xref: /openbmc/qemu/hw/ppc/spapr.c (revision 2e1cacfb)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "sysemu/reset.h"
41 #include "sysemu/runstate.h"
42 #include "qemu/log.h"
43 #include "hw/fw-path-provider.h"
44 #include "elf.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/cpus.h"
48 #include "sysemu/hw_accel.h"
49 #include "kvm_ppc.h"
50 #include "migration/misc.h"
51 #include "migration/qemu-file-types.h"
52 #include "migration/global_state.h"
53 #include "migration/register.h"
54 #include "migration/blocker.h"
55 #include "mmu-hash64.h"
56 #include "mmu-book3s-v3.h"
57 #include "cpu-models.h"
58 #include "hw/core/cpu.h"
59 
60 #include "hw/ppc/ppc.h"
61 #include "hw/loader.h"
62 
63 #include "hw/ppc/fdt.h"
64 #include "hw/ppc/spapr.h"
65 #include "hw/ppc/spapr_nested.h"
66 #include "hw/ppc/spapr_vio.h"
67 #include "hw/ppc/vof.h"
68 #include "hw/qdev-properties.h"
69 #include "hw/pci-host/spapr.h"
70 #include "hw/pci/msi.h"
71 
72 #include "hw/pci/pci.h"
73 #include "hw/scsi/scsi.h"
74 #include "hw/virtio/virtio-scsi.h"
75 #include "hw/virtio/vhost-scsi-common.h"
76 
77 #include "exec/ram_addr.h"
78 #include "exec/confidential-guest-support.h"
79 #include "hw/usb.h"
80 #include "qemu/config-file.h"
81 #include "qemu/error-report.h"
82 #include "trace.h"
83 #include "hw/nmi.h"
84 #include "hw/intc/intc.h"
85 
86 #include "hw/ppc/spapr_cpu_core.h"
87 #include "hw/mem/memory-device.h"
88 #include "hw/ppc/spapr_tpm_proxy.h"
89 #include "hw/ppc/spapr_nvdimm.h"
90 #include "hw/ppc/spapr_numa.h"
91 
92 #include <libfdt.h>
93 
94 /* SLOF memory layout:
95  *
96  * SLOF raw image loaded at 0, copies its romfs right below the flat
97  * device-tree, then position SLOF itself 31M below that
98  *
99  * So we set FW_OVERHEAD to 40MB which should account for all of that
100  * and more
101  *
102  * We load our kernel at 4M, leaving space for SLOF initial image
103  */
104 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
105 #define FW_MAX_SIZE             0x400000
106 #define FW_FILE_NAME            "slof.bin"
107 #define FW_FILE_NAME_VOF        "vof.bin"
108 #define FW_OVERHEAD             0x2800000
109 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
110 
111 #define MIN_RMA_SLOF            (128 * MiB)
112 
113 #define PHANDLE_INTC            0x00001111
114 
115 /* These two functions implement the VCPU id numbering: one to compute them
116  * all and one to identify thread 0 of a VCORE. Any change to the first one
117  * is likely to have an impact on the second one, so let's keep them close.
118  */
119 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
120 {
121     MachineState *ms = MACHINE(spapr);
122     unsigned int smp_threads = ms->smp.threads;
123 
124     assert(spapr->vsmt);
125     return
126         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
127 }
128 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
129                                       PowerPCCPU *cpu)
130 {
131     assert(spapr->vsmt);
132     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
133 }
134 
135 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
136 {
137     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
138      * and newer QEMUs don't even have them. In both cases, we don't want
139      * to send anything on the wire.
140      */
141     return false;
142 }
143 
144 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
145     /*
146      * Hack ahead.  We can't have two devices with the same name and
147      * instance id.  So I rename this to pass make check.
148      * Real help from people who knows the hardware is needed.
149      */
150     .name = "icp/server",
151     .version_id = 1,
152     .minimum_version_id = 1,
153     .needed = pre_2_10_vmstate_dummy_icp_needed,
154     .fields = (const VMStateField[]) {
155         VMSTATE_UNUSED(4), /* uint32_t xirr */
156         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
157         VMSTATE_UNUSED(1), /* uint8_t mfrr */
158         VMSTATE_END_OF_LIST()
159     },
160 };
161 
162 /*
163  * See comment in hw/intc/xics.c:icp_realize()
164  *
165  * You have to remove vmstate_replace_hack_for_ppc() when you remove
166  * the machine types that need the following function.
167  */
168 static void pre_2_10_vmstate_register_dummy_icp(int i)
169 {
170     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
171                      (void *)(uintptr_t) i);
172 }
173 
174 /*
175  * See comment in hw/intc/xics.c:icp_realize()
176  *
177  * You have to remove vmstate_replace_hack_for_ppc() when you remove
178  * the machine types that need the following function.
179  */
180 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
181 {
182     /*
183      * This used to be:
184      *
185      *    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
186      *                      (void *)(uintptr_t) i);
187      */
188 }
189 
190 int spapr_max_server_number(SpaprMachineState *spapr)
191 {
192     MachineState *ms = MACHINE(spapr);
193 
194     assert(spapr->vsmt);
195     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
196 }
197 
198 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
199                                   int smt_threads)
200 {
201     int i, ret = 0;
202     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
203     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
204     int index = spapr_get_vcpu_id(cpu);
205 
206     if (cpu->compat_pvr) {
207         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
208         if (ret < 0) {
209             return ret;
210         }
211     }
212 
213     /* Build interrupt servers and gservers properties */
214     for (i = 0; i < smt_threads; i++) {
215         servers_prop[i] = cpu_to_be32(index + i);
216         /* Hack, direct the group queues back to cpu 0 */
217         gservers_prop[i*2] = cpu_to_be32(index + i);
218         gservers_prop[i*2 + 1] = 0;
219     }
220     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
221                       servers_prop, sizeof(*servers_prop) * smt_threads);
222     if (ret < 0) {
223         return ret;
224     }
225     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
226                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
227 
228     return ret;
229 }
230 
231 static void spapr_dt_pa_features(SpaprMachineState *spapr,
232                                  PowerPCCPU *cpu,
233                                  void *fdt, int offset)
234 {
235     /*
236      * SSO (SAO) ordering is supported on KVM and thread=single hosts,
237      * but not MTTCG, so disable it. To advertise it, a cap would have
238      * to be added, or support implemented for MTTCG.
239      *
240      * Copy/paste is not supported by TCG, so it is not advertised. KVM
241      * can execute them but it has no accelerator drivers which are usable,
242      * so there isn't much need for it anyway.
243      */
244 
245     /* These should be kept in sync with pnv */
246     uint8_t pa_features_206[] = { 6, 0,
247         0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 };
248     uint8_t pa_features_207[] = { 24, 0,
249         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0,
250         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
251         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
252         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
253     uint8_t pa_features_300[] = { 66, 0,
254         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
255         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
256         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
257         /* 6: DS207 */
258         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
259         /* 16: Vector */
260         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
261         /* 18: Vec. Scalar, 20: Vec. XOR */
262         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
263         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
264         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
265         /* 32: LE atomic, 34: EBB + ext EBB */
266         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
267         /* 40: Radix MMU */
268         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
269         /* 42: PM, 44: PC RA, 46: SC vec'd */
270         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
271         /* 48: SIMD, 50: QP BFP, 52: String */
272         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
273         /* 54: DecFP, 56: DecI, 58: SHA */
274         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
275         /* 60: NM atomic, 62: RNG */
276         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
277     };
278     /* 3.1 removes SAO, HTM support */
279     uint8_t pa_features_31[] = { 74, 0,
280         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
281         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
282         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
283         /* 6: DS207 */
284         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
285         /* 16: Vector */
286         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
287         /* 18: Vec. Scalar, 20: Vec. XOR */
288         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
289         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
290         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
291         /* 32: LE atomic, 34: EBB + ext EBB */
292         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
293         /* 40: Radix MMU */
294         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
295         /* 42: PM, 44: PC RA, 46: SC vec'd */
296         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
297         /* 48: SIMD, 50: QP BFP, 52: String */
298         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
299         /* 54: DecFP, 56: DecI, 58: SHA */
300         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
301         /* 60: NM atomic, 62: RNG */
302         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
303         /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
304         0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
305         /* 72: [P]HASHST/[P]HASHCHK */
306         0x80, 0x00,                         /* 72 - 73 */
307     };
308     uint8_t *pa_features = NULL;
309     size_t pa_size;
310 
311     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
312         pa_features = pa_features_206;
313         pa_size = sizeof(pa_features_206);
314     }
315     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
316         pa_features = pa_features_207;
317         pa_size = sizeof(pa_features_207);
318     }
319     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
320         pa_features = pa_features_300;
321         pa_size = sizeof(pa_features_300);
322     }
323     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) {
324         pa_features = pa_features_31;
325         pa_size = sizeof(pa_features_31);
326     }
327     if (!pa_features) {
328         return;
329     }
330 
331     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
332         /*
333          * Note: we keep CI large pages off by default because a 64K capable
334          * guest provisioned with large pages might otherwise try to map a qemu
335          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
336          * even if that qemu runs on a 4k host.
337          * We dd this bit back here if we are confident this is not an issue
338          */
339         pa_features[3] |= 0x20;
340     }
341     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
342         pa_features[24] |= 0x80;    /* Transactional memory support */
343     }
344     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
345         /* Workaround for broken kernels that attempt (guest) radix
346          * mode when they can't handle it, if they see the radix bit set
347          * in pa-features. So hide it from them. */
348         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
349     }
350 
351     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
352 }
353 
354 static void spapr_dt_pi_features(SpaprMachineState *spapr,
355                                  PowerPCCPU *cpu,
356                                  void *fdt, int offset)
357 {
358     uint8_t pi_features[] = { 1, 0,
359         0x00 };
360 
361     if (kvm_enabled() && ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00,
362                                           0, cpu->compat_pvr)) {
363         /*
364          * POWER9 and later CPUs with KVM run in LPAR-per-thread mode where
365          * all threads are essentially independent CPUs, and msgsndp does not
366          * work (because it is physically-addressed) and therefore is
367          * emulated by KVM, so disable it here to ensure XIVE will be used.
368          * This is both KVM and CPU implementation-specific behaviour so a KVM
369          * cap would be cleanest, but for now this works. If KVM ever permits
370          * native msgsndp execution by guests, a cap could be added at that
371          * time.
372          */
373         pi_features[2] |= 0x08; /* 4: No msgsndp */
374     }
375 
376     _FDT((fdt_setprop(fdt, offset, "ibm,pi-features", pi_features,
377                       sizeof(pi_features))));
378 }
379 
380 static hwaddr spapr_node0_size(MachineState *machine)
381 {
382     if (machine->numa_state->num_nodes) {
383         int i;
384         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
385             if (machine->numa_state->nodes[i].node_mem) {
386                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
387                            machine->ram_size);
388             }
389         }
390     }
391     return machine->ram_size;
392 }
393 
394 static void add_str(GString *s, const gchar *s1)
395 {
396     g_string_append_len(s, s1, strlen(s1) + 1);
397 }
398 
399 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
400                                 hwaddr start, hwaddr size)
401 {
402     char mem_name[32];
403     uint64_t mem_reg_property[2];
404     int off;
405 
406     mem_reg_property[0] = cpu_to_be64(start);
407     mem_reg_property[1] = cpu_to_be64(size);
408 
409     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
410     off = fdt_add_subnode(fdt, 0, mem_name);
411     _FDT(off);
412     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
413     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
414                       sizeof(mem_reg_property))));
415     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
416     return off;
417 }
418 
419 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
420 {
421     MemoryDeviceInfoList *info;
422 
423     for (info = list; info; info = info->next) {
424         MemoryDeviceInfo *value = info->value;
425 
426         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
427             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
428 
429             if (addr >= pcdimm_info->addr &&
430                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
431                 return pcdimm_info->node;
432             }
433         }
434     }
435 
436     return -1;
437 }
438 
439 struct sPAPRDrconfCellV2 {
440      uint32_t seq_lmbs;
441      uint64_t base_addr;
442      uint32_t drc_index;
443      uint32_t aa_index;
444      uint32_t flags;
445 } QEMU_PACKED;
446 
447 typedef struct DrconfCellQueue {
448     struct sPAPRDrconfCellV2 cell;
449     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
450 } DrconfCellQueue;
451 
452 static DrconfCellQueue *
453 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
454                       uint32_t drc_index, uint32_t aa_index,
455                       uint32_t flags)
456 {
457     DrconfCellQueue *elem;
458 
459     elem = g_malloc0(sizeof(*elem));
460     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
461     elem->cell.base_addr = cpu_to_be64(base_addr);
462     elem->cell.drc_index = cpu_to_be32(drc_index);
463     elem->cell.aa_index = cpu_to_be32(aa_index);
464     elem->cell.flags = cpu_to_be32(flags);
465 
466     return elem;
467 }
468 
469 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
470                                       int offset, MemoryDeviceInfoList *dimms)
471 {
472     MachineState *machine = MACHINE(spapr);
473     uint8_t *int_buf, *cur_index;
474     int ret;
475     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
476     uint64_t addr, cur_addr, size;
477     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
478     uint64_t mem_end = machine->device_memory->base +
479                        memory_region_size(&machine->device_memory->mr);
480     uint32_t node, buf_len, nr_entries = 0;
481     SpaprDrc *drc;
482     DrconfCellQueue *elem, *next;
483     MemoryDeviceInfoList *info;
484     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
485         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
486 
487     /* Entry to cover RAM and the gap area */
488     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
489                                  SPAPR_LMB_FLAGS_RESERVED |
490                                  SPAPR_LMB_FLAGS_DRC_INVALID);
491     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
492     nr_entries++;
493 
494     cur_addr = machine->device_memory->base;
495     for (info = dimms; info; info = info->next) {
496         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
497 
498         addr = di->addr;
499         size = di->size;
500         node = di->node;
501 
502         /*
503          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
504          * area is marked hotpluggable in the next iteration for the bigger
505          * chunk including the NVDIMM occupied area.
506          */
507         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
508             continue;
509 
510         /* Entry for hot-pluggable area */
511         if (cur_addr < addr) {
512             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
513             g_assert(drc);
514             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
515                                          cur_addr, spapr_drc_index(drc), -1, 0);
516             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
517             nr_entries++;
518         }
519 
520         /* Entry for DIMM */
521         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
522         g_assert(drc);
523         elem = spapr_get_drconf_cell(size / lmb_size, addr,
524                                      spapr_drc_index(drc), node,
525                                      (SPAPR_LMB_FLAGS_ASSIGNED |
526                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
527         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
528         nr_entries++;
529         cur_addr = addr + size;
530     }
531 
532     /* Entry for remaining hotpluggable area */
533     if (cur_addr < mem_end) {
534         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
535         g_assert(drc);
536         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
537                                      cur_addr, spapr_drc_index(drc), -1, 0);
538         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
539         nr_entries++;
540     }
541 
542     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
543     int_buf = cur_index = g_malloc0(buf_len);
544     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
545     cur_index += sizeof(nr_entries);
546 
547     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
548         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
549         cur_index += sizeof(elem->cell);
550         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
551         g_free(elem);
552     }
553 
554     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
555     g_free(int_buf);
556     if (ret < 0) {
557         return -1;
558     }
559     return 0;
560 }
561 
562 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
563                                    int offset, MemoryDeviceInfoList *dimms)
564 {
565     MachineState *machine = MACHINE(spapr);
566     int i, ret;
567     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
568     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
569     uint32_t nr_lmbs = (machine->device_memory->base +
570                        memory_region_size(&machine->device_memory->mr)) /
571                        lmb_size;
572     uint32_t *int_buf, *cur_index, buf_len;
573 
574     /*
575      * Allocate enough buffer size to fit in ibm,dynamic-memory
576      */
577     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
578     cur_index = int_buf = g_malloc0(buf_len);
579     int_buf[0] = cpu_to_be32(nr_lmbs);
580     cur_index++;
581     for (i = 0; i < nr_lmbs; i++) {
582         uint64_t addr = i * lmb_size;
583         uint32_t *dynamic_memory = cur_index;
584 
585         if (i >= device_lmb_start) {
586             SpaprDrc *drc;
587 
588             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
589             g_assert(drc);
590 
591             dynamic_memory[0] = cpu_to_be32(addr >> 32);
592             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
593             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
594             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
595             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
596             if (memory_region_present(get_system_memory(), addr)) {
597                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
598             } else {
599                 dynamic_memory[5] = cpu_to_be32(0);
600             }
601         } else {
602             /*
603              * LMB information for RMA, boot time RAM and gap b/n RAM and
604              * device memory region -- all these are marked as reserved
605              * and as having no valid DRC.
606              */
607             dynamic_memory[0] = cpu_to_be32(addr >> 32);
608             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
609             dynamic_memory[2] = cpu_to_be32(0);
610             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
611             dynamic_memory[4] = cpu_to_be32(-1);
612             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
613                                             SPAPR_LMB_FLAGS_DRC_INVALID);
614         }
615 
616         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
617     }
618     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
619     g_free(int_buf);
620     if (ret < 0) {
621         return -1;
622     }
623     return 0;
624 }
625 
626 /*
627  * Adds ibm,dynamic-reconfiguration-memory node.
628  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
629  * of this device tree node.
