1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/numa.h" 31 #include "hw/hw.h" 32 #include "qemu/log.h" 33 #include "hw/fw-path-provider.h" 34 #include "elf.h" 35 #include "net/net.h" 36 #include "sysemu/device_tree.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/device_tree.h" 41 #include "kvm_ppc.h" 42 #include "migration/migration.h" 43 #include "mmu-hash64.h" 44 #include "qom/cpu.h" 45 46 #include "hw/boards.h" 47 #include "hw/ppc/ppc.h" 48 #include "hw/loader.h" 49 50 #include "hw/ppc/spapr.h" 51 #include "hw/ppc/spapr_vio.h" 52 #include "hw/pci-host/spapr.h" 53 #include "hw/ppc/xics.h" 54 #include "hw/pci/msi.h" 55 56 #include "hw/pci/pci.h" 57 #include "hw/scsi/scsi.h" 58 #include "hw/virtio/virtio-scsi.h" 59 60 #include "exec/address-spaces.h" 61 #include "hw/usb.h" 62 #include "qemu/config-file.h" 63 #include "qemu/error-report.h" 64 #include "trace.h" 65 #include "hw/nmi.h" 66 67 #include "hw/compat.h" 68 #include "qemu/cutils.h" 69 70 #include <libfdt.h> 71 72 /* SLOF memory layout: 73 * 74 * SLOF raw image loaded at 0, copies its romfs right below the flat 75 * device-tree, then position SLOF itself 31M below that 76 * 77 * So we set FW_OVERHEAD to 40MB which should account for all of that 78 * and more 79 * 80 * We load our kernel at 4M, leaving space for SLOF initial image 81 */ 82 #define FDT_MAX_SIZE 0x100000 83 #define RTAS_MAX_SIZE 0x10000 84 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 85 #define FW_MAX_SIZE 0x400000 86 #define FW_FILE_NAME "slof.bin" 87 #define FW_OVERHEAD 0x2800000 88 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 89 90 #define MIN_RMA_SLOF 128UL 91 92 #define TIMEBASE_FREQ 512000000ULL 93 94 #define PHANDLE_XICP 0x00001111 95 96 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) 97 98 static XICSState *try_create_xics(const char *type, int nr_servers, 99 int nr_irqs, Error **errp) 100 { 101 Error *err = NULL; 102 DeviceState *dev; 103 104 dev = qdev_create(NULL, type); 105 qdev_prop_set_uint32(dev, "nr_servers", nr_servers); 106 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs); 107 object_property_set_bool(OBJECT(dev), true, "realized", &err); 108 if (err) { 109 error_propagate(errp, err); 110 object_unparent(OBJECT(dev)); 111 return NULL; 112 } 113 return XICS_COMMON(dev); 114 } 115 116 static XICSState *xics_system_init(MachineState *machine, 117 int nr_servers, int nr_irqs, Error **errp) 118 { 119 XICSState *icp = NULL; 120 121 if (kvm_enabled()) { 122 Error *err = NULL; 123 124 if (machine_kernel_irqchip_allowed(machine)) { 125 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err); 126 } 127 if (machine_kernel_irqchip_required(machine) && !icp) { 128 error_reportf_err(err, 129 "kernel_irqchip requested but unavailable: "); 130 } else { 131 error_free(err); 132 } 133 } 134 135 if (!icp) { 136 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp); 137 } 138 139 return icp; 140 } 141 142 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 143 int smt_threads) 144 { 145 int i, ret = 0; 146 uint32_t servers_prop[smt_threads]; 147 uint32_t gservers_prop[smt_threads * 2]; 148 int index = ppc_get_vcpu_dt_id(cpu); 149 150 if (cpu->cpu_version) { 151 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version); 152 if (ret < 0) { 153 return ret; 154 } 155 } 156 157 /* Build interrupt servers and gservers properties */ 158 for (i = 0; i < smt_threads; i++) { 159 servers_prop[i] = cpu_to_be32(index + i); 160 /* Hack, direct the group queues back to cpu 0 */ 161 gservers_prop[i*2] = cpu_to_be32(index + i); 162 gservers_prop[i*2 + 1] = 0; 163 } 164 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 165 servers_prop, sizeof(servers_prop)); 166 if (ret < 0) { 167 return ret; 168 } 169 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 170 gservers_prop, sizeof(gservers_prop)); 171 172 return ret; 173 } 174 175 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs) 176 { 177 int ret = 0; 178 PowerPCCPU *cpu = POWERPC_CPU(cs); 179 int index = ppc_get_vcpu_dt_id(cpu); 180 uint32_t associativity[] = {cpu_to_be32(0x5), 181 cpu_to_be32(0x0), 182 cpu_to_be32(0x0), 183 cpu_to_be32(0x0), 184 cpu_to_be32(cs->numa_node), 185 cpu_to_be32(index)}; 186 187 /* Advertise NUMA via ibm,associativity */ 188 if (nb_numa_nodes > 1) { 189 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, 190 sizeof(associativity)); 191 } 192 193 return ret; 194 } 195 196 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 197 { 198 int ret = 0, offset, cpus_offset; 199 CPUState *cs; 200 char cpu_model[32]; 201 int smt = kvmppc_smt_threads(); 202 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 203 204 CPU_FOREACH(cs) { 205 PowerPCCPU *cpu = POWERPC_CPU(cs); 206 DeviceClass *dc = DEVICE_GET_CLASS(cs); 207 int index = ppc_get_vcpu_dt_id(cpu); 208 209 if ((index % smt) != 0) { 210 continue; 211 } 212 213 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 214 215 cpus_offset = fdt_path_offset(fdt, "/cpus"); 216 if (cpus_offset < 0) { 217 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), 218 "cpus"); 219 if (cpus_offset < 0) { 220 return cpus_offset; 221 } 222 } 223 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 224 if (offset < 0) { 225 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 226 if (offset < 0) { 227 return offset; 228 } 229 } 230 231 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 232 pft_size_prop, sizeof(pft_size_prop)); 233 if (ret < 0) { 234 return ret; 235 } 236 237 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs); 238 if (ret < 0) { 239 return ret; 240 } 241 242 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, 243 ppc_get_compat_smt_threads(cpu)); 244 if (ret < 0) { 245 return ret; 246 } 247 } 248 return ret; 249 } 250 251 252 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop, 253 size_t maxsize) 254 { 255 size_t maxcells = maxsize / sizeof(uint32_t); 256 int i, j, count; 257 uint32_t *p = prop; 258 259 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { 260 struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; 261 262 if (!sps->page_shift) { 263 break; 264 } 265 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) { 266 if (sps->enc[count].page_shift == 0) { 267 break; 268 } 269 } 270 if ((p - prop) >= (maxcells - 3 - count * 2)) { 271 break; 272 } 273 *(p++) = cpu_to_be32(sps->page_shift); 274 *(p++) = cpu_to_be32(sps->slb_enc); 275 *(p++) = cpu_to_be32(count); 276 for (j = 0; j < count; j++) { 277 *(p++) = cpu_to_be32(sps->enc[j].page_shift); 278 *(p++) = cpu_to_be32(sps->enc[j].pte_enc); 279 } 280 } 281 282 return (p - prop) * sizeof(uint32_t); 283 } 284 285 static hwaddr spapr_node0_size(void) 286 { 287 MachineState *machine = MACHINE(qdev_get_machine()); 288 289 if (nb_numa_nodes) { 290 int i; 291 for (i = 0; i < nb_numa_nodes; ++i) { 292 if (numa_info[i].node_mem) { 293 return MIN(pow2floor(numa_info[i].node_mem), 294 machine->ram_size); 295 } 296 } 297 } 298 return machine->ram_size; 299 } 300 301 #define _FDT(exp) \ 302 do { \ 303 int ret = (exp); \ 304 if (ret < 0) { \ 305 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ 306 #exp, fdt_strerror(ret)); \ 307 exit(1); \ 308 } \ 309 } while (0) 310 311 static void add_str(GString *s, const gchar *s1) 312 { 313 g_string_append_len(s, s1, strlen(s1) + 1); 314 } 315 316 static void *spapr_create_fdt_skel(hwaddr initrd_base, 317 hwaddr initrd_size, 318 hwaddr kernel_size, 319 bool little_endian, 320 const char *kernel_cmdline, 321 uint32_t epow_irq) 322 { 323 void *fdt; 324 uint32_t start_prop = cpu_to_be32(initrd_base); 325 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); 326 GString *hypertas = g_string_sized_new(256); 327 GString *qemu_hypertas = g_string_sized_new(256); 328 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; 329 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)}; 330 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; 331 char *buf; 332 333 add_str(hypertas, "hcall-pft"); 334 add_str(hypertas, "hcall-term"); 335 add_str(hypertas, "hcall-dabr"); 336 add_str(hypertas, "hcall-interrupt"); 337 add_str(hypertas, "hcall-tce"); 338 add_str(hypertas, "hcall-vio"); 339 add_str(hypertas, "hcall-splpar"); 340 add_str(hypertas, "hcall-bulk"); 341 add_str(hypertas, "hcall-set-mode"); 342 add_str(qemu_hypertas, "hcall-memop1"); 343 344 fdt = g_malloc0(FDT_MAX_SIZE); 345 _FDT((fdt_create(fdt, FDT_MAX_SIZE))); 346 347 if (kernel_size) { 348 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); 349 } 350 if (initrd_size) { 351 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); 352 } 353 _FDT((fdt_finish_reservemap(fdt))); 354 355 /* Root node */ 356 _FDT((fdt_begin_node(fdt, ""))); 357 _FDT((fdt_property_string(fdt, "device_type", "chrp"))); 358 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); 359 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries"))); 360 361 /* 362 * Add info to guest to indentify which host is it being run on 363 * and what is the uuid of the guest 364 */ 365 