1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/tcg.h" 39 #include "sysemu/qtest.h" 40 #include "sysemu/reset.h" 41 #include "sysemu/runstate.h" 42 #include "qemu/log.h" 43 #include "hw/fw-path-provider.h" 44 #include "elf.h" 45 #include "net/net.h" 46 #include "sysemu/device_tree.h" 47 #include "sysemu/cpus.h" 48 #include "sysemu/hw_accel.h" 49 #include "kvm_ppc.h" 50 #include "migration/misc.h" 51 #include "migration/qemu-file-types.h" 52 #include "migration/global_state.h" 53 #include "migration/register.h" 54 #include "migration/blocker.h" 55 #include "mmu-hash64.h" 56 #include "mmu-book3s-v3.h" 57 #include "cpu-models.h" 58 #include "hw/core/cpu.h" 59 60 #include "hw/ppc/ppc.h" 61 #include "hw/loader.h" 62 63 #include "hw/ppc/fdt.h" 64 #include "hw/ppc/spapr.h" 65 #include "hw/ppc/spapr_nested.h" 66 #include "hw/ppc/spapr_vio.h" 67 #include "hw/ppc/vof.h" 68 #include "hw/qdev-properties.h" 69 #include "hw/pci-host/spapr.h" 70 #include "hw/pci/msi.h" 71 72 #include "hw/pci/pci.h" 73 #include "hw/scsi/scsi.h" 74 #include "hw/virtio/virtio-scsi.h" 75 #include "hw/virtio/vhost-scsi-common.h" 76 77 #include "exec/ram_addr.h" 78 #include "exec/confidential-guest-support.h" 79 #include "hw/usb.h" 80 #include "qemu/config-file.h" 81 #include "qemu/error-report.h" 82 #include "trace.h" 83 #include "hw/nmi.h" 84 #include "hw/intc/intc.h" 85 86 #include "hw/ppc/spapr_cpu_core.h" 87 #include "hw/mem/memory-device.h" 88 #include "hw/ppc/spapr_tpm_proxy.h" 89 #include "hw/ppc/spapr_nvdimm.h" 90 #include "hw/ppc/spapr_numa.h" 91 92 #include <libfdt.h> 93 94 /* SLOF memory layout: 95 * 96 * SLOF raw image loaded at 0, copies its romfs right below the flat 97 * device-tree, then position SLOF itself 31M below that 98 * 99 * So we set FW_OVERHEAD to 40MB which should account for all of that 100 * and more 101 * 102 * We load our kernel at 4M, leaving space for SLOF initial image 103 */ 104 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 105 #define FW_MAX_SIZE 0x400000 106 #define FW_FILE_NAME "slof.bin" 107 #define FW_FILE_NAME_VOF "vof.bin" 108 #define FW_OVERHEAD 0x2800000 109 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 110 111 #define MIN_RMA_SLOF (128 * MiB) 112 113 #define PHANDLE_INTC 0x00001111 114 115 /* These two functions implement the VCPU id numbering: one to compute them 116 * all and one to identify thread 0 of a VCORE. Any change to the first one 117 * is likely to have an impact on the second one, so let's keep them close. 118 */ 119 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 120 { 121 MachineState *ms = MACHINE(spapr); 122 unsigned int smp_threads = ms->smp.threads; 123 124 assert(spapr->vsmt); 125 return 126 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 127 } 128 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 129 PowerPCCPU *cpu) 130 { 131 assert(spapr->vsmt); 132 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 133 } 134 135 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 136 { 137 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 138 * and newer QEMUs don't even have them. In both cases, we don't want 139 * to send anything on the wire. 140 */ 141 return false; 142 } 143 144 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 145 /* 146 * Hack ahead. We can't have two devices with the same name and 147 * instance id. So I rename this to pass make check. 148 * Real help from people who knows the hardware is needed. 149 */ 150 .name = "icp/server", 151 .version_id = 1, 152 .minimum_version_id = 1, 153 .needed = pre_2_10_vmstate_dummy_icp_needed, 154 .fields = (const VMStateField[]) { 155 VMSTATE_UNUSED(4), /* uint32_t xirr */ 156 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 157 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 158 VMSTATE_END_OF_LIST() 159 }, 160 }; 161 162 /* 163 * See comment in hw/intc/xics.c:icp_realize() 164 * 165 * You have to remove vmstate_replace_hack_for_ppc() when you remove 166 * the machine types that need the following function. 167 */ 168 static void pre_2_10_vmstate_register_dummy_icp(int i) 169 { 170 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 171 (void *)(uintptr_t) i); 172 } 173 174 /* 175 * See comment in hw/intc/xics.c:icp_realize() 176 * 177 * You have to remove vmstate_replace_hack_for_ppc() when you remove 178 * the machine types that need the following function. 179 */ 180 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 181 { 182 /* 183 * This used to be: 184 * 185 * vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 186 * (void *)(uintptr_t) i); 187 */ 188 } 189 190 int spapr_max_server_number(SpaprMachineState *spapr) 191 { 192 MachineState *ms = MACHINE(spapr); 193 194 assert(spapr->vsmt); 195 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 196 } 197 198 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 199 int smt_threads) 200 { 201 int i, ret = 0; 202 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 203 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 204 int index = spapr_get_vcpu_id(cpu); 205 206 if (cpu->compat_pvr) { 207 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 208 if (ret < 0) { 209 return ret; 210 } 211 } 212 213 /* Build interrupt servers and gservers properties */ 214 for (i = 0; i < smt_threads; i++) { 215 servers_prop[i] = cpu_to_be32(index + i); 216 /* Hack, direct the group queues back to cpu 0 */ 217 gservers_prop[i*2] = cpu_to_be32(index + i); 218 gservers_prop[i*2 + 1] = 0; 219 } 220 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 221 servers_prop, sizeof(*servers_prop) * smt_threads); 222 if (ret < 0) { 223 return ret; 224 } 225 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 226 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 227 228 return ret; 229 } 230 231 static void spapr_dt_pa_features(SpaprMachineState *spapr, 232 PowerPCCPU *cpu, 233 void *fdt, int offset) 234 { 235 /* 236 * SSO (SAO) ordering is supported on KVM and thread=single hosts, 237 * but not MTTCG, so disable it. To advertise it, a cap would have 238 * to be added, or support implemented for MTTCG. 239 * 240 * Copy/paste is not supported by TCG, so it is not advertised. KVM 241 * can execute them but it has no accelerator drivers which are usable, 242 * so there isn't much need for it anyway. 243 */ 244 245 /* These should be kept in sync with pnv */ 246 uint8_t pa_features_206[] = { 6, 0, 247 0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 }; 248 uint8_t pa_features_207[] = { 24, 0, 249 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, 250 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 251 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 252 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 253 uint8_t pa_features_300[] = { 66, 0, 254 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 255 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 256 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 257 /* 6: DS207 */ 258 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 259 /* 16: Vector */ 260 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 261 /* 18: Vec. Scalar, 20: Vec. XOR */ 262 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 263 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 264 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 265 /* 32: LE atomic, 34: EBB + ext EBB */ 266 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 267 /* 40: Radix MMU */ 268 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 269 /* 42: PM, 44: PC RA, 46: SC vec'd */ 270 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 271 /* 48: SIMD, 50: QP BFP, 52: String */ 272 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 273 /* 54: DecFP, 56: DecI, 58: SHA */ 274 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 275 /* 60: NM atomic, 62: RNG */ 276 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 277 }; 278 /* 3.1 removes SAO, HTM support */ 279 uint8_t pa_features_31[] = { 74, 0, 280 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 281 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 282 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 283 /* 6: DS207 */ 284 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 285 /* 16: Vector */ 286 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 287 /* 18: Vec. Scalar, 20: Vec. XOR */ 288 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 289 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 290 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 291 /* 32: LE atomic, 34: EBB + ext EBB */ 292 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 293 /* 40: Radix MMU */ 294 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 295 /* 42: PM, 44: PC RA, 46: SC vec'd */ 296 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 297 /* 48: SIMD, 50: QP BFP, 52: String */ 298 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 299 /* 54: DecFP, 56: DecI, 58: SHA */ 300 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 301 /* 60: NM atomic, 62: RNG */ 302 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 303 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */ 304 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */ 305 /* 72: [P]HASHST/[P]HASHCHK */ 306 0x80, 0x00, /* 72 - 73 */ 307 }; 308 uint8_t *pa_features = NULL; 309 size_t pa_size; 310 311 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 312 pa_features = pa_features_206; 313 pa_size = sizeof(pa_features_206); 314 } 315 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 316 pa_features = pa_features_207; 317 pa_size = sizeof(pa_features_207); 318 } 319 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 320 pa_features = pa_features_300; 321 pa_size = sizeof(pa_features_300); 322 } 323 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) { 324 pa_features = pa_features_31; 325 pa_size = sizeof(pa_features_31); 326 } 327 if (!pa_features) { 328 return; 329 } 330 331 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 332 /* 333 * Note: we keep CI large pages off by default because a 64K capable 334 * guest provisioned with large pages might otherwise try to map a qemu 335 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 336 * even if that qemu runs on a 4k host. 337 * We dd this bit back here if we are confident this is not an issue 338 */ 339 pa_features[3] |= 0x20; 340 } 341 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 342 pa_features[24] |= 0x80; /* Transactional memory support */ 343 } 344 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 345 /* Workaround for broken kernels that attempt (guest) radix 346 * mode when they can't handle it, if they see the radix bit set 347 * in pa-features. So hide it from them. */ 348 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 349 } 350 351 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 352 } 353 354 static void spapr_dt_pi_features(SpaprMachineState *spapr, 355 PowerPCCPU *cpu, 356 void *fdt, int offset) 357 { 358 uint8_t pi_features[] = { 1, 0, 359 0x00 }; 360 361 if (kvm_enabled() && ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 362 0, cpu->compat_pvr)) { 363 /* 364 * POWER9 and later CPUs with KVM run in LPAR-per-thread mode where 365 * all threads are essentially independent CPUs, and msgsndp does not 366 * work (because it is physically-addressed) and therefore is 367 * emulated by KVM, so disable it here to ensure XIVE will be used. 368 * This is both KVM and CPU implementation-specific behaviour so a KVM 369 * cap would be cleanest, but for now this works. If KVM ever permits 370 * native msgsndp execution by guests, a cap could be added at that 371 * time. 372 */ 373 pi_features[2] |= 0x08; /* 4: No msgsndp */ 374 } 375 376 _FDT((fdt_setprop(fdt, offset, "ibm,pi-features", pi_features, 377 sizeof(pi_features)))); 378 } 379 380 static hwaddr spapr_node0_size(MachineState *machine) 381 { 382 if (machine->numa_state->num_nodes) { 383 int i; 384 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 385 if (machine->numa_state->nodes[i].node_mem) { 386 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 387 machine->ram_size); 388 } 389 } 390 } 391 return machine->ram_size; 392 } 393 394 static void add_str(GString *s, const gchar *s1) 395 { 396 g_string_append_len(s, s1, strlen(s1) + 1); 397 } 398 399 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 400 hwaddr start, hwaddr size) 401 { 402 char mem_name[32]; 403 uint64_t mem_reg_property[2]; 404 int off; 405 406 mem_reg_property[0] = cpu_to_be64(start); 407 mem_reg_property[1] = cpu_to_be64(size); 408 409 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 410 off = fdt_add_subnode(fdt, 0, mem_name); 411 _FDT(off); 412 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 413 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 414 sizeof(mem_reg_property)))); 415 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 416 return off; 417 } 418 419 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 420 { 421 MemoryDeviceInfoList *info; 422 423 for (info = list; info; info = info->next) { 424 MemoryDeviceInfo *value = info->value; 425 426 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 427 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 428 429 if (addr >= pcdimm_info->addr && 430 addr < (pcdimm_info->addr + pcdimm_info->size)) { 431 return pcdimm_info->node; 432 } 433 } 434 } 435 436 return -1; 437 } 438 439 struct sPAPRDrconfCellV2 { 440 uint32_t seq_lmbs; 441 uint64_t base_addr; 442 uint32_t drc_index; 443 uint32_t aa_index; 444 uint32_t flags; 445 } QEMU_PACKED; 446 447 typedef struct DrconfCellQueue { 448 struct sPAPRDrconfCellV2 cell; 449 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 450 } DrconfCellQueue; 451 452 static DrconfCellQueue * 453 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 454 uint32_t drc_index, uint32_t aa_index, 455 uint32_t flags) 456 { 457 DrconfCellQueue *elem; 458 459 elem = g_malloc0(sizeof(*elem)); 460 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 461 elem->cell.base_addr = cpu_to_be64(base_addr); 462 elem->cell.drc_index = cpu_to_be32(drc_index); 463 elem->cell.aa_index = cpu_to_be32(aa_index); 464 elem->cell.flags = cpu_to_be32(flags); 465 466 return elem; 467 } 468 469 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 470 int offset, MemoryDeviceInfoList *dimms) 471 { 472 MachineState *machine = MACHINE(spapr); 473 uint8_t *int_buf, *cur_index; 474 int ret; 475 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 476 uint64_t addr, cur_addr, size; 477 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 478 uint64_t mem_end = machine->device_memory->base + 479 memory_region_size(&machine->device_memory->mr); 480 uint32_t node, buf_len, nr_entries = 0; 481 SpaprDrc *drc; 482 DrconfCellQueue *elem, *next; 483 MemoryDeviceInfoList *info; 484 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 485 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 486 487 /* Entry to cover RAM and the gap area */ 488 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 489 SPAPR_LMB_FLAGS_RESERVED | 490 SPAPR_LMB_FLAGS_DRC_INVALID); 491 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 492 nr_entries++; 493 494 cur_addr = machine->device_memory->base; 495 for (info = dimms; info; info = info->next) { 496 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 497 498 addr = di->addr; 499 size = di->size; 500 node = di->node; 501 502 /* 503 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 504 * area is marked hotpluggable in the next iteration for the bigger 505 * chunk including the NVDIMM occupied area. 506 */ 507 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 508 continue; 509 510 /* Entry for hot-pluggable area */ 511 if (cur_addr < addr) { 512 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 513 g_assert(drc); 514 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 515 cur_addr, spapr_drc_index(drc), -1, 0); 516 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 517 nr_entries++; 518 } 519 520 /* Entry for DIMM */ 521 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 522 g_assert(drc); 523 elem = spapr_get_drconf_cell(size / lmb_size, addr, 524 spapr_drc_index(drc), node, 525 (SPAPR_LMB_FLAGS_ASSIGNED | 526 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 527 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 528 nr_entries++; 529 cur_addr = addr + size; 530 } 531 532 /* Entry for remaining hotpluggable area */ 533 if (cur_addr < mem_end) { 534 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 535 g_assert(drc); 536 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 537 cur_addr, spapr_drc_index(drc), -1, 0); 538 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 539 nr_entries++; 540 } 541 542 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 543 int_buf = cur_index = g_malloc0(buf_len); 544 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 545 cur_index += sizeof(nr_entries); 546 547 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 548 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 549 cur_index += sizeof(elem->cell); 550 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 551 g_free(elem); 552 } 553 554 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 555 g_free(int_buf); 556 if (ret < 0) { 557 return -1; 558 } 559 return 0; 560 } 561 562 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 563 int offset, MemoryDeviceInfoList *dimms) 564 { 565 MachineState *machine = MACHINE(spapr); 566 int i, ret; 567 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 568 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 569 uint32_t nr_lmbs = (machine->device_memory->base + 570 memory_region_size(&machine->device_memory->mr)) / 571 lmb_size; 572 uint32_t *int_buf, *cur_index, buf_len; 573 574 /* 575 * Allocate enough buffer size to fit in ibm,dynamic-memory 576 */ 577 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 578 cur_index = int_buf = g_malloc0(buf_len); 579 int_buf[0] = cpu_to_be32(nr_lmbs); 580 cur_index++; 581 for (i = 0; i < nr_lmbs; i++) { 582 uint64_t addr = i * lmb_size; 583 uint32_t *dynamic_memory = cur_index; 584 585 if (i >= device_lmb_start) { 586 SpaprDrc *drc; 587 588 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 589 g_assert(drc); 590 591 dynamic_memory[0] = cpu_to_be32(addr >> 32); 592 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 593 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 594 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 595 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 596 if (memory_region_present(get_system_memory(), addr)) { 597 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 598 } else { 599 dynamic_memory[5] = cpu_to_be32(0); 600 } 601 } else { 602 /* 603 * LMB information for RMA, boot time RAM and gap b/n RAM and 604 * device memory region -- all these are marked as reserved 605 * and as having no valid DRC. 606 */ 607 dynamic_memory[0] = cpu_to_be32(addr >> 32); 608 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 609 dynamic_memory[2] = cpu_to_be32(0); 610 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 611 dynamic_memory[4] = cpu_to_be32(-1); 612 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 613 SPAPR_LMB_FLAGS_DRC_INVALID); 614 } 615 616 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 617 } 618 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 619 g_free(int_buf); 620 if (ret < 0) { 621 return -1; 622 } 623 return 0; 624 } 625 626 /* 627 * Adds ibm,dynamic-reconfiguration-memory node. 628 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 629 * of this device tree node. 630 */ 631 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 632 void *fdt) 633 { 634 MachineState *machine = MACHINE(spapr); 635 int ret, offset; 636 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 637 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 638 cpu_to_be32(lmb_size & 0xffffffff)}; 639 MemoryDeviceInfoList *dimms = NULL; 640 641 /* Don't create the node if there is no device memory. */ 642 if (!machine->device_memory) { 643 return 0; 644 } 645 646 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 647 648 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 649 sizeof(prop_lmb_size)); 650 if (ret < 0) { 651 return ret; 652 } 653 654 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 655 if (ret < 0) { 656 return ret; 657 } 658 659 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 660 if (ret < 0) { 661 return ret; 662 } 663 664 