630  */
631 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
632                                                    void *fdt)
633 {
634     MachineState *machine = MACHINE(spapr);
635     int ret, offset;
636     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
637     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
638                                 cpu_to_be32(lmb_size & 0xffffffff)};
639     MemoryDeviceInfoList *dimms = NULL;
640 
641     /* Don't create the node if there is no device memory. */
642     if (!machine->device_memory) {
643         return 0;
644     }
645 
646     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
647 
648     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
649                     sizeof(prop_lmb_size));
650     if (ret < 0) {
651         return ret;
652     }
653 
654     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
655     if (ret < 0) {
656         return ret;
657     }
658 
659     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
660     if (ret < 0) {
661         return ret;
662     }
663 
664     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
665     dimms = qmp_memory_device_list();
666     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
667         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
668     } else {
669         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
670     }
671     qapi_free_MemoryDeviceInfoList(dimms);
672 
673     if (ret < 0) {
674         return ret;
675     }
676 
677     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
678 
679     return ret;
680 }
681 
682 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
683 {
684     MachineState *machine = MACHINE(spapr);
685     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
686     hwaddr mem_start, node_size;
687     int i, nb_nodes = machine->numa_state->num_nodes;
688     NodeInfo *nodes = machine->numa_state->nodes;
689 
690     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
691         if (!nodes[i].node_mem) {
692             continue;
693         }
694         if (mem_start >= machine->ram_size) {
695             node_size = 0;
696         } else {
697             node_size = nodes[i].node_mem;
698             if (node_size > machine->ram_size - mem_start) {
699                 node_size = machine->ram_size - mem_start;
700             }
701         }
702         if (!mem_start) {
703             /* spapr_machine_init() checks for rma_size <= node0_size
704              * already */
705             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
706             mem_start += spapr->rma_size;
707             node_size -= spapr->rma_size;
708         }
709         for ( ; node_size; ) {
710             hwaddr sizetmp = pow2floor(node_size);
711 
712             /* mem_start != 0 here */
713             if (ctzl(mem_start) < ctzl(sizetmp)) {
714                 sizetmp = 1ULL << ctzl(mem_start);
715             }
716 
717             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
718             node_size -= sizetmp;
719             mem_start += sizetmp;
720         }
721     }
722 
723     /* Generate ibm,dynamic-reconfiguration-memory node if required */
724     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
725         int ret;
726 
727         g_assert(smc->dr_lmb_enabled);
728         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
729         if (ret) {
730             return ret;
731         }
732     }
733 
734     return 0;
735 }
736 
737 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
738                          SpaprMachineState *spapr)
739 {
740     MachineState *ms = MACHINE(spapr);
741     PowerPCCPU *cpu = POWERPC_CPU(cs);
742     CPUPPCState *env = &cpu->env;
743     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
744     int index = spapr_get_vcpu_id(cpu);
745     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
746                        0xffffffff, 0xffffffff};
747     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
748         : SPAPR_TIMEBASE_FREQ;
749     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
750     uint32_t page_sizes_prop[64];
751     size_t page_sizes_prop_size;
752     unsigned int smp_threads = ms->smp.threads;
753     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
754     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
755     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
756     SpaprDrc *drc;
757     int drc_index;
758     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
759     int i;
760 
761     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
762     if (drc) {
763         drc_index = spapr_drc_index(drc);
764         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
765     }
766 
767     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
768     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
769 
770     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
771     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
772                            env->dcache_line_size)));
773     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
774                            env->dcache_line_size)));
775     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
776                            env->icache_line_size)));
777     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
778                            env->icache_line_size)));
779 
780     if (pcc->l1_dcache_size) {
781         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
782                                pcc->l1_dcache_size)));
783     } else {
784         warn_report("Unknown L1 dcache size for cpu");
785     }
786     if (pcc->l1_icache_size) {
787         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
788                                pcc->l1_icache_size)));
789     } else {
790         warn_report("Unknown L1 icache size for cpu");
791     }
792 
793     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
794     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
795     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
796     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
797     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
798     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
799 
800     if (ppc_has_spr(cpu, SPR_PURR)) {
801         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
802     }
803     if (ppc_has_spr(cpu, SPR_PURR)) {
804         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
805     }
806 
807     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
808         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
809                           segs, sizeof(segs))));
810     }
811 
812     /* Advertise VSX (vector extensions) if available
813      *   1               == VMX / Altivec available
814      *   2               == VSX available
815      *
816      * Only CPUs for which we create core types in spapr_cpu_core.c
817      * are possible, and all of those have VMX */
818     if (env->insns_flags & PPC_ALTIVEC) {
819         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
820             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
821         } else {
822             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
823         }
824     }
825 
826     /* Advertise DFP (Decimal Floating Point) if available
827      *   0 / no property == no DFP
828      *   1               == DFP available */
829     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
830         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
831     }
832 
833     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
834                                                       sizeof(page_sizes_prop));
835     if (page_sizes_prop_size) {
836         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
837                           page_sizes_prop, page_sizes_prop_size)));
838     }
839 
840     spapr_dt_pa_features(spapr, cpu, fdt, offset);
841 
842     spapr_dt_pi_features(spapr, cpu, fdt, offset);
843 
844     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
845                            cs->cpu_index / vcpus_per_socket)));
846 
847     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
848                       pft_size_prop, sizeof(pft_size_prop))));
849 
850     if (ms->numa_state->num_nodes > 1) {
851         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
852     }
853 
854     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
855 
856     if (pcc->radix_page_info) {
857         for (i = 0; i < pcc->radix_page_info->count; i++) {
858             radix_AP_encodings[i] =
859                 cpu_to_be32(pcc->radix_page_info->entries[i]);
860         }
861         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
862                           radix_AP_encodings,
863                           pcc->radix_page_info->count *
864                           sizeof(radix_AP_encodings[0]))));
865     }
866 
867     /*
868      * We set this property to let the guest know that it can use the large
869      * decrementer and its width in bits.
870      */
871     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
872         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
873                               pcc->lrg_decr_bits)));
874 }
875 
876 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs,
877                              int cpus_offset)
878 {
879     PowerPCCPU *cpu = POWERPC_CPU(cs);
880     int index = spapr_get_vcpu_id(cpu);
881     DeviceClass *dc = DEVICE_GET_CLASS(cs);
882     g_autofree char *nodename = NULL;
883     int offset;
884 
885     if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
886         return;
887     }
888 
889     nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
890     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
891     _FDT(offset);
892     spapr_dt_cpu(cs, fdt, offset, spapr);
893 }
894 
895 
896 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
897 {
898     CPUState **rev;
899     CPUState *cs;
900     int n_cpus;
901     int cpus_offset;
902     int i;
903 
904     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
905     _FDT(cpus_offset);
906     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
907     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
908 
909     /*
910      * We walk the CPUs in reverse order to ensure that CPU DT nodes
911      * created by fdt_add_subnode() end up in the right order in FDT
912      * for the guest kernel the enumerate the CPUs correctly.
913      *
914      * The CPU list cannot be traversed in reverse order, so we need
915      * to do extra work.
916      */
917     n_cpus = 0;
918     rev = NULL;
919     CPU_FOREACH(cs) {
920         rev = g_renew(CPUState *, rev, n_cpus + 1);
921         rev[n_cpus++] = cs;
922     }
923 
924     for (i = n_cpus - 1; i >= 0; i--) {
925         spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset);
926     }
927 
928     g_free(rev);
929 }
930 
931 static int spapr_dt_rng(void *fdt)
932 {
933     int node;
934     int ret;
935 
936     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
937     if (node <= 0) {
938         return -1;
939     }
940     ret = fdt_setprop_string(fdt, node, "device_type",
941                              "ibm,platform-facilities");
942     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
943     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
944 
945     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
946     if (node <= 0) {
947         return -1;
948     }
949     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
950 
951     return ret ? -1 : 0;
952 }
953 
954 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
955 {
956     MachineState *ms = MACHINE(spapr);
957     int rtas;
958     GString *hypertas = g_string_sized_new(256);
959     GString *qemu_hypertas = g_string_sized_new(256);
960     uint32_t lrdr_capacity[] = {
961         0,
962         0,
963         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
964         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
965         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
966     };
967 
968     /* Do we have device memory? */
969     if (MACHINE(spapr)->device_memory) {
970         uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
971             memory_region_size(&MACHINE(spapr)->device_memory->mr);
972 
973         lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
974         lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
975     }
976 
977     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
978 
979     /* hypertas */
980     add_str(hypertas, "hcall-pft");
981     add_str(hypertas, "hcall-term");
982     add_str(hypertas, "hcall-dabr");
983     add_str(hypertas, "hcall-interrupt");
984     add_str(hypertas, "hcall-tce");
985     add_str(hypertas, "hcall-vio");
986     add_str(hypertas, "hcall-splpar");
987     add_str(hypertas, "hcall-join");
988     add_str(hypertas, "hcall-bulk");
989     add_str(hypertas, "hcall-set-mode");
990     add_str(hypertas, "hcall-sprg0");
991     add_str(hypertas, "hcall-copy");
992     add_str(hypertas, "hcall-debug");
993     add_str(hypertas, "hcall-vphn");
994     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
995         add_str(hypertas, "hcall-rpt-invalidate");
996     }
997 
998     add_str(qemu_hypertas, "hcall-memop1");
999 
1000     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1001         add_str(hypertas, "hcall-multi-tce");
1002     }
1003 
1004     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1005         add_str(hypertas, "hcall-hpt-resize");
1006     }
1007 
1008     add_str(hypertas, "hcall-watchdog");
1009 
1010     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1011                      hypertas->str, hypertas->len));
1012     g_string_free(hypertas, TRUE);
1013     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1014                      qemu_hypertas->str, qemu_hypertas->len));
1015     g_string_free(qemu_hypertas, TRUE);
1016 
1017     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
1018 
1019     /*
1020      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
1021      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
1022      *
1023      * The system reset requirements are driven by existing Linux and PowerVM
1024      * implementation which (contrary to PAPR) saves r3 in the error log
1025      * structure like machine check, so Linux expects to find the saved r3
1026      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
1027      * does not look at the error value).
1028      *
1029      * System reset interrupts are not subject to interlock like machine
1030      * check, so this memory area could be corrupted if the sreset is
1031      * interrupted by a machine check (or vice versa) if it was shared. To
1032      * prevent this, system reset uses per-CPU areas for the sreset save
1033      * area. A system reset that interrupts a system reset handler could
1034      * still overwrite this area, but Linux doesn't try to recover in that
1035      * case anyway.
1036      *
1037      * The extra 8 bytes is required because Linux's FWNMI error log check
1038      * is off-by-one.
1039      *
1040      * RTAS_MIN_SIZE is required for the RTAS blob itself.
1041      */
1042     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
1043                           RTAS_ERROR_LOG_MAX +
1044                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
1045                           sizeof(uint64_t)));
1046     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1047                           RTAS_ERROR_LOG_MAX));
1048     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1049                           RTAS_EVENT_SCAN_RATE));
1050 
1051     g_assert(msi_nonbroken);
1052     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1053 
1054     /*
1055      * According to PAPR, rtas ibm,os-term does not guarantee a return
1056      * back to the guest cpu.
1057      *
1058      * While an additional ibm,extended-os-term property indicates
1059      * that rtas call return will always occur. Set this property.
1060      */
1061     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1062 
1063     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1064                      lrdr_capacity, sizeof(lrdr_capacity)));
1065 
1066     spapr_dt_rtas_tokens(fdt, rtas);
1067 }
1068 
1069 /*
1070  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1071  * and the XIVE features that the guest may request and thus the valid
1072  * values for bytes 23..26 of option vector 5:
1073  */
1074 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1075                                           int chosen)
1076 {
1077     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1078 
1079     char val[2 * 4] = {
1080         23, 0x00, /* XICS / XIVE mode */
1081         24, 0x00, /* Hash/Radix, filled in below. */
1082         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1083         26, 0x40, /* Radix options: GTSE == yes. */
1084     };
1085 
1086     if (spapr->irq->xics && spapr->irq->xive) {
1087         val[1] = SPAPR_OV5_XIVE_BOTH;
1088     } else if (spapr->irq->xive) {
1089         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1090     } else {
1091         assert(spapr->irq->xics);
1092         val[1] = SPAPR_OV5_XIVE_LEGACY;
1093     }
1094 
1095     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1096                           first_ppc_cpu->compat_pvr)) {
1097         /*
1098          * If we're in a pre POWER9 compat mode then the guest should
1099          * do hash and use the legacy interrupt mode
1100          */
1101         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1102         val[3] = 0x00; /* Hash */
1103         spapr_check_mmu_mode(false);
1104     } else if (kvm_enabled()) {
1105         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1106             val[3] = 0x80; /* OV5_MMU_BOTH */
1107         } else if (kvmppc_has_cap_mmu_radix()) {
1108             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1109         } else {
1110             val[3] = 0x00; /* Hash */
1111         }
1112     } else {
1113         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1114         val[3] = 0xC0;
1115     }
1116     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1117                      val, sizeof(val)));
1118 }
1119 
1120 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1121 {
1122     MachineState *machine = MACHINE(spapr);
1123     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1124     int chosen;
1125 
1126     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1127 
1128     if (reset) {
1129         const char *boot_device = spapr->boot_device;
1130         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1131         size_t cb = 0;
1132         g_autofree char *bootlist = get_boot_devices_list(&cb);
1133 
1134         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1135             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1136                                     machine->kernel_cmdline));
1137         }
1138 
1139         if (spapr->initrd_size) {
1140             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1141                                   spapr->initrd_base));
1142             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1143                                   spapr->initrd_base + spapr->initrd_size));
1144         }
1145 
1146         if (spapr->kernel_size) {
1147             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1148                                   cpu_to_be64(spapr->kernel_size) };
1149 
1150             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1151                          &kprop, sizeof(kprop)));
1152             if (spapr->kernel_le) {
1153                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1154             }
1155         }
1156         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1157             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1158         }
1159         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1160         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1161         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1162 
1163         if (cb && bootlist) {
1164             int i;
1165 
1166             for (i = 0; i < cb; i++) {
1167                 if (bootlist[i] == '\n') {
1168                     bootlist[i] = ' ';
1169                 }
1170             }
1171             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1172         }
1173 
1174         if (boot_device && strlen(boot_device)) {
1175             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1176         }
1177 
1178         if (spapr->want_stdout_path && stdout_path) {
1179             /*
1180              * "linux,stdout-path" and "stdout" properties are
1181              * deprecated by linux kernel. New platforms should only
1182              * use the "stdout-path" property. Set the new property
1183              * and continue using older property to remain compatible
1184              * with the existing firmware.
1185              */
1186             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1187             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1188         }
1189 
1190         /*
1191          * We can deal with BAR reallocation just fine, advertise it
1192          * to the guest
1193          */
1194         if (smc->linux_pci_probe) {
1195             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1196         }
1197 
1198         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1199     }
1200 
1201     _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1202 
1203     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1204 }
1205 
1206 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1207 {
1208     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1209      * KVM to work under pHyp with some guest co-operation */
1210     int hypervisor;
1211     uint8_t hypercall[16];
1212 
1213     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1214     /* indicate KVM hypercall interface */
1215     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1216     if (kvmppc_has_cap_fixup_hcalls()) {
1217         /*
1218          * Older KVM versions with older guest kernels were broken
1219          * with the magic page, don't allow the guest to map it.
1220          */
1221         if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall,
1222                                   sizeof(hypercall))) {
1223             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1224                              hypercall, sizeof(hypercall)));
1225         }
1226     }
1227 }
1228 
1229 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1230 {
1231     MachineState *machine = MACHINE(spapr);
1232     MachineClass *mc = MACHINE_GET_CLASS(machine);
1233     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1234     uint32_t root_drc_type_mask = 0;
1235     int ret;
1236     void *fdt;
1237     SpaprPhbState *phb;
1238     char *buf;
1239 
1240     fdt = g_malloc0(space);
1241     _FDT((fdt_create_empty_tree(fdt, space)));
1242 
1243     /* Root node */
1244     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1245     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1246     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1247 
1248     /* Guest UUID & Name*/
1249     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1250     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1251     if (qemu_uuid_set) {
1252         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1253     }
1254     g_free(buf);
1255 
1256     if (qemu_get_vm_name()) {
1257         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1258                                 qemu_get_vm_name()));
1259     }
1260 
1261     /* Host Model & Serial Number */
1262     if (spapr->host_model) {
1263         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1264     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1265         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1266         g_free(buf);
1267     }
1268 
1269     if (spapr->host_serial) {
1270         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1271     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1272         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1273         g_free(buf);
1274     }
1275 
1276     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1277     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1278 
1279     /* /interrupt controller */
1280     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1281 
1282     ret = spapr_dt_memory(spapr, fdt);
1283     if (ret < 0) {
1284         error_report("couldn't setup memory nodes in fdt");
1285         exit(1);
1286     }
1287 
1288     /* /vdevice */
1289     spapr_dt_vdevice(spapr->vio_bus, fdt);
1290 
1291     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1292         ret = spapr_dt_rng(fdt);
1293         if (ret < 0) {
1294             error_report("could not set up rng device in the fdt");
1295             exit(1);
1296         }
1297     }
1298 
1299     QLIST_FOREACH(phb, &spapr->phbs, list) {
1300         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1301         if (ret < 0) {
1302             error_report("couldn't setup PCI devices in fdt");
1303             exit(1);
1304         }
1305     }
1306 
1307     spapr_dt_cpus(fdt, spapr);
1308 
1309     /* ibm,drc-indexes and friends */
1310     if (smc->dr_lmb_enabled) {
1311         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1312     }
1313     if (smc->dr_phb_enabled) {
1314         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1315     }
1316     if (mc->nvdimm_supported) {
1317         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1318     }
1319     if (root_drc_type_mask) {
1320         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1321     }
1322 
1323     if (mc->has_hotpluggable_cpus) {
1324         int offset = fdt_path_offset(fdt, "/cpus");
1325         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1326         if (ret < 0) {
1327             error_report("Couldn't set up CPU DR device tree properties");
1328             exit(1);
1329         }
1330     }
1331 
1332     /* /event-sources */
1333     spapr_dt_events(spapr, fdt);
1334 
1335     /* /rtas */
1336     spapr_dt_rtas(spapr, fdt);
1337 
1338     /* /chosen */
1339     spapr_dt_chosen(spapr, fdt, reset);
1340 
1341     /* /hypervisor */
1342     if (kvm_enabled()) {
1343         spapr_dt_hypervisor(spapr, fdt);
1344     }
1345 
1346     /* Build memory reserve map */
1347     if (reset) {
1348         if (spapr->kernel_size) {
1349             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1350                                   spapr->kernel_size)));
1351         }
1352         if (spapr->initrd_size) {
1353             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1354                                   spapr->initrd_size)));
1355         }
1356     }
1357 
1358     /* NVDIMM devices */
1359     if (mc->nvdimm_supported) {
1360         spapr_dt_persistent_memory(spapr, fdt);
1361     }
1362 
1363     return fdt;
1364 }
1365 
1366 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1367 {
1368     SpaprMachineState *spapr = opaque;
1369 
1370     return (addr & 0x0fffffff) + spapr->kernel_addr;
1371 }
1372 
1373 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1374                                     PowerPCCPU *cpu)
1375 {
1376     CPUPPCState *env = &cpu->env;
1377 
1378     /* The TCG path should also be holding the BQL at this point */
1379     g_assert(bql_locked());
1380 
1381     g_assert(!vhyp_cpu_in_nested(cpu));
1382 
1383     if (FIELD_EX64(env->msr, MSR, PR)) {
1384         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1385         env->gpr[3] = H_PRIVILEGE;
1386     } else {
1387         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1388     }
1389 }
1390 
1391 struct LPCRSyncState {
1392     target_ulong value;
1393     target_ulong mask;
1394 };
1395 
1396 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1397 {
1398     struct LPCRSyncState *s = arg.host_ptr;
1399     PowerPCCPU *cpu = POWERPC_CPU(cs);
1400     CPUPPCState *env = &cpu->env;
1401     target_ulong lpcr;
1402 
1403     cpu_synchronize_state(cs);
1404     lpcr = env->spr[SPR_LPCR];
1405     lpcr &= ~s->mask;
1406     lpcr |= s->value;
1407     ppc_store_lpcr(cpu, lpcr);
1408 }
1409 
1410 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1411 {
1412     CPUState *cs;
1413     struct LPCRSyncState s = {
1414         .value = value,
1415         .mask = mask
1416     };
1417     CPU_FOREACH(cs) {
1418         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1419     }
1420 }
1421 
1422 /* May be used when the machine is not running */
1423 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1424 {
1425     CPUState *cs;
1426     CPU_FOREACH(cs) {
1427         PowerPCCPU *cpu = POWERPC_CPU(cs);
1428         CPUPPCState *env = &cpu->env;
1429         target_ulong lpcr;
1430 
1431         lpcr = env->spr[SPR_LPCR];
1432         lpcr &= ~(LPCR_HR | LPCR_UPRT);
1433         ppc_store_lpcr(cpu, lpcr);
1434     }
1435 }
1436 
1437 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1438                            target_ulong lpid, ppc_v3_pate_t *entry)
1439 {
1440     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1441     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1442 
1443     if (!spapr_cpu->in_nested) {
1444         assert(lpid == 0);
1445 
1446         /* Copy PATE1:GR into PATE0:HR */
1447         entry->dw0 = spapr->patb_entry & PATE0_HR;
1448         entry->dw1 = spapr->patb_entry;
1449         return true;
1450     } else {
1451         if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) {
1452             return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry);
1453         } else if (spapr_nested_api(spapr) == NESTED_API_PAPR) {
1454             return spapr_get_pate_nested_papr(spapr, cpu, lpid, entry);
1455         } else {
1456             g_assert_not_reached();
1457         }
1458     }
1459 }
1460 
1461 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1462 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1463 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1464 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1465 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1466 
1467 /*
1468  * Get the fd to access the kernel htab, re-opening it if necessary
1469  */
1470 static int get_htab_fd(SpaprMachineState *spapr)
1471 {
1472     Error *local_err = NULL;
1473 
1474     if (spapr->htab_fd >= 0) {
1475         return spapr->htab_fd;
1476     }
1477 
1478     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1479     if (spapr->htab_fd < 0) {
1480         error_report_err(local_err);
1481     }
1482 
1483     return spapr->htab_fd;
1484 }
1485 
1486 void close_htab_fd(SpaprMachineState *spapr)
1487 {
1488     if (spapr->htab_fd >= 0) {
1489         close(spapr->htab_fd);
1490     }
1491     spapr->htab_fd = -1;
1492 }
1493 
1494 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1495 {
1496     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1497 
1498     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1499 }
1500 
1501 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1502 {
1503     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1504 
1505     assert(kvm_enabled());
1506 
1507     if (!spapr->htab) {
1508         return 0;
1509     }
1510 
1511     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1512 }
1513 
1514 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1515                                                 hwaddr ptex, int n)
1516 {
1517     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1518     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1519 
1520     if (!spapr->htab) {
1521         /*
1522          * HTAB is controlled by KVM. Fetch into temporary buffer
1523          */
1524         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1525         kvmppc_read_hptes(hptes, ptex, n);
1526         return hptes;
1527     }
1528 
1529     /*
1530      * HTAB is controlled by QEMU. Just point to the internally
1531      * accessible PTEG.
