memory node.
837  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
838  * of this device tree node.
839  */
840 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
841 {
842     MachineState *machine = MACHINE(spapr);
843     int ret, i, offset;
844     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
845     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
846     uint32_t *int_buf, *cur_index, buf_len;
847     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
848     MemoryDeviceInfoList *dimms = NULL;
849 
850     /*
851      * Don't create the node if there is no device memory
852      */
853     if (machine->ram_size == machine->maxram_size) {
854         return 0;
855     }
856 
857     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
858 
859     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
860                     sizeof(prop_lmb_size));
861     if (ret < 0) {
862         return ret;
863     }
864 
865     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
866     if (ret < 0) {
867         return ret;
868     }
869 
870     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
871     if (ret < 0) {
872         return ret;
873     }
874 
875     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
876     dimms = qmp_memory_device_list();
877     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
878         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
879     } else {
880         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
881     }
882     qapi_free_MemoryDeviceInfoList(dimms);
883 
884     if (ret < 0) {
885         return ret;
886     }
887 
888     /* ibm,associativity-lookup-arrays */
889     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
890     cur_index = int_buf = g_malloc0(buf_len);
891     int_buf[0] = cpu_to_be32(nr_nodes);
892     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
893     cur_index += 2;
894     for (i = 0; i < nr_nodes; i++) {
895         uint32_t associativity[] = {
896             cpu_to_be32(0x0),
897             cpu_to_be32(0x0),
898             cpu_to_be32(0x0),
899             cpu_to_be32(i)
900         };
901         memcpy(cur_index, associativity, sizeof(associativity));
902         cur_index += 4;
903     }
904     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
905             (cur_index - int_buf) * sizeof(uint32_t));
906     g_free(int_buf);
907 
908     return ret;
909 }
910 
911 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
912                                 sPAPROptionVector *ov5_updates)
913 {
914     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
915     int ret = 0, offset;
916 
917     /* Generate ibm,dynamic-reconfiguration-memory node if required */
918     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
919         g_assert(smc->dr_lmb_enabled);
920         ret = spapr_populate_drconf_memory(spapr, fdt);
921         if (ret) {
922             goto out;
923         }
924     }
925 
926     offset = fdt_path_offset(fdt, "/chosen");
927     if (offset < 0) {
928         offset = fdt_add_subnode(fdt, 0, "chosen");
929         if (offset < 0) {
930             return offset;
931         }
932     }
933     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
934                                  "ibm,architecture-vec-5");
935 
936 out:
937     return ret;
938 }
939 
940 static bool spapr_hotplugged_dev_before_cas(void)
941 {
942     Object *drc_container, *obj;
943     ObjectProperty *prop;
944     ObjectPropertyIterator iter;
945 
946     drc_container = container_get(object_get_root(), "/dr-connector");
947     object_property_iter_init(&iter, drc_container);
948     while ((prop = object_property_iter_next(&iter))) {
949         if (!strstart(prop->type, "link<", NULL)) {
950             continue;
951         }
952         obj = object_property_get_link(drc_container, prop->name, NULL);
953         if (spapr_drc_needed(obj)) {
954             return true;
955         }
956     }
957     return false;
958 }
959 
960 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
961                                  target_ulong addr, target_ulong size,
962                                  sPAPROptionVector *ov5_updates)
963 {
964     void *fdt, *fdt_skel;
965     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
966 
967     if (spapr_hotplugged_dev_before_cas()) {
968         return 1;
969     }
970 
971     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
972         error_report("SLOF provided an unexpected CAS buffer size "
973                      TARGET_FMT_lu " (min: %zu, max: %u)",
974                      size, sizeof(hdr), FW_MAX_SIZE);
975         exit(EXIT_FAILURE);
976     }
977 
978     size -= sizeof(hdr);
979 
980     /* Create skeleton */
981     fdt_skel = g_malloc0(size);
982     _FDT((fdt_create(fdt_skel, size)));
983     _FDT((fdt_finish_reservemap(fdt_skel)));
984     _FDT((fdt_begin_node(fdt_skel, "")));
985     _FDT((fdt_end_node(fdt_skel)));
986     _FDT((fdt_finish(fdt_skel)));
987     fdt = g_malloc0(size);
988     _FDT((fdt_open_into(fdt_skel, fdt, size)));
989     g_free(fdt_skel);
990 
991     /* Fixup cpu nodes */
992     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
993 
994     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
995         return -1;
996     }
997 
998     /* Pack resulting tree */
999     _FDT((fdt_pack(fdt)));
1000 
1001     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1002         trace_spapr_cas_failed(size);
1003         return -1;
1004     }
1005 
1006     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1007     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1008     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1009     g_free(fdt);
1010 
1011     return 0;
1012 }
1013 
1014 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1015 {
1016     int rtas;
1017     GString *hypertas = g_string_sized_new(256);
1018     GString *qemu_hypertas = g_string_sized_new(256);
1019     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1020     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1021         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1022     uint32_t lrdr_capacity[] = {
1023         cpu_to_be32(max_device_addr >> 32),
1024         cpu_to_be32(max_device_addr & 0xffffffff),
1025         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1026         cpu_to_be32(max_cpus / smp_threads),
1027     };
1028     uint32_t maxdomains[] = {
1029         cpu_to_be32(4),
1030         cpu_to_be32(0),
1031         cpu_to_be32(0),
1032         cpu_to_be32(0),
1033         cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1034     };
1035 
1036     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1037 
1038     /* hypertas */
1039     add_str(hypertas, "hcall-pft");
1040     add_str(hypertas, "hcall-term");
1041     add_str(hypertas, "hcall-dabr");
1042     add_str(hypertas, "hcall-interrupt");
1043     add_str(hypertas, "hcall-tce");
1044     add_str(hypertas, "hcall-vio");
1045     add_str(hypertas, "hcall-splpar");
1046     add_str(hypertas, "hcall-bulk");
1047     add_str(hypertas, "hcall-set-mode");
1048     add_str(hypertas, "hcall-sprg0");
1049     add_str(hypertas, "hcall-copy");
1050     add_str(hypertas, "hcall-debug");
1051     add_str(hypertas, "hcall-vphn");
1052     add_str(qemu_hypertas, "hcall-memop1");
1053 
1054     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1055         add_str(hypertas, "hcall-multi-tce");
1056     }
1057 
1058     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1059         add_str(hypertas, "hcall-hpt-resize");
1060     }
1061 
1062     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1063                      hypertas->str, hypertas->len));
1064     g_string_free(hypertas, TRUE);
1065     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1066                      qemu_hypertas->str, qemu_hypertas->len));
1067     g_string_free(qemu_hypertas, TRUE);
1068 
1069     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1070                      refpoints, sizeof(refpoints)));
1071 
1072     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1073                      maxdomains, sizeof(maxdomains)));
1074 
1075     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1076                           RTAS_ERROR_LOG_MAX));
1077     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1078                           RTAS_EVENT_SCAN_RATE));
1079 
1080     g_assert(msi_nonbroken);
1081     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1082 
1083     /*
1084      * According to PAPR, rtas ibm,os-term does not guarantee a return
1085      * back to the guest cpu.
1086      *
1087      * While an additional ibm,extended-os-term property indicates
1088      * that rtas call return will always occur. Set this property.
1089      */
1090     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1091 
1092     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1093                      lrdr_capacity, sizeof(lrdr_capacity)));
1094 
1095     spapr_dt_rtas_tokens(fdt, rtas);
1096 }
1097 
1098 /*
1099  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1100  * and the XIVE features that the guest may request and thus the valid
1101  * values for bytes 23..26 of option vector 5:
1102  */
1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt,
1104                                           int chosen)
1105 {
1106     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1107 
1108     char val[2 * 4] = {
1109         23, spapr->irq->ov5, /* Xive mode. */
1110         24, 0x00, /* Hash/Radix, filled in below. */
1111         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1112         26, 0x40, /* Radix options: GTSE == yes. */
1113     };
1114 
1115     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1116                           first_ppc_cpu->compat_pvr)) {
1117         /*
1118          * If we're in a pre POWER9 compat mode then the guest should
1119          * do hash and use the legacy interrupt mode
1120          */
1121         val[1] = 0x00; /* XICS */
1122         val[3] = 0x00; /* Hash */
1123     } else if (kvm_enabled()) {
1124         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1125             val[3] = 0x80; /* OV5_MMU_BOTH */
1126         } else if (kvmppc_has_cap_mmu_radix()) {
1127             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1128         } else {
1129             val[3] = 0x00; /* Hash */
1130         }
1131     } else {
1132         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1133         val[3] = 0xC0;
1134     }
1135     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1136                      val, sizeof(val)));
1137 }
1138 
1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1140 {
1141     MachineState *machine = MACHINE(spapr);
1142     int chosen;
1143     const char *boot_device = machine->boot_order;
1144     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1145     size_t cb = 0;
1146     char *bootlist = get_boot_devices_list(&cb);
1147 
1148     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1149 
1150     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1151     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1152                           spapr->initrd_base));
1153     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1154                           spapr->initrd_base + spapr->initrd_size));
1155 
1156     if (spapr->kernel_size) {
1157         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1158                               cpu_to_be64(spapr->kernel_size) };
1159 
1160         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1161                          &kprop, sizeof(kprop)));
1162         if (spapr->kernel_le) {
1163             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1164         }
1165     }
1166     if (boot_menu) {
1167         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1168     }
1169     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1170     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1171     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1172 
1173     if (cb && bootlist) {
1174         int i;
1175 
1176         for (i = 0; i < cb; i++) {
1177             if (bootlist[i] == '\n') {
1178                 bootlist[i] = ' ';
1179             }
1180         }
1181         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1182     }
1183 
1184     if (boot_device && strlen(boot_device)) {
1185         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1186     }
1187 
1188     if (!spapr->has_graphics && stdout_path) {
1189         /*
1190          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1191          * kernel. New platforms should only use the "stdout-path" property. Set
1192          * the new property and continue using older property to remain
1193          * compatible with the existing firmware.
1194          */
1195         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1196         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1197     }
1198 
1199     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1200 
1201     g_free(stdout_path);
1202     g_free(bootlist);
1203 }
1204 
1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1206 {
1207     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1208      * KVM to work under pHyp with some guest co-operation */
1209     int hypervisor;
1210     uint8_t hypercall[16];
1211 
1212     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1213     /* indicate KVM hypercall interface */
1214     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1215     if (kvmppc_has_cap_fixup_hcalls()) {
1216         /*
1217          * Older KVM versions with older guest kernels were broken
1218          * with the magic page, don't allow the guest to map it.
