xref: /openbmc/qemu/hw/ppc/spapr.c (revision 1ff7b531)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "qom/cpu.h"
47 
48 #include "hw/boards.h"
49 #include "hw/ppc/ppc.h"
50 #include "hw/loader.h"
51 
52 #include "hw/ppc/fdt.h"
53 #include "hw/ppc/spapr.h"
54 #include "hw/ppc/spapr_vio.h"
55 #include "hw/pci-host/spapr.h"
56 #include "hw/ppc/xics.h"
57 #include "hw/pci/msi.h"
58 
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63 
64 #include "exec/address-spaces.h"
65 #include "hw/usb.h"
66 #include "qemu/config-file.h"
67 #include "qemu/error-report.h"
68 #include "trace.h"
69 #include "hw/nmi.h"
70 #include "hw/intc/intc.h"
71 
72 #include "hw/compat.h"
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "qmp-commands.h"
76 
77 #include <libfdt.h>
78 
79 /* SLOF memory layout:
80  *
81  * SLOF raw image loaded at 0, copies its romfs right below the flat
82  * device-tree, then position SLOF itself 31M below that
83  *
84  * So we set FW_OVERHEAD to 40MB which should account for all of that
85  * and more
86  *
87  * We load our kernel at 4M, leaving space for SLOF initial image
88  */
89 #define FDT_MAX_SIZE            0x100000
90 #define RTAS_MAX_SIZE           0x10000
91 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE             0x400000
93 #define FW_FILE_NAME            "slof.bin"
94 #define FW_OVERHEAD             0x2800000
95 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
96 
97 #define MIN_RMA_SLOF            128UL
98 
99 #define PHANDLE_XICP            0x00001111
100 
101 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
102 
103 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
104                                   const char *type_ics,
105                                   int nr_irqs, Error **errp)
106 {
107     Error *local_err = NULL;
108     Object *obj;
109 
110     obj = object_new(type_ics);
111     object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
112     object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
113                                    &error_abort);
114     object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
115     if (local_err) {
116         goto error;
117     }
118     object_property_set_bool(obj, true, "realized", &local_err);
119     if (local_err) {
120         goto error;
121     }
122 
123     return ICS_SIMPLE(obj);
124 
125 error:
126     error_propagate(errp, local_err);
127     return NULL;
128 }
129 
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133      * and newer QEMUs don't even have them. In both cases, we don't want
134      * to send anything on the wire.
135      */
136     return false;
137 }
138 
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140     .name = "icp/server",
141     .version_id = 1,
142     .minimum_version_id = 1,
143     .needed = pre_2_10_vmstate_dummy_icp_needed,
144     .fields = (VMStateField[]) {
145         VMSTATE_UNUSED(4), /* uint32_t xirr */
146         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147         VMSTATE_UNUSED(1), /* uint8_t mfrr */
148         VMSTATE_END_OF_LIST()
149     },
150 };
151 
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155                      (void *)(uintptr_t) i);
156 }
157 
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161                        (void *)(uintptr_t) i);
162 }
163 
164 static inline int xics_max_server_number(void)
165 {
166     return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
167 }
168 
169 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
170 {
171     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
172     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
173 
174     if (kvm_enabled()) {
175         if (machine_kernel_irqchip_allowed(machine) &&
176             !xics_kvm_init(spapr, errp)) {
177             spapr->icp_type = TYPE_KVM_ICP;
178             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
179         }
180         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
181             error_prepend(errp, "kernel_irqchip requested but unavailable: ");
182             return;
183         }
184     }
185 
186     if (!spapr->ics) {
187         xics_spapr_init(spapr);
188         spapr->icp_type = TYPE_ICP;
189         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
190         if (!spapr->ics) {
191             return;
192         }
193     }
194 
195     if (smc->pre_2_10_has_unused_icps) {
196         int i;
197 
198         for (i = 0; i < xics_max_server_number(); i++) {
199             /* Dummy entries get deregistered when real ICPState objects
200              * are registered during CPU core hotplug.
201              */
202             pre_2_10_vmstate_register_dummy_icp(i);
203         }
204     }
205 }
206 
207 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
208                                   int smt_threads)
209 {
210     int i, ret = 0;
211     uint32_t servers_prop[smt_threads];
212     uint32_t gservers_prop[smt_threads * 2];
213     int index = ppc_get_vcpu_dt_id(cpu);
214 
215     if (cpu->compat_pvr) {
216         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
217         if (ret < 0) {
218             return ret;
219         }
220     }
221 
222     /* Build interrupt servers and gservers properties */
223     for (i = 0; i < smt_threads; i++) {
224         servers_prop[i] = cpu_to_be32(index + i);
225         /* Hack, direct the group queues back to cpu 0 */
226         gservers_prop[i*2] = cpu_to_be32(index + i);
227         gservers_prop[i*2 + 1] = 0;
228     }
229     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
230                       servers_prop, sizeof(servers_prop));
231     if (ret < 0) {
232         return ret;
233     }
234     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
235                       gservers_prop, sizeof(gservers_prop));
236 
237     return ret;
238 }
239 
240 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
241 {
242     int index = ppc_get_vcpu_dt_id(cpu);
243     uint32_t associativity[] = {cpu_to_be32(0x5),
244                                 cpu_to_be32(0x0),
245                                 cpu_to_be32(0x0),
246                                 cpu_to_be32(0x0),
247                                 cpu_to_be32(cpu->node_id),
248                                 cpu_to_be32(index)};
249 
250     /* Advertise NUMA via ibm,associativity */
251     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
252                           sizeof(associativity));
253 }
254 
255 /* Populate the "ibm,pa-features" property */
256 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
257                                       bool legacy_guest)
258 {
259     uint8_t pa_features_206[] = { 6, 0,
260         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
261     uint8_t pa_features_207[] = { 24, 0,
262         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
263         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
264         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
265         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
266     uint8_t pa_features_300[] = { 66, 0,
267         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
268         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
269         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
270         /* 6: DS207 */
271         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
272         /* 16: Vector */
273         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
274         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
275         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
276         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
277         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
278         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
279         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
280         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
281         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
282         /* 42: PM, 44: PC RA, 46: SC vec'd */
283         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
284         /* 48: SIMD, 50: QP BFP, 52: String */
285         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
286         /* 54: DecFP, 56: DecI, 58: SHA */
287         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
288         /* 60: NM atomic, 62: RNG */
289         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
290     };
291     uint8_t *pa_features;
292     size_t pa_size;
293 
294     switch (POWERPC_MMU_VER(env->mmu_model)) {
295     case POWERPC_MMU_VER_2_06:
296         pa_features = pa_features_206;
297         pa_size = sizeof(pa_features_206);
298         break;
299     case POWERPC_MMU_VER_2_07:
300         pa_features = pa_features_207;
301         pa_size = sizeof(pa_features_207);
302         break;
303     case POWERPC_MMU_VER_3_00:
304         pa_features = pa_features_300;
305         pa_size = sizeof(pa_features_300);
306         break;
307     default:
308         return;
309     }
310 
311     if (env->ci_large_pages) {
312         /*
313          * Note: we keep CI large pages off by default because a 64K capable
314          * guest provisioned with large pages might otherwise try to map a qemu
315          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
316          * even if that qemu runs on a 4k host.
317          * We dd this bit back here if we are confident this is not an issue
318          */
319         pa_features[3] |= 0x20;
320     }
321     if (kvmppc_has_cap_htm() && pa_size > 24) {
322         pa_features[24] |= 0x80;    /* Transactional memory support */
323     }
324     if (legacy_guest && pa_size > 40) {
325         /* Workaround for broken kernels that attempt (guest) radix
326          * mode when they can't handle it, if they see the radix bit set
327          * in pa-features. So hide it from them. */
328         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
329     }
330 
331     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
332 }
333 
334 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
335 {
336     int ret = 0, offset, cpus_offset;
337     CPUState *cs;
338     char cpu_model[32];
339     int smt = kvmppc_smt_threads();
340     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
341 
342     CPU_FOREACH(cs) {
343         PowerPCCPU *cpu = POWERPC_CPU(cs);
344         CPUPPCState *env = &cpu->env;
345         DeviceClass *dc = DEVICE_GET_CLASS(cs);
346         int index = ppc_get_vcpu_dt_id(cpu);
347         int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
348 
349         if ((index % smt) != 0) {
350             continue;
351         }
352 
353         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
354 
355         cpus_offset = fdt_path_offset(fdt, "/cpus");
356         if (cpus_offset < 0) {
357             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
358                                           "cpus");
359             if (cpus_offset < 0) {
360                 return cpus_offset;
361             }
362         }
363         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
364         if (offset < 0) {
365             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
366             if (offset < 0) {
367                 return offset;
368             }
369         }
370 
371         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
372                           pft_size_prop, sizeof(pft_size_prop));
373         if (ret < 0) {
374             return ret;
375         }
376 
377         if (nb_numa_nodes > 1) {
378             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
379             if (ret < 0) {
380                 return ret;
381             }
382         }
383 
384         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
385         if (ret < 0) {
386             return ret;
387         }
388 
389         spapr_populate_pa_features(env, fdt, offset,
390                                          spapr->cas_legacy_guest_workaround);
391     }
392     return ret;
393 }
394 
395 static hwaddr spapr_node0_size(void)
396 {
397     MachineState *machine = MACHINE(qdev_get_machine());
398 
399     if (nb_numa_nodes) {
400         int i;
401         for (i = 0; i < nb_numa_nodes; ++i) {
402             if (numa_info[i].node_mem) {
403                 return MIN(pow2floor(numa_info[i].node_mem),
404                            machine->ram_size);
405             }
406         }
407     }
408     return machine->ram_size;
409 }
410 
411 static void add_str(GString *s, const gchar *s1)
412 {
413     g_string_append_len(s, s1, strlen(s1) + 1);
414 }
415 
416 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
417                                        hwaddr size)
418 {
419     uint32_t associativity[] = {
420         cpu_to_be32(0x4), /* length */
421         cpu_to_be32(0x0), cpu_to_be32(0x0),
422         cpu_to_be32(0x0), cpu_to_be32(nodeid)
423     };
424     char mem_name[32];
425     uint64_t mem_reg_property[2];
426     int off;
427 
428     mem_reg_property[0] = cpu_to_be64(start);
429     mem_reg_property[1] = cpu_to_be64(size);
430 
431     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
432     off = fdt_add_subnode(fdt, 0, mem_name);
433     _FDT(off);
434     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
435     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
436                       sizeof(mem_reg_property))));
437     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
438                       sizeof(associativity))));
439     return off;
440 }
441 
442 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
443 {
444     MachineState *machine = MACHINE(spapr);
445     hwaddr mem_start, node_size;
446     int i, nb_nodes = nb_numa_nodes;
447     NodeInfo *nodes = numa_info;
448     NodeInfo ramnode;
449 
450     /* No NUMA nodes, assume there is just one node with whole RAM */
451     if (!nb_numa_nodes) {
452         nb_nodes = 1;
453         ramnode.node_mem = machine->ram_size;
454         nodes = &ramnode;
455     }
456 
457     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
458         if (!nodes[i].node_mem) {
459             continue;
460         }
461         if (mem_start >= machine->ram_size) {
462             node_size = 0;
463         } else {
464             node_size = nodes[i].node_mem;
465             if (node_size > machine->ram_size - mem_start) {
466                 node_size = machine->ram_size - mem_start;
467             }
468         }
469         if (!mem_start) {
470             /* ppc_spapr_init() checks for rma_size <= node0_size already */
471             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
472             mem_start += spapr->rma_size;
473             node_size -= spapr->rma_size;
474         }
475         for ( ; node_size; ) {
476             hwaddr sizetmp = pow2floor(node_size);
477 
478             /* mem_start != 0 here */
479             if (ctzl(mem_start) < ctzl(sizetmp)) {
480                 sizetmp = 1ULL << ctzl(mem_start);
481             }
482 
483             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
484             node_size -= sizetmp;
485             mem_start += sizetmp;
486         }
487     }
488 
489     return 0;
490 }
491 
492 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
493                                   sPAPRMachineState *spapr)
494 {
495     PowerPCCPU *cpu = POWERPC_CPU(cs);
496     CPUPPCState *env = &cpu->env;
497     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
498     int index = ppc_get_vcpu_dt_id(cpu);
499     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
500                        0xffffffff, 0xffffffff};
501     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
502         : SPAPR_TIMEBASE_FREQ;
503     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
504     uint32_t page_sizes_prop[64];
505     size_t page_sizes_prop_size;
506     uint32_t vcpus_per_socket = smp_threads * smp_cores;
507     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
508     int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
509     sPAPRDRConnector *drc;
510     int drc_index;
511     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
512     int i;
513 
514     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
515     if (drc) {
516         drc_index = spapr_drc_index(drc);
517         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
518     }
519 
520     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
521     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
522 
523     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
524     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
525                            env->dcache_line_size)));
526     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
527                            env->dcache_line_size)));
528     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
529                            env->icache_line_size)));
530     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
531                            env->icache_line_size)));
532 
533     if (pcc->l1_dcache_size) {
534         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
535                                pcc->l1_dcache_size)));
536     } else {
537         warn_report("Unknown L1 dcache size for cpu");
538     }
539     if (pcc->l1_icache_size) {
540         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
541                                pcc->l1_icache_size)));
542     } else {
543         warn_report("Unknown L1 icache size for cpu");
544     }
545 
546     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
547     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
548     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
549     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
550     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
551     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
552 
553     if (env->spr_cb[SPR_PURR].oea_read) {
554         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
555     }
556 
557     if (env->mmu_model & POWERPC_MMU_1TSEG) {
558         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
559                           segs, sizeof(segs))));
560     }
561 
562     /* Advertise VMX/VSX (vector extensions) if available
563      *   0 / no property == no vector extensions
564      *   1               == VMX / Altivec available
565      *   2               == VSX available */
566     if (env->insns_flags & PPC_ALTIVEC) {
567         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
568 
569         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
570     }
571 
572     /* Advertise DFP (Decimal Floating Point) if available
573      *   0 / no property == no DFP
574      *   1               == DFP available */
575     if (env->insns_flags2 & PPC2_DFP) {
576         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
577     }
578 
579     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
580                                                   sizeof(page_sizes_prop));
581     if (page_sizes_prop_size) {
582         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
583                           page_sizes_prop, page_sizes_prop_size)));
584     }
585 
586     spapr_populate_pa_features(env, fdt, offset, false);
587 
588     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
589                            cs->cpu_index / vcpus_per_socket)));
590 
591     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
592                       pft_size_prop, sizeof(pft_size_prop))));
593 
594     if (nb_numa_nodes > 1) {
595         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
596     }
597 
598     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
599 
600     if (pcc->radix_page_info) {
601         for (i = 0; i < pcc->radix_page_info->count; i++) {
602             radix_AP_encodings[i] =
603                 cpu_to_be32(pcc->radix_page_info->entries[i]);
604         }
605         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
606                           radix_AP_encodings,
607                           pcc->radix_page_info->count *
608                           sizeof(radix_AP_encodings[0]))));
609     }
610 }
611 
612 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
613 {
614     CPUState *cs;
615     int cpus_offset;
616     char *nodename;
617     int smt = kvmppc_smt_threads();
618 
619     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
620     _FDT(cpus_offset);
621     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
622     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
623 
624     /*
625      * We walk the CPUs in reverse order to ensure that CPU DT nodes
626      * created by fdt_add_subnode() end up in the right order in FDT
627      * for the guest kernel the enumerate the CPUs correctly.