if (kvmppc_get_host_model(&buf)) { 366 _FDT((fdt_property_string(fdt, "host-model", buf))); 367 g_free(buf); 368 } 369 if (kvmppc_get_host_serial(&buf)) { 370 _FDT((fdt_property_string(fdt, "host-serial", buf))); 371 g_free(buf); 372 } 373 374 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1], 375 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4], 376 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7], 377 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10], 378 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13], 379 qemu_uuid[14], qemu_uuid[15]); 380 381 _FDT((fdt_property_string(fdt, "vm,uuid", buf))); 382 if (qemu_uuid_set) { 383 _FDT((fdt_property_string(fdt, "system-id", buf))); 384 } 385 g_free(buf); 386 387 if (qemu_get_vm_name()) { 388 _FDT((fdt_property_string(fdt, "ibm,partition-name", 389 qemu_get_vm_name()))); 390 } 391 392 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); 393 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); 394 395 /* /chosen */ 396 _FDT((fdt_begin_node(fdt, "chosen"))); 397 398 /* Set Form1_affinity */ 399 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); 400 401 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); 402 _FDT((fdt_property(fdt, "linux,initrd-start", 403 &start_prop, sizeof(start_prop)))); 404 _FDT((fdt_property(fdt, "linux,initrd-end", 405 &end_prop, sizeof(end_prop)))); 406 if (kernel_size) { 407 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 408 cpu_to_be64(kernel_size) }; 409 410 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); 411 if (little_endian) { 412 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0))); 413 } 414 } 415 if (boot_menu) { 416 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu))); 417 } 418 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); 419 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); 420 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); 421 422 _FDT((fdt_end_node(fdt))); 423 424 /* RTAS */ 425 _FDT((fdt_begin_node(fdt, "rtas"))); 426 427 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 428 add_str(hypertas, "hcall-multi-tce"); 429 } 430 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str, 431 hypertas->len))); 432 g_string_free(hypertas, TRUE); 433 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str, 434 qemu_hypertas->len))); 435 g_string_free(qemu_hypertas, TRUE); 436 437 _FDT((fdt_property(fdt, "ibm,associativity-reference-points", 438 refpoints, sizeof(refpoints)))); 439 440 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX))); 441 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate", 442 RTAS_EVENT_SCAN_RATE))); 443 444 if (msi_nonbroken) { 445 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0))); 446 } 447 448 /* 449 * According to PAPR, rtas ibm,os-term does not guarantee a return 450 * back to the guest cpu. 451 * 452 * While an additional ibm,extended-os-term property indicates that 453 * rtas call return will always occur. Set this property. 454 */ 455 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0))); 456 457 _FDT((fdt_end_node(fdt))); 458 459 /* interrupt controller */ 460 _FDT((fdt_begin_node(fdt, "interrupt-controller"))); 461 462 _FDT((fdt_property_string(fdt, "device_type", 463 "PowerPC-External-Interrupt-Presentation"))); 464 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); 465 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); 466 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", 467 interrupt_server_ranges_prop, 468 sizeof(interrupt_server_ranges_prop)))); 469 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); 470 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); 471 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); 472 473 _FDT((fdt_end_node(fdt))); 474 475 /* vdevice */ 476 _FDT((fdt_begin_node(fdt, "vdevice"))); 477 478 _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); 479 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); 480 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); 481 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); 482 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); 483 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); 484 485 _FDT((fdt_end_node(fdt))); 486 487 /* event-sources */ 488 spapr_events_fdt_skel(fdt, epow_irq); 489 490 /* /hypervisor node */ 491 if (kvm_enabled()) { 492 uint8_t hypercall[16]; 493 494 /* indicate KVM hypercall interface */ 495 _FDT((fdt_begin_node(fdt, "hypervisor"))); 496 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm"))); 497 if (kvmppc_has_cap_fixup_hcalls()) { 498 /* 499 * Older KVM versions with older guest kernels were broken with the 500 * magic page, don't allow the guest to map it. 501 */ 502 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 503 sizeof(hypercall))) { 504 _FDT((fdt_property(fdt, "hcall-instructions", hypercall, 505 sizeof(hypercall)))); 506 } 507 } 508 _FDT((fdt_end_node(fdt))); 509 } 510 511 _FDT((fdt_end_node(fdt))); /* close root node */ 512 _FDT((fdt_finish(fdt))); 513 514 return fdt; 515 } 516 517 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 518 hwaddr size) 519 { 520 uint32_t associativity[] = { 521 cpu_to_be32(0x4), /* length */ 522 cpu_to_be32(0x0), cpu_to_be32(0x0), 523 cpu_to_be32(0x0), cpu_to_be32(nodeid) 524 }; 525 char mem_name[32]; 526 uint64_t mem_reg_property[2]; 527 int off; 528 529 mem_reg_property[0] = cpu_to_be64(start); 530 mem_reg_property[1] = cpu_to_be64(size); 531 532 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 533 off = fdt_add_subnode(fdt, 0, mem_name); 534 _FDT(off); 535 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 536 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 537 sizeof(mem_reg_property)))); 538 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 539 sizeof(associativity)))); 540 return off; 541 } 542 543 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 544 { 545 MachineState *machine = MACHINE(spapr); 546 hwaddr mem_start, node_size; 547 int i, nb_nodes = nb_numa_nodes; 548 NodeInfo *nodes = numa_info; 549 NodeInfo ramnode; 550 551 /* No NUMA nodes, assume there is just one node with whole RAM */ 552 if (!nb_numa_nodes) { 553 nb_nodes = 1; 554 ramnode.node_mem = machine->ram_size; 555 nodes = &ramnode; 556 } 557 558 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 559 if (!nodes[i].node_mem) { 560 continue; 561 } 562 if (mem_start >= machine->ram_size) { 563 node_size = 0; 564 } else { 565 node_size = nodes[i].node_mem; 566 if (node_size > machine->ram_size - mem_start) { 567 node_size = machine->ram_size - mem_start; 568 } 569 } 570 if (!mem_start) { 571 /* ppc_spapr_init() checks for rma_size <= node0_size already */ 572 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 573 mem_start += spapr->rma_size; 574 node_size -= spapr->rma_size; 575 } 576 for ( ; node_size; ) { 577 hwaddr sizetmp = pow2floor(node_size); 578 579 /* mem_start != 0 here */ 580 if (ctzl(mem_start) < ctzl(sizetmp)) { 581 sizetmp = 1ULL << ctzl(mem_start); 582 } 583 584 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 585 node_size -= sizetmp; 586 mem_start += sizetmp; 587 } 588 } 589 590 return 0; 591 } 592 593 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 594 sPAPRMachineState *spapr) 595 { 596 PowerPCCPU *cpu = POWERPC_CPU(cs); 597 CPUPPCState *env = &cpu->env; 598 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 599 int index = ppc_get_vcpu_dt_id(cpu); 600 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 601 0xffffffff, 0xffffffff}; 602 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; 603 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 604 uint32_t page_sizes_prop[64]; 605 size_t page_sizes_prop_size; 606 uint32_t vcpus_per_socket = smp_threads * smp_cores; 607 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 608 609 /* Note: we keep CI large pages off for now because a 64K capable guest 610 * provisioned with large pages might otherwise try to map a qemu 611 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 612 * even if that qemu runs on a 4k host. 613 * 614 * We can later add this bit back when we are confident this is not 615 * an issue (!HV KVM or 64K host) 616 */ 617 uint8_t pa_features_206[] = { 6, 0, 618 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 619 uint8_t pa_features_207[] = { 24, 0, 620 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 621 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 622 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 623 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 624 uint8_t *pa_features; 625 size_t pa_size; 626 627 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 628 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 629 630 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 631 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 632 env->dcache_line_size))); 633 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 634 env->dcache_line_size))); 