1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "qom/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "qemu/cutils.h" 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 83 #include <libfdt.h> 84 85 /* SLOF memory layout: 86 * 87 * SLOF raw image loaded at 0, copies its romfs right below the flat 88 * device-tree, then position SLOF itself 31M below that 89 * 90 * So we set FW_OVERHEAD to 40MB which should account for all of that 91 * and more 92 * 93 * We load our kernel at 4M, leaving space for SLOF initial image 94 */ 95 #define FDT_MAX_SIZE 0x100000 96 #define RTAS_MAX_SIZE 0x10000 97 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 98 #define FW_MAX_SIZE 0x400000 99 #define FW_FILE_NAME "slof.bin" 100 #define FW_OVERHEAD 0x2800000 101 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 102 103 #define MIN_RMA_SLOF 128UL 104 105 #define PHANDLE_INTC 0x00001111 106 107 /* These two functions implement the VCPU id numbering: one to compute them 108 * all and one to identify thread 0 of a VCORE. Any change to the first one 109 * is likely to have an impact on the second one, so let's keep them close. 110 */ 111 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 112 { 113 MachineState *ms = MACHINE(spapr); 114 unsigned int smp_threads = ms->smp.threads; 115 116 assert(spapr->vsmt); 117 return 118 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 119 } 120 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 121 PowerPCCPU *cpu) 122 { 123 assert(spapr->vsmt); 124 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 125 } 126 127 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 128 { 129 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 130 * and newer QEMUs don't even have them. In both cases, we don't want 131 * to send anything on the wire. 132 */ 133 return false; 134 } 135 136 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 137 .name = "icp/server", 138 .version_id = 1, 139 .minimum_version_id = 1, 140 .needed = pre_2_10_vmstate_dummy_icp_needed, 141 .fields = (VMStateField[]) { 142 VMSTATE_UNUSED(4), /* uint32_t xirr */ 143 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 144 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 145 VMSTATE_END_OF_LIST() 146 }, 147 }; 148 149 static void pre_2_10_vmstate_register_dummy_icp(int i) 150 { 151 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 152 (void *)(uintptr_t) i); 153 } 154 155 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 156 { 157 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 158 (void *)(uintptr_t) i); 159 } 160 161 int spapr_max_server_number(SpaprMachineState *spapr) 162 { 163 MachineState *ms = MACHINE(spapr); 164 165 assert(spapr->vsmt); 166 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 167 } 168 169 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 170 int smt_threads) 171 { 172 int i, ret = 0; 173 uint32_t servers_prop[smt_threads]; 174 uint32_t gservers_prop[smt_threads * 2]; 175 int index = spapr_get_vcpu_id(cpu); 176 177 if (cpu->compat_pvr) { 178 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 179 if (ret < 0) { 180 return ret; 181 } 182 } 183 184 /* Build interrupt servers and gservers properties */ 185 for (i = 0; i < smt_threads; i++) { 186 servers_prop[i] = cpu_to_be32(index + i); 187 /* Hack, direct the group queues back to cpu 0 */ 188 gservers_prop[i*2] = cpu_to_be32(index + i); 189 gservers_prop[i*2 + 1] = 0; 190 } 191 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 192 servers_prop, sizeof(servers_prop)); 193 if (ret < 0) { 194 return ret; 195 } 196 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 197 gservers_prop, sizeof(gservers_prop)); 198 199 return ret; 200 } 201 202 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 203 { 204 int index = spapr_get_vcpu_id(cpu); 205 uint32_t associativity[] = {cpu_to_be32(0x5), 206 cpu_to_be32(0x0), 207 cpu_to_be32(0x0), 208 cpu_to_be32(0x0), 209 cpu_to_be32(cpu->node_id), 210 cpu_to_be32(index)}; 211 212 /* Advertise NUMA via ibm,associativity */ 213 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 214 sizeof(associativity)); 215 } 216 217 /* Populate the "ibm,pa-features" property */ 218 static void spapr_populate_pa_features(SpaprMachineState *spapr, 219 PowerPCCPU *cpu, 220 void *fdt, int offset, 221 bool legacy_guest) 222 { 223 uint8_t pa_features_206[] = { 6, 0, 224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 225 uint8_t pa_features_207[] = { 24, 0, 226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 230 uint8_t pa_features_300[] = { 66, 0, 231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 234 /* 6: DS207 */ 235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 236 /* 16: Vector */ 237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 246 /* 42: PM, 44: PC RA, 46: SC vec'd */ 247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 248 /* 48: SIMD, 50: QP BFP, 52: String */ 249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 250 /* 54: DecFP, 56: DecI, 58: SHA */ 251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 252 /* 60: NM atomic, 62: RNG */ 253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 254 }; 255 uint8_t *pa_features = NULL; 256 size_t pa_size; 257 258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 259 pa_features = pa_features_206; 260 pa_size = sizeof(pa_features_206); 261 } 262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 263 pa_features = pa_features_207; 264 pa_size = sizeof(pa_features_207); 265 } 266 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 267 pa_features = pa_features_300; 268 pa_size = sizeof(pa_features_300); 269 } 270 if (!pa_features) { 271 return; 272 } 273 274 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 275 /* 276 * Note: we keep CI large pages off by default because a 64K capable 277 * guest provisioned with large pages might otherwise try to map a qemu 278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 279 * even if that qemu runs on a 4k host. 280 * We dd this bit back here if we are confident this is not an issue 281 */ 282 pa_features[3] |= 0x20; 283 } 284 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 285 pa_features[24] |= 0x80; /* Transactional memory support */ 286 } 287 if (legacy_guest && pa_size > 40) { 288 /* Workaround for broken kernels that attempt (guest) radix 289 * mode when they can't handle it, if they see the radix bit set 290 * in pa-features. So hide it from them. */ 291 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 292 } 293 294 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 295 } 296 297 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 298 { 299 MachineState *ms = MACHINE(spapr); 300 int ret = 0, offset, cpus_offset; 301 CPUState *cs; 302 char cpu_model[32]; 303 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 304 305 CPU_FOREACH(cs) { 306 PowerPCCPU *cpu = POWERPC_CPU(cs); 307 DeviceClass *dc = DEVICE_GET_CLASS(cs); 308 int index = spapr_get_vcpu_id(cpu); 309 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu)); 310 311 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 312 continue; 313 } 314 315 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 316 317 cpus_offset = fdt_path_offset(fdt, "/cpus"); 318 if (cpus_offset < 0) { 319 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 320 if (cpus_offset < 0) { 321 return cpus_offset; 322 } 323 } 324 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 325 if (offset < 0) { 326 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 327 if (offset < 0) { 328 return offset; 329 } 330 } 331 332 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 333 pft_size_prop, sizeof(pft_size_prop)); 334 if (ret < 0) { 335 return ret; 336 } 337 338 if (nb_numa_nodes > 1) { 339 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 340 if (ret < 0) { 341 return ret; 342 } 343 } 344 345 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 346 if (ret < 0) { 347 return ret; 348 } 349 350 spapr_populate_pa_features(spapr, cpu, fdt, offset, 351 spapr->cas_legacy_guest_workaround); 352 } 353 return ret; 354 } 355 356 static hwaddr spapr_node0_size(MachineState *machine) 357 { 358 if (nb_numa_nodes) { 359 int i; 360 for (i = 0; i < nb_numa_nodes; ++i) { 361 if (numa_info[i].node_mem) { 362 return MIN(pow2floor(numa_info[i].node_mem), 363 machine->ram_size); 364 } 365 } 366 } 367 return machine->ram_size; 368 } 369 370 static void add_str(GString *s, const gchar *s1) 371 { 372 g_string_append_len(s, s1, strlen(s1) + 1); 373 } 374 375 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 376 hwaddr size) 377 { 378 uint32_t associativity[] = { 379 cpu_to_be32(0x4), /* length */ 380 cpu_to_be32(0x0), cpu_to_be32(0x0), 381 cpu_to_be32(0x0), cpu_to_be32(nodeid) 382 }; 383 char mem_name[32]; 384 uint64_t mem_reg_property[2]; 385 int off; 386 387 mem_reg_property[0] = cpu_to_be64(start); 388 mem_reg_property[1] = cpu_to_be64(size); 389 390 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 391 off = fdt_add_subnode(fdt, 0, mem_name); 392 _FDT(off); 393 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 394 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 395 sizeof(mem_reg_property)))); 396 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 397 sizeof(associativity)))); 398 return off; 399 } 400 401 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 402 { 403 MachineState *machine = MACHINE(spapr); 404 hwaddr mem_start, node_size; 405 int i, nb_nodes = nb_numa_nodes; 406 NodeInfo *nodes = numa_info; 407 NodeInfo ramnode; 408 409 /* No NUMA nodes, assume there is just one node with whole RAM */ 410 if (!nb_numa_nodes) { 411 nb_nodes = 1; 412 ramnode.node_mem = machine->ram_size; 413 nodes = &ramnode; 414 } 415 416 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 417 if (!nodes[i].node_mem) { 418 continue; 419 } 420 if (mem_start >= machine->ram_size) { 421 node_size = 0; 422 } else { 423 node_size = nodes[i].node_mem; 424 if (node_size > machine->ram_size - mem_start) { 425 node_size = machine->ram_size - mem_start; 426 } 427 } 428 if (!mem_start) { 429 /* spapr_machine_init() checks for rma_size <= node0_size 430 * already */ 431 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 432 mem_start += spapr->rma_size; 433 node_size -= spapr->rma_size; 434 } 435 for ( ; node_size; ) { 436 hwaddr sizetmp = pow2floor(node_size); 437 438 /* mem_start != 0 here */ 439 if (ctzl(mem_start) < ctzl(sizetmp)) { 440 sizetmp = 1ULL << ctzl(mem_start); 441 } 442 443 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 444 node_size -= sizetmp; 445 mem_start += sizetmp; 446 } 447 } 448 449 return 0; 450 } 451 452 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 453 SpaprMachineState *spapr) 454 { 455 MachineState *ms = MACHINE(spapr); 456 PowerPCCPU *cpu = POWERPC_CPU(cs); 457 CPUPPCState *env = &cpu->env; 458 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 459 int index = spapr_get_vcpu_id(cpu); 460 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 461 0xffffffff, 0xffffffff}; 462 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 463 : SPAPR_TIMEBASE_FREQ; 464 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 465 uint32_t page_sizes_prop[64]; 466 size_t page_sizes_prop_size; 467 unsigned int smp_threads = ms->smp.threads; 468 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 469 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 470 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 471 SpaprDrc *drc; 472 int drc_index; 473 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 474 int i; 475 476 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 477 if (drc) { 478 drc_index = spapr_drc_index(drc); 479 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 480 } 481 482 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 483 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 484 485 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 486 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 487 env->dcache_line_size))); 488 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 489 env->dcache_line_size))); 490 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 491 env->icache_line_size))); 492 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 493 env->icache_line_size))); 494 495 if (pcc->l1_dcache_size) { 496 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 