628      */
629     CPU_FOREACH_REVERSE(cs) {
630         PowerPCCPU *cpu = POWERPC_CPU(cs);
631         int index = ppc_get_vcpu_dt_id(cpu);
632         DeviceClass *dc = DEVICE_GET_CLASS(cs);
633         int offset;
634 
635         if ((index % smt) != 0) {
636             continue;
637         }
638 
639         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
640         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
641         g_free(nodename);
642         _FDT(offset);
643         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
644     }
645 
646 }
647 
648 /*
649  * Adds ibm,dynamic-reconfiguration-memory node.
650  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
651  * of this device tree node.
652  */
653 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
654 {
655     MachineState *machine = MACHINE(spapr);
656     int ret, i, offset;
657     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
658     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
659     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
660     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
661                        memory_region_size(&spapr->hotplug_memory.mr)) /
662                        lmb_size;
663     uint32_t *int_buf, *cur_index, buf_len;
664     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
665 
666     /*
667      * Don't create the node if there is no hotpluggable memory
668      */
669     if (machine->ram_size == machine->maxram_size) {
670         return 0;
671     }
672 
673     /*
674      * Allocate enough buffer size to fit in ibm,dynamic-memory
675      * or ibm,associativity-lookup-arrays
676      */
677     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
678               * sizeof(uint32_t);
679     cur_index = int_buf = g_malloc0(buf_len);
680 
681     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
682 
683     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
684                     sizeof(prop_lmb_size));
685     if (ret < 0) {
686         goto out;
687     }
688 
689     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
690     if (ret < 0) {
691         goto out;
692     }
693 
694     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
695     if (ret < 0) {
696         goto out;
697     }
698 
699     /* ibm,dynamic-memory */
700     int_buf[0] = cpu_to_be32(nr_lmbs);
701     cur_index++;
702     for (i = 0; i < nr_lmbs; i++) {
703         uint64_t addr = i * lmb_size;
704         uint32_t *dynamic_memory = cur_index;
705 
706         if (i >= hotplug_lmb_start) {
707             sPAPRDRConnector *drc;
708 
709             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
710             g_assert(drc);
711 
712             dynamic_memory[0] = cpu_to_be32(addr >> 32);
713             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
714             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
715             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
716             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
717             if (memory_region_present(get_system_memory(), addr)) {
718                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
719             } else {
720                 dynamic_memory[5] = cpu_to_be32(0);
721             }
722         } else {
723             /*
724              * LMB information for RMA, boot time RAM and gap b/n RAM and
725              * hotplug memory region -- all these are marked as reserved
726              * and as having no valid DRC.
727              */
728             dynamic_memory[0] = cpu_to_be32(addr >> 32);
729             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
730             dynamic_memory[2] = cpu_to_be32(0);
731             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
732             dynamic_memory[4] = cpu_to_be32(-1);
733             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
734                                             SPAPR_LMB_FLAGS_DRC_INVALID);
735         }
736 
737         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
738     }
739     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
740     if (ret < 0) {
741         goto out;
742     }
743 
744     /* ibm,associativity-lookup-arrays */
745     cur_index = int_buf;
746     int_buf[0] = cpu_to_be32(nr_nodes);
747     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
748     cur_index += 2;
749     for (i = 0; i < nr_nodes; i++) {
750         uint32_t associativity[] = {
751             cpu_to_be32(0x0),
752             cpu_to_be32(0x0),
753             cpu_to_be32(0x0),
754             cpu_to_be32(i)
755         };
756         memcpy(cur_index, associativity, sizeof(associativity));
757         cur_index += 4;
758     }
759     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
760             (cur_index - int_buf) * sizeof(uint32_t));
761 out:
762     g_free(int_buf);
763     return ret;
764 }
765 
766 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
767                                 sPAPROptionVector *ov5_updates)
768 {
769     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
770     int ret = 0, offset;
771 
772     /* Generate ibm,dynamic-reconfiguration-memory node if required */
773     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
774         g_assert(smc->dr_lmb_enabled);
775         ret = spapr_populate_drconf_memory(spapr, fdt);
776         if (ret) {
777             goto out;
778         }
779     }
780 
781     /* /interrupt controller */
782     if (!spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)) {
783         spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
784     }
785 
786     offset = fdt_path_offset(fdt, "/chosen");
787     if (offset < 0) {
788         offset = fdt_add_subnode(fdt, 0, "chosen");
789         if (offset < 0) {
790             return offset;
791         }
792     }
793     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
794                                  "ibm,architecture-vec-5");
795 
796 out:
797     return ret;
798 }
799 
800 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
801                                  target_ulong addr, target_ulong size,
802                                  sPAPROptionVector *ov5_updates)
803 {
804     void *fdt, *fdt_skel;
805     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
806 
807     size -= sizeof(hdr);
808 
809     /* Create skeleton */
810     fdt_skel = g_malloc0(size);
811     _FDT((fdt_create(fdt_skel, size)));
812     _FDT((fdt_begin_node(fdt_skel, "")));
813     _FDT((fdt_end_node(fdt_skel)));
814     _FDT((fdt_finish(fdt_skel)));
815     fdt = g_malloc0(size);
816     _FDT((fdt_open_into(fdt_skel, fdt, size)));
817     g_free(fdt_skel);
818 
819     /* Fixup cpu nodes */
820     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
821 
822     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
823         return -1;
824     }
825 
826     /* Pack resulting tree */
827     _FDT((fdt_pack(fdt)));
828 
829     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
830         trace_spapr_cas_failed(size);
831         return -1;
832     }
833 
834     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
835     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
836     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
837     g_free(fdt);
838 
839     return 0;
840 }
841 
842 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
843 {
844     int rtas;
845     GString *hypertas = g_string_sized_new(256);
846     GString *qemu_hypertas = g_string_sized_new(256);
847     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
848     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
849         memory_region_size(&spapr->hotplug_memory.mr);
850     uint32_t lrdr_capacity[] = {
851         cpu_to_be32(max_hotplug_addr >> 32),
852         cpu_to_be32(max_hotplug_addr & 0xffffffff),
853         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
854         cpu_to_be32(max_cpus / smp_threads),
855     };
856 
857     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
858 
859     /* hypertas */
860     add_str(hypertas, "hcall-pft");
861     add_str(hypertas, "hcall-term");
862     add_str(hypertas, "hcall-dabr");
863     add_str(hypertas, "hcall-interrupt");
864     add_str(hypertas, "hcall-tce");
865     add_str(hypertas, "hcall-vio");
866     add_str(hypertas, "hcall-splpar");
867     add_str(hypertas, "hcall-bulk");
868     add_str(hypertas, "hcall-set-mode");
869     add_str(hypertas, "hcall-sprg0");
870     add_str(hypertas, "hcall-copy");
871     add_str(hypertas, "hcall-debug");
872     add_str(qemu_hypertas, "hcall-memop1");
873 
874     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
875         add_str(hypertas, "hcall-multi-tce");
876     }
877     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
878                      hypertas->str, hypertas->len));
879     g_string_free(hypertas, TRUE);
880     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
881                      qemu_hypertas->str, qemu_hypertas->len));
882     g_string_free(qemu_hypertas, TRUE);
883 
884     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
885                      refpoints, sizeof(refpoints)));
886 
887     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
888                           RTAS_ERROR_LOG_MAX));
889     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
890                           RTAS_EVENT_SCAN_RATE));
891 
892     if (msi_nonbroken) {
893         _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
894     }
895 
896     /*
897      * According to PAPR, rtas ibm,os-term does not guarantee a return
898      * back to the guest cpu.
899      *
900      * While an additional ibm,extended-os-term property indicates
901      * that rtas call return will always occur. Set this property.
902      */
903     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
904 
905     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
906                      lrdr_capacity, sizeof(lrdr_capacity)));
907 
908     spapr_dt_rtas_tokens(fdt, rtas);
909 }
910 
911 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
912  * that the guest may request and thus the valid values for bytes 24..26 of
913  * option vector 5: */
914 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
915 {
916     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
917 
918     char val[2 * 4] = {
919         23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */
920         24, 0x00, /* Hash/Radix, filled in below. */
921         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
922         26, 0x40, /* Radix options: GTSE == yes. */
923     };
924 
925     if (kvm_enabled()) {
926         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
927             val[3] = 0x80; /* OV5_MMU_BOTH */
928         } else if (kvmppc_has_cap_mmu_radix()) {
929             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
930         } else {
931             val[3] = 0x00; /* Hash */
932         }
933     } else {
934         if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
935             /* V3 MMU supports both hash and radix (with dynamic switching) */
936             val[3] = 0xC0;
937         } else {
938             /* Otherwise we can only do hash */
939             val[3] = 0x00;
940         }
941     }
942     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
943                      val, sizeof(val)));
944 }
945 
946 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
947 {
948     MachineState *machine = MACHINE(spapr);
949     int chosen;
950     const char *boot_device = machine->boot_order;
951     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
952     size_t cb = 0;
953     char *bootlist = get_boot_devices_list(&cb, true);
954 
955     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
956 
957     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
958     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
959                           spapr->initrd_base));
960     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
961                           spapr->initrd_base + spapr->initrd_size));
962 
963     if (spapr->kernel_size) {
964         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
965                               cpu_to_be64(spapr->kernel_size) };
966 
967         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
968                          &kprop, sizeof(kprop)));
969         if (spapr->kernel_le) {
970             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
971         }
972     }
973     if (boot_menu) {
974         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
975     }
976     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
977     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
978     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
979 
980     if (cb && bootlist) {
981         int i;
982 
983         for (i = 0; i < cb; i++) {
984             if (bootlist[i] == '\n') {
985                 bootlist[i] = ' ';
986             }
987         }
988         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
989     }
990 
991     if (boot_device && strlen(boot_device)) {
992         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
993     }
994 
995     if (!spapr->has_graphics && stdout_path) {
996         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
997     }
998 
999     spapr_dt_ov5_platform_support(fdt, chosen);
1000 
1001     g_free(stdout_path);
1002     g_free(bootlist);
1003 }
1004 
1005 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1006 {
1007     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1008      * KVM to work under pHyp with some guest co-operation */
1009     int hypervisor;
1010     uint8_t hypercall[16];
1011 
1012     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1013     /* indicate KVM hypercall interface */
1014     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1015     if (kvmppc_has_cap_fixup_hcalls()) {
1016         /*
1017          * Older KVM versions with older guest kernels were broken
1018          * with the magic page, don't allow the guest to map it.