1532      */
1533     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1534 }
1535 
1536 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1537                               const ppc_hash_pte64_t *hptes,
1538                               hwaddr ptex, int n)
1539 {
1540     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1541 
1542     if (!spapr->htab) {
1543         g_free((void *)hptes);
1544     }
1545 
1546     /* Nothing to do for qemu managed HPT */
1547 }
1548 
1549 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1550                       uint64_t pte0, uint64_t pte1)
1551 {
1552     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1553     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1554 
1555     if (!spapr->htab) {
1556         kvmppc_write_hpte(ptex, pte0, pte1);
1557     } else {
1558         if (pte0 & HPTE64_V_VALID) {
1559             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1560             /*
1561              * When setting valid, we write PTE1 first. This ensures
1562              * proper synchronization with the reading code in
1563              * ppc_hash64_pteg_search()
1564              */
1565             smp_wmb();
1566             stq_p(spapr->htab + offset, pte0);
1567         } else {
1568             stq_p(spapr->htab + offset, pte0);
1569             /*
1570              * When clearing it we set PTE0 first. This ensures proper
1571              * synchronization with the reading code in
1572              * ppc_hash64_pteg_search()
1573              */
1574             smp_wmb();
1575             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1576         }
1577     }
1578 }
1579 
1580 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1581                              uint64_t pte1)
1582 {
1583     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1584     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1585 
1586     if (!spapr->htab) {
1587         /* There should always be a hash table when this is called */
1588         error_report("spapr_hpte_set_c called with no hash table !");
1589         return;
1590     }
1591 
1592     /* The HW performs a non-atomic byte update */
1593     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1594 }
1595 
1596 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1597                              uint64_t pte1)
1598 {
1599     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1600     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1601 
1602     if (!spapr->htab) {
1603         /* There should always be a hash table when this is called */
1604         error_report("spapr_hpte_set_r called with no hash table !");
1605         return;
1606     }
1607 
1608     /* The HW performs a non-atomic byte update */
1609     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1610 }
1611 
1612 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1613 {
1614     int shift;
1615 
1616     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1617      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1618      * that's much more than is needed for Linux guests */
1619     shift = ctz64(pow2ceil(ramsize)) - 7;
1620     shift = MAX(shift, 18); /* Minimum architected size */
1621     shift = MIN(shift, 46); /* Maximum architected size */
1622     return shift;
1623 }
1624 
1625 void spapr_free_hpt(SpaprMachineState *spapr)
1626 {
1627     qemu_vfree(spapr->htab);
1628     spapr->htab = NULL;
1629     spapr->htab_shift = 0;
1630     close_htab_fd(spapr);
1631 }
1632 
1633 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1634 {
1635     ERRP_GUARD();
1636     long rc;
1637 
1638     /* Clean up any HPT info from a previous boot */
1639     spapr_free_hpt(spapr);
1640 
1641     rc = kvmppc_reset_htab(shift);
1642 
1643     if (rc == -EOPNOTSUPP) {
1644         error_setg(errp, "HPT not supported in nested guests");
1645         return -EOPNOTSUPP;
1646     }
1647 
1648     if (rc < 0) {
1649         /* kernel-side HPT needed, but couldn't allocate one */
1650         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1651                          shift);
1652         error_append_hint(errp, "Try smaller maxmem?\n");
1653         return -errno;
1654     } else if (rc > 0) {
1655         /* kernel-side HPT allocated */
1656         if (rc != shift) {
1657             error_setg(errp,
1658                        "Requested order %d HPT, but kernel allocated order %ld",
1659                        shift, rc);
1660             error_append_hint(errp, "Try smaller maxmem?\n");
1661             return -ENOSPC;
1662         }
1663 
1664         spapr->htab_shift = shift;
1665         spapr->htab = NULL;
1666     } else {
1667         /* kernel-side HPT not needed, allocate in userspace instead */
1668         size_t size = 1ULL << shift;
1669         int i;
1670 
1671         spapr->htab = qemu_memalign(size, size);
1672         memset(spapr->htab, 0, size);
1673         spapr->htab_shift = shift;
1674 
1675         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1676             DIRTY_HPTE(HPTE(spapr->htab, i));
1677         }
1678     }
1679     /* We're setting up a hash table, so that means we're not radix */
1680     spapr->patb_entry = 0;
1681     spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1682     return 0;
1683 }
1684 
1685 void spapr_setup_hpt(SpaprMachineState *spapr)
1686 {
1687     int hpt_shift;
1688 
1689     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1690         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1691     } else {
1692         uint64_t current_ram_size;
1693 
1694         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1695         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1696     }
1697     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1698 
1699     if (kvm_enabled()) {
1700         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1701 
1702         /* Check our RMA fits in the possible VRMA */
1703         if (vrma_limit < spapr->rma_size) {
1704             error_report("Unable to create %" HWADDR_PRIu
1705                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1706                          spapr->rma_size / MiB, vrma_limit / MiB);
1707             exit(EXIT_FAILURE);
1708         }
1709     }
1710 }
1711 
1712 void spapr_check_mmu_mode(bool guest_radix)
1713 {
1714     if (guest_radix) {
1715         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1716             error_report("Guest requested unavailable MMU mode (radix).");
1717             exit(EXIT_FAILURE);
1718         }
1719     } else {
1720         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1721             && !kvmppc_has_cap_mmu_hash_v3()) {
1722             error_report("Guest requested unavailable MMU mode (hash).");
1723             exit(EXIT_FAILURE);
1724         }
1725     }
1726 }
1727 
1728 static void spapr_machine_reset(MachineState *machine, ResetType type)
1729 {
1730     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1731     PowerPCCPU *first_ppc_cpu;
1732     hwaddr fdt_addr;
1733     void *fdt;
1734     int rc;
1735 
1736     if (type != RESET_TYPE_SNAPSHOT_LOAD) {
1737         /*
1738          * Record-replay snapshot load must not consume random, this was
1739          * already replayed from initial machine reset.
1740          */
1741         qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1742     }
1743 
1744     if (machine->cgs) {
1745         confidential_guest_kvm_reset(machine->cgs, &error_fatal);
1746     }
1747     spapr_caps_apply(spapr);
1748     spapr_nested_reset(spapr);
1749 
1750     first_ppc_cpu = POWERPC_CPU(first_cpu);
1751     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1752         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1753                               spapr->max_compat_pvr)) {
1754         /*
1755          * If using KVM with radix mode available, VCPUs can be started
1756          * without a HPT because KVM will start them in radix mode.
1757          * Set the GR bit in PATE so that we know there is no HPT.
1758          */
1759         spapr->patb_entry = PATE1_GR;
1760         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1761     } else {
1762         spapr_setup_hpt(spapr);
1763     }
1764 
1765     qemu_devices_reset(type);
1766 
1767     spapr_ovec_cleanup(spapr->ov5_cas);
1768     spapr->ov5_cas = spapr_ovec_new();
1769 
1770     ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1771 
1772     /*
1773      * This is fixing some of the default configuration of the XIVE
1774      * devices. To be called after the reset of the machine devices.
1775      */
1776     spapr_irq_reset(spapr, &error_fatal);
1777 
1778     /*
1779      * There is no CAS under qtest. Simulate one to please the code that
1780      * depends on spapr->ov5_cas. This is especially needed to test device
1781      * unplug, so we do that before resetting the DRCs.
1782      */
1783     if (qtest_enabled()) {
1784         spapr_ovec_cleanup(spapr->ov5_cas);
1785         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1786     }
1787 
1788     spapr_nvdimm_finish_flushes();
1789 
1790     /* DRC reset may cause a device to be unplugged. This will cause troubles
1791      * if this device is used by another device (eg, a running vhost backend
1792      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1793      * situations, we reset DRCs after all devices have been reset.
1794      */
1795     spapr_drc_reset_all(spapr);
1796 
1797     spapr_clear_pending_events(spapr);
1798 
1799     /*
1800      * We place the device tree just below either the top of the RMA,
1801      * or just below 2GB, whichever is lower, so that it can be
1802      * processed with 32-bit real mode code if necessary
1803      */
1804     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1805 
1806     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1807     if (spapr->vof) {
1808         spapr_vof_reset(spapr, fdt, &error_fatal);
1809         /*
1810          * Do not pack the FDT as the client may change properties.
1811          * VOF client does not expect the FDT so we do not load it to the VM.
1812          */
1813     } else {
1814         rc = fdt_pack(fdt);
1815         /* Should only fail if we've built a corrupted tree */
1816         assert(rc == 0);
1817 
1818         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1819                                   0, fdt_addr, 0);
1820         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1821     }
1822     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1823 
1824     g_free(spapr->fdt_blob);
1825     spapr->fdt_size = fdt_totalsize(fdt);
1826     spapr->fdt_initial_size = spapr->fdt_size;
1827     spapr->fdt_blob = fdt;
1828 
1829     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1830     machine->fdt = fdt;
1831 
1832     /* Set up the entry state */
1833     first_ppc_cpu->env.gpr[5] = 0;
1834 
1835     spapr->fwnmi_system_reset_addr = -1;
1836     spapr->fwnmi_machine_check_addr = -1;
1837     spapr->fwnmi_machine_check_interlock = -1;
1838 
1839     /* Signal all vCPUs waiting on this condition */
1840     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1841 
1842     migrate_del_blocker(&spapr->fwnmi_migration_blocker);
1843 }
1844 
1845 static void spapr_create_nvram(SpaprMachineState *spapr)
1846 {
1847     DeviceState *dev = qdev_new("spapr-nvram");
1848     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1849 
1850     if (dinfo) {
1851         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1852                                 &error_fatal);
1853     }
1854 
1855     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1856 
1857     spapr->nvram = (struct SpaprNvram *)dev;
1858 }
1859 
1860 static void spapr_rtc_create(SpaprMachineState *spapr)
1861 {
1862     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1863                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1864                                        &error_fatal, NULL);
1865     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1866     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1867                               "date");
1868 }
1869 
1870 /* Returns whether we want to use VGA or not */
1871 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1872 {
1873     vga_interface_created = true;
1874     switch (vga_interface_type) {
1875     case VGA_NONE:
1876         return false;
1877     case VGA_DEVICE:
1878         return true;
1879     case VGA_STD:
1880     case VGA_VIRTIO:
1881     case VGA_CIRRUS:
1882         return pci_vga_init(pci_bus) != NULL;
1883     default:
1884         error_setg(errp,
1885                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1886         return false;
1887     }
1888 }
1889 
1890 static int spapr_pre_load(void *opaque)
1891 {
1892     int rc;
1893 
1894     rc = spapr_caps_pre_load(opaque);
1895     if (rc) {
1896         return rc;
1897     }
1898 
1899     return 0;
1900 }
1901 
1902 static int spapr_post_load(void *opaque, int version_id)
1903 {
1904     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1905     int err = 0;
1906 
1907     err = spapr_caps_post_migration(spapr);
1908     if (err) {
1909         return err;
1910     }
1911 
1912     /*
1913      * In earlier versions, there was no separate qdev for the PAPR
1914      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1915      * So when migrating from those versions, poke the incoming offset
1916      * value into the RTC device
1917      */
1918     if (version_id < 3) {
1919         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1920         if (err) {
1921             return err;
1922         }
1923     }
1924 
1925     if (kvm_enabled() && spapr->patb_entry) {
1926         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1927         bool radix = !!(spapr->patb_entry & PATE1_GR);
1928         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1929 
1930         /*
1931          * Update LPCR:HR and UPRT as they may not be set properly in
1932          * the stream
1933          */
1934         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1935                             LPCR_HR | LPCR_UPRT);
1936 
1937         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1938         if (err) {
1939             error_report("Process table config unsupported by the host");
1940             return -EINVAL;
1941         }
1942     }
1943 
1944     err = spapr_irq_post_load(spapr, version_id);
1945     if (err) {
1946         return err;
1947     }
1948 
1949     return err;
1950 }
1951 
1952 static int spapr_pre_save(void *opaque)
1953 {
1954     int rc;
1955 
1956     rc = spapr_caps_pre_save(opaque);
1957     if (rc) {
1958         return rc;
1959     }
1960 
1961     return 0;
1962 }
1963 
1964 static bool version_before_3(void *opaque, int version_id)
1965 {
1966     return version_id < 3;
1967 }
1968 
1969 static bool spapr_pending_events_needed(void *opaque)
1970 {
1971     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1972     return !QTAILQ_EMPTY(&spapr->pending_events);
1973 }
1974 
1975 static const VMStateDescription vmstate_spapr_event_entry = {
1976     .name = "spapr_event_log_entry",
1977     .version_id = 1,
1978     .minimum_version_id = 1,
1979     .fields = (const VMStateField[]) {
1980         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1981         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1982         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1983                                      NULL, extended_length),
1984         VMSTATE_END_OF_LIST()
1985     },
1986 };
1987 
1988 static const VMStateDescription vmstate_spapr_pending_events = {
1989     .name = "spapr_pending_events",
1990     .version_id = 1,
1991     .minimum_version_id = 1,
1992     .needed = spapr_pending_events_needed,
1993     .fields = (const VMStateField[]) {
1994         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1995                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1996         VMSTATE_END_OF_LIST()
1997     },
1998 };
1999 
2000 static bool spapr_ov5_cas_needed(void *opaque)
2001 {
2002     SpaprMachineState *spapr = opaque;
2003     SpaprOptionVector *ov5_mask = spapr_ovec_new();
2004     bool cas_needed;
2005 
2006     /* Prior to the introduction of SpaprOptionVector, we had two option
2007      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
2008      * Both of these options encode machine topology into the device-tree
2009      * in such a way that the now-booted OS should still be able to interact
2010      * appropriately with QEMU regardless of what options were actually
2011      * negotiatied on the source side.
2012      *
2013      * As such, we can avoid migrating the CAS-negotiated options if these
2014      * are the only options available on the current machine/platform.
2015      * Since these are the only options available for pseries-2.7 and
2016      * earlier, this allows us to maintain old->new/new->old migration
2017      * compatibility.
2018      *
2019      * For QEMU 2.8+, there are additional CAS-negotiatable options available
2020      * via default pseries-2.8 machines and explicit command-line parameters.
2021      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2022      * of the actual CAS-negotiated values to continue working properly. For
2023      * example, availability of memory unplug depends on knowing whether
2024      * OV5_HP_EVT was negotiated via CAS.
2025      *
2026      * Thus, for any cases where the set of available CAS-negotiatable
2027      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2028      * include the CAS-negotiated options in the migration stream, unless
2029      * if they affect boot time behaviour only.