635 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 636 env->icache_line_size))); 637 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 638 env->icache_line_size))); 639 640 if (pcc->l1_dcache_size) { 641 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 642 pcc->l1_dcache_size))); 643 } else { 644 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n"); 645 } 646 if (pcc->l1_icache_size) { 647 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 648 pcc->l1_icache_size))); 649 } else { 650 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n"); 651 } 652 653 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 654 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 655 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); 656 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); 657 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 658 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 659 660 if (env->spr_cb[SPR_PURR].oea_read) { 661 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 662 } 663 664 if (env->mmu_model & POWERPC_MMU_1TSEG) { 665 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 666 segs, sizeof(segs)))); 667 } 668 669 /* Advertise VMX/VSX (vector extensions) if available 670 * 0 / no property == no vector extensions 671 * 1 == VMX / Altivec available 672 * 2 == VSX available */ 673 if (env->insns_flags & PPC_ALTIVEC) { 674 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 675 676 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 677 } 678 679 /* Advertise DFP (Decimal Floating Point) if available 680 * 0 / no property == no DFP 681 * 1 == DFP available */ 682 if (env->insns_flags2 & PPC2_DFP) { 683 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 684 } 685 686 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop, 687 sizeof(page_sizes_prop)); 688 if (page_sizes_prop_size) { 689 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 690 page_sizes_prop, page_sizes_prop_size))); 691 } 692 693 /* Do the ibm,pa-features property, adjust it for ci-large-pages */ 694 if (env->mmu_model == POWERPC_MMU_2_06) { 695 pa_features = pa_features_206; 696 pa_size = sizeof(pa_features_206); 697 } else /* env->mmu_model == POWERPC_MMU_2_07 */ { 698 pa_features = pa_features_207; 699 pa_size = sizeof(pa_features_207); 700 } 701 if (env->ci_large_pages) { 702 pa_features[3] |= 0x20; 703 } 704 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 705 706 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 707 cs->cpu_index / vcpus_per_socket))); 708 709 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 710 pft_size_prop, sizeof(pft_size_prop)))); 711 712 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs)); 713 714 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, 715 ppc_get_compat_smt_threads(cpu))); 716 } 717 718 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 719 { 720 CPUState *cs; 721 int cpus_offset; 722 char *nodename; 723 int smt = kvmppc_smt_threads(); 724 725 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 726 _FDT(cpus_offset); 727 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 728 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 729 730 /* 731 * We walk the CPUs in reverse order to ensure that CPU DT nodes 732 * created by fdt_add_subnode() end up in the right order in FDT 733 * for the guest kernel the enumerate the CPUs correctly. 734 */ 735 CPU_FOREACH_REVERSE(cs) { 736 PowerPCCPU *cpu = POWERPC_CPU(cs); 737 int index = ppc_get_vcpu_dt_id(cpu); 738 DeviceClass *dc = DEVICE_GET_CLASS(cs); 739 int offset; 740 741 if ((index % smt) != 0) { 742 continue; 743 } 744 745 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 746 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 747 g_free(nodename); 748 _FDT(offset); 749 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 750 } 751 752 } 753 754 /* 755 * Adds ibm,dynamic-reconfiguration-memory node. 756 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 757 * of this device tree node. 758 */ 759 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 760 { 761 MachineState *machine = MACHINE(spapr); 762 int ret, i, offset; 763 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 764 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 765 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 766 uint32_t *int_buf, *cur_index, buf_len; 767 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 768 769 /* 770 * Don't create the node if there are no DR LMBs. 771 */ 772 if (!nr_lmbs) { 773 return 0; 774 } 775 776 /* 777 * Allocate enough buffer size to fit in ibm,dynamic-memory 778 * or ibm,associativity-lookup-arrays 779 */ 780 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) 781 * sizeof(uint32_t); 782 cur_index = int_buf = g_malloc0(buf_len); 783 784 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 785 786 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 787 sizeof(prop_lmb_size)); 788 if (ret < 0) { 789 goto out; 790 } 791 792 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 793 if (ret < 0) { 794 goto out; 795 } 796 797 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 798 if (ret < 0) { 799 goto out; 800 } 801 802 /* ibm,dynamic-memory */ 803 int_buf[0] = cpu_to_be32(nr_lmbs); 804 cur_index++; 805 for (i = 0; i < nr_lmbs; i++) { 806 sPAPRDRConnector *drc; 807 sPAPRDRConnectorClass *drck; 808 uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;; 809 uint32_t *dynamic_memory = cur_index; 810 811 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 812 addr/lmb_size); 813 g_assert(drc); 814 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 815 816 dynamic_memory[0] = cpu_to_be32(addr >> 32); 817 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 818 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc)); 819 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 820 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL)); 821 if (addr < machine->ram_size || 822 memory_region_present(get_system_memory(), addr)) { 823 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 824 } else { 825 dynamic_memory[5] = cpu_to_be32(0); 826 } 827 828 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 829 } 830 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 831 if (ret < 0) { 832 goto out; 833 } 834 835 /* ibm,associativity-lookup-arrays */ 836 cur_index = int_buf; 837 int_buf[0] = cpu_to_be32(nr_nodes); 838 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 839 cur_index += 2; 840 for (i = 0; i < nr_nodes; i++) { 841 uint32_t associativity[] = { 842 cpu_to_be32(0x0), 843 cpu_to_be32(0x0), 844 cpu_to_be32(0x0), 845 cpu_to_be32(i) 846 }; 847 memcpy(cur_index, associativity, sizeof(associativity)); 848 cur_index += 4; 849 } 850 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 851 (cur_index - int_buf) * sizeof(uint32_t)); 852 out: 853 g_free(int_buf); 854 return ret; 855 } 856 857 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 858 target_ulong addr, target_ulong size, 859 bool cpu_update, bool memory_update) 860 { 861 void *fdt, *fdt_skel; 862 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 863 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); 864 865 size -= sizeof(hdr); 866 867 /* Create sceleton */ 868 fdt_skel = g_malloc0(size); 869 _FDT((fdt_create(fdt_skel, size))); 870 _FDT((fdt_begin_node(fdt_skel, ""))); 871 _FDT((fdt_end_node(fdt_skel))); 872 _FDT((fdt_finish(fdt_skel))); 873 fdt = g_malloc0(size); 874 _FDT((fdt_open_into(fdt_skel, fdt, size))); 875 g_free(fdt_skel); 876 877 /* Fixup cpu nodes */ 878 if (cpu_update) { 879 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 880 } 881 882 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 883 if (memory_update && smc->dr_lmb_enabled) { 884 _FDT((spapr_populate_drconf_memory(spapr, fdt))); 885 } 886 887 /* Pack resulting tree */ 888 _FDT((fdt_pack(fdt))); 889 890 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 891 trace_spapr_cas_failed(size); 892 return -1; 893 } 894 895 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 896 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 897 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 898 g_free(fdt); 899 900 return 0; 901 } 902 903 static void spapr_finalize_fdt(sPAPRMachineState *spapr, 904 hwaddr fdt_addr, 905 hwaddr rtas_addr, 906 hwaddr rtas_size) 907 { 908 MachineState *machine = MACHINE(qdev_get_machine()); 909 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 910 const char *boot_device = machine->boot_order; 911 int ret, i; 912 size_t cb = 0; 913 char *bootlist; 914 void *fdt; 915 sPAPRPHBState *phb; 916 917 fdt = g_malloc(FDT_MAX_SIZE); 918 919 /* open out the base tree into a temp buffer for the final tweaks */ 920 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); 921 922 ret = spapr_populate_memory(spapr, fdt); 923 if (ret < 0) { 924 fprintf(stderr, "couldn't setup memory nodes in fdt\n"); 925 exit(1); 926 } 927 928 ret = spapr_populate_vdevice(spapr->vio_bus, fdt); 