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 665 dimms = qmp_memory_device_list(); 666 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 667 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 668 } else { 669 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 670 } 671 qapi_free_MemoryDeviceInfoList(dimms); 672 673 if (ret < 0) { 674 return ret; 675 } 676 677 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 678 679 return ret; 680 } 681 682 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 683 { 684 MachineState *machine = MACHINE(spapr); 685 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 686 hwaddr mem_start, node_size; 687 int i, nb_nodes = machine->numa_state->num_nodes; 688 NodeInfo *nodes = machine->numa_state->nodes; 689 690 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 691 if (!nodes[i].node_mem) { 692 continue; 693 } 694 if (mem_start >= machine->ram_size) { 695 node_size = 0; 696 } else { 697 node_size = nodes[i].node_mem; 698 if (node_size > machine->ram_size - mem_start) { 699 node_size = machine->ram_size - mem_start; 700 } 701 } 702 if (!mem_start) { 703 /* spapr_machine_init() checks for rma_size <= node0_size 704 * already */ 705 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 706 mem_start += spapr->rma_size; 707 node_size -= spapr->rma_size; 708 } 709 for ( ; node_size; ) { 710 hwaddr sizetmp = pow2floor(node_size); 711 712 /* mem_start != 0 here */ 713 if (ctzl(mem_start) < ctzl(sizetmp)) { 714 sizetmp = 1ULL << ctzl(mem_start); 715 } 716 717 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 718 node_size -= sizetmp; 719 mem_start += sizetmp; 720 } 721 } 722 723 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 724 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 725 int ret; 726 727 g_assert(smc->dr_lmb_enabled); 728 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 729 if (ret) { 730 return ret; 731 } 732 } 733 734 return 0; 735 } 736 737 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 738 SpaprMachineState *spapr) 739 { 740 MachineState *ms = MACHINE(spapr); 741 PowerPCCPU *cpu = POWERPC_CPU(cs); 742 CPUPPCState *env = &cpu->env; 743 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 744 int index = spapr_get_vcpu_id(cpu); 745 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 746 0xffffffff, 0xffffffff}; 747 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 748 : SPAPR_TIMEBASE_FREQ; 749 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 750 uint32_t page_sizes_prop[64]; 751 size_t page_sizes_prop_size; 752 unsigned int smp_threads = ms->smp.threads; 753 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 754 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 755 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 756 SpaprDrc *drc; 757 int drc_index; 758 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 759 int i; 760 761 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 762 if (drc) { 763 drc_index = spapr_drc_index(drc); 764 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 765 } 766 767 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 768 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 769 770 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 771 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 772 env->dcache_line_size))); 773 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 774 env->dcache_line_size))); 775 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 776 env->icache_line_size))); 777 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 778 env->icache_line_size))); 779 780 if (pcc->l1_dcache_size) { 781 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 782 pcc->l1_dcache_size))); 783 } else { 784 warn_report("Unknown L1 dcache size for cpu"); 785 } 786 if (pcc->l1_icache_size) { 787 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 788 pcc->l1_icache_size))); 789 } else { 790 warn_report("Unknown L1 icache size for cpu"); 791 } 792 793 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 794 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 795 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 796 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 797 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 798 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 799 800 if (ppc_has_spr(cpu, SPR_PURR)) { 801 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 802 } 803 if (ppc_has_spr(cpu, SPR_PURR)) { 804 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 805 } 806 807 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 808 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 809 segs, sizeof(segs)))); 810 } 811 812 /* Advertise VSX (vector extensions) if available 813 * 1 == VMX / Altivec available 814 * 2 == VSX available 815 * 816 * Only CPUs for which we create core types in spapr_cpu_core.c 817 * are possible, and all of those have VMX */ 818 if (env->insns_flags & PPC_ALTIVEC) { 819 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 820 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 821 } else { 822 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 823 } 824 } 825 826 /* Advertise DFP (Decimal Floating Point) if available 827 * 0 / no property == no DFP 828 * 1 == DFP available */ 829 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 830 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 831 } 832 833 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 834 sizeof(page_sizes_prop)); 835 if (page_sizes_prop_size) { 836 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 837 page_sizes_prop, page_sizes_prop_size))); 838 } 839 840 spapr_dt_pa_features(spapr, cpu, fdt, offset); 841 842 spapr_dt_pi_features(spapr, cpu, fdt, offset); 843 844 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 845 cs->cpu_index / vcpus_per_socket))); 846 847 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 848 pft_size_prop, sizeof(pft_size_prop)))); 849 850 if (ms->numa_state->num_nodes > 1) { 851 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 852 } 853 854 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 855 856 if (pcc->radix_page_info) { 857 for (i = 0; i < pcc->radix_page_info->count; i++) { 858 radix_AP_encodings[i] = 859 cpu_to_be32(pcc->radix_page_info->entries[i]); 860 } 861 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 862 radix_AP_encodings, 863 pcc->radix_page_info->count * 864 sizeof(radix_AP_encodings[0])))); 865 } 866 867 /* 868 * We set this property to let the guest know that it can use the large 869 * decrementer and its width in bits. 870 */ 871 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 872 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 873 pcc->lrg_decr_bits))); 874 } 875 876 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs, 877 int cpus_offset) 878 { 879 PowerPCCPU *cpu = POWERPC_CPU(cs); 880 int index = spapr_get_vcpu_id(cpu); 881 DeviceClass *dc = DEVICE_GET_CLASS(cs); 882 g_autofree char *nodename = NULL; 883 int offset; 884 885 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 886 return; 887 } 888 889 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 890 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 891 _FDT(offset); 892 spapr_dt_cpu(cs, fdt, offset, spapr); 893 } 894 895 896 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 897 { 898 CPUState **rev; 899 CPUState *cs; 900 int n_cpus; 901 int cpus_offset; 902 int i; 903 904 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 905 _FDT(cpus_offset); 906 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 907 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 908 909 /* 910 * We walk the CPUs in reverse order to ensure that CPU DT nodes 911 * created by fdt_add_subnode() end up in the right order in FDT 912 * for the guest kernel the enumerate the CPUs correctly. 913 * 914 * The CPU list cannot be traversed in reverse order, so we need 915 * to do extra work. 916 */ 917 n_cpus = 0; 918 rev = NULL; 919 CPU_FOREACH(cs) { 920 rev = g_renew(CPUState *, rev, n_cpus + 1); 921 rev[n_cpus++] = cs; 922 } 923 924 for (i = n_cpus - 1; i >= 0; i--) { 925 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset); 926 } 927 928 g_free(rev); 929 } 930 931 static int spapr_dt_rng(void *fdt) 932 { 933 int node; 934 int ret; 935 936 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 937 if (node <= 0) { 938 return -1; 939 } 940 ret = fdt_setprop_string(fdt, node, "device_type", 941 "ibm,platform-facilities"); 942 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 943 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 944 945 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 946 if (node <= 0) { 947 return -1; 948 } 949 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 950 951 return ret ? -1 : 0; 952 } 953 954 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 955 { 956 MachineState *ms = MACHINE(spapr); 957 int rtas; 958 GString *hypertas = g_string_sized_new(256); 959 GString *qemu_hypertas = g_string_sized_new(256); 960 uint32_t lrdr_capacity[] = { 961 0, 962 0, 963 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 964 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 965 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 966 }; 967 968 /* Do we have device memory? */ 969 if (MACHINE(spapr)->device_memory) { 970 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 971 memory_region_size(&MACHINE(spapr)->device_memory->mr); 972 973 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 974 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 975 } 976 977 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 978 979 /* hypertas */ 980 add_str(hypertas, "hcall-pft"); 981 add_str(hypertas, "hcall-term"); 982 add_str(hypertas, "hcall-dabr"); 983 add_str(hypertas, "hcall-interrupt"); 984 add_str(hypertas, "hcall-tce"); 985 add_str(hypertas, "hcall-vio"); 986 add_str(hypertas, "hcall-splpar"); 987 add_str(hypertas, "hcall-join"); 988 add_str(hypertas, "hcall-bulk"); 989 add_str(hypertas, "hcall-set-mode"); 990 add_str(hypertas, "hcall-sprg0"); 991 add_str(hypertas, "hcall-copy"); 992 add_str(hypertas, "hcall-debug"); 993 add_str(hypertas, "hcall-vphn"); 994 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 995 add_str(hypertas, "hcall-rpt-invalidate"); 996 } 997 998 add_str(qemu_hypertas, "hcall-memop1"); 999 1000 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1001 add_str(hypertas, "hcall-multi-tce"); 1002 } 1003 1004 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1005 add_str(hypertas, "hcall-hpt-resize"); 1006 } 1007 1008 add_str(hypertas, "hcall-watchdog"); 1009 1010 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1011 hypertas->str, hypertas->len)); 1012 g_string_free(hypertas, TRUE); 1013 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1014 qemu_hypertas->str, qemu_hypertas->len)); 1015 g_string_free(qemu_hypertas, TRUE); 1016 1017 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 1018 1019 /* 1020 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 1021 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 1022 * 1023 * The system reset requirements are driven by existing Linux and PowerVM 1024 * implementation which (contrary to PAPR) saves r3 in the error log 1025 * structure like machine check, so Linux expects to find the saved r3 1026 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 1027 * does not look at the error value). 1028 * 1029 * System reset interrupts are not subject to interlock like machine 1030 * check, so this memory area could be corrupted if the sreset is 1031 * interrupted by a machine check (or vice versa) if it was shared. To 1032 * prevent this, system reset uses per-CPU areas for the sreset save 1033 * area. A system reset that interrupts a system reset handler could 1034 * still overwrite this area, but Linux doesn't try to recover in that 1035 * case anyway. 1036 * 1037 * The extra 8 bytes is required because Linux's FWNMI error log check 1038 * is off-by-one. 1039 * 1040 * RTAS_MIN_SIZE is required for the RTAS blob itself. 1041 */ 1042 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 1043 RTAS_ERROR_LOG_MAX + 1044 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 1045 sizeof(uint64_t))); 1046 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1047 RTAS_ERROR_LOG_MAX)); 1048 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1049 RTAS_EVENT_SCAN_RATE)); 1050 1051 g_assert(msi_nonbroken); 1052 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1053 1054 /* 1055 * According to PAPR, rtas ibm,os-term does not guarantee a return 1056 * back to the guest cpu. 1057 * 1058 * While an additional ibm,extended-os-term property indicates 1059 * that rtas call return will always occur. Set this property. 1060 */ 1061 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1062 1063 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1064 lrdr_capacity, sizeof(lrdr_capacity))); 1065 1066 spapr_dt_rtas_tokens(fdt, rtas); 1067 } 1068 1069 /* 1070 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1071 * and the XIVE features that the guest may request and thus the valid 1072 * values for bytes 23..26 of option vector 5: 1073 */ 1074 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1075 int chosen) 1076 { 1077 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1078 1079 char val[2 * 4] = { 1080 23, 0x00, /* XICS / XIVE mode */ 1081 24, 0x00, /* Hash/Radix, filled in below. */ 1082 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1083 26, 0x40, /* Radix options: GTSE == yes. */ 1084 }; 1085 1086 if (spapr->irq->xics && spapr->irq->xive) { 1087 val[1] = SPAPR_OV5_XIVE_BOTH; 1088 } else if (spapr->irq->xive) { 1089 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1090 } else { 1091 assert(spapr->irq->xics); 1092 val[1] = SPAPR_OV5_XIVE_LEGACY; 1093 } 1094 1095 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1096 first_ppc_cpu->compat_pvr)) { 1097 /* 1098 * If we're in a pre POWER9 compat mode then the guest should 1099 * do hash and use the legacy interrupt mode 1100 */ 1101 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1102 val[3] = 0x00; /* Hash */ 1103 spapr_check_mmu_mode(false); 1104 } else if (kvm_enabled()) { 1105 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1106 val[3] = 0x80; /* OV5_MMU_BOTH */ 1107 } else if (kvmppc_has_cap_mmu_radix()) { 1108 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1109 } else { 1110 val[3] = 0x00; /* Hash */ 1111 } 1112 } else { 1113 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1114 val[3] = 0xC0; 1115 } 1116 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1117 val, sizeof(val))); 1118 } 1119 1120 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1121 { 1122 MachineState *machine = MACHINE(spapr); 1123 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1124 int chosen; 1125 1126 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1127 1128 if (reset) { 1129 const char *boot_device = spapr->boot_device; 1130 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1131 size_t cb = 0; 1132 g_autofree char *bootlist = get_boot_devices_list(&cb); 1133 1134 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1135 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1136 machine->kernel_cmdline)); 1137 } 1138 1139 if (spapr->initrd_size) { 1140 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1141 spapr->initrd_base)); 1142 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1143 spapr->initrd_base + spapr->initrd_size)); 1144 } 1145 1146 if (spapr->kernel_size) { 1147 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1148 cpu_to_be64(spapr->kernel_size) }; 1149 1150 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1151 &kprop, sizeof(kprop))); 1152 if (spapr->kernel_le) { 1153 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1154 } 1155 } 1156 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1157 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1158 } 1159 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1160 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1161 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1162 1163 if (cb && bootlist) { 1164 int i; 1165 1166 for (i = 0; i < cb; i++) { 1167 if (bootlist[i] == '\n') { 1168 bootlist[i] = ' '; 1169 } 1170 } 1171 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1172 } 1173 1174 if (boot_device && strlen(boot_device)) { 1175 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1176 } 1177 1178 if (spapr->want_stdout_path && stdout_path) { 1179 /* 1180 * "linux,stdout-path" and "stdout" properties are 1181 * deprecated by linux kernel. New platforms should only 1182 * use the "stdout-path" property. Set the new property 1183 * and continue using older property to remain compatible 1184 * with the existing firmware. 1185 */ 1186 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1187 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1188 } 1189 1190 /* 1191 * We can deal with BAR reallocation just fine, advertise it 1192 * to the guest 1193 */ 1194 if (smc->linux_pci_probe) { 1195 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1196 } 1197 1198 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1199 } 1200 1201 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); 1202 1203 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1204 } 1205 1206 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1207 { 1208 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1209 * KVM to work under pHyp with some guest co-operation */ 1210 int hypervisor; 1211 uint8_t hypercall[16]; 1212 1213 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1214 /* indicate KVM hypercall interface */ 1215 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1216 if (kvmppc_has_cap_fixup_hcalls()) { 1217 /* 1218 * Older KVM versions with older guest kernels were broken 1219 * with the magic page, don't allow the guest to map it. 1220 */ 1221 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall, 1222 sizeof(hypercall))) { 1223 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1224 hypercall, sizeof(hypercall))); 1225 } 1226 } 1227 } 1228 1229 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1230 { 1231 MachineState *machine = MACHINE(spapr); 1232 MachineClass *mc = MACHINE_GET_CLASS(machine); 1233 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1234 uint32_t root_drc_type_mask = 0; 1235 int ret; 1236 void *fdt; 1237 SpaprPhbState *phb; 1238 char *buf; 1239 1240 fdt = g_malloc0(space); 1241 _FDT((fdt_create_empty_tree(fdt, space))); 1242 1243 /* Root node */ 1244 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1245 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1246 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1247 1248 /* Guest UUID & Name*/ 1249 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1250 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1251 if (qemu_uuid_set) { 1252 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1253 } 1254 g_free(buf); 1255 1256 if (qemu_get_vm_name()) { 1257 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1258 qemu_get_vm_name())); 1259 } 1260 1261 /* Host Model & Serial Number */ 1262 if (spapr->host_model) { 1263 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1264 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1265 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1266 g_free(buf); 1267 } 1268 1269 if (spapr->host_serial) { 1270 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1271 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1272 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1273 g_free(buf); 1274 } 1275 1276 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1277 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1278 1279 /* /interrupt controller */ 1280 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1281 1282 ret = spapr_dt_memory(spapr, fdt); 1283 if (ret < 0) { 1284 error_report("couldn't setup memory nodes in fdt"); 1285 exit(1); 1286 } 1287 1288 /* /vdevice */ 1289 spapr_dt_vdevice(spapr->vio_bus, fdt); 1290 1291 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1292 ret = spapr_dt_rng(fdt); 1293 if (ret < 0) { 1294 error_report("could not set up rng device in the fdt"); 1295 exit(1); 1296 } 1297 } 1298 1299 QLIST_FOREACH(phb, &spapr->phbs, list) { 1300 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1301 if (ret < 0) { 1302 error_report("couldn't setup PCI devices in fdt"); 1303 exit(1); 1304 } 1305 } 1306 1307 spapr_dt_cpus(fdt, spapr); 