2030      */
2031     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2032     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2033     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2034 
2035     /* We need extra information if we have any bits outside the mask
2036      * defined above */
2037     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
2038 
2039     spapr_ovec_cleanup(ov5_mask);
2040 
2041     return cas_needed;
2042 }
2043 
2044 static const VMStateDescription vmstate_spapr_ov5_cas = {
2045     .name = "spapr_option_vector_ov5_cas",
2046     .version_id = 1,
2047     .minimum_version_id = 1,
2048     .needed = spapr_ov5_cas_needed,
2049     .fields = (const VMStateField[]) {
2050         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2051                                  vmstate_spapr_ovec, SpaprOptionVector),
2052         VMSTATE_END_OF_LIST()
2053     },
2054 };
2055 
2056 static bool spapr_patb_entry_needed(void *opaque)
2057 {
2058     SpaprMachineState *spapr = opaque;
2059 
2060     return !!spapr->patb_entry;
2061 }
2062 
2063 static const VMStateDescription vmstate_spapr_patb_entry = {
2064     .name = "spapr_patb_entry",
2065     .version_id = 1,
2066     .minimum_version_id = 1,
2067     .needed = spapr_patb_entry_needed,
2068     .fields = (const VMStateField[]) {
2069         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2070         VMSTATE_END_OF_LIST()
2071     },
2072 };
2073 
2074 static bool spapr_irq_map_needed(void *opaque)
2075 {
2076     SpaprMachineState *spapr = opaque;
2077 
2078     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2079 }
2080 
2081 static const VMStateDescription vmstate_spapr_irq_map = {
2082     .name = "spapr_irq_map",
2083     .version_id = 1,
2084     .minimum_version_id = 1,
2085     .needed = spapr_irq_map_needed,
2086     .fields = (const VMStateField[]) {
2087         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2088         VMSTATE_END_OF_LIST()
2089     },
2090 };
2091 
2092 static bool spapr_dtb_needed(void *opaque)
2093 {
2094     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2095 
2096     return smc->update_dt_enabled;
2097 }
2098 
2099 static int spapr_dtb_pre_load(void *opaque)
2100 {
2101     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2102 
2103     g_free(spapr->fdt_blob);
2104     spapr->fdt_blob = NULL;
2105     spapr->fdt_size = 0;
2106 
2107     return 0;
2108 }
2109 
2110 static const VMStateDescription vmstate_spapr_dtb = {
2111     .name = "spapr_dtb",
2112     .version_id = 1,
2113     .minimum_version_id = 1,
2114     .needed = spapr_dtb_needed,
2115     .pre_load = spapr_dtb_pre_load,
2116     .fields = (const VMStateField[]) {
2117         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2118         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2119         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2120                                      fdt_size),
2121         VMSTATE_END_OF_LIST()
2122     },
2123 };
2124 
2125 static bool spapr_fwnmi_needed(void *opaque)
2126 {
2127     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2128 
2129     return spapr->fwnmi_machine_check_addr != -1;
2130 }
2131 
2132 static int spapr_fwnmi_pre_save(void *opaque)
2133 {
2134     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2135 
2136     /*
2137      * Check if machine check handling is in progress and print a
2138      * warning message.
2139      */
2140     if (spapr->fwnmi_machine_check_interlock != -1) {
2141         warn_report("A machine check is being handled during migration. The"
2142                 "handler may run and log hardware error on the destination");
2143     }
2144 
2145     return 0;
2146 }
2147 
2148 static const VMStateDescription vmstate_spapr_fwnmi = {
2149     .name = "spapr_fwnmi",
2150     .version_id = 1,
2151     .minimum_version_id = 1,
2152     .needed = spapr_fwnmi_needed,
2153     .pre_save = spapr_fwnmi_pre_save,
2154     .fields = (const VMStateField[]) {
2155         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2156         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2157         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2158         VMSTATE_END_OF_LIST()
2159     },
2160 };
2161 
2162 static const VMStateDescription vmstate_spapr = {
2163     .name = "spapr",
2164     .version_id = 3,
2165     .minimum_version_id = 1,
2166     .pre_load = spapr_pre_load,
2167     .post_load = spapr_post_load,
2168     .pre_save = spapr_pre_save,
2169     .fields = (const VMStateField[]) {
2170         /* used to be @next_irq */
2171         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2172 
2173         /* RTC offset */
2174         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2175 
2176         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2177         VMSTATE_END_OF_LIST()
2178     },
2179     .subsections = (const VMStateDescription * const []) {
2180         &vmstate_spapr_ov5_cas,
2181         &vmstate_spapr_patb_entry,
2182         &vmstate_spapr_pending_events,
2183         &vmstate_spapr_cap_htm,
2184         &vmstate_spapr_cap_vsx,
2185         &vmstate_spapr_cap_dfp,
2186         &vmstate_spapr_cap_cfpc,
2187         &vmstate_spapr_cap_sbbc,
2188         &vmstate_spapr_cap_ibs,
2189         &vmstate_spapr_cap_hpt_maxpagesize,
2190         &vmstate_spapr_irq_map,
2191         &vmstate_spapr_cap_nested_kvm_hv,
2192         &vmstate_spapr_dtb,
2193         &vmstate_spapr_cap_large_decr,
2194         &vmstate_spapr_cap_ccf_assist,
2195         &vmstate_spapr_cap_fwnmi,
2196         &vmstate_spapr_fwnmi,
2197         &vmstate_spapr_cap_rpt_invalidate,
2198         &vmstate_spapr_cap_ail_mode_3,
2199         &vmstate_spapr_cap_nested_papr,
2200         NULL
2201     }
2202 };
2203 
2204 static int htab_save_setup(QEMUFile *f, void *opaque, Error **errp)
2205 {
2206     SpaprMachineState *spapr = opaque;
2207 
2208     /* "Iteration" header */
2209     if (!spapr->htab_shift) {
2210         qemu_put_be32(f, -1);
2211     } else {
2212         qemu_put_be32(f, spapr->htab_shift);
2213     }
2214 
2215     if (spapr->htab) {
2216         spapr->htab_save_index = 0;
2217         spapr->htab_first_pass = true;
2218     } else {
2219         if (spapr->htab_shift) {
2220             assert(kvm_enabled());
2221         }
2222     }
2223 
2224 
2225     return 0;
2226 }
2227 
2228 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2229                             int chunkstart, int n_valid, int n_invalid)
2230 {
2231     qemu_put_be32(f, chunkstart);
2232     qemu_put_be16(f, n_valid);
2233     qemu_put_be16(f, n_invalid);
2234     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2235                     HASH_PTE_SIZE_64 * n_valid);
2236 }
2237 
2238 static void htab_save_end_marker(QEMUFile *f)
2239 {
2240     qemu_put_be32(f, 0);
2241     qemu_put_be16(f, 0);
2242     qemu_put_be16(f, 0);
2243 }
2244 
2245 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2246                                  int64_t max_ns)
2247 {
2248     bool has_timeout = max_ns != -1;
2249     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2250     int index = spapr->htab_save_index;
2251     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2252 
2253     assert(spapr->htab_first_pass);
2254 
2255     do {
2256         int chunkstart;
2257 
2258         /* Consume invalid HPTEs */
2259         while ((index < htabslots)
2260                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2261             CLEAN_HPTE(HPTE(spapr->htab, index));
2262             index++;
2263         }
2264 
2265         /* Consume valid HPTEs */
2266         chunkstart = index;
2267         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2268                && HPTE_VALID(HPTE(spapr->htab, index))) {
2269             CLEAN_HPTE(HPTE(spapr->htab, index));
2270             index++;
2271         }
2272 
2273         if (index > chunkstart) {
2274             int n_valid = index - chunkstart;
2275 
2276             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2277 
2278             if (has_timeout &&
2279                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2280                 break;
2281             }
2282         }
2283     } while ((index < htabslots) && !migration_rate_exceeded(f));
2284 
2285     if (index >= htabslots) {
2286         assert(index == htabslots);
2287         index = 0;
2288         spapr->htab_first_pass = false;
2289     }
2290     spapr->htab_save_index = index;
2291 }
2292 
2293 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2294                                 int64_t max_ns)
2295 {
2296     bool final = max_ns < 0;
2297     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2298     int examined = 0, sent = 0;
2299     int index = spapr->htab_save_index;
2300     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2301 
2302     assert(!spapr->htab_first_pass);
2303 
2304     do {
2305         int chunkstart, invalidstart;
2306 
2307         /* Consume non-dirty HPTEs */
2308         while ((index < htabslots)
2309                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2310             index++;
2311             examined++;
2312         }
2313 
2314         chunkstart = index;
2315         /* Consume valid dirty HPTEs */
2316         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2317                && HPTE_DIRTY(HPTE(spapr->htab, index))
2318                && HPTE_VALID(HPTE(spapr->htab, index))) {
2319             CLEAN_HPTE(HPTE(spapr->htab, index));
2320             index++;
2321             examined++;
2322         }
2323 
2324         invalidstart = index;
2325         /* Consume invalid dirty HPTEs */
2326         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2327                && HPTE_DIRTY(HPTE(spapr->htab, index))
2328                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2329             CLEAN_HPTE(HPTE(spapr->htab, index));
2330             index++;
2331             examined++;
2332         }
2333 
2334         if (index > chunkstart) {
2335             int n_valid = invalidstart - chunkstart;
2336             int n_invalid = index - invalidstart;
2337 
2338             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2339             sent += index - chunkstart;
2340 
2341             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2342                 break;
2343             }
2344         }
2345 
2346         if (examined >= htabslots) {
2347             break;
2348         }
2349 
2350         if (index >= htabslots) {
2351             assert(index == htabslots);
2352             index = 0;
2353         }
2354     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2355 
2356     if (index >= htabslots) {
2357         assert(index == htabslots);
2358         index = 0;
2359     }
2360 
2361     spapr->htab_save_index = index;
2362 
2363     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2364 }
2365 
2366 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2367 #define MAX_KVM_BUF_SIZE    2048
2368 
2369 static int htab_save_iterate(QEMUFile *f, void *opaque)
2370 {
2371     SpaprMachineState *spapr = opaque;
2372     int fd;
2373     int rc = 0;
2374 
2375     /* Iteration header */
2376     if (!spapr->htab_shift) {
2377         qemu_put_be32(f, -1);
2378         return 1;
2379     } else {
2380         qemu_put_be32(f, 0);
2381     }
2382 
2383     if (!spapr->htab) {
2384         assert(kvm_enabled());
2385 
2386         fd = get_htab_fd(spapr);
2387         if (fd < 0) {
2388             return fd;
2389         }
2390 
2391         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2392         if (rc < 0) {
2393             return rc;
2394         }
2395     } else  if (spapr->htab_first_pass) {
2396         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2397     } else {
2398         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2399     }
2400 
2401     htab_save_end_marker(f);
2402 
2403     return rc;
2404 }
2405 
2406 static int htab_save_complete(QEMUFile *f, void *opaque)
2407 {
2408     SpaprMachineState *spapr = opaque;
2409     int fd;
2410 
2411     /* Iteration header */
2412     if (!spapr->htab_shift) {
2413         qemu_put_be32(f, -1);
2414         return 0;
2415     } else {
2416         qemu_put_be32(f, 0);
2417     }
2418 
2419     if (!spapr->htab) {
2420         int rc;
2421 
2422         assert(kvm_enabled());
2423 
2424         fd = get_htab_fd(spapr);
2425         if (fd < 0) {
2426             return fd;
2427         }
2428 
2429         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2430         if (rc < 0) {
2431             return rc;
2432         }
2433     } else {
2434         if (spapr->htab_first_pass) {
2435             htab_save_first_pass(f, spapr, -1);
2436         }
2437         htab_save_later_pass(f, spapr, -1);
2438     }
2439 
2440     /* End marker */
2441     htab_save_end_marker(f);
2442 
2443     return 0;
2444 }
2445 
2446 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2447 {
2448     SpaprMachineState *spapr = opaque;
2449     uint32_t section_hdr;
2450     int fd = -1;
2451     Error *local_err = NULL;
2452 
2453     if (version_id < 1 || version_id > 1) {
2454         error_report("htab_load() bad version");
2455         return -EINVAL;
2456     }
2457 
2458     section_hdr = qemu_get_be32(f);
2459 
2460     if (section_hdr == -1) {
2461         spapr_free_hpt(spapr);
2462         return 0;
2463     }
2464 
2465     if (section_hdr) {
2466         int ret;
2467 
2468         /* First section gives the htab size */
2469         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2470         if (ret < 0) {
2471             error_report_err(local_err);
2472             return ret;
2473         }
2474         return 0;
2475     }
2476 
2477     if (!spapr->htab) {
2478         assert(kvm_enabled());
2479 
2480         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2481         if (fd < 0) {
2482             error_report_err(local_err);
2483             return fd;
2484         }
2485     }
2486 
2487     while (true) {
2488         uint32_t index;
2489         uint16_t n_valid, n_invalid;
2490 
2491         index = qemu_get_be32(f);
2492         n_valid = qemu_get_be16(f);
2493         n_invalid = qemu_get_be16(f);
2494 
2495         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2496             /* End of Stream */
2497             break;
2498         }
2499 
2500         if ((index + n_valid + n_invalid) >
2501             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2502             /* Bad index in stream */
2503             error_report(
2504                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2505                 index, n_valid, n_invalid, spapr->htab_shift);
2506             return -EINVAL;
2507         }
2508 
2509         if (spapr->htab) {
2510             if (n_valid) {
2511                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2512                                 HASH_PTE_SIZE_64 * n_valid);
2513             }
2514             if (n_invalid) {
2515                 memset(HPTE(spapr->htab, index + n_valid), 0,
2516                        HASH_PTE_SIZE_64 * n_invalid);
2517             }
2518         } else {
2519             int rc;
2520 
2521             assert(fd >= 0);
2522 
2523             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2524                                         &local_err);
2525             if (rc < 0) {
2526                 error_report_err(local_err);
2527                 return rc;
2528             }
2529         }
2530     }
2531 
2532     if (!spapr->htab) {
2533         assert(fd >= 0);
2534         close(fd);
2535     }
2536 
2537     return 0;
2538 }
2539 
2540 static void htab_save_cleanup(void *opaque)
2541 {
2542     SpaprMachineState *spapr = opaque;
2543 
2544     close_htab_fd(spapr);
2545 }
2546 
2547 static SaveVMHandlers savevm_htab_handlers = {
2548     .save_setup = htab_save_setup,
2549     .save_live_iterate = htab_save_iterate,
2550     .save_live_complete_precopy = htab_save_complete,
2551     .save_cleanup = htab_save_cleanup,
2552     .load_state = htab_load,
2553 };
2554 
2555 static void spapr_boot_set(void *opaque, const char *boot_device,
2556                            Error **errp)
2557 {
2558     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2559 
2560     g_free(spapr->boot_device);
2561     spapr->boot_device = g_strdup(boot_device);
2562 }
2563 
2564 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2565 {
2566     MachineState *machine = MACHINE(spapr);
2567     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2568     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2569     int i;
2570 
2571     g_assert(!nr_lmbs || machine->device_memory);
2572     for (i = 0; i < nr_lmbs; i++) {
2573         uint64_t addr;
2574 
2575         addr = i * lmb_size + machine->device_memory->base;
2576         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2577                                addr / lmb_size);
2578     }
2579 }
2580 
2581 /*
2582  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2583  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2584  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2585  */
2586 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2587 {
2588     int i;
2589 
2590     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2591         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2592                    " is not aligned to %" PRIu64 " MiB",
2593                    machine->ram_size,
2594                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2595         return;
2596     }
2597 
2598     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2599         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2600                    " is not aligned to %" PRIu64 " MiB",
2601                    machine->ram_size,
2602                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2603         return;
2604     }
2605 
2606     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2607         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2608             error_setg(errp,
2609                        "Node %d memory size 0x%" PRIx64
2610                        " is not aligned to %" PRIu64 " MiB",
2611                        i, machine->numa_state->nodes[i].node_mem,
2612                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2613             return;
2614         }
2615     }
2616 }
2617 
2618 /* find cpu slot in machine->possible_cpus by core_id */
2619 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2620 {
2621     int index = id / ms->smp.threads;
2622 
2623     if (index >= ms->possible_cpus->len) {
2624         return NULL;
2625     }
2626     if (idx) {
2627         *idx = index;
2628     }
2629     return &ms->possible_cpus->cpus[index];
2630 }
2631 
2632 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2633 {
2634     MachineState *ms = MACHINE(spapr);
2635     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2636     Error *local_err = NULL;
2637     bool vsmt_user = !!spapr->vsmt;
2638     int kvm_smt = kvmppc_smt_threads();
2639     int ret;
2640     unsigned int smp_threads = ms->smp.threads;
2641 
2642     if (tcg_enabled()) {
2643         if (smp_threads > 1 &&
2644             !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2645                                    spapr->max_compat_pvr)) {
2646             error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2647             return;
2648         }
2649 
2650         if (smp_threads > 8) {
2651             error_setg(errp, "TCG cannot support more than 8 threads/core "
2652                        "on a pseries machine");
2653             return;
2654         }
2655     }
2656     if (!is_power_of_2(smp_threads)) {
2657         error_setg(errp, "Cannot support %d threads/core on a pseries "
2658                    "machine because it must be a power of 2", smp_threads);
2659         return;
2660     }
2661 
2662     /* Determine the VSMT mode to use: */
2663     if (vsmt_user) {
2664         if (spapr->vsmt < smp_threads) {
2665             error_setg(errp, "Cannot support VSMT mode %d"
2666                        " because it must be >= threads/core (%d)",
2667                        spapr->vsmt, smp_threads);
2668             return;
2669         }
2670         /* In this case, spapr->vsmt has been set by the command line */
2671     } else if (!smc->smp_threads_vsmt) {
2672         /*
2673          * Default VSMT value is tricky, because we need it to be as
2674          * consistent as possible (for migration), but this requires
2675          * changing it for at least some existing cases.  We pick 8 as
2676          * the value that we'd get with KVM on POWER8, the
2677          * overwhelmingly common case in production systems.
2678          */
2679         spapr->vsmt = MAX(8, smp_threads);
2680     } else {
2681         spapr->vsmt = smp_threads;
2682     }
2683 
2684     /* KVM: If necessary, set the SMT mode: */
2685     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2686         ret = kvmppc_set_smt_threads(spapr->vsmt);
2687         if (ret) {
2688             /* Looks like KVM isn't able to change VSMT mode */
2689             error_setg(&local_err,
2690                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2691                        spapr->vsmt, ret);
2692             /* We can live with that if the default one is big enough
2693              * for the number of threads, and a submultiple of the one
2694              * we want.  In this case we'll waste some vcpu ids, but
2695              * behaviour will be correct */
2696             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2697                 warn_report_err(local_err);
2698             } else {
2699                 if (!vsmt_user) {
2700                     error_append_hint(&local_err,
2701                                       "On PPC, a VM with %d threads/core"
2702                                       " on a host with %d threads/core"
2703                                       " requires the use of VSMT mode %d.\n",
2704                                       smp_threads, kvm_smt, spapr->vsmt);
2705                 }
2706                 kvmppc_error_append_smt_possible_hint(&local_err);
2707                 error_propagate(errp, local_err);
2708             }
2709         }
2710     }
2711     /* else TCG: nothing to do currently */
2712 }
2713 
2714 static void spapr_init_cpus(SpaprMachineState *spapr)
2715 {
2716     MachineState *machine = MACHINE(spapr);
2717     MachineClass *mc = MACHINE_GET_CLASS(machine);
2718     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2719     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2720     const CPUArchIdList *possible_cpus;
2721     unsigned int smp_cpus = machine->smp.cpus;
2722     unsigned int smp_threads = machine->smp.threads;
2723     unsigned int max_cpus = machine->smp.max_cpus;
2724     int boot_cores_nr = smp_cpus / smp_threads;
2725     int i;
2726 
2727     possible_cpus = mc->possible_cpu_arch_ids(machine);
2728     if (mc->has_hotpluggable_cpus) {
2729         if (smp_cpus % smp_threads) {
2730             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2731                          smp_cpus, smp_threads);
2732             exit(1);
2733         }
2734         if (max_cpus % smp_threads) {
2735             error_report("max_cpus (%u) must be multiple of threads (%u)",
2736                          max_cpus, smp_threads);
2737             exit(1);
2738         }
2739     } else {
2740         if (max_cpus != smp_cpus) {
2741             error_report("This machine version does not support CPU hotplug");
2742             exit(1);
2743         }
2744         boot_cores_nr = possible_cpus->len;
2745     }
2746 
2747     if (smc->pre_2_10_has_unused_icps) {
2748         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2749             /* Dummy entries get deregistered when real ICPState objects
2750              * are registered during CPU core hotplug.