1219          */
1220         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1221                                   sizeof(hypercall))) {
1222             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1223                              hypercall, sizeof(hypercall)));
1224         }
1225     }
1226 }
1227 
1228 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1229                              hwaddr rtas_addr,
1230                              hwaddr rtas_size)
1231 {
1232     MachineState *machine = MACHINE(spapr);
1233     MachineClass *mc = MACHINE_GET_CLASS(machine);
1234     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1235     int ret;
1236     void *fdt;
1237     sPAPRPHBState *phb;
1238     char *buf;
1239 
1240     fdt = g_malloc0(FDT_MAX_SIZE);
1241     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1242 
1243     /* Root node */
1244     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1245     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1246     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1247 
1248     /*
1249      * Add info to guest to indentify which host is it being run on
1250      * and what is the uuid of the guest
1251      */
1252     if (kvmppc_get_host_model(&buf)) {
1253         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1254         g_free(buf);
1255     }
1256     if (kvmppc_get_host_serial(&buf)) {
1257         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1258         g_free(buf);
1259     }
1260 
1261     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1262 
1263     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1264     if (qemu_uuid_set) {
1265         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1266     }
1267     g_free(buf);
1268 
1269     if (qemu_get_vm_name()) {
1270         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1271                                 qemu_get_vm_name()));
1272     }
1273 
1274     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1275     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1276 
1277     /* /interrupt controller */
1278     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1279                           PHANDLE_XICP);
1280 
1281     ret = spapr_populate_memory(spapr, fdt);
1282     if (ret < 0) {
1283         error_report("couldn't setup memory nodes in fdt");
1284         exit(1);
1285     }
1286 
1287     /* /vdevice */
1288     spapr_dt_vdevice(spapr->vio_bus, fdt);
1289 
1290     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1291         ret = spapr_rng_populate_dt(fdt);
1292         if (ret < 0) {
1293             error_report("could not set up rng device in the fdt");
1294             exit(1);
1295         }
1296     }
1297 
1298     QLIST_FOREACH(phb, &spapr->phbs, list) {
1299         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt,
1300                                     spapr->irq->nr_msis);
1301         if (ret < 0) {
1302             error_report("couldn't setup PCI devices in fdt");
1303             exit(1);
1304         }
1305     }
1306 
1307     /* cpus */
1308     spapr_populate_cpus_dt_node(fdt, spapr);
1309 
1310     if (smc->dr_lmb_enabled) {
1311         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1312     }
1313 
1314     if (mc->has_hotpluggable_cpus) {
1315         int offset = fdt_path_offset(fdt, "/cpus");
1316         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1317                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1318         if (ret < 0) {
1319             error_report("Couldn't set up CPU DR device tree properties");
1320             exit(1);
1321         }
1322     }
1323 
1324     /* /event-sources */
1325     spapr_dt_events(spapr, fdt);
1326 
1327     /* /rtas */
1328     spapr_dt_rtas(spapr, fdt);
1329 
1330     /* /chosen */
1331     spapr_dt_chosen(spapr, fdt);
1332 
1333     /* /hypervisor */
1334     if (kvm_enabled()) {
1335         spapr_dt_hypervisor(spapr, fdt);
1336     }
1337 
1338     /* Build memory reserve map */
1339     if (spapr->kernel_size) {
1340         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1341     }
1342     if (spapr->initrd_size) {
1343         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1344     }
1345 
1346     /* ibm,client-architecture-support updates */
1347     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1348     if (ret < 0) {
1349         error_report("couldn't setup CAS properties fdt");
1350         exit(1);
1351     }
1352 
1353     return fdt;
1354 }
1355 
1356 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1357 {
1358     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1359 }
1360 
1361 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1362                                     PowerPCCPU *cpu)
1363 {
1364     CPUPPCState *env = &cpu->env;
1365 
1366     /* The TCG path should also be holding the BQL at this point */
1367     g_assert(qemu_mutex_iothread_locked());
1368 
1369     if (msr_pr) {
1370         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1371         env->gpr[3] = H_PRIVILEGE;
1372     } else {
1373         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1374     }
1375 }
1376 
1377 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1378 {
1379     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1380 
1381     return spapr->patb_entry;
1382 }
1383 
1384 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1385 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1386 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1387 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1388 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1389 
1390 /*
1391  * Get the fd to access the kernel htab, re-opening it if necessary
1392  */
1393 static int get_htab_fd(sPAPRMachineState *spapr)
1394 {
1395     Error *local_err = NULL;
1396 
1397     if (spapr->htab_fd >= 0) {
1398         return spapr->htab_fd;
1399     }
1400 
1401     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1402     if (spapr->htab_fd < 0) {
1403         error_report_err(local_err);
1404     }
1405 
1406     return spapr->htab_fd;
1407 }
1408 
1409 void close_htab_fd(sPAPRMachineState *spapr)
1410 {
1411     if (spapr->htab_fd >= 0) {
1412         close(spapr->htab_fd);
1413     }
1414     spapr->htab_fd = -1;
1415 }
1416 
1417 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1418 {
1419     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1420 
1421     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1422 }
1423 
1424 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1425 {
1426     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1427 
1428     assert(kvm_enabled());
1429 
1430     if (!spapr->htab) {
1431         return 0;
1432     }
1433 
1434     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1435 }
1436 
1437 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1438                                                 hwaddr ptex, int n)
1439 {
1440     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1441     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1442 
1443     if (!spapr->htab) {
1444         /*
1445          * HTAB is controlled by KVM. Fetch into temporary buffer
1446          */
1447         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1448         kvmppc_read_hptes(hptes, ptex, n);
1449         return hptes;
1450     }
1451 
1452     /*
1453      * HTAB is controlled by QEMU. Just point to the internally
1454      * accessible PTEG.
1455      */
1456     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1457 }
1458 
1459 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1460                               const ppc_hash_pte64_t *hptes,
1461                               hwaddr ptex, int n)
1462 {
1463     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1464 
1465     if (!spapr->htab) {
1466         g_free((void *)hptes);
1467     }
1468 
1469     /* Nothing to do for qemu managed HPT */
1470 }
1471 
1472 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1473                              uint64_t pte0, uint64_t pte1)
1474 {
1475     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1476     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1477 
1478     if (!spapr->htab) {
1479         kvmppc_write_hpte(ptex, pte0, pte1);
1480     } else {
1481         stq_p(spapr->htab + offset, pte0);
1482         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1483     }
1484 }
1485 
1486 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1487 {
1488     int shift;
1489 
1490     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1491      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1492      * that's much more than is needed for Linux guests */
1493     shift = ctz64(pow2ceil(ramsize)) - 7;
1494     shift = MAX(shift, 18); /* Minimum architected size */
1495     shift = MIN(shift, 46); /* Maximum architected size */
1496     return shift;
1497 }
1498 
1499 void spapr_free_hpt(sPAPRMachineState *spapr)
1500 {
1501     g_free(spapr->htab);
1502     spapr->htab = NULL;
1503     spapr->htab_shift = 0;
1504     close_htab_fd(spapr);
1505 }
1506 
1507 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1508                           Error **errp)
1509 {
1510     long rc;
1511 
1512     /* Clean up any HPT info from a previous boot */
1513     spapr_free_hpt(spapr);
1514 
1515     rc = kvmppc_reset_htab(shift);
1516     if (rc < 0) {
1517         /* kernel-side HPT needed, but couldn't allocate one */
1518         error_setg_errno(errp, errno,
1519                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1520                          shift);
1521         /* This is almost certainly fatal, but if the caller really
1522          * wants to carry on with shift == 0, it's welcome to try */
1523     } else if (rc > 0) {
1524         /* kernel-side HPT allocated */
1525         if (rc != shift) {
1526             error_setg(errp,
1527                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1528                        shift, rc);
1529         }
1530 
1531         spapr->htab_shift = shift;
1532         spapr->htab = NULL;
1533     } else {
1534         /* kernel-side HPT not needed, allocate in userspace instead */
1535         size_t size = 1ULL << shift;
1536         int i;
1537 
1538         spapr->htab = qemu_memalign(size, size);
1539         if (!spapr->htab) {
1540             error_setg_errno(errp, errno,
1541                              "Could not allocate HPT of order %d", shift);
1542             return;
1543         }
1544 
1545         memset(spapr->htab, 0, size);
1546         spapr->htab_shift = shift;
1547 
1548         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1549             DIRTY_HPTE(HPTE(spapr->htab, i));
1550         }
1551     }
1552     /* We're setting up a hash table, so that means we're not radix */
1553     spapr->patb_entry = 0;
1554 }
1555 
1556 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1557 {
1558     int hpt_shift;
1559 
1560     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1561         || (spapr->cas_reboot
1562             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1563         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1564     } else {
1565         uint64_t current_ram_size;
1566 
1567         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1568         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1569     }
1570     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1571 
1572     if (spapr->vrma_adjust) {
1573         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1574                                           spapr->htab_shift);
1575     }
1576 }
1577 
1578 static int spapr_reset_drcs(Object *child, void *opaque)
1579 {
1580     sPAPRDRConnector *drc =
1581         (sPAPRDRConnector *) object_dynamic_cast(child,
1582                                                  TYPE_SPAPR_DR_CONNECTOR);
1583 
1584     if (drc) {
1585         spapr_drc_reset(drc);
1586     }
1587 
1588     return 0;
1589 }
1590 
1591 static void spapr_machine_reset(void)
1592 {
1593     MachineState *machine = MACHINE(qdev_get_machine());
1594     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1595     PowerPCCPU *first_ppc_cpu;
1596     uint32_t rtas_limit;
1597     hwaddr rtas_addr, fdt_addr;
1598     void *fdt;
1599     int rc;
1600 
1601     spapr_caps_apply(spapr);
1602 
1603     first_ppc_cpu = POWERPC_CPU(first_cpu);
1604     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1605         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1606                               spapr->max_compat_pvr)) {
1607         /* If using KVM with radix mode available, VCPUs can be started
1608          * without a HPT because KVM will start them in radix mode.
1609          * Set the GR bit in PATB so that we know there is no HPT. */
1610         spapr->patb_entry = PATBE1_GR;
1611     } else {
1612         spapr_setup_hpt_and_vrma(spapr);
1613     }
1614 
1615     /* if this reset wasn't generated by CAS, we should reset our
1616      * negotiated options and start from scratch */
1617     if (!spapr->cas_reboot) {
1618         spapr_ovec_cleanup(spapr->ov5_cas);
1619         spapr->ov5_cas = spapr_ovec_new();
1620 
1621         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1622     }
1623 
1624     if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1625         spapr_irq_msi_reset(spapr);
1626     }
1627 
1628     qemu_devices_reset();
1629 
1630     /*
1631      * This is fixing some of the default configuration of the XIVE
1632      * devices. To be called after the reset of the machine devices.
1633      */
1634     spapr_irq_reset(spapr, &error_fatal);
1635 
1636     /* DRC reset may cause a device to be unplugged. This will cause troubles
1637      * if this device is used by another device (eg, a running vhost backend
1638      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1639      * situations, we reset DRCs after all devices have been reset.
1640      */
1641     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1642 
1643     spapr_clear_pending_events(spapr);
1644 
1645     /*
1646      * We place the device tree and RTAS just below either the top of the RMA,
1647      * or just below 2GB, whichever is lowere, so that it can be
1648      * processed with 32-bit real mode code if necessary
1649      */
1650     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1651     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1652     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1653 
1654     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1655 
1656     spapr_load_rtas(spapr, fdt, rtas_addr);
1657 
1658     rc = fdt_pack(fdt);
1659 
1660     /* Should only fail if we've built a corrupted tree */
1661     assert(rc == 0);
1662 
1663     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1664         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1665                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1666         exit(1);
1667     }
1668 
1669     /* Load the fdt */
1670     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1671     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1672     g_free(spapr->fdt_blob);
1673     spapr->fdt_size = fdt_totalsize(fdt);
1674     spapr->fdt_initial_size = spapr->fdt_size;
1675     spapr->fdt_blob = fdt;
1676 
1677     /* Set up the entry state */
1678     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1679     first_ppc_cpu->env.gpr[5] = 0;
1680 
1681     spapr->cas_reboot = false;
1682 }
1683 
1684 static void spapr_create_nvram(sPAPRMachineState *spapr)
1685 {
1686     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1687     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1688 
1689     if (dinfo) {
1690         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1691                             &error_fatal);
1692     }
1693 
1694     qdev_init_nofail(dev);
1695 
1696     spapr->nvram = (struct sPAPRNVRAM *)dev;
1697 }
1698 
1699 static void spapr_rtc_create(sPAPRMachineState *spapr)
1700 {
1701     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1702     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1703                               &error_fatal);
1704     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1705                               &error_fatal);
1706     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1707                               "date", &error_fatal);
1708 }
1709 
1710 /* Returns whether we want to use VGA or not */
1711 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1712 {
1713     switch (vga_interface_type) {
1714     case VGA_NONE:
1715         return false;
1716     case VGA_DEVICE:
1717         return true;
1718     case VGA_STD:
1719     case VGA_VIRTIO:
1720         return pci_vga_init(pci_bus) != NULL;
1721     default:
1722         error_setg(errp,
1723                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1724         return false;
1725     }
1726 }
1727 
1728 static int spapr_pre_load(void *opaque)
1729 {
1730     int rc;
1731 
1732     rc = spapr_caps_pre_load(opaque);
1733     if (rc) {
1734         return rc;
1735     }
1736 
1737     return 0;
1738 }
1739 
1740 static int spapr_post_load(void *opaque, int version_id)
1741 {
1742     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1743     int err = 0;
1744 
1745     err = spapr_caps_post_migration(spapr);
1746     if (err) {
1747         return err;
1748     }
1749 
1750     /*
1751      * In earlier versions, there was no separate qdev for the PAPR
1752      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1753      * So when migrating from those versions, poke the incoming offset
1754      * value into the RTC device
1755      */
1756     if (version_id < 3) {
1757         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1758         if (err) {
1759             return err;
1760         }
1761     }
1762 
1763     if (kvm_enabled() && spapr->patb_entry) {
1764         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1765         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1766         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1767 
1768         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1769         if (err) {
1770             error_report("Process table config unsupported by the host");
1771             return -EINVAL;
1772         }
1773     }
1774 
1775     err = spapr_irq_post_load(spapr, version_id);
1776     if (err) {
1777         return err;
1778     }
1779 
1780     return err;
1781 }
1782 
1783 static int spapr_pre_save(void *opaque)
1784 {
1785     int rc;
1786 
1787     rc = spapr_caps_pre_save(opaque);
1788     if (rc) {
1789         return rc;
1790     }
1791 
1792     return 0;
1793 }
1794 
1795 static bool version_before_3(void *opaque, int version_id)
1796 {
1797     return version_id < 3;
1798 }
1799 
1800 static bool spapr_pending_events_needed(void *opaque)
1801 {
1802     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1803     return !QTAILQ_EMPTY(&spapr->pending_events);
1804 }
1805 
1806 static const VMStateDescription vmstate_spapr_event_entry = {
1807     .name = "spapr_event_log_entry",
1808     .version_id = 1,
1809     .minimum_version_id = 1,
1810     .fields = (VMStateField[]) {
1811         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1812         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1813         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1814                                      NULL, extended_length),
1815         VMSTATE_END_OF_LIST()
1816     },
1817 };
1818 
1819 static const VMStateDescription vmstate_spapr_pending_events = {
1820     .name = "spapr_pending_events",
1821     .version_id = 1,
1822     .minimum_version_id = 1,
1823     .needed = spapr_pending_events_needed,
1824     .fields = (VMStateField[]) {
1825         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1826                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1827         VMSTATE_END_OF_LIST()
1828     },
1829 };
1830 
1831 static bool spapr_ov5_cas_needed(void *opaque)
1832 {
1833     sPAPRMachineState *spapr = opaque;
1834     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1835     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1836     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1837     bool cas_needed;
1838 
1839     /* Prior to the introduction of sPAPROptionVector, we had two option
1840      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1841      * Both of these options encode machine topology into the device-tree
1842      * in such a way that the now-booted OS should still be able to interact
1843      * appropriately with QEMU regardless of what options were actually
1844      * negotiatied on the source side.
