xref: /openbmc/qemu/hw/ppc/spapr.c (revision 2d7fedeb)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
41 #include "kvm_ppc.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
44 #include "qom/cpu.h"
45 
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
49 
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
55 
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
59 
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66 
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 
70 #include <libfdt.h>
71 
72 /* SLOF memory layout:
73  *
74  * SLOF raw image loaded at 0, copies its romfs right below the flat
75  * device-tree, then position SLOF itself 31M below that
76  *
77  * So we set FW_OVERHEAD to 40MB which should account for all of that
78  * and more
79  *
80  * We load our kernel at 4M, leaving space for SLOF initial image
81  */
82 #define FDT_MAX_SIZE            0x100000
83 #define RTAS_MAX_SIZE           0x10000
84 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
85 #define FW_MAX_SIZE             0x400000
86 #define FW_FILE_NAME            "slof.bin"
87 #define FW_OVERHEAD             0x2800000
88 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
89 
90 #define MIN_RMA_SLOF            128UL
91 
92 #define TIMEBASE_FREQ           512000000ULL
93 
94 #define PHANDLE_XICP            0x00001111
95 
96 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
97 
98 static XICSState *try_create_xics(const char *type, int nr_servers,
99                                   int nr_irqs, Error **errp)
100 {
101     Error *err = NULL;
102     DeviceState *dev;
103 
104     dev = qdev_create(NULL, type);
105     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
106     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
107     object_property_set_bool(OBJECT(dev), true, "realized", &err);
108     if (err) {
109         error_propagate(errp, err);
110         object_unparent(OBJECT(dev));
111         return NULL;
112     }
113     return XICS_COMMON(dev);
114 }
115 
116 static XICSState *xics_system_init(MachineState *machine,
117                                    int nr_servers, int nr_irqs, Error **errp)
118 {
119     XICSState *icp = NULL;
120 
121     if (kvm_enabled()) {
122         Error *err = NULL;
123 
124         if (machine_kernel_irqchip_allowed(machine)) {
125             icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
126         }
127         if (machine_kernel_irqchip_required(machine) && !icp) {
128             error_reportf_err(err,
129                               "kernel_irqchip requested but unavailable: ");
130         } else {
131             error_free(err);
132         }
133     }
134 
135     if (!icp) {
136         icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp);
137     }
138 
139     return icp;
140 }
141 
142 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
143                                   int smt_threads)
144 {
145     int i, ret = 0;
146     uint32_t servers_prop[smt_threads];
147     uint32_t gservers_prop[smt_threads * 2];
148     int index = ppc_get_vcpu_dt_id(cpu);
149 
150     if (cpu->cpu_version) {
151         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
152         if (ret < 0) {
153             return ret;
154         }
155     }
156 
157     /* Build interrupt servers and gservers properties */
158     for (i = 0; i < smt_threads; i++) {
159         servers_prop[i] = cpu_to_be32(index + i);
160         /* Hack, direct the group queues back to cpu 0 */
161         gservers_prop[i*2] = cpu_to_be32(index + i);
162         gservers_prop[i*2 + 1] = 0;
163     }
164     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
165                       servers_prop, sizeof(servers_prop));
166     if (ret < 0) {
167         return ret;
168     }
169     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
170                       gservers_prop, sizeof(gservers_prop));
171 
172     return ret;
173 }
174 
175 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
176 {
177     int ret = 0;
178     PowerPCCPU *cpu = POWERPC_CPU(cs);
179     int index = ppc_get_vcpu_dt_id(cpu);
180     uint32_t associativity[] = {cpu_to_be32(0x5),
181                                 cpu_to_be32(0x0),
182                                 cpu_to_be32(0x0),
183                                 cpu_to_be32(0x0),
184                                 cpu_to_be32(cs->numa_node),
185                                 cpu_to_be32(index)};
186 
187     /* Advertise NUMA via ibm,associativity */
188     if (nb_numa_nodes > 1) {
189         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
190                           sizeof(associativity));
191     }
192 
193     return ret;
194 }
195 
196 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
197 {
198     int ret = 0, offset, cpus_offset;
199     CPUState *cs;
200     char cpu_model[32];
201     int smt = kvmppc_smt_threads();
202     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
203 
204     CPU_FOREACH(cs) {
205         PowerPCCPU *cpu = POWERPC_CPU(cs);
206         DeviceClass *dc = DEVICE_GET_CLASS(cs);
207         int index = ppc_get_vcpu_dt_id(cpu);
208 
209         if ((index % smt) != 0) {
210             continue;
211         }
212 
213         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
214 
215         cpus_offset = fdt_path_offset(fdt, "/cpus");
216         if (cpus_offset < 0) {
217             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
218                                           "cpus");
219             if (cpus_offset < 0) {
220                 return cpus_offset;
221             }
222         }
223         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
224         if (offset < 0) {
225             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
226             if (offset < 0) {
227                 return offset;
228             }
229         }
230 
231         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
232                           pft_size_prop, sizeof(pft_size_prop));
233         if (ret < 0) {
234             return ret;
235         }
236 
237         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
238         if (ret < 0) {
239             return ret;
240         }
241 
242         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
243                                      ppc_get_compat_smt_threads(cpu));
244         if (ret < 0) {
245             return ret;
246         }
247     }
248     return ret;
249 }
250 
251 
252 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
253                                      size_t maxsize)
254 {
255     size_t maxcells = maxsize / sizeof(uint32_t);
256     int i, j, count;
257     uint32_t *p = prop;
258 
259     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
260         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
261 
262         if (!sps->page_shift) {
263             break;
264         }
265         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
266             if (sps->enc[count].page_shift == 0) {
267                 break;
268             }
269         }
270         if ((p - prop) >= (maxcells - 3 - count * 2)) {
271             break;
272         }
273         *(p++) = cpu_to_be32(sps->page_shift);
274         *(p++) = cpu_to_be32(sps->slb_enc);
275         *(p++) = cpu_to_be32(count);
276         for (j = 0; j < count; j++) {
277             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
278             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
279         }
280     }
281 
282     return (p - prop) * sizeof(uint32_t);
283 }
284 
285 static hwaddr spapr_node0_size(void)
286 {
287     MachineState *machine = MACHINE(qdev_get_machine());
288 
289     if (nb_numa_nodes) {
290         int i;
291         for (i = 0; i < nb_numa_nodes; ++i) {
292             if (numa_info[i].node_mem) {
293                 return MIN(pow2floor(numa_info[i].node_mem),
294                            machine->ram_size);
295             }
296         }
297     }
298     return machine->ram_size;
299 }
300 
301 #define _FDT(exp) \
302     do { \
303         int ret = (exp);                                           \
304         if (ret < 0) {                                             \
305             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
306                     #exp, fdt_strerror(ret));                      \
307             exit(1);                                               \
308         }                                                          \
309     } while (0)
310 
311 static void add_str(GString *s, const gchar *s1)
312 {
313     g_string_append_len(s, s1, strlen(s1) + 1);
314 }
315 
316 static void *spapr_create_fdt_skel(hwaddr initrd_base,
317                                    hwaddr initrd_size,
318                                    hwaddr kernel_size,
319                                    bool little_endian,
320                                    const char *kernel_cmdline,
321                                    uint32_t epow_irq)
322 {
323     void *fdt;
324     uint32_t start_prop = cpu_to_be32(initrd_base);
325     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
326     GString *hypertas = g_string_sized_new(256);
327     GString *qemu_hypertas = g_string_sized_new(256);
328     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
329     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
330     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
331     char *buf;
332 
333     add_str(hypertas, "hcall-pft");
334     add_str(hypertas, "hcall-term");
335     add_str(hypertas, "hcall-dabr");
336     add_str(hypertas, "hcall-interrupt");
337     add_str(hypertas, "hcall-tce");
338     add_str(hypertas, "hcall-vio");
339     add_str(hypertas, "hcall-splpar");
340     add_str(hypertas, "hcall-bulk");
341     add_str(hypertas, "hcall-set-mode");
342     add_str(qemu_hypertas, "hcall-memop1");
343 
344     fdt = g_malloc0(FDT_MAX_SIZE);
345     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
346 
347     if (kernel_size) {
348         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
349     }
350     if (initrd_size) {
351         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
352     }
353     _FDT((fdt_finish_reservemap(fdt)));
354 
355     /* Root node */
356     _FDT((fdt_begin_node(fdt, "")));
357     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
358     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
359     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
360 
361     /*
362      * Add info to guest to indentify which host is it being run on
363      * and what is the uuid of the guest
364      */
365     if (kvmppc_get_host_model(&buf)) {
366         _FDT((fdt_property_string(fdt, "host-model", buf)));
367         g_free(buf);
368     }
369     if (kvmppc_get_host_serial(&buf)) {
370         _FDT((fdt_property_string(fdt, "host-serial", buf)));
371         g_free(buf);
372     }
373 
374     buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
375                           qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
376                           qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
377                           qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
378                           qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
379                           qemu_uuid[14], qemu_uuid[15]);
380 
381     _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
382     if (qemu_uuid_set) {
383         _FDT((fdt_property_string(fdt, "system-id", buf)));
384     }
385     g_free(buf);
386 
387     if (qemu_get_vm_name()) {
388         _FDT((fdt_property_string(fdt, "ibm,partition-name",
389                                   qemu_get_vm_name())));
390     }
391 
392     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
393     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
394 
395     /* /chosen */
396     _FDT((fdt_begin_node(fdt, "chosen")));
397 
398     /* Set Form1_affinity */
399     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
400 
401     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
402     _FDT((fdt_property(fdt, "linux,initrd-start",
403                        &start_prop, sizeof(start_prop))));
404     _FDT((fdt_property(fdt, "linux,initrd-end",
405                        &end_prop, sizeof(end_prop))));
406     if (kernel_size) {
407         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
408                               cpu_to_be64(kernel_size) };
409 
410         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
411         if (little_endian) {
412             _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
413         }
414     }
415     if (boot_menu) {
416         _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
417     }
418     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
419     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
420     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
421 
422     _FDT((fdt_end_node(fdt)));
423 
424     /* RTAS */
425     _FDT((fdt_begin_node(fdt, "rtas")));
426 
427     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
428         add_str(hypertas, "hcall-multi-tce");
429     }
430     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
431                        hypertas->len)));
432     g_string_free(hypertas, TRUE);
433     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
434                        qemu_hypertas->len)));
435     g_string_free(qemu_hypertas, TRUE);
436 
437     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
438         refpoints, sizeof(refpoints))));
439 
440     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
441     _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
442                             RTAS_EVENT_SCAN_RATE)));
443 
444     if (msi_nonbroken) {
445         _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
446     }
447 
448     /*
449      * According to PAPR, rtas ibm,os-term does not guarantee a return
450      * back to the guest cpu.