929 if (ret < 0) { 930 fprintf(stderr, "couldn't setup vio devices in fdt\n"); 931 exit(1); 932 } 933 934 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 935 ret = spapr_rng_populate_dt(fdt); 936 if (ret < 0) { 937 fprintf(stderr, "could not set up rng device in the fdt\n"); 938 exit(1); 939 } 940 } 941 942 QLIST_FOREACH(phb, &spapr->phbs, list) { 943 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 944 if (ret < 0) { 945 error_report("couldn't setup PCI devices in fdt"); 946 exit(1); 947 } 948 } 949 950 /* RTAS */ 951 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); 952 if (ret < 0) { 953 fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); 954 } 955 956 /* cpus */ 957 spapr_populate_cpus_dt_node(fdt, spapr); 958 959 bootlist = get_boot_devices_list(&cb, true); 960 if (cb && bootlist) { 961 int offset = fdt_path_offset(fdt, "/chosen"); 962 if (offset < 0) { 963 exit(1); 964 } 965 for (i = 0; i < cb; i++) { 966 if (bootlist[i] == '\n') { 967 bootlist[i] = ' '; 968 } 969 970 } 971 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist); 972 } 973 974 if (boot_device && strlen(boot_device)) { 975 int offset = fdt_path_offset(fdt, "/chosen"); 976 977 if (offset < 0) { 978 exit(1); 979 } 980 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device); 981 } 982 983 if (!spapr->has_graphics) { 984 spapr_populate_chosen_stdout(fdt, spapr->vio_bus); 985 } 986 987 if (smc->dr_lmb_enabled) { 988 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 989 } 990 991 _FDT((fdt_pack(fdt))); 992 993 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 994 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 995 fdt_totalsize(fdt), FDT_MAX_SIZE); 996 exit(1); 997 } 998 999 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1000 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1001 1002 g_free(bootlist); 1003 g_free(fdt); 1004 } 1005 1006 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1007 { 1008 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1009 } 1010 1011 static void emulate_spapr_hypercall(PowerPCCPU *cpu) 1012 { 1013 CPUPPCState *env = &cpu->env; 1014 1015 if (msr_pr) { 1016 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1017 env->gpr[3] = H_PRIVILEGE; 1018 } else { 1019 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1020 } 1021 } 1022 1023 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1024 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1025 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1026 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1027 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1028 1029 /* 1030 * Get the fd to access the kernel htab, re-opening it if necessary 1031 */ 1032 static int get_htab_fd(sPAPRMachineState *spapr) 1033 { 1034 if (spapr->htab_fd >= 0) { 1035 return spapr->htab_fd; 1036 } 1037 1038 spapr->htab_fd = kvmppc_get_htab_fd(false); 1039 if (spapr->htab_fd < 0) { 1040 error_report("Unable to open fd for reading hash table from KVM: %s", 1041 strerror(errno)); 1042 } 1043 1044 return spapr->htab_fd; 1045 } 1046 1047 static void close_htab_fd(sPAPRMachineState *spapr) 1048 { 1049 if (spapr->htab_fd >= 0) { 1050 close(spapr->htab_fd); 1051 } 1052 spapr->htab_fd = -1; 1053 } 1054 1055 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1056 { 1057 int shift; 1058 1059 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1060 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1061 * that's much more than is needed for Linux guests */ 1062 shift = ctz64(pow2ceil(ramsize)) - 7; 1063 shift = MAX(shift, 18); /* Minimum architected size */ 1064 shift = MIN(shift, 46); /* Maximum architected size */ 1065 return shift; 1066 } 1067 1068 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1069 Error **errp) 1070 { 1071 long rc; 1072 1073 /* Clean up any HPT info from a previous boot */ 1074 g_free(spapr->htab); 1075 spapr->htab = NULL; 1076 spapr->htab_shift = 0; 1077 close_htab_fd(spapr); 1078 1079 rc = kvmppc_reset_htab(shift); 1080 if (rc < 0) { 1081 /* kernel-side HPT needed, but couldn't allocate one */ 1082 error_setg_errno(errp, errno, 1083 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1084 shift); 1085 /* This is almost certainly fatal, but if the caller really 1086 * wants to carry on with shift == 0, it's welcome to try */ 1087 } else if (rc > 0) { 1088 /* kernel-side HPT allocated */ 1089 if (rc != shift) { 1090 error_setg(errp, 1091 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1092 shift, rc); 1093 } 1094 1095 spapr->htab_shift = shift; 1096 spapr->htab = NULL; 1097 } else { 1098 /* kernel-side HPT not needed, allocate in userspace instead */ 1099 size_t size = 1ULL << shift; 1100 int i; 1101 1102 spapr->htab = qemu_memalign(size, size); 1103 if (!spapr->htab) { 1104 error_setg_errno(errp, errno, 1105 "Could not allocate HPT of order %d", shift); 1106 return; 1107 } 1108 1109 memset(spapr->htab, 0, size); 1110 spapr->htab_shift = shift; 1111 1112 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1113 DIRTY_HPTE(HPTE(spapr->htab, i)); 1114 } 1115 } 1116 } 1117 1118 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) 1119 { 1120 bool matched = false; 1121 1122 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 1123 matched = true; 1124 } 1125 1126 if (!matched) { 1127 error_report("Device %s is not supported by this machine yet.", 1128 qdev_fw_name(DEVICE(sbdev))); 1129 exit(1); 1130 } 1131 1132 return 0; 1133 } 1134 1135 static void ppc_spapr_reset(void) 1136 { 1137 MachineState *machine = MACHINE(qdev_get_machine()); 1138 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1139 PowerPCCPU *first_ppc_cpu; 1140 uint32_t rtas_limit; 1141 1142 /* Check for unknown sysbus devices */ 1143 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); 1144 1145 /* Allocate and/or reset the hash page table */ 1146 spapr_reallocate_hpt(spapr, 1147 spapr_hpt_shift_for_ramsize(machine->maxram_size), 1148 &error_fatal); 1149 1150 /* Update the RMA size if necessary */ 1151 if (spapr->vrma_adjust) { 1152 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(), 1153 spapr->htab_shift); 1154 } 1155 1156 qemu_devices_reset(); 1157 1158 /* 1159 * We place the device tree and RTAS just below either the top of the RMA, 1160 * or just below 2GB, whichever is lowere, so that it can be 1161 * processed with 32-bit real mode code if necessary 1162 */ 1163 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1164 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1165 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; 1166 1167 /* Load the fdt */ 1168 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, 1169 spapr->rtas_size); 1170 1171 /* Copy RTAS over */ 1172 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob, 1173 spapr->rtas_size); 1174 1175 /* Set up the entry state */ 1176 first_ppc_cpu = POWERPC_CPU(first_cpu); 1177 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr; 1178 first_ppc_cpu->env.gpr[5] = 0; 1179 first_cpu->halted = 0; 1180 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; 1181 1182 } 1183 1184 static void spapr_cpu_reset(void *opaque) 1185 { 1186 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1187 PowerPCCPU *cpu = opaque; 1188 CPUState *cs = CPU(cpu); 1189 CPUPPCState *env = &cpu->env; 1190 1191 cpu_reset(cs); 1192 1193 /* All CPUs start halted. CPU0 is unhalted from the machine level 1194 * reset code and the rest are explicitly started up by the guest 1195 * using an RTAS call */ 1196 cs->halted = 1; 1197 1198 env->spr[SPR_HIOR] = 0; 1199 1200 ppc_hash64_set_external_hpt(cpu, spapr->htab, spapr->htab_shift, 1201 &error_fatal); 1202 } 1203 1204 static void spapr_create_nvram(sPAPRMachineState *spapr) 1205 { 1206 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1207 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1208 1209 if (dinfo) { 1210 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1211 &error_fatal); 1212 } 1213 1214 qdev_init_nofail(dev); 1215 1216 spapr->nvram = (struct sPAPRNVRAM *)dev; 1217 } 1218 1219 static void spapr_rtc_create(sPAPRMachineState *spapr) 1220 { 1221 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC); 1222 1223 qdev_init_nofail(dev); 1224 spapr->rtc = dev; 1225 1226 object_property_add_alias(qdev_get_machine(), "rtc-time", 1227 OBJECT(spapr->rtc), "date", NULL); 1228 } 1229 1230 /* Returns whether we want to use VGA or not */ 1231 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1232 { 1233 switch (vga_interface_type) { 1234 case VGA_NONE: 1235 return false; 1236 case VGA_DEVICE: 1237 return true; 1238 case VGA_STD: 1239 case VGA_VIRTIO: 1240 return pci_vga_init(pci_bus) != NULL; 1241 default: 1242 error_setg(errp, 1243 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1244 return false; 1245 } 1246 } 1247 1248 static int spapr_post_load(void *opaque, int version_id) 1249 { 1250 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1251 int err = 0; 1252 1253 /* In earlier