497 pcc->l1_dcache_size))); 498 } else { 499 warn_report("Unknown L1 dcache size for cpu"); 500 } 501 if (pcc->l1_icache_size) { 502 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 503 pcc->l1_icache_size))); 504 } else { 505 warn_report("Unknown L1 icache size for cpu"); 506 } 507 508 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 509 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 510 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 511 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 512 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 513 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 514 515 if (env->spr_cb[SPR_PURR].oea_read) { 516 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 517 } 518 if (env->spr_cb[SPR_SPURR].oea_read) { 519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 520 } 521 522 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 523 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 524 segs, sizeof(segs)))); 525 } 526 527 /* Advertise VSX (vector extensions) if available 528 * 1 == VMX / Altivec available 529 * 2 == VSX available 530 * 531 * Only CPUs for which we create core types in spapr_cpu_core.c 532 * are possible, and all of those have VMX */ 533 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 534 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 535 } else { 536 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 537 } 538 539 /* Advertise DFP (Decimal Floating Point) if available 540 * 0 / no property == no DFP 541 * 1 == DFP available */ 542 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 543 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 544 } 545 546 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 547 sizeof(page_sizes_prop)); 548 if (page_sizes_prop_size) { 549 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 550 page_sizes_prop, page_sizes_prop_size))); 551 } 552 553 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 554 555 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 556 cs->cpu_index / vcpus_per_socket))); 557 558 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 559 pft_size_prop, sizeof(pft_size_prop)))); 560 561 if (nb_numa_nodes > 1) { 562 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 563 } 564 565 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 566 567 if (pcc->radix_page_info) { 568 for (i = 0; i < pcc->radix_page_info->count; i++) { 569 radix_AP_encodings[i] = 570 cpu_to_be32(pcc->radix_page_info->entries[i]); 571 } 572 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 573 radix_AP_encodings, 574 pcc->radix_page_info->count * 575 sizeof(radix_AP_encodings[0])))); 576 } 577 578 /* 579 * We set this property to let the guest know that it can use the large 580 * decrementer and its width in bits. 581 */ 582 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 583 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 584 pcc->lrg_decr_bits))); 585 } 586 587 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 588 { 589 CPUState **rev; 590 CPUState *cs; 591 int n_cpus; 592 int cpus_offset; 593 char *nodename; 594 int i; 595 596 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 597 _FDT(cpus_offset); 598 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 600 601 /* 602 * We walk the CPUs in reverse order to ensure that CPU DT nodes 603 * created by fdt_add_subnode() end up in the right order in FDT 604 * for the guest kernel the enumerate the CPUs correctly. 605 * 606 * The CPU list cannot be traversed in reverse order, so we need 607 * to do extra work. 608 */ 609 n_cpus = 0; 610 rev = NULL; 611 CPU_FOREACH(cs) { 612 rev = g_renew(CPUState *, rev, n_cpus + 1); 613 rev[n_cpus++] = cs; 614 } 615 616 for (i = n_cpus - 1; i >= 0; i--) { 617 CPUState *cs = rev[i]; 618 PowerPCCPU *cpu = POWERPC_CPU(cs); 619 int index = spapr_get_vcpu_id(cpu); 620 DeviceClass *dc = DEVICE_GET_CLASS(cs); 621 int offset; 622 623 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 624 continue; 625 } 626 627 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 628 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 629 g_free(nodename); 630 _FDT(offset); 631 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 632 } 633 634 g_free(rev); 635 } 636 637 static int spapr_rng_populate_dt(void *fdt) 638 { 639 int node; 640 int ret; 641 642 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 643 if (node <= 0) { 644 return -1; 645 } 646 ret = fdt_setprop_string(fdt, node, "device_type", 647 "ibm,platform-facilities"); 648 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 649 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 650 651 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 652 if (node <= 0) { 653 return -1; 654 } 655 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 656 657 return ret ? -1 : 0; 658 } 659 660 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 661 { 662 MemoryDeviceInfoList *info; 663 664 for (info = list; info; info = info->next) { 665 MemoryDeviceInfo *value = info->value; 666 667 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 668 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 669 670 if (addr >= pcdimm_info->addr && 671 addr < (pcdimm_info->addr + pcdimm_info->size)) { 672 return pcdimm_info->node; 673 } 674 } 675 } 676 677 return -1; 678 } 679 680 struct sPAPRDrconfCellV2 { 681 uint32_t seq_lmbs; 682 uint64_t base_addr; 683 uint32_t drc_index; 684 uint32_t aa_index; 685 uint32_t flags; 686 } QEMU_PACKED; 687 688 typedef struct DrconfCellQueue { 689 struct sPAPRDrconfCellV2 cell; 690 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 691 } DrconfCellQueue; 692 693 static DrconfCellQueue * 694 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 695 uint32_t drc_index, uint32_t aa_index, 696 uint32_t flags) 697 { 698 DrconfCellQueue *elem; 699 700 elem = g_malloc0(sizeof(*elem)); 701 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 702 elem->cell.base_addr = cpu_to_be64(base_addr); 703 elem->cell.drc_index = cpu_to_be32(drc_index); 704 elem->cell.aa_index = cpu_to_be32(aa_index); 705 elem->cell.flags = cpu_to_be32(flags); 706 707 return elem; 708 } 709 710 /* ibm,dynamic-memory-v2 */ 711 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 712 int offset, MemoryDeviceInfoList *dimms) 713 { 714 MachineState *machine = MACHINE(spapr); 715 uint8_t *int_buf, *cur_index; 716 int ret; 717 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 718 uint64_t addr, cur_addr, size; 719 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 720 uint64_t mem_end = machine->device_memory->base + 721 memory_region_size(&machine->device_memory->mr); 722 uint32_t node, buf_len, nr_entries = 0; 723 SpaprDrc *drc; 724 DrconfCellQueue *elem, *next; 725 MemoryDeviceInfoList *info; 726 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 727 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 728 729 /* Entry to cover RAM and the gap area */ 730 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 731 SPAPR_LMB_FLAGS_RESERVED | 732 SPAPR_LMB_FLAGS_DRC_INVALID); 733 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 734 nr_entries++; 735 736 cur_addr = machine->device_memory->base; 737 for (info = dimms; info; info = info->next) { 738 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 739 740 addr = di->addr; 741 size = di->size; 742 node = di->node; 743 744 /* Entry for hot-pluggable area */ 745 if (cur_addr < addr) { 746 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 747 g_assert(drc); 748 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 749 cur_addr, spapr_drc_index(drc), -1, 0); 750 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 751 nr_entries++; 752 } 753 754 /* Entry for DIMM */ 755 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 756 g_assert(drc); 757 elem = spapr_get_drconf_cell(size / lmb_size, addr, 758 spapr_drc_index(drc), node, 759 SPAPR_LMB_FLAGS_ASSIGNED); 760 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 761 nr_entries++; 762 cur_addr = addr + size; 763 } 764 765 /* Entry for remaining hotpluggable area */ 766 if (cur_addr < mem_end) { 767 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 768 g_assert(drc); 769 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 770 cur_addr, spapr_drc_index(drc), -1, 0); 771 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 772 nr_entries++; 773 } 774 775 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 776 int_buf = cur_index = g_malloc0(buf_len); 777 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 778 cur_index += sizeof(nr_entries); 779 780 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 781 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 782 cur_index += sizeof(elem->cell); 783 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 784 g_free(elem); 785 } 786 787 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 788 g_free(int_buf); 789 if (ret < 0) { 790 return -1; 791 } 792 return 0; 793 } 794 795 /* ibm,dynamic-memory */ 796 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 797 int offset, MemoryDeviceInfoList *dimms) 798 { 799 MachineState *machine = MACHINE(spapr); 800 int i, ret; 801 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 802 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 803 uint32_t nr_lmbs = (machine->device_memory->base + 804 memory_region_size(&machine->device_memory->mr)) / 805 lmb_size; 806 uint32_t *int_buf, *cur_index, buf_len; 807 808 /* 809 * Allocate enough buffer size to fit in ibm,dynamic-memory 810 */ 811 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 812 cur_index = int_buf = g_malloc0(buf_len); 813 int_buf[0] = cpu_to_be32(nr_lmbs); 814 cur_index++; 815 for (i = 0; i < nr_lmbs; i++) { 816 uint64_t addr = i * lmb_size; 817 uint32_t *dynamic_memory = cur_index; 818 819 if (i >= device_lmb_start) { 820 SpaprDrc *drc; 821 822 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 823 g_assert(drc); 824 825 dynamic_memory[0] = cpu_to_be32(addr >> 32); 826 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 827 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 828 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 829 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 830 if (memory_region_present(get_system_memory(), addr)) { 831 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 832 } else { 833 dynamic_memory[5] = cpu_to_be32(0); 834 } 835 } else { 836 /* 837 * LMB information for RMA, boot time RAM and gap b/n RAM and 838 * device memory region -- all these are marked as reserved 839 * and as having no valid DRC. 840 */ 841 dynamic_memory[0] = cpu_to_be32(addr >> 32); 842 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 843 dynamic_memory[2] = cpu_to_be32(0); 844 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 845 dynamic_memory[4] = cpu_to_be32(-1); 846 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 847 SPAPR_LMB_FLAGS_DRC_INVALID); 848 } 849 850 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 851 } 852 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 853 g_free(int_buf); 854 if (ret < 0) { 855 return -1; 856 } 857 return 0; 858 } 859 860 /* 861 * Adds ibm,dynamic-reconfiguration-memory node. 862 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 863 * of this device tree node. 864 */ 865 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 866 { 867 MachineState *machine = MACHINE(spapr); 868 int ret, i, offset; 869 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 870 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 871 uint32_t *int_buf, *cur_index, buf_len; 872 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 873 MemoryDeviceInfoList *dimms = NULL; 874 875 /* 876 * Don't create the node if there is no device memory 877 */ 878 if (machine->ram_size == machine->maxram_size) { 879 return 0; 880 } 881 882 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 883 884 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 885 sizeof(prop_lmb_size)); 886 if (ret < 0) { 887 return ret; 888 } 889 890 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 891 if (ret < 0) { 892 return ret; 893 } 894 895 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 896 if (ret < 0) { 897 return ret; 898 } 899 900 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 901 