1308 1309 /* ibm,drc-indexes and friends */ 1310 if (smc->dr_lmb_enabled) { 1311 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1312 } 1313 if (smc->dr_phb_enabled) { 1314 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1315 } 1316 if (mc->nvdimm_supported) { 1317 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1318 } 1319 if (root_drc_type_mask) { 1320 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1321 } 1322 1323 if (mc->has_hotpluggable_cpus) { 1324 int offset = fdt_path_offset(fdt, "/cpus"); 1325 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1326 if (ret < 0) { 1327 error_report("Couldn't set up CPU DR device tree properties"); 1328 exit(1); 1329 } 1330 } 1331 1332 /* /event-sources */ 1333 spapr_dt_events(spapr, fdt); 1334 1335 /* /rtas */ 1336 spapr_dt_rtas(spapr, fdt); 1337 1338 /* /chosen */ 1339 spapr_dt_chosen(spapr, fdt, reset); 1340 1341 /* /hypervisor */ 1342 if (kvm_enabled()) { 1343 spapr_dt_hypervisor(spapr, fdt); 1344 } 1345 1346 /* Build memory reserve map */ 1347 if (reset) { 1348 if (spapr->kernel_size) { 1349 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1350 spapr->kernel_size))); 1351 } 1352 if (spapr->initrd_size) { 1353 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1354 spapr->initrd_size))); 1355 } 1356 } 1357 1358 /* NVDIMM devices */ 1359 if (mc->nvdimm_supported) { 1360 spapr_dt_persistent_memory(spapr, fdt); 1361 } 1362 1363 return fdt; 1364 } 1365 1366 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1367 { 1368 SpaprMachineState *spapr = opaque; 1369 1370 return (addr & 0x0fffffff) + spapr->kernel_addr; 1371 } 1372 1373 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1374 PowerPCCPU *cpu) 1375 { 1376 CPUPPCState *env = &cpu->env; 1377 1378 /* The TCG path should also be holding the BQL at this point */ 1379 g_assert(bql_locked()); 1380 1381 g_assert(!vhyp_cpu_in_nested(cpu)); 1382 1383 if (FIELD_EX64(env->msr, MSR, PR)) { 1384 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1385 env->gpr[3] = H_PRIVILEGE; 1386 } else { 1387 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1388 } 1389 } 1390 1391 struct LPCRSyncState { 1392 target_ulong value; 1393 target_ulong mask; 1394 }; 1395 1396 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1397 { 1398 struct LPCRSyncState *s = arg.host_ptr; 1399 PowerPCCPU *cpu = POWERPC_CPU(cs); 1400 CPUPPCState *env = &cpu->env; 1401 target_ulong lpcr; 1402 1403 cpu_synchronize_state(cs); 1404 lpcr = env->spr[SPR_LPCR]; 1405 lpcr &= ~s->mask; 1406 lpcr |= s->value; 1407 ppc_store_lpcr(cpu, lpcr); 1408 } 1409 1410 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1411 { 1412 CPUState *cs; 1413 struct LPCRSyncState s = { 1414 .value = value, 1415 .mask = mask 1416 }; 1417 CPU_FOREACH(cs) { 1418 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1419 } 1420 } 1421 1422 /* May be used when the machine is not running */ 1423 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1424 { 1425 CPUState *cs; 1426 CPU_FOREACH(cs) { 1427 PowerPCCPU *cpu = POWERPC_CPU(cs); 1428 CPUPPCState *env = &cpu->env; 1429 target_ulong lpcr; 1430 1431 lpcr = env->spr[SPR_LPCR]; 1432 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1433 ppc_store_lpcr(cpu, lpcr); 1434 } 1435 } 1436 1437 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1438 target_ulong lpid, ppc_v3_pate_t *entry) 1439 { 1440 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1441 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1442 1443 if (!spapr_cpu->in_nested) { 1444 assert(lpid == 0); 1445 1446 /* Copy PATE1:GR into PATE0:HR */ 1447 entry->dw0 = spapr->patb_entry & PATE0_HR; 1448 entry->dw1 = spapr->patb_entry; 1449 return true; 1450 } else { 1451 if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) { 1452 return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry); 1453 } else if (spapr_nested_api(spapr) == NESTED_API_PAPR) { 1454 return spapr_get_pate_nested_papr(spapr, cpu, lpid, entry); 1455 } else { 1456 g_assert_not_reached(); 1457 } 1458 } 1459 } 1460 1461 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1462 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1463 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1464 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1465 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1466 1467 /* 1468 * Get the fd to access the kernel htab, re-opening it if necessary 1469 */ 1470 static int get_htab_fd(SpaprMachineState *spapr) 1471 { 1472 Error *local_err = NULL; 1473 1474 if (spapr->htab_fd >= 0) { 1475 return spapr->htab_fd; 1476 } 1477 1478 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1479 if (spapr->htab_fd < 0) { 1480 error_report_err(local_err); 1481 } 1482 1483 return spapr->htab_fd; 1484 } 1485 1486 void close_htab_fd(SpaprMachineState *spapr) 1487 { 1488 if (spapr->htab_fd >= 0) { 1489 close(spapr->htab_fd); 1490 } 1491 spapr->htab_fd = -1; 1492 } 1493 1494 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1495 { 1496 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1497 1498 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1499 } 1500 1501 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1502 { 1503 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1504 1505 assert(kvm_enabled()); 1506 1507 if (!spapr->htab) { 1508 return 0; 1509 } 1510 1511 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1512 } 1513 1514 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1515 hwaddr ptex, int n) 1516 { 1517 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1518 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1519 1520 if (!spapr->htab) { 1521 /* 1522 * HTAB is controlled by KVM. Fetch into temporary buffer 1523 */ 1524 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1525 kvmppc_read_hptes(hptes, ptex, n); 1526 return hptes; 1527 } 1528 1529 /* 1530 * HTAB is controlled by QEMU. Just point to the internally 1531 * accessible PTEG. 1532 */ 1533 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1534 } 1535 1536 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1537 const ppc_hash_pte64_t *hptes, 1538 hwaddr ptex, int n) 1539 { 1540 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1541 1542 if (!spapr->htab) { 1543 g_free((void *)hptes); 1544 } 1545 1546 /* Nothing to do for qemu managed HPT */ 1547 } 1548 1549 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1550 uint64_t pte0, uint64_t pte1) 1551 { 1552 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1553 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1554 1555 if (!spapr->htab) { 1556 kvmppc_write_hpte(ptex, pte0, pte1); 1557 } else { 1558 if (pte0 & HPTE64_V_VALID) { 1559 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1560 /* 1561 * When setting valid, we write PTE1 first. This ensures 1562 * proper synchronization with the reading code in 1563 * ppc_hash64_pteg_search() 1564 */ 1565 smp_wmb(); 1566 stq_p(spapr->htab + offset, pte0); 1567 } else { 1568 stq_p(spapr->htab + offset, pte0); 1569 /* 1570 * When clearing it we set PTE0 first. This ensures proper 1571 * synchronization with the reading code in 1572 * ppc_hash64_pteg_search() 1573 */ 1574 smp_wmb(); 1575 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1576 } 1577 } 1578 } 1579 1580 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1581 uint64_t pte1) 1582 { 1583 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1584 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1585 1586 if (!spapr->htab) { 1587 /* There should always be a hash table when this is called */ 1588 error_report("spapr_hpte_set_c called with no hash table !"); 1589 return; 1590 } 1591 1592 /* The HW performs a non-atomic byte update */ 1593 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1594 } 1595 1596 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1597 uint64_t pte1) 1598 { 1599 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1600 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1601 1602 if (!spapr->htab) { 1603 /* There should always be a hash table when this is called */ 1604 error_report("spapr_hpte_set_r called with no hash table !"); 1605 return; 1606 } 1607 1608 /* The HW performs a non-atomic byte update */ 1609 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1610 } 1611 1612 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1613 { 1614 int shift; 1615 1616 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1617 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1618 * that's much more than is needed for Linux guests */ 1619 shift = ctz64(pow2ceil(ramsize)) - 7; 1620 shift = MAX(shift, 18); /* Minimum architected size */ 1621 shift = MIN(shift, 46); /* Maximum architected size */ 1622 return shift; 1623 } 1624 1625 void spapr_free_hpt(SpaprMachineState *spapr) 1626 { 1627 qemu_vfree(spapr->htab); 1628 spapr->htab = NULL; 1629 spapr->htab_shift = 0; 1630 close_htab_fd(spapr); 1631 } 1632 1633 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1634 { 1635 ERRP_GUARD(); 1636 long rc; 1637 1638 /* Clean up any HPT info from a previous boot */ 1639 spapr_free_hpt(spapr); 1640 1641 rc = kvmppc_reset_htab(shift); 1642 1643 if (rc == -EOPNOTSUPP) { 1644 error_setg(errp, "HPT not supported in nested guests"); 1645 return -EOPNOTSUPP; 1646 } 1647 1648 if (rc < 0) { 1649 /* kernel-side HPT needed, but couldn't allocate one */ 1650 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1651 shift); 1652 error_append_hint(errp, "Try smaller maxmem?\n"); 1653 return -errno; 1654 } else if (rc > 0) { 1655 /* kernel-side HPT allocated */ 1656 if (rc != shift) { 1657 error_setg(errp, 1658 "Requested order %d HPT, but kernel allocated order %ld", 1659 shift, rc); 1660 error_append_hint(errp, "Try smaller maxmem?\n"); 1661 return -ENOSPC; 1662 } 1663 1664 spapr->htab_shift = shift; 1665 spapr->htab = NULL; 1666 } else { 1667 /* kernel-side HPT not needed, allocate in userspace instead */ 1668 size_t size = 1ULL << shift; 1669 int i; 1670 1671 spapr->htab = qemu_memalign(size, size); 1672 memset(spapr->htab, 0, size); 1673 spapr->htab_shift = shift; 1674 1675 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1676 DIRTY_HPTE(HPTE(spapr->htab, i)); 1677 } 1678 } 1679 /* We're setting up a hash table, so that means we're not radix */ 1680 spapr->patb_entry = 0; 1681 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1682 return 0; 1683 } 1684 1685 void spapr_setup_hpt(SpaprMachineState *spapr) 1686 { 1687 int hpt_shift; 1688 1689 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1690 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1691 } else { 1692 uint64_t current_ram_size; 1693 1694 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1695 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1696 } 1697 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1698 1699 if (kvm_enabled()) { 1700 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1701 1702 /* Check our RMA fits in the possible VRMA */ 1703 if (vrma_limit < spapr->rma_size) { 1704 error_report("Unable to create %" HWADDR_PRIu 1705 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1706 spapr->rma_size / MiB, vrma_limit / MiB); 1707 exit(EXIT_FAILURE); 1708 } 1709 } 1710 } 1711 1712 void spapr_check_mmu_mode(bool guest_radix) 1713 { 1714 if (guest_radix) { 1715 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1716 error_report("Guest requested unavailable MMU mode (radix)."); 1717 exit(EXIT_FAILURE); 1718 } 1719 } else { 1720 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1721 && !kvmppc_has_cap_mmu_hash_v3()) { 1722 error_report("Guest requested unavailable MMU mode (hash)."); 1723 exit(EXIT_FAILURE); 1724 } 1725 } 1726 } 1727 1728 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1729 { 1730 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1731 PowerPCCPU *first_ppc_cpu; 1732 hwaddr fdt_addr; 1733 void *fdt; 1734 int rc; 1735 1736 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) { 1737 /* 1738 * Record-replay snapshot load must not consume random, this was 1739 * already replayed from initial machine reset. 1740 */ 1741 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); 1742 } 1743 1744 if (machine->cgs) { 1745 confidential_guest_kvm_reset(machine->cgs, &error_fatal); 1746 } 1747 spapr_caps_apply(spapr); 1748 spapr_nested_reset(spapr); 1749 1750 first_ppc_cpu = POWERPC_CPU(first_cpu); 1751 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1752 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1753 spapr->max_compat_pvr)) { 1754 /* 1755 * If using KVM with radix mode available, VCPUs can be started 1756 * without a HPT because KVM will start them in radix mode. 1757 * Set the GR bit in PATE so that we know there is no HPT. 1758 */ 1759 spapr->patb_entry = PATE1_GR; 1760 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1761 } else { 1762 spapr_setup_hpt(spapr); 1763 } 1764 1765 qemu_devices_reset(reason); 1766 1767 spapr_ovec_cleanup(spapr->ov5_cas); 1768 spapr->ov5_cas = spapr_ovec_new(); 1769 1770 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1771 1772 /* 1773 * This is fixing some of the default configuration of the XIVE 1774 * devices. To be called after the reset of the machine devices. 1775 */ 1776 spapr_irq_reset(spapr, &error_fatal); 1777 1778 /* 1779 * There is no CAS under qtest. Simulate one to please the code that 1780 * depends on spapr->ov5_cas. This is especially needed to test device 1781 * unplug, so we do that before resetting the DRCs. 1782 */ 1783 if (qtest_enabled()) { 1784 spapr_ovec_cleanup(spapr->ov5_cas); 1785 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1786 } 1787 1788 spapr_nvdimm_finish_flushes(); 1789 1790 /* DRC reset may cause a device to be unplugged. This will cause troubles 1791 * if this device is used by another device (eg, a running vhost backend 1792 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1793 * situations, we reset DRCs after all devices have been reset. 1794 */ 1795 spapr_drc_reset_all(spapr); 1796 1797 spapr_clear_pending_events(spapr); 1798 1799 /* 1800 * We place the device tree just below either the top of the RMA, 1801 * or just below 2GB, whichever is lower, so that it can be 1802 * processed with 32-bit real mode code if necessary 1803 */ 1804 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1805 1806 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1807 if (spapr->vof) { 1808 spapr_vof_reset(spapr, fdt, &error_fatal); 1809 /* 1810 * Do not pack the FDT as the client may change properties. 1811 * VOF client does not expect the FDT so we do not load it to the VM. 1812 */ 1813 } else { 1814 rc = fdt_pack(fdt); 1815 /* Should only fail if we've built a corrupted tree */ 1816 assert(rc == 0); 1817 1818 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1819 0, fdt_addr, 0); 1820 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1821 } 1822 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1823 1824 g_free(spapr->fdt_blob); 1825 spapr->fdt_size = fdt_totalsize(fdt); 1826 spapr->fdt_initial_size = spapr->fdt_size; 1827 spapr->fdt_blob = fdt; 1828 1829 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1830 machine->fdt = fdt; 1831 1832 /* Set up the entry state */ 1833 first_ppc_cpu->env.gpr[5] = 0; 1834 1835 spapr->fwnmi_system_reset_addr = -1; 1836 spapr->fwnmi_machine_check_addr = -1; 1837 spapr->fwnmi_machine_check_interlock = -1; 1838 1839 /* Signal all vCPUs waiting on this condition */ 1840 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1841 1842 migrate_del_blocker(&spapr->fwnmi_migration_blocker); 1843 } 1844 1845 static void spapr_create_nvram(SpaprMachineState *spapr) 1846 { 1847 DeviceState *dev = qdev_new("spapr-nvram"); 1848 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1849 1850 if (dinfo) { 1851 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1852 &error_fatal); 1853 } 1854 1855 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1856 1857 spapr->nvram = (struct SpaprNvram *)dev; 1858 } 1859 1860 static void spapr_rtc_create(SpaprMachineState *spapr) 1861 { 1862 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1863 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1864 &error_fatal, NULL); 1865 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1866 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1867 "date"); 1868 } 1869 1870 /* Returns whether we want to use VGA or not */ 1871 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1872 { 1873 vga_interface_created = true; 1874 switch (vga_interface_type) { 1875 case VGA_NONE: 1876 return false; 1877 case VGA_DEVICE: 1878 return true; 1879 case VGA_STD: 1880 case VGA_VIRTIO: 1881 case VGA_CIRRUS: 1882 return pci_vga_init(pci_bus) != NULL; 1883 default: 1884 error_setg(errp, 1885 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1886 return false; 1887 } 1888 } 1889 1890 static int spapr_pre_load(void *opaque) 1891 { 1892 int rc; 1893 1894 rc = spapr_caps_pre_load(opaque); 1895 if (rc) { 1896 return rc; 1897 } 1898 1899 return 0; 1900 } 1901 1902 static int spapr_post_load(void *opaque, int version_id) 1903 { 1904 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1905 int err = 0; 1906 1907 err = spapr_caps_post_migration(spapr); 1908 if (err) { 1909 return err; 1910 } 1911 1912 /* 1913 * In earlier versions, there was no separate qdev for the PAPR 1914 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1915 * So when migrating from those versions, poke the incoming offset 1916 * value into the RTC device 1917 */ 1918 if (version_id < 3) { 1919 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1920 if (err) { 1921 return err; 1922 } 1923 } 1924 1925 if (kvm_enabled() && spapr->patb_entry) { 1926 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1927 bool radix = !!(spapr->patb_entry & PATE1_GR); 1928 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1929 1930 /* 1931 * Update LPCR:HR and UPRT as they may not be set properly in 1932 * the stream 1933 */ 1934 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1935 LPCR_HR | LPCR_UPRT); 1936 1937 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1938 if (err) { 1939 error_report("Process table config unsupported by the host"); 1940 return -EINVAL; 1941 } 1942 } 1943 1944 err = spapr_irq_post_load(spapr, version_id); 1945 if (err) { 1946 return err; 1947 } 1948 1949 return err; 1950 } 1951 1952 static int spapr_pre_save(void *opaque) 1953 { 1954 int rc; 1955 1956 rc = spapr_caps_pre_save(opaque); 1957 if (rc) { 1958 return rc; 1959 } 1960 1961 return 0; 1962 } 1963 1964 static bool version_before_3(void *opaque, int version_id) 1965 { 1966 return version_id < 3; 1967 } 1968 1969 static bool spapr_pending_events_needed(void *opaque) 1970 { 1971 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1972 return !QTAILQ_EMPTY(&spapr->pending_events); 1973 } 1974 1975 static const VMStateDescription vmstate_spapr_event_entry = { 1976 .name = "spapr_event_log_entry", 1977 .version_id = 1, 1978 .minimum_version_id = 1, 1979 .fields = (const VMStateField[]) { 1980 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1981 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1982 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1983 NULL, extended_length), 1984 VMSTATE_END_OF_LIST() 1985 }, 1986 }; 1987 1988 static const VMStateDescription vmstate_spapr_pending_events = { 1989 .name = "spapr_pending_events", 1990 .version_id = 1, 1991 .minimum_version_id = 1, 1992 .needed = spapr_pending_events_needed, 1993 .fields = (const VMStateField[]) { 1994 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1995 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1996 VMSTATE_END_OF_LIST() 1997 }, 1998 }; 1999 2000 static bool spapr_ov5_cas_needed(void *opaque) 2001 { 2002 SpaprMachineState *spapr = opaque; 2003 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 2004 bool cas_needed; 2005 2006 /* Prior to the introduction of SpaprOptionVector, we had two option 2007 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 2008 * Both of these options encode machine topology into the device-tree 2009 * in such a way that the now-booted OS should still be able to interact 2010 * appropriately with QEMU regardless of what options were actually 2011 * negotiatied on the source side. 2012 * 2013 * As such, we can avoid migrating the CAS-negotiated options if these 2014 * are the only options available on the current machine/platform. 2015 * Since these are the only options available for pseries-2.7 and 2016 * earlier, this allows us to maintain old->new/new->old migration 2017 * compatibility. 