1019          */
1020         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1021                                   sizeof(hypercall))) {
1022             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1023                              hypercall, sizeof(hypercall)));
1024         }
1025     }
1026 }
1027 
1028 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1029                              hwaddr rtas_addr,
1030                              hwaddr rtas_size)
1031 {
1032     MachineState *machine = MACHINE(qdev_get_machine());
1033     MachineClass *mc = MACHINE_GET_CLASS(machine);
1034     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1035     int ret;
1036     void *fdt;
1037     sPAPRPHBState *phb;
1038     char *buf;
1039 
1040     fdt = g_malloc0(FDT_MAX_SIZE);
1041     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1042 
1043     /* Root node */
1044     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1045     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1046     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1047 
1048     /*
1049      * Add info to guest to indentify which host is it being run on
1050      * and what is the uuid of the guest
1051      */
1052     if (kvmppc_get_host_model(&buf)) {
1053         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1054         g_free(buf);
1055     }
1056     if (kvmppc_get_host_serial(&buf)) {
1057         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1058         g_free(buf);
1059     }
1060 
1061     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1062 
1063     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1064     if (qemu_uuid_set) {
1065         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1066     }
1067     g_free(buf);
1068 
1069     if (qemu_get_vm_name()) {
1070         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1071                                 qemu_get_vm_name()));
1072     }
1073 
1074     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1075     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1076 
1077     ret = spapr_populate_memory(spapr, fdt);
1078     if (ret < 0) {
1079         error_report("couldn't setup memory nodes in fdt");
1080         exit(1);
1081     }
1082 
1083     /* /vdevice */
1084     spapr_dt_vdevice(spapr->vio_bus, fdt);
1085 
1086     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1087         ret = spapr_rng_populate_dt(fdt);
1088         if (ret < 0) {
1089             error_report("could not set up rng device in the fdt");
1090             exit(1);
1091         }
1092     }
1093 
1094     QLIST_FOREACH(phb, &spapr->phbs, list) {
1095         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1096         if (ret < 0) {
1097             error_report("couldn't setup PCI devices in fdt");
1098             exit(1);
1099         }
1100     }
1101 
1102     /* cpus */
1103     spapr_populate_cpus_dt_node(fdt, spapr);
1104 
1105     if (smc->dr_lmb_enabled) {
1106         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1107     }
1108 
1109     if (mc->has_hotpluggable_cpus) {
1110         int offset = fdt_path_offset(fdt, "/cpus");
1111         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1112                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1113         if (ret < 0) {
1114             error_report("Couldn't set up CPU DR device tree properties");
1115             exit(1);
1116         }
1117     }
1118 
1119     /* /event-sources */
1120     spapr_dt_events(spapr, fdt);
1121 
1122     /* /rtas */
1123     spapr_dt_rtas(spapr, fdt);
1124 
1125     /* /chosen */
1126     spapr_dt_chosen(spapr, fdt);
1127 
1128     /* /hypervisor */
1129     if (kvm_enabled()) {
1130         spapr_dt_hypervisor(spapr, fdt);
1131     }
1132 
1133     /* Build memory reserve map */
1134     if (spapr->kernel_size) {
1135         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1136     }
1137     if (spapr->initrd_size) {
1138         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1139     }
1140 
1141     /* ibm,client-architecture-support updates */
1142     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1143     if (ret < 0) {
1144         error_report("couldn't setup CAS properties fdt");
1145         exit(1);
1146     }
1147 
1148     return fdt;
1149 }
1150 
1151 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1152 {
1153     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1154 }
1155 
1156 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1157                                     PowerPCCPU *cpu)
1158 {
1159     CPUPPCState *env = &cpu->env;
1160 
1161     /* The TCG path should also be holding the BQL at this point */
1162     g_assert(qemu_mutex_iothread_locked());
1163 
1164     if (msr_pr) {
1165         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1166         env->gpr[3] = H_PRIVILEGE;
1167     } else {
1168         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1169     }
1170 }
1171 
1172 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1173 {
1174     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1175 
1176     return spapr->patb_entry;
1177 }
1178 
1179 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1180 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1181 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1182 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1183 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1184 
1185 /*
1186  * Get the fd to access the kernel htab, re-opening it if necessary
1187  */
1188 static int get_htab_fd(sPAPRMachineState *spapr)
1189 {
1190     if (spapr->htab_fd >= 0) {
1191         return spapr->htab_fd;
1192     }
1193 
1194     spapr->htab_fd = kvmppc_get_htab_fd(false);
1195     if (spapr->htab_fd < 0) {
1196         error_report("Unable to open fd for reading hash table from KVM: %s",
1197                      strerror(errno));
1198     }
1199 
1200     return spapr->htab_fd;
1201 }
1202 
1203 void close_htab_fd(sPAPRMachineState *spapr)
1204 {
1205     if (spapr->htab_fd >= 0) {
1206         close(spapr->htab_fd);
1207     }
1208     spapr->htab_fd = -1;
1209 }
1210 
1211 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1212 {
1213     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1214 
1215     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1216 }
1217 
1218 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1219                                                 hwaddr ptex, int n)
1220 {
1221     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1222     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1223 
1224     if (!spapr->htab) {
1225         /*
1226          * HTAB is controlled by KVM. Fetch into temporary buffer
1227          */
1228         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1229         kvmppc_read_hptes(hptes, ptex, n);
1230         return hptes;
1231     }
1232 
1233     /*
1234      * HTAB is controlled by QEMU. Just point to the internally
1235      * accessible PTEG.
1236      */
1237     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1238 }
1239 
1240 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1241                               const ppc_hash_pte64_t *hptes,
1242                               hwaddr ptex, int n)
1243 {
1244     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1245 
1246     if (!spapr->htab) {
1247         g_free((void *)hptes);
1248     }
1249 
1250     /* Nothing to do for qemu managed HPT */
1251 }
1252 
1253 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1254                              uint64_t pte0, uint64_t pte1)
1255 {
1256     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1257     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1258 
1259     if (!spapr->htab) {
1260         kvmppc_write_hpte(ptex, pte0, pte1);
1261     } else {
1262         stq_p(spapr->htab + offset, pte0);
1263         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1264     }
1265 }
1266 
1267 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1268 {
1269     int shift;
1270 
1271     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1272      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1273      * that's much more than is needed for Linux guests */
1274     shift = ctz64(pow2ceil(ramsize)) - 7;
1275     shift = MAX(shift, 18); /* Minimum architected size */
1276     shift = MIN(shift, 46); /* Maximum architected size */
1277     return shift;
1278 }
1279 
1280 void spapr_free_hpt(sPAPRMachineState *spapr)
1281 {
1282     g_free(spapr->htab);
1283     spapr->htab = NULL;
1284     spapr->htab_shift = 0;
1285     close_htab_fd(spapr);
1286 }
1287 
1288 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1289                                  Error **errp)
1290 {
1291     long rc;
1292 
1293     /* Clean up any HPT info from a previous boot */
1294     spapr_free_hpt(spapr);
1295 
1296     rc = kvmppc_reset_htab(shift);
1297     if (rc < 0) {
1298         /* kernel-side HPT needed, but couldn't allocate one */
1299         error_setg_errno(errp, errno,
1300                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1301                          shift);
1302         /* This is almost certainly fatal, but if the caller really
1303          * wants to carry on with shift == 0, it's welcome to try */
1304     } else if (rc > 0) {
1305         /* kernel-side HPT allocated */
1306         if (rc != shift) {
1307             error_setg(errp,
1308                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1309                        shift, rc);
1310         }
1311 
1312         spapr->htab_shift = shift;
1313         spapr->htab = NULL;
1314     } else {
1315         /* kernel-side HPT not needed, allocate in userspace instead */
1316         size_t size = 1ULL << shift;
1317         int i;
1318 
1319         spapr->htab = qemu_memalign(size, size);
1320         if (!spapr->htab) {
1321             error_setg_errno(errp, errno,
1322                              "Could not allocate HPT of order %d", shift);
1323             return;
1324         }
1325 
1326         memset(spapr->htab, 0, size);
1327         spapr->htab_shift = shift;
1328 
1329         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1330             DIRTY_HPTE(HPTE(spapr->htab, i));
1331         }
1332     }
1333 }
1334 
1335 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1336 {
1337     spapr_reallocate_hpt(spapr,
1338                      spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1339                      &error_fatal);
1340     if (spapr->vrma_adjust) {
1341         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1342                                           spapr->htab_shift);
1343     }
1344     /* We're setting up a hash table, so that means we're not radix */
1345     spapr->patb_entry = 0;
1346 }
1347 
1348 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1349 {
1350     bool matched = false;
1351 
1352     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1353         matched = true;
1354     }
1355 
1356     if (!matched) {
1357         error_report("Device %s is not supported by this machine yet.",
1358                      qdev_fw_name(DEVICE(sbdev)));
1359         exit(1);
1360     }
1361 }
1362 
1363 static void ppc_spapr_reset(void)
1364 {
1365     MachineState *machine = MACHINE(qdev_get_machine());
1366     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1367     PowerPCCPU *first_ppc_cpu;
1368     uint32_t rtas_limit;
1369     hwaddr rtas_addr, fdt_addr;
1370     void *fdt;
1371     int rc;
1372 
1373     /* Check for unknown sysbus devices */
1374     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1375 
1376     if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1377         /* If using KVM with radix mode available, VCPUs can be started
1378          * without a HPT because KVM will start them in radix mode.
1379          * Set the GR bit in PATB so that we know there is no HPT. */
1380         spapr->patb_entry = PATBE1_GR;
1381     } else {
1382         spapr_setup_hpt_and_vrma(spapr);
1383     }
1384 
1385     qemu_devices_reset();
1386 
1387     /*
1388      * We place the device tree and RTAS just below either the top of the RMA,
1389      * or just below 2GB, whichever is lowere, so that it can be
1390      * processed with 32-bit real mode code if necessary
1391      */
1392     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1393     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1394     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1395 
1396     /* if this reset wasn't generated by CAS, we should reset our
1397      * negotiated options and start from scratch */
1398     if (!spapr->cas_reboot) {
1399         spapr_ovec_cleanup(spapr->ov5_cas);
1400         spapr->ov5_cas = spapr_ovec_new();
1401 
1402         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1403     }
1404 
1405     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1406 
1407     spapr_load_rtas(spapr, fdt, rtas_addr);
1408 
1409     rc = fdt_pack(fdt);
1410 
1411     /* Should only fail if we've built a corrupted tree */
1412     assert(rc == 0);
1413 
1414     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1415         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1416                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1417         exit(1);
1418     }
1419 
1420     /* Load the fdt */
1421     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1422     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1423     g_free(fdt);
1424 
1425     /* Set up the entry state */
1426     first_ppc_cpu = POWERPC_CPU(first_cpu);
1427     first_ppc_cpu->env.gpr[3] = fdt_addr;
1428     first_ppc_cpu->env.gpr[5] = 0;
1429     first_cpu->halted = 0;
1430     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1431 
1432     spapr->cas_reboot = false;
1433 }
1434 
1435 static void spapr_create_nvram(sPAPRMachineState *spapr)
1436 {
1437     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1438     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1439 
1440     if (dinfo) {
1441         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1442                             &error_fatal);
1443     }
1444 
1445     qdev_init_nofail(dev);
1446 
1447     spapr->nvram = (struct sPAPRNVRAM *)dev;
1448 }
1449 
1450 static void spapr_rtc_create(sPAPRMachineState *spapr)
1451 {
1452     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1453     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1454                               &error_fatal);
1455     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1456                               &error_fatal);
1457     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1458                               "date", &error_fatal);
1459 }
1460 
1461 /* Returns whether we want to use VGA or not */
1462 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1463 {
1464     switch (vga_interface_type) {
1465     case VGA_NONE:
1466         return false;
1467     case VGA_DEVICE:
1468         return true;
1469     case VGA_STD:
1470     case VGA_VIRTIO:
1471         return pci_vga_init(pci_bus) != NULL;
1472     default:
1473         error_setg(errp,
1474                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1475         return false;
1476     }
1477 }
1478 
1479 static int spapr_post_load(void *opaque, int version_id)
1480 {
1481     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1482     int err = 0;
1483 
1484     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1485         CPUState *cs;
1486         CPU_FOREACH(cs) {
1487             PowerPCCPU *cpu = POWERPC_CPU(cs);
1488             icp_resend(ICP(cpu->intc));
1489         }
1490     }
1491 
1492     /* In earlier versions, there was no separate qdev for the PAPR
1493      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1494      * So when migrating from those versions, poke the incoming offset
1495      * value into the RTC device */
1496     if (version_id < 3) {
1497         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1498     }
1499 
1500     if (spapr->patb_entry) {
1501         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1502         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1503         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1504 
1505         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1506         if (err) {
1507             error_report("Process table config unsupported by the host");
1508             return -EINVAL;
1509         }
1510     }
1511 
1512     return err;
1513 }
1514 
1515 static bool version_before_3(void *opaque, int version_id)
1516 {
1517     return version_id < 3;
1518 }
1519 
1520 static bool spapr_ov5_cas_needed(void *opaque)
1521 {
1522     sPAPRMachineState *spapr = opaque;
1523     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1524     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1525     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1526     bool cas_needed;
1527 
1528     /* Prior to the introduction of sPAPROptionVector, we had two option
1529      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1530      * Both of these options encode machine topology into the device-tree
1531      * in such a way that the now-booted OS should still be able to interact
1532      * appropriately with QEMU regardless of what options were actually
1533      * negotiatied on the source side.