dimms = qmp_memory_device_list(); 902 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 903 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 904 } else { 905 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 906 } 907 qapi_free_MemoryDeviceInfoList(dimms); 908 909 if (ret < 0) { 910 return ret; 911 } 912 913 /* ibm,associativity-lookup-arrays */ 914 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 915 cur_index = int_buf = g_malloc0(buf_len); 916 int_buf[0] = cpu_to_be32(nr_nodes); 917 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 918 cur_index += 2; 919 for (i = 0; i < nr_nodes; i++) { 920 uint32_t associativity[] = { 921 cpu_to_be32(0x0), 922 cpu_to_be32(0x0), 923 cpu_to_be32(0x0), 924 cpu_to_be32(i) 925 }; 926 memcpy(cur_index, associativity, sizeof(associativity)); 927 cur_index += 4; 928 } 929 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 930 (cur_index - int_buf) * sizeof(uint32_t)); 931 g_free(int_buf); 932 933 return ret; 934 } 935 936 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 937 SpaprOptionVector *ov5_updates) 938 { 939 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 940 int ret = 0, offset; 941 942 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 943 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 944 g_assert(smc->dr_lmb_enabled); 945 ret = spapr_populate_drconf_memory(spapr, fdt); 946 if (ret) { 947 goto out; 948 } 949 } 950 951 offset = fdt_path_offset(fdt, "/chosen"); 952 if (offset < 0) { 953 offset = fdt_add_subnode(fdt, 0, "chosen"); 954 if (offset < 0) { 955 return offset; 956 } 957 } 958 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 959 "ibm,architecture-vec-5"); 960 961 out: 962 return ret; 963 } 964 965 static bool spapr_hotplugged_dev_before_cas(void) 966 { 967 Object *drc_container, *obj; 968 ObjectProperty *prop; 969 ObjectPropertyIterator iter; 970 971 drc_container = container_get(object_get_root(), "/dr-connector"); 972 object_property_iter_init(&iter, drc_container); 973 while ((prop = object_property_iter_next(&iter))) { 974 if (!strstart(prop->type, "link<", NULL)) { 975 continue; 976 } 977 obj = object_property_get_link(drc_container, prop->name, NULL); 978 if (spapr_drc_needed(obj)) { 979 return true; 980 } 981 } 982 return false; 983 } 984 985 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 986 target_ulong addr, target_ulong size, 987 SpaprOptionVector *ov5_updates) 988 { 989 void *fdt, *fdt_skel; 990 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 991 992 if (spapr_hotplugged_dev_before_cas()) { 993 return 1; 994 } 995 996 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 997 error_report("SLOF provided an unexpected CAS buffer size " 998 TARGET_FMT_lu " (min: %zu, max: %u)", 999 size, sizeof(hdr), FW_MAX_SIZE); 1000 exit(EXIT_FAILURE); 1001 } 1002 1003 size -= sizeof(hdr); 1004 1005 /* Create skeleton */ 1006 fdt_skel = g_malloc0(size); 1007 _FDT((fdt_create(fdt_skel, size))); 1008 _FDT((fdt_finish_reservemap(fdt_skel))); 1009 _FDT((fdt_begin_node(fdt_skel, ""))); 1010 _FDT((fdt_end_node(fdt_skel))); 1011 _FDT((fdt_finish(fdt_skel))); 1012 fdt = g_malloc0(size); 1013 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1014 g_free(fdt_skel); 1015 1016 /* Fixup cpu nodes */ 1017 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1018 1019 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1020 return -1; 1021 } 1022 1023 /* Pack resulting tree */ 1024 _FDT((fdt_pack(fdt))); 1025 1026 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1027 trace_spapr_cas_failed(size); 1028 return -1; 1029 } 1030 1031 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1032 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1033 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1034 g_free(fdt); 1035 1036 return 0; 1037 } 1038 1039 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1040 { 1041 MachineState *ms = MACHINE(spapr); 1042 int rtas; 1043 GString *hypertas = g_string_sized_new(256); 1044 GString *qemu_hypertas = g_string_sized_new(256); 1045 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1046 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1047 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1048 uint32_t lrdr_capacity[] = { 1049 cpu_to_be32(max_device_addr >> 32), 1050 cpu_to_be32(max_device_addr & 0xffffffff), 1051 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1052 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 1053 }; 1054 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1055 uint32_t maxdomains[] = { 1056 cpu_to_be32(4), 1057 maxdomain, 1058 maxdomain, 1059 maxdomain, 1060 cpu_to_be32(spapr->gpu_numa_id), 1061 }; 1062 1063 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1064 1065 /* hypertas */ 1066 add_str(hypertas, "hcall-pft"); 1067 add_str(hypertas, "hcall-term"); 1068 add_str(hypertas, "hcall-dabr"); 1069 add_str(hypertas, "hcall-interrupt"); 1070 add_str(hypertas, "hcall-tce"); 1071 add_str(hypertas, "hcall-vio"); 1072 add_str(hypertas, "hcall-splpar"); 1073 add_str(hypertas, "hcall-join"); 1074 add_str(hypertas, "hcall-bulk"); 1075 add_str(hypertas, "hcall-set-mode"); 1076 add_str(hypertas, "hcall-sprg0"); 1077 add_str(hypertas, "hcall-copy"); 1078 add_str(hypertas, "hcall-debug"); 1079 add_str(hypertas, "hcall-vphn"); 1080 add_str(qemu_hypertas, "hcall-memop1"); 1081 1082 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1083 add_str(hypertas, "hcall-multi-tce"); 1084 } 1085 1086 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1087 add_str(hypertas, "hcall-hpt-resize"); 1088 } 1089 1090 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1091 hypertas->str, hypertas->len)); 1092 g_string_free(hypertas, TRUE); 1093 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1094 qemu_hypertas->str, qemu_hypertas->len)); 1095 g_string_free(qemu_hypertas, TRUE); 1096 1097 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1098 refpoints, sizeof(refpoints))); 1099 1100 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1101 maxdomains, sizeof(maxdomains))); 1102 1103 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1104 RTAS_ERROR_LOG_MAX)); 1105 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1106 RTAS_EVENT_SCAN_RATE)); 1107 1108 g_assert(msi_nonbroken); 1109 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1110 1111 /* 1112 * According to PAPR, rtas ibm,os-term does not guarantee a return 1113 * back to the guest cpu. 1114 * 1115 * While an additional ibm,extended-os-term property indicates 1116 * that rtas call return will always occur. Set this property. 1117 */ 1118 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1119 1120 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1121 lrdr_capacity, sizeof(lrdr_capacity))); 1122 1123 spapr_dt_rtas_tokens(fdt, rtas); 1124 } 1125 1126 /* 1127 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1128 * and the XIVE features that the guest may request and thus the valid 1129 * values for bytes 23..26 of option vector 5: 1130 */ 1131 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1132 int chosen) 1133 { 1134 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1135 1136 char val[2 * 4] = { 1137 23, spapr->irq->ov5, /* Xive mode. */ 1138 24, 0x00, /* Hash/Radix, filled in below. */ 1139 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1140 26, 0x40, /* Radix options: GTSE == yes. */ 1141 }; 1142 1143 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1144 first_ppc_cpu->compat_pvr)) { 1145 /* 1146 * If we're in a pre POWER9 compat mode then the guest should 1147 * do hash and use the legacy interrupt mode 1148 */ 1149 val[1] = 0x00; /* XICS */ 1150 val[3] = 0x00; /* Hash */ 1151 } else if (kvm_enabled()) { 1152 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1153 val[3] = 0x80; /* OV5_MMU_BOTH */ 1154 } else if (kvmppc_has_cap_mmu_radix()) { 1155 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1156 } else { 1157 val[3] = 0x00; /* Hash */ 1158 } 1159 } else { 1160 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1161 val[3] = 0xC0; 1162 } 1163 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1164 val, sizeof(val))); 1165 } 1166 1167 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1168 { 1169 MachineState *machine = MACHINE(spapr); 1170 int chosen; 1171 const char *boot_device = machine->boot_order; 1172 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1173 size_t cb = 0; 1174 char *bootlist = get_boot_devices_list(&cb); 1175 1176 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1177 1178 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1179 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1180 spapr->initrd_base)); 1181 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1182 spapr->initrd_base + spapr->initrd_size)); 1183 1184 if (spapr->kernel_size) { 1185 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1186 cpu_to_be64(spapr->kernel_size) }; 1187 1188 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1189 &kprop, sizeof(kprop))); 1190 if (spapr->kernel_le) { 1191 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1192 } 1193 } 1194 if (boot_menu) { 1195 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1196 } 1197 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1198 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1199 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1200 1201 if (cb && bootlist) { 1202 int i; 1203 1204 for (i = 0; i < cb; i++) { 1205 if (bootlist[i] == '\n') { 1206 bootlist[i] = ' '; 1207 } 1208 } 1209 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1210 } 1211 1212 if (boot_device && strlen(boot_device)) { 1213 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1214 } 1215 1216 if (!spapr->has_graphics && stdout_path) { 1217 /* 1218 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1219 * kernel. New platforms should only use the "stdout-path" property. Set 1220 * the new property and continue using older property to remain 1221 * compatible with the existing firmware. 1222 */ 1223 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1224 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1225 } 1226 1227 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1228 1229 g_free(stdout_path); 1230 g_free(bootlist); 1231 } 1232 1233 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1234 { 1235 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1236 * KVM to work under pHyp with some guest co-operation */ 1237 int hypervisor; 1238 uint8_t hypercall[16]; 1239 1240 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1241 /* indicate KVM hypercall interface */ 1242 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1243 if (kvmppc_has_cap_fixup_hcalls()) { 1244 /* 1245 * Older KVM versions with older guest kernels were broken 1246 * with the magic page, don't allow the guest to map it. 1247 */ 1248 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1249 sizeof(hypercall))) { 1250 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1251 hypercall, sizeof(hypercall))); 1252 } 1253 } 1254 } 1255 1256 static void *spapr_build_fdt(SpaprMachineState *spapr) 1257 { 1258 MachineState *machine = MACHINE(spapr); 1259 MachineClass *mc = MACHINE_GET_CLASS(machine); 1260 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1261 int ret; 1262 void *fdt; 1263 SpaprPhbState *phb; 1264 char *buf; 1265 1266 fdt = g_malloc0(FDT_MAX_SIZE); 1267 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1268 1269 /* Root node */ 1270 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1271 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1272 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1273 1274 /* Guest UUID & Name*/ 1275 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1276 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1277 if (qemu_uuid_set) { 1278 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1279 } 1280 g_free(buf); 1281 1282 if (qemu_get_vm_name()) { 1283 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1284 qemu_get_vm_name())); 1285 } 1286 1287 /* Host Model & Serial Number */ 1288 if (spapr->host_model) { 1289 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1290 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1291 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1292 g_free(buf); 1293 } 1294 1295 if (spapr->host_serial) { 1296 