2018 * 2019 * For QEMU 2.8+, there are additional CAS-negotiatable options available 2020 * via default pseries-2.8 machines and explicit command-line parameters. 2021 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 2022 * of the actual CAS-negotiated values to continue working properly. For 2023 * example, availability of memory unplug depends on knowing whether 2024 * OV5_HP_EVT was negotiated via CAS. 2025 * 2026 * Thus, for any cases where the set of available CAS-negotiatable 2027 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2028 * include the CAS-negotiated options in the migration stream, unless 2029 * if they affect boot time behaviour only. 2030 */ 2031 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2032 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2033 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2034 2035 /* We need extra information if we have any bits outside the mask 2036 * defined above */ 2037 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 2038 2039 spapr_ovec_cleanup(ov5_mask); 2040 2041 return cas_needed; 2042 } 2043 2044 static const VMStateDescription vmstate_spapr_ov5_cas = { 2045 .name = "spapr_option_vector_ov5_cas", 2046 .version_id = 1, 2047 .minimum_version_id = 1, 2048 .needed = spapr_ov5_cas_needed, 2049 .fields = (const VMStateField[]) { 2050 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2051 vmstate_spapr_ovec, SpaprOptionVector), 2052 VMSTATE_END_OF_LIST() 2053 }, 2054 }; 2055 2056 static bool spapr_patb_entry_needed(void *opaque) 2057 { 2058 SpaprMachineState *spapr = opaque; 2059 2060 return !!spapr->patb_entry; 2061 } 2062 2063 static const VMStateDescription vmstate_spapr_patb_entry = { 2064 .name = "spapr_patb_entry", 2065 .version_id = 1, 2066 .minimum_version_id = 1, 2067 .needed = spapr_patb_entry_needed, 2068 .fields = (const VMStateField[]) { 2069 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2070 VMSTATE_END_OF_LIST() 2071 }, 2072 }; 2073 2074 static bool spapr_irq_map_needed(void *opaque) 2075 { 2076 SpaprMachineState *spapr = opaque; 2077 2078 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2079 } 2080 2081 static const VMStateDescription vmstate_spapr_irq_map = { 2082 .name = "spapr_irq_map", 2083 .version_id = 1, 2084 .minimum_version_id = 1, 2085 .needed = spapr_irq_map_needed, 2086 .fields = (const VMStateField[]) { 2087 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2088 VMSTATE_END_OF_LIST() 2089 }, 2090 }; 2091 2092 static bool spapr_dtb_needed(void *opaque) 2093 { 2094 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2095 2096 return smc->update_dt_enabled; 2097 } 2098 2099 static int spapr_dtb_pre_load(void *opaque) 2100 { 2101 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2102 2103 g_free(spapr->fdt_blob); 2104 spapr->fdt_blob = NULL; 2105 spapr->fdt_size = 0; 2106 2107 return 0; 2108 } 2109 2110 static const VMStateDescription vmstate_spapr_dtb = { 2111 .name = "spapr_dtb", 2112 .version_id = 1, 2113 .minimum_version_id = 1, 2114 .needed = spapr_dtb_needed, 2115 .pre_load = spapr_dtb_pre_load, 2116 .fields = (const VMStateField[]) { 2117 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2118 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2119 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2120 fdt_size), 2121 VMSTATE_END_OF_LIST() 2122 }, 2123 }; 2124 2125 static bool spapr_fwnmi_needed(void *opaque) 2126 { 2127 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2128 2129 return spapr->fwnmi_machine_check_addr != -1; 2130 } 2131 2132 static int spapr_fwnmi_pre_save(void *opaque) 2133 { 2134 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2135 2136 /* 2137 * Check if machine check handling is in progress and print a 2138 * warning message. 2139 */ 2140 if (spapr->fwnmi_machine_check_interlock != -1) { 2141 warn_report("A machine check is being handled during migration. The" 2142 "handler may run and log hardware error on the destination"); 2143 } 2144 2145 return 0; 2146 } 2147 2148 static const VMStateDescription vmstate_spapr_fwnmi = { 2149 .name = "spapr_fwnmi", 2150 .version_id = 1, 2151 .minimum_version_id = 1, 2152 .needed = spapr_fwnmi_needed, 2153 .pre_save = spapr_fwnmi_pre_save, 2154 .fields = (const VMStateField[]) { 2155 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2156 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2157 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2158 VMSTATE_END_OF_LIST() 2159 }, 2160 }; 2161 2162 static const VMStateDescription vmstate_spapr = { 2163 .name = "spapr", 2164 .version_id = 3, 2165 .minimum_version_id = 1, 2166 .pre_load = spapr_pre_load, 2167 .post_load = spapr_post_load, 2168 .pre_save = spapr_pre_save, 2169 .fields = (const VMStateField[]) { 2170 /* used to be @next_irq */ 2171 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2172 2173 /* RTC offset */ 2174 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2175 2176 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2177 VMSTATE_END_OF_LIST() 2178 }, 2179 .subsections = (const VMStateDescription * const []) { 2180 &vmstate_spapr_ov5_cas, 2181 &vmstate_spapr_patb_entry, 2182 &vmstate_spapr_pending_events, 2183 &vmstate_spapr_cap_htm, 2184 &vmstate_spapr_cap_vsx, 2185 &vmstate_spapr_cap_dfp, 2186 &vmstate_spapr_cap_cfpc, 2187 &vmstate_spapr_cap_sbbc, 2188 &vmstate_spapr_cap_ibs, 2189 &vmstate_spapr_cap_hpt_maxpagesize, 2190 &vmstate_spapr_irq_map, 2191 &vmstate_spapr_cap_nested_kvm_hv, 2192 &vmstate_spapr_dtb, 2193 &vmstate_spapr_cap_large_decr, 2194 &vmstate_spapr_cap_ccf_assist, 2195 &vmstate_spapr_cap_fwnmi, 2196 &vmstate_spapr_fwnmi, 2197 &vmstate_spapr_cap_rpt_invalidate, 2198 &vmstate_spapr_cap_nested_papr, 2199 NULL 2200 } 2201 }; 2202 2203 static int htab_save_setup(QEMUFile *f, void *opaque, Error **errp) 2204 { 2205 SpaprMachineState *spapr = opaque; 2206 2207 /* "Iteration" header */ 2208 if (!spapr->htab_shift) { 2209 qemu_put_be32(f, -1); 2210 } else { 2211 qemu_put_be32(f, spapr->htab_shift); 2212 } 2213 2214 if (spapr->htab) { 2215 spapr->htab_save_index = 0; 2216 spapr->htab_first_pass = true; 2217 } else { 2218 if (spapr->htab_shift) { 2219 assert(kvm_enabled()); 2220 } 2221 } 2222 2223 2224 return 0; 2225 } 2226 2227 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2228 int chunkstart, int n_valid, int n_invalid) 2229 { 2230 qemu_put_be32(f, chunkstart); 2231 qemu_put_be16(f, n_valid); 2232 qemu_put_be16(f, n_invalid); 2233 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2234 HASH_PTE_SIZE_64 * n_valid); 2235 } 2236 2237 static void htab_save_end_marker(QEMUFile *f) 2238 { 2239 qemu_put_be32(f, 0); 2240 qemu_put_be16(f, 0); 2241 qemu_put_be16(f, 0); 2242 } 2243 2244 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2245 int64_t max_ns) 2246 { 2247 bool has_timeout = max_ns != -1; 2248 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2249 int index = spapr->htab_save_index; 2250 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2251 2252 assert(spapr->htab_first_pass); 2253 2254 do { 2255 int chunkstart; 2256 2257 /* Consume invalid HPTEs */ 2258 while ((index < htabslots) 2259 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2260 CLEAN_HPTE(HPTE(spapr->htab, index)); 2261 index++; 2262 } 2263 2264 /* Consume valid HPTEs */ 2265 chunkstart = index; 2266 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2267 && HPTE_VALID(HPTE(spapr->htab, index))) { 2268 CLEAN_HPTE(HPTE(spapr->htab, index)); 2269 index++; 2270 } 2271 2272 if (index > chunkstart) { 2273 int n_valid = index - chunkstart; 2274 2275 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2276 2277 if (has_timeout && 2278 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2279 break; 2280 } 2281 } 2282 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2283 2284 if (index >= htabslots) { 2285 assert(index == htabslots); 2286 index = 0; 2287 spapr->htab_first_pass = false; 2288 } 2289 spapr->htab_save_index = index; 2290 } 2291 2292 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2293 int64_t max_ns) 2294 { 2295 bool final = max_ns < 0; 2296 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2297 int examined = 0, sent = 0; 2298 int index = spapr->htab_save_index; 2299 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2300 2301 assert(!spapr->htab_first_pass); 2302 2303 do { 2304 int chunkstart, invalidstart; 2305 2306 /* Consume non-dirty HPTEs */ 2307 while ((index < htabslots) 2308 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2309 index++; 2310 examined++; 2311 } 2312 2313 chunkstart = index; 2314 /* Consume valid dirty HPTEs */ 2315 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2316 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2317 && HPTE_VALID(HPTE(spapr->htab, index))) { 2318 CLEAN_HPTE(HPTE(spapr->htab, index)); 2319 index++; 2320 examined++; 2321 } 2322 2323 invalidstart = index; 2324 /* Consume invalid dirty HPTEs */ 2325 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2326 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2327 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2328 CLEAN_HPTE(HPTE(spapr->htab, index)); 2329 index++; 2330 examined++; 2331 } 2332 2333 if (index > chunkstart) { 2334 int n_valid = invalidstart - chunkstart; 2335 int n_invalid = index - invalidstart; 2336 2337 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2338 sent += index - chunkstart; 2339 2340 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2341 break; 2342 } 2343 } 2344 2345 if (examined >= htabslots) { 2346 break; 2347 } 2348 2349 if (index >= htabslots) { 2350 assert(index == htabslots); 2351 index = 0; 2352 } 2353 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2354 2355 if (index >= htabslots) { 2356 assert(index == htabslots); 2357 index = 0; 2358 } 2359 2360 spapr->htab_save_index = index; 2361 2362 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2363 } 2364 2365 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2366 #define MAX_KVM_BUF_SIZE 2048 2367 2368 static int htab_save_iterate(QEMUFile *f, void *opaque) 2369 { 2370 SpaprMachineState *spapr = opaque; 2371 int fd; 2372 int rc = 0; 2373 2374 /* Iteration header */ 2375 if (!spapr->htab_shift) { 2376 qemu_put_be32(f, -1); 2377 return 1; 2378 } else { 2379 qemu_put_be32(f, 0); 2380 } 2381 2382 if (!spapr->htab) { 2383 assert(kvm_enabled()); 2384 2385 fd = get_htab_fd(spapr); 2386 if (fd < 0) { 2387 return fd; 2388 } 2389 2390 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2391 if (rc < 0) { 2392 return rc; 2393 } 2394 } else if (spapr->htab_first_pass) { 2395 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2396 } else { 2397 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2398 } 2399 2400 htab_save_end_marker(f); 2401 2402 return rc; 2403 } 2404 2405 static int htab_save_complete(QEMUFile *f, void *opaque) 2406 { 2407 SpaprMachineState *spapr = opaque; 2408 int fd; 2409 2410 /* Iteration header */ 2411 if (!spapr->htab_shift) { 2412 qemu_put_be32(f, -1); 2413 return 0; 2414 } else { 2415 qemu_put_be32(f, 0); 2416 } 2417 2418 if (!spapr->htab) { 2419 int rc; 2420 2421 assert(kvm_enabled()); 2422 2423 fd = get_htab_fd(spapr); 2424 if (fd < 0) { 2425 return fd; 2426 } 2427 2428 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2429 if (rc < 0) { 2430 return rc; 2431 } 2432 } else { 2433 if (spapr->htab_first_pass) { 2434 htab_save_first_pass(f, spapr, -1); 2435 } 2436 htab_save_later_pass(f, spapr, -1); 2437 } 2438 2439 /* End marker */ 2440 htab_save_end_marker(f); 2441 2442 return 0; 2443 } 2444 2445 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2446 { 2447 SpaprMachineState *spapr = opaque; 2448 uint32_t section_hdr; 2449 int fd = -1; 2450 Error *local_err = NULL; 2451 2452 if (version_id < 1 || version_id > 1) { 2453 error_report("htab_load() bad version"); 2454 return -EINVAL; 2455 } 2456 2457 section_hdr = qemu_get_be32(f); 2458 2459 if (section_hdr == -1) { 2460 spapr_free_hpt(spapr); 2461 return 0; 2462 } 2463 2464 if (section_hdr) { 2465 int ret; 2466 2467 /* First section gives the htab size */ 2468 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2469 if (ret < 0) { 2470 error_report_err(local_err); 2471 return ret; 2472 } 2473 return 0; 2474 } 2475 2476 if (!spapr->htab) { 2477 assert(kvm_enabled()); 2478 2479 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2480 if (fd < 0) { 2481 error_report_err(local_err); 2482 return fd; 2483 } 2484 } 2485 2486 while (true) { 2487 uint32_t index; 2488 uint16_t n_valid, n_invalid; 2489 2490 index = qemu_get_be32(f); 2491 n_valid = qemu_get_be16(f); 2492 n_invalid = qemu_get_be16(f); 2493 2494 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2495 /* End of Stream */ 2496 break; 2497 } 2498 2499 if ((index + n_valid + n_invalid) > 2500 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2501 /* Bad index in stream */ 2502 error_report( 2503 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2504 index, n_valid, n_invalid, spapr->htab_shift); 2505 return -EINVAL; 2506 } 2507 2508 if (spapr->htab) { 2509 if (n_valid) { 2510 qemu_get_buffer(f, HPTE(spapr->htab, index), 2511 HASH_PTE_SIZE_64 * n_valid); 2512 } 2513 if (n_invalid) { 2514 memset(HPTE(spapr->htab, index + n_valid), 0, 2515 HASH_PTE_SIZE_64 * n_invalid); 2516 } 2517 } else { 2518 int rc; 2519 2520 assert(fd >= 0); 2521 2522 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2523 &local_err); 2524 if (rc < 0) { 2525 error_report_err(local_err); 2526 return rc; 2527 } 2528 } 2529 } 2530 2531 if (!spapr->htab) { 2532 assert(fd >= 0); 2533 close(fd); 2534 } 2535 2536 return 0; 2537 } 2538 2539 static void htab_save_cleanup(void *opaque) 2540 { 2541 SpaprMachineState *spapr = opaque; 2542 2543 close_htab_fd(spapr); 2544 } 2545 2546 static SaveVMHandlers savevm_htab_handlers = { 2547 .save_setup = htab_save_setup, 2548 .save_live_iterate = htab_save_iterate, 2549 .save_live_complete_precopy = htab_save_complete, 2550 .save_cleanup = htab_save_cleanup, 2551 .load_state = htab_load, 2552 }; 2553 2554 static void spapr_boot_set(void *opaque, const char *boot_device, 2555 Error **errp) 2556 { 2557 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2558 2559 g_free(spapr->boot_device); 2560 spapr->boot_device = g_strdup(boot_device); 2561 } 2562 2563 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2564 { 2565 MachineState *machine = MACHINE(spapr); 2566 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2567 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2568 int i; 2569 2570 g_assert(!nr_lmbs || machine->device_memory); 2571 for (i = 0; i < nr_lmbs; i++) { 2572 uint64_t addr; 2573 2574 addr = i * lmb_size + machine->device_memory->base; 2575 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2576 addr / lmb_size); 2577 } 2578 } 2579 2580 /* 2581 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2582 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2583 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2584 */ 2585 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2586 { 2587 int i; 2588 2589 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2590 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2591 " is not aligned to %" PRIu64 " MiB", 2592 machine->ram_size, 2593 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2594 return; 2595 } 2596 2597 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2598 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2599 " is not aligned to %" PRIu64 " MiB", 2600 machine->ram_size, 2601 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2602 return; 2603 } 2604 2605 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2606 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2607 error_setg(errp, 2608 "Node %d memory size 0x%" PRIx64 2609 " is not aligned to %" PRIu64 " MiB", 2610 i, machine->numa_state->nodes[i].node_mem, 2611 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2612 return; 2613 } 2614 } 2615 } 2616 2617 /* find cpu slot in machine->possible_cpus by core_id */ 2618 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2619 { 2620 int index = id / ms->smp.threads; 2621 2622 if (index >= ms->possible_cpus->len) { 2623 return NULL; 2624 } 2625 if (idx) { 2626 *idx = index; 2627 } 2628 return &ms->possible_cpus->cpus[index]; 2629 } 2630 2631 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2632 { 2633 MachineState *ms = MACHINE(spapr); 2634 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2635 Error *local_err = NULL; 2636 bool vsmt_user = !!spapr->vsmt; 2637 int kvm_smt = kvmppc_smt_threads(); 2638 int ret; 2639 unsigned int smp_threads = ms->smp.threads; 2640 2641 if (tcg_enabled()) { 2642 if (smp_threads > 1 && 2643 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2644 spapr->max_compat_pvr)) { 2645 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2646 return; 2647 } 2648 2649 if (smp_threads > 8) { 2650 error_setg(errp, "TCG cannot support more than 8 threads/core " 2651 "on a pseries machine"); 2652 return; 2653 } 2654 } 2655 if (!is_power_of_2(smp_threads)) { 2656 error_setg(errp, "Cannot support %d threads/core on a pseries " 2657 "machine because it must be a power of 2", smp_threads); 2658 return; 2659 } 2660 2661 /* Determine the VSMT mode to use: */ 2662 if (vsmt_user) { 2663 if (spapr->vsmt < smp_threads) { 2664 error_setg(errp, "Cannot support VSMT mode %d" 2665 " because it must be >= threads/core (%d)", 2666 spapr->vsmt, smp_threads); 2667 return; 2668 } 2669 /* In this case, spapr->vsmt has been set by the command line */ 2670 } else if (!smc->smp_threads_vsmt) { 2671 /* 2672 * Default VSMT value is tricky, because we need it to be as 2673 * consistent as possible (for migration), but this requires 2674 * changing it for at least some existing cases. We pick 8 as 2675 * the value that we'd get with KVM on POWER8, the 2676 * overwhelmingly common case in production systems. 2677 */ 2678 spapr->vsmt = MAX(8, smp_threads); 2679 } else { 2680 spapr->vsmt = smp_threads; 2681 } 2682 2683 /* KVM: If necessary, set the SMT mode: */ 2684 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2685 ret = kvmppc_set_smt_threads(spapr->vsmt); 2686 if (ret) { 2687 /* Looks like KVM isn't able to change VSMT mode */ 2688 error_setg(&local_err, 2689 "Failed to set KVM's VSMT mode to %d (errno %d)", 2690 spapr->vsmt, ret); 2691 /* We can live with that if the default one is big enough 2692 * for the number of threads, and a submultiple of the one 2693 * we want. In this case we'll waste some vcpu ids, but 2694 * behaviour will be correct */ 2695 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2696 warn_report_err(local_err); 2697 } else { 2698 if (!vsmt_user) { 2699 error_append_hint(&local_err, 2700 "On PPC, a VM with %d threads/core" 2701 " on a host with %d threads/core" 2702 " requires the use of VSMT mode %d.\n", 2703 smp_threads, kvm_smt, spapr->vsmt); 2704 } 2705 kvmppc_error_append_smt_possible_hint(&local_err); 2706 error_propagate(errp, local_err); 2707 } 2708 } 2709 } 2710 /* else TCG: nothing to do currently */ 2711 } 2712 2713 static void spapr_init_cpus(SpaprMachineState *spapr) 2714 { 2715 MachineState *machine = MACHINE(spapr); 2716 MachineClass *mc = MACHINE_GET_CLASS(machine); 2717 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2718 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2719 const CPUArchIdList *possible_cpus; 2720 unsigned int smp_cpus = machine->smp.cpus; 2721 unsigned int smp_threads = machine->smp.threads; 2722 unsigned int max_cpus = machine->smp.max_cpus; 2723 int boot_cores_nr = smp_cpus / smp_threads; 2724 int i; 2725 2726 possible_cpus = mc->possible_cpu_arch_ids(machine); 2727 if (mc->has_hotpluggable_cpus) { 2728 if (smp_cpus % smp_threads) { 2729 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2730 smp_cpus, smp_threads); 2731 exit(1); 2732 } 2733 if (max_cpus % smp_threads) { 2734 error_report("max_cpus (%u) must be multiple of threads (%u)", 2735 max_cpus, smp_threads); 2736 exit(1); 2737 } 2738 } else { 2739 if (max_cpus != smp_cpus) { 2740 error_report("This machine version does not support CPU hotplug"); 2741 exit(1); 2742 } 2743 boot_cores_nr = possible_cpus->len; 2744 } 2745 2746 if (smc->pre_2_10_has_unused_icps) { 2747 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2748 /* Dummy entries get deregistered when real ICPState objects 2749 * are registered during CPU core hotplug. 