versions, there was no separate qdev for the PAPR 1254 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1255 * So when migrating from those versions, poke the incoming offset 1256 * value into the RTC device */ 1257 if (version_id < 3) { 1258 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset); 1259 } 1260 1261 return err; 1262 } 1263 1264 static bool version_before_3(void *opaque, int version_id) 1265 { 1266 return version_id < 3; 1267 } 1268 1269 static const VMStateDescription vmstate_spapr = { 1270 .name = "spapr", 1271 .version_id = 3, 1272 .minimum_version_id = 1, 1273 .post_load = spapr_post_load, 1274 .fields = (VMStateField[]) { 1275 /* used to be @next_irq */ 1276 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1277 1278 /* RTC offset */ 1279 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1280 1281 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1282 VMSTATE_END_OF_LIST() 1283 }, 1284 }; 1285 1286 static int htab_save_setup(QEMUFile *f, void *opaque) 1287 { 1288 sPAPRMachineState *spapr = opaque; 1289 1290 /* "Iteration" header */ 1291 qemu_put_be32(f, spapr->htab_shift); 1292 1293 if (spapr->htab) { 1294 spapr->htab_save_index = 0; 1295 spapr->htab_first_pass = true; 1296 } else { 1297 assert(kvm_enabled()); 1298 } 1299 1300 1301 return 0; 1302 } 1303 1304 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1305 int64_t max_ns) 1306 { 1307 bool has_timeout = max_ns != -1; 1308 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1309 int index = spapr->htab_save_index; 1310 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1311 1312 assert(spapr->htab_first_pass); 1313 1314 do { 1315 int chunkstart; 1316 1317 /* Consume invalid HPTEs */ 1318 while ((index < htabslots) 1319 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1320 index++; 1321 CLEAN_HPTE(HPTE(spapr->htab, index)); 1322 } 1323 1324 /* Consume valid HPTEs */ 1325 chunkstart = index; 1326 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1327 && HPTE_VALID(HPTE(spapr->htab, index))) { 1328 index++; 1329 CLEAN_HPTE(HPTE(spapr->htab, index)); 1330 } 1331 1332 if (index > chunkstart) { 1333 int n_valid = index - chunkstart; 1334 1335 qemu_put_be32(f, chunkstart); 1336 qemu_put_be16(f, n_valid); 1337 qemu_put_be16(f, 0); 1338 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1339 HASH_PTE_SIZE_64 * n_valid); 1340 1341 if (has_timeout && 1342 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1343 break; 1344 } 1345 } 1346 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 1347 1348 if (index >= htabslots) { 1349 assert(index == htabslots); 1350 index = 0; 1351 spapr->htab_first_pass = false; 1352 } 1353 spapr->htab_save_index = index; 1354 } 1355 1356 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 1357 int64_t max_ns) 1358 { 1359 bool final = max_ns < 0; 1360 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1361 int examined = 0, sent = 0; 1362 int index = spapr->htab_save_index; 1363 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1364 1365 assert(!spapr->htab_first_pass); 1366 1367 do { 1368 int chunkstart, invalidstart; 1369 1370 /* Consume non-dirty HPTEs */ 1371 while ((index < htabslots) 1372 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 1373 index++; 1374 examined++; 1375 } 1376 1377 chunkstart = index; 1378 /* Consume valid dirty HPTEs */ 1379 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1380 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1381 && HPTE_VALID(HPTE(spapr->htab, index))) { 1382 CLEAN_HPTE(HPTE(spapr->htab, index)); 1383 index++; 1384 examined++; 1385 } 1386 1387 invalidstart = index; 1388 /* Consume invalid dirty HPTEs */ 1389 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 1390 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1391 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1392 CLEAN_HPTE(HPTE(spapr->htab, index)); 1393 index++; 1394 examined++; 1395 } 1396 1397 if (index > chunkstart) { 1398 int n_valid = invalidstart - chunkstart; 1399 int n_invalid = index - invalidstart; 1400 1401 qemu_put_be32(f, chunkstart); 1402 qemu_put_be16(f, n_valid); 1403 qemu_put_be16(f, n_invalid); 1404 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1405 HASH_PTE_SIZE_64 * n_valid); 1406 sent += index - chunkstart; 1407 1408 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1409 break; 1410 } 1411 } 1412 1413 if (examined >= htabslots) { 1414 break; 1415 } 1416 1417 if (index >= htabslots) { 1418 assert(index == htabslots); 1419 index = 0; 1420 } 1421 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 1422 1423 if (index >= htabslots) { 1424 assert(index == htabslots); 1425 index = 0; 1426 } 1427 1428 spapr->htab_save_index = index; 1429 1430 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 1431 } 1432 1433 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 1434 #define MAX_KVM_BUF_SIZE 2048 1435 1436 static int htab_save_iterate(QEMUFile *f, void *opaque) 1437 { 1438 sPAPRMachineState *spapr = opaque; 1439 int fd; 1440 int rc = 0; 1441 1442 /* Iteration header */ 1443 qemu_put_be32(f, 0); 1444 1445 if (!spapr->htab) { 1446 assert(kvm_enabled()); 1447 1448 fd = get_htab_fd(spapr); 1449 if (fd < 0) { 1450 return fd; 1451 } 1452 1453 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 1454 if (rc < 0) { 1455 return rc; 1456 } 1457 } else if (spapr->htab_first_pass) { 1458 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 1459 } else { 1460 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 1461 } 1462 1463 /* End marker */ 1464 qemu_put_be32(f, 0); 1465 qemu_put_be16(f, 0); 1466 qemu_put_be16(f, 0); 1467 1468 return rc; 1469 } 1470 1471 static int htab_save_complete(QEMUFile *f, void *opaque) 1472 { 1473 sPAPRMachineState *spapr = opaque; 1474 int fd; 1475 1476 /* Iteration header */ 1477 qemu_put_be32(f, 0); 1478 1479 if (!spapr->htab) { 1480 int rc; 1481 1482 assert(kvm_enabled()); 1483 1484 fd = get_htab_fd(spapr); 1485 if (fd < 0) { 1486 return fd; 1487 } 1488 1489 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 1490 if (rc < 0) { 1491 return rc; 1492 } 1493 close_htab_fd(spapr); 1494 } else { 1495 if (spapr->htab_first_pass) { 1496 htab_save_first_pass(f, spapr, -1); 1497 } 1498 htab_save_later_pass(f, spapr, -1); 1499 } 1500 1501 /* End marker */ 1502 qemu_put_be32(f, 0); 1503 qemu_put_be16(f, 0); 1504 qemu_put_be16(f, 0); 1505 1506 return 0; 1507 } 1508 1509 static int htab_load(QEMUFile *f, void *opaque, int version_id) 1510 { 1511 sPAPRMachineState *spapr = opaque; 1512 uint32_t section_hdr; 1513 int fd = -1; 1514 1515 if (version_id < 1 || version_id > 1) { 1516 error_report("htab_load() bad version"); 1517 return -EINVAL; 1518 } 1519 1520 section_hdr = qemu_get_be32(f); 1521 1522 if (section_hdr) { 1523 Error *local_err = NULL; 1524 1525 /* First section gives the htab size */ 1526 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 1527 if (local_err) { 1528 error_report_err(local_err); 1529 return -EINVAL; 1530 } 1531 return 0; 1532 } 1533 1534 if (!spapr->htab) { 1535 assert(kvm_enabled()); 1536 1537 fd = kvmppc_get_htab_fd(true); 1538 if (fd < 0) { 1539 error_report("Unable to open fd to restore KVM hash table: %s", 1540 strerror(errno)); 1541 } 1542 } 1543 1544 while (true) { 1545 uint32_t index; 1546 uint16_t n_valid, n_invalid; 1547 1548 index = qemu_get_be32(f); 1549 n_valid = qemu_get_be16(f); 1550 n_invalid = qemu_get_be16(f); 1551 1552 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 1553 /* End of Stream */ 1554 break; 1555 } 1556 1557 if ((index + n_valid + n_invalid) > 1558 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 1559 /* Bad index in stream */ 1560 error_report( 1561 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 1562 index, n_valid, n_invalid, spapr->htab_shift); 1563 return -EINVAL; 1564 } 1565 1566 if (spapr->htab) { 1567 if (n_valid) { 1568 qemu_get_buffer(f, HPTE(spapr->htab, index), 1569 HASH_PTE_SIZE_64 * n_valid); 1570 } 1571 if (n_invalid) { 1572 memset(HPTE(spapr->htab, index + n_valid), 0, 1573 HASH_PTE_SIZE_64 * n_invalid); 1574 } 1575 } else { 1576 int rc; 1577 1578 assert(fd >= 0); 1579 1580 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 1581 if (rc < 0) { 1582 return rc; 1583 } 1584 } 1585 } 1586 1587 if (!spapr->htab) { 1588 assert(fd >= 0); 1589 close(fd); 1590 } 1591 1592 return 0; 1593 } 1594 1595 static SaveVMHandlers savevm_htab_handlers = { 1596 .save_live_setup = htab_save_setup, 1597 .save_live_iterate = htab_save_iterate, 1598 .save_live_complete_precopy = htab_save_complete, 1599 .load_state = htab_load, 1600 }; 1601 1602 static void spapr_boot_set(void *opaque, const char *boot_device, 1603 Error **errp) 1604 { 1605 MachineState *machine = MACHINE(qdev_get_machine()); 1606 machine->boot_order = g_strdup(boot_device); 1607 } 1608 1609 static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu, 1610 Error **errp) 1611 { 1612 CPUPPCState *env = &cpu->env; 1613 1614 /* Set time-base frequency to 512 MHz */ 1615 cpu_ppc_tb_init(env, TIMEBASE_FREQ); 1616 1617 /* Enable PAPR mode in TCG or KVM */ 1618 cpu_ppc_set_papr(cpu); 1619 1620 if (cpu->max_compat) { 1621 Error *local_err = NULL; 1622 1623 ppc_set_compat(cpu, cpu->max_compat, &local_err); 1624 if (local_err) { 1625 error_propagate(errp, local_err); 1626 return; 1627 } 1628 } 1629 1630 xics_cpu_setup(spapr->icp, cpu); 1631 1632 qemu_register_reset(spapr_cpu_reset, cpu); 1633 } 1634 1635 /* 1636 * Reset routine for LMB DR devices. 