1534      *
1535      * As such, we can avoid migrating the CAS-negotiated options if these
1536      * are the only options available on the current machine/platform.
1537      * Since these are the only options available for pseries-2.7 and
1538      * earlier, this allows us to maintain old->new/new->old migration
1539      * compatibility.
1540      *
1541      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1542      * via default pseries-2.8 machines and explicit command-line parameters.
1543      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1544      * of the actual CAS-negotiated values to continue working properly. For
1545      * example, availability of memory unplug depends on knowing whether
1546      * OV5_HP_EVT was negotiated via CAS.
1547      *
1548      * Thus, for any cases where the set of available CAS-negotiatable
1549      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1550      * include the CAS-negotiated options in the migration stream.
1551      */
1552     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1553     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1554 
1555     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1556      * the mask itself since in the future it's possible "legacy" bits may be
1557      * removed via machine options, which could generate a false positive
1558      * that breaks migration.
1559      */
1560     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1561     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1562 
1563     spapr_ovec_cleanup(ov5_mask);
1564     spapr_ovec_cleanup(ov5_legacy);
1565     spapr_ovec_cleanup(ov5_removed);
1566 
1567     return cas_needed;
1568 }
1569 
1570 static const VMStateDescription vmstate_spapr_ov5_cas = {
1571     .name = "spapr_option_vector_ov5_cas",
1572     .version_id = 1,
1573     .minimum_version_id = 1,
1574     .needed = spapr_ov5_cas_needed,
1575     .fields = (VMStateField[]) {
1576         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1577                                  vmstate_spapr_ovec, sPAPROptionVector),
1578         VMSTATE_END_OF_LIST()
1579     },
1580 };
1581 
1582 static bool spapr_patb_entry_needed(void *opaque)
1583 {
1584     sPAPRMachineState *spapr = opaque;
1585 
1586     return !!spapr->patb_entry;
1587 }
1588 
1589 static const VMStateDescription vmstate_spapr_patb_entry = {
1590     .name = "spapr_patb_entry",
1591     .version_id = 1,
1592     .minimum_version_id = 1,
1593     .needed = spapr_patb_entry_needed,
1594     .fields = (VMStateField[]) {
1595         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1596         VMSTATE_END_OF_LIST()
1597     },
1598 };
1599 
1600 static const VMStateDescription vmstate_spapr = {
1601     .name = "spapr",
1602     .version_id = 3,
1603     .minimum_version_id = 1,
1604     .post_load = spapr_post_load,
1605     .fields = (VMStateField[]) {
1606         /* used to be @next_irq */
1607         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1608 
1609         /* RTC offset */
1610         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1611 
1612         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1613         VMSTATE_END_OF_LIST()
1614     },
1615     .subsections = (const VMStateDescription*[]) {
1616         &vmstate_spapr_ov5_cas,
1617         &vmstate_spapr_patb_entry,
1618         NULL
1619     }
1620 };
1621 
1622 static int htab_save_setup(QEMUFile *f, void *opaque)
1623 {
1624     sPAPRMachineState *spapr = opaque;
1625 
1626     /* "Iteration" header */
1627     if (!spapr->htab_shift) {
1628         qemu_put_be32(f, -1);
1629     } else {
1630         qemu_put_be32(f, spapr->htab_shift);
1631     }
1632 
1633     if (spapr->htab) {
1634         spapr->htab_save_index = 0;
1635         spapr->htab_first_pass = true;
1636     } else {
1637         if (spapr->htab_shift) {
1638             assert(kvm_enabled());
1639         }
1640     }
1641 
1642 
1643     return 0;
1644 }
1645 
1646 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1647                                  int64_t max_ns)
1648 {
1649     bool has_timeout = max_ns != -1;
1650     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1651     int index = spapr->htab_save_index;
1652     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1653 
1654     assert(spapr->htab_first_pass);
1655 
1656     do {
1657         int chunkstart;
1658 
1659         /* Consume invalid HPTEs */
1660         while ((index < htabslots)
1661                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1662             CLEAN_HPTE(HPTE(spapr->htab, index));
1663             index++;
1664         }
1665 
1666         /* Consume valid HPTEs */
1667         chunkstart = index;
1668         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1669                && HPTE_VALID(HPTE(spapr->htab, index))) {
1670             CLEAN_HPTE(HPTE(spapr->htab, index));
1671             index++;
1672         }
1673 
1674         if (index > chunkstart) {
1675             int n_valid = index - chunkstart;
1676 
1677             qemu_put_be32(f, chunkstart);
1678             qemu_put_be16(f, n_valid);
1679             qemu_put_be16(f, 0);
1680             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1681                             HASH_PTE_SIZE_64 * n_valid);
1682 
1683             if (has_timeout &&
1684                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1685                 break;
1686             }
1687         }
1688     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1689 
1690     if (index >= htabslots) {
1691         assert(index == htabslots);
1692         index = 0;
1693         spapr->htab_first_pass = false;
1694     }
1695     spapr->htab_save_index = index;
1696 }
1697 
1698 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1699                                 int64_t max_ns)
1700 {
1701     bool final = max_ns < 0;
1702     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1703     int examined = 0, sent = 0;
1704     int index = spapr->htab_save_index;
1705     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1706 
1707     assert(!spapr->htab_first_pass);
1708 
1709     do {
1710         int chunkstart, invalidstart;
1711 
1712         /* Consume non-dirty HPTEs */
1713         while ((index < htabslots)
1714                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1715             index++;
1716             examined++;
1717         }
1718 
1719         chunkstart = index;
1720         /* Consume valid dirty HPTEs */
1721         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1722                && HPTE_DIRTY(HPTE(spapr->htab, index))
1723                && HPTE_VALID(HPTE(spapr->htab, index))) {
1724             CLEAN_HPTE(HPTE(spapr->htab, index));
1725             index++;
1726             examined++;
1727         }
1728 
1729         invalidstart = index;
1730         /* Consume invalid dirty HPTEs */
1731         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1732                && HPTE_DIRTY(HPTE(spapr->htab, index))
1733                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1734             CLEAN_HPTE(HPTE(spapr->htab, index));
1735             index++;
1736             examined++;
1737         }
1738 
1739         if (index > chunkstart) {
1740             int n_valid = invalidstart - chunkstart;
1741             int n_invalid = index - invalidstart;
1742 
1743             qemu_put_be32(f, chunkstart);
1744             qemu_put_be16(f, n_valid);
1745             qemu_put_be16(f, n_invalid);
1746             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1747                             HASH_PTE_SIZE_64 * n_valid);
1748             sent += index - chunkstart;
1749 
1750             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1751                 break;
1752             }
1753         }
1754 
1755         if (examined >= htabslots) {
1756             break;
1757         }
1758 
1759         if (index >= htabslots) {
1760             assert(index == htabslots);
1761             index = 0;
1762         }
1763     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1764 
1765     if (index >= htabslots) {
1766         assert(index == htabslots);
1767         index = 0;
1768     }
1769 
1770     spapr->htab_save_index = index;
1771 
1772     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1773 }
1774 
1775 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1776 #define MAX_KVM_BUF_SIZE    2048
1777 
1778 static int htab_save_iterate(QEMUFile *f, void *opaque)
1779 {
1780     sPAPRMachineState *spapr = opaque;
1781     int fd;
1782     int rc = 0;
1783 
1784     /* Iteration header */
1785     if (!spapr->htab_shift) {
1786         qemu_put_be32(f, -1);
1787         return 0;
1788     } else {
1789         qemu_put_be32(f, 0);
1790     }
1791 
1792     if (!spapr->htab) {
1793         assert(kvm_enabled());
1794 
1795         fd = get_htab_fd(spapr);
1796         if (fd < 0) {
1797             return fd;
1798         }
1799 
1800         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1801         if (rc < 0) {
1802             return rc;
1803         }
1804     } else  if (spapr->htab_first_pass) {
1805         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1806     } else {
1807         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1808     }
1809 
1810     /* End marker */
1811     qemu_put_be32(f, 0);
1812     qemu_put_be16(f, 0);
1813     qemu_put_be16(f, 0);
1814 
1815     return rc;
1816 }
1817 
1818 static int htab_save_complete(QEMUFile *f, void *opaque)
1819 {
1820     sPAPRMachineState *spapr = opaque;
1821     int fd;
1822 
1823     /* Iteration header */
1824     if (!spapr->htab_shift) {
1825         qemu_put_be32(f, -1);
1826         return 0;
1827     } else {
1828         qemu_put_be32(f, 0);
1829     }
1830 
1831     if (!spapr->htab) {
1832         int rc;
1833 
1834         assert(kvm_enabled());
1835 
1836         fd = get_htab_fd(spapr);
1837         if (fd < 0) {
1838             return fd;
1839         }
1840 
1841         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1842         if (rc < 0) {
1843             return rc;
1844         }
1845     } else {
1846         if (spapr->htab_first_pass) {
1847             htab_save_first_pass(f, spapr, -1);
1848         }
1849         htab_save_later_pass(f, spapr, -1);
1850     }
1851 
1852     /* End marker */
1853     qemu_put_be32(f, 0);
1854     qemu_put_be16(f, 0);
1855     qemu_put_be16(f, 0);
1856 
1857     return 0;
1858 }
1859 
1860 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1861 {
1862     sPAPRMachineState *spapr = opaque;
1863     uint32_t section_hdr;
1864     int fd = -1;
1865 
1866     if (version_id < 1 || version_id > 1) {
1867         error_report("htab_load() bad version");
1868         return -EINVAL;
1869     }
1870 
1871     section_hdr = qemu_get_be32(f);
1872 
1873     if (section_hdr == -1) {
1874         spapr_free_hpt(spapr);
1875         return 0;
1876     }
1877 
1878     if (section_hdr) {
1879         Error *local_err = NULL;
1880 
1881         /* First section gives the htab size */
1882         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1883         if (local_err) {
1884             error_report_err(local_err);
1885             return -EINVAL;
1886         }
1887         return 0;
1888     }
1889 
1890     if (!spapr->htab) {
1891         assert(kvm_enabled());
1892 
1893         fd = kvmppc_get_htab_fd(true);
1894         if (fd < 0) {
1895             error_report("Unable to open fd to restore KVM hash table: %s",
1896                          strerror(errno));
1897         }
1898     }
1899 
1900     while (true) {
1901         uint32_t index;
1902         uint16_t n_valid, n_invalid;
1903 
1904         index = qemu_get_be32(f);
1905         n_valid = qemu_get_be16(f);
1906         n_invalid = qemu_get_be16(f);
1907 
1908         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1909             /* End of Stream */
1910             break;
1911         }
1912 
1913         if ((index + n_valid + n_invalid) >
1914             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1915             /* Bad index in stream */
1916             error_report(
1917                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1918                 index, n_valid, n_invalid, spapr->htab_shift);
1919             return -EINVAL;
1920         }
1921 
1922         if (spapr->htab) {
1923             if (n_valid) {
1924                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1925                                 HASH_PTE_SIZE_64 * n_valid);
1926             }
1927             if (n_invalid) {
1928                 memset(HPTE(spapr->htab, index + n_valid), 0,
1929                        HASH_PTE_SIZE_64 * n_invalid);
1930             }
1931         } else {
1932             int rc;
1933 
1934             assert(fd >= 0);
1935 
1936             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1937             if (rc < 0) {
1938                 return rc;
1939             }
1940         }
1941     }
1942 
1943     if (!spapr->htab) {
1944         assert(fd >= 0);
1945         close(fd);
1946     }
1947 
1948     return 0;
1949 }
1950 
1951 static void htab_save_cleanup(void *opaque)
1952 {
1953     sPAPRMachineState *spapr = opaque;
1954 
1955     close_htab_fd(spapr);
1956 }
1957 
1958 static SaveVMHandlers savevm_htab_handlers = {
1959     .save_setup = htab_save_setup,
1960     .save_live_iterate = htab_save_iterate,
1961     .save_live_complete_precopy = htab_save_complete,
1962     .save_cleanup = htab_save_cleanup,
1963     .load_state = htab_load,
1964 };
1965 
1966 static void spapr_boot_set(void *opaque, const char *boot_device,
1967                            Error **errp)
1968 {
1969     MachineState *machine = MACHINE(qdev_get_machine());
1970     machine->boot_order = g_strdup(boot_device);
1971 }
1972 
1973 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1974 {
1975     MachineState *machine = MACHINE(spapr);
1976     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1977     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1978     int i;
1979 
1980     for (i = 0; i < nr_lmbs; i++) {
1981         uint64_t addr;
1982 
1983         addr = i * lmb_size + spapr->hotplug_memory.base;
1984         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
1985                                addr / lmb_size);
1986     }
1987 }
1988 
1989 /*
1990  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1991  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1992  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1993  */
1994 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1995 {
1996     int i;
1997 
1998     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1999         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2000                    " is not aligned to %llu MiB",
2001                    machine->ram_size,
2002                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2003         return;
2004     }
2005 
2006     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2007         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2008                    " is not aligned to %llu MiB",
2009                    machine->ram_size,
2010                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2011         return;
2012     }
2013 
2014     for (i = 0; i < nb_numa_nodes; i++) {
2015         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2016             error_setg(errp,
2017                        "Node %d memory size 0x%" PRIx64
2018                        " is not aligned to %llu MiB",
2019                        i, numa_info[i].node_mem,