2750 */ 2751 pre_2_10_vmstate_register_dummy_icp(i); 2752 } 2753 } 2754 2755 for (i = 0; i < possible_cpus->len; i++) { 2756 int core_id = i * smp_threads; 2757 2758 if (mc->has_hotpluggable_cpus) { 2759 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2760 spapr_vcpu_id(spapr, core_id)); 2761 } 2762 2763 if (i < boot_cores_nr) { 2764 Object *core = object_new(type); 2765 int nr_threads = smp_threads; 2766 2767 /* Handle the partially filled core for older machine types */ 2768 if ((i + 1) * smp_threads >= smp_cpus) { 2769 nr_threads = smp_cpus - i * smp_threads; 2770 } 2771 2772 object_property_set_int(core, "nr-threads", nr_threads, 2773 &error_fatal); 2774 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2775 &error_fatal); 2776 qdev_realize(DEVICE(core), NULL, &error_fatal); 2777 2778 object_unref(core); 2779 } 2780 } 2781 } 2782 2783 static PCIHostState *spapr_create_default_phb(void) 2784 { 2785 DeviceState *dev; 2786 2787 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2788 qdev_prop_set_uint32(dev, "index", 0); 2789 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2790 2791 return PCI_HOST_BRIDGE(dev); 2792 } 2793 2794 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2795 { 2796 MachineState *machine = MACHINE(spapr); 2797 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2798 hwaddr rma_size = machine->ram_size; 2799 hwaddr node0_size = spapr_node0_size(machine); 2800 2801 /* RMA has to fit in the first NUMA node */ 2802 rma_size = MIN(rma_size, node0_size); 2803 2804 /* 2805 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2806 * never exceed that 2807 */ 2808 rma_size = MIN(rma_size, 1 * TiB); 2809 2810 /* 2811 * Clamp the RMA size based on machine type. This is for 2812 * migration compatibility with older qemu versions, which limited 2813 * the RMA size for complicated and mostly bad reasons. 2814 */ 2815 if (smc->rma_limit) { 2816 rma_size = MIN(rma_size, smc->rma_limit); 2817 } 2818 2819 if (rma_size < MIN_RMA_SLOF) { 2820 error_setg(errp, 2821 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2822 "ldMiB guest RMA (Real Mode Area memory)", 2823 MIN_RMA_SLOF / MiB); 2824 return 0; 2825 } 2826 2827 return rma_size; 2828 } 2829 2830 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2831 { 2832 MachineState *machine = MACHINE(spapr); 2833 int i; 2834 2835 for (i = 0; i < machine->ram_slots; i++) { 2836 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2837 } 2838 } 2839 2840 /* pSeries LPAR / sPAPR hardware init */ 2841 static void spapr_machine_init(MachineState *machine) 2842 { 2843 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2844 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2845 MachineClass *mc = MACHINE_GET_CLASS(machine); 2846 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2847 const char *bios_name = machine->firmware ?: bios_default; 2848 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2849 const char *kernel_filename = machine->kernel_filename; 2850 const char *initrd_filename = machine->initrd_filename; 2851 PCIHostState *phb; 2852 bool has_vga; 2853 int i; 2854 MemoryRegion *sysmem = get_system_memory(); 2855 long load_limit, fw_size; 2856 Error *resize_hpt_err = NULL; 2857 NICInfo *nd; 2858 2859 if (!filename) { 2860 error_report("Could not find LPAR firmware '%s'", bios_name); 2861 exit(1); 2862 } 2863 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2864 if (fw_size <= 0) { 2865 error_report("Could not load LPAR firmware '%s'", filename); 2866 exit(1); 2867 } 2868 2869 /* 2870 * if Secure VM (PEF) support is configured, then initialize it 2871 */ 2872 if (machine->cgs) { 2873 confidential_guest_kvm_init(machine->cgs, &error_fatal); 2874 } 2875 2876 msi_nonbroken = true; 2877 2878 QLIST_INIT(&spapr->phbs); 2879 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2880 2881 /* Determine capabilities to run with */ 2882 spapr_caps_init(spapr); 2883 2884 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2885 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2886 /* 2887 * If the user explicitly requested a mode we should either 2888 * supply it, or fail completely (which we do below). But if 2889 * it's not set explicitly, we reset our mode to something 2890 * that works 2891 */ 2892 if (resize_hpt_err) { 2893 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2894 error_free(resize_hpt_err); 2895 resize_hpt_err = NULL; 2896 } else { 2897 spapr->resize_hpt = smc->resize_hpt_default; 2898 } 2899 } 2900 2901 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2902 2903 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2904 /* 2905 * User requested HPT resize, but this host can't supply it. Bail out 2906 */ 2907 error_report_err(resize_hpt_err); 2908 exit(1); 2909 } 2910 error_free(resize_hpt_err); 2911 2912 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2913 2914 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2915 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2916 2917 /* 2918 * VSMT must be set in order to be able to compute VCPU ids, ie to 2919 * call spapr_max_server_number() or spapr_vcpu_id(). 2920 */ 2921 spapr_set_vsmt_mode(spapr, &error_fatal); 2922 2923 /* Set up Interrupt Controller before we create the VCPUs */ 2924 spapr_irq_init(spapr, &error_fatal); 2925 2926 /* Set up containers for ibm,client-architecture-support negotiated options 2927 */ 2928 spapr->ov5 = spapr_ovec_new(); 2929 spapr->ov5_cas = spapr_ovec_new(); 2930 2931 if (smc->dr_lmb_enabled) { 2932 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2933 spapr_validate_node_memory(machine, &error_fatal); 2934 } 2935 2936 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2937 2938 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2939 if (!smc->pre_6_2_numa_affinity) { 2940 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2941 } 2942 2943 /* advertise support for dedicated HP event source to guests */ 2944 if (spapr->use_hotplug_event_source) { 2945 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2946 } 2947 2948 /* advertise support for HPT resizing */ 2949 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2950 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2951 } 2952 2953 /* advertise support for ibm,dyamic-memory-v2 */ 2954 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2955 2956 /* advertise XIVE on POWER9 machines */ 2957 if (spapr->irq->xive) { 2958 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2959 } 2960 2961 /* init CPUs */ 2962 spapr_init_cpus(spapr); 2963 2964 /* Init numa_assoc_array */ 2965 spapr_numa_associativity_init(spapr, machine); 2966 2967 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2968 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2969 spapr->max_compat_pvr)) { 2970 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2971 /* KVM and TCG always allow GTSE with radix... */ 2972 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2973 } 2974 /* ... but not with hash (currently). */ 2975 2976 if (kvm_enabled()) { 2977 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2978 kvmppc_enable_logical_ci_hcalls(); 2979 kvmppc_enable_set_mode_hcall(); 2980 2981 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2982 kvmppc_enable_clear_ref_mod_hcalls(); 2983 2984 /* Enable H_PAGE_INIT */ 2985 kvmppc_enable_h_page_init(); 2986 } 2987 2988 /* map RAM */ 2989 memory_region_add_subregion(sysmem, 0, machine->ram); 2990 2991 /* initialize hotplug memory address space */ 2992 if (machine->ram_size < machine->maxram_size) { 2993 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2994 hwaddr device_mem_base; 2995 2996 /* 2997 * Limit the number of hotpluggable memory slots to half the number 2998 * slots that KVM supports, leaving the other half for PCI and other 2999 * devices. However ensure that number of slots doesn't drop below 32. 3000 */ 3001 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 3002 SPAPR_MAX_RAM_SLOTS; 3003 3004 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 3005 max_memslots = SPAPR_MAX_RAM_SLOTS; 3006 } 3007 if (machine->ram_slots > max_memslots) { 3008 error_report("Specified number of memory slots %" 3009 PRIu64" exceeds max supported %d", 3010 machine->ram_slots, max_memslots); 3011 exit(1); 3012 } 3013 3014 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 3015 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 3016 } 3017 3018 if (smc->dr_lmb_enabled) { 3019 spapr_create_lmb_dr_connectors(spapr); 3020 } 3021 3022 if (mc->nvdimm_supported) { 3023 spapr_create_nvdimm_dr_connectors(spapr); 3024 } 3025 3026 /* Set up RTAS event infrastructure */ 3027 spapr_events_init(spapr); 3028 3029 /* Set up the RTC RTAS interfaces */ 3030 spapr_rtc_create(spapr); 3031 3032 /* Set up VIO bus */ 3033 spapr->vio_bus = spapr_vio_bus_init(); 3034 3035 for (i = 0; serial_hd(i); i++) { 3036 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 3037 } 3038 3039 /* We always have at least the nvram device on VIO */ 3040 spapr_create_nvram(spapr); 3041 3042 /* 3043 * Setup hotplug / dynamic-reconfiguration connectors. top-level 3044 * connectors (described in root DT node's "ibm,drc-types" property) 3045 * are pre-initialized here. additional child connectors (such as 3046 * connectors for a PHBs PCI slots) are added as needed during their 3047 * parent's realization. 3048 */ 3049 if (smc->dr_phb_enabled) { 3050 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 3051 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 3052 } 3053 } 3054 3055 /* Set up PCI */ 3056 spapr_pci_rtas_init(); 3057 3058 phb = spapr_create_default_phb(); 3059 3060 while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) { 3061 spapr_vlan_create(spapr->vio_bus, nd); 3062 } 3063 3064 pci_init_nic_devices(phb->bus, NULL); 3065 3066 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 3067 spapr_vscsi_create(spapr->vio_bus); 3068 } 3069 3070 /* Graphics */ 3071 has_vga = spapr_vga_init(phb->bus, &error_fatal); 3072 if (has_vga) { 3073 spapr->want_stdout_path = !machine->enable_graphics; 3074 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3075 } else { 3076 spapr->want_stdout_path = true; 3077 } 3078 3079 if (machine->usb) { 3080 if (smc->use_ohci_by_default) { 3081 pci_create_simple(phb->bus, -1, "pci-ohci"); 3082 } else { 3083 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3084 } 3085 3086 if (has_vga) { 3087 USBBus *usb_bus; 3088 3089 usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS, 3090 &error_abort)); 3091 usb_create_simple(usb_bus, "usb-kbd"); 3092 usb_create_simple(usb_bus, "usb-mouse"); 3093 } 3094 } 3095 3096 if (kernel_filename) { 3097 uint64_t loaded_addr = 0; 3098 3099 spapr->kernel_size = load_elf(kernel_filename, NULL, 3100 translate_kernel_address, spapr, 3101 NULL, &loaded_addr, NULL, NULL, 1, 3102 PPC_ELF_MACHINE, 0, 0); 3103 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3104 spapr->kernel_size = load_elf(kernel_filename, NULL, 3105 translate_kernel_address, spapr, 3106 NULL, &loaded_addr, NULL, NULL, 0, 3107 PPC_ELF_MACHINE, 0, 0); 3108 spapr->kernel_le = spapr->kernel_size > 0; 3109 } 3110 if (spapr->kernel_size < 0) { 3111 error_report("error loading %s: %s", kernel_filename, 3112 load_elf_strerror(spapr->kernel_size)); 3113 exit(1); 3114 } 3115 3116 if (spapr->kernel_addr != loaded_addr) { 3117 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3118 " to 0x%"PRIx64, 3119 spapr->kernel_addr, loaded_addr); 3120 spapr->kernel_addr = loaded_addr; 3121 } 3122 3123 /* load initrd */ 3124 if (initrd_filename) { 3125 /* Try to locate the initrd in the gap between the kernel 3126 * and the firmware. Add a bit of space just in case 3127 */ 3128 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3129 + 0x1ffff) & ~0xffff; 3130 spapr->initrd_size = load_image_targphys(initrd_filename, 3131 spapr->initrd_base, 3132 load_limit 3133 - spapr->initrd_base); 3134 if (spapr->initrd_size < 0) { 3135 error_report("could not load initial ram disk '%s'", 3136 initrd_filename); 3137 exit(1); 3138 } 3139 } 3140 } 3141 3142 /* FIXME: Should register things through the MachineState's qdev 3143 * interface, this is a legacy from the sPAPREnvironment structure 3144 * which predated MachineState but had a similar function */ 3145 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3146 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3147 &savevm_htab_handlers, spapr); 3148 3149 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3150 3151 qemu_register_boot_set(spapr_boot_set, spapr); 3152 3153 /* 3154 * Nothing needs to be done to resume a suspended guest because 3155 * suspending does not change the machine state, so no need for 3156 * a ->wakeup method. 3157 */ 3158 qemu_register_wakeup_support(); 3159 3160 if (kvm_enabled()) { 3161 /* to stop and start vmclock */ 3162 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3163 &spapr->tb); 3164 3165 kvmppc_spapr_enable_inkernel_multitce(); 3166 } 3167 3168 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3169 if (spapr->vof) { 3170 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3171 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3172 } 3173 3174 spapr_watchdog_init(spapr); 3175 } 3176 3177 #define DEFAULT_KVM_TYPE "auto" 3178 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3179 { 3180 /* 3181 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3182 * accommodate the 'HV' and 'PV' formats that exists in the 3183 * wild. The 'auto' mode is being introduced already as 3184 * lower-case, thus we don't need to bother checking for 3185 * "AUTO". 3186 */ 3187 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3188 return 0; 3189 } 3190 3191 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3192 return 1; 3193 } 3194 3195 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3196 return 2; 3197 } 3198 3199 error_report("Unknown kvm-type specified '%s'", vm_type); 3200 return -1; 3201 } 3202 3203 /* 3204 * Implementation of an interface to adjust firmware path 3205 * for the bootindex property handling. 3206 */ 3207 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3208 DeviceState *dev) 3209 { 3210 #define CAST(type, obj, name) \ 3211 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3212 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3213 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3214 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3215 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3216 3217 if (d && bus) { 3218 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3219 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3220 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3221 3222 if (spapr) { 3223 /* 3224 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3225 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3226 * 0x8000 | (target << 8) | (bus << 5) | lun 3227 * (see the "Logical unit addressing format" table in SAM5) 3228 */ 3229 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3230 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3231 (uint64_t)id << 48); 3232 } else if (virtio) { 3233 /* 3234 * We use SRP luns of the form 01000000 | (target << 8) | lun 3235 * in the top 32 bits of the 64-bit LUN 3236 * Note: the quote above is from SLOF and it is wrong, 3237 * the actual binding is: 3238 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3239 */ 3240 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3241 if (d->lun >= 256) { 3242 /* Use the LUN "flat space addressing method" */ 3243 id |= 0x4000; 3244 } 3245 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3246 (uint64_t)id << 32); 3247 } else if (usb) { 3248 /* 3249 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3250 * in the top 32 bits of the 64-bit LUN 3251 */ 3252 unsigned usb_port = atoi(usb->port->path); 3253 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3254 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3255 (uint64_t)id << 32); 3256 } 3257 } 3258 3259 /* 3260 * SLOF probes the USB devices, and if it recognizes that the device is a 3261 * storage device, it changes its name to "storage" instead of "usb-host", 3262 * and additionally adds a child node for the SCSI LUN, so the correct 3263 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3264 */ 3265 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3266 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3267 if (usb_device_is_scsi_storage(usbdev)) { 3268 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3269 } 3270 } 3271 3272 if (phb) { 3273 /* Replace "pci" with "pci@800000020000000" */ 3274 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3275 } 3276 3277 if (vsc) { 3278 /* Same logic as virtio above */ 3279 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3280 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3281 } 3282 3283 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3284 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3285 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3286 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn)); 3287 } 3288 3289 if (pcidev) { 3290 return spapr_pci_fw_dev_name(pcidev); 3291 } 3292 3293 return NULL; 3294 } 3295 3296 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3297 { 3298 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3299 3300 return g_strdup(spapr->kvm_type); 3301 } 3302 3303 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3304 { 3305 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3306 3307 g_free(spapr->kvm_type); 3308 spapr->kvm_type = g_strdup(value); 3309 } 3310 3311 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3312 { 3313 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3314 3315 return spapr->use_hotplug_event_source; 3316 } 3317 3318 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3319 Error **errp) 3320 { 3321 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3322 3323 spapr->use_hotplug_event_source = value; 3324 } 3325 3326 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3327 { 3328 return true; 3329 } 3330 3331 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3332 { 3333 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3334 3335 switch (spapr->resize_hpt) { 3336 case SPAPR_RESIZE_HPT_DEFAULT: 3337 return g_strdup("default"); 3338 case SPAPR_RESIZE_HPT_DISABLED: 3339 return g_strdup("disabled"); 3340 case SPAPR_RESIZE_HPT_ENABLED: 3341 return g_strdup("enabled"); 3342 case SPAPR_RESIZE_HPT_REQUIRED: 3343 return g_strdup("required"); 3344 } 3345 g_assert_not_reached(); 3346 } 3347 3348 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3349 { 3350 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3351 3352 if (strcmp(value, "default") == 0) { 3353 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3354 } else if (strcmp(value, "disabled") == 0) { 3355 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3356 } else if (strcmp(value, "enabled") == 0) { 3357 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3358 } else if (strcmp(value, "required") == 0) { 3359 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3360 } else { 3361 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3362 } 3363 } 3364 3365 static bool spapr_get_vof(Object *obj, Error **errp) 3366 { 3367 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3368 3369 return spapr->vof != NULL; 3370 } 3371 3372 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3373 { 3374 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3375 3376 if (spapr->vof) { 3377 vof_cleanup(spapr->vof); 3378 g_free(spapr->vof); 3379 spapr->vof = NULL; 3380 } 3381 if (!value) { 3382 return; 3383 } 3384 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3385 } 3386 3387 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3388 { 3389 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3390 3391 if (spapr->irq == &spapr_irq_xics_legacy) { 3392 return g_strdup("legacy"); 3393 } else if (spapr->irq == &spapr_irq_xics) { 3394 return g_strdup("xics"); 3395 } else if (spapr->irq == &spapr_irq_xive) { 3396 return g_strdup("xive"); 3397 } else if (spapr->irq == &spapr_irq_dual) { 3398 return g_strdup("dual"); 3399 } 3400 g_assert_not_reached(); 3401 } 3402 3403 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3404 { 3405 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3406 3407 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3408 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3409 return; 3410 } 3411 3412 /* The legacy IRQ backend can not be set */ 3413 if (strcmp(value, "xics") == 0) { 3414 spapr->irq = &spapr_irq_xics; 3415 } else if (strcmp(value, "xive") == 0) { 3416 spapr->irq = &spapr_irq_xive; 3417 } else if (strcmp(value, "dual") == 0) { 3418 spapr->irq = &spapr_irq_dual; 3419 } else { 3420 error_setg(errp, "Bad value for \"ic-mode\" property"); 3421 } 3422 } 3423 3424 static char *spapr_get_host_model(Object *obj, Error **errp) 3425 { 3426 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3427 3428 return g_strdup(spapr->host_model); 3429 } 3430 3431 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3432 { 3433 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3434 3435 g_free(spapr->host_model); 3436 spapr->host_model = g_strdup(value); 3437 } 3438 3439 static char *spapr_get_host_serial(Object *obj, Error **errp) 3440 { 3441 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3442 3443 return g_strdup(spapr->host_serial); 3444 } 3445 3446 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3447 { 3448 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3449 3450 g_free(spapr->host_serial); 3451 spapr->host_serial = g_strdup(value); 3452 } 3453 3454 static void spapr_instance_init(Object *obj) 3455 { 3456 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3457 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3458 MachineState *ms = MACHINE(spapr); 3459 MachineClass *mc = MACHINE_GET_CLASS(ms); 3460 3461 /* 3462 * NVDIMM support went live in 5.1 without considering that, in 3463 * other archs, the user needs to enable NVDIMM support with the 3464 * 'nvdimm' machine option and the default behavior is NVDIMM 3465 * support disabled. It is too late to roll back to the standard 3466 * behavior without breaking 5.1 guests. 