451      *
452      * While an additional ibm,extended-os-term property indicates that
453      * rtas call return will always occur. Set this property.
454      */
455     _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
456 
457     _FDT((fdt_end_node(fdt)));
458 
459     /* interrupt controller */
460     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
461 
462     _FDT((fdt_property_string(fdt, "device_type",
463                               "PowerPC-External-Interrupt-Presentation")));
464     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
465     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
466     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
467                        interrupt_server_ranges_prop,
468                        sizeof(interrupt_server_ranges_prop))));
469     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
470     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
471     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
472 
473     _FDT((fdt_end_node(fdt)));
474 
475     /* vdevice */
476     _FDT((fdt_begin_node(fdt, "vdevice")));
477 
478     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
479     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
480     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
481     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
482     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
483     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
484 
485     _FDT((fdt_end_node(fdt)));
486 
487     /* event-sources */
488     spapr_events_fdt_skel(fdt, epow_irq);
489 
490     /* /hypervisor node */
491     if (kvm_enabled()) {
492         uint8_t hypercall[16];
493 
494         /* indicate KVM hypercall interface */
495         _FDT((fdt_begin_node(fdt, "hypervisor")));
496         _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
497         if (kvmppc_has_cap_fixup_hcalls()) {
498             /*
499              * Older KVM versions with older guest kernels were broken with the
500              * magic page, don't allow the guest to map it.
501              */
502             if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
503                                       sizeof(hypercall))) {
504                 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
505                                    sizeof(hypercall))));
506             }
507         }
508         _FDT((fdt_end_node(fdt)));
509     }
510 
511     _FDT((fdt_end_node(fdt))); /* close root node */
512     _FDT((fdt_finish(fdt)));
513 
514     return fdt;
515 }
516 
517 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
518                                        hwaddr size)
519 {
520     uint32_t associativity[] = {
521         cpu_to_be32(0x4), /* length */
522         cpu_to_be32(0x0), cpu_to_be32(0x0),
523         cpu_to_be32(0x0), cpu_to_be32(nodeid)
524     };
525     char mem_name[32];
526     uint64_t mem_reg_property[2];
527     int off;
528 
529     mem_reg_property[0] = cpu_to_be64(start);
530     mem_reg_property[1] = cpu_to_be64(size);
531 
532     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
533     off = fdt_add_subnode(fdt, 0, mem_name);
534     _FDT(off);
535     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
536     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
537                       sizeof(mem_reg_property))));
538     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
539                       sizeof(associativity))));
540     return off;
541 }
542 
543 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
544 {
545     MachineState *machine = MACHINE(spapr);
546     hwaddr mem_start, node_size;
547     int i, nb_nodes = nb_numa_nodes;
548     NodeInfo *nodes = numa_info;
549     NodeInfo ramnode;
550 
551     /* No NUMA nodes, assume there is just one node with whole RAM */
552     if (!nb_numa_nodes) {
553         nb_nodes = 1;
554         ramnode.node_mem = machine->ram_size;
555         nodes = &ramnode;
556     }
557 
558     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
559         if (!nodes[i].node_mem) {
560             continue;
561         }
562         if (mem_start >= machine->ram_size) {
563             node_size = 0;
564         } else {
565             node_size = nodes[i].node_mem;
566             if (node_size > machine->ram_size - mem_start) {
567                 node_size = machine->ram_size - mem_start;
568             }
569         }
570         if (!mem_start) {
571             /* ppc_spapr_init() checks for rma_size <= node0_size already */
572             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
573             mem_start += spapr->rma_size;
574             node_size -= spapr->rma_size;
575         }
576         for ( ; node_size; ) {
577             hwaddr sizetmp = pow2floor(node_size);
578 
579             /* mem_start != 0 here */
580             if (ctzl(mem_start) < ctzl(sizetmp)) {
581                 sizetmp = 1ULL << ctzl(mem_start);
582             }
583 
584             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
585             node_size -= sizetmp;
586             mem_start += sizetmp;
587         }
588     }
589 
590     return 0;
591 }
592 
593 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
594                                   sPAPRMachineState *spapr)
595 {
596     PowerPCCPU *cpu = POWERPC_CPU(cs);
597     CPUPPCState *env = &cpu->env;
598     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
599     int index = ppc_get_vcpu_dt_id(cpu);
600     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
601                        0xffffffff, 0xffffffff};
602     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
603     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
604     uint32_t page_sizes_prop[64];
605     size_t page_sizes_prop_size;
606     uint32_t vcpus_per_socket = smp_threads * smp_cores;
607     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
608 
609     /* Note: we keep CI large pages off for now because a 64K capable guest
610      * provisioned with large pages might otherwise try to map a qemu
611      * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
612      * even if that qemu runs on a 4k host.
613      *
614      * We can later add this bit back when we are confident this is not
615      * an issue (!HV KVM or 64K host)
616      */
617     uint8_t pa_features_206[] = { 6, 0,
618         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
619     uint8_t pa_features_207[] = { 24, 0,
620         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
621         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
622         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
623         0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
624     uint8_t *pa_features;
625     size_t pa_size;
626 
627     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
628     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
629 
630     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
631     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
632                            env->dcache_line_size)));
633     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
634                            env->dcache_line_size)));
635     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
636                            env->icache_line_size)));
637     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
638                            env->icache_line_size)));
639 
640     if (pcc->l1_dcache_size) {
641         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
642                                pcc->l1_dcache_size)));
643     } else {
644         fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
645     }
646     if (pcc->l1_icache_size) {
647         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
648                                pcc->l1_icache_size)));
649     } else {
650         fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
651     }
652 
653     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
654     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
655     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
656     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
657     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
658     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
659 
660     if (env->spr_cb[SPR_PURR].oea_read) {
661         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
662     }
663 
664     if (env->mmu_model & POWERPC_MMU_1TSEG) {
665         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
666                           segs, sizeof(segs))));
667     }
668 
669     /* Advertise VMX/VSX (vector extensions) if available
670      *   0 / no property == no vector extensions
671      *   1               == VMX / Altivec available
672      *   2               == VSX available */
673     if (env->insns_flags & PPC_ALTIVEC) {
674         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
675 
676         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
677     }
678 
679     /* Advertise DFP (Decimal Floating Point) if available
680      *   0 / no property == no DFP
681      *   1               == DFP available */
682     if (env->insns_flags2 & PPC2_DFP) {
683         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
684     }
685 
686     page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
687                                                   sizeof(page_sizes_prop));
688     if (page_sizes_prop_size) {
689         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
690                           page_sizes_prop, page_sizes_prop_size)));
691     }
692 
693     /* Do the ibm,pa-features property, adjust it for ci-large-pages */
694     if (env->mmu_model == POWERPC_MMU_2_06) {
695         pa_features = pa_features_206;
696         pa_size = sizeof(pa_features_206);
697     } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
698         pa_features = pa_features_207;
699         pa_size = sizeof(pa_features_207);
700     }
701     if (env->ci_large_pages) {
702         pa_features[3] |= 0x20;
703     }
704     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
705 
706     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
707                            cs->cpu_index / vcpus_per_socket)));
708 
709     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
710                       pft_size_prop, sizeof(pft_size_prop))));
711 
712     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
713 
714     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
715                                 ppc_get_compat_smt_threads(cpu)));
716 }
717 
718 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
719 {
720     CPUState *cs;
721     int cpus_offset;
722     char *nodename;
723     int smt = kvmppc_smt_threads();
724 
725     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
726     _FDT(cpus_offset);
727     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
728     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
729 
730     /*
731      * We walk the CPUs in reverse order to ensure that CPU DT nodes
732      * created by fdt_add_subnode() end up in the right order in FDT
733      * for the guest kernel the enumerate the CPUs correctly.