2751              */
2752             pre_2_10_vmstate_register_dummy_icp(i);
2753         }
2754     }
2755 
2756     for (i = 0; i < possible_cpus->len; i++) {
2757         int core_id = i * smp_threads;
2758 
2759         if (mc->has_hotpluggable_cpus) {
2760             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2761                                    spapr_vcpu_id(spapr, core_id));
2762         }
2763 
2764         if (i < boot_cores_nr) {
2765             Object *core  = object_new(type);
2766             int nr_threads = smp_threads;
2767 
2768             /* Handle the partially filled core for older machine types */
2769             if ((i + 1) * smp_threads >= smp_cpus) {
2770                 nr_threads = smp_cpus - i * smp_threads;
2771             }
2772 
2773             object_property_set_int(core, "nr-threads", nr_threads,
2774                                     &error_fatal);
2775             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2776                                     &error_fatal);
2777             qdev_realize(DEVICE(core), NULL, &error_fatal);
2778 
2779             object_unref(core);
2780         }
2781     }
2782 }
2783 
2784 static PCIHostState *spapr_create_default_phb(void)
2785 {
2786     DeviceState *dev;
2787 
2788     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2789     qdev_prop_set_uint32(dev, "index", 0);
2790     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2791 
2792     return PCI_HOST_BRIDGE(dev);
2793 }
2794 
2795 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2796 {
2797     MachineState *machine = MACHINE(spapr);
2798     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2799     hwaddr rma_size = machine->ram_size;
2800     hwaddr node0_size = spapr_node0_size(machine);
2801 
2802     /* RMA has to fit in the first NUMA node */
2803     rma_size = MIN(rma_size, node0_size);
2804 
2805     /*
2806      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2807      * never exceed that
2808      */
2809     rma_size = MIN(rma_size, 1 * TiB);
2810 
2811     /*
2812      * Clamp the RMA size based on machine type.  This is for
2813      * migration compatibility with older qemu versions, which limited
2814      * the RMA size for complicated and mostly bad reasons.
2815      */
2816     if (smc->rma_limit) {
2817         rma_size = MIN(rma_size, smc->rma_limit);
2818     }
2819 
2820     if (rma_size < MIN_RMA_SLOF) {
2821         error_setg(errp,
2822                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2823                    "ldMiB guest RMA (Real Mode Area memory)",
2824                    MIN_RMA_SLOF / MiB);
2825         return 0;
2826     }
2827 
2828     return rma_size;
2829 }
2830 
2831 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2832 {
2833     MachineState *machine = MACHINE(spapr);
2834     int i;
2835 
2836     for (i = 0; i < machine->ram_slots; i++) {
2837         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2838     }
2839 }
2840 
2841 /* pSeries LPAR / sPAPR hardware init */
2842 static void spapr_machine_init(MachineState *machine)
2843 {
2844     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2845     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2846     MachineClass *mc = MACHINE_GET_CLASS(machine);
2847     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2848     const char *bios_name = machine->firmware ?: bios_default;
2849     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2850     const char *kernel_filename = machine->kernel_filename;
2851     const char *initrd_filename = machine->initrd_filename;
2852     PCIHostState *phb;
2853     bool has_vga;
2854     int i;
2855     MemoryRegion *sysmem = get_system_memory();
2856     long load_limit, fw_size;
2857     Error *resize_hpt_err = NULL;
2858     NICInfo *nd;
2859 
2860     if (!filename) {
2861         error_report("Could not find LPAR firmware '%s'", bios_name);
2862         exit(1);
2863     }
2864     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2865     if (fw_size <= 0) {
2866         error_report("Could not load LPAR firmware '%s'", filename);
2867         exit(1);
2868     }
2869 
2870     /*
2871      * if Secure VM (PEF) support is configured, then initialize it
2872      */
2873     if (machine->cgs) {
2874         confidential_guest_kvm_init(machine->cgs, &error_fatal);
2875     }
2876 
2877     msi_nonbroken = true;
2878 
2879     QLIST_INIT(&spapr->phbs);
2880     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2881 
2882     /* Determine capabilities to run with */
2883     spapr_caps_init(spapr);
2884 
2885     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2886     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2887         /*
2888          * If the user explicitly requested a mode we should either
2889          * supply it, or fail completely (which we do below).  But if
2890          * it's not set explicitly, we reset our mode to something
2891          * that works
2892          */
2893         if (resize_hpt_err) {
2894             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2895             error_free(resize_hpt_err);
2896             resize_hpt_err = NULL;
2897         } else {
2898             spapr->resize_hpt = smc->resize_hpt_default;
2899         }
2900     }
2901 
2902     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2903 
2904     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2905         /*
2906          * User requested HPT resize, but this host can't supply it.  Bail out
2907          */
2908         error_report_err(resize_hpt_err);
2909         exit(1);
2910     }
2911     error_free(resize_hpt_err);
2912 
2913     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2914 
2915     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2916     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2917 
2918     /*
2919      * VSMT must be set in order to be able to compute VCPU ids, ie to
2920      * call spapr_max_server_number() or spapr_vcpu_id().
2921      */
2922     spapr_set_vsmt_mode(spapr, &error_fatal);
2923 
2924     /* Set up Interrupt Controller before we create the VCPUs */
2925     spapr_irq_init(spapr, &error_fatal);
2926 
2927     /* Set up containers for ibm,client-architecture-support negotiated options
2928      */
2929     spapr->ov5 = spapr_ovec_new();
2930     spapr->ov5_cas = spapr_ovec_new();
2931 
2932     if (smc->dr_lmb_enabled) {
2933         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2934         spapr_validate_node_memory(machine, &error_fatal);
2935     }
2936 
2937     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2938 
2939     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2940     if (!smc->pre_6_2_numa_affinity) {
2941         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2942     }
2943 
2944     /* advertise support for dedicated HP event source to guests */
2945     if (spapr->use_hotplug_event_source) {
2946         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2947     }
2948 
2949     /* advertise support for HPT resizing */
2950     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2951         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2952     }
2953 
2954     /* advertise support for ibm,dyamic-memory-v2 */
2955     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2956 
2957     /* advertise XIVE on POWER9 machines */
2958     if (spapr->irq->xive) {
2959         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2960     }
2961 
2962     /* init CPUs */
2963     spapr_init_cpus(spapr);
2964 
2965     /* Init numa_assoc_array */
2966     spapr_numa_associativity_init(spapr, machine);
2967 
2968     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2969         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2970                               spapr->max_compat_pvr)) {
2971         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2972         /* KVM and TCG always allow GTSE with radix... */
2973         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2974     }
2975     /* ... but not with hash (currently). */
2976 
2977     if (kvm_enabled()) {
2978         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2979         kvmppc_enable_logical_ci_hcalls();
2980         kvmppc_enable_set_mode_hcall();
2981 
2982         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2983         kvmppc_enable_clear_ref_mod_hcalls();
2984 
2985         /* Enable H_PAGE_INIT */
2986         kvmppc_enable_h_page_init();
2987     }
2988 
2989     /* map RAM */
2990     memory_region_add_subregion(sysmem, 0, machine->ram);
2991 
2992     /* initialize hotplug memory address space */
2993     if (machine->ram_size < machine->maxram_size) {
2994         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2995         hwaddr device_mem_base;
2996 
2997         /*
2998          * Limit the number of hotpluggable memory slots to half the number
2999          * slots that KVM supports, leaving the other half for PCI and other
3000          * devices. However ensure that number of slots doesn't drop below 32.
3001          */
3002         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
3003                            SPAPR_MAX_RAM_SLOTS;
3004 
3005         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
3006             max_memslots = SPAPR_MAX_RAM_SLOTS;
3007         }
3008         if (machine->ram_slots > max_memslots) {
3009             error_report("Specified number of memory slots %"
3010                          PRIu64" exceeds max supported %d",
3011                          machine->ram_slots, max_memslots);
3012             exit(1);
3013         }
3014 
3015         device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
3016         machine_memory_devices_init(machine, device_mem_base, device_mem_size);
3017     }
3018 
3019     if (smc->dr_lmb_enabled) {
3020         spapr_create_lmb_dr_connectors(spapr);
3021     }
3022 
3023     if (mc->nvdimm_supported) {
3024         spapr_create_nvdimm_dr_connectors(spapr);
3025     }
3026 
3027     /* Set up RTAS event infrastructure */
3028     spapr_events_init(spapr);
3029 
3030     /* Set up the RTC RTAS interfaces */
3031     spapr_rtc_create(spapr);
3032 
3033     /* Set up VIO bus */
3034     spapr->vio_bus = spapr_vio_bus_init();
3035 
3036     for (i = 0; serial_hd(i); i++) {
3037         spapr_vty_create(spapr->vio_bus, serial_hd(i));
3038     }
3039 
3040     /* We always have at least the nvram device on VIO */
3041     spapr_create_nvram(spapr);
3042 
3043     /*
3044      * Setup hotplug / dynamic-reconfiguration connectors. top-level
3045      * connectors (described in root DT node's "ibm,drc-types" property)
3046      * are pre-initialized here. additional child connectors (such as
3047      * connectors for a PHBs PCI slots) are added as needed during their
3048      * parent's realization.
3049      */
3050     if (smc->dr_phb_enabled) {
3051         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3052             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3053         }
3054     }
3055 
3056     /* Set up PCI */
3057     spapr_pci_rtas_init();
3058 
3059     phb = spapr_create_default_phb();
3060 
3061     while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) {
3062         spapr_vlan_create(spapr->vio_bus, nd);
3063     }
3064 
3065     pci_init_nic_devices(phb->bus, NULL);
3066 
3067     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3068         spapr_vscsi_create(spapr->vio_bus);
3069     }
3070 
3071     /* Graphics */
3072     has_vga = spapr_vga_init(phb->bus, &error_fatal);
3073     if (has_vga) {
3074         spapr->want_stdout_path = !machine->enable_graphics;
3075         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3076     } else {
3077         spapr->want_stdout_path = true;
3078     }
3079 
3080     if (machine->usb) {
3081         if (smc->use_ohci_by_default) {
3082             pci_create_simple(phb->bus, -1, "pci-ohci");
3083         } else {
3084             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3085         }
3086 
3087         if (has_vga) {
3088             USBBus *usb_bus;
3089 
3090             usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS,
3091                                                               &error_abort));
3092             usb_create_simple(usb_bus, "usb-kbd");
3093             usb_create_simple(usb_bus, "usb-mouse");
3094         }
3095     }
3096 
3097     if (kernel_filename) {
3098         uint64_t loaded_addr = 0;
3099 
3100         spapr->kernel_size = load_elf(kernel_filename, NULL,
3101                                       translate_kernel_address, spapr,
3102                                       NULL, &loaded_addr, NULL, NULL, 1,
3103                                       PPC_ELF_MACHINE, 0, 0);
3104         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3105             spapr->kernel_size = load_elf(kernel_filename, NULL,
3106                                           translate_kernel_address, spapr,
3107                                           NULL, &loaded_addr, NULL, NULL, 0,
3108                                           PPC_ELF_MACHINE, 0, 0);
3109             spapr->kernel_le = spapr->kernel_size > 0;
3110         }
3111         if (spapr->kernel_size < 0) {
3112             error_report("error loading %s: %s", kernel_filename,
3113                          load_elf_strerror(spapr->kernel_size));
3114             exit(1);
3115         }
3116 
3117         if (spapr->kernel_addr != loaded_addr) {
3118             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3119                         " to 0x%"PRIx64,
3120                         spapr->kernel_addr, loaded_addr);
3121             spapr->kernel_addr = loaded_addr;
3122         }
3123 
3124         /* load initrd */
3125         if (initrd_filename) {
3126             /* Try to locate the initrd in the gap between the kernel
3127              * and the firmware. Add a bit of space just in case
3128              */
3129             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3130                                   + 0x1ffff) & ~0xffff;
3131             spapr->initrd_size = load_image_targphys(initrd_filename,
3132                                                      spapr->initrd_base,
3133                                                      load_limit
3134                                                      - spapr->initrd_base);
3135             if (spapr->initrd_size < 0) {
3136                 error_report("could not load initial ram disk '%s'",
3137                              initrd_filename);
3138                 exit(1);
3139             }
3140         }
3141     }
3142 
3143     /* FIXME: Should register things through the MachineState's qdev
3144      * interface, this is a legacy from the sPAPREnvironment structure
3145      * which predated MachineState but had a similar function */
3146     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3147     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3148                          &savevm_htab_handlers, spapr);
3149 
3150     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3151 
3152     qemu_register_boot_set(spapr_boot_set, spapr);
3153 
3154     /*
3155      * Nothing needs to be done to resume a suspended guest because
3156      * suspending does not change the machine state, so no need for
3157      * a ->wakeup method.
3158      */
3159     qemu_register_wakeup_support();
3160 
3161     if (kvm_enabled()) {
3162         /* to stop and start vmclock */
3163         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3164                                          &spapr->tb);
3165 
3166         kvmppc_spapr_enable_inkernel_multitce();
3167     }
3168 
3169     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3170     if (spapr->vof) {
3171         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3172         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3173     }
3174 
3175     spapr_watchdog_init(spapr);
3176 }
3177 
3178 #define DEFAULT_KVM_TYPE "auto"
3179 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3180 {
3181     /*
3182      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3183      * accommodate the 'HV' and 'PV' formats that exists in the
3184      * wild. The 'auto' mode is being introduced already as
3185      * lower-case, thus we don't need to bother checking for
3186      * "AUTO".
3187      */
3188     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3189         return 0;
3190     }
3191 
3192     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3193         return 1;
3194     }
3195 
3196     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3197         return 2;
3198     }
3199 
3200     error_report("Unknown kvm-type specified '%s'", vm_type);
3201     return -1;
3202 }
3203 
3204 /*
3205  * Implementation of an interface to adjust firmware path
3206  * for the bootindex property handling.
3207  */
3208 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3209                                    DeviceState *dev)
3210 {
3211 #define CAST(type, obj, name) \
3212     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3213     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3214     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3215     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3216     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3217 
3218     if (d && bus) {
3219         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3220         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3221         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3222 
3223         if (spapr) {
3224             /*
3225              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3226              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3227              * 0x8000 | (target << 8) | (bus << 5) | lun
3228              * (see the "Logical unit addressing format" table in SAM5)
3229              */
3230             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3231             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3232                                    (uint64_t)id << 48);
3233         } else if (virtio) {
3234             /*
3235              * We use SRP luns of the form 01000000 | (target << 8) | lun
3236              * in the top 32 bits of the 64-bit LUN
3237              * Note: the quote above is from SLOF and it is wrong,
3238              * the actual binding is:
3239              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3240              */
3241             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3242             if (d->lun >= 256) {
3243                 /* Use the LUN "flat space addressing method" */
3244                 id |= 0x4000;
3245             }
3246             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3247                                    (uint64_t)id << 32);
3248         } else if (usb) {
3249             /*
3250              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3251              * in the top 32 bits of the 64-bit LUN
3252              */
3253             unsigned usb_port = atoi(usb->port->path);
3254             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3255             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3256                                    (uint64_t)id << 32);
3257         }
3258     }
3259 
3260     /*
3261      * SLOF probes the USB devices, and if it recognizes that the device is a
3262      * storage device, it changes its name to "storage" instead of "usb-host",
3263      * and additionally adds a child node for the SCSI LUN, so the correct
3264      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3265      */
3266     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3267         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3268         if (usb_device_is_scsi_storage(usbdev)) {
3269             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3270         }
3271     }
3272 
3273     if (phb) {
3274         /* Replace "pci" with "pci@800000020000000" */
3275         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3276     }
3277 
3278     if (vsc) {
3279         /* Same logic as virtio above */
3280         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3281         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3282     }
3283 
3284     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3285         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3286         PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3287         return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn));
3288     }
3289 
3290     if (pcidev) {
3291         return spapr_pci_fw_dev_name(pcidev);
3292     }
3293 
3294     return NULL;
3295 }
3296 
3297 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3298 {
3299     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300 
3301     return g_strdup(spapr->kvm_type);
3302 }
3303 
3304 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3305 {
3306     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3307 
3308     g_free(spapr->kvm_type);
3309     spapr->kvm_type = g_strdup(value);
3310 }
3311 
3312 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3313 {
3314     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3315 
3316     return spapr->use_hotplug_event_source;
3317 }
3318 
3319 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3320                                             Error **errp)
3321 {
3322     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3323 
3324     spapr->use_hotplug_event_source = value;
3325 }
3326 
3327 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3328 {
3329     return true;
3330 }
3331 
3332 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3333 {
3334     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3335 
3336     switch (spapr->resize_hpt) {
3337     case SPAPR_RESIZE_HPT_DEFAULT:
3338         return g_strdup("default");
3339     case SPAPR_RESIZE_HPT_DISABLED:
3340         return g_strdup("disabled");
3341     case SPAPR_RESIZE_HPT_ENABLED:
3342         return g_strdup("enabled");
3343     case SPAPR_RESIZE_HPT_REQUIRED:
3344         return g_strdup("required");
3345     }
3346     g_assert_not_reached();
3347 }
3348 
3349 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3350 {
3351     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3352 
3353     if (strcmp(value, "default") == 0) {
3354         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3355     } else if (strcmp(value, "disabled") == 0) {
3356         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3357     } else if (strcmp(value, "enabled") == 0) {
3358         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3359     } else if (strcmp(value, "required") == 0) {
3360         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3361     } else {
3362         error_setg(errp, "Bad value for \"resize-hpt\" property");
3363     }
3364 }
3365 
3366 static bool spapr_get_vof(Object *obj, Error **errp)
3367 {
3368     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3369 
3370     return spapr->vof != NULL;
3371 }
3372 
3373 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3374 {
3375     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3376 
3377     if (spapr->vof) {
3378         vof_cleanup(spapr->vof);
3379         g_free(spapr->vof);
3380         spapr->vof = NULL;
3381     }
3382     if (!value) {
3383         return;
3384     }
3385     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3386 }
3387 
3388 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3389 {
3390     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3391 
3392     if (spapr->irq == &spapr_irq_xics_legacy) {
3393         return g_strdup("legacy");
3394     } else if (spapr->irq == &spapr_irq_xics) {
3395         return g_strdup("xics");
3396     } else if (spapr->irq == &spapr_irq_xive) {
3397         return g_strdup("xive");
3398     } else if (spapr->irq == &spapr_irq_dual) {
3399         return g_strdup("dual");
3400     }
3401     g_assert_not_reached();
3402 }
3403 
3404 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3405 {
3406     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3407 
3408     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3409         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3410         return;
3411     }
3412 
3413     /* The legacy IRQ backend can not be set */
3414     if (strcmp(value, "xics") == 0) {
3415         spapr->irq = &spapr_irq_xics;
3416     } else if (strcmp(value, "xive") == 0) {
3417         spapr->irq = &spapr_irq_xive;
3418     } else if (strcmp(value, "dual") == 0) {
3419         spapr->irq = &spapr_irq_dual;
3420     } else {
3421         error_setg(errp, "Bad value for \"ic-mode\" property");
3422     }
3423 }
3424 
3425 static char *spapr_get_host_model(Object *obj, Error **errp)
3426 {
3427     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3428 
3429     return g_strdup(spapr->host_model);
3430 }
3431 
3432 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3433 {
3434     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3435 
3436     g_free(spapr->host_model);
3437     spapr->host_model = g_strdup(value);
3438 }
3439 
3440 static char *spapr_get_host_serial(Object *obj, Error **errp)
3441 {
3442     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3443 
3444     return g_strdup(spapr->host_serial);
3445 }
3446 
3447 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3448 {
3449     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3450 
3451     g_free(spapr->host_serial);
3452     spapr->host_serial = g_strdup(value);
3453 }
3454 
3455 static void spapr_instance_init(Object *obj)
3456 {
3457     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3458     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3459     MachineState *ms = MACHINE(spapr);
3460     MachineClass *mc = MACHINE_GET_CLASS(ms);
3461 
3462     /*
3463      * NVDIMM support went live in 5.1 without considering that, in
3464      * other archs, the user needs to enable NVDIMM support with the
3465      * 'nvdimm' machine option and the default behavior is NVDIMM
3466      * support disabled. It is too late to roll back to the standard
3467      * behavior without breaking 5.1 guests.