1637 * 1638 * Unlike PCI DR devices, LMB DR devices explicitly register this reset 1639 * routine. Reset for PCI DR devices will be handled by PHB reset routine 1640 * when it walks all its children devices. LMB devices reset occurs 1641 * as part of spapr_ppc_reset(). 1642 */ 1643 static void spapr_drc_reset(void *opaque) 1644 { 1645 sPAPRDRConnector *drc = opaque; 1646 DeviceState *d = DEVICE(drc); 1647 1648 if (d) { 1649 device_reset(d); 1650 } 1651 } 1652 1653 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 1654 { 1655 MachineState *machine = MACHINE(spapr); 1656 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 1657 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 1658 int i; 1659 1660 for (i = 0; i < nr_lmbs; i++) { 1661 sPAPRDRConnector *drc; 1662 uint64_t addr; 1663 1664 addr = i * lmb_size + spapr->hotplug_memory.base; 1665 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB, 1666 addr/lmb_size); 1667 qemu_register_reset(spapr_drc_reset, drc); 1668 } 1669 } 1670 1671 /* 1672 * If RAM size, maxmem size and individual node mem sizes aren't aligned 1673 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 1674 * since we can't support such unaligned sizes with DRCONF_MEMORY. 1675 */ 1676 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 1677 { 1678 int i; 1679 1680 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1681 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 1682 " is not aligned to %llu MiB", 1683 machine->ram_size, 1684 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1685 return; 1686 } 1687 1688 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1689 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 1690 " is not aligned to %llu MiB", 1691 machine->ram_size, 1692 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1693 return; 1694 } 1695 1696 for (i = 0; i < nb_numa_nodes; i++) { 1697 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 1698 error_setg(errp, 1699 "Node %d memory size 0x%" PRIx64 1700 " is not aligned to %llu MiB", 1701 i, numa_info[i].node_mem, 1702 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1703 return; 1704 } 1705 } 1706 } 1707 1708 /* pSeries LPAR / sPAPR hardware init */ 1709 static void ppc_spapr_init(MachineState *machine) 1710 { 1711 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1712 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1713 const char *kernel_filename = machine->kernel_filename; 1714 const char *kernel_cmdline = machine->kernel_cmdline; 1715 const char *initrd_filename = machine->initrd_filename; 1716 PowerPCCPU *cpu; 1717 PCIHostState *phb; 1718 int i; 1719 MemoryRegion *sysmem = get_system_memory(); 1720 MemoryRegion *ram = g_new(MemoryRegion, 1); 1721 MemoryRegion *rma_region; 1722 void *rma = NULL; 1723 hwaddr rma_alloc_size; 1724 hwaddr node0_size = spapr_node0_size(); 1725 uint32_t initrd_base = 0; 1726 long kernel_size = 0, initrd_size = 0; 1727 long load_limit, fw_size; 1728 bool kernel_le = false; 1729 char *filename; 1730 1731 msi_nonbroken = true; 1732 1733 QLIST_INIT(&spapr->phbs); 1734 1735 cpu_ppc_hypercall = emulate_spapr_hypercall; 1736 1737 /* Allocate RMA if necessary */ 1738 rma_alloc_size = kvmppc_alloc_rma(&rma); 1739 1740 if (rma_alloc_size == -1) { 1741 error_report("Unable to create RMA"); 1742 exit(1); 1743 } 1744 1745 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 1746 spapr->rma_size = rma_alloc_size; 1747 } else { 1748 spapr->rma_size = node0_size; 1749 1750 /* With KVM, we don't actually know whether KVM supports an 1751 * unbounded RMA (PR KVM) or is limited by the hash table size 1752 * (HV KVM using VRMA), so we always assume the latter 1753 * 1754 * In that case, we also limit the initial allocations for RTAS 1755 * etc... to 256M since we have no way to know what the VRMA size 1756 * is going to be as it depends on the size of the hash table 1757 * isn't determined yet. 1758 */ 1759 if (kvm_enabled()) { 1760 spapr->vrma_adjust = 1; 1761 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 1762 } 1763 } 1764 1765 if (spapr->rma_size > node0_size) { 1766 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 1767 spapr->rma_size); 1768 exit(1); 1769 } 1770 1771 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 1772 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 1773 1774 /* Set up Interrupt Controller before we create the VCPUs */ 1775 spapr->icp = xics_system_init(machine, 1776 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), 1777 smp_threads), 1778 XICS_IRQS, &error_fatal); 1779 1780 if (smc->dr_lmb_enabled) { 1781 spapr_validate_node_memory(machine, &error_fatal); 1782 } 1783 1784 /* init CPUs */ 1785 if (machine->cpu_model == NULL) { 1786 machine->cpu_model = kvm_enabled() ? "host" : "POWER7"; 1787 } 1788 for (i = 0; i < smp_cpus; i++) { 1789 cpu = cpu_ppc_init(machine->cpu_model); 1790 if (cpu == NULL) { 1791 error_report("Unable to find PowerPC CPU definition"); 1792 exit(1); 1793 } 1794 spapr_cpu_init(spapr, cpu, &error_fatal); 1795 } 1796 1797 if (kvm_enabled()) { 1798 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 1799 kvmppc_enable_logical_ci_hcalls(); 1800 kvmppc_enable_set_mode_hcall(); 1801 } 1802 1803 /* allocate RAM */ 1804 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 1805 machine->ram_size); 1806 memory_region_add_subregion(sysmem, 0, ram); 1807 1808 if (rma_alloc_size && rma) { 1809 rma_region = g_new(MemoryRegion, 1); 1810 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", 1811 rma_alloc_size, rma); 1812 vmstate_register_ram_global(rma_region); 1813 memory_region_add_subregion(sysmem, 0, rma_region); 1814 } 1815 1816 /* initialize hotplug memory address space */ 1817 if (machine->ram_size < machine->maxram_size) { 1818 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; 1819 /* 1820 * Limit the number of hotpluggable memory slots to half the number 1821 * slots that KVM supports, leaving the other half for PCI and other 1822 * devices. However ensure that number of slots doesn't drop below 32. 1823 */ 1824 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 1825 SPAPR_MAX_RAM_SLOTS; 1826 1827 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 1828 max_memslots = SPAPR_MAX_RAM_SLOTS; 1829 } 1830 if (machine->ram_slots > max_memslots) { 1831 error_report("Specified number of memory slots %" 1832 PRIu64" exceeds max supported %d", 1833 machine->ram_slots, max_memslots); 1834 exit(1); 1835 } 1836 1837 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, 1838 SPAPR_HOTPLUG_MEM_ALIGN); 1839 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), 1840 "hotplug-memory", hotplug_mem_size); 1841 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, 1842 &spapr->hotplug_memory.mr); 1843 } 1844 1845 if (smc->dr_lmb_enabled) { 1846 spapr_create_lmb_dr_connectors(spapr); 1847 } 1848 1849 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 1850 if (!filename) { 1851 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 1852 exit(1); 1853 } 1854 spapr->rtas_size = get_image_size(filename); 1855 if (spapr->rtas_size < 0) { 1856 error_report("Could not get size of LPAR rtas '%s'", filename); 1857 exit(1); 1858 } 1859 spapr->rtas_blob = g_malloc(spapr->rtas_size); 1860 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 1861 error_report("Could not load LPAR rtas '%s'", filename); 1862 exit(1); 1863 } 1864 if (spapr->rtas_size > RTAS_MAX_SIZE) { 1865 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 1866 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 1867 exit(1); 1868 } 1869 g_free(filename); 1870 1871 /* Set up EPOW events infrastructure */ 1872 spapr_events_init(spapr); 1873 1874 /* Set up the RTC RTAS interfaces */ 1875 spapr_rtc_create(spapr); 1876 1877 /* Set up VIO bus */ 1878 spapr->vio_bus = spapr_vio_bus_init(); 1879 1880 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 1881 if (serial_hds[i]) { 1882 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 1883 } 1884 } 1885 1886 /* We always have at least the nvram device on VIO */ 1887 spapr_create_nvram(spapr); 1888 1889 /* Set up PCI */ 1890 spapr_pci_rtas_init(); 1891 1892 phb = spapr_create_phb(spapr, 0); 1893 1894 for (i = 0; i < nb_nics; i++) { 1895 NICInfo *nd = &nd_table[i]; 1896 1897 if (!nd->model) { 1898 nd->model = g_strdup("ibmveth"); 1899 } 1900 1901 if (strcmp(nd->model, "ibmveth") == 0) { 1902 spapr_vlan_create(spapr->vio_bus, nd); 1903 } else { 1904 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 1905 } 1906 } 1907 1908 