734      */
735     CPU_FOREACH_REVERSE(cs) {
736         PowerPCCPU *cpu = POWERPC_CPU(cs);
737         int index = ppc_get_vcpu_dt_id(cpu);
738         DeviceClass *dc = DEVICE_GET_CLASS(cs);
739         int offset;
740 
741         if ((index % smt) != 0) {
742             continue;
743         }
744 
745         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
746         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
747         g_free(nodename);
748         _FDT(offset);
749         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
750     }
751 
752 }
753 
754 /*
755  * Adds ibm,dynamic-reconfiguration-memory node.
756  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
757  * of this device tree node.
758  */
759 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
760 {
761     MachineState *machine = MACHINE(spapr);
762     int ret, i, offset;
763     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
764     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
765     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
766     uint32_t *int_buf, *cur_index, buf_len;
767     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
768 
769     /*
770      * Don't create the node if there are no DR LMBs.
771      */
772     if (!nr_lmbs) {
773         return 0;
774     }
775 
776     /*
777      * Allocate enough buffer size to fit in ibm,dynamic-memory
778      * or ibm,associativity-lookup-arrays
779      */
780     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
781               * sizeof(uint32_t);
782     cur_index = int_buf = g_malloc0(buf_len);
783 
784     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
785 
786     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
787                     sizeof(prop_lmb_size));
788     if (ret < 0) {
789         goto out;
790     }
791 
792     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
793     if (ret < 0) {
794         goto out;
795     }
796 
797     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
798     if (ret < 0) {
799         goto out;
800     }
801 
802     /* ibm,dynamic-memory */
803     int_buf[0] = cpu_to_be32(nr_lmbs);
804     cur_index++;
805     for (i = 0; i < nr_lmbs; i++) {
806         sPAPRDRConnector *drc;
807         sPAPRDRConnectorClass *drck;
808         uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
809         uint32_t *dynamic_memory = cur_index;
810 
811         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
812                                        addr/lmb_size);
813         g_assert(drc);
814         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
815 
816         dynamic_memory[0] = cpu_to_be32(addr >> 32);
817         dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
818         dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
819         dynamic_memory[3] = cpu_to_be32(0); /* reserved */
820         dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
821         if (addr < machine->ram_size ||
822                     memory_region_present(get_system_memory(), addr)) {
823             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
824         } else {
825             dynamic_memory[5] = cpu_to_be32(0);
826         }
827 
828         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
829     }
830     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
831     if (ret < 0) {
832         goto out;
833     }
834 
835     /* ibm,associativity-lookup-arrays */
836     cur_index = int_buf;
837     int_buf[0] = cpu_to_be32(nr_nodes);
838     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
839     cur_index += 2;
840     for (i = 0; i < nr_nodes; i++) {
841         uint32_t associativity[] = {
842             cpu_to_be32(0x0),
843             cpu_to_be32(0x0),
844             cpu_to_be32(0x0),
845             cpu_to_be32(i)
846         };
847         memcpy(cur_index, associativity, sizeof(associativity));
848         cur_index += 4;
849     }
850     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
851             (cur_index - int_buf) * sizeof(uint32_t));
852 out:
853     g_free(int_buf);
854     return ret;
855 }
856 
857 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
858                                  target_ulong addr, target_ulong size,
859                                  bool cpu_update, bool memory_update)
860 {
861     void *fdt, *fdt_skel;
862     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
863     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
864 
865     size -= sizeof(hdr);
866 
867     /* Create sceleton */
868     fdt_skel = g_malloc0(size);
869     _FDT((fdt_create(fdt_skel, size)));
870     _FDT((fdt_begin_node(fdt_skel, "")));
871     _FDT((fdt_end_node(fdt_skel)));
872     _FDT((fdt_finish(fdt_skel)));
873     fdt = g_malloc0(size);
874     _FDT((fdt_open_into(fdt_skel, fdt, size)));
875     g_free(fdt_skel);
876 
877     /* Fixup cpu nodes */
878     if (cpu_update) {
879         _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
880     }
881 
882     /* Generate ibm,dynamic-reconfiguration-memory node if required */
883     if (memory_update && smc->dr_lmb_enabled) {
884         _FDT((spapr_populate_drconf_memory(spapr, fdt)));
885     }
886 
887     /* Pack resulting tree */
888     _FDT((fdt_pack(fdt)));
889 
890     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
891         trace_spapr_cas_failed(size);
892         return -1;
893     }
894 
895     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
896     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
897     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
898     g_free(fdt);
899 
900     return 0;
901 }
902 
903 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
904                                hwaddr fdt_addr,
905                                hwaddr rtas_addr,
906                                hwaddr rtas_size)
907 {
908     MachineState *machine = MACHINE(qdev_get_machine());
909     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
910     const char *boot_device = machine->boot_order;
911     int ret, i;
912     size_t cb = 0;
913     char *bootlist;
914     void *fdt;
915     sPAPRPHBState *phb;
916 
917     fdt = g_malloc(FDT_MAX_SIZE);
918 
919     /* open out the base tree into a temp buffer for the final tweaks */
920     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
921 
922     ret = spapr_populate_memory(spapr, fdt);
923     if (ret < 0) {
924         fprintf(stderr, "couldn't setup memory nodes in fdt\n");
925         exit(1);
926     }
927 
928     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
929     if (ret < 0) {
930         fprintf(stderr, "couldn't setup vio devices in fdt\n");
931         exit(1);
932     }
933 
934     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
935         ret = spapr_rng_populate_dt(fdt);
936         if (ret < 0) {
937             fprintf(stderr, "could not set up rng device in the fdt\n");
938             exit(1);
939         }
940     }
941 
942     QLIST_FOREACH(phb, &spapr->phbs, list) {
943         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
944         if (ret < 0) {
945             error_report("couldn't setup PCI devices in fdt");
946             exit(1);
947         }
948     }
949 
950     /* RTAS */
951     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
952     if (ret < 0) {
953         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
954     }
955 
956     /* cpus */
957     spapr_populate_cpus_dt_node(fdt, spapr);
958 
959     bootlist = get_boot_devices_list(&cb, true);
960     if (cb && bootlist) {
961         int offset = fdt_path_offset(fdt, "/chosen");
962         if (offset < 0) {
963             exit(1);
964         }
965         for (i = 0; i < cb; i++) {
966             if (bootlist[i] == '\n') {
967                 bootlist[i] = ' ';
968             }
969 
970         }
971         ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
972     }
973 
974     if (boot_device && strlen(boot_device)) {
975         int offset = fdt_path_offset(fdt, "/chosen");
976 
977         if (offset < 0) {
978             exit(1);
979         }
980         fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
981     }
982 
983     if (!spapr->has_graphics) {
984         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
985     }
986 
987     if (smc->dr_lmb_enabled) {
988         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
989     }
990 
991     _FDT((fdt_pack(fdt)));
992 
993     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
994         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
995                      fdt_totalsize(fdt), FDT_MAX_SIZE);
996         exit(1);
997     }
998 
999     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1000     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1001 
1002     g_free(bootlist);
1003     g_free(fdt);
1004 }
1005 
1006 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1007 {
1008     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1009 }
1010 
1011 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1012 {
1013     CPUPPCState *env = &cpu->env;
1014 
1015     if (msr_pr) {
1016         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1017         env->gpr[3] = H_PRIVILEGE;
1018     } else {
1019         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1020     }
1021 }
1022 
1023 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1024 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1025 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1026 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1027 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1028 