1845      *
1846      * As such, we can avoid migrating the CAS-negotiated options if these
1847      * are the only options available on the current machine/platform.
1848      * Since these are the only options available for pseries-2.7 and
1849      * earlier, this allows us to maintain old->new/new->old migration
1850      * compatibility.
1851      *
1852      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1853      * via default pseries-2.8 machines and explicit command-line parameters.
1854      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1855      * of the actual CAS-negotiated values to continue working properly. For
1856      * example, availability of memory unplug depends on knowing whether
1857      * OV5_HP_EVT was negotiated via CAS.
1858      *
1859      * Thus, for any cases where the set of available CAS-negotiatable
1860      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1861      * include the CAS-negotiated options in the migration stream, unless
1862      * if they affect boot time behaviour only.
1863      */
1864     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1865     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1866     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1867 
1868     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1869      * the mask itself since in the future it's possible "legacy" bits may be
1870      * removed via machine options, which could generate a false positive
1871      * that breaks migration.
1872      */
1873     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1874     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1875 
1876     spapr_ovec_cleanup(ov5_mask);
1877     spapr_ovec_cleanup(ov5_legacy);
1878     spapr_ovec_cleanup(ov5_removed);
1879 
1880     return cas_needed;
1881 }
1882 
1883 static const VMStateDescription vmstate_spapr_ov5_cas = {
1884     .name = "spapr_option_vector_ov5_cas",
1885     .version_id = 1,
1886     .minimum_version_id = 1,
1887     .needed = spapr_ov5_cas_needed,
1888     .fields = (VMStateField[]) {
1889         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1890                                  vmstate_spapr_ovec, sPAPROptionVector),
1891         VMSTATE_END_OF_LIST()
1892     },
1893 };
1894 
1895 static bool spapr_patb_entry_needed(void *opaque)
1896 {
1897     sPAPRMachineState *spapr = opaque;
1898 
1899     return !!spapr->patb_entry;
1900 }
1901 
1902 static const VMStateDescription vmstate_spapr_patb_entry = {
1903     .name = "spapr_patb_entry",
1904     .version_id = 1,
1905     .minimum_version_id = 1,
1906     .needed = spapr_patb_entry_needed,
1907     .fields = (VMStateField[]) {
1908         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1909         VMSTATE_END_OF_LIST()
1910     },
1911 };
1912 
1913 static bool spapr_irq_map_needed(void *opaque)
1914 {
1915     sPAPRMachineState *spapr = opaque;
1916 
1917     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1918 }
1919 
1920 static const VMStateDescription vmstate_spapr_irq_map = {
1921     .name = "spapr_irq_map",
1922     .version_id = 1,
1923     .minimum_version_id = 1,
1924     .needed = spapr_irq_map_needed,
1925     .fields = (VMStateField[]) {
1926         VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1927         VMSTATE_END_OF_LIST()
1928     },
1929 };
1930 
1931 static bool spapr_dtb_needed(void *opaque)
1932 {
1933     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1934 
1935     return smc->update_dt_enabled;
1936 }
1937 
1938 static int spapr_dtb_pre_load(void *opaque)
1939 {
1940     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1941 
1942     g_free(spapr->fdt_blob);
1943     spapr->fdt_blob = NULL;
1944     spapr->fdt_size = 0;
1945 
1946     return 0;
1947 }
1948 
1949 static const VMStateDescription vmstate_spapr_dtb = {
1950     .name = "spapr_dtb",
1951     .version_id = 1,
1952     .minimum_version_id = 1,
1953     .needed = spapr_dtb_needed,
1954     .pre_load = spapr_dtb_pre_load,
1955     .fields = (VMStateField[]) {
1956         VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState),
1957         VMSTATE_UINT32(fdt_size, sPAPRMachineState),
1958         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL,
1959                                      fdt_size),
1960         VMSTATE_END_OF_LIST()
1961     },
1962 };
1963 
1964 static const VMStateDescription vmstate_spapr = {
1965     .name = "spapr",
1966     .version_id = 3,
1967     .minimum_version_id = 1,
1968     .pre_load = spapr_pre_load,
1969     .post_load = spapr_post_load,
1970     .pre_save = spapr_pre_save,
1971     .fields = (VMStateField[]) {
1972         /* used to be @next_irq */
1973         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1974 
1975         /* RTC offset */
1976         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1977 
1978         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1979         VMSTATE_END_OF_LIST()
1980     },
1981     .subsections = (const VMStateDescription*[]) {
1982         &vmstate_spapr_ov5_cas,
1983         &vmstate_spapr_patb_entry,
1984         &vmstate_spapr_pending_events,
1985         &vmstate_spapr_cap_htm,
1986         &vmstate_spapr_cap_vsx,
1987         &vmstate_spapr_cap_dfp,
1988         &vmstate_spapr_cap_cfpc,
1989         &vmstate_spapr_cap_sbbc,
1990         &vmstate_spapr_cap_ibs,
1991         &vmstate_spapr_irq_map,
1992         &vmstate_spapr_cap_nested_kvm_hv,
1993         &vmstate_spapr_dtb,
1994         NULL
1995     }
1996 };
1997 
1998 static int htab_save_setup(QEMUFile *f, void *opaque)
1999 {
2000     sPAPRMachineState *spapr = opaque;
2001 
2002     /* "Iteration" header */
2003     if (!spapr->htab_shift) {
2004         qemu_put_be32(f, -1);
2005     } else {
2006         qemu_put_be32(f, spapr->htab_shift);
2007     }
2008 
2009     if (spapr->htab) {
2010         spapr->htab_save_index = 0;
2011         spapr->htab_first_pass = true;
2012     } else {
2013         if (spapr->htab_shift) {
2014             assert(kvm_enabled());
2015         }
2016     }
2017 
2018 
2019     return 0;
2020 }
2021 
2022 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
2023                             int chunkstart, int n_valid, int n_invalid)
2024 {
2025     qemu_put_be32(f, chunkstart);
2026     qemu_put_be16(f, n_valid);
2027     qemu_put_be16(f, n_invalid);
2028     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2029                     HASH_PTE_SIZE_64 * n_valid);
2030 }
2031 
2032 static void htab_save_end_marker(QEMUFile *f)
2033 {
2034     qemu_put_be32(f, 0);
2035     qemu_put_be16(f, 0);
2036     qemu_put_be16(f, 0);
2037 }
2038 
2039 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
2040                                  int64_t max_ns)
2041 {
2042     bool has_timeout = max_ns != -1;
2043     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2044     int index = spapr->htab_save_index;
2045     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2046 
2047     assert(spapr->htab_first_pass);
2048 
2049     do {
2050         int chunkstart;
2051 
2052         /* Consume invalid HPTEs */
2053         while ((index < htabslots)
2054                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2055             CLEAN_HPTE(HPTE(spapr->htab, index));
2056             index++;
2057         }
2058 
2059         /* Consume valid HPTEs */
2060         chunkstart = index;
2061         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2062                && HPTE_VALID(HPTE(spapr->htab, index))) {
2063             CLEAN_HPTE(HPTE(spapr->htab, index));
2064             index++;
2065         }
2066 
2067         if (index > chunkstart) {
2068             int n_valid = index - chunkstart;
2069 
2070             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2071 
2072             if (has_timeout &&
2073                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2074                 break;
2075             }
2076         }
2077     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2078 
2079     if (index >= htabslots) {
2080         assert(index == htabslots);
2081         index = 0;
2082         spapr->htab_first_pass = false;
2083     }
2084     spapr->htab_save_index = index;
2085 }
2086 
2087 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2088                                 int64_t max_ns)
2089 {
2090     bool final = max_ns < 0;
2091     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2092     int examined = 0, sent = 0;
2093     int index = spapr->htab_save_index;
2094     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2095 
2096     assert(!spapr->htab_first_pass);
2097 
2098     do {
2099         int chunkstart, invalidstart;
2100 
2101         /* Consume non-dirty HPTEs */
2102         while ((index < htabslots)
2103                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2104             index++;
2105             examined++;
2106         }
2107 
2108         chunkstart = index;
2109         /* Consume valid dirty HPTEs */
2110         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2111                && HPTE_DIRTY(HPTE(spapr->htab, index))
2112                && HPTE_VALID(HPTE(spapr->htab, index))) {
2113             CLEAN_HPTE(HPTE(spapr->htab, index));
2114             index++;
2115             examined++;
2116         }
2117 
2118         invalidstart = index;
2119         /* Consume invalid dirty HPTEs */
2120         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2121                && HPTE_DIRTY(HPTE(spapr->htab, index))
2122                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2123             CLEAN_HPTE(HPTE(spapr->htab, index));
2124             index++;
2125             examined++;
2126         }
2127 
2128         if (index > chunkstart) {
2129             int n_valid = invalidstart - chunkstart;
2130             int n_invalid = index - invalidstart;
2131 
2132             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2133             sent += index - chunkstart;
2134 
2135             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2136                 break;
2137             }
2138         }
2139 
2140         if (examined >= htabslots) {
2141             break;
2142         }
2143 
2144         if (index >= htabslots) {
2145             assert(index == htabslots);
2146             index = 0;
2147         }
2148     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2149 
2150     if (index >= htabslots) {
2151         assert(index == htabslots);
2152         index = 0;
2153     }
2154 
2155     spapr->htab_save_index = index;
2156 
2157     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2158 }
2159 
2160 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2161 #define MAX_KVM_BUF_SIZE    2048
2162 
2163 static int htab_save_iterate(QEMUFile *f, void *opaque)
2164 {
2165     sPAPRMachineState *spapr = opaque;
2166     int fd;
2167     int rc = 0;
2168 
2169     /* Iteration header */
2170     if (!spapr->htab_shift) {
2171         qemu_put_be32(f, -1);
2172         return 1;
2173     } else {
2174         qemu_put_be32(f, 0);
2175     }
2176 
2177     if (!spapr->htab) {
2178         assert(kvm_enabled());
2179 
2180         fd = get_htab_fd(spapr);
2181         if (fd < 0) {
2182             return fd;
2183         }
2184 
2185         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2186         if (rc < 0) {
2187             return rc;
2188         }
2189     } else  if (spapr->htab_first_pass) {
2190         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2191     } else {
2192         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2193     }
2194 
2195     htab_save_end_marker(f);
2196 
2197     return rc;
2198 }
2199 
2200 static int htab_save_complete(QEMUFile *f, void *opaque)
2201 {
2202     sPAPRMachineState *spapr = opaque;
2203     int fd;
2204 
2205     /* Iteration header */
2206     if (!spapr->htab_shift) {
2207         qemu_put_be32(f, -1);
2208         return 0;
2209     } else {
2210         qemu_put_be32(f, 0);
2211     }
2212 
2213     if (!spapr->htab) {
2214         int rc;
2215 
2216         assert(kvm_enabled());
2217 
2218         fd = get_htab_fd(spapr);
2219         if (fd < 0) {
2220             return fd;
2221         }
2222 
2223         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2224         if (rc < 0) {
2225             return rc;
2226         }
2227     } else {
2228         if (spapr->htab_first_pass) {
2229             htab_save_first_pass(f, spapr, -1);
2230         }
2231         htab_save_later_pass(f, spapr, -1);
2232     }
2233 
2234     /* End marker */
2235     htab_save_end_marker(f);
2236 
2237     return 0;
2238 }
2239 
2240 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2241 {
2242     sPAPRMachineState *spapr = opaque;
2243     uint32_t section_hdr;
2244     int fd = -1;
2245     Error *local_err = NULL;
2246 
2247     if (version_id < 1 || version_id > 1) {
2248         error_report("htab_load() bad version");
2249         return -EINVAL;
2250     }
2251 
2252     section_hdr = qemu_get_be32(f);
2253 
2254     if (section_hdr == -1) {
2255         spapr_free_hpt(spapr);
2256         return 0;
2257     }
2258 
2259     if (section_hdr) {
2260         /* First section gives the htab size */
2261         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2262         if (local_err) {
2263             error_report_err(local_err);
2264             return -EINVAL;