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 1909 spapr_vscsi_create(spapr->vio_bus); 1910 } 1911 1912 /* Graphics */ 1913 if (spapr_vga_init(phb->bus, &error_fatal)) { 1914 spapr->has_graphics = true; 1915 machine->usb |= defaults_enabled() && !machine->usb_disabled; 1916 } 1917 1918 if (machine->usb) { 1919 if (smc->use_ohci_by_default) { 1920 pci_create_simple(phb->bus, -1, "pci-ohci"); 1921 } else { 1922 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 1923 } 1924 1925 if (spapr->has_graphics) { 1926 USBBus *usb_bus = usb_bus_find(-1); 1927 1928 usb_create_simple(usb_bus, "usb-kbd"); 1929 usb_create_simple(usb_bus, "usb-mouse"); 1930 } 1931 } 1932 1933 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 1934 error_report( 1935 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 1936 MIN_RMA_SLOF); 1937 exit(1); 1938 } 1939 1940 if (kernel_filename) { 1941 uint64_t lowaddr = 0; 1942 1943 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, 1944 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 1945 0, 0); 1946 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) { 1947 kernel_size = load_elf(kernel_filename, 1948 translate_kernel_address, NULL, 1949 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 1950 0, 0); 1951 kernel_le = kernel_size > 0; 1952 } 1953 if (kernel_size < 0) { 1954 error_report("error loading %s: %s", 1955 kernel_filename, load_elf_strerror(kernel_size)); 1956 exit(1); 1957 } 1958 1959 /* load initrd */ 1960 if (initrd_filename) { 1961 /* Try to locate the initrd in the gap between the kernel 1962 * and the firmware. Add a bit of space just in case 1963 */ 1964 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; 1965 initrd_size = load_image_targphys(initrd_filename, initrd_base, 1966 load_limit - initrd_base); 1967 if (initrd_size < 0) { 1968 error_report("could not load initial ram disk '%s'", 1969 initrd_filename); 1970 exit(1); 1971 } 1972 } else { 1973 initrd_base = 0; 1974 initrd_size = 0; 1975 } 1976 } 1977 1978 if (bios_name == NULL) { 1979 bios_name = FW_FILE_NAME; 1980 } 1981 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1982 if (!filename) { 1983 error_report("Could not find LPAR firmware '%s'", bios_name); 1984 exit(1); 1985 } 1986 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 1987 if (fw_size <= 0) { 1988 error_report("Could not load LPAR firmware '%s'", filename); 1989 exit(1); 1990 } 1991 g_free(filename); 1992 1993 /* FIXME: Should register things through the MachineState's qdev 1994 * interface, this is a legacy from the sPAPREnvironment structure 1995 * which predated MachineState but had a similar function */ 1996 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 1997 register_savevm_live(NULL, "spapr/htab", -1, 1, 1998 &savevm_htab_handlers, spapr); 1999 2000 /* Prepare the device tree */ 2001 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size, 2002 kernel_size, kernel_le, 2003 kernel_cmdline, 2004 spapr->check_exception_irq); 2005 assert(spapr->fdt_skel != NULL); 2006 2007 /* used by RTAS */ 2008 QTAILQ_INIT(&spapr->ccs_list); 2009 qemu_register_reset(spapr_ccs_reset_hook, spapr); 2010 2011 qemu_register_boot_set(spapr_boot_set, spapr); 2012 } 2013 2014 static int spapr_kvm_type(const char *vm_type) 2015 { 2016 if (!vm_type) { 2017 return 0; 2018 } 2019 2020 if (!strcmp(vm_type, "HV")) { 2021 return 1; 2022 } 2023 2024 if (!strcmp(vm_type, "PR")) { 2025 return 2; 2026 } 2027 2028 error_report("Unknown kvm-type specified '%s'", vm_type); 2029 exit(1); 2030 } 2031 2032 /* 2033 * Implementation of an interface to adjust firmware path 2034 * for the bootindex property handling. 2035 */ 2036 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2037 DeviceState *dev) 2038 { 2039 #define CAST(type, obj, name) \ 2040 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2041 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2042 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2043 2044 if (d) { 2045 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2046 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2047 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2048 2049 if (spapr) { 2050 /* 2051 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2052 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2053 * in the top 16 bits of the 64-bit LUN 2054 */ 2055 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2056 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2057 (uint64_t)id << 48); 2058 } else if (virtio) { 2059 /* 2060 * We use SRP luns of the form 01000000 | (target << 8) | lun 2061 * in the top 32 bits of the 64-bit LUN 2062 * Note: the quote above is from SLOF and it is wrong, 2063 * the actual binding is: 2064 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2065 */ 2066 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2067 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2068 (uint64_t)id << 32); 2069 } else if (usb) { 2070 /* 2071 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2072 * in the top 32 bits of the 64-bit LUN 2073 */ 2074 unsigned usb_port = atoi(usb->port->path); 2075 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2076 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2077 (uint64_t)id << 32); 2078 } 2079 } 2080 2081 if (phb) { 2082 /* Replace "pci" with "pci@800000020000000" */ 2083 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2084 } 2085 2086 return NULL; 2087 } 2088 2089 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2090 { 2091 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2092 2093 return g_strdup(spapr->kvm_type); 2094 } 2095 2096 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2097 { 2098 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2099 2100 g_free(spapr->kvm_type); 2101 spapr->kvm_type = g_strdup(value); 2102 } 2103 2104 static void spapr_machine_initfn(Object *obj) 2105 { 2106 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2107 2108 spapr->htab_fd = -1; 2109 object_property_add_str(obj, "kvm-type", 2110 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 2111 object_property_set_description(obj, "kvm-type", 2112 "Specifies the KVM virtualization mode (HV, PR)", 2113 NULL); 2114 } 2115 2116 static void spapr_machine_finalizefn(Object *obj) 2117 { 2118 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2119 2120 g_free(spapr->kvm_type); 2121 } 2122 2123 static void ppc_cpu_do_nmi_on_cpu(void *arg) 2124 { 2125 CPUState *cs = arg; 2126 2127 cpu_synchronize_state(cs); 2128 ppc_cpu_do_system_reset(cs); 2129 } 2130 2131 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 2132 { 2133 CPUState *cs; 2134 2135 CPU_FOREACH(cs) { 2136 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs); 2137 } 2138 } 2139 2140 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size, 2141 uint32_t node, Error **errp) 2142 { 2143 sPAPRDRConnector *drc; 2144 sPAPRDRConnectorClass *drck; 2145 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 2146 int i, fdt_offset, fdt_size; 2147 void *fdt; 2148 2149 for (i = 0; i < nr_lmbs; i++) { 2150 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2151 addr/SPAPR_MEMORY_BLOCK_SIZE); 2152 g_assert(drc); 2153 2154 fdt = create_device_tree(&fdt_size); 2155 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 2156 SPAPR_MEMORY_BLOCK_SIZE); 2157 2158 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2159 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp); 2160 addr += SPAPR_MEMORY_BLOCK_SIZE; 2161 } 2162 /* send hotplug notification to the 2163 * guest only in case of hotplugged memory 2164 */ 2165 if (dev->hotplugged) { 2166 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs); 2167 } 2168 } 2169 2170 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2171 uint32_t node, Error **errp) 2172 { 2173 Error *local_err = NULL; 2174 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2175 PCDIMMDevice *dimm = PC_DIMM(dev); 2176 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2177 MemoryRegion *mr = ddc->get_memory_region(dimm); 2178 uint64_t align = memory_region_get_alignment(mr); 2179 uint64_t size = memory_region_size(mr); 2180 uint64_t addr; 2181 2182 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 2183 error_setg(&local_err, "Hotplugged memory size must be a multiple of " 2184 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE); 2185 goto out; 2186 } 2187 2188 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); 2189 if (local_err) { 2190 goto out; 2191 } 2192 2193 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); 2194 if (local_err) { 2195 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2196 goto out; 2197 } 2198 2199 spapr_add_lmbs(dev, addr, size, node, &error_abort); 2200 2201 out: 2202 error_propagate(errp, local_err); 2203 } 2204 2205 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 2206 DeviceState *dev, Error **errp) 2207 { 2208 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); 2209 2210 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2211 int node; 2212 2213 if (!smc->dr_lmb_enabled) { 2214 error_setg(errp, "Memory hotplug not supported for this machine"); 2215 return; 2216 } 2217 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 2218 if (*errp) { 2219 return; 2220 } 2221 if (node < 0 || node >= MAX_NODES) { 2222 error_setg(errp, "Invaild node %d", node); 2223 return; 2224 } 2225 2226 /* 2227 * Currently PowerPC kernel doesn't allow hot-adding memory to 2228 * memory-less node, but instead will silently add the memory 2229 * to the first node that has some memory. This causes two 2230 * unexpected behaviours for the user. 2231 * 2232 * - Memory gets hotplugged to a different node than what the user 2233 * specified. 