3467 */ 3468 if (mc->nvdimm_supported) { 3469 ms->nvdimms_state->is_enabled = true; 3470 } 3471 3472 spapr->htab_fd = -1; 3473 spapr->use_hotplug_event_source = true; 3474 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3475 object_property_add_str(obj, "kvm-type", 3476 spapr_get_kvm_type, spapr_set_kvm_type); 3477 object_property_set_description(obj, "kvm-type", 3478 "Specifies the KVM virtualization mode (auto," 3479 " hv, pr). Defaults to 'auto'. This mode will use" 3480 " any available KVM module loaded in the host," 3481 " where kvm_hv takes precedence if both kvm_hv and" 3482 " kvm_pr are loaded."); 3483 object_property_add_bool(obj, "modern-hotplug-events", 3484 spapr_get_modern_hotplug_events, 3485 spapr_set_modern_hotplug_events); 3486 object_property_set_description(obj, "modern-hotplug-events", 3487 "Use dedicated hotplug event mechanism in" 3488 " place of standard EPOW events when possible" 3489 " (required for memory hot-unplug support)"); 3490 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3491 "Maximum permitted CPU compatibility mode"); 3492 3493 object_property_add_str(obj, "resize-hpt", 3494 spapr_get_resize_hpt, spapr_set_resize_hpt); 3495 object_property_set_description(obj, "resize-hpt", 3496 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3497 object_property_add_uint32_ptr(obj, "vsmt", 3498 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3499 object_property_set_description(obj, "vsmt", 3500 "Virtual SMT: KVM behaves as if this were" 3501 " the host's SMT mode"); 3502 3503 object_property_add_bool(obj, "vfio-no-msix-emulation", 3504 spapr_get_msix_emulation, NULL); 3505 3506 object_property_add_uint64_ptr(obj, "kernel-addr", 3507 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3508 object_property_set_description(obj, "kernel-addr", 3509 stringify(KERNEL_LOAD_ADDR) 3510 " for -kernel is the default"); 3511 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3512 3513 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3514 object_property_set_description(obj, "x-vof", 3515 "Enable Virtual Open Firmware (experimental)"); 3516 3517 /* The machine class defines the default interrupt controller mode */ 3518 spapr->irq = smc->irq; 3519 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3520 spapr_set_ic_mode); 3521 object_property_set_description(obj, "ic-mode", 3522 "Specifies the interrupt controller mode (xics, xive, dual)"); 3523 3524 object_property_add_str(obj, "host-model", 3525 spapr_get_host_model, spapr_set_host_model); 3526 object_property_set_description(obj, "host-model", 3527 "Host model to advertise in guest device tree"); 3528 object_property_add_str(obj, "host-serial", 3529 spapr_get_host_serial, spapr_set_host_serial); 3530 object_property_set_description(obj, "host-serial", 3531 "Host serial number to advertise in guest device tree"); 3532 } 3533 3534 static void spapr_machine_finalizefn(Object *obj) 3535 { 3536 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3537 3538 g_free(spapr->kvm_type); 3539 } 3540 3541 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3542 { 3543 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3544 CPUPPCState *env = cpu_env(cs); 3545 3546 cpu_synchronize_state(cs); 3547 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3548 if (spapr->fwnmi_system_reset_addr != -1) { 3549 uint64_t rtas_addr, addr; 3550 3551 /* get rtas addr from fdt */ 3552 rtas_addr = spapr_get_rtas_addr(); 3553 if (!rtas_addr) { 3554 qemu_system_guest_panicked(NULL); 3555 return; 3556 } 3557 3558 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3559 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3560 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3561 env->gpr[3] = addr; 3562 } 3563 ppc_cpu_do_system_reset(cs); 3564 if (spapr->fwnmi_system_reset_addr != -1) { 3565 env->nip = spapr->fwnmi_system_reset_addr; 3566 } 3567 } 3568 3569 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3570 { 3571 CPUState *cs; 3572 3573 CPU_FOREACH(cs) { 3574 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3575 } 3576 } 3577 3578 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3579 void *fdt, int *fdt_start_offset, Error **errp) 3580 { 3581 uint64_t addr; 3582 uint32_t node; 3583 3584 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3585 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3586 &error_abort); 3587 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3588 SPAPR_MEMORY_BLOCK_SIZE); 3589 return 0; 3590 } 3591 3592 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3593 bool dedicated_hp_event_source) 3594 { 3595 SpaprDrc *drc; 3596 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3597 int i; 3598 uint64_t addr = addr_start; 3599 bool hotplugged = spapr_drc_hotplugged(dev); 3600 3601 for (i = 0; i < nr_lmbs; i++) { 3602 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3603 addr / SPAPR_MEMORY_BLOCK_SIZE); 3604 g_assert(drc); 3605 3606 /* 3607 * memory_device_get_free_addr() provided a range of free addresses 3608 * that doesn't overlap with any existing mapping at pre-plug. The 3609 * corresponding LMB DRCs are thus assumed to be all attachable. 3610 */ 3611 spapr_drc_attach(drc, dev); 3612 if (!hotplugged) { 3613 spapr_drc_reset(drc); 3614 } 3615 addr += SPAPR_MEMORY_BLOCK_SIZE; 3616 } 3617 /* send hotplug notification to the 3618 * guest only in case of hotplugged memory 3619 */ 3620 if (hotplugged) { 3621 if (dedicated_hp_event_source) { 3622 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3623 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3624 g_assert(drc); 3625 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3626 nr_lmbs, 3627 spapr_drc_index(drc)); 3628 } else { 3629 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3630 nr_lmbs); 3631 } 3632 } 3633 } 3634 3635 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3636 { 3637 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3638 PCDIMMDevice *dimm = PC_DIMM(dev); 3639 uint64_t size, addr; 3640 int64_t slot; 3641 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3642 3643 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3644 3645 pc_dimm_plug(dimm, MACHINE(ms)); 3646 3647 if (!is_nvdimm) { 3648 addr = object_property_get_uint(OBJECT(dimm), 3649 PC_DIMM_ADDR_PROP, &error_abort); 3650 spapr_add_lmbs(dev, addr, size, 3651 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3652 } else { 3653 slot = object_property_get_int(OBJECT(dimm), 3654 PC_DIMM_SLOT_PROP, &error_abort); 3655 /* We should have valid slot number at this point */ 3656 g_assert(slot >= 0); 3657 spapr_add_nvdimm(dev, slot); 3658 } 3659 } 3660 3661 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3662 Error **errp) 3663 { 3664 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3665 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3666 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3667 PCDIMMDevice *dimm = PC_DIMM(dev); 3668 Error *local_err = NULL; 3669 uint64_t size; 3670 Object *memdev; 3671 hwaddr pagesize; 3672 3673 if (!smc->dr_lmb_enabled) { 3674 error_setg(errp, "Memory hotplug not supported for this machine"); 3675 return; 3676 } 3677 3678 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3679 if (local_err) { 3680 error_propagate(errp, local_err); 3681 return; 3682 } 3683 3684 if (is_nvdimm) { 3685 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3686 return; 3687 } 3688 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3689 error_setg(errp, "Hotplugged memory size must be a multiple of " 3690 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3691 return; 3692 } 3693 3694 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3695 &error_abort); 3696 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3697 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3698 return; 3699 } 3700 3701 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), errp); 3702 } 3703 3704 struct SpaprDimmState { 3705 PCDIMMDevice *dimm; 3706 uint32_t nr_lmbs; 3707 QTAILQ_ENTRY(SpaprDimmState) next; 3708 }; 3709 3710 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3711 PCDIMMDevice *dimm) 3712 { 3713 SpaprDimmState *dimm_state = NULL; 3714 3715 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3716 if (dimm_state->dimm == dimm) { 3717 break; 3718 } 3719 } 3720 return dimm_state; 3721 } 3722 3723 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3724 uint32_t nr_lmbs, 3725 PCDIMMDevice *dimm) 3726 { 3727 SpaprDimmState *ds = NULL; 3728 3729 /* 3730 * If this request is for a DIMM whose removal had failed earlier 3731 * (due to guest's refusal to remove the LMBs), we would have this 3732 * dimm already in the pending_dimm_unplugs list. In that 3733 * case don't add again. 3734 */ 3735 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3736 if (!ds) { 3737 ds = g_new0(SpaprDimmState, 1); 3738 ds->nr_lmbs = nr_lmbs; 3739 ds->dimm = dimm; 3740 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3741 } 3742 return ds; 3743 } 3744 3745 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3746 SpaprDimmState *dimm_state) 3747 { 3748 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3749 g_free(dimm_state); 3750 } 3751 3752 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3753 PCDIMMDevice *dimm) 3754 { 3755 SpaprDrc *drc; 3756 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3757 &error_abort); 3758 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3759 uint32_t avail_lmbs = 0; 3760 uint64_t addr_start, addr; 3761 int i; 3762 3763 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3764 &error_abort); 3765 3766 addr = addr_start; 3767 for (i = 0; i < nr_lmbs; i++) { 3768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3769 addr / SPAPR_MEMORY_BLOCK_SIZE); 3770 g_assert(drc); 3771 if (drc->dev) { 3772 avail_lmbs++; 3773 } 3774 addr += SPAPR_MEMORY_BLOCK_SIZE; 3775 } 3776 3777 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3778 } 3779 3780 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3781 { 3782 SpaprDimmState *ds; 3783 PCDIMMDevice *dimm; 3784 SpaprDrc *drc; 3785 uint32_t nr_lmbs; 3786 uint64_t size, addr_start, addr; 3787 int i; 3788 3789 if (!dev) { 3790 return; 3791 } 3792 3793 dimm = PC_DIMM(dev); 3794 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3795 3796 /* 3797 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3798 * unplug state, but one of its DRC is marked as unplug_requested. 3799 * This is bad and weird enough to g_assert() out. 3800 */ 3801 g_assert(ds); 3802 3803 spapr_pending_dimm_unplugs_remove(spapr, ds); 3804 3805 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3806 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3807 3808 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3809 &error_abort); 3810 3811 addr = addr_start; 3812 for (i = 0; i < nr_lmbs; i++) { 3813 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3814 addr / SPAPR_MEMORY_BLOCK_SIZE); 3815 g_assert(drc); 3816 3817 drc->unplug_requested = false; 3818 addr += SPAPR_MEMORY_BLOCK_SIZE; 3819 } 3820 3821 /* 3822 * Tell QAPI that something happened and the memory 3823 * hotunplug wasn't successful. 3824 */ 3825 qapi_event_send_device_unplug_guest_error(dev->id, 3826 dev->canonical_path); 3827 } 3828 3829 /* Callback to be called during DRC release. */ 3830 void spapr_lmb_release(DeviceState *dev) 3831 { 3832 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3833 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3834 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3835 3836 /* This information will get lost if a migration occurs 3837 * during the unplug process. In this case recover it. */ 3838 if (ds == NULL) { 3839 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3840 g_assert(ds); 3841 /* The DRC being examined by the caller at least must be counted */ 3842 g_assert(ds->nr_lmbs); 3843 } 3844 3845 if (--ds->nr_lmbs) { 3846 return; 3847 } 3848 3849 /* 3850 * Now that all the LMBs have been removed by the guest, call the 3851 * unplug handler chain. This can never fail. 3852 */ 3853 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3854 object_unparent(OBJECT(dev)); 3855 } 3856 3857 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3858 { 3859 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3860 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3861 3862 /* We really shouldn't get this far without anything to unplug */ 3863 g_assert(ds); 3864 3865 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3866 qdev_unrealize(dev); 3867 spapr_pending_dimm_unplugs_remove(spapr, ds); 3868 } 3869 3870 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3871 DeviceState *dev, Error **errp) 3872 { 3873 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3874 PCDIMMDevice *dimm = PC_DIMM(dev); 3875 uint32_t nr_lmbs; 3876 uint64_t size, addr_start, addr; 3877 int i; 3878 SpaprDrc *drc; 3879 3880 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3881 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3882 return; 3883 } 3884 3885 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3886 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3887 3888 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3889 &error_abort); 3890 3891 /* 3892 * An existing pending dimm state for this DIMM means that there is an 3893 * unplug operation in progress, waiting for the spapr_lmb_release 3894 * callback to complete the job (BQL can't cover that far). In this case, 3895 * bail out to avoid detaching DRCs that were already released. 3896 */ 3897 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3898 error_setg(errp, "Memory unplug already in progress for device %s", 3899 dev->id); 3900 return; 3901 } 3902 3903 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3904 3905 addr = addr_start; 3906 for (i = 0; i < nr_lmbs; i++) { 3907 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3908 addr / SPAPR_MEMORY_BLOCK_SIZE); 3909 g_assert(drc); 3910 3911 spapr_drc_unplug_request(drc); 3912 addr += SPAPR_MEMORY_BLOCK_SIZE; 3913 } 3914 3915 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3916 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3917 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3918 nr_lmbs, spapr_drc_index(drc)); 3919 } 3920 3921 /* Callback to be called during DRC release. */ 3922 void spapr_core_release(DeviceState *dev) 3923 { 3924 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3925 3926 /* Call the unplug handler chain. This can never fail. */ 3927 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3928 object_unparent(OBJECT(dev)); 3929 } 3930 3931 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3932 { 3933 MachineState *ms = MACHINE(hotplug_dev); 3934 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3935 CPUCore *cc = CPU_CORE(dev); 3936 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3937 3938 if (smc->pre_2_10_has_unused_icps) { 3939 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3940 int i; 3941 3942 for (i = 0; i < cc->nr_threads; i++) { 3943 CPUState *cs = CPU(sc->threads[i]); 3944 3945 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3946 } 3947 } 3948 3949 assert(core_slot); 3950 core_slot->cpu = NULL; 3951 qdev_unrealize(dev); 3952 } 3953 3954 static 3955 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3956 Error **errp) 3957 { 3958 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3959 int index; 3960 SpaprDrc *drc; 3961 CPUCore *cc = CPU_CORE(dev); 3962 3963 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3964 error_setg(errp, "Unable to find CPU core with core-id: %d", 3965 cc->core_id); 3966 return; 3967 } 3968 if (index == 0) { 3969 error_setg(errp, "Boot CPU core may not be unplugged"); 3970 return; 3971 } 3972 3973 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3974 spapr_vcpu_id(spapr, cc->core_id)); 3975 g_assert(drc); 3976 3977 if (!spapr_drc_unplug_requested(drc)) { 3978 spapr_drc_unplug_request(drc); 3979 } 3980 3981 /* 3982 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3983 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3984 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3985 * attempt (e.g. the kernel will refuse to remove the last online 3986 * CPU), we will never attempt it again because unplug_requested 3987 * will still be 'true' in that case. 3988 */ 3989 spapr_hotplug_req_remove_by_index(drc); 3990 } 3991 3992 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3993 void *fdt, int *fdt_start_offset, Error **errp) 3994 { 3995 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3996 CPUState *cs = CPU(core->threads[0]); 3997 PowerPCCPU *cpu = POWERPC_CPU(cs); 3998 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3999 int id = spapr_get_vcpu_id(cpu); 4000 g_autofree char *nodename = NULL; 4001 int offset; 4002 4003 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 4004 offset = fdt_add_subnode(fdt, 0, nodename); 4005 4006 spapr_dt_cpu(cs, fdt, offset, spapr); 4007 4008 /* 4009 * spapr_dt_cpu() does not fill the 'name' property in the 4010 * CPU node. The function is called during boot process, before 4011 * and after CAS, and overwriting the 'name' property written 4012 * by SLOF is not allowed. 4013 * 4014 * Write it manually after spapr_dt_cpu(). This makes the hotplug 4015 * CPUs more compatible with the coldplugged ones, which have 4016 * the 'name' property. Linux Kernel also relies on this 4017 * property to identify CPU nodes. 4018 */ 4019 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 4020 4021 *fdt_start_offset = offset; 4022 return 0; 4023 } 4024 4025 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4026 { 4027 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4028 MachineClass *mc = MACHINE_GET_CLASS(spapr); 4029 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4030 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 4031 CPUCore *cc = CPU_CORE(dev); 4032 SpaprDrc *drc; 4033 CPUArchId *core_slot; 4034 int index; 4035 bool hotplugged = spapr_drc_hotplugged(dev); 4036 int i; 4037 4038 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4039 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 4040 4041 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 4042 spapr_vcpu_id(spapr, cc->core_id)); 4043 4044 g_assert(drc || !mc->has_hotpluggable_cpus); 4045 4046 if (drc) { 4047 /* 4048 * spapr_core_pre_plug() already buys us this is a brand new 4049 * core being plugged into a free slot. Nothing should already 4050 * be attached to the corresponding DRC. 4051 */ 4052 spapr_drc_attach(drc, dev); 4053 4054 if (hotplugged) { 4055 /* 4056 * Send hotplug notification interrupt to the guest only 4057 * in case of hotplugged CPUs. 4058 */ 4059 spapr_hotplug_req_add_by_index(drc); 4060 } else { 4061 spapr_drc_reset(drc); 4062 } 4063 } 4064 4065 core_slot->cpu = CPU(dev); 4066 4067 /* 4068 * Set compatibility mode to match the boot CPU, which was either set 4069 * by the machine reset code or by CAS. This really shouldn't fail at 4070 * this point. 