1029 /*
1030  * Get the fd to access the kernel htab, re-opening it if necessary
1031  */
1032 static int get_htab_fd(sPAPRMachineState *spapr)
1033 {
1034     if (spapr->htab_fd >= 0) {
1035         return spapr->htab_fd;
1036     }
1037 
1038     spapr->htab_fd = kvmppc_get_htab_fd(false);
1039     if (spapr->htab_fd < 0) {
1040         error_report("Unable to open fd for reading hash table from KVM: %s",
1041                      strerror(errno));
1042     }
1043 
1044     return spapr->htab_fd;
1045 }
1046 
1047 static void close_htab_fd(sPAPRMachineState *spapr)
1048 {
1049     if (spapr->htab_fd >= 0) {
1050         close(spapr->htab_fd);
1051     }
1052     spapr->htab_fd = -1;
1053 }
1054 
1055 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1056 {
1057     int shift;
1058 
1059     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1060      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1061      * that's much more than is needed for Linux guests */
1062     shift = ctz64(pow2ceil(ramsize)) - 7;
1063     shift = MAX(shift, 18); /* Minimum architected size */
1064     shift = MIN(shift, 46); /* Maximum architected size */
1065     return shift;
1066 }
1067 
1068 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1069                                  Error **errp)
1070 {
1071     long rc;
1072 
1073     /* Clean up any HPT info from a previous boot */
1074     g_free(spapr->htab);
1075     spapr->htab = NULL;
1076     spapr->htab_shift = 0;
1077     close_htab_fd(spapr);
1078 
1079     rc = kvmppc_reset_htab(shift);
1080     if (rc < 0) {
1081         /* kernel-side HPT needed, but couldn't allocate one */
1082         error_setg_errno(errp, errno,
1083                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1084                          shift);
1085         /* This is almost certainly fatal, but if the caller really
1086          * wants to carry on with shift == 0, it's welcome to try */
1087     } else if (rc > 0) {
1088         /* kernel-side HPT allocated */
1089         if (rc != shift) {
1090             error_setg(errp,
1091                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1092                        shift, rc);
1093         }
1094 
1095         spapr->htab_shift = shift;
1096         spapr->htab = NULL;
1097     } else {
1098         /* kernel-side HPT not needed, allocate in userspace instead */
1099         size_t size = 1ULL << shift;
1100         int i;
1101 
1102         spapr->htab = qemu_memalign(size, size);
1103         if (!spapr->htab) {
1104             error_setg_errno(errp, errno,
1105                              "Could not allocate HPT of order %d", shift);
1106             return;
1107         }
1108 
1109         memset(spapr->htab, 0, size);
1110         spapr->htab_shift = shift;
1111 
1112         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1113             DIRTY_HPTE(HPTE(spapr->htab, i));
1114         }
1115     }
1116 }
1117 
1118 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1119 {
1120     bool matched = false;
1121 
1122     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1123         matched = true;
1124     }
1125 
1126     if (!matched) {
1127         error_report("Device %s is not supported by this machine yet.",
1128                      qdev_fw_name(DEVICE(sbdev)));
1129         exit(1);
1130     }
1131 
1132     return 0;
1133 }
1134 
1135 static void ppc_spapr_reset(void)
1136 {
1137     MachineState *machine = MACHINE(qdev_get_machine());
1138     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1139     PowerPCCPU *first_ppc_cpu;
1140     uint32_t rtas_limit;
1141 
1142     /* Check for unknown sysbus devices */
1143     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1144 
1145     /* Allocate and/or reset the hash page table */
1146     spapr_reallocate_hpt(spapr,
1147                          spapr_hpt_shift_for_ramsize(machine->maxram_size),
1148                          &error_fatal);
1149 
1150     /* Update the RMA size if necessary */
1151     if (spapr->vrma_adjust) {
1152         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1153                                           spapr->htab_shift);
1154     }
1155 
1156     qemu_devices_reset();
1157 
1158     /*
1159      * We place the device tree and RTAS just below either the top of the RMA,
1160      * or just below 2GB, whichever is lowere, so that it can be
1161      * processed with 32-bit real mode code if necessary
1162      */
1163     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1164     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1165     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1166 
1167     /* Load the fdt */
1168     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1169                        spapr->rtas_size);
1170 
1171     /* Copy RTAS over */
1172     cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1173                               spapr->rtas_size);
1174 
1175     /* Set up the entry state */
1176     first_ppc_cpu = POWERPC_CPU(first_cpu);
1177     first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1178     first_ppc_cpu->env.gpr[5] = 0;
1179     first_cpu->halted = 0;
1180     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1181 
1182 }
1183 
1184 static void spapr_cpu_reset(void *opaque)
1185 {
1186     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1187     PowerPCCPU *cpu = opaque;
1188     CPUState *cs = CPU(cpu);
1189     CPUPPCState *env = &cpu->env;
1190 
1191     cpu_reset(cs);
1192 
1193     /* All CPUs start halted.  CPU0 is unhalted from the machine level
1194      * reset code and the rest are explicitly started up by the guest
1195      * using an RTAS call */
1196     cs->halted = 1;
1197 
1198     env->spr[SPR_HIOR] = 0;
1199 
1200     ppc_hash64_set_external_hpt(cpu, spapr->htab, spapr->htab_shift,
1201                                 &error_fatal);
1202 }
1203 
1204 static void spapr_create_nvram(sPAPRMachineState *spapr)
1205 {
1206     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1207     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1208 
1209     if (dinfo) {
1210         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1211                             &error_fatal);
1212     }
1213 
1214     qdev_init_nofail(dev);
1215 
1216     spapr->nvram = (struct sPAPRNVRAM *)dev;
1217 }
1218 
1219 static void spapr_rtc_create(sPAPRMachineState *spapr)
1220 {
1221     DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1222 
1223     qdev_init_nofail(dev);
1224     spapr->rtc = dev;
1225 
1226     object_property_add_alias(qdev_get_machine(), "rtc-time",
1227                               OBJECT(spapr->rtc), "date", NULL);
1228 }
1229 
1230 /* Returns whether we want to use VGA or not */
1231 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1232 {
1233     switch (vga_interface_type) {
1234     case VGA_NONE:
1235         return false;
1236     case VGA_DEVICE:
1237         return true;
1238     case VGA_STD:
1239     case VGA_VIRTIO:
1240         return pci_vga_init(pci_bus) != NULL;
1241     default:
1242         error_setg(errp,
1243                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1244         return false;
1245     }
1246 }
1247 
1248 static int spapr_post_load(void *opaque, int version_id)
1249 {
1250     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1251     int err = 0;
1252 
1253     /* In earlier versions, there was no separate qdev for the PAPR
1254      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1255      * So when migrating from those versions, poke the incoming offset
1256      * value into the RTC device */
1257     if (version_id < 3) {
1258         err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1259     }
1260 
1261     return err;
1262 }
1263 
1264 static bool version_before_3(void *opaque, int version_id)
1265 {
1266     return version_id < 3;
1267 }
1268 
1269 static const VMStateDescription vmstate_spapr = {
1270     .name = "spapr",
1271     .version_id = 3,
1272     .minimum_version_id = 1,
1273     .post_load = spapr_post_load,
1274     .fields = (VMStateField[]) {
1275         /* used to be @next_irq */
1276         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1277 
1278         /* RTC offset */
1279         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1280 
1281         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1282         VMSTATE_END_OF_LIST()
1283     },
1284 };
1285 
1286 static int htab_save_setup(QEMUFile *f, void *opaque)
1287 {
1288     sPAPRMachineState *spapr = opaque;
1289 
1290     /* "Iteration" header */
1291     qemu_put_be32(f, spapr->htab_shift);
1292 
1293     if (spapr->htab) {
1294         spapr->htab_save_index = 0;
1295         spapr->htab_first_pass = true;
1296     } else {
1297         assert(kvm_enabled());
1298     }
1299 
1300 
1301     return 0;
1302 }
1303 
1304 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1305                                  int64_t max_ns)
1306 {
1307     bool has_timeout = max_ns != -1;
1308     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1309     int index = spapr->htab_save_index;
1310     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1311 
1312     assert(spapr->htab_first_pass);
1313 
1314     do {
1315         int chunkstart;
1316 
1317         /* Consume invalid HPTEs */
1318         while ((index < htabslots)
1319                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1320             index++;