3468      */
3469     if (mc->nvdimm_supported) {
3470         ms->nvdimms_state->is_enabled = true;
3471     }
3472 
3473     spapr->htab_fd = -1;
3474     spapr->use_hotplug_event_source = true;
3475     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3476     object_property_add_str(obj, "kvm-type",
3477                             spapr_get_kvm_type, spapr_set_kvm_type);
3478     object_property_set_description(obj, "kvm-type",
3479                                     "Specifies the KVM virtualization mode (auto,"
3480                                     " hv, pr). Defaults to 'auto'. This mode will use"
3481                                     " any available KVM module loaded in the host,"
3482                                     " where kvm_hv takes precedence if both kvm_hv and"
3483                                     " kvm_pr are loaded.");
3484     object_property_add_bool(obj, "modern-hotplug-events",
3485                             spapr_get_modern_hotplug_events,
3486                             spapr_set_modern_hotplug_events);
3487     object_property_set_description(obj, "modern-hotplug-events",
3488                                     "Use dedicated hotplug event mechanism in"
3489                                     " place of standard EPOW events when possible"
3490                                     " (required for memory hot-unplug support)");
3491     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3492                             "Maximum permitted CPU compatibility mode");
3493 
3494     object_property_add_str(obj, "resize-hpt",
3495                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3496     object_property_set_description(obj, "resize-hpt",
3497                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3498     object_property_add_uint32_ptr(obj, "vsmt",
3499                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3500     object_property_set_description(obj, "vsmt",
3501                                     "Virtual SMT: KVM behaves as if this were"
3502                                     " the host's SMT mode");
3503 
3504     object_property_add_bool(obj, "vfio-no-msix-emulation",
3505                              spapr_get_msix_emulation, NULL);
3506 
3507     object_property_add_uint64_ptr(obj, "kernel-addr",
3508                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3509     object_property_set_description(obj, "kernel-addr",
3510                                     stringify(KERNEL_LOAD_ADDR)
3511                                     " for -kernel is the default");
3512     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3513 
3514     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3515     object_property_set_description(obj, "x-vof",
3516                                     "Enable Virtual Open Firmware (experimental)");
3517 
3518     /* The machine class defines the default interrupt controller mode */
3519     spapr->irq = smc->irq;
3520     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3521                             spapr_set_ic_mode);
3522     object_property_set_description(obj, "ic-mode",
3523                  "Specifies the interrupt controller mode (xics, xive, dual)");
3524 
3525     object_property_add_str(obj, "host-model",
3526         spapr_get_host_model, spapr_set_host_model);
3527     object_property_set_description(obj, "host-model",
3528         "Host model to advertise in guest device tree");
3529     object_property_add_str(obj, "host-serial",
3530         spapr_get_host_serial, spapr_set_host_serial);
3531     object_property_set_description(obj, "host-serial",
3532         "Host serial number to advertise in guest device tree");
3533 }
3534 
3535 static void spapr_machine_finalizefn(Object *obj)
3536 {
3537     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3538 
3539     g_free(spapr->kvm_type);
3540 }
3541 
3542 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3543 {
3544     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3545     CPUPPCState *env = cpu_env(cs);
3546 
3547     cpu_synchronize_state(cs);
3548     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3549     if (spapr->fwnmi_system_reset_addr != -1) {
3550         uint64_t rtas_addr, addr;
3551 
3552         /* get rtas addr from fdt */
3553         rtas_addr = spapr_get_rtas_addr();
3554         if (!rtas_addr) {
3555             qemu_system_guest_panicked(NULL);
3556             return;
3557         }
3558 
3559         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3560         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3561         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3562         env->gpr[3] = addr;
3563     }
3564     ppc_cpu_do_system_reset(cs);
3565     if (spapr->fwnmi_system_reset_addr != -1) {
3566         env->nip = spapr->fwnmi_system_reset_addr;
3567     }
3568 }
3569 
3570 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3571 {
3572     CPUState *cs;
3573 
3574     CPU_FOREACH(cs) {
3575         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3576     }
3577 }
3578 
3579 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3580                           void *fdt, int *fdt_start_offset, Error **errp)
3581 {
3582     uint64_t addr;
3583     uint32_t node;
3584 
3585     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3586     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3587                                     &error_abort);
3588     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3589                                              SPAPR_MEMORY_BLOCK_SIZE);
3590     return 0;
3591 }
3592 
3593 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3594                            bool dedicated_hp_event_source)
3595 {
3596     SpaprDrc *drc;
3597     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3598     int i;
3599     uint64_t addr = addr_start;
3600     bool hotplugged = spapr_drc_hotplugged(dev);
3601 
3602     for (i = 0; i < nr_lmbs; i++) {
3603         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3604                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3605         g_assert(drc);
3606 
3607         /*
3608          * memory_device_get_free_addr() provided a range of free addresses
3609          * that doesn't overlap with any existing mapping at pre-plug. The
3610          * corresponding LMB DRCs are thus assumed to be all attachable.
3611          */
3612         spapr_drc_attach(drc, dev);
3613         if (!hotplugged) {
3614             spapr_drc_reset(drc);
3615         }
3616         addr += SPAPR_MEMORY_BLOCK_SIZE;
3617     }
3618     /* send hotplug notification to the
3619      * guest only in case of hotplugged memory
3620      */
3621     if (hotplugged) {
3622         if (dedicated_hp_event_source) {
3623             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3624                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3625             g_assert(drc);
3626             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3627                                                    nr_lmbs,
3628                                                    spapr_drc_index(drc));
3629         } else {
3630             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3631                                            nr_lmbs);
3632         }
3633     }
3634 }
3635 
3636 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3637 {
3638     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3639     PCDIMMDevice *dimm = PC_DIMM(dev);
3640     uint64_t size, addr;
3641     int64_t slot;
3642     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3643 
3644     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3645 
3646     pc_dimm_plug(dimm, MACHINE(ms));
3647 
3648     if (!is_nvdimm) {
3649         addr = object_property_get_uint(OBJECT(dimm),
3650                                         PC_DIMM_ADDR_PROP, &error_abort);
3651         spapr_add_lmbs(dev, addr, size,
3652                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3653     } else {
3654         slot = object_property_get_int(OBJECT(dimm),
3655                                        PC_DIMM_SLOT_PROP, &error_abort);
3656         /* We should have valid slot number at this point */
3657         g_assert(slot >= 0);
3658         spapr_add_nvdimm(dev, slot);
3659     }
3660 }
3661 
3662 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3663                                   Error **errp)
3664 {
3665     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3666     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3667     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3668     PCDIMMDevice *dimm = PC_DIMM(dev);
3669     Error *local_err = NULL;
3670     uint64_t size;
3671     Object *memdev;
3672     hwaddr pagesize;
3673 
3674     if (!smc->dr_lmb_enabled) {
3675         error_setg(errp, "Memory hotplug not supported for this machine");
3676         return;
3677     }
3678 
3679     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3680     if (local_err) {
3681         error_propagate(errp, local_err);
3682         return;
3683     }
3684 
3685     if (is_nvdimm) {
3686         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3687             return;
3688         }
3689     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3690         error_setg(errp, "Hotplugged memory size must be a multiple of "
3691                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3692         return;
3693     }
3694 
3695     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3696                                       &error_abort);
3697     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3698     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3699         return;
3700     }
3701 
3702     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), errp);
3703 }
3704 
3705 struct SpaprDimmState {
3706     PCDIMMDevice *dimm;
3707     uint32_t nr_lmbs;
3708     QTAILQ_ENTRY(SpaprDimmState) next;
3709 };
3710 
3711 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3712                                                        PCDIMMDevice *dimm)
3713 {
3714     SpaprDimmState *dimm_state = NULL;
3715 
3716     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3717         if (dimm_state->dimm == dimm) {
3718             break;
3719         }
3720     }
3721     return dimm_state;
3722 }
3723 
3724 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3725                                                       uint32_t nr_lmbs,
3726                                                       PCDIMMDevice *dimm)
3727 {
3728     SpaprDimmState *ds = NULL;
3729 
3730     /*
3731      * If this request is for a DIMM whose removal had failed earlier
3732      * (due to guest's refusal to remove the LMBs), we would have this
3733      * dimm already in the pending_dimm_unplugs list. In that
3734      * case don't add again.
3735      */
3736     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3737     if (!ds) {
3738         ds = g_new0(SpaprDimmState, 1);
3739         ds->nr_lmbs = nr_lmbs;
3740         ds->dimm = dimm;
3741         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3742     }
3743     return ds;
3744 }
3745 
3746 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3747                                               SpaprDimmState *dimm_state)
3748 {
3749     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3750     g_free(dimm_state);
3751 }
3752 
3753 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3754                                                         PCDIMMDevice *dimm)
3755 {
3756     SpaprDrc *drc;
3757     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3758                                                   &error_abort);
3759     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3760     uint32_t avail_lmbs = 0;
3761     uint64_t addr_start, addr;
3762     int i;
3763 
3764     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3765                                           &error_abort);
3766 
3767     addr = addr_start;
3768     for (i = 0; i < nr_lmbs; i++) {
3769         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3770                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3771         g_assert(drc);
3772         if (drc->dev) {
3773             avail_lmbs++;
3774         }
3775         addr += SPAPR_MEMORY_BLOCK_SIZE;
3776     }
3777 
3778     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3779 }
3780 
3781 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3782 {
3783     SpaprDimmState *ds;
3784     PCDIMMDevice *dimm;
3785     SpaprDrc *drc;
3786     uint32_t nr_lmbs;
3787     uint64_t size, addr_start, addr;
3788     int i;
3789 
3790     if (!dev) {
3791         return;
3792     }
3793 
3794     dimm = PC_DIMM(dev);
3795     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3796 
3797     /*
3798      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3799      * unplug state, but one of its DRC is marked as unplug_requested.
3800      * This is bad and weird enough to g_assert() out.
3801      */
3802     g_assert(ds);
3803 
3804     spapr_pending_dimm_unplugs_remove(spapr, ds);
3805 
3806     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3807     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3808 
3809     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3810                                           &error_abort);
3811 
3812     addr = addr_start;
3813     for (i = 0; i < nr_lmbs; i++) {
3814         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3815                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3816         g_assert(drc);
3817 
3818         drc->unplug_requested = false;
3819         addr += SPAPR_MEMORY_BLOCK_SIZE;
3820     }
3821 
3822     /*
3823      * Tell QAPI that something happened and the memory
3824      * hotunplug wasn't successful.
3825      */
3826     qapi_event_send_device_unplug_guest_error(dev->id,
3827                                               dev->canonical_path);
3828 }
3829 
3830 /* Callback to be called during DRC release. */
3831 void spapr_lmb_release(DeviceState *dev)
3832 {
3833     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3834     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3835     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3836 
3837     /* This information will get lost if a migration occurs
3838      * during the unplug process. In this case recover it. */
3839     if (ds == NULL) {
3840         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3841         g_assert(ds);
3842         /* The DRC being examined by the caller at least must be counted */
3843         g_assert(ds->nr_lmbs);
3844     }
3845 
3846     if (--ds->nr_lmbs) {
3847         return;
3848     }
3849 
3850     /*
3851      * Now that all the LMBs have been removed by the guest, call the
3852      * unplug handler chain. This can never fail.
3853      */
3854     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3855     object_unparent(OBJECT(dev));
3856 }
3857 
3858 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3859 {
3860     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3861     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3862 
3863     /* We really shouldn't get this far without anything to unplug */
3864     g_assert(ds);
3865 
3866     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3867     qdev_unrealize(dev);
3868     spapr_pending_dimm_unplugs_remove(spapr, ds);
3869 }
3870 
3871 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3872                                         DeviceState *dev, Error **errp)
3873 {
3874     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3875     PCDIMMDevice *dimm = PC_DIMM(dev);
3876     uint32_t nr_lmbs;
3877     uint64_t size, addr_start, addr;
3878     int i;
3879     SpaprDrc *drc;
3880 
3881     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3882         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3883         return;
3884     }
3885 
3886     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3887     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3888 
3889     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3890                                           &error_abort);
3891 
3892     /*
3893      * An existing pending dimm state for this DIMM means that there is an
3894      * unplug operation in progress, waiting for the spapr_lmb_release
3895      * callback to complete the job (BQL can't cover that far). In this case,
3896      * bail out to avoid detaching DRCs that were already released.
3897      */
3898     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3899         error_setg(errp, "Memory unplug already in progress for device %s",
3900                    dev->id);
3901         return;
3902     }
3903 
3904     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3905 
3906     addr = addr_start;
3907     for (i = 0; i < nr_lmbs; i++) {
3908         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3909                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3910         g_assert(drc);
3911 
3912         spapr_drc_unplug_request(drc);
3913         addr += SPAPR_MEMORY_BLOCK_SIZE;
3914     }
3915 
3916     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3917                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3918     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3919                                               nr_lmbs, spapr_drc_index(drc));
3920 }
3921 
3922 /* Callback to be called during DRC release. */
3923 void spapr_core_release(DeviceState *dev)
3924 {
3925     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3926 
3927     /* Call the unplug handler chain. This can never fail. */
3928     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3929     object_unparent(OBJECT(dev));
3930 }
3931 
3932 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3933 {
3934     MachineState *ms = MACHINE(hotplug_dev);
3935     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3936     CPUCore *cc = CPU_CORE(dev);
3937     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3938 
3939     if (smc->pre_2_10_has_unused_icps) {
3940         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3941         int i;
3942 
3943         for (i = 0; i < cc->nr_threads; i++) {
3944             CPUState *cs = CPU(sc->threads[i]);
3945 
3946             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3947         }
3948     }
3949 
3950     assert(core_slot);
3951     core_slot->cpu = NULL;
3952     qdev_unrealize(dev);
3953 }
3954 
3955 static
3956 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3957                                Error **errp)
3958 {
3959     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3960     int index;
3961     SpaprDrc *drc;
3962     CPUCore *cc = CPU_CORE(dev);
3963 
3964     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3965         error_setg(errp, "Unable to find CPU core with core-id: %d",
3966                    cc->core_id);
3967         return;
3968     }
3969     if (index == 0) {
3970         error_setg(errp, "Boot CPU core may not be unplugged");
3971         return;
3972     }
3973 
3974     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3975                           spapr_vcpu_id(spapr, cc->core_id));
3976     g_assert(drc);
3977 
3978     if (!spapr_drc_unplug_requested(drc)) {
3979         spapr_drc_unplug_request(drc);
3980     }
3981 
3982     /*
3983      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3984      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3985      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3986      * attempt (e.g. the kernel will refuse to remove the last online
3987      * CPU), we will never attempt it again because unplug_requested
3988      * will still be 'true' in that case.
3989      */
3990     spapr_hotplug_req_remove_by_index(drc);
3991 }
3992 
3993 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3994                            void *fdt, int *fdt_start_offset, Error **errp)
3995 {
3996     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3997     CPUState *cs = CPU(core->threads[0]);
3998     PowerPCCPU *cpu = POWERPC_CPU(cs);
3999     DeviceClass *dc = DEVICE_GET_CLASS(cs);
4000     int id = spapr_get_vcpu_id(cpu);
4001     g_autofree char *nodename = NULL;
4002     int offset;
4003 
4004     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
4005     offset = fdt_add_subnode(fdt, 0, nodename);
4006 
4007     spapr_dt_cpu(cs, fdt, offset, spapr);
4008 
4009     /*
4010      * spapr_dt_cpu() does not fill the 'name' property in the
4011      * CPU node. The function is called during boot process, before
4012      * and after CAS, and overwriting the 'name' property written
4013      * by SLOF is not allowed.
4014      *
4015      * Write it manually after spapr_dt_cpu(). This makes the hotplug
4016      * CPUs more compatible with the coldplugged ones, which have
4017      * the 'name' property. Linux Kernel also relies on this
4018      * property to identify CPU nodes.
4019      */
4020     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
4021 
4022     *fdt_start_offset = offset;
4023     return 0;
4024 }
4025 
4026 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4027 {
4028     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4029     MachineClass *mc = MACHINE_GET_CLASS(spapr);
4030     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4031     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
4032     CPUCore *cc = CPU_CORE(dev);
4033     SpaprDrc *drc;
4034     CPUArchId *core_slot;
4035     int index;
4036     bool hotplugged = spapr_drc_hotplugged(dev);
4037     int i;
4038 
4039     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4040     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
4041 
4042     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
4043                           spapr_vcpu_id(spapr, cc->core_id));
4044 
4045     g_assert(drc || !mc->has_hotpluggable_cpus);
4046 
4047     if (drc) {
4048         /*
4049          * spapr_core_pre_plug() already buys us this is a brand new
4050          * core being plugged into a free slot. Nothing should already
4051          * be attached to the corresponding DRC.