4071 */ 4072 if (hotplugged) { 4073 for (i = 0; i < cc->nr_threads; i++) { 4074 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 4075 &error_abort); 4076 } 4077 } 4078 4079 if (smc->pre_2_10_has_unused_icps) { 4080 for (i = 0; i < cc->nr_threads; i++) { 4081 CPUState *cs = CPU(core->threads[i]); 4082 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4083 } 4084 } 4085 } 4086 4087 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4088 Error **errp) 4089 { 4090 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4091 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4092 CPUCore *cc = CPU_CORE(dev); 4093 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4094 const char *type = object_get_typename(OBJECT(dev)); 4095 CPUArchId *core_slot; 4096 int index; 4097 unsigned int smp_threads = machine->smp.threads; 4098 4099 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4100 error_setg(errp, "CPU hotplug not supported for this machine"); 4101 return; 4102 } 4103 4104 if (strcmp(base_core_type, type)) { 4105 error_setg(errp, "CPU core type should be %s", base_core_type); 4106 return; 4107 } 4108 4109 if (cc->core_id % smp_threads) { 4110 error_setg(errp, "invalid core id %d", cc->core_id); 4111 return; 4112 } 4113 4114 /* 4115 * In general we should have homogeneous threads-per-core, but old 4116 * (pre hotplug support) machine types allow the last core to have 4117 * reduced threads as a compatibility hack for when we allowed 4118 * total vcpus not a multiple of threads-per-core. 4119 */ 4120 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4121 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4122 smp_threads); 4123 return; 4124 } 4125 4126 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4127 if (!core_slot) { 4128 error_setg(errp, "core id %d out of range", cc->core_id); 4129 return; 4130 } 4131 4132 if (core_slot->cpu) { 4133 error_setg(errp, "core %d already populated", cc->core_id); 4134 return; 4135 } 4136 4137 numa_cpu_pre_plug(core_slot, dev, errp); 4138 } 4139 4140 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4141 void *fdt, int *fdt_start_offset, Error **errp) 4142 { 4143 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4144 int intc_phandle; 4145 4146 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4147 if (intc_phandle <= 0) { 4148 return -1; 4149 } 4150 4151 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4152 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4153 return -1; 4154 } 4155 4156 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4157 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4158 4159 return 0; 4160 } 4161 4162 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4163 Error **errp) 4164 { 4165 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4166 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4167 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4168 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4169 SpaprDrc *drc; 4170 4171 if (dev->hotplugged && !smc->dr_phb_enabled) { 4172 error_setg(errp, "PHB hotplug not supported for this machine"); 4173 return false; 4174 } 4175 4176 if (sphb->index == (uint32_t)-1) { 4177 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4178 return false; 4179 } 4180 4181 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4182 if (drc && drc->dev) { 4183 error_setg(errp, "PHB %d already attached", sphb->index); 4184 return false; 4185 } 4186 4187 /* 4188 * This will check that sphb->index doesn't exceed the maximum number of 4189 * PHBs for the current machine type. 4190 */ 4191 return 4192 smc->phb_placement(spapr, sphb->index, 4193 &sphb->buid, &sphb->io_win_addr, 4194 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4195 windows_supported, sphb->dma_liobn, 4196 errp); 4197 } 4198 4199 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4200 { 4201 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4202 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4203 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4204 SpaprDrc *drc; 4205 bool hotplugged = spapr_drc_hotplugged(dev); 4206 4207 if (!smc->dr_phb_enabled) { 4208 return; 4209 } 4210 4211 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4212 /* hotplug hooks should check it's enabled before getting this far */ 4213 assert(drc); 4214 4215 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4216 spapr_drc_attach(drc, dev); 4217 4218 if (hotplugged) { 4219 spapr_hotplug_req_add_by_index(drc); 4220 } else { 4221 spapr_drc_reset(drc); 4222 } 4223 } 4224 4225 void spapr_phb_release(DeviceState *dev) 4226 { 4227 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4228 4229 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4230 object_unparent(OBJECT(dev)); 4231 } 4232 4233 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4234 { 4235 qdev_unrealize(dev); 4236 } 4237 4238 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4239 DeviceState *dev, Error **errp) 4240 { 4241 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4242 SpaprDrc *drc; 4243 4244 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4245 assert(drc); 4246 4247 if (!spapr_drc_unplug_requested(drc)) { 4248 spapr_drc_unplug_request(drc); 4249 spapr_hotplug_req_remove_by_index(drc); 4250 } else { 4251 error_setg(errp, 4252 "PCI Host Bridge unplug already in progress for device %s", 4253 dev->id); 4254 } 4255 } 4256 4257 static 4258 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4259 Error **errp) 4260 { 4261 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4262 4263 if (spapr->tpm_proxy != NULL) { 4264 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4265 return false; 4266 } 4267 4268 return true; 4269 } 4270 4271 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4272 { 4273 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4274 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4275 4276 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4277 g_assert(spapr->tpm_proxy == NULL); 4278 4279 spapr->tpm_proxy = tpm_proxy; 4280 } 4281 4282 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4283 { 4284 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4285 4286 qdev_unrealize(dev); 4287 object_unparent(OBJECT(dev)); 4288 spapr->tpm_proxy = NULL; 4289 } 4290 4291 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4292 DeviceState *dev, Error **errp) 4293 { 4294 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4295 spapr_memory_plug(hotplug_dev, dev); 4296 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4297 spapr_core_plug(hotplug_dev, dev); 4298 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4299 spapr_phb_plug(hotplug_dev, dev); 4300 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4301 spapr_tpm_proxy_plug(hotplug_dev, dev); 4302 } 4303 } 4304 4305 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4306 DeviceState *dev, Error **errp) 4307 { 4308 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4309 spapr_memory_unplug(hotplug_dev, dev); 4310 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4311 spapr_core_unplug(hotplug_dev, dev); 4312 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4313 spapr_phb_unplug(hotplug_dev, dev); 4314 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4315 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4316 } 4317 } 4318 4319 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4320 { 4321 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4322 /* 4323 * CAS will process all pending unplug requests. 4324 * 4325 * HACK: a guest could theoretically have cleared all bits in OV5, 4326 * but none of the guests we care for do. 4327 */ 4328 spapr_ovec_empty(spapr->ov5_cas); 4329 } 4330 4331 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4332 DeviceState *dev, Error **errp) 4333 { 4334 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4335 MachineClass *mc = MACHINE_GET_CLASS(sms); 4336 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4337 4338 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4339 if (spapr_memory_hot_unplug_supported(sms)) { 4340 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4341 } else { 4342 error_setg(errp, "Memory hot unplug not supported for this guest"); 4343 } 4344 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4345 if (!mc->has_hotpluggable_cpus) { 4346 error_setg(errp, "CPU hot unplug not supported on this machine"); 4347 return; 4348 } 4349 spapr_core_unplug_request(hotplug_dev, dev, errp); 4350 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4351 if (!smc->dr_phb_enabled) { 4352 error_setg(errp, "PHB hot unplug not supported on this machine"); 4353 return; 4354 } 4355 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4356 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4357 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4358 } 4359 } 4360 4361 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4362 DeviceState *dev, Error **errp) 4363 { 4364 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4365 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4366 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4367 spapr_core_pre_plug(hotplug_dev, dev, errp); 4368 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4369 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4370 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4371 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4372 } 4373 } 4374 4375 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4376 DeviceState *dev) 4377 { 4378 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4379 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4380 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4381 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4382 return HOTPLUG_HANDLER(machine); 4383 } 4384 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4385 PCIDevice *pcidev = PCI_DEVICE(dev); 4386 PCIBus *root = pci_device_root_bus(pcidev); 4387 SpaprPhbState *phb = 4388 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4389 TYPE_SPAPR_PCI_HOST_BRIDGE); 4390 4391 if (phb) { 4392 return HOTPLUG_HANDLER(phb); 4393 } 4394 } 4395 return NULL; 4396 } 4397 4398 static CpuInstanceProperties 4399 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4400 { 4401 CPUArchId *core_slot; 4402 MachineClass *mc = MACHINE_GET_CLASS(machine); 4403 4404 /* make sure possible_cpu are initialized */ 4405 mc->possible_cpu_arch_ids(machine); 4406 /* get CPU core slot containing thread that matches cpu_index */ 4407 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4408 assert(core_slot); 4409 return core_slot->props; 4410 } 4411 4412 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4413 { 4414 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4415 } 4416 4417 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4418 { 4419 int i; 4420 unsigned int smp_threads = machine->smp.threads; 4421 unsigned int smp_cpus = machine->smp.cpus; 4422 const char *core_type; 4423 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4424 MachineClass *mc = MACHINE_GET_CLASS(machine); 4425 4426 if (!mc->has_hotpluggable_cpus) { 4427 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4428 } 4429 if (machine->possible_cpus) { 4430 assert(machine->possible_cpus->len == spapr_max_cores); 4431 return machine->possible_cpus; 4432 } 4433 4434 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4435 if (!core_type) { 4436 error_report("Unable to find sPAPR CPU Core definition"); 4437 exit(1); 4438 } 4439 4440 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4441 sizeof(CPUArchId) * spapr_max_cores); 4442 machine->possible_cpus->len = spapr_max_cores; 4443 for (i = 0; i < machine->possible_cpus->len; i++) { 4444 int core_id = i * smp_threads; 4445 4446 machine->possible_cpus->cpus[i].type = core_type; 4447 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4448 machine->possible_cpus->cpus[i].arch_id = core_id; 4449 machine->possible_cpus->cpus[i].props.has_core_id = true; 4450 machine->possible_cpus->cpus[i].props.core_id = core_id; 4451 } 4452 return machine->possible_cpus; 4453 } 4454 4455 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4456 uint64_t *buid, hwaddr *pio, 4457 hwaddr *mmio32, hwaddr *mmio64, 4458 unsigned n_dma, uint32_t *liobns, Error **errp) 4459 { 4460 /* 4461 * New-style PHB window placement. 4462 * 4463 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4464 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4465 * windows. 4466 * 4467 * Some guest kernels can't work with MMIO windows above 1<<46 4468 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4469 * 4470 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4471 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4472 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4473 * 1TiB 64-bit MMIO windows for each PHB. 4474 */ 4475 const uint64_t base_buid = 0x800000020000000ULL; 4476 int i; 4477 4478 /* Sanity check natural alignments */ 4479 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4480 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4481 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4482 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4483 /* Sanity check bounds */ 4484 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4485 SPAPR_PCI_MEM32_WIN_SIZE); 4486 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4487 SPAPR_PCI_MEM64_WIN_SIZE); 4488 4489 if (index >= SPAPR_MAX_PHBS) { 4490 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4491 SPAPR_MAX_PHBS - 1); 4492 return false; 4493 } 4494 4495 *buid = base_buid + index; 4496 for (i = 0; i < n_dma; ++i) { 4497 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4498 } 4499 4500 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4501 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4502 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4503 return true; 4504 } 4505 4506 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4507 { 4508 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4509 4510 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4511 } 4512 4513 static void spapr_ics_resend(XICSFabric *dev) 4514 { 4515 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4516 4517 ics_resend(spapr->ics); 4518 } 4519 4520 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4521 { 4522 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4523 4524 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4525 } 4526 4527 static void spapr_pic_print_info(InterruptStatsProvider *obj, GString *buf) 4528 { 4529 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4530 4531 spapr_irq_print_info(spapr, buf); 4532 g_string_append_printf(buf, "irqchip: %s\n", 4533 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4534 } 4535 4536 /* 4537 * This is a XIVE only operation 4538 */ 4539 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4540 uint8_t nvt_blk, uint32_t nvt_idx, 4541 bool cam_ignore, uint8_t priority, 4542 uint32_t logic_serv, XiveTCTXMatch *match) 4543 { 4544 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4545 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4546 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4547 int count; 4548 4549 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4550 priority, logic_serv, match); 4551 if (count < 0) { 4552 return count; 4553 } 4554 4555 /* 4556 * When we implement the save and restore of the thread interrupt 4557 * contexts in the enter/exit CPU handlers of the machine and the 4558 * escalations in QEMU, we should be able to handle non dispatched 4559 * vCPUs. 4560 * 4561 * Until this is done, the sPAPR machine should find at least one 4562 * matching context always. 4563 */ 4564 if (count == 0) { 4565 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4566 nvt_blk, nvt_idx); 4567 } 4568 4569 return count; 4570 } 4571 4572 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4573 { 4574 return cpu->vcpu_id; 4575 } 4576 4577 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4578 { 4579 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4580 MachineState *ms = MACHINE(spapr); 4581 int vcpu_id; 4582 4583 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4584 4585 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4586 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4587 error_append_hint(errp, "Adjust the number of cpus to %d " 4588 "or try to raise the number of threads per core\n", 4589 vcpu_id * ms->smp.threads / spapr->vsmt); 4590 return false; 4591 } 4592 4593 cpu->vcpu_id = vcpu_id; 4594 return true; 4595 } 4596 4597 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4598 { 4599 CPUState *cs; 4600 4601 CPU_FOREACH(cs) { 4602 PowerPCCPU *cpu = POWERPC_CPU(cs); 4603 4604 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4605 return cpu; 4606 } 4607 } 4608 4609 return NULL; 4610 } 4611 4612 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4613 { 4614 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4615 4616 return spapr_cpu->in_nested; 4617 } 4618 4619 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4620 { 4621 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4622 4623 /* These are only called by TCG, KVM maintains dispatch state */ 4624 4625 spapr_cpu->prod = false; 4626 if (spapr_cpu->vpa_addr) { 4627 CPUState *cs = CPU(cpu); 4628 uint32_t dispatch; 4629 4630 dispatch = ldl_be_phys(cs->as, 4631 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4632 dispatch++; 4633 if ((dispatch & 1) != 0) { 4634 qemu_log_mask(LOG_GUEST_ERROR, 4635 "VPA: incorrect dispatch counter value for " 4636 "dispatched partition %u, correcting.\n", dispatch); 4637 dispatch++; 4638 } 4639 stl_be_phys(cs->as, 4640 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4641 } 4642 } 4643 4644 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4645 { 4646 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4647 4648 if (spapr_cpu->vpa_addr) { 4649 CPUState *cs = CPU(cpu); 4650 uint32_t dispatch; 4651 4652 dispatch = ldl_be_phys(cs->as, 4653 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4654 dispatch++; 4655 if ((dispatch & 1) != 1) { 4656 qemu_log_mask(LOG_GUEST_ERROR, 4657 "VPA: incorrect dispatch counter value for " 4658 "preempted partition %u, correcting.\n", dispatch); 4659 dispatch++; 4660 } 4661 stl_be_phys(cs->as, 4662 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4663 } 4664 } 4665 4666 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4667 { 4668 MachineClass *mc = MACHINE_CLASS(oc); 4669 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4670 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4671 NMIClass *nc = NMI_CLASS(oc); 4672 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4673 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4674 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4675 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4676 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4677 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4678 4679 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4680 mc->ignore_boot_device_suffixes = true; 4681 4682 /* 4683 * We set up the default / latest behaviour here. The class_init 4684 * functions for the specific versioned machine types can override 4685 * these details for backwards compatibility 4686 */ 4687 mc->init = spapr_machine_init; 4688 mc->reset = spapr_machine_reset; 4689 mc->block_default_type = IF_SCSI; 4690 4691 /* 4692 * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(), 4693 * In TCG the limit is restricted by the range of CPU IPIs available. 