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1297 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1298 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1299 g_free(buf); 1300 } 1301 1302 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1303 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1304 1305 /* /interrupt controller */ 1306 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1307 PHANDLE_INTC); 1308 1309 ret = spapr_populate_memory(spapr, fdt); 1310 if (ret < 0) { 1311 error_report("couldn't setup memory nodes in fdt"); 1312 exit(1); 1313 } 1314 1315 /* /vdevice */ 1316 spapr_dt_vdevice(spapr->vio_bus, fdt); 1317 1318 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1319 ret = spapr_rng_populate_dt(fdt); 1320 if (ret < 0) { 1321 error_report("could not set up rng device in the fdt"); 1322 exit(1); 1323 } 1324 } 1325 1326 QLIST_FOREACH(phb, &spapr->phbs, list) { 1327 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1328 if (ret < 0) { 1329 error_report("couldn't setup PCI devices in fdt"); 1330 exit(1); 1331 } 1332 } 1333 1334 /* cpus */ 1335 spapr_populate_cpus_dt_node(fdt, spapr); 1336 1337 if (smc->dr_lmb_enabled) { 1338 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1339 } 1340 1341 if (mc->has_hotpluggable_cpus) { 1342 int offset = fdt_path_offset(fdt, "/cpus"); 1343 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1344 if (ret < 0) { 1345 error_report("Couldn't set up CPU DR device tree properties"); 1346 exit(1); 1347 } 1348 } 1349 1350 /* /event-sources */ 1351 spapr_dt_events(spapr, fdt); 1352 1353 /* /rtas */ 1354 spapr_dt_rtas(spapr, fdt); 1355 1356 /* /chosen */ 1357 spapr_dt_chosen(spapr, fdt); 1358 1359 /* /hypervisor */ 1360 if (kvm_enabled()) { 1361 spapr_dt_hypervisor(spapr, fdt); 1362 } 1363 1364 /* Build memory reserve map */ 1365 if (spapr->kernel_size) { 1366 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1367 } 1368 if (spapr->initrd_size) { 1369 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1370 } 1371 1372 /* ibm,client-architecture-support updates */ 1373 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1374 if (ret < 0) { 1375 error_report("couldn't setup CAS properties fdt"); 1376 exit(1); 1377 } 1378 1379 if (smc->dr_phb_enabled) { 1380 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1381 if (ret < 0) { 1382 error_report("Couldn't set up PHB DR device tree properties"); 1383 exit(1); 1384 } 1385 } 1386 1387 return fdt; 1388 } 1389 1390 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1391 { 1392 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1393 } 1394 1395 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1396 PowerPCCPU *cpu) 1397 { 1398 CPUPPCState *env = &cpu->env; 1399 1400 /* The TCG path should also be holding the BQL at this point */ 1401 g_assert(qemu_mutex_iothread_locked()); 1402 1403 if (msr_pr) { 1404 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1405 env->gpr[3] = H_PRIVILEGE; 1406 } else { 1407 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1408 } 1409 } 1410 1411 struct LPCRSyncState { 1412 target_ulong value; 1413 target_ulong mask; 1414 }; 1415 1416 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1417 { 1418 struct LPCRSyncState *s = arg.host_ptr; 1419 PowerPCCPU *cpu = POWERPC_CPU(cs); 1420 CPUPPCState *env = &cpu->env; 1421 target_ulong lpcr; 1422 1423 cpu_synchronize_state(cs); 1424 lpcr = env->spr[SPR_LPCR]; 1425 lpcr &= ~s->mask; 1426 lpcr |= s->value; 1427 ppc_store_lpcr(cpu, lpcr); 1428 } 1429 1430 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1431 { 1432 CPUState *cs; 1433 struct LPCRSyncState s = { 1434 .value = value, 1435 .mask = mask 1436 }; 1437 CPU_FOREACH(cs) { 1438 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1439 } 1440 } 1441 1442 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1443 { 1444 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1445 1446 /* Copy PATE1:GR into PATE0:HR */ 1447 entry->dw0 = spapr->patb_entry & PATE0_HR; 1448 entry->dw1 = spapr->patb_entry; 1449 } 1450 1451 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1452 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1453 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1454 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1455 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1456 1457 /* 1458 * Get the fd to access the kernel htab, re-opening it if necessary 1459 */ 1460 static int get_htab_fd(SpaprMachineState *spapr) 1461 { 1462 Error *local_err = NULL; 1463 1464 if (spapr->htab_fd >= 0) { 1465 return spapr->htab_fd; 1466 } 1467 1468 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1469 if (spapr->htab_fd < 0) { 1470 error_report_err(local_err); 1471 } 1472 1473 return spapr->htab_fd; 1474 } 1475 1476 void close_htab_fd(SpaprMachineState *spapr) 1477 { 1478 if (spapr->htab_fd >= 0) { 1479 close(spapr->htab_fd); 1480 } 1481 spapr->htab_fd = -1; 1482 } 1483 1484 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1485 { 1486 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1487 1488 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1489 } 1490 1491 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1492 { 1493 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1494 1495 assert(kvm_enabled()); 1496 1497 if (!spapr->htab) { 1498 return 0; 1499 } 1500 1501 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1502 } 1503 1504 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1505 hwaddr ptex, int n) 1506 { 1507 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1508 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1509 1510 if (!spapr->htab) { 1511 /* 1512 * HTAB is controlled by KVM. Fetch into temporary buffer 1513 */ 1514 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1515 kvmppc_read_hptes(hptes, ptex, n); 1516 return hptes; 1517 } 1518 1519 /* 1520 * HTAB is controlled by QEMU. Just point to the internally 1521 * accessible PTEG. 1522 */ 1523 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1524 } 1525 1526 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1527 const ppc_hash_pte64_t *hptes, 1528 hwaddr ptex, int n) 1529 { 1530 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1531 1532 if (!spapr->htab) { 1533 g_free((void *)hptes); 1534 } 1535 1536 /* Nothing to do for qemu managed HPT */ 1537 } 1538 1539 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1540 uint64_t pte0, uint64_t pte1) 1541 { 1542 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1543 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1544 1545 if (!spapr->htab) { 1546 kvmppc_write_hpte(ptex, pte0, pte1); 1547 } else { 1548 if (pte0 & HPTE64_V_VALID) { 1549 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1550 /* 1551 * When setting valid, we write PTE1 first. This ensures 1552 * proper synchronization with the reading code in 1553 * ppc_hash64_pteg_search() 1554 */ 1555 smp_wmb(); 1556 stq_p(spapr->htab + offset, pte0); 1557 } else { 1558 stq_p(spapr->htab + offset, pte0); 1559 /* 1560 * When clearing it we set PTE0 first. This ensures proper 1561 * synchronization with the reading code in 1562 * ppc_hash64_pteg_search() 1563 */ 1564 smp_wmb(); 1565 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1566 } 1567 } 1568 } 1569 1570 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1571 uint64_t pte1) 1572 { 1573 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1574 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1575 1576 if (!spapr->htab) { 1577 /* There should always be a hash table when this is called */ 1578 error_report("spapr_hpte_set_c called with no hash table !"); 1579 return; 1580 } 1581 1582 /* The HW performs a non-atomic byte update */ 1583 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1584 } 1585 1586 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1587 uint64_t pte1) 1588 { 1589 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1590 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1591 1592 if (!spapr->htab) { 1593 /* There should always be a hash table when this is called */ 1594 error_report("spapr_hpte_set_r called with no hash table !"); 1595 return; 1596 } 1597 1598 /* The HW performs a non-atomic byte update */ 1599 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1600 } 1601 1602 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1603 { 1604 int shift; 1605 1606 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1607 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1608 * that's much more than is needed for Linux guests */ 1609 shift = ctz64(pow2ceil(ramsize)) - 7; 1610 shift = MAX(shift, 18); /* Minimum architected size */ 1611 shift = MIN(shift, 46); /* Maximum architected size */ 1612 return shift; 1613 } 1614 1615 void spapr_free_hpt(SpaprMachineState *spapr) 1616 { 1617 g_free(spapr->htab); 1618 spapr->htab = NULL; 1619 spapr->htab_shift = 0; 1620 close_htab_fd(spapr); 1621 } 1622 1623 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1624 Error **errp) 1625 { 1626 long rc; 1627 1628 /* Clean up any HPT info from a previous boot */ 1629 spapr_free_hpt(spapr); 1630 1631 rc = kvmppc_reset_htab(shift); 1632 if (rc < 0) { 1633 /* kernel-side HPT needed, but couldn't allocate one */ 1634 error_setg_errno(errp, errno, 1635 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1636 shift); 1637 /* This is almost certainly fatal, but if the caller really 1638 * wants to carry on with shift == 0, it's welcome to try */ 1639 } else if (rc > 0) { 1640 /* kernel-side HPT allocated */ 1641 if (rc != shift) { 1642 error_setg(errp, 1643 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1644 shift, rc); 1645 } 1646 1647 spapr->htab_shift = shift; 1648 spapr->htab = NULL; 1649 } else { 1650 /* kernel-side HPT not needed, allocate in userspace instead */ 1651 size_t size = 1ULL << shift; 1652 int i; 1653 1654 spapr->htab = qemu_memalign(size, size); 1655 if (!spapr->htab) { 1656 error_setg_errno(errp, errno, 1657 "Could not allocate HPT of order %d", shift); 1658 return; 1659 } 1660 1661 memset(spapr->htab, 0, size); 1662 spapr->htab_shift = shift; 1663 1664 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1665 DIRTY_HPTE(HPTE(spapr->htab, i)); 1666 } 1667 } 1668 /* We're setting up a hash table, so that means we're not radix */ 1669 spapr->patb_entry = 0; 1670 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1671 } 1672 1673 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1674 { 1675 int hpt_shift; 1676 1677 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1678 || (spapr->cas_reboot 1679 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1680 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1681 } else { 1682 uint64_t current_ram_size; 1683 1684 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1685 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1686 } 1687 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1688 1689 if (spapr->vrma_adjust) { 1690 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1691 spapr->htab_shift); 1692 } 1693 } 1694 1695 static int spapr_reset_drcs(Object *child, void *opaque) 1696 { 1697 SpaprDrc *drc = 1698 (SpaprDrc *) object_dynamic_cast(child, 1699 TYPE_SPAPR_DR_CONNECTOR); 1700 1701 if (drc) { 1702 spapr_drc_reset(drc); 1703 } 1704 1705 return 0; 1706 } 1707 1708 static void spapr_machine_reset(MachineState *machine) 1709 { 1710 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1711 PowerPCCPU *first_ppc_cpu; 1712 uint32_t rtas_limit; 1713 hwaddr rtas_addr, fdt_addr; 1714 void *fdt; 1715 int rc; 1716 1717 spapr_caps_apply(spapr); 1718 1719 first_ppc_cpu = POWERPC_CPU(first_cpu); 1720 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1721 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1722 spapr->max_compat_pvr)) { 1723 /* 1724 * If using KVM with radix mode available, VCPUs can be started 1725 * without a HPT because KVM will start them in radix mode. 1726 * Set the GR bit in PATE so that we know there is no HPT. 1727 */ 1728 spapr->patb_entry = PATE1_GR; 1729 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1730 } else { 1731 spapr_setup_hpt_and_vrma(spapr); 1732 } 1733 1734 /* 1735 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1736 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1737 * called from vPHB reset handler so we initialize the counter here. 1738 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1739 * must be equally distant from any other node. 1740 * The final value of spapr->gpu_numa_id is going to be written to 1741 * max-associativity-domains in spapr_build_fdt(). 