1321             CLEAN_HPTE(HPTE(spapr->htab, index));
1322         }
1323 
1324         /* Consume valid HPTEs */
1325         chunkstart = index;
1326         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1327                && HPTE_VALID(HPTE(spapr->htab, index))) {
1328             index++;
1329             CLEAN_HPTE(HPTE(spapr->htab, index));
1330         }
1331 
1332         if (index > chunkstart) {
1333             int n_valid = index - chunkstart;
1334 
1335             qemu_put_be32(f, chunkstart);
1336             qemu_put_be16(f, n_valid);
1337             qemu_put_be16(f, 0);
1338             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1339                             HASH_PTE_SIZE_64 * n_valid);
1340 
1341             if (has_timeout &&
1342                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1343                 break;
1344             }
1345         }
1346     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1347 
1348     if (index >= htabslots) {
1349         assert(index == htabslots);
1350         index = 0;
1351         spapr->htab_first_pass = false;
1352     }
1353     spapr->htab_save_index = index;
1354 }
1355 
1356 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1357                                 int64_t max_ns)
1358 {
1359     bool final = max_ns < 0;
1360     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1361     int examined = 0, sent = 0;
1362     int index = spapr->htab_save_index;
1363     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1364 
1365     assert(!spapr->htab_first_pass);
1366 
1367     do {
1368         int chunkstart, invalidstart;
1369 
1370         /* Consume non-dirty HPTEs */
1371         while ((index < htabslots)
1372                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1373             index++;
1374             examined++;
1375         }
1376 
1377         chunkstart = index;
1378         /* Consume valid dirty HPTEs */
1379         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1380                && HPTE_DIRTY(HPTE(spapr->htab, index))
1381                && HPTE_VALID(HPTE(spapr->htab, index))) {
1382             CLEAN_HPTE(HPTE(spapr->htab, index));
1383             index++;
1384             examined++;
1385         }
1386 
1387         invalidstart = index;
1388         /* Consume invalid dirty HPTEs */
1389         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1390                && HPTE_DIRTY(HPTE(spapr->htab, index))
1391                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1392             CLEAN_HPTE(HPTE(spapr->htab, index));
1393             index++;
1394             examined++;
1395         }
1396 
1397         if (index > chunkstart) {
1398             int n_valid = invalidstart - chunkstart;
1399             int n_invalid = index - invalidstart;
1400 
1401             qemu_put_be32(f, chunkstart);
1402             qemu_put_be16(f, n_valid);
1403             qemu_put_be16(f, n_invalid);
1404             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1405                             HASH_PTE_SIZE_64 * n_valid);
1406             sent += index - chunkstart;
1407 
1408             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1409                 break;
1410             }
1411         }
1412 
1413         if (examined >= htabslots) {
1414             break;
1415         }
1416 
1417         if (index >= htabslots) {
1418             assert(index == htabslots);
1419             index = 0;
1420         }
1421     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1422 
1423     if (index >= htabslots) {
1424         assert(index == htabslots);
1425         index = 0;
1426     }
1427 
1428     spapr->htab_save_index = index;
1429 
1430     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1431 }
1432 
1433 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1434 #define MAX_KVM_BUF_SIZE    2048
1435 
1436 static int htab_save_iterate(QEMUFile *f, void *opaque)
1437 {
1438     sPAPRMachineState *spapr = opaque;
1439     int fd;
1440     int rc = 0;
1441 
1442     /* Iteration header */
1443     qemu_put_be32(f, 0);
1444 
1445     if (!spapr->htab) {
1446         assert(kvm_enabled());
1447 
1448         fd = get_htab_fd(spapr);
1449         if (fd < 0) {
1450             return fd;
1451         }
1452 
1453         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1454         if (rc < 0) {
1455             return rc;
1456         }
1457     } else  if (spapr->htab_first_pass) {
1458         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1459     } else {
1460         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1461     }
1462 
1463     /* End marker */
1464     qemu_put_be32(f, 0);
1465     qemu_put_be16(f, 0);
1466     qemu_put_be16(f, 0);
1467 
1468     return rc;
1469 }
1470 
1471 static int htab_save_complete(QEMUFile *f, void *opaque)
1472 {
1473     sPAPRMachineState *spapr = opaque;
1474     int fd;
1475 
1476     /* Iteration header */
1477     qemu_put_be32(f, 0);
1478 
1479     if (!spapr->htab) {
1480         int rc;
1481 
1482         assert(kvm_enabled());
1483 
1484         fd = get_htab_fd(spapr);
1485         if (fd < 0) {
1486             return fd;
1487         }
1488 
1489         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1490         if (rc < 0) {
1491             return rc;
1492         }
1493         close_htab_fd(spapr);
1494     } else {
1495         if (spapr->htab_first_pass) {
1496             htab_save_first_pass(f, spapr, -1);
1497         }
1498         htab_save_later_pass(f, spapr, -1);
1499     }
1500 
1501     /* End marker */
1502     qemu_put_be32(f, 0);
1503     qemu_put_be16(f, 0);
1504     qemu_put_be16(f, 0);
1505 
1506     return 0;
1507 }
1508 
1509 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1510 {
1511     sPAPRMachineState *spapr = opaque;
1512     uint32_t section_hdr;
1513     int fd = -1;
1514 
1515     if (version_id < 1 || version_id > 1) {
1516         error_report("htab_load() bad version");
1517         return -EINVAL;
1518     }
1519 
1520     section_hdr = qemu_get_be32(f);
1521 
1522     if (section_hdr) {
1523         Error *local_err = NULL;
1524 
1525         /* First section gives the htab size */
1526         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1527         if (local_err) {
1528             error_report_err(local_err);
1529             return -EINVAL;
1530         }
1531         return 0;
1532     }
1533 
1534     if (!spapr->htab) {
1535         assert(kvm_enabled());
1536 
1537         fd = kvmppc_get_htab_fd(true);
1538         if (fd < 0) {
1539             error_report("Unable to open fd to restore KVM hash table: %s",
1540                          strerror(errno));
1541         }
1542     }
1543 
1544     while (true) {
1545         uint32_t index;
1546         uint16_t n_valid, n_invalid;
1547 
1548         index = qemu_get_be32(f);
1549         n_valid = qemu_get_be16(f);
1550         n_invalid = qemu_get_be16(f);
1551 
1552         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1553             /* End of Stream */
1554             break;
1555         }
1556 
1557         if ((index + n_valid + n_invalid) >
1558             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1559             /* Bad index in stream */
1560             error_report(
1561                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1562                 index, n_valid, n_invalid, spapr->htab_shift);
1563             return -EINVAL;
1564         }
1565 
1566         if (spapr->htab) {
1567             if (n_valid) {
1568                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1569                                 HASH_PTE_SIZE_64 * n_valid);
1570             }
1571             if (n_invalid) {
1572                 memset(HPTE(spapr->htab, index + n_valid), 0,
1573                        HASH_PTE_SIZE_64 * n_invalid);
1574             }
1575         } else {
1576             int rc;
1577 
1578             assert(fd >= 0);
1579 
1580             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1581             if (rc < 0) {
1582                 return rc;
1583             }
1584         }
1585     }
1586 
1587     if (!spapr->htab) {
1588         assert(fd >= 0);
1589         close(fd);
1590     }
1591 
1592     return 0;
1593 }
1594 
1595 static SaveVMHandlers savevm_htab_handlers = {
1596     .save_live_setup = htab_save_setup,
1597     .save_live_iterate = htab_save_iterate,
1598     .save_live_complete_precopy = htab_save_complete,
1599     .load_state = htab_load,
1600 };
1601 
1602 static void spapr_boot_set(void *opaque, const char *boot_device,
1603                            Error **errp)
1604 {
1605     MachineState *machine = MACHINE(qdev_get_machine());
1606     machine->boot_order = g_strdup(boot_device);
1607 }
1608 
1609 static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1610                            Error **errp)
1611 {
1612     CPUPPCState *env = &cpu->env;
1613 
1614     /* Set time-base frequency to 512 MHz */
1615     cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1616 
1617     /* Enable PAPR mode in TCG or KVM */
1618     cpu_ppc_set_papr(cpu);
1619 
1620     if (cpu->max_compat) {
1621         Error *local_err = NULL;
1622 
1623         ppc_set_compat(cpu, cpu->max_compat, &local_err);
1624         if (local_err) {
1625             error_propagate(errp, local_err);
1626             return;
1627         }
1628     }
1629 
1630     xics_cpu_setup(spapr->icp, cpu);
1631 
1632     qemu_register_reset(spapr_cpu_reset, cpu);
1633 }
1634 
1635 /*
1636  * Reset routine for LMB DR devices.