2265         }
2266         return 0;
2267     }
2268 
2269     if (!spapr->htab) {
2270         assert(kvm_enabled());
2271 
2272         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2273         if (fd < 0) {
2274             error_report_err(local_err);
2275             return fd;
2276         }
2277     }
2278 
2279     while (true) {
2280         uint32_t index;
2281         uint16_t n_valid, n_invalid;
2282 
2283         index = qemu_get_be32(f);
2284         n_valid = qemu_get_be16(f);
2285         n_invalid = qemu_get_be16(f);
2286 
2287         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2288             /* End of Stream */
2289             break;
2290         }
2291 
2292         if ((index + n_valid + n_invalid) >
2293             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2294             /* Bad index in stream */
2295             error_report(
2296                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2297                 index, n_valid, n_invalid, spapr->htab_shift);
2298             return -EINVAL;
2299         }
2300 
2301         if (spapr->htab) {
2302             if (n_valid) {
2303                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2304                                 HASH_PTE_SIZE_64 * n_valid);
2305             }
2306             if (n_invalid) {
2307                 memset(HPTE(spapr->htab, index + n_valid), 0,
2308                        HASH_PTE_SIZE_64 * n_invalid);
2309             }
2310         } else {
2311             int rc;
2312 
2313             assert(fd >= 0);
2314 
2315             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2316             if (rc < 0) {
2317                 return rc;
2318             }
2319         }
2320     }
2321 
2322     if (!spapr->htab) {
2323         assert(fd >= 0);
2324         close(fd);
2325     }
2326 
2327     return 0;
2328 }
2329 
2330 static void htab_save_cleanup(void *opaque)
2331 {
2332     sPAPRMachineState *spapr = opaque;
2333 
2334     close_htab_fd(spapr);
2335 }
2336 
2337 static SaveVMHandlers savevm_htab_handlers = {
2338     .save_setup = htab_save_setup,
2339     .save_live_iterate = htab_save_iterate,
2340     .save_live_complete_precopy = htab_save_complete,
2341     .save_cleanup = htab_save_cleanup,
2342     .load_state = htab_load,
2343 };
2344 
2345 static void spapr_boot_set(void *opaque, const char *boot_device,
2346                            Error **errp)
2347 {
2348     MachineState *machine = MACHINE(opaque);
2349     machine->boot_order = g_strdup(boot_device);
2350 }
2351 
2352 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2353 {
2354     MachineState *machine = MACHINE(spapr);
2355     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2356     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2357     int i;
2358 
2359     for (i = 0; i < nr_lmbs; i++) {
2360         uint64_t addr;
2361 
2362         addr = i * lmb_size + machine->device_memory->base;
2363         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2364                                addr / lmb_size);
2365     }
2366 }
2367 
2368 /*
2369  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2370  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2371  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2372  */
2373 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2374 {
2375     int i;
2376 
2377     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2378         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2379                    " is not aligned to %" PRIu64 " MiB",
2380                    machine->ram_size,
2381                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2382         return;
2383     }
2384 
2385     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2386         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2387                    " is not aligned to %" PRIu64 " MiB",
2388                    machine->ram_size,
2389                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2390         return;
2391     }
2392 
2393     for (i = 0; i < nb_numa_nodes; i++) {
2394         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2395             error_setg(errp,
2396                        "Node %d memory size 0x%" PRIx64
2397                        " is not aligned to %" PRIu64 " MiB",
2398                        i, numa_info[i].node_mem,
2399                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2400             return;
2401         }
2402     }
2403 }
2404 
2405 /* find cpu slot in machine->possible_cpus by core_id */
2406 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2407 {
2408     int index = id / smp_threads;
2409 
2410     if (index >= ms->possible_cpus->len) {
2411         return NULL;
2412     }
2413     if (idx) {
2414         *idx = index;
2415     }
2416     return &ms->possible_cpus->cpus[index];
2417 }
2418 
2419 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2420 {
2421     Error *local_err = NULL;
2422     bool vsmt_user = !!spapr->vsmt;
2423     int kvm_smt = kvmppc_smt_threads();
2424     int ret;
2425 
2426     if (!kvm_enabled() && (smp_threads > 1)) {
2427         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2428                      "on a pseries machine");
2429         goto out;
2430     }
2431     if (!is_power_of_2(smp_threads)) {
2432         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2433                      "machine because it must be a power of 2", smp_threads);
2434         goto out;
2435     }
2436 
2437     /* Detemine the VSMT mode to use: */
2438     if (vsmt_user) {
2439         if (spapr->vsmt < smp_threads) {
2440             error_setg(&local_err, "Cannot support VSMT mode %d"
2441                          " because it must be >= threads/core (%d)",
2442                          spapr->vsmt, smp_threads);
2443             goto out;
2444         }
2445         /* In this case, spapr->vsmt has been set by the command line */
2446     } else {
2447         /*
2448          * Default VSMT value is tricky, because we need it to be as
2449          * consistent as possible (for migration), but this requires
2450          * changing it for at least some existing cases.  We pick 8 as
2451          * the value that we'd get with KVM on POWER8, the
2452          * overwhelmingly common case in production systems.
2453          */
2454         spapr->vsmt = MAX(8, smp_threads);
2455     }
2456 
2457     /* KVM: If necessary, set the SMT mode: */
2458     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2459         ret = kvmppc_set_smt_threads(spapr->vsmt);
2460         if (ret) {
2461             /* Looks like KVM isn't able to change VSMT mode */
2462             error_setg(&local_err,
2463                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2464                        spapr->vsmt, ret);
2465             /* We can live with that if the default one is big enough
2466              * for the number of threads, and a submultiple of the one
2467              * we want.  In this case we'll waste some vcpu ids, but
2468              * behaviour will be correct */
2469             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2470                 warn_report_err(local_err);
2471                 local_err = NULL;
2472                 goto out;
2473             } else {
2474                 if (!vsmt_user) {
2475                     error_append_hint(&local_err,
2476                                       "On PPC, a VM with %d threads/core"
2477                                       " on a host with %d threads/core"
2478                                       " requires the use of VSMT mode %d.\n",
2479                                       smp_threads, kvm_smt, spapr->vsmt);
2480                 }
2481                 kvmppc_hint_smt_possible(&local_err);
2482                 goto out;
2483             }
2484         }
2485     }
2486     /* else TCG: nothing to do currently */
2487 out:
2488     error_propagate(errp, local_err);
2489 }
2490 
2491 static void spapr_init_cpus(sPAPRMachineState *spapr)
2492 {
2493     MachineState *machine = MACHINE(spapr);
2494     MachineClass *mc = MACHINE_GET_CLASS(machine);
2495     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2496     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2497     const CPUArchIdList *possible_cpus;
2498     int boot_cores_nr = smp_cpus / smp_threads;
2499     int i;
2500 
2501     possible_cpus = mc->possible_cpu_arch_ids(machine);
2502     if (mc->has_hotpluggable_cpus) {
2503         if (smp_cpus % smp_threads) {
2504             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2505                          smp_cpus, smp_threads);
2506             exit(1);
2507         }
2508         if (max_cpus % smp_threads) {
2509             error_report("max_cpus (%u) must be multiple of threads (%u)",
2510                          max_cpus, smp_threads);
2511             exit(1);
2512         }
2513     } else {
2514         if (max_cpus != smp_cpus) {
2515             error_report("This machine version does not support CPU hotplug");
2516             exit(1);
2517         }
2518         boot_cores_nr = possible_cpus->len;
2519     }
2520 
2521     if (smc->pre_2_10_has_unused_icps) {
2522         int i;
2523 
2524         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2525             /* Dummy entries get deregistered when real ICPState objects
2526              * are registered during CPU core hotplug.
2527              */
2528             pre_2_10_vmstate_register_dummy_icp(i);
2529         }
2530     }
2531 
2532     for (i = 0; i < possible_cpus->len; i++) {
2533         int core_id = i * smp_threads;
2534 
2535         if (mc->has_hotpluggable_cpus) {
2536             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2537                                    spapr_vcpu_id(spapr, core_id));
2538         }
2539 
2540         if (i < boot_cores_nr) {
2541             Object *core  = object_new(type);
2542             int nr_threads = smp_threads;
2543 
2544             /* Handle the partially filled core for older machine types */
2545             if ((i + 1) * smp_threads >= smp_cpus) {
2546                 nr_threads = smp_cpus - i * smp_threads;
2547             }
2548 
2549             object_property_set_int(core, nr_threads, "nr-threads",
2550                                     &error_fatal);
2551             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2552                                     &error_fatal);
2553             object_property_set_bool(core, true, "realized", &error_fatal);
2554 
2555             object_unref(core);
2556         }
2557     }
2558 }
2559 
2560 static PCIHostState *spapr_create_default_phb(void)
2561 {
2562     DeviceState *dev;
2563 
2564     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2565     qdev_prop_set_uint32(dev, "index", 0);
2566     qdev_init_nofail(dev);
2567 
2568     return PCI_HOST_BRIDGE(dev);
2569 }
2570 
2571 /* pSeries LPAR / sPAPR hardware init */
2572 static void spapr_machine_init(MachineState *machine)
2573 {
2574     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2575     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2576     const char *kernel_filename = machine->kernel_filename;
2577     const char *initrd_filename = machine->initrd_filename;
2578     PCIHostState *phb;
2579     int i;
2580     MemoryRegion *sysmem = get_system_memory();
2581     MemoryRegion *ram = g_new(MemoryRegion, 1);
2582     hwaddr node0_size = spapr_node0_size(machine);
2583     long load_limit, fw_size;
2584     char *filename;
2585     Error *resize_hpt_err = NULL;
2586 
2587     msi_nonbroken = true;
2588 
2589     QLIST_INIT(&spapr->phbs);
2590     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2591 
2592     /* Determine capabilities to run with */
2593     spapr_caps_init(spapr);
2594 
2595     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2596     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2597         /*
2598          * If the user explicitly requested a mode we should either
2599          * supply it, or fail completely (which we do below).  But if
2600          * it's not set explicitly, we reset our mode to something
2601          * that works
2602          */
2603         if (resize_hpt_err) {
2604             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2605             error_free(resize_hpt_err);
2606             resize_hpt_err = NULL;
2607         } else {
2608             spapr->resize_hpt = smc->resize_hpt_default;
2609         }
2610     }
2611 
2612     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2613 
2614     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2615         /*
2616          * User requested HPT resize, but this host can't supply it.  Bail out
2617          */
2618         error_report_err(resize_hpt_err);
2619         exit(1);
2620     }
2621 
2622     spapr->rma_size = node0_size;
2623 
2624     /* With KVM, we don't actually know whether KVM supports an
2625      * unbounded RMA (PR KVM) or is limited by the hash table size
2626      * (HV KVM using VRMA), so we always assume the latter
2627      *
2628      * In that case, we also limit the initial allocations for RTAS
2629      * etc... to 256M since we have no way to know what the VRMA size
2630      * is going to be as it depends on the size of the hash table
2631      * which isn't determined yet.