2234 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs 2235 * to memory-less node, a reboot will set things accordingly 2236 * and the previously hotplugged memory now ends in the right node. 2237 * This appears as if some memory moved from one node to another. 2238 * 2239 * So until kernel starts supporting memory hotplug to memory-less 2240 * nodes, just prevent such attempts upfront in QEMU. 2241 */ 2242 if (nb_numa_nodes && !numa_info[node].node_mem) { 2243 error_setg(errp, "Can't hotplug memory to memory-less node %d", 2244 node); 2245 return; 2246 } 2247 2248 spapr_memory_plug(hotplug_dev, dev, node, errp); 2249 } 2250 } 2251 2252 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 2253 DeviceState *dev, Error **errp) 2254 { 2255 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2256 error_setg(errp, "Memory hot unplug not supported by sPAPR"); 2257 } 2258 } 2259 2260 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine, 2261 DeviceState *dev) 2262 { 2263 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2264 return HOTPLUG_HANDLER(machine); 2265 } 2266 return NULL; 2267 } 2268 2269 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index) 2270 { 2271 /* Allocate to NUMA nodes on a "socket" basis (not that concept of 2272 * socket means much for the paravirtualized PAPR platform) */ 2273 return cpu_index / smp_threads / smp_cores; 2274 } 2275 2276 static void spapr_machine_class_init(ObjectClass *oc, void *data) 2277 { 2278 MachineClass *mc = MACHINE_CLASS(oc); 2279 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 2280 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 2281 NMIClass *nc = NMI_CLASS(oc); 2282 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2283 2284 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 2285 2286 /* 2287 * We set up the default / latest behaviour here. The class_init 2288 * functions for the specific versioned machine types can override 2289 * these details for backwards compatibility 2290 */ 2291 mc->init = ppc_spapr_init; 2292 mc->reset = ppc_spapr_reset; 2293 mc->block_default_type = IF_SCSI; 2294 mc->max_cpus = MAX_CPUMASK_BITS; 2295 mc->no_parallel = 1; 2296 mc->default_boot_order = ""; 2297 mc->default_ram_size = 512 * M_BYTE; 2298 mc->kvm_type = spapr_kvm_type; 2299 mc->has_dynamic_sysbus = true; 2300 mc->pci_allow_0_address = true; 2301 mc->get_hotplug_handler = spapr_get_hotpug_handler; 2302 hc->plug = spapr_machine_device_plug; 2303 hc->unplug = spapr_machine_device_unplug; 2304 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id; 2305 2306 smc->dr_lmb_enabled = true; 2307 fwc->get_dev_path = spapr_get_fw_dev_path; 2308 nc->nmi_monitor_handler = spapr_nmi; 2309 } 2310 2311 static const TypeInfo spapr_machine_info = { 2312 .name = TYPE_SPAPR_MACHINE, 2313 .parent = TYPE_MACHINE, 2314 .abstract = true, 2315 .instance_size = sizeof(sPAPRMachineState), 2316 .instance_init = spapr_machine_initfn, 2317 .instance_finalize = spapr_machine_finalizefn, 2318 .class_size = sizeof(sPAPRMachineClass), 2319 .class_init = spapr_machine_class_init, 2320 .interfaces = (InterfaceInfo[]) { 2321 { TYPE_FW_PATH_PROVIDER }, 2322 { TYPE_NMI }, 2323 { TYPE_HOTPLUG_HANDLER }, 2324 { } 2325 }, 2326 }; 2327 2328 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 2329 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 2330 void *data) \ 2331 { \ 2332 MachineClass *mc = MACHINE_CLASS(oc); \ 2333 spapr_machine_##suffix##_class_options(mc); \ 2334 if (latest) { \ 2335 mc->alias = "pseries"; \ 2336 mc->is_default = 1; \ 2337 } \ 2338 } \ 2339 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 2340 { \ 2341 MachineState *machine = MACHINE(obj); \ 2342 spapr_machine_##suffix##_instance_options(machine); \ 2343 } \ 2344 static const TypeInfo spapr_machine_##suffix##_info = { \ 2345 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 2346 .parent = TYPE_SPAPR_MACHINE, \ 2347 .class_init = spapr_machine_##suffix##_class_init, \ 2348 .instance_init = spapr_machine_##suffix##_instance_init, \ 2349 }; \ 2350 static void spapr_machine_register_##suffix(void) \ 2351 { \ 2352 type_register(&spapr_machine_##suffix##_info); \ 2353 } \ 2354 type_init(spapr_machine_register_##suffix) 2355 2356 /* 2357 * pseries-2.7 2358 */ 2359 static void spapr_machine_2_7_instance_options(MachineState *machine) 2360 { 2361 } 2362 2363 static void spapr_machine_2_7_class_options(MachineClass *mc) 2364 { 2365 /* Defaults for the latest behaviour inherited from the base class */ 2366 } 2367 2368 DEFINE_SPAPR_MACHINE(2_7, "2.7", true); 2369 2370 /* 2371 * pseries-2.6 2372 */ 2373 #define SPAPR_COMPAT_2_6 \ 2374 HW_COMPAT_2_6 2375 2376 static void spapr_machine_2_6_instance_options(MachineState *machine) 2377 { 2378 } 2379 2380 static void spapr_machine_2_6_class_options(MachineClass *mc) 2381 { 2382 spapr_machine_2_7_class_options(mc); 2383 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 2384 } 2385 2386 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 2387 2388 /* 2389 * pseries-2.5 2390 */ 2391 #define SPAPR_COMPAT_2_5 \ 2392 HW_COMPAT_2_5 \ 2393 { \ 2394 .driver = "spapr-vlan", \ 2395 .property = "use-rx-buffer-pools", \ 2396 .value = "off", \ 2397 }, 2398 2399 static void spapr_machine_2_5_instance_options(MachineState *machine) 2400 { 2401 } 2402 2403 static void spapr_machine_2_5_class_options(MachineClass *mc) 2404 { 2405 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 2406 2407 spapr_machine_2_6_class_options(mc); 2408 smc->use_ohci_by_default = true; 2409 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 2410 } 2411 2412 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 2413 2414 /* 2415 * pseries-2.4 2416 */ 2417 #define SPAPR_COMPAT_2_4 \ 2418 HW_COMPAT_2_4 2419 2420 static void spapr_machine_2_4_instance_options(MachineState *machine) 2421 { 2422 spapr_machine_2_5_instance_options(machine); 2423 } 2424 2425 static void spapr_machine_2_4_class_options(MachineClass *mc) 2426 { 2427 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 2428 2429 spapr_machine_2_5_class_options(mc); 2430 smc->dr_lmb_enabled = false; 2431 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 2432 } 2433 2434 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 2435 2436 /* 2437 * pseries-2.3 2438 */ 2439 #define SPAPR_COMPAT_2_3 \ 2440 HW_COMPAT_2_3 \ 2441 {\ 2442 .driver = "spapr-pci-host-bridge",\ 2443 .property = "dynamic-reconfiguration",\ 2444 .value = "off",\ 2445 }, 2446 2447 static void spapr_machine_2_3_instance_options(MachineState *machine) 2448 { 2449 spapr_machine_2_4_instance_options(machine); 2450 savevm_skip_section_footers(); 2451 global_state_set_optional(); 2452 savevm_skip_configuration(); 2453 } 2454 2455 static void spapr_machine_2_3_class_options(MachineClass *mc) 2456 { 2457 spapr_machine_2_4_class_options(mc); 2458 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 2459 } 2460 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 2461 2462 /* 2463 * pseries-2.2 2464 */ 2465 2466 #define SPAPR_COMPAT_2_2 \ 2467 HW_COMPAT_2_2 \ 2468 {\ 2469 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 2470 .property = "mem_win_size",\ 2471 .value = "0x20000000",\ 2472 }, 2473 2474 static void spapr_machine_2_2_instance_options(MachineState *machine) 2475 { 2476 spapr_machine_2_3_instance_options(machine); 2477 machine->suppress_vmdesc = true; 2478 } 2479 2480 static void spapr_machine_2_2_class_options(MachineClass *mc) 2481 { 2482 spapr_machine_2_3_class_options(mc); 2483 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 2484 } 2485 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 2486 2487 /* 2488 * pseries-2.1 2489 */ 2490 #define SPAPR_COMPAT_2_1 \ 2491 HW_COMPAT_2_1 2492 2493 static void spapr_machine_2_1_instance_options(MachineState *machine) 2494 { 2495 spapr_machine_2_2_instance_options(machine); 2496 } 2497 2498 static void spapr_machine_2_1_class_options(MachineClass *mc) 2499 { 2500 spapr_machine_2_2_class_options(mc); 2501 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 2502 } 2503 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 2504 2505 static void spapr_machine_register_types(void) 2506 { 2507 type_register_static(&spapr_machine_info); 2508 } 2509 2510 type_init(spapr_machine_register_types) 2511