4052          */
4053         spapr_drc_attach(drc, dev);
4054 
4055         if (hotplugged) {
4056             /*
4057              * Send hotplug notification interrupt to the guest only
4058              * in case of hotplugged CPUs.
4059              */
4060             spapr_hotplug_req_add_by_index(drc);
4061         } else {
4062             spapr_drc_reset(drc);
4063         }
4064     }
4065 
4066     core_slot->cpu = CPU(dev);
4067 
4068     /*
4069      * Set compatibility mode to match the boot CPU, which was either set
4070      * by the machine reset code or by CAS. This really shouldn't fail at
4071      * this point.
4072      */
4073     if (hotplugged) {
4074         for (i = 0; i < cc->nr_threads; i++) {
4075             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4076                            &error_abort);
4077         }
4078     }
4079 
4080     if (smc->pre_2_10_has_unused_icps) {
4081         for (i = 0; i < cc->nr_threads; i++) {
4082             CPUState *cs = CPU(core->threads[i]);
4083             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4084         }
4085     }
4086 }
4087 
4088 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4089                                 Error **errp)
4090 {
4091     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4092     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4093     CPUCore *cc = CPU_CORE(dev);
4094     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4095     const char *type = object_get_typename(OBJECT(dev));
4096     CPUArchId *core_slot;
4097     int index;
4098     unsigned int smp_threads = machine->smp.threads;
4099 
4100     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4101         error_setg(errp, "CPU hotplug not supported for this machine");
4102         return;
4103     }
4104 
4105     if (strcmp(base_core_type, type)) {
4106         error_setg(errp, "CPU core type should be %s", base_core_type);
4107         return;
4108     }
4109 
4110     if (cc->core_id % smp_threads) {
4111         error_setg(errp, "invalid core id %d", cc->core_id);
4112         return;
4113     }
4114 
4115     /*
4116      * In general we should have homogeneous threads-per-core, but old
4117      * (pre hotplug support) machine types allow the last core to have
4118      * reduced threads as a compatibility hack for when we allowed
4119      * total vcpus not a multiple of threads-per-core.
4120      */
4121     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4122         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4123                    smp_threads);
4124         return;
4125     }
4126 
4127     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4128     if (!core_slot) {
4129         error_setg(errp, "core id %d out of range", cc->core_id);
4130         return;
4131     }
4132 
4133     if (core_slot->cpu) {
4134         error_setg(errp, "core %d already populated", cc->core_id);
4135         return;
4136     }
4137 
4138     numa_cpu_pre_plug(core_slot, dev, errp);
4139 }
4140 
4141 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4142                           void *fdt, int *fdt_start_offset, Error **errp)
4143 {
4144     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4145     int intc_phandle;
4146 
4147     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4148     if (intc_phandle <= 0) {
4149         return -1;
4150     }
4151 
4152     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4153         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4154         return -1;
4155     }
4156 
4157     /* generally SLOF creates these, for hotplug it's up to QEMU */
4158     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4159 
4160     return 0;
4161 }
4162 
4163 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4164                                Error **errp)
4165 {
4166     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4167     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4168     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4169     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4170     SpaprDrc *drc;
4171 
4172     if (dev->hotplugged && !smc->dr_phb_enabled) {
4173         error_setg(errp, "PHB hotplug not supported for this machine");
4174         return false;
4175     }
4176 
4177     if (sphb->index == (uint32_t)-1) {
4178         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4179         return false;
4180     }
4181 
4182     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4183     if (drc && drc->dev) {
4184         error_setg(errp, "PHB %d already attached", sphb->index);
4185         return false;
4186     }
4187 
4188     /*
4189      * This will check that sphb->index doesn't exceed the maximum number of
4190      * PHBs for the current machine type.
4191      */
4192     return
4193         smc->phb_placement(spapr, sphb->index,
4194                            &sphb->buid, &sphb->io_win_addr,
4195                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4196                            windows_supported, sphb->dma_liobn,
4197                            errp);
4198 }
4199 
4200 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4201 {
4202     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4203     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4204     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4205     SpaprDrc *drc;
4206     bool hotplugged = spapr_drc_hotplugged(dev);
4207 
4208     if (!smc->dr_phb_enabled) {
4209         return;
4210     }
4211 
4212     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4213     /* hotplug hooks should check it's enabled before getting this far */
4214     assert(drc);
4215 
4216     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4217     spapr_drc_attach(drc, dev);
4218 
4219     if (hotplugged) {
4220         spapr_hotplug_req_add_by_index(drc);
4221     } else {
4222         spapr_drc_reset(drc);
4223     }
4224 }
4225 
4226 void spapr_phb_release(DeviceState *dev)
4227 {
4228     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4229 
4230     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4231     object_unparent(OBJECT(dev));
4232 }
4233 
4234 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4235 {
4236     qdev_unrealize(dev);
4237 }
4238 
4239 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4240                                      DeviceState *dev, Error **errp)
4241 {
4242     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4243     SpaprDrc *drc;
4244 
4245     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4246     assert(drc);
4247 
4248     if (!spapr_drc_unplug_requested(drc)) {
4249         spapr_drc_unplug_request(drc);
4250         spapr_hotplug_req_remove_by_index(drc);
4251     } else {
4252         error_setg(errp,
4253                    "PCI Host Bridge unplug already in progress for device %s",
4254                    dev->id);
4255     }
4256 }
4257 
4258 static
4259 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4260                               Error **errp)
4261 {
4262     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4263 
4264     if (spapr->tpm_proxy != NULL) {
4265         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4266         return false;
4267     }
4268 
4269     return true;
4270 }
4271 
4272 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4273 {
4274     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4275     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4276 
4277     /* Already checked in spapr_tpm_proxy_pre_plug() */
4278     g_assert(spapr->tpm_proxy == NULL);
4279 
4280     spapr->tpm_proxy = tpm_proxy;
4281 }
4282 
4283 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4284 {
4285     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4286 
4287     qdev_unrealize(dev);
4288     object_unparent(OBJECT(dev));
4289     spapr->tpm_proxy = NULL;
4290 }
4291 
4292 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4293                                       DeviceState *dev, Error **errp)
4294 {
4295     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4296         spapr_memory_plug(hotplug_dev, dev);
4297     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4298         spapr_core_plug(hotplug_dev, dev);
4299     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4300         spapr_phb_plug(hotplug_dev, dev);
4301     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4302         spapr_tpm_proxy_plug(hotplug_dev, dev);
4303     }
4304 }
4305 
4306 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4307                                         DeviceState *dev, Error **errp)
4308 {
4309     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4310         spapr_memory_unplug(hotplug_dev, dev);
4311     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4312         spapr_core_unplug(hotplug_dev, dev);
4313     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4314         spapr_phb_unplug(hotplug_dev, dev);
4315     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4316         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4317     }
4318 }
4319 
4320 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4321 {
4322     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4323         /*
4324          * CAS will process all pending unplug requests.
4325          *
4326          * HACK: a guest could theoretically have cleared all bits in OV5,
4327          * but none of the guests we care for do.
4328          */
4329         spapr_ovec_empty(spapr->ov5_cas);
4330 }
4331 
4332 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4333                                                 DeviceState *dev, Error **errp)
4334 {
4335     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4336     MachineClass *mc = MACHINE_GET_CLASS(sms);
4337     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4338 
4339     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4340         if (spapr_memory_hot_unplug_supported(sms)) {
4341             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4342         } else {
4343             error_setg(errp, "Memory hot unplug not supported for this guest");
4344         }
4345     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4346         if (!mc->has_hotpluggable_cpus) {
4347             error_setg(errp, "CPU hot unplug not supported on this machine");
4348             return;
4349         }
4350         spapr_core_unplug_request(hotplug_dev, dev, errp);
4351     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4352         if (!smc->dr_phb_enabled) {
4353             error_setg(errp, "PHB hot unplug not supported on this machine");
4354             return;
4355         }
4356         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4357     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4358         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4359     }
4360 }
4361 
4362 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4363                                           DeviceState *dev, Error **errp)
4364 {
4365     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4366         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4367     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4368         spapr_core_pre_plug(hotplug_dev, dev, errp);
4369     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4370         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4371     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4372         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4373     }
4374 }
4375 
4376 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4377                                                  DeviceState *dev)
4378 {
4379     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4380         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4381         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4382         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4383         return HOTPLUG_HANDLER(machine);
4384     }
4385     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4386         PCIDevice *pcidev = PCI_DEVICE(dev);
4387         PCIBus *root = pci_device_root_bus(pcidev);
4388         SpaprPhbState *phb =
4389             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4390                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4391 
4392         if (phb) {
4393             return HOTPLUG_HANDLER(phb);
4394         }
4395     }
4396     return NULL;
4397 }
4398 
4399 static CpuInstanceProperties
4400 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4401 {
4402     CPUArchId *core_slot;
4403     MachineClass *mc = MACHINE_GET_CLASS(machine);
4404 
4405     /* make sure possible_cpu are initialized */
4406     mc->possible_cpu_arch_ids(machine);
4407     /* get CPU core slot containing thread that matches cpu_index */
4408     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4409     assert(core_slot);
4410     return core_slot->props;
4411 }
4412 
4413 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4414 {
4415     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4416 }
4417 
4418 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4419 {
4420     int i;
4421     unsigned int smp_threads = machine->smp.threads;
4422     unsigned int smp_cpus = machine->smp.cpus;
4423     const char *core_type;
4424     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4425     MachineClass *mc = MACHINE_GET_CLASS(machine);
4426 
4427     if (!mc->has_hotpluggable_cpus) {
4428         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4429     }
4430     if (machine->possible_cpus) {
4431         assert(machine->possible_cpus->len == spapr_max_cores);
4432         return machine->possible_cpus;
4433     }
4434 
4435     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4436     if (!core_type) {
4437         error_report("Unable to find sPAPR CPU Core definition");
4438         exit(1);
4439     }
4440 
4441     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4442                              sizeof(CPUArchId) * spapr_max_cores);
4443     machine->possible_cpus->len = spapr_max_cores;
4444     for (i = 0; i < machine->possible_cpus->len; i++) {
4445         int core_id = i * smp_threads;
4446 
4447         machine->possible_cpus->cpus[i].type = core_type;
4448         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4449         machine->possible_cpus->cpus[i].arch_id = core_id;
4450         machine->possible_cpus->cpus[i].props.has_core_id = true;
4451         machine->possible_cpus->cpus[i].props.core_id = core_id;
4452     }
4453     return machine->possible_cpus;
4454 }
4455 
4456 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4457                                 uint64_t *buid, hwaddr *pio,
4458                                 hwaddr *mmio32, hwaddr *mmio64,
4459                                 unsigned n_dma, uint32_t *liobns, Error **errp)
4460 {
4461     /*
4462      * New-style PHB window placement.
4463      *
4464      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4465      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4466      * windows.
4467      *
4468      * Some guest kernels can't work with MMIO windows above 1<<46
4469      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4470      *
4471      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4472      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4473      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4474      * 1TiB 64-bit MMIO windows for each PHB.
4475      */
4476     const uint64_t base_buid = 0x800000020000000ULL;
4477     int i;
4478 
4479     /* Sanity check natural alignments */
4480     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4481     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4482     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4483     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4484     /* Sanity check bounds */
4485     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4486                       SPAPR_PCI_MEM32_WIN_SIZE);
4487     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4488                       SPAPR_PCI_MEM64_WIN_SIZE);
4489 
4490     if (index >= SPAPR_MAX_PHBS) {
4491         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4492                    SPAPR_MAX_PHBS - 1);
4493         return false;
4494     }
4495 
4496     *buid = base_buid + index;
4497     for (i = 0; i < n_dma; ++i) {
4498         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4499     }
4500 
4501     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4502     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4503     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4504     return true;
4505 }
4506 
4507 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4508 {
4509     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4510 
4511     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4512 }
4513 
4514 static void spapr_ics_resend(XICSFabric *dev)
4515 {
4516     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4517 
4518     ics_resend(spapr->ics);
4519 }
4520 
4521 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4522 {
4523     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4524 
4525     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4526 }
4527 
4528 static void spapr_pic_print_info(InterruptStatsProvider *obj, GString *buf)
4529 {
4530     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4531 
4532     spapr_irq_print_info(spapr, buf);
4533     g_string_append_printf(buf, "irqchip: %s\n",
4534                            kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4535 }
4536 
4537 /*
4538  * This is a XIVE only operation
4539  */
4540 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4541                            uint8_t nvt_blk, uint32_t nvt_idx,
4542                            bool cam_ignore, uint8_t priority,
4543                            uint32_t logic_serv, XiveTCTXMatch *match)
4544 {
4545     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4546     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4547     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4548     int count;
4549 
4550     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4551                            priority, logic_serv, match);
4552     if (count < 0) {
4553         return count;
4554     }
4555 
4556     /*
4557      * When we implement the save and restore of the thread interrupt
4558      * contexts in the enter/exit CPU handlers of the machine and the
4559      * escalations in QEMU, we should be able to handle non dispatched
4560      * vCPUs.
4561      *
4562      * Until this is done, the sPAPR machine should find at least one
4563      * matching context always.
4564      */
4565     if (count == 0) {
4566         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4567                       nvt_blk, nvt_idx);
4568     }
4569 
4570     return count;
4571 }
4572 
4573 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4574 {
4575     return cpu->vcpu_id;
4576 }
4577 
4578 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4579 {
4580     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4581     MachineState *ms = MACHINE(spapr);
4582     int vcpu_id;
4583 
4584     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4585 
4586     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4587         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4588         error_append_hint(errp, "Adjust the number of cpus to %d "
4589                           "or try to raise the number of threads per core\n",
4590                           vcpu_id * ms->smp.threads / spapr->vsmt);
4591         return false;
4592     }
4593 
4594     cpu->vcpu_id = vcpu_id;
4595     return true;
4596 }
4597 
4598 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4599 {
4600     CPUState *cs;
4601 
4602     CPU_FOREACH(cs) {
4603         PowerPCCPU *cpu = POWERPC_CPU(cs);
4604 
4605         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4606             return cpu;
4607         }
4608     }
4609 
4610     return NULL;
4611 }
4612 
4613 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4614 {
4615     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4616 
4617     return spapr_cpu->in_nested;
4618 }
4619 
4620 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4621 {
4622     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4623 
4624     /* These are only called by TCG, KVM maintains dispatch state */
4625 
4626     spapr_cpu->prod = false;
4627     if (spapr_cpu->vpa_addr) {
4628         CPUState *cs = CPU(cpu);
4629         uint32_t dispatch;
4630 
4631         dispatch = ldl_be_phys(cs->as,
4632                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4633         dispatch++;
4634         if ((dispatch & 1) != 0) {
4635             qemu_log_mask(LOG_GUEST_ERROR,
4636                           "VPA: incorrect dispatch counter value for "
4637                           "dispatched partition %u, correcting.\n", dispatch);
4638             dispatch++;
4639         }
4640         stl_be_phys(cs->as,
4641                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4642     }
4643 }
4644 
4645 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4646 {
4647     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4648 
4649     if (spapr_cpu->vpa_addr) {
4650         CPUState *cs = CPU(cpu);
4651         uint32_t dispatch;
4652 
4653         dispatch = ldl_be_phys(cs->as,
4654                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4655         dispatch++;
4656         if ((dispatch & 1) != 1) {
4657             qemu_log_mask(LOG_GUEST_ERROR,
4658                           "VPA: incorrect dispatch counter value for "
4659                           "preempted partition %u, correcting.\n", dispatch);
4660             dispatch++;
4661         }
4662         stl_be_phys(cs->as,
4663                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4664     }
4665 }
4666 
4667 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4668 {
4669     MachineClass *mc = MACHINE_CLASS(oc);
4670     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4671     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4672     NMIClass *nc = NMI_CLASS(oc);
4673     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4674     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4675     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4676     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4677     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4678     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4679 
4680     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4681     mc->ignore_boot_device_suffixes = true;
4682 
4683     /*
4684      * We set up the default / latest behaviour here.  The class_init
4685      * functions for the specific versioned machine types can override
4686      * these details for backwards compatibility
4687      */
4688     mc->init = spapr_machine_init;
4689     mc->reset = spapr_machine_reset;
4690     mc->block_default_type = IF_SCSI;
4691 
4692     /*
4693      * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(),
4694      * In TCG the limit is restricted by the range of CPU IPIs available.
4695      */
4696     mc->max_cpus = SPAPR_IRQ_NR_IPIS;
4697 
4698     mc->no_parallel = 1;
4699     mc->default_boot_order = "";
4700     mc->default_ram_size = 512 * MiB;
4701     mc->default_ram_id = "ppc_spapr.ram";
4702     mc->default_display = "std";
4703     mc->kvm_type = spapr_kvm_type;
4704     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4705     mc->pci_allow_0_address = true;
4706     assert(!mc->get_hotplug_handler);
4707     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4708     hc->pre_plug = spapr_machine_device_pre_plug;
4709     hc->plug = spapr_machine_device_plug;
4710     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4711     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4712     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4713     hc->unplug_request = spapr_machine_device_unplug_request;
4714     hc->unplug = spapr_machine_device_unplug;
4715 
4716     smc->dr_lmb_enabled = true;
4717     smc->update_dt_enabled = true;
4718     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
4719     mc->has_hotpluggable_cpus = true;
4720     mc->nvdimm_supported = true;
4721     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4722     fwc->get_dev_path = spapr_get_fw_dev_path;
4723     nc->nmi_monitor_handler = spapr_nmi;
4724     smc->phb_placement = spapr_phb_placement;
4725     vhc->cpu_in_nested = spapr_cpu_in_nested;
4726     vhc->deliver_hv_excp = spapr_exit_nested;
4727     vhc->hypercall = emulate_spapr_hypercall;
4728     vhc->hpt_mask = spapr_hpt_mask;
4729     vhc->map_hptes = spapr_map_hptes;
4730     vhc->unmap_hptes = spapr_unmap_hptes;
4731     vhc->hpte_set_c = spapr_hpte_set_c;
4732     vhc->hpte_set_r = spapr_hpte_set_r;
4733     vhc->get_pate = spapr_get_pate;
4734     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4735     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4736     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4737     xic->ics_get = spapr_ics_get;
4738     xic->ics_resend = spapr_ics_resend;
4739     xic->icp_get = spapr_icp_get;
4740     ispc->print_info = spapr_pic_print_info;
4741     /* Force NUMA node memory size to be a multiple of
4742      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4743      * in which LMBs are represented and hot-added
4744      */
4745     mc->numa_mem_align_shift = 28;
4746     mc->auto_enable_numa = true;
4747 
4748     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4749     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4750     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4751     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4752     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4753     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4754     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4755     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4756     smc->default_caps.caps[SPAPR_CAP_NESTED_PAPR] = SPAPR_CAP_OFF;
4757     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4758     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4759     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4760     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4761 
4762     /*
4763      * This cap specifies whether the AIL 3 mode for
4764      * H_SET_RESOURCE is supported. The default is modified
4765      * by default_caps_with_cpu().