1742 */ 1743 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1744 qemu_devices_reset(); 1745 1746 /* 1747 * If this reset wasn't generated by CAS, we should reset our 1748 * negotiated options and start from scratch 1749 */ 1750 if (!spapr->cas_reboot) { 1751 spapr_ovec_cleanup(spapr->ov5_cas); 1752 spapr->ov5_cas = spapr_ovec_new(); 1753 1754 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1755 } 1756 1757 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1758 spapr_irq_msi_reset(spapr); 1759 } 1760 1761 /* 1762 * This is fixing some of the default configuration of the XIVE 1763 * devices. To be called after the reset of the machine devices. 1764 */ 1765 spapr_irq_reset(spapr, &error_fatal); 1766 1767 /* 1768 * There is no CAS under qtest. Simulate one to please the code that 1769 * depends on spapr->ov5_cas. This is especially needed to test device 1770 * unplug, so we do that before resetting the DRCs. 1771 */ 1772 if (qtest_enabled()) { 1773 spapr_ovec_cleanup(spapr->ov5_cas); 1774 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1775 } 1776 1777 /* DRC reset may cause a device to be unplugged. This will cause troubles 1778 * if this device is used by another device (eg, a running vhost backend 1779 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1780 * situations, we reset DRCs after all devices have been reset. 1781 */ 1782 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1783 1784 spapr_clear_pending_events(spapr); 1785 1786 /* 1787 * We place the device tree and RTAS just below either the top of the RMA, 1788 * or just below 2GB, whichever is lower, so that it can be 1789 * processed with 32-bit real mode code if necessary 1790 */ 1791 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1792 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1793 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1794 1795 fdt = spapr_build_fdt(spapr); 1796 1797 spapr_load_rtas(spapr, fdt, rtas_addr); 1798 1799 rc = fdt_pack(fdt); 1800 1801 /* Should only fail if we've built a corrupted tree */ 1802 assert(rc == 0); 1803 1804 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1805 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1806 fdt_totalsize(fdt), FDT_MAX_SIZE); 1807 exit(1); 1808 } 1809 1810 /* Load the fdt */ 1811 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1812 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1813 g_free(spapr->fdt_blob); 1814 spapr->fdt_size = fdt_totalsize(fdt); 1815 spapr->fdt_initial_size = spapr->fdt_size; 1816 spapr->fdt_blob = fdt; 1817 1818 /* Set up the entry state */ 1819 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1820 first_ppc_cpu->env.gpr[5] = 0; 1821 1822 spapr->cas_reboot = false; 1823 } 1824 1825 static void spapr_create_nvram(SpaprMachineState *spapr) 1826 { 1827 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1828 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1829 1830 if (dinfo) { 1831 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1832 &error_fatal); 1833 } 1834 1835 qdev_init_nofail(dev); 1836 1837 spapr->nvram = (struct SpaprNvram *)dev; 1838 } 1839 1840 static void spapr_rtc_create(SpaprMachineState *spapr) 1841 { 1842 object_initialize_child(OBJECT(spapr), "rtc", 1843 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1844 &error_fatal, NULL); 1845 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1846 &error_fatal); 1847 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1848 "date", &error_fatal); 1849 } 1850 1851 /* Returns whether we want to use VGA or not */ 1852 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1853 { 1854 switch (vga_interface_type) { 1855 case VGA_NONE: 1856 return false; 1857 case VGA_DEVICE: 1858 return true; 1859 case VGA_STD: 1860 case VGA_VIRTIO: 1861 case VGA_CIRRUS: 1862 return pci_vga_init(pci_bus) != NULL; 1863 default: 1864 error_setg(errp, 1865 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1866 return false; 1867 } 1868 } 1869 1870 static int spapr_pre_load(void *opaque) 1871 { 1872 int rc; 1873 1874 rc = spapr_caps_pre_load(opaque); 1875 if (rc) { 1876 return rc; 1877 } 1878 1879 return 0; 1880 } 1881 1882 static int spapr_post_load(void *opaque, int version_id) 1883 { 1884 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1885 int err = 0; 1886 1887 err = spapr_caps_post_migration(spapr); 1888 if (err) { 1889 return err; 1890 } 1891 1892 /* 1893 * In earlier versions, there was no separate qdev for the PAPR 1894 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1895 * So when migrating from those versions, poke the incoming offset 1896 * value into the RTC device 1897 */ 1898 if (version_id < 3) { 1899 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1900 if (err) { 1901 return err; 1902 } 1903 } 1904 1905 if (kvm_enabled() && spapr->patb_entry) { 1906 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1907 bool radix = !!(spapr->patb_entry & PATE1_GR); 1908 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1909 1910 /* 1911 * Update LPCR:HR and UPRT as they may not be set properly in 1912 * the stream 1913 */ 1914 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1915 LPCR_HR | LPCR_UPRT); 1916 1917 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1918 if (err) { 1919 error_report("Process table config unsupported by the host"); 1920 return -EINVAL; 1921 } 1922 } 1923 1924 err = spapr_irq_post_load(spapr, version_id); 1925 if (err) { 1926 return err; 1927 } 1928 1929 return err; 1930 } 1931 1932 static int spapr_pre_save(void *opaque) 1933 { 1934 int rc; 1935 1936 rc = spapr_caps_pre_save(opaque); 1937 if (rc) { 1938 return rc; 1939 } 1940 1941 return 0; 1942 } 1943 1944 static bool version_before_3(void *opaque, int version_id) 1945 { 1946 return version_id < 3; 1947 } 1948 1949 static bool spapr_pending_events_needed(void *opaque) 1950 { 1951 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1952 return !QTAILQ_EMPTY(&spapr->pending_events); 1953 } 1954 1955 static const VMStateDescription vmstate_spapr_event_entry = { 1956 .name = "spapr_event_log_entry", 1957 .version_id = 1, 1958 .minimum_version_id = 1, 1959 .fields = (VMStateField[]) { 1960 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1961 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1962 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1963 NULL, extended_length), 1964 VMSTATE_END_OF_LIST() 1965 }, 1966 }; 1967 1968 static const VMStateDescription vmstate_spapr_pending_events = { 1969 .name = "spapr_pending_events", 1970 .version_id = 1, 1971 .minimum_version_id = 1, 1972 .needed = spapr_pending_events_needed, 1973 .fields = (VMStateField[]) { 1974 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1975 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1976 VMSTATE_END_OF_LIST() 1977 }, 1978 }; 1979 1980 static bool spapr_ov5_cas_needed(void *opaque) 1981 { 1982 SpaprMachineState *spapr = opaque; 1983 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1984 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1985 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1986 bool cas_needed; 1987 1988 /* Prior to the introduction of SpaprOptionVector, we had two option 1989 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1990 * Both of these options encode machine topology into the device-tree 1991 * in such a way that the now-booted OS should still be able to interact 1992 * appropriately with QEMU regardless of what options were actually 1993 * negotiatied on the source side. 1994 * 1995 * As such, we can avoid migrating the CAS-negotiated options if these 1996 * are the only options available on the current machine/platform. 1997 * Since these are the only options available for pseries-2.7 and 1998 * earlier, this allows us to maintain old->new/new->old migration 1999 * compatibility. 2000 * 2001 * For QEMU 2.8+, there are additional CAS-negotiatable options available 2002 * via default pseries-2.8 machines and explicit command-line parameters. 2003 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 2004 * of the actual CAS-negotiated values to continue working properly. For 2005 * example, availability of memory unplug depends on knowing whether 2006 * OV5_HP_EVT was negotiated via CAS. 2007 * 2008 * Thus, for any cases where the set of available CAS-negotiatable 2009 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2010 * include the CAS-negotiated options in the migration stream, unless 2011 * if they affect boot time behaviour only. 2012 */ 2013 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2014 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2015 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2016 2017 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2018 * the mask itself since in the future it's possible "legacy" bits may be 2019 * removed via machine options, which could generate a false positive 2020 * that breaks migration. 2021 */ 2022 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2023 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2024 2025 spapr_ovec_cleanup(ov5_mask); 2026 spapr_ovec_cleanup(ov5_legacy); 2027 spapr_ovec_cleanup(ov5_removed); 2028 2029 return cas_needed; 2030 } 2031 2032 static const VMStateDescription vmstate_spapr_ov5_cas = { 2033 .name = "spapr_option_vector_ov5_cas", 2034 .version_id = 1, 2035 .minimum_version_id = 1, 2036 .needed = spapr_ov5_cas_needed, 2037 .fields = (VMStateField[]) { 2038 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2039 vmstate_spapr_ovec, SpaprOptionVector), 2040 VMSTATE_END_OF_LIST() 2041 }, 2042 }; 2043 2044 static bool spapr_patb_entry_needed(void *opaque) 2045 { 2046 SpaprMachineState *spapr = opaque; 2047 2048 return !!spapr->patb_entry; 2049 } 2050 2051 static const VMStateDescription vmstate_spapr_patb_entry = { 2052 .name = "spapr_patb_entry", 2053 .version_id = 1, 2054 .minimum_version_id = 1, 2055 .needed = spapr_patb_entry_needed, 2056 .fields = (VMStateField[]) { 2057 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2058 VMSTATE_END_OF_LIST() 2059 }, 2060 }; 2061 2062 static bool spapr_irq_map_needed(void *opaque) 2063 { 2064 SpaprMachineState *spapr = opaque; 2065 2066 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2067 } 2068 2069 static const VMStateDescription vmstate_spapr_irq_map = { 2070 .name = "spapr_irq_map", 2071 .version_id = 1, 2072 .minimum_version_id = 1, 2073 .needed = spapr_irq_map_needed, 2074 .fields = (VMStateField[]) { 2075 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2076 VMSTATE_END_OF_LIST() 2077 }, 2078 }; 2079 2080 static bool spapr_dtb_needed(void *opaque) 2081 { 2082 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2083 2084 return smc->update_dt_enabled; 2085 } 2086 2087 static int spapr_dtb_pre_load(void *opaque) 2088 { 2089 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2090 2091 g_free(spapr->fdt_blob); 2092 spapr->fdt_blob = NULL; 2093 spapr->fdt_size = 0; 2094 2095 return 0; 2096 } 2097 2098 static const VMStateDescription vmstate_spapr_dtb = { 2099 .name = "spapr_dtb", 2100 .version_id = 1, 2101 .minimum_version_id = 1, 2102 .needed = spapr_dtb_needed, 2103 .pre_load = spapr_dtb_pre_load, 2104 .fields = (VMStateField[]) { 2105 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2106 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2107 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2108 fdt_size), 2109 VMSTATE_END_OF_LIST() 2110 }, 2111 }; 2112 2113 static const VMStateDescription vmstate_spapr = { 2114 .name = "spapr", 2115 .version_id = 3, 2116 .minimum_version_id = 1, 2117 .pre_load = spapr_pre_load, 2118 .post_load = spapr_post_load, 2119 .pre_save = spapr_pre_save, 2120 .fields = (VMStateField[]) { 2121 /* used to be @next_irq */ 2122 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2123 2124 /* RTC offset */ 2125 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2126 2127 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2128 VMSTATE_END_OF_LIST() 2129 }, 2130 .subsections = (const VMStateDescription*[]) { 2131 &vmstate_spapr_ov5_cas, 2132 &vmstate_spapr_patb_entry, 2133 &vmstate_spapr_pending_events, 2134 &vmstate_spapr_cap_htm, 