2632      */
2633     if (kvm_enabled()) {
2634         spapr->vrma_adjust = 1;
2635         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2636     }
2637 
2638     /* Actually we don't support unbounded RMA anymore since we added
2639      * proper emulation of HV mode. The max we can get is 16G which
2640      * also happens to be what we configure for PAPR mode so make sure
2641      * we don't do anything bigger than that
2642      */
2643     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2644 
2645     if (spapr->rma_size > node0_size) {
2646         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2647                      spapr->rma_size);
2648         exit(1);
2649     }
2650 
2651     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2652     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2653 
2654     /*
2655      * VSMT must be set in order to be able to compute VCPU ids, ie to
2656      * call spapr_max_server_number() or spapr_vcpu_id().
2657      */
2658     spapr_set_vsmt_mode(spapr, &error_fatal);
2659 
2660     /* Set up Interrupt Controller before we create the VCPUs */
2661     spapr_irq_init(spapr, &error_fatal);
2662 
2663     /* Set up containers for ibm,client-architecture-support negotiated options
2664      */
2665     spapr->ov5 = spapr_ovec_new();
2666     spapr->ov5_cas = spapr_ovec_new();
2667 
2668     if (smc->dr_lmb_enabled) {
2669         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2670         spapr_validate_node_memory(machine, &error_fatal);
2671     }
2672 
2673     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2674 
2675     /* advertise support for dedicated HP event source to guests */
2676     if (spapr->use_hotplug_event_source) {
2677         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2678     }
2679 
2680     /* advertise support for HPT resizing */
2681     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2682         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2683     }
2684 
2685     /* advertise support for ibm,dyamic-memory-v2 */
2686     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2687 
2688     /* advertise XIVE on POWER9 machines */
2689     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2690         if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
2691                                   0, spapr->max_compat_pvr)) {
2692             spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2693         } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) {
2694             error_report("XIVE-only machines require a POWER9 CPU");
2695             exit(1);
2696         }
2697     }
2698 
2699     /* init CPUs */
2700     spapr_init_cpus(spapr);
2701 
2702     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2703         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2704                               spapr->max_compat_pvr)) {
2705         /* KVM and TCG always allow GTSE with radix... */
2706         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2707     }
2708     /* ... but not with hash (currently). */
2709 
2710     if (kvm_enabled()) {
2711         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2712         kvmppc_enable_logical_ci_hcalls();
2713         kvmppc_enable_set_mode_hcall();
2714 
2715         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2716         kvmppc_enable_clear_ref_mod_hcalls();
2717     }
2718 
2719     /* allocate RAM */
2720     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2721                                          machine->ram_size);
2722     memory_region_add_subregion(sysmem, 0, ram);
2723 
2724     /* always allocate the device memory information */
2725     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2726 
2727     /* initialize hotplug memory address space */
2728     if (machine->ram_size < machine->maxram_size) {
2729         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2730         /*
2731          * Limit the number of hotpluggable memory slots to half the number
2732          * slots that KVM supports, leaving the other half for PCI and other
2733          * devices. However ensure that number of slots doesn't drop below 32.
2734          */
2735         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2736                            SPAPR_MAX_RAM_SLOTS;
2737 
2738         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2739             max_memslots = SPAPR_MAX_RAM_SLOTS;
2740         }
2741         if (machine->ram_slots > max_memslots) {
2742             error_report("Specified number of memory slots %"
2743                          PRIu64" exceeds max supported %d",
2744                          machine->ram_slots, max_memslots);
2745             exit(1);
2746         }
2747 
2748         machine->device_memory->base = ROUND_UP(machine->ram_size,
2749                                                 SPAPR_DEVICE_MEM_ALIGN);
2750         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2751                            "device-memory", device_mem_size);
2752         memory_region_add_subregion(sysmem, machine->device_memory->base,
2753                                     &machine->device_memory->mr);
2754     }
2755 
2756     if (smc->dr_lmb_enabled) {
2757         spapr_create_lmb_dr_connectors(spapr);
2758     }
2759 
2760     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2761     if (!filename) {
2762         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2763         exit(1);
2764     }
2765     spapr->rtas_size = get_image_size(filename);
2766     if (spapr->rtas_size < 0) {
2767         error_report("Could not get size of LPAR rtas '%s'", filename);
2768         exit(1);
2769     }
2770     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2771     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2772         error_report("Could not load LPAR rtas '%s'", filename);
2773         exit(1);
2774     }
2775     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2776         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2777                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2778         exit(1);
2779     }
2780     g_free(filename);
2781 
2782     /* Set up RTAS event infrastructure */
2783     spapr_events_init(spapr);
2784 
2785     /* Set up the RTC RTAS interfaces */
2786     spapr_rtc_create(spapr);
2787 
2788     /* Set up VIO bus */
2789     spapr->vio_bus = spapr_vio_bus_init();
2790 
2791     for (i = 0; i < serial_max_hds(); i++) {
2792         if (serial_hd(i)) {
2793             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2794         }
2795     }
2796 
2797     /* We always have at least the nvram device on VIO */
2798     spapr_create_nvram(spapr);
2799 
2800     /* Set up PCI */
2801     spapr_pci_rtas_init();
2802 
2803     phb = spapr_create_default_phb();
2804 
2805     for (i = 0; i < nb_nics; i++) {
2806         NICInfo *nd = &nd_table[i];
2807 
2808         if (!nd->model) {
2809             nd->model = g_strdup("spapr-vlan");
2810         }
2811 
2812         if (g_str_equal(nd->model, "spapr-vlan") ||
2813             g_str_equal(nd->model, "ibmveth")) {
2814             spapr_vlan_create(spapr->vio_bus, nd);
2815         } else {
2816             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2817         }
2818     }
2819 
2820     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2821         spapr_vscsi_create(spapr->vio_bus);
2822     }
2823 
2824     /* Graphics */
2825     if (spapr_vga_init(phb->bus, &error_fatal)) {
2826         spapr->has_graphics = true;
2827         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2828     }
2829 
2830     if (machine->usb) {
2831         if (smc->use_ohci_by_default) {
2832             pci_create_simple(phb->bus, -1, "pci-ohci");
2833         } else {
2834             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2835         }
2836 
2837         if (spapr->has_graphics) {
2838             USBBus *usb_bus = usb_bus_find(-1);
2839 
2840             usb_create_simple(usb_bus, "usb-kbd");
2841             usb_create_simple(usb_bus, "usb-mouse");
2842         }
2843     }
2844 
2845     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2846         error_report(
2847             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2848             MIN_RMA_SLOF);
2849         exit(1);
2850     }
2851 
2852     if (kernel_filename) {
2853         uint64_t lowaddr = 0;
2854 
2855         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2856                                       NULL, NULL, &lowaddr, NULL, 1,
2857                                       PPC_ELF_MACHINE, 0, 0);
2858         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2859             spapr->kernel_size = load_elf(kernel_filename,
2860                                           translate_kernel_address, NULL, NULL,
2861                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2862                                           0, 0);
2863             spapr->kernel_le = spapr->kernel_size > 0;
2864         }
2865         if (spapr->kernel_size < 0) {
2866             error_report("error loading %s: %s", kernel_filename,
2867                          load_elf_strerror(spapr->kernel_size));
2868             exit(1);
2869         }
2870 
2871         /* load initrd */
2872         if (initrd_filename) {
2873             /* Try to locate the initrd in the gap between the kernel
2874              * and the firmware. Add a bit of space just in case
2875              */
2876             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2877                                   + 0x1ffff) & ~0xffff;
2878             spapr->initrd_size = load_image_targphys(initrd_filename,
2879                                                      spapr->initrd_base,
2880                                                      load_limit
2881                                                      - spapr->initrd_base);
2882             if (spapr->initrd_size < 0) {
2883                 error_report("could not load initial ram disk '%s'",
2884                              initrd_filename);
2885                 exit(1);
2886             }
2887         }
2888     }
2889 
2890     if (bios_name == NULL) {
2891         bios_name = FW_FILE_NAME;
2892     }
2893     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2894     if (!filename) {
2895         error_report("Could not find LPAR firmware '%s'", bios_name);
2896         exit(1);
2897     }
2898     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2899     if (fw_size <= 0) {
2900         error_report("Could not load LPAR firmware '%s'", filename);
2901         exit(1);
2902     }
2903     g_free(filename);
2904 
2905     /* FIXME: Should register things through the MachineState's qdev
2906      * interface, this is a legacy from the sPAPREnvironment structure
2907      * which predated MachineState but had a similar function */
2908     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2909     register_savevm_live(NULL, "spapr/htab", -1, 1,
2910                          &savevm_htab_handlers, spapr);
2911 
2912     qemu_register_boot_set(spapr_boot_set, spapr);
2913 
2914     if (kvm_enabled()) {
2915         /* to stop and start vmclock */
2916         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2917                                          &spapr->tb);
2918 
2919         kvmppc_spapr_enable_inkernel_multitce();
2920     }
2921 }
2922 
2923 static int spapr_kvm_type(const char *vm_type)
2924 {
2925     if (!vm_type) {
2926         return 0;
2927     }
2928 
2929     if (!strcmp(vm_type, "HV")) {
2930         return 1;
2931     }
2932 
2933     if (!strcmp(vm_type, "PR")) {
2934         return 2;
2935     }
2936 
2937     error_report("Unknown kvm-type specified '%s'", vm_type);
2938     exit(1);
2939 }
2940 
2941 /*
2942  * Implementation of an interface to adjust firmware path
2943  * for the bootindex property handling.