1637  *
1638  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1639  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1640  * when it walks all its children devices. LMB devices reset occurs
1641  * as part of spapr_ppc_reset().
1642  */
1643 static void spapr_drc_reset(void *opaque)
1644 {
1645     sPAPRDRConnector *drc = opaque;
1646     DeviceState *d = DEVICE(drc);
1647 
1648     if (d) {
1649         device_reset(d);
1650     }
1651 }
1652 
1653 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1654 {
1655     MachineState *machine = MACHINE(spapr);
1656     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1657     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1658     int i;
1659 
1660     for (i = 0; i < nr_lmbs; i++) {
1661         sPAPRDRConnector *drc;
1662         uint64_t addr;
1663 
1664         addr = i * lmb_size + spapr->hotplug_memory.base;
1665         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1666                                      addr/lmb_size);
1667         qemu_register_reset(spapr_drc_reset, drc);
1668     }
1669 }
1670 
1671 /*
1672  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1673  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1674  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1675  */
1676 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1677 {
1678     int i;
1679 
1680     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1681         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1682                    " is not aligned to %llu MiB",
1683                    machine->ram_size,
1684                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1685         return;
1686     }
1687 
1688     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1689         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1690                    " is not aligned to %llu MiB",
1691                    machine->ram_size,
1692                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1693         return;
1694     }
1695 
1696     for (i = 0; i < nb_numa_nodes; i++) {
1697         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1698             error_setg(errp,
1699                        "Node %d memory size 0x%" PRIx64
1700                        " is not aligned to %llu MiB",
1701                        i, numa_info[i].node_mem,
1702                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1703             return;
1704         }
1705     }
1706 }
1707 
1708 /* pSeries LPAR / sPAPR hardware init */
1709 static void ppc_spapr_init(MachineState *machine)
1710 {
1711     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1712     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1713     const char *kernel_filename = machine->kernel_filename;
1714     const char *kernel_cmdline = machine->kernel_cmdline;
1715     const char *initrd_filename = machine->initrd_filename;
1716     PowerPCCPU *cpu;
1717     PCIHostState *phb;
1718     int i;
1719     MemoryRegion *sysmem = get_system_memory();
1720     MemoryRegion *ram = g_new(MemoryRegion, 1);
1721     MemoryRegion *rma_region;
1722     void *rma = NULL;
1723     hwaddr rma_alloc_size;
1724     hwaddr node0_size = spapr_node0_size();
1725     uint32_t initrd_base = 0;
1726     long kernel_size = 0, initrd_size = 0;
1727     long load_limit, fw_size;
1728     bool kernel_le = false;
1729     char *filename;
1730 
1731     msi_nonbroken = true;
1732 
1733     QLIST_INIT(&spapr->phbs);
1734 
1735     cpu_ppc_hypercall = emulate_spapr_hypercall;
1736 
1737     /* Allocate RMA if necessary */
1738     rma_alloc_size = kvmppc_alloc_rma(&rma);
1739 
1740     if (rma_alloc_size == -1) {
1741         error_report("Unable to create RMA");
1742         exit(1);
1743     }
1744 
1745     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1746         spapr->rma_size = rma_alloc_size;
1747     } else {
1748         spapr->rma_size = node0_size;
1749 
1750         /* With KVM, we don't actually know whether KVM supports an
1751          * unbounded RMA (PR KVM) or is limited by the hash table size
1752          * (HV KVM using VRMA), so we always assume the latter
1753          *
1754          * In that case, we also limit the initial allocations for RTAS
1755          * etc... to 256M since we have no way to know what the VRMA size
1756          * is going to be as it depends on the size of the hash table
1757          * isn't determined yet.
1758          */
1759         if (kvm_enabled()) {
1760             spapr->vrma_adjust = 1;
1761             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1762         }
1763     }
1764 
1765     if (spapr->rma_size > node0_size) {
1766         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1767                      spapr->rma_size);
1768         exit(1);
1769     }
1770 
1771     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1772     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1773 
1774     /* Set up Interrupt Controller before we create the VCPUs */
1775     spapr->icp = xics_system_init(machine,
1776                                   DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1777                                                smp_threads),
1778                                   XICS_IRQS, &error_fatal);
1779 
1780     if (smc->dr_lmb_enabled) {
1781         spapr_validate_node_memory(machine, &error_fatal);
1782     }
1783 
1784     /* init CPUs */
1785     if (machine->cpu_model == NULL) {
1786         machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1787     }
1788     for (i = 0; i < smp_cpus; i++) {
1789         cpu = cpu_ppc_init(machine->cpu_model);
1790         if (cpu == NULL) {
1791             error_report("Unable to find PowerPC CPU definition");
1792             exit(1);
1793         }
1794         spapr_cpu_init(spapr, cpu, &error_fatal);
1795     }
1796 
1797     if (kvm_enabled()) {
1798         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1799         kvmppc_enable_logical_ci_hcalls();
1800         kvmppc_enable_set_mode_hcall();
1801     }
1802 
1803     /* allocate RAM */
1804     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1805                                          machine->ram_size);
1806     memory_region_add_subregion(sysmem, 0, ram);
1807 
1808     if (rma_alloc_size && rma) {
1809         rma_region = g_new(MemoryRegion, 1);
1810         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1811                                    rma_alloc_size, rma);
1812         vmstate_register_ram_global(rma_region);
1813         memory_region_add_subregion(sysmem, 0, rma_region);
1814     }
1815 
1816     /* initialize hotplug memory address space */
1817     if (machine->ram_size < machine->maxram_size) {
1818         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1819         /*
1820          * Limit the number of hotpluggable memory slots to half the number
1821          * slots that KVM supports, leaving the other half for PCI and other
1822          * devices. However ensure that number of slots doesn't drop below 32.
1823          */
1824         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1825                            SPAPR_MAX_RAM_SLOTS;
1826 
1827         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1828             max_memslots = SPAPR_MAX_RAM_SLOTS;
1829         }
1830         if (machine->ram_slots > max_memslots) {
1831             error_report("Specified number of memory slots %"
1832                          PRIu64" exceeds max supported %d",
1833                          machine->ram_slots, max_memslots);
1834             exit(1);
1835         }
1836 
1837         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1838                                               SPAPR_HOTPLUG_MEM_ALIGN);
1839         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1840                            "hotplug-memory", hotplug_mem_size);
1841         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1842                                     &spapr->hotplug_memory.mr);
1843     }
1844 
1845     if (smc->dr_lmb_enabled) {
1846         spapr_create_lmb_dr_connectors(spapr);
1847     }
1848 
1849     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1850     if (!filename) {
1851         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1852         exit(1);
1853     }
1854     spapr->rtas_size = get_image_size(filename);
1855     if (spapr->rtas_size < 0) {
1856         error_report("Could not get size of LPAR rtas '%s'", filename);
1857         exit(1);
1858     }
1859     spapr->rtas_blob = g_malloc(spapr->rtas_size);
1860     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1861         error_report("Could not load LPAR rtas '%s'", filename);
1862         exit(1);
1863     }
1864     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1865         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1866                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1867         exit(1);
1868     }
1869     g_free(filename);
1870 
1871     /* Set up EPOW events infrastructure */
1872     spapr_events_init(spapr);
1873 
1874     /* Set up the RTC RTAS interfaces */
1875     spapr_rtc_create(spapr);
1876 
1877     /* Set up VIO bus */
1878     spapr->vio_bus = spapr_vio_bus_init();
1879 
1880     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1881         if (serial_hds[i]) {
1882             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1883         }
1884     }
1885 
1886     /* We always have at least the nvram device on VIO */
1887     spapr_create_nvram(spapr);
1888 
1889     /* Set up PCI */
1890     spapr_pci_rtas_init();
1891 
1892     phb = spapr_create_phb(spapr, 0);
1893 
1894     for (i = 0; i < nb_nics; i++) {
1895         NICInfo *nd = &nd_table[i];
1896 
1897         if (!nd->model) {
1898             nd->model = g_strdup("ibmveth");
1899         }
1900 
1901         if (strcmp(nd->model, "ibmveth") == 0) {
1902             spapr_vlan_create(spapr->vio_bus, nd);
1903         } else {
1904             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1905         }
1906     }
1907 
1908     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1909         spapr_vscsi_create(spapr->vio_bus);
1910     }
1911 
1912     /* Graphics */
1913     if (spapr_vga_init(phb->bus, &error_fatal)) {
1914         spapr->has_graphics = true;
1915         machine->usb |= defaults_enabled() && !machine->usb_disabled;
1916     }
1917 
1918     if (machine->usb) {
1919         if (smc->use_ohci_by_default) {
1920             pci_create_simple(phb->bus, -1, "pci-ohci");
1921         } else {
1922             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1923         }
1924 
1925         if (spapr->has_graphics) {
1926             USBBus *usb_bus = usb_bus_find(-1);
1927 
1928             usb_create_simple(usb_bus, "usb-kbd");
1929             usb_create_simple(usb_bus, "usb-mouse");
1930         }
1931     }
1932 
1933     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1934         error_report(
1935             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1936             MIN_RMA_SLOF);
1937         exit(1);
1938     }
1939 
1940     if (kernel_filename) {