2135 &vmstate_spapr_cap_vsx, 2136 &vmstate_spapr_cap_dfp, 2137 &vmstate_spapr_cap_cfpc, 2138 &vmstate_spapr_cap_sbbc, 2139 &vmstate_spapr_cap_ibs, 2140 &vmstate_spapr_cap_hpt_maxpagesize, 2141 &vmstate_spapr_irq_map, 2142 &vmstate_spapr_cap_nested_kvm_hv, 2143 &vmstate_spapr_dtb, 2144 &vmstate_spapr_cap_large_decr, 2145 &vmstate_spapr_cap_ccf_assist, 2146 NULL 2147 } 2148 }; 2149 2150 static int htab_save_setup(QEMUFile *f, void *opaque) 2151 { 2152 SpaprMachineState *spapr = opaque; 2153 2154 /* "Iteration" header */ 2155 if (!spapr->htab_shift) { 2156 qemu_put_be32(f, -1); 2157 } else { 2158 qemu_put_be32(f, spapr->htab_shift); 2159 } 2160 2161 if (spapr->htab) { 2162 spapr->htab_save_index = 0; 2163 spapr->htab_first_pass = true; 2164 } else { 2165 if (spapr->htab_shift) { 2166 assert(kvm_enabled()); 2167 } 2168 } 2169 2170 2171 return 0; 2172 } 2173 2174 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2175 int chunkstart, int n_valid, int n_invalid) 2176 { 2177 qemu_put_be32(f, chunkstart); 2178 qemu_put_be16(f, n_valid); 2179 qemu_put_be16(f, n_invalid); 2180 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2181 HASH_PTE_SIZE_64 * n_valid); 2182 } 2183 2184 static void htab_save_end_marker(QEMUFile *f) 2185 { 2186 qemu_put_be32(f, 0); 2187 qemu_put_be16(f, 0); 2188 qemu_put_be16(f, 0); 2189 } 2190 2191 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2192 int64_t max_ns) 2193 { 2194 bool has_timeout = max_ns != -1; 2195 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2196 int index = spapr->htab_save_index; 2197 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2198 2199 assert(spapr->htab_first_pass); 2200 2201 do { 2202 int chunkstart; 2203 2204 /* Consume invalid HPTEs */ 2205 while ((index < htabslots) 2206 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2207 CLEAN_HPTE(HPTE(spapr->htab, index)); 2208 index++; 2209 } 2210 2211 /* Consume valid HPTEs */ 2212 chunkstart = index; 2213 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2214 && HPTE_VALID(HPTE(spapr->htab, index))) { 2215 CLEAN_HPTE(HPTE(spapr->htab, index)); 2216 index++; 2217 } 2218 2219 if (index > chunkstart) { 2220 int n_valid = index - chunkstart; 2221 2222 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2223 2224 if (has_timeout && 2225 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2226 break; 2227 } 2228 } 2229 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2230 2231 if (index >= htabslots) { 2232 assert(index == htabslots); 2233 index = 0; 2234 spapr->htab_first_pass = false; 2235 } 2236 spapr->htab_save_index = index; 2237 } 2238 2239 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2240 int64_t max_ns) 2241 { 2242 bool final = max_ns < 0; 2243 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2244 int examined = 0, sent = 0; 2245 int index = spapr->htab_save_index; 2246 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2247 2248 assert(!spapr->htab_first_pass); 2249 2250 do { 2251 int chunkstart, invalidstart; 2252 2253 /* Consume non-dirty HPTEs */ 2254 while ((index < htabslots) 2255 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2256 index++; 2257 examined++; 2258 } 2259 2260 chunkstart = index; 2261 /* Consume valid dirty HPTEs */ 2262 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2263 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2264 && HPTE_VALID(HPTE(spapr->htab, index))) { 2265 CLEAN_HPTE(HPTE(spapr->htab, index)); 2266 index++; 2267 examined++; 2268 } 2269 2270 invalidstart = index; 2271 /* Consume invalid dirty HPTEs */ 2272 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2273 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2274 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2275 CLEAN_HPTE(HPTE(spapr->htab, index)); 2276 index++; 2277 examined++; 2278 } 2279 2280 if (index > chunkstart) { 2281 int n_valid = invalidstart - chunkstart; 2282 int n_invalid = index - invalidstart; 2283 2284 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2285 sent += index - chunkstart; 2286 2287 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2288 break; 2289 } 2290 } 2291 2292 if (examined >= htabslots) { 2293 break; 2294 } 2295 2296 if (index >= htabslots) { 2297 assert(index == htabslots); 2298 index = 0; 2299 } 2300 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2301 2302 if (index >= htabslots) { 2303 assert(index == htabslots); 2304 index = 0; 2305 } 2306 2307 spapr->htab_save_index = index; 2308 2309 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2310 } 2311 2312 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2313 #define MAX_KVM_BUF_SIZE 2048 2314 2315 static int htab_save_iterate(QEMUFile *f, void *opaque) 2316 { 2317 SpaprMachineState *spapr = opaque; 2318 int fd; 2319 int rc = 0; 2320 2321 /* Iteration header */ 2322 if (!spapr->htab_shift) { 2323 qemu_put_be32(f, -1); 2324 return 1; 2325 } else { 2326 qemu_put_be32(f, 0); 2327 } 2328 2329 if (!spapr->htab) { 2330 assert(kvm_enabled()); 2331 2332 fd = get_htab_fd(spapr); 2333 if (fd < 0) { 2334 return fd; 2335 } 2336 2337 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2338 if (rc < 0) { 2339 return rc; 2340 } 2341 } else if (spapr->htab_first_pass) { 2342 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2343 } else { 2344 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2345 } 2346 2347 htab_save_end_marker(f); 2348 2349 return rc; 2350 } 2351 2352 static int htab_save_complete(QEMUFile *f, void *opaque) 2353 { 2354 SpaprMachineState *spapr = opaque; 2355 int fd; 2356 2357 /* Iteration header */ 2358 if (!spapr->htab_shift) { 2359 qemu_put_be32(f, -1); 2360 return 0; 2361 } else { 2362 qemu_put_be32(f, 0); 2363 } 2364 2365 if (!spapr->htab) { 2366 int rc; 2367 2368 assert(kvm_enabled()); 2369 2370 fd = get_htab_fd(spapr); 2371 if (fd < 0) { 2372 return fd; 2373 } 2374 2375 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2376 if (rc < 0) { 2377 return rc; 2378 } 2379 } else { 2380 if (spapr->htab_first_pass) { 2381 htab_save_first_pass(f, spapr, -1); 2382 } 2383 htab_save_later_pass(f, spapr, -1); 2384 } 2385 2386 /* End marker */ 2387 htab_save_end_marker(f); 2388 2389 return 0; 2390 } 2391 2392 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2393 { 2394 SpaprMachineState *spapr = opaque; 2395 uint32_t section_hdr; 2396 int fd = -1; 2397 Error *local_err = NULL; 2398 2399 if (version_id < 1 || version_id > 1) { 2400 error_report("htab_load() bad version"); 2401 return -EINVAL; 2402 } 2403 2404 section_hdr = qemu_get_be32(f); 2405 2406 if (section_hdr == -1) { 2407 spapr_free_hpt(spapr); 2408 return 0; 2409 } 2410 2411 if (section_hdr) { 2412 /* First section gives the htab size */ 2413 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2414 if (local_err) { 2415 error_report_err(local_err); 2416 return -EINVAL; 2417 } 2418 return 0; 2419 } 2420 2421 if (!spapr->htab) { 2422 assert(kvm_enabled()); 2423 2424 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2425 if (fd < 0) { 2426 error_report_err(local_err); 2427 return fd; 2428 } 2429 } 2430 2431 while (true) { 2432 uint32_t index; 2433 uint16_t n_valid, n_invalid; 2434 2435 index = qemu_get_be32(f); 2436 n_valid = qemu_get_be16(f); 2437 n_invalid = qemu_get_be16(f); 2438 2439 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2440 /* End of Stream */ 2441 break; 2442 } 2443 2444 if ((index + n_valid + n_invalid) > 2445 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2446 /* Bad index in stream */ 2447 error_report( 2448 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2449 index, n_valid, n_invalid, spapr->htab_shift); 2450 return -EINVAL; 2451 } 2452 2453 if (spapr->htab) { 2454 if (n_valid) { 2455 qemu_get_buffer(f, HPTE(spapr->htab, index), 2456 HASH_PTE_SIZE_64 * n_valid); 2457 } 2458 if (n_invalid) { 2459 memset(HPTE(spapr->htab, index + n_valid), 0, 2460 HASH_PTE_SIZE_64 * n_invalid); 2461 } 2462 } else { 2463 int rc; 2464 2465 assert(fd >= 0); 2466 2467 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2468 if (rc < 0) { 2469 return rc; 2470 } 2471 } 2472 } 2473 2474 if (!spapr->htab) { 2475 assert(fd >= 0); 2476 close(fd); 2477 } 2478 2479 return 0; 2480 } 2481 2482 static void htab_save_cleanup(void *opaque) 2483 { 2484 SpaprMachineState *spapr = opaque; 2485 2486 close_htab_fd(spapr); 2487 } 2488 2489 static SaveVMHandlers savevm_htab_handlers = { 2490 .save_setup = htab_save_setup, 2491 .save_live_iterate = htab_save_iterate, 2492 .save_live_complete_precopy = htab_save_complete, 2493 .save_cleanup = htab_save_cleanup, 2494 .load_state = htab_load, 2495 }; 2496 2497 static void spapr_boot_set(void *opaque, const char *boot_device, 2498 Error **errp) 2499 { 2500 MachineState *machine = MACHINE(opaque); 2501 machine->boot_order = g_strdup(boot_device); 2502 } 2503 2504 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2505 { 2506 MachineState *machine = MACHINE(spapr); 2507 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2508 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2509 int i; 2510 2511 for (i = 0; i < nr_lmbs; i++) { 2512 uint64_t addr; 2513 2514 addr = i * lmb_size + machine->device_memory->base; 2515 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2516 addr / lmb_size); 2517 } 2518 } 2519 2520 /* 2521 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2522 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2523 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2524 */ 2525 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2526 { 2527 int i; 2528 2529 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2530 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2531 " is not aligned to %" PRIu64 " MiB", 2532 machine->ram_size, 2533 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2534 return; 2535 } 2536 2537 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2538 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2539 " is not aligned to %" PRIu64 " MiB", 2540 machine->ram_size, 2541 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2542 return; 2543 } 2544 2545 for (i = 0; i < nb_numa_nodes; i++) { 2546 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2547 error_setg(errp, 2548 "Node %d memory size 0x%" PRIx64 2549 " is not aligned to %" PRIu64 " MiB", 2550 i, numa_info[i].node_mem, 2551 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2552 return; 2553 } 2554 } 2555 } 2556 2557 /* find cpu slot in machine->possible_cpus by core_id */ 2558 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2559 { 2560 int index = id / ms->smp.threads; 2561 2562 if (index >= ms->possible_cpus->len) { 2563 return NULL; 2564 } 2565 if (idx) { 2566 *idx = index; 2567 } 2568 return &ms->possible_cpus->cpus[index]; 2569 } 2570 2571 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2572 { 2573 MachineState *ms = MACHINE(spapr); 2574 Error *local_err = NULL; 2575 bool vsmt_user = !!spapr->vsmt; 2576 int kvm_smt = kvmppc_smt_threads(); 2577 int ret; 2578 unsigned int smp_threads = ms->smp.threads; 2579 2580 if (!kvm_enabled() && (smp_threads > 1)) { 2581 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2582 "on a pseries machine"); 2583 goto out; 2584 } 2585 if (!is_power_of_2(smp_threads)) { 2586 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2587 "machine because it must be a power of 2", smp_threads); 2588 goto out; 2589 } 2590 2591 /* Detemine the VSMT mode to use: */ 2592 if (vsmt_user) { 2593 if (spapr->vsmt < smp_threads) { 2594 error_setg(&local_err, "Cannot support VSMT mode %d" 2595 " because it must be >= threads/core (%d)", 2596 spapr->vsmt, smp_threads); 2597 goto out; 2598 } 2599 /* In this case, spapr->vsmt has been set by the command line */ 2600 } else { 2601 /* 2602 * Default VSMT value is tricky, because we need it to be as 2603 * consistent as possible (for migration), but this requires 2604 * changing it for at least some existing cases. We pick 8 as 2605 * the value that we'd get with KVM on POWER8, the 2606 * overwhelmingly common case in production systems. 