2020                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2021             return;
2022         }
2023     }
2024 }
2025 
2026 /* find cpu slot in machine->possible_cpus by core_id */
2027 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2028 {
2029     int index = id / smp_threads;
2030 
2031     if (index >= ms->possible_cpus->len) {
2032         return NULL;
2033     }
2034     if (idx) {
2035         *idx = index;
2036     }
2037     return &ms->possible_cpus->cpus[index];
2038 }
2039 
2040 static void spapr_init_cpus(sPAPRMachineState *spapr)
2041 {
2042     MachineState *machine = MACHINE(spapr);
2043     MachineClass *mc = MACHINE_GET_CLASS(machine);
2044     char *type = spapr_get_cpu_core_type(machine->cpu_model);
2045     int smt = kvmppc_smt_threads();
2046     const CPUArchIdList *possible_cpus;
2047     int boot_cores_nr = smp_cpus / smp_threads;
2048     int i;
2049 
2050     if (!type) {
2051         error_report("Unable to find sPAPR CPU Core definition");
2052         exit(1);
2053     }
2054 
2055     possible_cpus = mc->possible_cpu_arch_ids(machine);
2056     if (mc->has_hotpluggable_cpus) {
2057         if (smp_cpus % smp_threads) {
2058             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2059                          smp_cpus, smp_threads);
2060             exit(1);
2061         }
2062         if (max_cpus % smp_threads) {
2063             error_report("max_cpus (%u) must be multiple of threads (%u)",
2064                          max_cpus, smp_threads);
2065             exit(1);
2066         }
2067     } else {
2068         if (max_cpus != smp_cpus) {
2069             error_report("This machine version does not support CPU hotplug");
2070             exit(1);
2071         }
2072         boot_cores_nr = possible_cpus->len;
2073     }
2074 
2075     for (i = 0; i < possible_cpus->len; i++) {
2076         int core_id = i * smp_threads;
2077 
2078         if (mc->has_hotpluggable_cpus) {
2079             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2080                                    (core_id / smp_threads) * smt);
2081         }
2082 
2083         if (i < boot_cores_nr) {
2084             Object *core  = object_new(type);
2085             int nr_threads = smp_threads;
2086 
2087             /* Handle the partially filled core for older machine types */
2088             if ((i + 1) * smp_threads >= smp_cpus) {
2089                 nr_threads = smp_cpus - i * smp_threads;
2090             }
2091 
2092             object_property_set_int(core, nr_threads, "nr-threads",
2093                                     &error_fatal);
2094             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2095                                     &error_fatal);
2096             object_property_set_bool(core, true, "realized", &error_fatal);
2097         }
2098     }
2099     g_free(type);
2100 }
2101 
2102 /* pSeries LPAR / sPAPR hardware init */
2103 static void ppc_spapr_init(MachineState *machine)
2104 {
2105     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2106     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2107     const char *kernel_filename = machine->kernel_filename;
2108     const char *initrd_filename = machine->initrd_filename;
2109     PCIHostState *phb;
2110     int i;
2111     MemoryRegion *sysmem = get_system_memory();
2112     MemoryRegion *ram = g_new(MemoryRegion, 1);
2113     MemoryRegion *rma_region;
2114     void *rma = NULL;
2115     hwaddr rma_alloc_size;
2116     hwaddr node0_size = spapr_node0_size();
2117     long load_limit, fw_size;
2118     char *filename;
2119 
2120     msi_nonbroken = true;
2121 
2122     QLIST_INIT(&spapr->phbs);
2123     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2124 
2125     /* Allocate RMA if necessary */
2126     rma_alloc_size = kvmppc_alloc_rma(&rma);
2127 
2128     if (rma_alloc_size == -1) {
2129         error_report("Unable to create RMA");
2130         exit(1);
2131     }
2132 
2133     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2134         spapr->rma_size = rma_alloc_size;
2135     } else {
2136         spapr->rma_size = node0_size;
2137 
2138         /* With KVM, we don't actually know whether KVM supports an
2139          * unbounded RMA (PR KVM) or is limited by the hash table size
2140          * (HV KVM using VRMA), so we always assume the latter
2141          *
2142          * In that case, we also limit the initial allocations for RTAS
2143          * etc... to 256M since we have no way to know what the VRMA size
2144          * is going to be as it depends on the size of the hash table
2145          * isn't determined yet.
2146          */
2147         if (kvm_enabled()) {
2148             spapr->vrma_adjust = 1;
2149             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2150         }
2151 
2152         /* Actually we don't support unbounded RMA anymore since we
2153          * added proper emulation of HV mode. The max we can get is
2154          * 16G which also happens to be what we configure for PAPR
2155          * mode so make sure we don't do anything bigger than that
2156          */
2157         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2158     }
2159 
2160     if (spapr->rma_size > node0_size) {
2161         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2162                      spapr->rma_size);
2163         exit(1);
2164     }
2165 
2166     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2167     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2168 
2169     /* Set up Interrupt Controller before we create the VCPUs */
2170     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2171 
2172     /* Set up containers for ibm,client-set-architecture negotiated options */
2173     spapr->ov5 = spapr_ovec_new();
2174     spapr->ov5_cas = spapr_ovec_new();
2175 
2176     if (smc->dr_lmb_enabled) {
2177         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2178         spapr_validate_node_memory(machine, &error_fatal);
2179     }
2180 
2181     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2182     if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2183         /* KVM and TCG always allow GTSE with radix... */
2184         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2185     }
2186     /* ... but not with hash (currently). */
2187 
2188     /* advertise support for dedicated HP event source to guests */
2189     if (spapr->use_hotplug_event_source) {
2190         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2191     }
2192 
2193     /* init CPUs */
2194     if (machine->cpu_model == NULL) {
2195         machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2196     }
2197 
2198     spapr_cpu_parse_features(spapr);
2199 
2200     spapr_init_cpus(spapr);
2201 
2202     if (kvm_enabled()) {
2203         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2204         kvmppc_enable_logical_ci_hcalls();
2205         kvmppc_enable_set_mode_hcall();
2206 
2207         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2208         kvmppc_enable_clear_ref_mod_hcalls();
2209     }
2210 
2211     /* allocate RAM */
2212     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2213                                          machine->ram_size);
2214     memory_region_add_subregion(sysmem, 0, ram);
2215 
2216     if (rma_alloc_size && rma) {
2217         rma_region = g_new(MemoryRegion, 1);
2218         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2219                                    rma_alloc_size, rma);
2220         vmstate_register_ram_global(rma_region);
2221         memory_region_add_subregion(sysmem, 0, rma_region);
2222     }
2223 
2224     /* initialize hotplug memory address space */
2225     if (machine->ram_size < machine->maxram_size) {
2226         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2227         /*
2228          * Limit the number of hotpluggable memory slots to half the number
2229          * slots that KVM supports, leaving the other half for PCI and other
2230          * devices. However ensure that number of slots doesn't drop below 32.
2231          */
2232         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2233                            SPAPR_MAX_RAM_SLOTS;
2234 
2235         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2236             max_memslots = SPAPR_MAX_RAM_SLOTS;
2237         }
2238         if (machine->ram_slots > max_memslots) {
2239             error_report("Specified number of memory slots %"
2240                          PRIu64" exceeds max supported %d",
2241                          machine->ram_slots, max_memslots);
2242             exit(1);
2243         }
2244 
2245         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2246                                               SPAPR_HOTPLUG_MEM_ALIGN);
2247         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2248                            "hotplug-memory", hotplug_mem_size);
2249         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2250                                     &spapr->hotplug_memory.mr);
2251     }
2252 
2253     if (smc->dr_lmb_enabled) {
2254         spapr_create_lmb_dr_connectors(spapr);
2255     }
2256 
2257     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2258     if (!filename) {
2259         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2260         exit(1);
2261     }
2262     spapr->rtas_size = get_image_size(filename);
2263     if (spapr->rtas_size < 0) {
2264         error_report("Could not get size of LPAR rtas '%s'", filename);
2265         exit(1);
2266     }
2267     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2268     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2269         error_report("Could not load LPAR rtas '%s'", filename);
2270         exit(1);
2271     }
2272     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2273         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2274                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2275         exit(1);
2276     }
2277     g_free(filename);
2278 
2279     /* Set up RTAS event infrastructure */
2280     spapr_events_init(spapr);
2281 
2282     /* Set up the RTC RTAS interfaces */
2283     spapr_rtc_create(spapr);
2284 
2285     /* Set up VIO bus */
2286     spapr->vio_bus = spapr_vio_bus_init();
2287 
2288     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2289         if (serial_hds[i]) {
2290             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2291         }
2292     }
2293 
2294     /* We always have at least the nvram device on VIO */
2295     spapr_create_nvram(spapr);
2296 
2297     /* Set up PCI */
2298     spapr_pci_rtas_init();
2299 
2300     phb = spapr_create_phb(spapr, 0);
2301 
2302     for (i = 0; i < nb_nics; i++) {
2303         NICInfo *nd = &nd_table[i];
2304 
2305         if (!nd->model) {
2306             nd->model = g_strdup("ibmveth");
2307         }
2308 
2309         if (strcmp(nd->model, "ibmveth") == 0) {
2310             spapr_vlan_create(spapr->vio_bus, nd);
2311         } else {
2312             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2313         }
2314     }
2315 
2316     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2317         spapr_vscsi_create(spapr->vio_bus);
2318     }
2319 
2320     /* Graphics */
2321     if (spapr_vga_init(phb->bus, &error_fatal)) {
2322         spapr->has_graphics = true;
2323         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2324     }
2325 
2326     if (machine->usb) {
2327         if (smc->use_ohci_by_default) {
2328             pci_create_simple(phb->bus, -1, "pci-ohci");
2329         } else {
2330             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2331         }
2332 
2333         if (spapr->has_graphics) {
2334             USBBus *usb_bus = usb_bus_find(-1);
2335 
2336             usb_create_simple(usb_bus, "usb-kbd");
2337             usb_create_simple(usb_bus, "usb-mouse");
2338         }
2339     }
2340 
2341     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2342         error_report(
2343             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2344             MIN_RMA_SLOF);
2345         exit(1);
2346     }
2347 
2348     if (kernel_filename) {
2349         uint64_t lowaddr = 0;
2350 
2351         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2352                                       NULL, NULL, &lowaddr, NULL, 1,
2353                                       PPC_ELF_MACHINE, 0, 0);
2354         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2355             spapr->kernel_size = load_elf(kernel_filename,
2356                                           translate_kernel_address, NULL, NULL,
2357                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2358                                           0, 0);
2359             spapr->kernel_le = spapr->kernel_size > 0;
2360         }
2361         if (spapr->kernel_size < 0) {
2362             error_report("error loading %s: %s", kernel_filename,
2363                          load_elf_strerror(spapr->kernel_size));
2364             exit(1);
2365         }
2366 
2367         /* load initrd */
2368         if (initrd_filename) {
2369             /* Try to locate the initrd in the gap between the kernel
2370              * and the firmware. Add a bit of space just in case
2371              */
2372             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2373                                   + 0x1ffff) & ~0xffff;
2374             spapr->initrd_size = load_image_targphys(initrd_filename,
2375                                                      spapr->initrd_base,
2376                                                      load_limit
2377                                                      - spapr->initrd_base);
2378             if (spapr->initrd_size < 0) {
2379                 error_report("could not load initial ram disk '%s'",
2380                              initrd_filename);
2381                 exit(1);
2382             }
2383         }
2384     }
2385 
2386     if (bios_name == NULL) {
2387         bios_name = FW_FILE_NAME;
2388     }
2389     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2390     if (!filename) {
2391         error_report("Could not find LPAR firmware '%s'", bios_name);
2392         exit(1);
2393     }
2394     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2395     if (fw_size <= 0) {
2396         error_report("Could not load LPAR firmware '%s'", filename);
2397         exit(1);
2398     }
2399     g_free(filename);
2400 
2401     /* FIXME: Should register things through the MachineState's qdev
2402      * interface, this is a legacy from the sPAPREnvironment structure
2403      * which predated MachineState but had a similar function */
2404     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2405     register_savevm_live(NULL, "spapr/htab", -1, 1,
2406                          &savevm_htab_handlers, spapr);
2407 
2408     qemu_register_boot_set(spapr_boot_set, spapr);
2409 
2410     if (kvm_enabled()) {
2411         /* to stop and start vmclock */
2412         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2413                                          &spapr->tb);
2414 
2415         kvmppc_spapr_enable_inkernel_multitce();
2416     }
2417 }
2418 
2419 static int spapr_kvm_type(const char *vm_type)
2420 {
2421     if (!vm_type) {
2422         return 0;
2423     }
2424 
2425     if (!strcmp(vm_type, "HV")) {
2426         return 1;
2427     }
2428 
2429     if (!strcmp(vm_type, "PR")) {
2430         return 2;
2431     }
2432 
2433     error_report("Unknown kvm-type specified '%s'", vm_type);
2434     exit(1);
2435 }
2436 
2437 /*
2438  * Implementation of an interface to adjust firmware path
2439  * for the bootindex property handling.