2944  */
2945 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2946                                    DeviceState *dev)
2947 {
2948 #define CAST(type, obj, name) \
2949     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2950     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2951     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2952     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2953 
2954     if (d) {
2955         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2956         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2957         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2958 
2959         if (spapr) {
2960             /*
2961              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2962              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2963              * in the top 16 bits of the 64-bit LUN
2964              */
2965             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2966             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2967                                    (uint64_t)id << 48);
2968         } else if (virtio) {
2969             /*
2970              * We use SRP luns of the form 01000000 | (target << 8) | lun
2971              * in the top 32 bits of the 64-bit LUN
2972              * Note: the quote above is from SLOF and it is wrong,
2973              * the actual binding is:
2974              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2975              */
2976             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2977             if (d->lun >= 256) {
2978                 /* Use the LUN "flat space addressing method" */
2979                 id |= 0x4000;
2980             }
2981             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2982                                    (uint64_t)id << 32);
2983         } else if (usb) {
2984             /*
2985              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2986              * in the top 32 bits of the 64-bit LUN
2987              */
2988             unsigned usb_port = atoi(usb->port->path);
2989             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2990             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2991                                    (uint64_t)id << 32);
2992         }
2993     }
2994 
2995     /*
2996      * SLOF probes the USB devices, and if it recognizes that the device is a
2997      * storage device, it changes its name to "storage" instead of "usb-host",
2998      * and additionally adds a child node for the SCSI LUN, so the correct
2999      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3000      */
3001     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3002         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3003         if (usb_host_dev_is_scsi_storage(usbdev)) {
3004             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3005         }
3006     }
3007 
3008     if (phb) {
3009         /* Replace "pci" with "pci@800000020000000" */
3010         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3011     }
3012 
3013     if (vsc) {
3014         /* Same logic as virtio above */
3015         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3016         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3017     }
3018 
3019     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3020         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3021         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3022         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3023     }
3024 
3025     return NULL;
3026 }
3027 
3028 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3029 {
3030     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3031 
3032     return g_strdup(spapr->kvm_type);
3033 }
3034 
3035 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3036 {
3037     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3038 
3039     g_free(spapr->kvm_type);
3040     spapr->kvm_type = g_strdup(value);
3041 }
3042 
3043 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3044 {
3045     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3046 
3047     return spapr->use_hotplug_event_source;
3048 }
3049 
3050 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3051                                             Error **errp)
3052 {
3053     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3054 
3055     spapr->use_hotplug_event_source = value;
3056 }
3057 
3058 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3059 {
3060     return true;
3061 }
3062 
3063 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3064 {
3065     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3066 
3067     switch (spapr->resize_hpt) {
3068     case SPAPR_RESIZE_HPT_DEFAULT:
3069         return g_strdup("default");
3070     case SPAPR_RESIZE_HPT_DISABLED:
3071         return g_strdup("disabled");
3072     case SPAPR_RESIZE_HPT_ENABLED:
3073         return g_strdup("enabled");
3074     case SPAPR_RESIZE_HPT_REQUIRED:
3075         return g_strdup("required");
3076     }
3077     g_assert_not_reached();
3078 }
3079 
3080 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3081 {
3082     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3083 
3084     if (strcmp(value, "default") == 0) {
3085         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3086     } else if (strcmp(value, "disabled") == 0) {
3087         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3088     } else if (strcmp(value, "enabled") == 0) {
3089         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3090     } else if (strcmp(value, "required") == 0) {
3091         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3092     } else {
3093         error_setg(errp, "Bad value for \"resize-hpt\" property");
3094     }
3095 }
3096 
3097 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3098                                    void *opaque, Error **errp)
3099 {
3100     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3101 }
3102 
3103 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3104                                    void *opaque, Error **errp)
3105 {
3106     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3107 }
3108 
3109 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3110 {
3111     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3112 
3113     if (spapr->irq == &spapr_irq_xics_legacy) {
3114         return g_strdup("legacy");
3115     } else if (spapr->irq == &spapr_irq_xics) {
3116         return g_strdup("xics");
3117     } else if (spapr->irq == &spapr_irq_xive) {
3118         return g_strdup("xive");
3119     } else if (spapr->irq == &spapr_irq_dual) {
3120         return g_strdup("dual");
3121     }
3122     g_assert_not_reached();
3123 }
3124 
3125 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3126 {
3127     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3128 
3129     /* The legacy IRQ backend can not be set */
3130     if (strcmp(value, "xics") == 0) {
3131         spapr->irq = &spapr_irq_xics;
3132     } else if (strcmp(value, "xive") == 0) {
3133         spapr->irq = &spapr_irq_xive;
3134     } else if (strcmp(value, "dual") == 0) {
3135         spapr->irq = &spapr_irq_dual;
3136     } else {
3137         error_setg(errp, "Bad value for \"ic-mode\" property");
3138     }
3139 }
3140 
3141 static void spapr_instance_init(Object *obj)
3142 {
3143     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3144     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3145 
3146     spapr->htab_fd = -1;
3147     spapr->use_hotplug_event_source = true;
3148     object_property_add_str(obj, "kvm-type",
3149                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3150     object_property_set_description(obj, "kvm-type",
3151                                     "Specifies the KVM virtualization mode (HV, PR)",
3152                                     NULL);
3153     object_property_add_bool(obj, "modern-hotplug-events",
3154                             spapr_get_modern_hotplug_events,
3155                             spapr_set_modern_hotplug_events,
3156                             NULL);
3157     object_property_set_description(obj, "modern-hotplug-events",
3158                                     "Use dedicated hotplug event mechanism in"
3159                                     " place of standard EPOW events when possible"
3160                                     " (required for memory hot-unplug support)",
3161                                     NULL);
3162     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3163                             "Maximum permitted CPU compatibility mode",
3164                             &error_fatal);
3165 
3166     object_property_add_str(obj, "resize-hpt",
3167                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3168     object_property_set_description(obj, "resize-hpt",
3169                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3170                                     NULL);
3171     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3172                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3173     object_property_set_description(obj, "vsmt",
3174                                     "Virtual SMT: KVM behaves as if this were"
3175                                     " the host's SMT mode", &error_abort);
3176     object_property_add_bool(obj, "vfio-no-msix-emulation",
3177                              spapr_get_msix_emulation, NULL, NULL);
3178 
3179     /* The machine class defines the default interrupt controller mode */
3180     spapr->irq = smc->irq;
3181     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3182                             spapr_set_ic_mode, NULL);
3183     object_property_set_description(obj, "ic-mode",
3184                  "Specifies the interrupt controller mode (xics, xive, dual)",
3185                  NULL);
3186 }
3187 
3188 static void spapr_machine_finalizefn(Object *obj)
3189 {
3190     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3191 
3192     g_free(spapr->kvm_type);
3193 }
3194 
3195 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3196 {
3197     cpu_synchronize_state(cs);
3198     ppc_cpu_do_system_reset(cs);
3199 }
3200 
3201 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3202 {
3203     CPUState *cs;
3204 
3205     CPU_FOREACH(cs) {
3206         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3207     }
3208 }
3209 
3210 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3211                            uint32_t node, bool dedicated_hp_event_source,
3212                            Error **errp)
3213 {
3214     sPAPRDRConnector *drc;
3215     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3216     int i, fdt_offset, fdt_size;
3217     void *fdt;
3218     uint64_t addr = addr_start;
3219     bool hotplugged = spapr_drc_hotplugged(dev);
3220     Error *local_err = NULL;
3221 
3222     for (i = 0; i < nr_lmbs; i++) {
3223         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3224                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3225         g_assert(drc);
3226 
3227         fdt = create_device_tree(&fdt_size);
3228         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3229                                                 SPAPR_MEMORY_BLOCK_SIZE);
3230 
3231         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3232         if (local_err) {
3233             while (addr > addr_start) {
3234                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3235                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3236                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3237                 spapr_drc_detach(drc);
3238             }
3239             g_free(fdt);
3240             error_propagate(errp, local_err);
3241             return;
3242         }
3243         if (!hotplugged) {
3244             spapr_drc_reset(drc);
3245         }
3246         addr += SPAPR_MEMORY_BLOCK_SIZE;
3247     }
3248     /* send hotplug notification to the
3249      * guest only in case of hotplugged memory
3250      */
3251     if (hotplugged) {
3252         if (dedicated_hp_event_source) {
3253             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3254                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3255             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3256                                                    nr_lmbs,
3257                                                    spapr_drc_index(drc));
3258         } else {
3259             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3260                                            nr_lmbs);
3261         }
3262     }
3263 }
3264 
3265 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3266                               Error **errp)
3267 {
3268     Error *local_err = NULL;
3269     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3270     PCDIMMDevice *dimm = PC_DIMM(dev);
3271     uint64_t size, addr;
3272     uint32_t node;
3273 
3274     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3275 
3276     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3277     if (local_err) {
3278         goto out;
3279     }
3280 
3281     addr = object_property_get_uint(OBJECT(dimm),
3282                                     PC_DIMM_ADDR_PROP, &local_err);
3283     if (local_err) {
3284         goto out_unplug;
3285     }
3286 
3287     node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3288                                     &error_abort);
3289     spapr_add_lmbs(dev, addr, size, node,
3290                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3291                    &local_err);
3292     if (local_err) {
3293         goto out_unplug;
3294     }
3295 
3296     return;
3297 
3298 out_unplug:
3299     pc_dimm_unplug(dimm, MACHINE(ms));
3300 out:
3301     error_propagate(errp, local_err);
3302 }
3303 
3304 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3305                                   Error **errp)
3306 {
3307     const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3308     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3309     PCDIMMDevice *dimm = PC_DIMM(dev);
3310     Error *local_err = NULL;
3311     uint64_t size;
3312     Object *memdev;
3313     hwaddr pagesize;
3314 
3315     if (!smc->dr_lmb_enabled) {
3316         error_setg(errp, "Memory hotplug not supported for this machine");
3317         return;
3318     }
3319 
3320     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3321     if (local_err) {
3322         error_propagate(errp, local_err);
3323         return;
3324     }
3325 
3326     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3327         error_setg(errp, "Hotplugged memory size must be a multiple of "
3328                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3329         return;
3330     }
3331 
3332     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3333                                       &error_abort);
3334     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3335     spapr_check_pagesize(spapr, pagesize, &local_err);
3336     if (local_err) {
3337         error_propagate(errp, local_err);
3338         return;
3339     }
3340 
3341     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3342 }
3343 
3344 struct sPAPRDIMMState {
3345     PCDIMMDevice *dimm;
3346     uint32_t nr_lmbs;
3347     QTAILQ_ENTRY(sPAPRDIMMState) next;
3348 };
3349 
3350 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3351                                                        PCDIMMDevice *dimm)
3352 {
3353     sPAPRDIMMState *dimm_state = NULL;
3354 
3355     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3356         if (dimm_state->dimm == dimm) {
3357             break;
3358         }
3359     }
3360     return dimm_state;
3361 }
3362 
3363 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3364                                                       uint32_t nr_lmbs,
3365                                                       PCDIMMDevice *dimm)
3366 {
3367     sPAPRDIMMState *ds = NULL;
3368 
3369     /*
3370      * If this request is for a DIMM whose removal had failed earlier
3371      * (due to guest's refusal to remove the LMBs), we would have this
3372      * dimm already in the pending_dimm_unplugs list. In that
3373      * case don't add again.
3374      */
3375     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3376     if (!ds) {
3377         ds = g_malloc0(sizeof(sPAPRDIMMState));
3378         ds->nr_lmbs = nr_lmbs;
3379         ds->dimm = dimm;
3380         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3381     }
3382     return ds;
3383 }
3384 
3385 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3386                                               sPAPRDIMMState *dimm_state)
3387 {
3388     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3389     g_free(dimm_state);
3390 }
3391 
3392 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3393                                                         PCDIMMDevice *dimm)
3394 {
3395     sPAPRDRConnector *drc;
3396     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3397                                                   &error_abort);
3398     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3399     uint32_t avail_lmbs = 0;
3400     uint64_t addr_start, addr;
3401     int i;
3402 
3403     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3404                                          &error_abort);
3405 
3406     addr = addr_start;
3407     for (i = 0; i < nr_lmbs; i++) {
3408         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3409                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3410         g_assert(drc);
3411         if (drc->dev) {
3412             avail_lmbs++;
3413         }
3414         addr += SPAPR_MEMORY_BLOCK_SIZE;
3415     }
3416 
3417     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3418 }
3419 
3420 /* Callback to be called during DRC release. */
3421 void spapr_lmb_release(DeviceState *dev)
3422 {
3423     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3424     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3425     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3426 
3427     /* This information will get lost if a migration occurs
3428      * during the unplug process. In this case recover it. */
3429     if (ds == NULL) {
3430         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3431         g_assert(ds);
3432         /* The DRC being examined by the caller at least must be counted */
3433         g_assert(ds->nr_lmbs);
3434     }
3435 
3436     if (--ds->nr_lmbs) {
3437         return;
3438     }
3439 
3440     /*
3441      * Now that all the LMBs have been removed by the guest, call the
3442      * unplug handler chain. This can never fail.
3443      */
3444     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3445 }
3446 
3447 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3448 {
3449     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3450     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3451 
3452     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3453     object_unparent(OBJECT(dev));
3454     spapr_pending_dimm_unplugs_remove(spapr, ds);
3455 }
3456 
3457 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3458                                         DeviceState *dev, Error **errp)
3459 {
3460     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3461     Error *local_err = NULL;
3462     PCDIMMDevice *dimm = PC_DIMM(dev);
3463     uint32_t nr_lmbs;
3464     uint64_t size, addr_start, addr;
3465     int i;
3466     sPAPRDRConnector *drc;
3467 
3468     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3469     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3470 
3471     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3472                                          &local_err);
3473     if (local_err) {
3474         goto out;
3475     }
3476 
3477     /*
3478      * An existing pending dimm state for this DIMM means that there is an
3479      * unplug operation in progress, waiting for the spapr_lmb_release
3480      * callback to complete the job (BQL can't cover that far). In this case,
3481      * bail out to avoid detaching DRCs that were already released.