2607 */ 2608 spapr->vsmt = MAX(8, smp_threads); 2609 } 2610 2611 /* KVM: If necessary, set the SMT mode: */ 2612 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2613 ret = kvmppc_set_smt_threads(spapr->vsmt); 2614 if (ret) { 2615 /* Looks like KVM isn't able to change VSMT mode */ 2616 error_setg(&local_err, 2617 "Failed to set KVM's VSMT mode to %d (errno %d)", 2618 spapr->vsmt, ret); 2619 /* We can live with that if the default one is big enough 2620 * for the number of threads, and a submultiple of the one 2621 * we want. In this case we'll waste some vcpu ids, but 2622 * behaviour will be correct */ 2623 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2624 warn_report_err(local_err); 2625 local_err = NULL; 2626 goto out; 2627 } else { 2628 if (!vsmt_user) { 2629 error_append_hint(&local_err, 2630 "On PPC, a VM with %d threads/core" 2631 " on a host with %d threads/core" 2632 " requires the use of VSMT mode %d.\n", 2633 smp_threads, kvm_smt, spapr->vsmt); 2634 } 2635 kvmppc_hint_smt_possible(&local_err); 2636 goto out; 2637 } 2638 } 2639 } 2640 /* else TCG: nothing to do currently */ 2641 out: 2642 error_propagate(errp, local_err); 2643 } 2644 2645 static void spapr_init_cpus(SpaprMachineState *spapr) 2646 { 2647 MachineState *machine = MACHINE(spapr); 2648 MachineClass *mc = MACHINE_GET_CLASS(machine); 2649 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2650 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2651 const CPUArchIdList *possible_cpus; 2652 unsigned int smp_cpus = machine->smp.cpus; 2653 unsigned int smp_threads = machine->smp.threads; 2654 unsigned int max_cpus = machine->smp.max_cpus; 2655 int boot_cores_nr = smp_cpus / smp_threads; 2656 int i; 2657 2658 possible_cpus = mc->possible_cpu_arch_ids(machine); 2659 if (mc->has_hotpluggable_cpus) { 2660 if (smp_cpus % smp_threads) { 2661 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2662 smp_cpus, smp_threads); 2663 exit(1); 2664 } 2665 if (max_cpus % smp_threads) { 2666 error_report("max_cpus (%u) must be multiple of threads (%u)", 2667 max_cpus, smp_threads); 2668 exit(1); 2669 } 2670 } else { 2671 if (max_cpus != smp_cpus) { 2672 error_report("This machine version does not support CPU hotplug"); 2673 exit(1); 2674 } 2675 boot_cores_nr = possible_cpus->len; 2676 } 2677 2678 if (smc->pre_2_10_has_unused_icps) { 2679 int i; 2680 2681 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2682 /* Dummy entries get deregistered when real ICPState objects 2683 * are registered during CPU core hotplug. 2684 */ 2685 pre_2_10_vmstate_register_dummy_icp(i); 2686 } 2687 } 2688 2689 for (i = 0; i < possible_cpus->len; i++) { 2690 int core_id = i * smp_threads; 2691 2692 if (mc->has_hotpluggable_cpus) { 2693 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2694 spapr_vcpu_id(spapr, core_id)); 2695 } 2696 2697 if (i < boot_cores_nr) { 2698 Object *core = object_new(type); 2699 int nr_threads = smp_threads; 2700 2701 /* Handle the partially filled core for older machine types */ 2702 if ((i + 1) * smp_threads >= smp_cpus) { 2703 nr_threads = smp_cpus - i * smp_threads; 2704 } 2705 2706 object_property_set_int(core, nr_threads, "nr-threads", 2707 &error_fatal); 2708 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2709 &error_fatal); 2710 object_property_set_bool(core, true, "realized", &error_fatal); 2711 2712 object_unref(core); 2713 } 2714 } 2715 } 2716 2717 static PCIHostState *spapr_create_default_phb(void) 2718 { 2719 DeviceState *dev; 2720 2721 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2722 qdev_prop_set_uint32(dev, "index", 0); 2723 qdev_init_nofail(dev); 2724 2725 return PCI_HOST_BRIDGE(dev); 2726 } 2727 2728 /* pSeries LPAR / sPAPR hardware init */ 2729 static void spapr_machine_init(MachineState *machine) 2730 { 2731 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2732 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2733 const char *kernel_filename = machine->kernel_filename; 2734 const char *initrd_filename = machine->initrd_filename; 2735 PCIHostState *phb; 2736 int i; 2737 MemoryRegion *sysmem = get_system_memory(); 2738 MemoryRegion *ram = g_new(MemoryRegion, 1); 2739 hwaddr node0_size = spapr_node0_size(machine); 2740 long load_limit, fw_size; 2741 char *filename; 2742 Error *resize_hpt_err = NULL; 2743 2744 msi_nonbroken = true; 2745 2746 QLIST_INIT(&spapr->phbs); 2747 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2748 2749 /* Determine capabilities to run with */ 2750 spapr_caps_init(spapr); 2751 2752 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2753 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2754 /* 2755 * If the user explicitly requested a mode we should either 2756 * supply it, or fail completely (which we do below). But if 2757 * it's not set explicitly, we reset our mode to something 2758 * that works 2759 */ 2760 if (resize_hpt_err) { 2761 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2762 error_free(resize_hpt_err); 2763 resize_hpt_err = NULL; 2764 } else { 2765 spapr->resize_hpt = smc->resize_hpt_default; 2766 } 2767 } 2768 2769 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2770 2771 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2772 /* 2773 * User requested HPT resize, but this host can't supply it. Bail out 2774 */ 2775 error_report_err(resize_hpt_err); 2776 exit(1); 2777 } 2778 2779 spapr->rma_size = node0_size; 2780 2781 /* With KVM, we don't actually know whether KVM supports an 2782 * unbounded RMA (PR KVM) or is limited by the hash table size 2783 * (HV KVM using VRMA), so we always assume the latter 2784 * 2785 * In that case, we also limit the initial allocations for RTAS 2786 * etc... to 256M since we have no way to know what the VRMA size 2787 * is going to be as it depends on the size of the hash table 2788 * which isn't determined yet. 2789 */ 2790 if (kvm_enabled()) { 2791 spapr->vrma_adjust = 1; 2792 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2793 } 2794 2795 /* Actually we don't support unbounded RMA anymore since we added 2796 * proper emulation of HV mode. The max we can get is 16G which 2797 * also happens to be what we configure for PAPR mode so make sure 2798 * we don't do anything bigger than that 2799 */ 2800 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2801 2802 if (spapr->rma_size > node0_size) { 2803 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2804 spapr->rma_size); 2805 exit(1); 2806 } 2807 2808 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2809 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2810 2811 /* 2812 * VSMT must be set in order to be able to compute VCPU ids, ie to 2813 * call spapr_max_server_number() or spapr_vcpu_id(). 2814 */ 2815 spapr_set_vsmt_mode(spapr, &error_fatal); 2816 2817 /* Set up Interrupt Controller before we create the VCPUs */ 2818 spapr_irq_init(spapr, &error_fatal); 2819 2820 /* Set up containers for ibm,client-architecture-support negotiated options 2821 */ 2822 spapr->ov5 = spapr_ovec_new(); 2823 spapr->ov5_cas = spapr_ovec_new(); 2824 2825 if (smc->dr_lmb_enabled) { 2826 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2827 spapr_validate_node_memory(machine, &error_fatal); 2828 } 2829 2830 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2831 2832 /* advertise support for dedicated HP event source to guests */ 2833 if (spapr->use_hotplug_event_source) { 2834 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2835 } 2836 2837 /* advertise support for HPT resizing */ 2838 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2839 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2840 } 2841 2842 /* advertise support for ibm,dyamic-memory-v2 */ 2843 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2844 2845 /* advertise XIVE on POWER9 machines */ 2846 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2847 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2848 } 2849 2850 /* init CPUs */ 2851 spapr_init_cpus(spapr); 2852 2853 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2854 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2855 spapr->max_compat_pvr)) { 2856 /* KVM and TCG always allow GTSE with radix... */ 2857 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2858 } 2859 /* ... but not with hash (currently). */ 2860 2861 if (kvm_enabled()) { 2862 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2863 kvmppc_enable_logical_ci_hcalls(); 2864 kvmppc_enable_set_mode_hcall(); 2865 2866 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2867 kvmppc_enable_clear_ref_mod_hcalls(); 2868 2869 /* Enable H_PAGE_INIT */ 2870 kvmppc_enable_h_page_init(); 2871 } 2872 2873 /* allocate RAM */ 2874 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2875 machine->ram_size); 2876 memory_region_add_subregion(sysmem, 0, ram); 2877 2878 /* always allocate the device memory information */ 2879 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2880 2881 /* initialize hotplug memory address space */ 2882 if (machine->ram_size < machine->maxram_size) { 2883 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2884 /* 2885 * Limit the number of hotpluggable memory slots to half the number 2886 * slots that KVM supports, leaving the other half for PCI and other 2887 * devices. However ensure that number of slots doesn't drop below 32. 2888 */ 2889 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2890 SPAPR_MAX_RAM_SLOTS; 2891 2892 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2893 max_memslots = SPAPR_MAX_RAM_SLOTS; 2894 } 2895 if (machine->ram_slots > max_memslots) { 2896 error_report("Specified number of memory slots %" 2897 PRIu64" exceeds max supported %d", 2898 machine->ram_slots, max_memslots); 2899 exit(1); 2900 } 2901 2902 machine->device_memory->base = ROUND_UP(machine->ram_size, 2903 SPAPR_DEVICE_MEM_ALIGN); 2904 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2905 "device-memory", device_mem_size); 2906 memory_region_add_subregion(sysmem, machine->device_memory->base, 2907 &machine->device_memory->mr); 2908 } 2909 2910 if (smc->dr_lmb_enabled) { 2911 spapr_create_lmb_dr_connectors(spapr); 2912 } 2913 2914 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2915 if (!filename) { 2916 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2917 exit(1); 2918 } 2919 spapr->rtas_size = get_image_size(filename); 2920 if (spapr->rtas_size < 0) { 2921 error_report("Could not get size of LPAR rtas '%s'", filename); 2922 exit(1); 2923 } 2924 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2925 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2926 error_report("Could not load LPAR rtas '%s'", filename); 2927 exit(1); 2928 } 2929 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2930 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2931 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2932 exit(1); 2933 } 2934 g_free(filename); 2935 2936 /* Set up RTAS event infrastructure */ 2937 spapr_events_init(spapr); 2938 2939 /* Set up the RTC RTAS interfaces */ 2940 spapr_rtc_create(spapr); 2941 2942 /* Set up VIO bus */ 2943 spapr->vio_bus = spapr_vio_bus_init(); 2944 2945 for (i = 0; i < serial_max_hds(); i++) { 2946 if (serial_hd(i)) { 2947 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2948 } 2949 } 2950 2951 /* We always have at least the nvram device on VIO */ 2952 spapr_create_nvram(spapr); 2953 2954 /* 2955 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2956 * connectors (described in root DT node's "ibm,drc-types" property) 2957 * are pre-initialized here. additional child connectors (such as 2958 * connectors for a PHBs PCI slots) are added as needed during their 2959 * parent's realization. 