1941         uint64_t lowaddr = 0;
1942 
1943         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1944                                NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
1945                                0, 0);
1946         if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1947             kernel_size = load_elf(kernel_filename,
1948                                    translate_kernel_address, NULL,
1949                                    NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
1950                                    0, 0);
1951             kernel_le = kernel_size > 0;
1952         }
1953         if (kernel_size < 0) {
1954             error_report("error loading %s: %s",
1955                          kernel_filename, load_elf_strerror(kernel_size));
1956             exit(1);
1957         }
1958 
1959         /* load initrd */
1960         if (initrd_filename) {
1961             /* Try to locate the initrd in the gap between the kernel
1962              * and the firmware. Add a bit of space just in case
1963              */
1964             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1965             initrd_size = load_image_targphys(initrd_filename, initrd_base,
1966                                               load_limit - initrd_base);
1967             if (initrd_size < 0) {
1968                 error_report("could not load initial ram disk '%s'",
1969                              initrd_filename);
1970                 exit(1);
1971             }
1972         } else {
1973             initrd_base = 0;
1974             initrd_size = 0;
1975         }
1976     }
1977 
1978     if (bios_name == NULL) {
1979         bios_name = FW_FILE_NAME;
1980     }
1981     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1982     if (!filename) {
1983         error_report("Could not find LPAR firmware '%s'", bios_name);
1984         exit(1);
1985     }
1986     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1987     if (fw_size <= 0) {
1988         error_report("Could not load LPAR firmware '%s'", filename);
1989         exit(1);
1990     }
1991     g_free(filename);
1992 
1993     /* FIXME: Should register things through the MachineState's qdev
1994      * interface, this is a legacy from the sPAPREnvironment structure
1995      * which predated MachineState but had a similar function */
1996     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1997     register_savevm_live(NULL, "spapr/htab", -1, 1,
1998                          &savevm_htab_handlers, spapr);
1999 
2000     /* Prepare the device tree */
2001     spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2002                                             kernel_size, kernel_le,
2003                                             kernel_cmdline,
2004                                             spapr->check_exception_irq);
2005     assert(spapr->fdt_skel != NULL);
2006 
2007     /* used by RTAS */
2008     QTAILQ_INIT(&spapr->ccs_list);
2009     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2010 
2011     qemu_register_boot_set(spapr_boot_set, spapr);
2012 }
2013 
2014 static int spapr_kvm_type(const char *vm_type)
2015 {
2016     if (!vm_type) {
2017         return 0;
2018     }
2019 
2020     if (!strcmp(vm_type, "HV")) {
2021         return 1;
2022     }
2023 
2024     if (!strcmp(vm_type, "PR")) {
2025         return 2;
2026     }
2027 
2028     error_report("Unknown kvm-type specified '%s'", vm_type);
2029     exit(1);
2030 }
2031 
2032 /*
2033  * Implementation of an interface to adjust firmware path
2034  * for the bootindex property handling.
2035  */
2036 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2037                                    DeviceState *dev)
2038 {
2039 #define CAST(type, obj, name) \
2040     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2041     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2042     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2043 
2044     if (d) {
2045         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2046         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2047         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2048 
2049         if (spapr) {
2050             /*
2051              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2052              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2053              * in the top 16 bits of the 64-bit LUN
2054              */
2055             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2056             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2057                                    (uint64_t)id << 48);
2058         } else if (virtio) {
2059             /*
2060              * We use SRP luns of the form 01000000 | (target << 8) | lun
2061              * in the top 32 bits of the 64-bit LUN
2062              * Note: the quote above is from SLOF and it is wrong,
2063              * the actual binding is:
2064              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2065              */
2066             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2067             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2068                                    (uint64_t)id << 32);
2069         } else if (usb) {
2070             /*
2071              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2072              * in the top 32 bits of the 64-bit LUN
2073              */
2074             unsigned usb_port = atoi(usb->port->path);
2075             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2076             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2077                                    (uint64_t)id << 32);
2078         }
2079     }
2080 
2081     if (phb) {
2082         /* Replace "pci" with "pci@800000020000000" */
2083         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2084     }
2085 
2086     return NULL;
2087 }
2088 
2089 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2090 {
2091     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2092 
2093     return g_strdup(spapr->kvm_type);
2094 }
2095 
2096 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2097 {
2098     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2099 
2100     g_free(spapr->kvm_type);
2101     spapr->kvm_type = g_strdup(value);
2102 }
2103 
2104 static void spapr_machine_initfn(Object *obj)
2105 {
2106     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2107 
2108     spapr->htab_fd = -1;
2109     object_property_add_str(obj, "kvm-type",
2110                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2111     object_property_set_description(obj, "kvm-type",
2112                                     "Specifies the KVM virtualization mode (HV, PR)",
2113                                     NULL);
2114 }
2115 
2116 static void spapr_machine_finalizefn(Object *obj)
2117 {
2118     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2119 
2120     g_free(spapr->kvm_type);
2121 }
2122 
2123 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2124 {
2125     CPUState *cs = arg;
2126 
2127     cpu_synchronize_state(cs);
2128     ppc_cpu_do_system_reset(cs);
2129 }
2130 
2131 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2132 {
2133     CPUState *cs;
2134 
2135     CPU_FOREACH(cs) {
2136         async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2137     }
2138 }
2139 
2140 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2141                            uint32_t node, Error **errp)
2142 {
2143     sPAPRDRConnector *drc;
2144     sPAPRDRConnectorClass *drck;
2145     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2146     int i, fdt_offset, fdt_size;
2147     void *fdt;
2148 
2149     for (i = 0; i < nr_lmbs; i++) {
2150         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2151                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2152         g_assert(drc);
2153 
2154         fdt = create_device_tree(&fdt_size);
2155         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2156                                                 SPAPR_MEMORY_BLOCK_SIZE);
2157 
2158         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2159         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2160         addr += SPAPR_MEMORY_BLOCK_SIZE;
2161     }
2162     /* send hotplug notification to the
2163      * guest only in case of hotplugged memory
2164      */
2165     if (dev->hotplugged) {
2166        spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2167     }
2168 }
2169 
2170 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2171                               uint32_t node, Error **errp)
2172 {
2173     Error *local_err = NULL;
2174     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2175     PCDIMMDevice *dimm = PC_DIMM(dev);
2176     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2177     MemoryRegion *mr = ddc->get_memory_region(dimm);
2178     uint64_t align = memory_region_get_alignment(mr);
2179     uint64_t size = memory_region_size(mr);
2180     uint64_t addr;
2181 
2182     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2183         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2184                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2185         goto out;
2186     }
2187 
2188     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2189     if (local_err) {
2190         goto out;
2191     }
2192 
2193     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2194     if (local_err) {
2195         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2196         goto out;
2197     }
2198 
2199     spapr_add_lmbs(dev, addr, size, node, &error_abort);
2200 
2201 out:
2202     error_propagate(errp, local_err);
2203 }
2204 
2205 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2206                                       DeviceState *dev, Error **errp)
2207 {
2208     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2209 
2210     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2211         int node;
2212 
2213         if (!smc->dr_lmb_enabled) {
2214             error_setg(errp, "Memory hotplug not supported for this machine");
2215             return;
2216         }
2217         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2218         if (*errp) {
2219             return;
2220         }
2221         if (node < 0 || node >= MAX_NODES) {
2222             error_setg(errp, "Invaild node %d", node);
2223             return;
2224         }
2225 
2226         /*
2227          * Currently PowerPC kernel doesn't allow hot-adding memory to
2228          * memory-less node, but instead will silently add the memory
2229          * to the first node that has some memory. This causes two
2230          * unexpected behaviours for the user.
2231          *
2232          * - Memory gets hotplugged to a different node than what the user
2233          *   specified.
2234          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2235          *   to memory-less node, a reboot will set things accordingly
2236          *   and the previously hotplugged memory now ends in the right node.
2237          *   This appears as if some memory moved from one node to another.