3482      */
3483     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3484         error_setg(&local_err,
3485                    "Memory unplug already in progress for device %s",
3486                    dev->id);
3487         goto out;
3488     }
3489 
3490     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3491 
3492     addr = addr_start;
3493     for (i = 0; i < nr_lmbs; i++) {
3494         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3495                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3496         g_assert(drc);
3497 
3498         spapr_drc_detach(drc);
3499         addr += SPAPR_MEMORY_BLOCK_SIZE;
3500     }
3501 
3502     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3503                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3504     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3505                                               nr_lmbs, spapr_drc_index(drc));
3506 out:
3507     error_propagate(errp, local_err);
3508 }
3509 
3510 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3511                                            sPAPRMachineState *spapr)
3512 {
3513     PowerPCCPU *cpu = POWERPC_CPU(cs);
3514     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3515     int id = spapr_get_vcpu_id(cpu);
3516     void *fdt;
3517     int offset, fdt_size;
3518     char *nodename;
3519 
3520     fdt = create_device_tree(&fdt_size);
3521     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3522     offset = fdt_add_subnode(fdt, 0, nodename);
3523 
3524     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3525     g_free(nodename);
3526 
3527     *fdt_offset = offset;
3528     return fdt;
3529 }
3530 
3531 /* Callback to be called during DRC release. */
3532 void spapr_core_release(DeviceState *dev)
3533 {
3534     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3535 
3536     /* Call the unplug handler chain. This can never fail. */
3537     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3538 }
3539 
3540 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3541 {
3542     MachineState *ms = MACHINE(hotplug_dev);
3543     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3544     CPUCore *cc = CPU_CORE(dev);
3545     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3546 
3547     if (smc->pre_2_10_has_unused_icps) {
3548         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3549         int i;
3550 
3551         for (i = 0; i < cc->nr_threads; i++) {
3552             CPUState *cs = CPU(sc->threads[i]);
3553 
3554             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3555         }
3556     }
3557 
3558     assert(core_slot);
3559     core_slot->cpu = NULL;
3560     object_unparent(OBJECT(dev));
3561 }
3562 
3563 static
3564 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3565                                Error **errp)
3566 {
3567     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3568     int index;
3569     sPAPRDRConnector *drc;
3570     CPUCore *cc = CPU_CORE(dev);
3571 
3572     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3573         error_setg(errp, "Unable to find CPU core with core-id: %d",
3574                    cc->core_id);
3575         return;
3576     }
3577     if (index == 0) {
3578         error_setg(errp, "Boot CPU core may not be unplugged");
3579         return;
3580     }
3581 
3582     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3583                           spapr_vcpu_id(spapr, cc->core_id));
3584     g_assert(drc);
3585 
3586     spapr_drc_detach(drc);
3587 
3588     spapr_hotplug_req_remove_by_index(drc);
3589 }
3590 
3591 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3592                             Error **errp)
3593 {
3594     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3595     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3596     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3597     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3598     CPUCore *cc = CPU_CORE(dev);
3599     CPUState *cs = CPU(core->threads[0]);
3600     sPAPRDRConnector *drc;
3601     Error *local_err = NULL;
3602     CPUArchId *core_slot;
3603     int index;
3604     bool hotplugged = spapr_drc_hotplugged(dev);
3605 
3606     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3607     if (!core_slot) {
3608         error_setg(errp, "Unable to find CPU core with core-id: %d",
3609                    cc->core_id);
3610         return;
3611     }
3612     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3613                           spapr_vcpu_id(spapr, cc->core_id));
3614 
3615     g_assert(drc || !mc->has_hotpluggable_cpus);
3616 
3617     if (drc) {
3618         void *fdt;
3619         int fdt_offset;
3620 
3621         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3622 
3623         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3624         if (local_err) {
3625             g_free(fdt);
3626             error_propagate(errp, local_err);
3627             return;
3628         }
3629 
3630         if (hotplugged) {
3631             /*
3632              * Send hotplug notification interrupt to the guest only
3633              * in case of hotplugged CPUs.
3634              */
3635             spapr_hotplug_req_add_by_index(drc);
3636         } else {
3637             spapr_drc_reset(drc);
3638         }
3639     }
3640 
3641     core_slot->cpu = OBJECT(dev);
3642 
3643     if (smc->pre_2_10_has_unused_icps) {
3644         int i;
3645 
3646         for (i = 0; i < cc->nr_threads; i++) {
3647             cs = CPU(core->threads[i]);
3648             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3649         }
3650     }
3651 }
3652 
3653 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3654                                 Error **errp)
3655 {
3656     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3657     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3658     Error *local_err = NULL;
3659     CPUCore *cc = CPU_CORE(dev);
3660     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3661     const char *type = object_get_typename(OBJECT(dev));
3662     CPUArchId *core_slot;
3663     int index;
3664 
3665     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3666         error_setg(&local_err, "CPU hotplug not supported for this machine");
3667         goto out;
3668     }
3669 
3670     if (strcmp(base_core_type, type)) {
3671         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3672         goto out;
3673     }
3674 
3675     if (cc->core_id % smp_threads) {
3676         error_setg(&local_err, "invalid core id %d", cc->core_id);
3677         goto out;
3678     }
3679 
3680     /*
3681      * In general we should have homogeneous threads-per-core, but old
3682      * (pre hotplug support) machine types allow the last core to have
3683      * reduced threads as a compatibility hack for when we allowed
3684      * total vcpus not a multiple of threads-per-core.
3685      */
3686     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3687         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3688                    cc->nr_threads, smp_threads);
3689         goto out;
3690     }
3691 
3692     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3693     if (!core_slot) {
3694         error_setg(&local_err, "core id %d out of range", cc->core_id);
3695         goto out;
3696     }
3697 
3698     if (core_slot->cpu) {
3699         error_setg(&local_err, "core %d already populated", cc->core_id);
3700         goto out;
3701     }
3702 
3703     numa_cpu_pre_plug(core_slot, dev, &local_err);
3704 
3705 out:
3706     error_propagate(errp, local_err);
3707 }
3708 
3709 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3710                                       DeviceState *dev, Error **errp)
3711 {
3712     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3713         spapr_memory_plug(hotplug_dev, dev, errp);
3714     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3715         spapr_core_plug(hotplug_dev, dev, errp);
3716     }
3717 }
3718 
3719 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3720                                         DeviceState *dev, Error **errp)
3721 {
3722     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3723         spapr_memory_unplug(hotplug_dev, dev);
3724     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3725         spapr_core_unplug(hotplug_dev, dev);
3726     }
3727 }
3728 
3729 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3730                                                 DeviceState *dev, Error **errp)
3731 {
3732     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3733     MachineClass *mc = MACHINE_GET_CLASS(sms);
3734 
3735     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3736         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3737             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3738         } else {
3739             /* NOTE: this means there is a window after guest reset, prior to
3740              * CAS negotiation, where unplug requests will fail due to the
3741              * capability not being detected yet. This is a bit different than
3742              * the case with PCI unplug, where the events will be queued and
3743              * eventually handled by the guest after boot
3744              */
3745             error_setg(errp, "Memory hot unplug not supported for this guest");
3746         }
3747     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3748         if (!mc->has_hotpluggable_cpus) {
3749             error_setg(errp, "CPU hot unplug not supported on this machine");
3750             return;
3751         }
3752         spapr_core_unplug_request(hotplug_dev, dev, errp);
3753     }
3754 }
3755 
3756 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3757                                           DeviceState *dev, Error **errp)
3758 {
3759     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3760         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3761     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3762         spapr_core_pre_plug(hotplug_dev, dev, errp);
3763     }
3764 }
3765 
3766 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3767                                                  DeviceState *dev)
3768 {
3769     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3770         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3771         return HOTPLUG_HANDLER(machine);
3772     }
3773     return NULL;
3774 }
3775 
3776 static CpuInstanceProperties
3777 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3778 {
3779     CPUArchId *core_slot;
3780     MachineClass *mc = MACHINE_GET_CLASS(machine);
3781 
3782     /* make sure possible_cpu are intialized */
3783     mc->possible_cpu_arch_ids(machine);
3784     /* get CPU core slot containing thread that matches cpu_index */
3785     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3786     assert(core_slot);
3787     return core_slot->props;
3788 }
3789 
3790 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3791 {
3792     return idx / smp_cores % nb_numa_nodes;
3793 }
3794 
3795 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3796 {
3797     int i;
3798     const char *core_type;
3799     int spapr_max_cores = max_cpus / smp_threads;
3800     MachineClass *mc = MACHINE_GET_CLASS(machine);
3801 
3802     if (!mc->has_hotpluggable_cpus) {
3803         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3804     }
3805     if (machine->possible_cpus) {
3806         assert(machine->possible_cpus->len == spapr_max_cores);
3807         return machine->possible_cpus;
3808     }
3809 
3810     core_type = spapr_get_cpu_core_type(machine->cpu_type);
3811     if (!core_type) {
3812         error_report("Unable to find sPAPR CPU Core definition");
3813         exit(1);
3814     }
3815 
3816     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3817                              sizeof(CPUArchId) * spapr_max_cores);
3818     machine->possible_cpus->len = spapr_max_cores;
3819     for (i = 0; i < machine->possible_cpus->len; i++) {
3820         int core_id = i * smp_threads;
3821 
3822         machine->possible_cpus->cpus[i].type = core_type;
3823         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3824         machine->possible_cpus->cpus[i].arch_id = core_id;
3825         machine->possible_cpus->cpus[i].props.has_core_id = true;
3826         machine->possible_cpus->cpus[i].props.core_id = core_id;
3827     }
3828     return machine->possible_cpus;
3829 }
3830 
3831 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3832                                 uint64_t *buid, hwaddr *pio,
3833                                 hwaddr *mmio32, hwaddr *mmio64,
3834                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3835 {
3836     /*
3837      * New-style PHB window placement.
3838      *
3839      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3840      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3841      * windows.
3842      *
3843      * Some guest kernels can't work with MMIO windows above 1<<46
3844      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3845      *
3846      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3847      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3848      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3849      * 1TiB 64-bit MMIO windows for each PHB.