4694 */ 4695 mc->max_cpus = SPAPR_IRQ_NR_IPIS; 4696 4697 mc->no_parallel = 1; 4698 mc->default_boot_order = ""; 4699 mc->default_ram_size = 512 * MiB; 4700 mc->default_ram_id = "ppc_spapr.ram"; 4701 mc->default_display = "std"; 4702 mc->kvm_type = spapr_kvm_type; 4703 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4704 mc->pci_allow_0_address = true; 4705 assert(!mc->get_hotplug_handler); 4706 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4707 hc->pre_plug = spapr_machine_device_pre_plug; 4708 hc->plug = spapr_machine_device_plug; 4709 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4710 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4711 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4712 hc->unplug_request = spapr_machine_device_unplug_request; 4713 hc->unplug = spapr_machine_device_unplug; 4714 4715 smc->dr_lmb_enabled = true; 4716 smc->update_dt_enabled = true; 4717 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 4718 mc->has_hotpluggable_cpus = true; 4719 mc->nvdimm_supported = true; 4720 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4721 fwc->get_dev_path = spapr_get_fw_dev_path; 4722 nc->nmi_monitor_handler = spapr_nmi; 4723 smc->phb_placement = spapr_phb_placement; 4724 vhc->cpu_in_nested = spapr_cpu_in_nested; 4725 vhc->deliver_hv_excp = spapr_exit_nested; 4726 vhc->hypercall = emulate_spapr_hypercall; 4727 vhc->hpt_mask = spapr_hpt_mask; 4728 vhc->map_hptes = spapr_map_hptes; 4729 vhc->unmap_hptes = spapr_unmap_hptes; 4730 vhc->hpte_set_c = spapr_hpte_set_c; 4731 vhc->hpte_set_r = spapr_hpte_set_r; 4732 vhc->get_pate = spapr_get_pate; 4733 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4734 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4735 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4736 xic->ics_get = spapr_ics_get; 4737 xic->ics_resend = spapr_ics_resend; 4738 xic->icp_get = spapr_icp_get; 4739 ispc->print_info = spapr_pic_print_info; 4740 /* Force NUMA node memory size to be a multiple of 4741 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4742 * in which LMBs are represented and hot-added 4743 */ 4744 mc->numa_mem_align_shift = 28; 4745 mc->auto_enable_numa = true; 4746 4747 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4748 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4749 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4750 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4751 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4752 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4753 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4754 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4755 smc->default_caps.caps[SPAPR_CAP_NESTED_PAPR] = SPAPR_CAP_OFF; 4756 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4757 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4758 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4759 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4760 4761 /* 4762 * This cap specifies whether the AIL 3 mode for 4763 * H_SET_RESOURCE is supported. The default is modified 4764 * by default_caps_with_cpu(). 4765 */ 4766 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4767 spapr_caps_add_properties(smc); 4768 smc->irq = &spapr_irq_dual; 4769 smc->dr_phb_enabled = true; 4770 smc->linux_pci_probe = true; 4771 smc->smp_threads_vsmt = true; 4772 smc->nr_xirqs = SPAPR_NR_XIRQS; 4773 xfc->match_nvt = spapr_match_nvt; 4774 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4775 vmc->quiesce = spapr_vof_quiesce; 4776 vmc->setprop = spapr_vof_setprop; 4777 } 4778 4779 static const TypeInfo spapr_machine_info = { 4780 .name = TYPE_SPAPR_MACHINE, 4781 .parent = TYPE_MACHINE, 4782 .abstract = true, 4783 .instance_size = sizeof(SpaprMachineState), 4784 .instance_init = spapr_instance_init, 4785 .instance_finalize = spapr_machine_finalizefn, 4786 .class_size = sizeof(SpaprMachineClass), 4787 .class_init = spapr_machine_class_init, 4788 .interfaces = (InterfaceInfo[]) { 4789 { TYPE_FW_PATH_PROVIDER }, 4790 { TYPE_NMI }, 4791 { TYPE_HOTPLUG_HANDLER }, 4792 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4793 { TYPE_XICS_FABRIC }, 4794 { TYPE_INTERRUPT_STATS_PROVIDER }, 4795 { TYPE_XIVE_FABRIC }, 4796 { TYPE_VOF_MACHINE_IF }, 4797 { } 4798 }, 4799 }; 4800 4801 static void spapr_machine_latest_class_options(MachineClass *mc) 4802 { 4803 mc->alias = "pseries"; 4804 mc->is_default = true; 4805 } 4806 4807 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4808 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4809 void *data) \ 4810 { \ 4811 MachineClass *mc = MACHINE_CLASS(oc); \ 4812 spapr_machine_##suffix##_class_options(mc); \ 4813 if (latest) { \ 4814 spapr_machine_latest_class_options(mc); \ 4815 } \ 4816 } \ 4817 static const TypeInfo spapr_machine_##suffix##_info = { \ 4818 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4819 .parent = TYPE_SPAPR_MACHINE, \ 4820 .class_init = spapr_machine_##suffix##_class_init, \ 4821 }; \ 4822 static void spapr_machine_register_##suffix(void) \ 4823 { \ 4824 type_register(&spapr_machine_##suffix##_info); \ 4825 } \ 4826 type_init(spapr_machine_register_##suffix) 4827 4828 /* 4829 * pseries-9.1 4830 */ 4831 static void spapr_machine_9_1_class_options(MachineClass *mc) 4832 { 4833 /* Defaults for the latest behaviour inherited from the base class */ 4834 } 4835 4836 DEFINE_SPAPR_MACHINE(9_1, "9.1", true); 4837 4838 /* 4839 * pseries-9.0 4840 */ 4841 static void spapr_machine_9_0_class_options(MachineClass *mc) 4842 { 4843 spapr_machine_9_1_class_options(mc); 4844 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); 4845 } 4846 4847 DEFINE_SPAPR_MACHINE(9_0, "9.0", false); 4848 4849 /* 4850 * pseries-8.2 4851 */ 4852 static void spapr_machine_8_2_class_options(MachineClass *mc) 4853 { 4854 spapr_machine_9_0_class_options(mc); 4855 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 4856 } 4857 4858 DEFINE_SPAPR_MACHINE(8_2, "8.2", false); 4859 4860 /* 4861 * pseries-8.1 4862 */ 4863 static void spapr_machine_8_1_class_options(MachineClass *mc) 4864 { 4865 spapr_machine_8_2_class_options(mc); 4866 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4867 } 4868 4869 DEFINE_SPAPR_MACHINE(8_1, "8.1", false); 4870 4871 /* 4872 * pseries-8.0 4873 */ 4874 static void spapr_machine_8_0_class_options(MachineClass *mc) 4875 { 4876 spapr_machine_8_1_class_options(mc); 4877 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4878 } 4879 4880 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4881 4882 /* 4883 * pseries-7.2 4884 */ 4885 static void spapr_machine_7_2_class_options(MachineClass *mc) 4886 { 4887 spapr_machine_8_0_class_options(mc); 4888 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4889 } 4890 4891 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4892 4893 /* 4894 * pseries-7.1 4895 */ 4896 static void spapr_machine_7_1_class_options(MachineClass *mc) 4897 { 4898 spapr_machine_7_2_class_options(mc); 4899 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4900 } 4901 4902 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4903 4904 /* 4905 * pseries-7.0 4906 */ 4907 static void spapr_machine_7_0_class_options(MachineClass *mc) 4908 { 4909 spapr_machine_7_1_class_options(mc); 4910 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4911 } 4912 4913 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4914 4915 /* 4916 * pseries-6.2 4917 */ 4918 static void spapr_machine_6_2_class_options(MachineClass *mc) 4919 { 4920 spapr_machine_7_0_class_options(mc); 4921 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4922 } 4923 4924 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4925 4926 /* 4927 * pseries-6.1 4928 */ 4929 static void spapr_machine_6_1_class_options(MachineClass *mc) 4930 { 4931 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4932 4933 spapr_machine_6_2_class_options(mc); 4934 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4935 smc->pre_6_2_numa_affinity = true; 4936 mc->smp_props.prefer_sockets = true; 4937 } 4938 4939 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4940 4941 /* 4942 * pseries-6.0 4943 */ 4944 static void spapr_machine_6_0_class_options(MachineClass *mc) 4945 { 4946 spapr_machine_6_1_class_options(mc); 4947 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4948 } 4949 4950 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4951 4952 /* 4953 * pseries-5.2 4954 */ 4955 static void spapr_machine_5_2_class_options(MachineClass *mc) 4956 { 4957 spapr_machine_6_0_class_options(mc); 4958 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4959 } 4960 4961 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4962 4963 /* 4964 * pseries-5.1 4965 */ 4966 static void spapr_machine_5_1_class_options(MachineClass *mc) 4967 { 4968 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4969 4970 spapr_machine_5_2_class_options(mc); 4971 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4972 smc->pre_5_2_numa_associativity = true; 4973 } 4974 4975 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4976 4977 /* 4978 * pseries-5.0 4979 */ 4980 static void spapr_machine_5_0_class_options(MachineClass *mc) 4981 { 4982 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4983 static GlobalProperty compat[] = { 4984 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4985 }; 4986 4987 spapr_machine_5_1_class_options(mc); 4988 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4989 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4990 mc->numa_mem_supported = true; 4991 smc->pre_5_1_assoc_refpoints = true; 4992 } 4993 4994 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4995 4996 /* 4997 * pseries-4.2 4998 */ 4999 static void spapr_machine_4_2_class_options(MachineClass *mc) 5000 { 5001 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5002 5003 spapr_machine_5_0_class_options(mc); 5004 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 5005 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 5006 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 5007 smc->rma_limit = 16 * GiB; 5008 mc->nvdimm_supported = false; 5009 } 5010 5011 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 5012 5013 /* 5014 * pseries-4.1 5015 */ 5016 static void spapr_machine_4_1_class_options(MachineClass *mc) 5017 { 5018 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5019 static GlobalProperty compat[] = { 5020 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 5021 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 5022 }; 5023 5024 spapr_machine_4_2_class_options(mc); 5025 smc->linux_pci_probe = false; 5026 smc->smp_threads_vsmt = false; 5027 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 5028 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5029 } 5030 5031 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 5032 5033 /* 5034 * pseries-4.0 5035 */ 5036 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 5037 uint64_t *buid, hwaddr *pio, 5038 hwaddr *mmio32, hwaddr *mmio64, 5039 unsigned n_dma, uint32_t *liobns, Error **errp) 5040 { 5041 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 5042 liobns, errp)) { 5043 return false; 5044 } 5045 return true; 5046 } 5047 static void spapr_machine_4_0_class_options(MachineClass *mc) 5048 { 5049 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5050 5051 spapr_machine_4_1_class_options(mc); 5052 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 5053 smc->phb_placement = phb_placement_4_0; 5054 smc->irq = &spapr_irq_xics; 5055 smc->pre_4_1_migration = true; 5056 } 5057 5058 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 5059 5060 /* 5061 * pseries-3.1 5062 */ 5063 static void spapr_machine_3_1_class_options(MachineClass *mc) 5064 { 5065 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5066 5067 spapr_machine_4_0_class_options(mc); 5068 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 5069 5070 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 5071 smc->update_dt_enabled = false; 5072 smc->dr_phb_enabled = false; 5073 smc->broken_host_serial_model = true; 5074 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 5075 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 5076 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 5077 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 5078 } 5079 5080 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 5081 5082 /* 5083 * pseries-3.0 5084 */ 5085 5086 static void spapr_machine_3_0_class_options(MachineClass *mc) 5087 { 5088 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5089 5090 spapr_machine_3_1_class_options(mc); 5091 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5092 5093 smc->legacy_irq_allocation = true; 5094 smc->nr_xirqs = 0x400; 5095 smc->irq = &spapr_irq_xics_legacy; 5096 } 5097 5098 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 5099 5100 /* 5101 * pseries-2.12 5102 */ 5103 static void spapr_machine_2_12_class_options(MachineClass *mc) 5104 { 5105 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5106 static GlobalProperty compat[] = { 5107 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5108 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5109 }; 5110 5111 spapr_machine_3_0_class_options(mc); 5112 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5113 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5114 5115 /* We depend on kvm_enabled() to choose a default value for the 5116 * hpt-max-page-size capability. Of course we can't do it here 5117 * because this is too early and the HW accelerator isn't initialized 5118 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5119 */ 5120 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5121 } 5122 5123 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5124 5125 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5126 { 5127 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5128 5129 spapr_machine_2_12_class_options(mc); 5130 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5131 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5132 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5133 } 5134 5135 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5136 5137 /* 5138 * pseries-2.11 5139 */ 5140 5141 static void spapr_machine_2_11_class_options(MachineClass *mc) 5142 { 5143 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5144 5145 spapr_machine_2_12_class_options(mc); 5146 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5147 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5148 mc->deprecation_reason = "old and not maintained - use a 2.12+ version"; 5149 } 5150 5151 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5152 5153 /* 5154 * pseries-2.10 5155 */ 5156 5157 static void spapr_machine_2_10_class_options(MachineClass *mc) 5158 { 5159 spapr_machine_2_11_class_options(mc); 5160 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5161 } 5162 5163 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5164 5165 /* 5166 * pseries-2.9 5167 */ 5168 5169 static void spapr_machine_2_9_class_options(MachineClass *mc) 5170 { 5171 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5172 static GlobalProperty compat[] = { 5173 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5174 }; 5175 5176 spapr_machine_2_10_class_options(mc); 5177 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5178 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5179 smc->pre_2_10_has_unused_icps = true; 5180 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5181 } 5182 5183 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5184 5185 /* 5186 * pseries-2.8 5187 */ 5188 5189 static void spapr_machine_2_8_class_options(MachineClass *mc) 5190 { 5191 static GlobalProperty compat[] = { 5192 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5193 }; 5194 5195 spapr_machine_2_9_class_options(mc); 5196 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5197 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5198 mc->numa_mem_align_shift = 23; 5199 } 5200 5201 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5202 5203 /* 5204 * pseries-2.7 5205 */ 5206 5207 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5208 uint64_t *buid, hwaddr *pio, 5209 hwaddr *mmio32, hwaddr *mmio64, 5210 unsigned n_dma, uint32_t *liobns, Error **errp) 5211 { 5212 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5213 const uint64_t base_buid = 0x800000020000000ULL; 5214 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5215 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5216 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5217 const uint32_t max_index = 255; 5218 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5219 5220 uint64_t ram_top = MACHINE(spapr)->ram_size; 5221 hwaddr phb0_base, phb_base; 5222 int i; 5223 5224 /* Do we have device memory? */ 5225 if (MACHINE(spapr)->device_memory) { 5226 /* Can't just use maxram_size, because there may be an 5227 * alignment gap between normal and device memory regions 5228 */ 5229 ram_top = MACHINE(spapr)->device_memory->base + 5230 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5231 } 5232 5233 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5234 5235 if (index > max_index) { 5236 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5237 max_index); 5238 return false; 5239 } 5240 5241 *buid = base_buid + index; 5242 for (i = 0; i < n_dma; ++i) { 5243 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5244 } 5245 5246 phb_base = phb0_base + index * phb_spacing; 5247 *pio = phb_base + pio_offset; 5248 *mmio32 = phb_base + mmio_offset; 5249 /* 5250 * We don't set the 64-bit MMIO window, relying on the PHB's 5251 * fallback behaviour of automatically splitting a large "32-bit" 5252 * window into contiguous 32-bit and 64-bit windows 5253 */ 5254 5255 return true; 5256 } 5257 5258 static void spapr_machine_2_7_class_options(MachineClass *mc) 5259 { 5260 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5261 static GlobalProperty compat[] = { 5262 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5263 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5264 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5265 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5266 }; 5267 5268 spapr_machine_2_8_class_options(mc); 5269 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5270 mc->default_machine_opts = "modern-hotplug-events=off"; 5271 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5272 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5273 smc->phb_placement = phb_placement_2_7; 5274 } 5275 5276 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5277 5278 /* 5279 * pseries-2.6 5280 */ 5281 5282 static void spapr_machine_2_6_class_options(MachineClass *mc) 5283 { 5284 static GlobalProperty compat[] = { 5285 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5286 }; 5287 5288 spapr_machine_2_7_class_options(mc); 5289 mc->has_hotpluggable_cpus = false; 5290 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5291 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5292 } 5293 5294 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5295 5296 /* 5297 * pseries-2.5 5298 */ 5299 5300 static void spapr_machine_2_5_class_options(MachineClass *mc) 5301 { 5302 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5303 static GlobalProperty compat[] = { 5304 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5305 }; 5306 5307 spapr_machine_2_6_class_options(mc); 5308 smc->use_ohci_by_default = true; 5309 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5310 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5311 } 5312 5313 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5314 5315 /* 5316 * pseries-2.4 5317 */ 5318 5319 static void spapr_machine_2_4_class_options(MachineClass *mc) 5320 { 5321 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5322 5323 spapr_machine_2_5_class_options(mc); 5324 smc->dr_lmb_enabled = false; 5325 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5326 } 5327 5328 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5329 5330 /* 5331 * pseries-2.3 5332 */ 5333 5334 static void spapr_machine_2_3_class_options(MachineClass *mc) 5335 { 5336 static GlobalProperty compat[] = { 5337 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5338 }; 5339 spapr_machine_2_4_class_options(mc); 5340 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5341 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5342 } 5343 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5344 5345 /* 5346 * pseries-2.2 5347 */ 5348 5349 static void spapr_machine_2_2_class_options(MachineClass *mc) 5350 { 5351 static GlobalProperty compat[] = { 5352 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5353 }; 5354 5355 spapr_machine_2_3_class_options(mc); 5356 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5357 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5358 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5359 } 5360 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5361 5362 /* 5363 * pseries-2.1 5364 */ 5365 5366 static void spapr_machine_2_1_class_options(MachineClass *mc) 5367 { 5368 spapr_machine_2_2_class_options(mc); 5369 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5370 } 5371 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5372 5373 static void spapr_machine_register_types(void) 5374 { 5375 type_register_static(&spapr_machine_info); 5376 } 5377 5378 type_init(spapr_machine_register_types) 5379