2238          *
2239          * So until kernel starts supporting memory hotplug to memory-less
2240          * nodes, just prevent such attempts upfront in QEMU.
2241          */
2242         if (nb_numa_nodes && !numa_info[node].node_mem) {
2243             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2244                        node);
2245             return;
2246         }
2247 
2248         spapr_memory_plug(hotplug_dev, dev, node, errp);
2249     }
2250 }
2251 
2252 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2253                                       DeviceState *dev, Error **errp)
2254 {
2255     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2256         error_setg(errp, "Memory hot unplug not supported by sPAPR");
2257     }
2258 }
2259 
2260 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2261                                              DeviceState *dev)
2262 {
2263     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2264         return HOTPLUG_HANDLER(machine);
2265     }
2266     return NULL;
2267 }
2268 
2269 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2270 {
2271     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2272      * socket means much for the paravirtualized PAPR platform) */
2273     return cpu_index / smp_threads / smp_cores;
2274 }
2275 
2276 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2277 {
2278     MachineClass *mc = MACHINE_CLASS(oc);
2279     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2280     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2281     NMIClass *nc = NMI_CLASS(oc);
2282     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2283 
2284     mc->desc = "pSeries Logical Partition (PAPR compliant)";
2285 
2286     /*
2287      * We set up the default / latest behaviour here.  The class_init
2288      * functions for the specific versioned machine types can override
2289      * these details for backwards compatibility
2290      */
2291     mc->init = ppc_spapr_init;
2292     mc->reset = ppc_spapr_reset;
2293     mc->block_default_type = IF_SCSI;
2294     mc->max_cpus = MAX_CPUMASK_BITS;
2295     mc->no_parallel = 1;
2296     mc->default_boot_order = "";
2297     mc->default_ram_size = 512 * M_BYTE;
2298     mc->kvm_type = spapr_kvm_type;
2299     mc->has_dynamic_sysbus = true;
2300     mc->pci_allow_0_address = true;
2301     mc->get_hotplug_handler = spapr_get_hotpug_handler;
2302     hc->plug = spapr_machine_device_plug;
2303     hc->unplug = spapr_machine_device_unplug;
2304     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2305 
2306     smc->dr_lmb_enabled = true;
2307     fwc->get_dev_path = spapr_get_fw_dev_path;
2308     nc->nmi_monitor_handler = spapr_nmi;
2309 }
2310 
2311 static const TypeInfo spapr_machine_info = {
2312     .name          = TYPE_SPAPR_MACHINE,
2313     .parent        = TYPE_MACHINE,
2314     .abstract      = true,
2315     .instance_size = sizeof(sPAPRMachineState),
2316     .instance_init = spapr_machine_initfn,
2317     .instance_finalize = spapr_machine_finalizefn,
2318     .class_size    = sizeof(sPAPRMachineClass),
2319     .class_init    = spapr_machine_class_init,
2320     .interfaces = (InterfaceInfo[]) {
2321         { TYPE_FW_PATH_PROVIDER },
2322         { TYPE_NMI },
2323         { TYPE_HOTPLUG_HANDLER },
2324         { }
2325     },
2326 };
2327 
2328 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2329     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2330                                                     void *data)      \
2331     {                                                                \
2332         MachineClass *mc = MACHINE_CLASS(oc);                        \
2333         spapr_machine_##suffix##_class_options(mc);                  \
2334         if (latest) {                                                \
2335             mc->alias = "pseries";                                   \
2336             mc->is_default = 1;                                      \
2337         }                                                            \
2338     }                                                                \
2339     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2340     {                                                                \
2341         MachineState *machine = MACHINE(obj);                        \
2342         spapr_machine_##suffix##_instance_options(machine);          \
2343     }                                                                \
2344     static const TypeInfo spapr_machine_##suffix##_info = {          \
2345         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2346         .parent = TYPE_SPAPR_MACHINE,                                \
2347         .class_init = spapr_machine_##suffix##_class_init,           \
2348         .instance_init = spapr_machine_##suffix##_instance_init,     \
2349     };                                                               \
2350     static void spapr_machine_register_##suffix(void)                \
2351     {                                                                \
2352         type_register(&spapr_machine_##suffix##_info);               \
2353     }                                                                \
2354     type_init(spapr_machine_register_##suffix)
2355 
2356 /*
2357  * pseries-2.7
2358  */
2359 static void spapr_machine_2_7_instance_options(MachineState *machine)
2360 {
2361 }
2362 
2363 static void spapr_machine_2_7_class_options(MachineClass *mc)
2364 {
2365     /* Defaults for the latest behaviour inherited from the base class */
2366 }
2367 
2368 DEFINE_SPAPR_MACHINE(2_7, "2.7", true);
2369 
2370 /*
2371  * pseries-2.6
2372  */
2373 #define SPAPR_COMPAT_2_6 \
2374     HW_COMPAT_2_6
2375 
2376 static void spapr_machine_2_6_instance_options(MachineState *machine)
2377 {
2378 }
2379 
2380 static void spapr_machine_2_6_class_options(MachineClass *mc)
2381 {
2382     spapr_machine_2_7_class_options(mc);
2383     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2384 }
2385 
2386 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2387 
2388 /*
2389  * pseries-2.5
2390  */
2391 #define SPAPR_COMPAT_2_5 \
2392     HW_COMPAT_2_5 \
2393     { \
2394         .driver   = "spapr-vlan", \
2395         .property = "use-rx-buffer-pools", \
2396         .value    = "off", \
2397     },
2398 
2399 static void spapr_machine_2_5_instance_options(MachineState *machine)
2400 {
2401 }
2402 
2403 static void spapr_machine_2_5_class_options(MachineClass *mc)
2404 {
2405     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2406 
2407     spapr_machine_2_6_class_options(mc);
2408     smc->use_ohci_by_default = true;
2409     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2410 }
2411 
2412 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2413 
2414 /*
2415  * pseries-2.4
2416  */
2417 #define SPAPR_COMPAT_2_4 \
2418         HW_COMPAT_2_4
2419 
2420 static void spapr_machine_2_4_instance_options(MachineState *machine)
2421 {
2422     spapr_machine_2_5_instance_options(machine);
2423 }
2424 
2425 static void spapr_machine_2_4_class_options(MachineClass *mc)
2426 {
2427     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2428 
2429     spapr_machine_2_5_class_options(mc);
2430     smc->dr_lmb_enabled = false;
2431     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2432 }
2433 
2434 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2435 
2436 /*
2437  * pseries-2.3
2438  */
2439 #define SPAPR_COMPAT_2_3 \
2440         HW_COMPAT_2_3 \
2441         {\
2442             .driver   = "spapr-pci-host-bridge",\
2443             .property = "dynamic-reconfiguration",\
2444             .value    = "off",\
2445         },
2446 
2447 static void spapr_machine_2_3_instance_options(MachineState *machine)
2448 {
2449     spapr_machine_2_4_instance_options(machine);
2450     savevm_skip_section_footers();
2451     global_state_set_optional();
2452     savevm_skip_configuration();
2453 }
2454 
2455 static void spapr_machine_2_3_class_options(MachineClass *mc)
2456 {
2457     spapr_machine_2_4_class_options(mc);
2458     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2459 }
2460 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2461 
2462 /*
2463  * pseries-2.2
2464  */
2465 
2466 #define SPAPR_COMPAT_2_2 \
2467         HW_COMPAT_2_2 \
2468         {\
2469             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2470             .property = "mem_win_size",\
2471             .value    = "0x20000000",\
2472         },
2473 
2474 static void spapr_machine_2_2_instance_options(MachineState *machine)
2475 {
2476     spapr_machine_2_3_instance_options(machine);
2477     machine->suppress_vmdesc = true;
2478 }
2479 
2480 static void spapr_machine_2_2_class_options(MachineClass *mc)
2481 {
2482     spapr_machine_2_3_class_options(mc);
2483     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2484 }
2485 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2486 
2487 /*
2488  * pseries-2.1
2489  */
2490 #define SPAPR_COMPAT_2_1 \
2491         HW_COMPAT_2_1
2492 
2493 static void spapr_machine_2_1_instance_options(MachineState *machine)
2494 {
2495     spapr_machine_2_2_instance_options(machine);
2496 }
2497 
2498 static void spapr_machine_2_1_class_options(MachineClass *mc)
2499 {
2500     spapr_machine_2_2_class_options(mc);
2501     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2502 }
2503 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2504 
2505 static void spapr_machine_register_types(void)
2506 {
2507     type_register_static(&spapr_machine_info);
2508 }
2509 
2510 type_init(spapr_machine_register_types)
2511