2440  */
2441 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2442                                    DeviceState *dev)
2443 {
2444 #define CAST(type, obj, name) \
2445     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2446     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2447     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2448     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2449 
2450     if (d) {
2451         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2452         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2453         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2454 
2455         if (spapr) {
2456             /*
2457              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2458              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2459              * in the top 16 bits of the 64-bit LUN
2460              */
2461             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2462             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2463                                    (uint64_t)id << 48);
2464         } else if (virtio) {
2465             /*
2466              * We use SRP luns of the form 01000000 | (target << 8) | lun
2467              * in the top 32 bits of the 64-bit LUN
2468              * Note: the quote above is from SLOF and it is wrong,
2469              * the actual binding is:
2470              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2471              */
2472             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2473             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2474                                    (uint64_t)id << 32);
2475         } else if (usb) {
2476             /*
2477              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2478              * in the top 32 bits of the 64-bit LUN
2479              */
2480             unsigned usb_port = atoi(usb->port->path);
2481             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2482             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2483                                    (uint64_t)id << 32);
2484         }
2485     }
2486 
2487     /*
2488      * SLOF probes the USB devices, and if it recognizes that the device is a
2489      * storage device, it changes its name to "storage" instead of "usb-host",
2490      * and additionally adds a child node for the SCSI LUN, so the correct
2491      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2492      */
2493     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2494         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2495         if (usb_host_dev_is_scsi_storage(usbdev)) {
2496             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2497         }
2498     }
2499 
2500     if (phb) {
2501         /* Replace "pci" with "pci@800000020000000" */
2502         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2503     }
2504 
2505     if (vsc) {
2506         /* Same logic as virtio above */
2507         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2508         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2509     }
2510 
2511     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2512         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2513         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2514         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2515     }
2516 
2517     return NULL;
2518 }
2519 
2520 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2521 {
2522     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2523 
2524     return g_strdup(spapr->kvm_type);
2525 }
2526 
2527 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2528 {
2529     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2530 
2531     g_free(spapr->kvm_type);
2532     spapr->kvm_type = g_strdup(value);
2533 }
2534 
2535 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2536 {
2537     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2538 
2539     return spapr->use_hotplug_event_source;
2540 }
2541 
2542 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2543                                             Error **errp)
2544 {
2545     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2546 
2547     spapr->use_hotplug_event_source = value;
2548 }
2549 
2550 static void spapr_machine_initfn(Object *obj)
2551 {
2552     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2553 
2554     spapr->htab_fd = -1;
2555     spapr->use_hotplug_event_source = true;
2556     object_property_add_str(obj, "kvm-type",
2557                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2558     object_property_set_description(obj, "kvm-type",
2559                                     "Specifies the KVM virtualization mode (HV, PR)",
2560                                     NULL);
2561     object_property_add_bool(obj, "modern-hotplug-events",
2562                             spapr_get_modern_hotplug_events,
2563                             spapr_set_modern_hotplug_events,
2564                             NULL);
2565     object_property_set_description(obj, "modern-hotplug-events",
2566                                     "Use dedicated hotplug event mechanism in"
2567                                     " place of standard EPOW events when possible"
2568                                     " (required for memory hot-unplug support)",
2569                                     NULL);
2570 
2571     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2572                             "Maximum permitted CPU compatibility mode",
2573                             &error_fatal);
2574 }
2575 
2576 static void spapr_machine_finalizefn(Object *obj)
2577 {
2578     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2579 
2580     g_free(spapr->kvm_type);
2581 }
2582 
2583 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2584 {
2585     cpu_synchronize_state(cs);
2586     ppc_cpu_do_system_reset(cs);
2587 }
2588 
2589 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2590 {
2591     CPUState *cs;
2592 
2593     CPU_FOREACH(cs) {
2594         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2595     }
2596 }
2597 
2598 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2599                            uint32_t node, bool dedicated_hp_event_source,
2600                            Error **errp)
2601 {
2602     sPAPRDRConnector *drc;
2603     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2604     int i, fdt_offset, fdt_size;
2605     void *fdt;
2606     uint64_t addr = addr_start;
2607     Error *local_err = NULL;
2608 
2609     for (i = 0; i < nr_lmbs; i++) {
2610         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2611                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2612         g_assert(drc);
2613 
2614         fdt = create_device_tree(&fdt_size);
2615         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2616                                                 SPAPR_MEMORY_BLOCK_SIZE);
2617 
2618         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2619         if (local_err) {
2620             while (addr > addr_start) {
2621                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2622                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2623                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
2624                 spapr_drc_detach(drc, dev, NULL);
2625             }
2626             g_free(fdt);
2627             error_propagate(errp, local_err);
2628             return;
2629         }
2630         addr += SPAPR_MEMORY_BLOCK_SIZE;
2631     }
2632     /* send hotplug notification to the
2633      * guest only in case of hotplugged memory
2634      */
2635     if (dev->hotplugged) {
2636         if (dedicated_hp_event_source) {
2637             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2638                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2639             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2640                                                    nr_lmbs,
2641                                                    spapr_drc_index(drc));
2642         } else {
2643             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2644                                            nr_lmbs);
2645         }
2646     }
2647 }
2648 
2649 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2650                               uint32_t node, Error **errp)
2651 {
2652     Error *local_err = NULL;
2653     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2654     PCDIMMDevice *dimm = PC_DIMM(dev);
2655     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2656     MemoryRegion *mr = ddc->get_memory_region(dimm);
2657     uint64_t align = memory_region_get_alignment(mr);
2658     uint64_t size = memory_region_size(mr);
2659     uint64_t addr;
2660 
2661     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2662     if (local_err) {
2663         goto out;
2664     }
2665 
2666     addr = object_property_get_uint(OBJECT(dimm),
2667                                     PC_DIMM_ADDR_PROP, &local_err);
2668     if (local_err) {
2669         goto out_unplug;
2670     }
2671 
2672     spapr_add_lmbs(dev, addr, size, node,
2673                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2674                    &local_err);
2675     if (local_err) {
2676         goto out_unplug;
2677     }
2678 
2679     return;
2680 
2681 out_unplug:
2682     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2683 out:
2684     error_propagate(errp, local_err);
2685 }
2686 
2687 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2688                                   Error **errp)
2689 {
2690     PCDIMMDevice *dimm = PC_DIMM(dev);
2691     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2692     MemoryRegion *mr = ddc->get_memory_region(dimm);
2693     uint64_t size = memory_region_size(mr);
2694     char *mem_dev;
2695 
2696     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2697         error_setg(errp, "Hotplugged memory size must be a multiple of "
2698                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2699         return;
2700     }
2701 
2702     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2703     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2704         error_setg(errp, "Memory backend has bad page size. "
2705                    "Use 'memory-backend-file' with correct mem-path.");
2706         goto out;
2707     }
2708 
2709 out:
2710     g_free(mem_dev);
2711 }
2712 
2713 struct sPAPRDIMMState {
2714     PCDIMMDevice *dimm;
2715     uint32_t nr_lmbs;
2716     QTAILQ_ENTRY(sPAPRDIMMState) next;
2717 };
2718 
2719 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2720                                                        PCDIMMDevice *dimm)
2721 {
2722     sPAPRDIMMState *dimm_state = NULL;
2723 
2724     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2725         if (dimm_state->dimm == dimm) {
2726             break;
2727         }
2728     }
2729     return dimm_state;
2730 }
2731 
2732 static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2733                                            sPAPRDIMMState *dimm_state)
2734 {
2735     g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm));
2736     QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next);
2737 }
2738 
2739 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2740                                               sPAPRDIMMState *dimm_state)
2741 {
2742     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2743     g_free(dimm_state);
2744 }
2745 
2746 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2747                                                         PCDIMMDevice *dimm)
2748 {
2749     sPAPRDRConnector *drc;
2750     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2751     MemoryRegion *mr = ddc->get_memory_region(dimm);
2752     uint64_t size = memory_region_size(mr);
2753     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2754     uint32_t avail_lmbs = 0;
2755     uint64_t addr_start, addr;
2756     int i;
2757     sPAPRDIMMState *ds;
2758 
2759     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2760                                          &error_abort);
2761 
2762     addr = addr_start;
2763     for (i = 0; i < nr_lmbs; i++) {
2764         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2765                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2766         g_assert(drc);
2767         if (drc->dev) {
2768             avail_lmbs++;
2769         }
2770         addr += SPAPR_MEMORY_BLOCK_SIZE;
2771     }
2772 
2773     ds = g_malloc0(sizeof(sPAPRDIMMState));
2774     ds->nr_lmbs = avail_lmbs;
2775     ds->dimm = dimm;
2776     spapr_pending_dimm_unplugs_add(ms, ds);
2777     return ds;
2778 }
2779 
2780 /* Callback to be called during DRC release. */
2781 void spapr_lmb_release(DeviceState *dev)
2782 {
2783     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
2784     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
2785     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
2786 
2787     /* This information will get lost if a migration occurs
2788      * during the unplug process. In this case recover it. */
2789     if (ds == NULL) {
2790         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
2791         /* The DRC being examined by the caller at least must be counted */
2792         g_assert(ds->nr_lmbs);
2793     }
2794 
2795     if (--ds->nr_lmbs) {
2796         return;
2797     }
2798 
2799     spapr_pending_dimm_unplugs_remove(spapr, ds);
2800 
2801     /*
2802      * Now that all the LMBs have been removed by the guest, call the
2803      * pc-dimm unplug handler to cleanup up the pc-dimm device.