4766      */
4767     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4768     spapr_caps_add_properties(smc);
4769     smc->irq = &spapr_irq_dual;
4770     smc->dr_phb_enabled = true;
4771     smc->linux_pci_probe = true;
4772     smc->smp_threads_vsmt = true;
4773     smc->nr_xirqs = SPAPR_NR_XIRQS;
4774     xfc->match_nvt = spapr_match_nvt;
4775     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4776     vmc->quiesce = spapr_vof_quiesce;
4777     vmc->setprop = spapr_vof_setprop;
4778 }
4779 
4780 static const TypeInfo spapr_machine_info = {
4781     .name          = TYPE_SPAPR_MACHINE,
4782     .parent        = TYPE_MACHINE,
4783     .abstract      = true,
4784     .instance_size = sizeof(SpaprMachineState),
4785     .instance_init = spapr_instance_init,
4786     .instance_finalize = spapr_machine_finalizefn,
4787     .class_size    = sizeof(SpaprMachineClass),
4788     .class_init    = spapr_machine_class_init,
4789     .interfaces = (InterfaceInfo[]) {
4790         { TYPE_FW_PATH_PROVIDER },
4791         { TYPE_NMI },
4792         { TYPE_HOTPLUG_HANDLER },
4793         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4794         { TYPE_XICS_FABRIC },
4795         { TYPE_INTERRUPT_STATS_PROVIDER },
4796         { TYPE_XIVE_FABRIC },
4797         { TYPE_VOF_MACHINE_IF },
4798         { }
4799     },
4800 };
4801 
4802 static void spapr_machine_latest_class_options(MachineClass *mc)
4803 {
4804     mc->alias = "pseries";
4805     mc->is_default = true;
4806 }
4807 
4808 #define DEFINE_SPAPR_MACHINE_IMPL(latest, ...)                       \
4809     static void MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__)(     \
4810         ObjectClass *oc,                                             \
4811         void *data)                                                  \
4812     {                                                                \
4813         MachineClass *mc = MACHINE_CLASS(oc);                        \
4814         MACHINE_VER_SYM(class_options, spapr, __VA_ARGS__)(mc);      \
4815         MACHINE_VER_DEPRECATION(__VA_ARGS__);                        \
4816         if (latest) {                                                \
4817             spapr_machine_latest_class_options(mc);                  \
4818         }                                                            \
4819     }                                                                \
4820     static const TypeInfo MACHINE_VER_SYM(info, spapr, __VA_ARGS__) = \
4821     {                                                                \
4822         .name = MACHINE_VER_TYPE_NAME("pseries", __VA_ARGS__),       \
4823         .parent = TYPE_SPAPR_MACHINE,                                \
4824         .class_init = MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__), \
4825     };                                                               \
4826     static void MACHINE_VER_SYM(register, spapr, __VA_ARGS__)(void)  \
4827     {                                                                \
4828         MACHINE_VER_DELETION(__VA_ARGS__);                           \
4829         type_register(&MACHINE_VER_SYM(info, spapr, __VA_ARGS__));   \
4830     }                                                                \
4831     type_init(MACHINE_VER_SYM(register, spapr, __VA_ARGS__))
4832 
4833 #define DEFINE_SPAPR_MACHINE_AS_LATEST(major, minor) \
4834     DEFINE_SPAPR_MACHINE_IMPL(true, major, minor)
4835 #define DEFINE_SPAPR_MACHINE(major, minor) \
4836     DEFINE_SPAPR_MACHINE_IMPL(false, major, minor)
4837 #define DEFINE_SPAPR_MACHINE_TAGGED(major, minor, tag) \
4838     DEFINE_SPAPR_MACHINE_IMPL(false, major, minor, _, tag)
4839 
4840 /*
4841  * pseries-9.2
4842  */
4843 static void spapr_machine_9_2_class_options(MachineClass *mc)
4844 {
4845     /* Defaults for the latest behaviour inherited from the base class */
4846 }
4847 
4848 DEFINE_SPAPR_MACHINE_AS_LATEST(9, 2);
4849 
4850 /*
4851  * pseries-9.1
4852  */
4853 static void spapr_machine_9_1_class_options(MachineClass *mc)
4854 {
4855     spapr_machine_9_2_class_options(mc);
4856     compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len);
4857 }
4858 
4859 DEFINE_SPAPR_MACHINE(9, 1);
4860 
4861 /*
4862  * pseries-9.0
4863  */
4864 static void spapr_machine_9_0_class_options(MachineClass *mc)
4865 {
4866     spapr_machine_9_1_class_options(mc);
4867     compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
4868 }
4869 
4870 DEFINE_SPAPR_MACHINE(9, 0);
4871 
4872 /*
4873  * pseries-8.2
4874  */
4875 static void spapr_machine_8_2_class_options(MachineClass *mc)
4876 {
4877     spapr_machine_9_0_class_options(mc);
4878     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
4879 }
4880 
4881 DEFINE_SPAPR_MACHINE(8, 2);
4882 
4883 /*
4884  * pseries-8.1
4885  */
4886 static void spapr_machine_8_1_class_options(MachineClass *mc)
4887 {
4888     spapr_machine_8_2_class_options(mc);
4889     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4890 }
4891 
4892 DEFINE_SPAPR_MACHINE(8, 1);
4893 
4894 /*
4895  * pseries-8.0
4896  */
4897 static void spapr_machine_8_0_class_options(MachineClass *mc)
4898 {
4899     spapr_machine_8_1_class_options(mc);
4900     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4901 }
4902 
4903 DEFINE_SPAPR_MACHINE(8, 0);
4904 
4905 /*
4906  * pseries-7.2
4907  */
4908 static void spapr_machine_7_2_class_options(MachineClass *mc)
4909 {
4910     spapr_machine_8_0_class_options(mc);
4911     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4912 }
4913 
4914 DEFINE_SPAPR_MACHINE(7, 2);
4915 
4916 /*
4917  * pseries-7.1
4918  */
4919 static void spapr_machine_7_1_class_options(MachineClass *mc)
4920 {
4921     spapr_machine_7_2_class_options(mc);
4922     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4923 }
4924 
4925 DEFINE_SPAPR_MACHINE(7, 1);
4926 
4927 /*
4928  * pseries-7.0
4929  */
4930 static void spapr_machine_7_0_class_options(MachineClass *mc)
4931 {
4932     spapr_machine_7_1_class_options(mc);
4933     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4934 }
4935 
4936 DEFINE_SPAPR_MACHINE(7, 0);
4937 
4938 /*
4939  * pseries-6.2
4940  */
4941 static void spapr_machine_6_2_class_options(MachineClass *mc)
4942 {
4943     spapr_machine_7_0_class_options(mc);
4944     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4945 }
4946 
4947 DEFINE_SPAPR_MACHINE(6, 2);
4948 
4949 /*
4950  * pseries-6.1
4951  */
4952 static void spapr_machine_6_1_class_options(MachineClass *mc)
4953 {
4954     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4955 
4956     spapr_machine_6_2_class_options(mc);
4957     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4958     smc->pre_6_2_numa_affinity = true;
4959     mc->smp_props.prefer_sockets = true;
4960 }
4961 
4962 DEFINE_SPAPR_MACHINE(6, 1);
4963 
4964 /*
4965  * pseries-6.0
4966  */
4967 static void spapr_machine_6_0_class_options(MachineClass *mc)
4968 {
4969     spapr_machine_6_1_class_options(mc);
4970     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4971 }
4972 
4973 DEFINE_SPAPR_MACHINE(6, 0);
4974 
4975 /*
4976  * pseries-5.2
4977  */
4978 static void spapr_machine_5_2_class_options(MachineClass *mc)
4979 {
4980     spapr_machine_6_0_class_options(mc);
4981     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4982 }
4983 
4984 DEFINE_SPAPR_MACHINE(5, 2);
4985 
4986 /*
4987  * pseries-5.1
4988  */
4989 static void spapr_machine_5_1_class_options(MachineClass *mc)
4990 {
4991     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4992 
4993     spapr_machine_5_2_class_options(mc);
4994     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4995     smc->pre_5_2_numa_associativity = true;
4996 }
4997 
4998 DEFINE_SPAPR_MACHINE(5, 1);
4999 
5000 /*
5001  * pseries-5.0
5002  */
5003 static void spapr_machine_5_0_class_options(MachineClass *mc)
5004 {
5005     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5006     static GlobalProperty compat[] = {
5007         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
5008     };
5009 
5010     spapr_machine_5_1_class_options(mc);
5011     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
5012     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5013     mc->numa_mem_supported = true;
5014     smc->pre_5_1_assoc_refpoints = true;
5015 }
5016 
5017 DEFINE_SPAPR_MACHINE(5, 0);
5018 
5019 /*
5020  * pseries-4.2
5021  */
5022 static void spapr_machine_4_2_class_options(MachineClass *mc)
5023 {
5024     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5025 
5026     spapr_machine_5_0_class_options(mc);
5027     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
5028     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
5029     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
5030     smc->rma_limit = 16 * GiB;
5031     mc->nvdimm_supported = false;
5032 }
5033 
5034 DEFINE_SPAPR_MACHINE(4, 2);
5035 
5036 /*
5037  * pseries-4.1
5038  */
5039 static void spapr_machine_4_1_class_options(MachineClass *mc)
5040 {
5041     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5042     static GlobalProperty compat[] = {
5043         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
5044         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
5045     };
5046 
5047     spapr_machine_4_2_class_options(mc);
5048     smc->linux_pci_probe = false;
5049     smc->smp_threads_vsmt = false;
5050     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
5051     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5052 }
5053 
5054 DEFINE_SPAPR_MACHINE(4, 1);
5055 
5056 /*
5057  * pseries-4.0
5058  */
5059 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
5060                               uint64_t *buid, hwaddr *pio,
5061                               hwaddr *mmio32, hwaddr *mmio64,
5062                               unsigned n_dma, uint32_t *liobns, Error **errp)
5063 {
5064     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
5065                              liobns, errp)) {
5066         return false;
5067     }
5068     return true;
5069 }
5070 static void spapr_machine_4_0_class_options(MachineClass *mc)
5071 {
5072     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5073 
5074     spapr_machine_4_1_class_options(mc);
5075     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
5076     smc->phb_placement = phb_placement_4_0;
5077     smc->irq = &spapr_irq_xics;
5078     smc->pre_4_1_migration = true;
5079 }
5080 
5081 DEFINE_SPAPR_MACHINE(4, 0);
5082 
5083 /*
5084  * pseries-3.1
5085  */
5086 static void spapr_machine_3_1_class_options(MachineClass *mc)
5087 {
5088     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5089 
5090     spapr_machine_4_0_class_options(mc);
5091     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
5092 
5093     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
5094     smc->update_dt_enabled = false;
5095     smc->dr_phb_enabled = false;
5096     smc->broken_host_serial_model = true;
5097     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
5098     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
5099     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
5100     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
5101 }
5102 
5103 DEFINE_SPAPR_MACHINE(3, 1);
5104 
5105 /*
5106  * pseries-3.0
5107  */
5108 
5109 static void spapr_machine_3_0_class_options(MachineClass *mc)
5110 {
5111     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5112 
5113     spapr_machine_3_1_class_options(mc);
5114     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5115 
5116     smc->legacy_irq_allocation = true;
5117     smc->nr_xirqs = 0x400;
5118     smc->irq = &spapr_irq_xics_legacy;
5119 }
5120 
5121 DEFINE_SPAPR_MACHINE(3, 0);
5122 
5123 /*
5124  * pseries-2.12
5125  */
5126 static void spapr_machine_2_12_class_options(MachineClass *mc)
5127 {
5128     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5129     static GlobalProperty compat[] = {
5130         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5131         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5132     };
5133 
5134     spapr_machine_3_0_class_options(mc);
5135     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5136     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5137 
5138     /* We depend on kvm_enabled() to choose a default value for the
5139      * hpt-max-page-size capability. Of course we can't do it here
5140      * because this is too early and the HW accelerator isn't initialized
5141      * yet. Postpone this to machine init (see default_caps_with_cpu()).
5142      */
5143     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5144 }
5145 
5146 DEFINE_SPAPR_MACHINE(2, 12);
5147 
5148 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5149 {
5150     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5151 
5152     spapr_machine_2_12_class_options(mc);
5153     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5154     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5155     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5156 }
5157 
5158 DEFINE_SPAPR_MACHINE_TAGGED(2, 12, sxxm);
5159 
5160 /*
5161  * pseries-2.11
5162  */
5163 
5164 static void spapr_machine_2_11_class_options(MachineClass *mc)
5165 {
5166     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5167 
5168     spapr_machine_2_12_class_options(mc);
5169     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5170     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5171 }
5172 
5173 DEFINE_SPAPR_MACHINE(2, 11);
5174 
5175 /*
5176  * pseries-2.10
5177  */
5178 
5179 static void spapr_machine_2_10_class_options(MachineClass *mc)
5180 {
5181     spapr_machine_2_11_class_options(mc);
5182     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5183 }
5184 
5185 DEFINE_SPAPR_MACHINE(2, 10);
5186 
5187 /*
5188  * pseries-2.9
5189  */
5190 
5191 static void spapr_machine_2_9_class_options(MachineClass *mc)
5192 {
5193     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5194     static GlobalProperty compat[] = {
5195         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5196     };
5197 
5198     spapr_machine_2_10_class_options(mc);
5199     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5200     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5201     smc->pre_2_10_has_unused_icps = true;
5202     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5203 }
5204 
5205 DEFINE_SPAPR_MACHINE(2, 9);
5206 
5207 /*
5208  * pseries-2.8
5209  */
5210 
5211 static void spapr_machine_2_8_class_options(MachineClass *mc)
5212 {
5213     static GlobalProperty compat[] = {
5214         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5215     };
5216 
5217     spapr_machine_2_9_class_options(mc);
5218     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5219     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5220     mc->numa_mem_align_shift = 23;
5221 }
5222 
5223 DEFINE_SPAPR_MACHINE(2, 8);
5224 
5225 /*
5226  * pseries-2.7
5227  */
5228 
5229 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5230                               uint64_t *buid, hwaddr *pio,
5231                               hwaddr *mmio32, hwaddr *mmio64,
5232                               unsigned n_dma, uint32_t *liobns, Error **errp)
5233 {
5234     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5235     const uint64_t base_buid = 0x800000020000000ULL;
5236     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5237     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5238     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5239     const uint32_t max_index = 255;
5240     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5241 
5242     uint64_t ram_top = MACHINE(spapr)->ram_size;
5243     hwaddr phb0_base, phb_base;
5244     int i;
5245 
5246     /* Do we have device memory? */
5247     if (MACHINE(spapr)->device_memory) {
5248         /* Can't just use maxram_size, because there may be an
5249          * alignment gap between normal and device memory regions
5250          */
5251         ram_top = MACHINE(spapr)->device_memory->base +
5252             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5253     }
5254 
5255     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5256 
5257     if (index > max_index) {
5258         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5259                    max_index);
5260         return false;
5261     }
5262 
5263     *buid = base_buid + index;
5264     for (i = 0; i < n_dma; ++i) {
5265         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5266     }
5267 
5268     phb_base = phb0_base + index * phb_spacing;
5269     *pio = phb_base + pio_offset;
5270     *mmio32 = phb_base + mmio_offset;
5271     /*
5272      * We don't set the 64-bit MMIO window, relying on the PHB's
5273      * fallback behaviour of automatically splitting a large "32-bit"
5274      * window into contiguous 32-bit and 64-bit windows
5275      */
5276 
5277     return true;
5278 }
5279 
5280 static void spapr_machine_2_7_class_options(MachineClass *mc)
5281 {
5282     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5283     static GlobalProperty compat[] = {
5284         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5285         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5286         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5287         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5288     };
5289 
5290     spapr_machine_2_8_class_options(mc);
5291     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5292     mc->default_machine_opts = "modern-hotplug-events=off";
5293     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5294     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5295     smc->phb_placement = phb_placement_2_7;
5296 }
5297 
5298 DEFINE_SPAPR_MACHINE(2, 7);
5299 
5300 /*
5301  * pseries-2.6
5302  */
5303 
5304 static void spapr_machine_2_6_class_options(MachineClass *mc)
5305 {
5306     static GlobalProperty compat[] = {
5307         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5308     };
5309 
5310     spapr_machine_2_7_class_options(mc);
5311     mc->has_hotpluggable_cpus = false;
5312     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5313     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5314 }
5315 
5316 DEFINE_SPAPR_MACHINE(2, 6);
5317 
5318 /*
5319  * pseries-2.5
5320  */
5321 
5322 static void spapr_machine_2_5_class_options(MachineClass *mc)
5323 {
5324     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5325     static GlobalProperty compat[] = {
5326         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5327     };
5328 
5329     spapr_machine_2_6_class_options(mc);
5330     smc->use_ohci_by_default = true;
5331     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5332     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5333 }
5334 
5335 DEFINE_SPAPR_MACHINE(2, 5);
5336 
5337 /*
5338  * pseries-2.4
5339  */
5340 
5341 static void spapr_machine_2_4_class_options(MachineClass *mc)
5342 {
5343     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5344 
5345     spapr_machine_2_5_class_options(mc);
5346     smc->dr_lmb_enabled = false;
5347     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5348 }
5349 
5350 DEFINE_SPAPR_MACHINE(2, 4);
5351 
5352 /*
5353  * pseries-2.3
5354  */
5355 
5356 static void spapr_machine_2_3_class_options(MachineClass *mc)
5357 {
5358     static GlobalProperty compat[] = {
5359         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5360     };
5361     spapr_machine_2_4_class_options(mc);
5362     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5363     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5364 }
5365 DEFINE_SPAPR_MACHINE(2, 3);
5366 
5367 /*
5368  * pseries-2.2
5369  */
5370 
5371 static void spapr_machine_2_2_class_options(MachineClass *mc)
5372 {
5373     static GlobalProperty compat[] = {
5374         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5375     };
5376 
5377     spapr_machine_2_3_class_options(mc);
5378     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5379     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5380     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5381 }
5382 DEFINE_SPAPR_MACHINE(2, 2);
5383 
5384 /*
5385  * pseries-2.1
5386  */
5387 
5388 static void spapr_machine_2_1_class_options(MachineClass *mc)
5389 {
5390     spapr_machine_2_2_class_options(mc);
5391     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5392 }
5393 DEFINE_SPAPR_MACHINE(2, 1);
5394 
5395 static void spapr_machine_register_types(void)
5396 {
5397     type_register_static(&spapr_machine_info);
5398 }
5399 
5400 type_init(spapr_machine_register_types)
5401