3850      */
3851     const uint64_t base_buid = 0x800000020000000ULL;
3852     int i;
3853 
3854     /* Sanity check natural alignments */
3855     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3856     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3857     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3858     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3859     /* Sanity check bounds */
3860     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3861                       SPAPR_PCI_MEM32_WIN_SIZE);
3862     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3863                       SPAPR_PCI_MEM64_WIN_SIZE);
3864 
3865     if (index >= SPAPR_MAX_PHBS) {
3866         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3867                    SPAPR_MAX_PHBS - 1);
3868         return;
3869     }
3870 
3871     *buid = base_buid + index;
3872     for (i = 0; i < n_dma; ++i) {
3873         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3874     }
3875 
3876     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3877     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3878     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3879 }
3880 
3881 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3882 {
3883     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3884 
3885     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3886 }
3887 
3888 static void spapr_ics_resend(XICSFabric *dev)
3889 {
3890     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3891 
3892     ics_resend(spapr->ics);
3893 }
3894 
3895 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3896 {
3897     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3898 
3899     return cpu ? cpu->icp : NULL;
3900 }
3901 
3902 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3903                                  Monitor *mon)
3904 {
3905     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3906 
3907     spapr->irq->print_info(spapr, mon);
3908 }
3909 
3910 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3911 {
3912     return cpu->vcpu_id;
3913 }
3914 
3915 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3916 {
3917     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3918     int vcpu_id;
3919 
3920     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3921 
3922     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3923         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3924         error_append_hint(errp, "Adjust the number of cpus to %d "
3925                           "or try to raise the number of threads per core\n",
3926                           vcpu_id * smp_threads / spapr->vsmt);
3927         return;
3928     }
3929 
3930     cpu->vcpu_id = vcpu_id;
3931 }
3932 
3933 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3934 {
3935     CPUState *cs;
3936 
3937     CPU_FOREACH(cs) {
3938         PowerPCCPU *cpu = POWERPC_CPU(cs);
3939 
3940         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3941             return cpu;
3942         }
3943     }
3944 
3945     return NULL;
3946 }
3947 
3948 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3949 {
3950     MachineClass *mc = MACHINE_CLASS(oc);
3951     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3952     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3953     NMIClass *nc = NMI_CLASS(oc);
3954     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3955     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3956     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3957     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3958 
3959     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3960     mc->ignore_boot_device_suffixes = true;
3961 
3962     /*
3963      * We set up the default / latest behaviour here.  The class_init
3964      * functions for the specific versioned machine types can override
3965      * these details for backwards compatibility
3966      */
3967     mc->init = spapr_machine_init;
3968     mc->reset = spapr_machine_reset;
3969     mc->block_default_type = IF_SCSI;
3970     mc->max_cpus = 1024;
3971     mc->no_parallel = 1;
3972     mc->default_boot_order = "";
3973     mc->default_ram_size = 512 * MiB;
3974     mc->default_display = "std";
3975     mc->kvm_type = spapr_kvm_type;
3976     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3977     mc->pci_allow_0_address = true;
3978     assert(!mc->get_hotplug_handler);
3979     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3980     hc->pre_plug = spapr_machine_device_pre_plug;
3981     hc->plug = spapr_machine_device_plug;
3982     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3983     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3984     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3985     hc->unplug_request = spapr_machine_device_unplug_request;
3986     hc->unplug = spapr_machine_device_unplug;
3987 
3988     smc->dr_lmb_enabled = true;
3989     smc->update_dt_enabled = true;
3990     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
3991     mc->has_hotpluggable_cpus = true;
3992     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3993     fwc->get_dev_path = spapr_get_fw_dev_path;
3994     nc->nmi_monitor_handler = spapr_nmi;
3995     smc->phb_placement = spapr_phb_placement;
3996     vhc->hypercall = emulate_spapr_hypercall;
3997     vhc->hpt_mask = spapr_hpt_mask;
3998     vhc->map_hptes = spapr_map_hptes;
3999     vhc->unmap_hptes = spapr_unmap_hptes;
4000     vhc->store_hpte = spapr_store_hpte;
4001     vhc->get_patbe = spapr_get_patbe;
4002     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4003     xic->ics_get = spapr_ics_get;
4004     xic->ics_resend = spapr_ics_resend;
4005     xic->icp_get = spapr_icp_get;
4006     ispc->print_info = spapr_pic_print_info;
4007     /* Force NUMA node memory size to be a multiple of
4008      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4009      * in which LMBs are represented and hot-added
4010      */
4011     mc->numa_mem_align_shift = 28;
4012 
4013     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4014     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4015     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4016     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4017     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4018     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4019     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4020     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4021     spapr_caps_add_properties(smc, &error_abort);
4022     smc->irq = &spapr_irq_xics;
4023 }
4024 
4025 static const TypeInfo spapr_machine_info = {
4026     .name          = TYPE_SPAPR_MACHINE,
4027     .parent        = TYPE_MACHINE,
4028     .abstract      = true,
4029     .instance_size = sizeof(sPAPRMachineState),
4030     .instance_init = spapr_instance_init,
4031     .instance_finalize = spapr_machine_finalizefn,
4032     .class_size    = sizeof(sPAPRMachineClass),
4033     .class_init    = spapr_machine_class_init,
4034     .interfaces = (InterfaceInfo[]) {
4035         { TYPE_FW_PATH_PROVIDER },
4036         { TYPE_NMI },
4037         { TYPE_HOTPLUG_HANDLER },
4038         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4039         { TYPE_XICS_FABRIC },
4040         { TYPE_INTERRUPT_STATS_PROVIDER },
4041         { }
4042     },
4043 };
4044 
4045 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4046     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4047                                                     void *data)      \
4048     {                                                                \
4049         MachineClass *mc = MACHINE_CLASS(oc);                        \
4050         spapr_machine_##suffix##_class_options(mc);                  \
4051         if (latest) {                                                \
4052             mc->alias = "pseries";                                   \
4053             mc->is_default = 1;                                      \
4054         }                                                            \
4055     }                                                                \
4056     static const TypeInfo spapr_machine_##suffix##_info = {          \
4057         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4058         .parent = TYPE_SPAPR_MACHINE,                                \
4059         .class_init = spapr_machine_##suffix##_class_init,           \
4060     };                                                               \
4061     static void spapr_machine_register_##suffix(void)                \
4062     {                                                                \
4063         type_register(&spapr_machine_##suffix##_info);               \
4064     }                                                                \
4065     type_init(spapr_machine_register_##suffix)
4066 
4067 /*
4068  * pseries-4.0
4069  */
4070 static void spapr_machine_4_0_class_options(MachineClass *mc)
4071 {
4072     /* Defaults for the latest behaviour inherited from the base class */
4073 }
4074 
4075 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4076 
4077 /*
4078  * pseries-3.1
4079  */
4080 static void spapr_machine_3_1_class_options(MachineClass *mc)
4081 {
4082     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4083 
4084     spapr_machine_4_0_class_options(mc);
4085     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4086     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4087     smc->update_dt_enabled = false;
4088 }
4089 
4090 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4091 
4092 /*
4093  * pseries-3.0
4094  */
4095 
4096 static void spapr_machine_3_0_class_options(MachineClass *mc)
4097 {
4098     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4099 
4100     spapr_machine_3_1_class_options(mc);
4101     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4102 
4103     smc->legacy_irq_allocation = true;
4104     smc->irq = &spapr_irq_xics_legacy;
4105 }
4106 
4107 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4108 
4109 /*
4110  * pseries-2.12
4111  */
4112 static void spapr_machine_2_12_class_options(MachineClass *mc)
4113 {
4114     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4115     static GlobalProperty compat[] = {
4116         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4117         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4118     };
4119 
4120     spapr_machine_3_0_class_options(mc);
4121     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4122     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4123 
4124     /* We depend on kvm_enabled() to choose a default value for the
4125      * hpt-max-page-size capability. Of course we can't do it here
4126      * because this is too early and the HW accelerator isn't initialzed
4127      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4128      */
4129     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4130 }
4131 
4132 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4133 
4134 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4135 {
4136     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4137 
4138     spapr_machine_2_12_class_options(mc);
4139     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4140     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4141     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4142 }
4143 
4144 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4145 
4146 /*
4147  * pseries-2.11
4148  */
4149 
4150 static void spapr_machine_2_11_class_options(MachineClass *mc)
4151 {
4152     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4153 
4154     spapr_machine_2_12_class_options(mc);
4155     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4156     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4157 }
4158 
4159 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4160 
4161 /*
4162  * pseries-2.10
4163  */
4164 
4165 static void spapr_machine_2_10_class_options(MachineClass *mc)
4166 {
4167     spapr_machine_2_11_class_options(mc);
4168     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4169 }
4170 
4171 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4172 
4173 /*
4174  * pseries-2.9
4175  */
4176 
4177 static void spapr_machine_2_9_class_options(MachineClass *mc)
4178 {
4179     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4180     static GlobalProperty compat[] = {
4181         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4182     };
4183 
4184     spapr_machine_2_10_class_options(mc);
4185     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4186     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4187     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4188     smc->pre_2_10_has_unused_icps = true;
4189     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4190 }
4191 
4192 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4193 
4194 /*
4195  * pseries-2.8
4196  */
4197 
4198 static void spapr_machine_2_8_class_options(MachineClass *mc)
4199 {
4200     static GlobalProperty compat[] = {
4201         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4202     };
4203 
4204     spapr_machine_2_9_class_options(mc);
4205     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4206     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4207     mc->numa_mem_align_shift = 23;
4208 }
4209 
4210 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4211 
4212 /*
4213  * pseries-2.7
4214  */
4215 
4216 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4217                               uint64_t *buid, hwaddr *pio,
4218                               hwaddr *mmio32, hwaddr *mmio64,
4219                               unsigned n_dma, uint32_t *liobns, Error **errp)
4220 {
4221     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4222     const uint64_t base_buid = 0x800000020000000ULL;
4223     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4224     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4225     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4226     const uint32_t max_index = 255;
4227     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4228 
4229     uint64_t ram_top = MACHINE(spapr)->ram_size;
4230     hwaddr phb0_base, phb_base;
4231     int i;
4232 
4233     /* Do we have device memory? */
4234     if (MACHINE(spapr)->maxram_size > ram_top) {
4235         /* Can't just use maxram_size, because there may be an
4236          * alignment gap between normal and device memory regions
4237          */
4238         ram_top = MACHINE(spapr)->device_memory->base +
4239             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4240     }
4241 
4242     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4243 
4244     if (index > max_index) {
4245         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4246                    max_index);
4247         return;
4248     }
4249 
4250     *buid = base_buid + index;
4251     for (i = 0; i < n_dma; ++i) {
4252         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4253     }
4254 
4255     phb_base = phb0_base + index * phb_spacing;
4256     *pio = phb_base + pio_offset;
4257     *mmio32 = phb_base + mmio_offset;
4258     /*
4259      * We don't set the 64-bit MMIO window, relying on the PHB's
4260      * fallback behaviour of automatically splitting a large "32-bit"
4261      * window into contiguous 32-bit and 64-bit windows
4262      */
4263 }
4264 
4265 static void spapr_machine_2_7_class_options(MachineClass *mc)
4266 {
4267     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4268     static GlobalProperty compat[] = {
4269         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4270         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4271         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4272         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4273     };
4274 
4275     spapr_machine_2_8_class_options(mc);
4276     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4277     mc->default_machine_opts = "modern-hotplug-events=off";
4278     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4279     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4280     smc->phb_placement = phb_placement_2_7;
4281 }
4282 
4283 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4284 
4285 /*
4286  * pseries-2.6
4287  */
4288 
4289 static void spapr_machine_2_6_class_options(MachineClass *mc)
4290 {
4291     static GlobalProperty compat[] = {
4292         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4293     };
4294 
4295     spapr_machine_2_7_class_options(mc);
4296     mc->has_hotpluggable_cpus = false;
4297     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4298     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4299 }
4300 
4301 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4302 
4303 /*
4304  * pseries-2.5
4305  */
4306 
4307 static void spapr_machine_2_5_class_options(MachineClass *mc)
4308 {
4309     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4310     static GlobalProperty compat[] = {
4311         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4312     };
4313 
4314     spapr_machine_2_6_class_options(mc);
4315     smc->use_ohci_by_default = true;
4316     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4317     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4318 }
4319 
4320 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4321 
4322 /*
4323  * pseries-2.4
4324  */
4325 
4326 static void spapr_machine_2_4_class_options(MachineClass *mc)
4327 {
4328     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4329 
4330     spapr_machine_2_5_class_options(mc);
4331     smc->dr_lmb_enabled = false;
4332     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4333 }
4334 
4335 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4336 
4337 /*
4338  * pseries-2.3
4339  */
4340 
4341 static void spapr_machine_2_3_class_options(MachineClass *mc)
4342 {
4343     static GlobalProperty compat[] = {
4344         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4345     };
4346     spapr_machine_2_4_class_options(mc);
4347     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4348     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4349 }
4350 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4351 
4352 /*
4353  * pseries-2.2
4354  */
4355 
4356 static void spapr_machine_2_2_class_options(MachineClass *mc)
4357 {
4358     static GlobalProperty compat[] = {
4359         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4360     };
4361 
4362     spapr_machine_2_3_class_options(mc);
4363     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4364     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4365     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4366 }
4367 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4368 
4369 /*
4370  * pseries-2.1
4371  */
4372 
4373 static void spapr_machine_2_1_class_options(MachineClass *mc)
4374 {
4375     spapr_machine_2_2_class_options(mc);
4376     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4377 }
4378 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4379 
4380 static void spapr_machine_register_types(void)
4381 {
4382     type_register_static(&spapr_machine_info);
4383 }
4384 
4385 type_init(spapr_machine_register_types)
4386