2804      */
2805     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2806 }
2807 
2808 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2809                                 Error **errp)
2810 {
2811     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2812     PCDIMMDevice *dimm = PC_DIMM(dev);
2813     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2814     MemoryRegion *mr = ddc->get_memory_region(dimm);
2815 
2816     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2817     object_unparent(OBJECT(dev));
2818 }
2819 
2820 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2821                                         DeviceState *dev, Error **errp)
2822 {
2823     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
2824     Error *local_err = NULL;
2825     PCDIMMDevice *dimm = PC_DIMM(dev);
2826     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2827     MemoryRegion *mr = ddc->get_memory_region(dimm);
2828     uint64_t size = memory_region_size(mr);
2829     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2830     uint64_t addr_start, addr;
2831     int i;
2832     sPAPRDRConnector *drc;
2833     sPAPRDIMMState *ds;
2834 
2835     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2836                                          &local_err);
2837     if (local_err) {
2838         goto out;
2839     }
2840 
2841     ds = g_malloc0(sizeof(sPAPRDIMMState));
2842     ds->nr_lmbs = nr_lmbs;
2843     ds->dimm = dimm;
2844     spapr_pending_dimm_unplugs_add(spapr, ds);
2845 
2846     addr = addr_start;
2847     for (i = 0; i < nr_lmbs; i++) {
2848         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2849                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2850         g_assert(drc);
2851 
2852         spapr_drc_detach(drc, dev, errp);
2853         addr += SPAPR_MEMORY_BLOCK_SIZE;
2854     }
2855 
2856     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2857                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2858     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2859                                               nr_lmbs, spapr_drc_index(drc));
2860 out:
2861     error_propagate(errp, local_err);
2862 }
2863 
2864 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2865                                            sPAPRMachineState *spapr)
2866 {
2867     PowerPCCPU *cpu = POWERPC_CPU(cs);
2868     DeviceClass *dc = DEVICE_GET_CLASS(cs);
2869     int id = ppc_get_vcpu_dt_id(cpu);
2870     void *fdt;
2871     int offset, fdt_size;
2872     char *nodename;
2873 
2874     fdt = create_device_tree(&fdt_size);
2875     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2876     offset = fdt_add_subnode(fdt, 0, nodename);
2877 
2878     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2879     g_free(nodename);
2880 
2881     *fdt_offset = offset;
2882     return fdt;
2883 }
2884 
2885 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2886                               Error **errp)
2887 {
2888     MachineState *ms = MACHINE(qdev_get_machine());
2889     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
2890     CPUCore *cc = CPU_CORE(dev);
2891     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2892 
2893     if (smc->pre_2_10_has_unused_icps) {
2894         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
2895         sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
2896         const char *typename = object_class_get_name(scc->cpu_class);
2897         size_t size = object_type_get_instance_size(typename);
2898         int i;
2899 
2900         for (i = 0; i < cc->nr_threads; i++) {
2901             CPUState *cs = CPU(sc->threads + i * size);
2902 
2903             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
2904         }
2905     }
2906 
2907     assert(core_slot);
2908     core_slot->cpu = NULL;
2909     object_unparent(OBJECT(dev));
2910 }
2911 
2912 /* Callback to be called during DRC release. */
2913 void spapr_core_release(DeviceState *dev)
2914 {
2915     HotplugHandler *hotplug_ctrl;
2916 
2917     hotplug_ctrl = qdev_get_hotplug_handler(dev);
2918     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2919 }
2920 
2921 static
2922 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2923                                Error **errp)
2924 {
2925     int index;
2926     sPAPRDRConnector *drc;
2927     Error *local_err = NULL;
2928     CPUCore *cc = CPU_CORE(dev);
2929     int smt = kvmppc_smt_threads();
2930 
2931     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2932         error_setg(errp, "Unable to find CPU core with core-id: %d",
2933                    cc->core_id);
2934         return;
2935     }
2936     if (index == 0) {
2937         error_setg(errp, "Boot CPU core may not be unplugged");
2938         return;
2939     }
2940 
2941     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
2942     g_assert(drc);
2943 
2944     spapr_drc_detach(drc, dev, &local_err);
2945     if (local_err) {
2946         error_propagate(errp, local_err);
2947         return;
2948     }
2949 
2950     spapr_hotplug_req_remove_by_index(drc);
2951 }
2952 
2953 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2954                             Error **errp)
2955 {
2956     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2957     MachineClass *mc = MACHINE_GET_CLASS(spapr);
2958     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2959     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2960     CPUCore *cc = CPU_CORE(dev);
2961     CPUState *cs = CPU(core->threads);
2962     sPAPRDRConnector *drc;
2963     Error *local_err = NULL;
2964     void *fdt = NULL;
2965     int fdt_offset = 0;
2966     int smt = kvmppc_smt_threads();
2967     CPUArchId *core_slot;
2968     int index;
2969 
2970     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2971     if (!core_slot) {
2972         error_setg(errp, "Unable to find CPU core with core-id: %d",
2973                    cc->core_id);
2974         return;
2975     }
2976     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
2977 
2978     g_assert(drc || !mc->has_hotpluggable_cpus);
2979 
2980     fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2981 
2982     if (drc) {
2983         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2984         if (local_err) {
2985             g_free(fdt);
2986             error_propagate(errp, local_err);
2987             return;
2988         }
2989     }
2990 
2991     if (dev->hotplugged) {
2992         /*
2993          * Send hotplug notification interrupt to the guest only in case
2994          * of hotplugged CPUs.
2995          */
2996         spapr_hotplug_req_add_by_index(drc);
2997     }
2998     core_slot->cpu = OBJECT(dev);
2999 
3000     if (smc->pre_2_10_has_unused_icps) {
3001         sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3002         const char *typename = object_class_get_name(scc->cpu_class);
3003         size_t size = object_type_get_instance_size(typename);
3004         int i;
3005 
3006         for (i = 0; i < cc->nr_threads; i++) {
3007             sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3008             void *obj = sc->threads + i * size;
3009 
3010             cs = CPU(obj);
3011             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3012         }
3013     }
3014 }
3015 
3016 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3017                                 Error **errp)
3018 {
3019     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3020     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3021     Error *local_err = NULL;
3022     CPUCore *cc = CPU_CORE(dev);
3023     char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
3024     const char *type = object_get_typename(OBJECT(dev));
3025     CPUArchId *core_slot;
3026     int index;
3027 
3028     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3029         error_setg(&local_err, "CPU hotplug not supported for this machine");
3030         goto out;
3031     }
3032 
3033     if (strcmp(base_core_type, type)) {
3034         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3035         goto out;
3036     }
3037 
3038     if (cc->core_id % smp_threads) {
3039         error_setg(&local_err, "invalid core id %d", cc->core_id);
3040         goto out;
3041     }
3042 
3043     /*
3044      * In general we should have homogeneous threads-per-core, but old
3045      * (pre hotplug support) machine types allow the last core to have
3046      * reduced threads as a compatibility hack for when we allowed
3047      * total vcpus not a multiple of threads-per-core.
3048      */
3049     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3050         error_setg(errp, "invalid nr-threads %d, must be %d",
3051                    cc->nr_threads, smp_threads);
3052         return;
3053     }
3054 
3055     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3056     if (!core_slot) {
3057         error_setg(&local_err, "core id %d out of range", cc->core_id);
3058         goto out;
3059     }
3060 
3061     if (core_slot->cpu) {
3062         error_setg(&local_err, "core %d already populated", cc->core_id);
3063         goto out;
3064     }
3065 
3066     numa_cpu_pre_plug(core_slot, dev, &local_err);
3067 
3068 out:
3069     g_free(base_core_type);
3070     error_propagate(errp, local_err);
3071 }
3072 
3073 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3074                                       DeviceState *dev, Error **errp)
3075 {
3076     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
3077 
3078     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3079         int node;
3080 
3081         if (!smc->dr_lmb_enabled) {
3082             error_setg(errp, "Memory hotplug not supported for this machine");
3083             return;
3084         }
3085         node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3086         if (*errp) {
3087             return;
3088         }
3089         if (node < 0 || node >= MAX_NODES) {
3090             error_setg(errp, "Invaild node %d", node);
3091             return;
3092         }
3093 
3094         /*
3095          * Currently PowerPC kernel doesn't allow hot-adding memory to
3096          * memory-less node, but instead will silently add the memory
3097          * to the first node that has some memory. This causes two
3098          * unexpected behaviours for the user.
3099          *
3100          * - Memory gets hotplugged to a different node than what the user
3101          *   specified.
3102          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3103          *   to memory-less node, a reboot will set things accordingly
3104          *   and the previously hotplugged memory now ends in the right node.
3105          *   This appears as if some memory moved from one node to another.
3106          *
3107          * So until kernel starts supporting memory hotplug to memory-less
3108          * nodes, just prevent such attempts upfront in QEMU.
3109          */
3110         if (nb_numa_nodes && !numa_info[node].node_mem) {
3111             error_setg(errp, "Can't hotplug memory to memory-less node %d",
3112                        node);
3113             return;
3114         }
3115 
3116         spapr_memory_plug(hotplug_dev, dev, node, errp);
3117     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3118         spapr_core_plug(hotplug_dev, dev, errp);
3119     }
3120 }
3121 
3122 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3123                                       DeviceState *dev, Error **errp)
3124 {
3125     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3126     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3127 
3128     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3129         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3130             spapr_memory_unplug(hotplug_dev, dev, errp);
3131         } else {
3132             error_setg(errp, "Memory hot unplug not supported for this guest");
3133         }
3134     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3135         if (!mc->has_hotpluggable_cpus) {
3136             error_setg(errp, "CPU hot unplug not supported on this machine");
3137             return;
3138         }
3139         spapr_core_unplug(hotplug_dev, dev, errp);
3140     }
3141 }
3142 
3143 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3144                                                 DeviceState *dev, Error **errp)
3145 {
3146     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3147     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3148 
3149     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3150         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3151             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3152         } else {
3153             /* NOTE: this means there is a window after guest reset, prior to
3154              * CAS negotiation, where unplug requests will fail due to the
3155              * capability not being detected yet. This is a bit different than
3156              * the case with PCI unplug, where the events will be queued and
3157              * eventually handled by the guest after boot
3158              */
3159             error_setg(errp, "Memory hot unplug not supported for this guest");
3160         }
3161     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3162         if (!mc->has_hotpluggable_cpus) {
3163             error_setg(errp, "CPU hot unplug not supported on this machine");
3164             return;
3165         }
3166         spapr_core_unplug_request(hotplug_dev, dev, errp);
3167     }
3168 }
3169 
3170 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3171                                           DeviceState *dev, Error **errp)
3172 {
3173     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3174         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3175     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3176         spapr_core_pre_plug(hotplug_dev, dev, errp);
3177     }
3178 }
3179 
3180 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3181                                                  DeviceState *dev)
3182 {
3183     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3184         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3185         return HOTPLUG_HANDLER(machine);
3186     }
3187     return NULL;
3188 }
3189 
3190 static CpuInstanceProperties
3191 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3192 {
3193     CPUArchId *core_slot;
3194     MachineClass *mc = MACHINE_GET_CLASS(machine);
3195 
3196     /* make sure possible_cpu are intialized */
3197     mc->possible_cpu_arch_ids(machine);
3198     /* get CPU core slot containing thread that matches cpu_index */
3199     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3200     assert(core_slot);
3201     return core_slot->props;
3202 }
3203 
3204 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3205 {
3206     int i;
3207     int spapr_max_cores = max_cpus / smp_threads;
3208     MachineClass *mc = MACHINE_GET_CLASS(machine);
3209 
3210     if (!mc->has_hotpluggable_cpus) {
3211         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3212     }
3213     if (machine->possible_cpus) {
3214         assert(machine->possible_cpus->len == spapr_max_cores);
3215         return machine->possible_cpus;
3216     }
3217 
3218     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3219                              sizeof(CPUArchId) * spapr_max_cores);
3220     machine->possible_cpus->len = spapr_max_cores;
3221     for (i = 0; i < machine->possible_cpus->len; i++) {
3222         int core_id = i * smp_threads;
3223 
3224         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3225         machine->possible_cpus->cpus[i].arch_id = core_id;
3226         machine->possible_cpus->cpus[i].props.has_core_id = true;
3227         machine->possible_cpus->cpus[i].props.core_id = core_id;
3228 
3229         /* default distribution of CPUs over NUMA nodes */
3230         if (nb_numa_nodes) {
3231             /* preset values but do not enable them i.e. 'has_node_id = false',
3232              * numa init code will enable them later if manual mapping wasn't
3233              * present on CLI */
3234             machine->possible_cpus->cpus[i].props.node_id =
3235                 core_id / smp_threads / smp_cores % nb_numa_nodes;
3236         }
3237     }
3238     return machine->possible_cpus;
3239 }
3240 
3241 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3242                                 uint64_t *buid, hwaddr *pio,
3243                                 hwaddr *mmio32, hwaddr *mmio64,
3244                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3245 {
3246     /*
3247      * New-style PHB window placement.
3248      *
3249      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3250      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3251      * windows.
3252      *
3253      * Some guest kernels can't work with MMIO windows above 1<<46
3254      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3255      *
3256      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3257      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3258      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3259      * 1TiB 64-bit MMIO windows for each PHB.
3260      */
3261     const uint64_t base_buid = 0x800000020000000ULL;
3262 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3263                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3264     int i;
3265 
3266     /* Sanity check natural alignments */
3267     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3268     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3269     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3270     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3271     /* Sanity check bounds */
3272     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3273                       SPAPR_PCI_MEM32_WIN_SIZE);
3274     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3275                       SPAPR_PCI_MEM64_WIN_SIZE);
3276 
3277     if (index >= SPAPR_MAX_PHBS) {
3278         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3279                    SPAPR_MAX_PHBS - 1);
3280         return;
3281     }
3282 
3283     *buid = base_buid + index;
3284     for (i = 0; i < n_dma; ++i) {
3285         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3286     }
3287 
3288     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3289     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3290     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3291 }
3292 
3293 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3294 {
3295     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3296 
3297     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3298 }
3299 
3300 static void spapr_ics_resend(XICSFabric *dev)
3301 {
3302     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3303 
3304     ics_resend(spapr->ics);
3305 }
3306 
3307 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3308 {
3309     PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3310 
3311     return cpu ? ICP(cpu->intc) : NULL;
3312 }
3313 
3314 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3315                                  Monitor *mon)
3316 {
3317     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3318     CPUState *cs;
3319 
3320     CPU_FOREACH(cs) {
3321         PowerPCCPU *cpu = POWERPC_CPU(cs);
3322 
3323         icp_pic_print_info(ICP(cpu->intc), mon);
3324     }
3325 
3326     ics_pic_print_info(spapr->ics, mon);
3327 }
3328 
3329 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3330 {
3331     MachineClass *mc = MACHINE_CLASS(oc);
3332     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3333     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3334     NMIClass *nc = NMI_CLASS(oc);
3335     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3336     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3337     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3338     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3339 
3340     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3341 
3342     /*
3343      * We set up the default / latest behaviour here.  The class_init
3344      * functions for the specific versioned machine types can override
3345      * these details for backwards compatibility
3346      */
3347     mc->init = ppc_spapr_init;
3348     mc->reset = ppc_spapr_reset;
3349     mc->block_default_type = IF_SCSI;
3350     mc->max_cpus = 1024;
3351     mc->no_parallel = 1;
3352     mc->default_boot_order = "";
3353     mc->default_ram_size = 512 * M_BYTE;
3354     mc->kvm_type = spapr_kvm_type;
3355     mc->has_dynamic_sysbus = true;
3356     mc->pci_allow_0_address = true;
3357     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3358     hc->pre_plug = spapr_machine_device_pre_plug;
3359     hc->plug = spapr_machine_device_plug;
3360     hc->unplug = spapr_machine_device_unplug;
3361     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3362     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3363     hc->unplug_request = spapr_machine_device_unplug_request;
3364 
3365     smc->dr_lmb_enabled = true;
3366     smc->tcg_default_cpu = "POWER8";
3367     mc->has_hotpluggable_cpus = true;
3368     fwc->get_dev_path = spapr_get_fw_dev_path;
3369     nc->nmi_monitor_handler = spapr_nmi;
3370     smc->phb_placement = spapr_phb_placement;
3371     vhc->hypercall = emulate_spapr_hypercall;
3372     vhc->hpt_mask = spapr_hpt_mask;
3373     vhc->map_hptes = spapr_map_hptes;
3374     vhc->unmap_hptes = spapr_unmap_hptes;
3375     vhc->store_hpte = spapr_store_hpte;
3376     vhc->get_patbe = spapr_get_patbe;
3377     xic->ics_get = spapr_ics_get;
3378     xic->ics_resend = spapr_ics_resend;
3379     xic->icp_get = spapr_icp_get;
3380     ispc->print_info = spapr_pic_print_info;
3381     /* Force NUMA node memory size to be a multiple of
3382      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3383      * in which LMBs are represented and hot-added
3384      */
3385     mc->numa_mem_align_shift = 28;
3386 }
3387 
3388 static const TypeInfo spapr_machine_info = {
3389     .name          = TYPE_SPAPR_MACHINE,
3390     .parent        = TYPE_MACHINE,
3391     .abstract      = true,
3392     .instance_size = sizeof(sPAPRMachineState),
3393     .instance_init = spapr_machine_initfn,
3394     .instance_finalize = spapr_machine_finalizefn,
3395     .class_size    = sizeof(sPAPRMachineClass),
3396     .class_init    = spapr_machine_class_init,
3397     .interfaces = (InterfaceInfo[]) {
3398         { TYPE_FW_PATH_PROVIDER },
3399         { TYPE_NMI },
3400         { TYPE_HOTPLUG_HANDLER },
3401         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3402         { TYPE_XICS_FABRIC },
3403         { TYPE_INTERRUPT_STATS_PROVIDER },
3404         { }
3405     },
3406 };
3407 
3408 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3409     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3410                                                     void *data)      \
3411     {                                                                \
3412         MachineClass *mc = MACHINE_CLASS(oc);                        \
3413         spapr_machine_##suffix##_class_options(mc);                  \
3414         if (latest) {                                                \
3415             mc->alias = "pseries";                                   \
3416             mc->is_default = 1;                                      \
3417         }                                                            \
3418     }                                                                \
3419     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3420     {                                                                \
3421         MachineState *machine = MACHINE(obj);                        \
3422         spapr_machine_##suffix##_instance_options(machine);          \
3423     }                                                                \
3424     static const TypeInfo spapr_machine_##suffix##_info = {          \
3425         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3426         .parent = TYPE_SPAPR_MACHINE,                                \
3427         .class_init = spapr_machine_##suffix##_class_init,           \
3428         .instance_init = spapr_machine_##suffix##_instance_init,     \
3429     };                                                               \
3430     static void spapr_machine_register_##suffix(void)                \
3431     {                                                                \
3432         type_register(&spapr_machine_##suffix##_info);               \
3433     }                                                                \
3434     type_init(spapr_machine_register_##suffix)
3435 
3436 /*
3437  * pseries-2.10
3438  */
3439 static void spapr_machine_2_10_instance_options(MachineState *machine)
3440 {
3441 }
3442 
3443 static void spapr_machine_2_10_class_options(MachineClass *mc)
3444 {
3445     /* Defaults for the latest behaviour inherited from the base class */
3446 }
3447 
3448 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3449 
3450 /*
3451  * pseries-2.9
3452  */
3453 #define SPAPR_COMPAT_2_9                                               \
3454     HW_COMPAT_2_9                                                      \
3455     {                                                                  \
3456         .driver = TYPE_POWERPC_CPU,                                    \
3457         .property = "pre-2.10-migration",                              \
3458         .value    = "on",                                              \
3459     },                                                                 \
3460 
3461 static void spapr_machine_2_9_instance_options(MachineState *machine)
3462 {
3463     spapr_machine_2_10_instance_options(machine);
3464 }
3465 
3466 static void spapr_machine_2_9_class_options(MachineClass *mc)
3467 {
3468     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3469 
3470     spapr_machine_2_10_class_options(mc);
3471     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3472     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3473     smc->pre_2_10_has_unused_icps = true;
3474 }
3475 
3476 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3477 
3478 /*
3479  * pseries-2.8
3480  */
3481 #define SPAPR_COMPAT_2_8                                        \
3482     HW_COMPAT_2_8                                               \
3483     {                                                           \
3484         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3485         .property = "pcie-extended-configuration-space",        \
3486         .value    = "off",                                      \
3487     },
3488 
3489 static void spapr_machine_2_8_instance_options(MachineState *machine)
3490 {
3491     spapr_machine_2_9_instance_options(machine);
3492 }
3493 
3494 static void spapr_machine_2_8_class_options(MachineClass *mc)
3495 {
3496     spapr_machine_2_9_class_options(mc);
3497     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3498     mc->numa_mem_align_shift = 23;
3499 }
3500 
3501 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3502 
3503 /*
3504  * pseries-2.7
3505  */
3506 #define SPAPR_COMPAT_2_7                            \
3507     HW_COMPAT_2_7                                   \
3508     {                                               \
3509         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3510         .property = "mem_win_size",                 \
3511         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3512     },                                              \
3513     {                                               \
3514         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3515         .property = "mem64_win_size",               \
3516         .value    = "0",                            \
3517     },                                              \
3518     {                                               \
3519         .driver = TYPE_POWERPC_CPU,                 \
3520         .property = "pre-2.8-migration",            \
3521         .value    = "on",                           \
3522     },                                              \
3523     {                                               \
3524         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3525         .property = "pre-2.8-migration",            \
3526         .value    = "on",                           \
3527     },
3528 
3529 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3530                               uint64_t *buid, hwaddr *pio,
3531                               hwaddr *mmio32, hwaddr *mmio64,
3532                               unsigned n_dma, uint32_t *liobns, Error **errp)
3533 {
3534     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3535     const uint64_t base_buid = 0x800000020000000ULL;
3536     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3537     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3538     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3539     const uint32_t max_index = 255;
3540     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3541 
3542     uint64_t ram_top = MACHINE(spapr)->ram_size;
3543     hwaddr phb0_base, phb_base;
3544     int i;
3545 
3546     /* Do we have hotpluggable memory? */
3547     if (MACHINE(spapr)->maxram_size > ram_top) {
3548         /* Can't just use maxram_size, because there may be an
3549          * alignment gap between normal and hotpluggable memory
3550          * regions */
3551         ram_top = spapr->hotplug_memory.base +
3552             memory_region_size(&spapr->hotplug_memory.mr);
3553     }
3554 
3555     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3556 
3557     if (index > max_index) {
3558         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3559                    max_index);
3560         return;
3561     }
3562 
3563     *buid = base_buid + index;
3564     for (i = 0; i < n_dma; ++i) {
3565         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3566     }
3567 
3568     phb_base = phb0_base + index * phb_spacing;
3569     *pio = phb_base + pio_offset;
3570     *mmio32 = phb_base + mmio_offset;
3571     /*
3572      * We don't set the 64-bit MMIO window, relying on the PHB's
3573      * fallback behaviour of automatically splitting a large "32-bit"
3574      * window into contiguous 32-bit and 64-bit windows
3575      */
3576 }
3577 
3578 static void spapr_machine_2_7_instance_options(MachineState *machine)
3579 {
3580     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3581 
3582     spapr_machine_2_8_instance_options(machine);
3583     spapr->use_hotplug_event_source = false;
3584 }
3585 
3586 static void spapr_machine_2_7_class_options(MachineClass *mc)
3587 {
3588     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3589 
3590     spapr_machine_2_8_class_options(mc);
3591     smc->tcg_default_cpu = "POWER7";
3592     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3593     smc->phb_placement = phb_placement_2_7;
3594 }
3595 
3596 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3597 
3598 /*
3599  * pseries-2.6
3600  */
3601 #define SPAPR_COMPAT_2_6 \
3602     HW_COMPAT_2_6 \
3603     { \
3604         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3605         .property = "ddw",\
3606         .value    = stringify(off),\
3607     },
3608 
3609 static void spapr_machine_2_6_instance_options(MachineState *machine)
3610 {
3611     spapr_machine_2_7_instance_options(machine);
3612 }
3613 
3614 static void spapr_machine_2_6_class_options(MachineClass *mc)
3615 {
3616     spapr_machine_2_7_class_options(mc);
3617     mc->has_hotpluggable_cpus = false;
3618     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3619 }
3620 
3621 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3622 
3623 /*
3624  * pseries-2.5
3625  */
3626 #define SPAPR_COMPAT_2_5 \
3627     HW_COMPAT_2_5 \
3628     { \
3629         .driver   = "spapr-vlan", \
3630         .property = "use-rx-buffer-pools", \
3631         .value    = "off", \
3632     },
3633 
3634 static void spapr_machine_2_5_instance_options(MachineState *machine)
3635 {
3636     spapr_machine_2_6_instance_options(machine);
3637 }
3638 
3639 static void spapr_machine_2_5_class_options(MachineClass *mc)
3640 {
3641     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3642 
3643     spapr_machine_2_6_class_options(mc);
3644     smc->use_ohci_by_default = true;
3645     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3646 }
3647 
3648 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3649 
3650 /*
3651  * pseries-2.4
3652  */
3653 #define SPAPR_COMPAT_2_4 \
3654         HW_COMPAT_2_4
3655 
3656 static void spapr_machine_2_4_instance_options(MachineState *machine)
3657 {
3658     spapr_machine_2_5_instance_options(machine);
3659 }
3660 
3661 static void spapr_machine_2_4_class_options(MachineClass *mc)
3662 {
3663     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3664 
3665     spapr_machine_2_5_class_options(mc);
3666     smc->dr_lmb_enabled = false;
3667     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3668 }
3669 
3670 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3671 
3672 /*
3673  * pseries-2.3
3674  */
3675 #define SPAPR_COMPAT_2_3 \
3676         HW_COMPAT_2_3 \
3677         {\
3678             .driver   = "spapr-pci-host-bridge",\
3679             .property = "dynamic-reconfiguration",\
3680             .value    = "off",\
3681         },
3682 
3683 static void spapr_machine_2_3_instance_options(MachineState *machine)
3684 {
3685     spapr_machine_2_4_instance_options(machine);
3686 }
3687 
3688 static void spapr_machine_2_3_class_options(MachineClass *mc)
3689 {
3690     spapr_machine_2_4_class_options(mc);
3691     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3692 }
3693 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3694 
3695 /*
3696  * pseries-2.2
3697  */
3698 
3699 #define SPAPR_COMPAT_2_2 \
3700         HW_COMPAT_2_2 \
3701         {\
3702             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3703             .property = "mem_win_size",\
3704             .value    = "0x20000000",\
3705         },
3706 
3707 static void spapr_machine_2_2_instance_options(MachineState *machine)
3708 {
3709     spapr_machine_2_3_instance_options(machine);
3710     machine->suppress_vmdesc = true;
3711 }
3712 
3713 static void spapr_machine_2_2_class_options(MachineClass *mc)
3714 {
3715     spapr_machine_2_3_class_options(mc);
3716     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3717 }
3718 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3719 
3720 /*
3721  * pseries-2.1
3722  */
3723 #define SPAPR_COMPAT_2_1 \
3724         HW_COMPAT_2_1
3725 
3726 static void spapr_machine_2_1_instance_options(MachineState *machine)
3727 {
3728     spapr_machine_2_2_instance_options(machine);
3729 }
3730 
3731 static void spapr_machine_2_1_class_options(MachineClass *mc)
3732 {
3733     spapr_machine_2_2_class_options(mc);
3734     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3735 }
3736 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3737 
3738 static void spapr_machine_register_types(void)
3739 {
3740     type_register_static(&spapr_machine_info);
3741 }
3742 
3743 type_init(spapr_machine_register_types)
3744