2960 */ 2961 if (smc->dr_phb_enabled) { 2962 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2963 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2964 } 2965 } 2966 2967 /* Set up PCI */ 2968 spapr_pci_rtas_init(); 2969 2970 phb = spapr_create_default_phb(); 2971 2972 for (i = 0; i < nb_nics; i++) { 2973 NICInfo *nd = &nd_table[i]; 2974 2975 if (!nd->model) { 2976 nd->model = g_strdup("spapr-vlan"); 2977 } 2978 2979 if (g_str_equal(nd->model, "spapr-vlan") || 2980 g_str_equal(nd->model, "ibmveth")) { 2981 spapr_vlan_create(spapr->vio_bus, nd); 2982 } else { 2983 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2984 } 2985 } 2986 2987 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2988 spapr_vscsi_create(spapr->vio_bus); 2989 } 2990 2991 /* Graphics */ 2992 if (spapr_vga_init(phb->bus, &error_fatal)) { 2993 spapr->has_graphics = true; 2994 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2995 } 2996 2997 if (machine->usb) { 2998 if (smc->use_ohci_by_default) { 2999 pci_create_simple(phb->bus, -1, "pci-ohci"); 3000 } else { 3001 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3002 } 3003 3004 if (spapr->has_graphics) { 3005 USBBus *usb_bus = usb_bus_find(-1); 3006 3007 usb_create_simple(usb_bus, "usb-kbd"); 3008 usb_create_simple(usb_bus, "usb-mouse"); 3009 } 3010 } 3011 3012 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 3013 error_report( 3014 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 3015 MIN_RMA_SLOF); 3016 exit(1); 3017 } 3018 3019 if (kernel_filename) { 3020 uint64_t lowaddr = 0; 3021 3022 spapr->kernel_size = load_elf(kernel_filename, NULL, 3023 translate_kernel_address, NULL, 3024 NULL, &lowaddr, NULL, 1, 3025 PPC_ELF_MACHINE, 0, 0); 3026 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3027 spapr->kernel_size = load_elf(kernel_filename, NULL, 3028 translate_kernel_address, NULL, NULL, 3029 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3030 0, 0); 3031 spapr->kernel_le = spapr->kernel_size > 0; 3032 } 3033 if (spapr->kernel_size < 0) { 3034 error_report("error loading %s: %s", kernel_filename, 3035 load_elf_strerror(spapr->kernel_size)); 3036 exit(1); 3037 } 3038 3039 /* load initrd */ 3040 if (initrd_filename) { 3041 /* Try to locate the initrd in the gap between the kernel 3042 * and the firmware. Add a bit of space just in case 3043 */ 3044 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3045 + 0x1ffff) & ~0xffff; 3046 spapr->initrd_size = load_image_targphys(initrd_filename, 3047 spapr->initrd_base, 3048 load_limit 3049 - spapr->initrd_base); 3050 if (spapr->initrd_size < 0) { 3051 error_report("could not load initial ram disk '%s'", 3052 initrd_filename); 3053 exit(1); 3054 } 3055 } 3056 } 3057 3058 if (bios_name == NULL) { 3059 bios_name = FW_FILE_NAME; 3060 } 3061 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3062 if (!filename) { 3063 error_report("Could not find LPAR firmware '%s'", bios_name); 3064 exit(1); 3065 } 3066 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3067 if (fw_size <= 0) { 3068 error_report("Could not load LPAR firmware '%s'", filename); 3069 exit(1); 3070 } 3071 g_free(filename); 3072 3073 /* FIXME: Should register things through the MachineState's qdev 3074 * interface, this is a legacy from the sPAPREnvironment structure 3075 * which predated MachineState but had a similar function */ 3076 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3077 register_savevm_live(NULL, "spapr/htab", -1, 1, 3078 &savevm_htab_handlers, spapr); 3079 3080 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3081 &error_fatal); 3082 3083 qemu_register_boot_set(spapr_boot_set, spapr); 3084 3085 if (kvm_enabled()) { 3086 /* to stop and start vmclock */ 3087 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3088 &spapr->tb); 3089 3090 kvmppc_spapr_enable_inkernel_multitce(); 3091 } 3092 } 3093 3094 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3095 { 3096 if (!vm_type) { 3097 return 0; 3098 } 3099 3100 if (!strcmp(vm_type, "HV")) { 3101 return 1; 3102 } 3103 3104 if (!strcmp(vm_type, "PR")) { 3105 return 2; 3106 } 3107 3108 error_report("Unknown kvm-type specified '%s'", vm_type); 3109 exit(1); 3110 } 3111 3112 /* 3113 * Implementation of an interface to adjust firmware path 3114 * for the bootindex property handling. 3115 */ 3116 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3117 DeviceState *dev) 3118 { 3119 #define CAST(type, obj, name) \ 3120 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3121 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3122 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3123 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3124 3125 if (d) { 3126 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3127 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3128 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3129 3130 if (spapr) { 3131 /* 3132 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3133 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3134 * 0x8000 | (target << 8) | (bus << 5) | lun 3135 * (see the "Logical unit addressing format" table in SAM5) 3136 */ 3137 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3138 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3139 (uint64_t)id << 48); 3140 } else if (virtio) { 3141 /* 3142 * We use SRP luns of the form 01000000 | (target << 8) | lun 3143 * in the top 32 bits of the 64-bit LUN 3144 * Note: the quote above is from SLOF and it is wrong, 3145 * the actual binding is: 3146 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3147 */ 3148 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3149 if (d->lun >= 256) { 3150 /* Use the LUN "flat space addressing method" */ 3151 id |= 0x4000; 3152 } 3153 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3154 (uint64_t)id << 32); 3155 } else if (usb) { 3156 /* 3157 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3158 * in the top 32 bits of the 64-bit LUN 3159 */ 3160 unsigned usb_port = atoi(usb->port->path); 3161 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3162 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3163 (uint64_t)id << 32); 3164 } 3165 } 3166 3167 /* 3168 * SLOF probes the USB devices, and if it recognizes that the device is a 3169 * storage device, it changes its name to "storage" instead of "usb-host", 3170 * and additionally adds a child node for the SCSI LUN, so the correct 3171 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3172 */ 3173 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3174 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3175 if (usb_host_dev_is_scsi_storage(usbdev)) { 3176 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3177 } 3178 } 3179 3180 if (phb) { 3181 /* Replace "pci" with "pci@800000020000000" */ 3182 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3183 } 3184 3185 if (vsc) { 3186 /* Same logic as virtio above */ 3187 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3188 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3189 } 3190 3191 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3192 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3193 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3194 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3195 } 3196 3197 return NULL; 3198 } 3199 3200 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3201 { 3202 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3203 3204 return g_strdup(spapr->kvm_type); 3205 } 3206 3207 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3208 { 3209 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3210 3211 g_free(spapr->kvm_type); 3212 spapr->kvm_type = g_strdup(value); 3213 } 3214 3215 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3216 { 3217 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3218 3219 return spapr->use_hotplug_event_source; 3220 } 3221 3222 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3223 Error **errp) 3224 { 3225 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3226 3227 spapr->use_hotplug_event_source = value; 3228 } 3229 3230 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3231 { 3232 return true; 3233 } 3234 3235 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3236 { 3237 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3238 3239 switch (spapr->resize_hpt) { 3240 case SPAPR_RESIZE_HPT_DEFAULT: 3241 return g_strdup("default"); 3242 case SPAPR_RESIZE_HPT_DISABLED: 3243 return g_strdup("disabled"); 3244 case SPAPR_RESIZE_HPT_ENABLED: 3245 return g_strdup("enabled"); 3246 case SPAPR_RESIZE_HPT_REQUIRED: 3247 return g_strdup("required"); 3248 } 3249 g_assert_not_reached(); 3250 } 3251 3252 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3253 { 3254 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3255 3256 if (strcmp(value, "default") == 0) { 3257 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3258 } else if (strcmp(value, "disabled") == 0) { 3259 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3260 } else if (strcmp(value, "enabled") == 0) { 3261 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3262 } else if (strcmp(value, "required") == 0) { 3263 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3264 } else { 3265 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3266 } 3267 } 3268 3269 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3270 void *opaque, Error **errp) 3271 { 3272 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3273 } 3274 3275 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3276 void *opaque, Error **errp) 3277 { 3278 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3279 } 3280 3281 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3282 { 3283 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3284 3285 if (spapr->irq == &spapr_irq_xics_legacy) { 3286 return g_strdup("legacy"); 3287 } else if (spapr->irq == &spapr_irq_xics) { 3288 return g_strdup("xics"); 3289 } else if (spapr->irq == &spapr_irq_xive) { 3290 return g_strdup("xive"); 3291 } else if (spapr->irq == &spapr_irq_dual) { 3292 return g_strdup("dual"); 3293 } 3294 g_assert_not_reached(); 3295 } 3296 3297 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3298 { 3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3300 3301 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3302 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3303 return; 3304 } 3305 3306 /* The legacy IRQ backend can not be set */ 3307 if (strcmp(value, "xics") == 0) { 3308 spapr->irq = &spapr_irq_xics; 3309 } else if (strcmp(value, "xive") == 0) { 3310 spapr->irq = &spapr_irq_xive; 3311 } else if (strcmp(value, "dual") == 0) { 3312 spapr->irq = &spapr_irq_dual; 3313 } else { 3314 error_setg(errp, "Bad value for \"ic-mode\" property"); 3315 } 3316 } 3317 3318 static char *spapr_get_host_model(Object *obj, Error **errp) 3319 { 3320 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3321 3322 return g_strdup(spapr->host_model); 3323 } 3324 3325 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3326 { 3327 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3328 3329 g_free(spapr->host_model); 3330 spapr->host_model = g_strdup(value); 3331 } 3332 3333 static char *spapr_get_host_serial(Object *obj, Error **errp) 3334 { 3335 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3336 3337 return g_strdup(spapr->host_serial); 3338 } 3339 3340 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3341 { 3342 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3343 3344 g_free(spapr->host_serial); 3345 spapr->host_serial = g_strdup(value); 3346 } 3347 3348 static void spapr_instance_init(Object *obj) 3349 { 3350 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3351 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3352 3353 spapr->htab_fd = -1; 3354 spapr->use_hotplug_event_source = true; 3355 object_property_add_str(obj, "kvm-type", 3356 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3357 object_property_set_description(obj, "kvm-type", 3358 "Specifies the KVM virtualization mode (HV, PR)", 3359 NULL); 3360 object_property_add_bool(obj, "modern-hotplug-events", 3361 spapr_get_modern_hotplug_events, 3362 spapr_set_modern_hotplug_events, 3363 NULL); 3364 object_property_set_description(obj, "modern-hotplug-events", 3365 "Use dedicated hotplug event mechanism in" 3366 " place of standard EPOW events when possible" 3367 " (required for memory hot-unplug support)", 3368 NULL); 3369 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3370 "Maximum permitted CPU compatibility mode", 3371 &error_fatal); 3372 3373 object_property_add_str(obj, "resize-hpt", 3374 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3375 object_property_set_description(obj, "resize-hpt", 3376 "Resizing of the Hash Page Table (enabled, disabled, required)", 3377 NULL); 3378 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3379 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3380 object_property_set_description(obj, "vsmt", 3381 "Virtual SMT: KVM behaves as if this were" 3382 " the host's SMT mode", &error_abort); 3383 object_property_add_bool(obj, "vfio-no-msix-emulation", 3384 spapr_get_msix_emulation, NULL, NULL); 3385 3386 /* The machine class defines the default interrupt controller mode */ 3387 spapr->irq = smc->irq; 3388 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3389 spapr_set_ic_mode, NULL); 3390 object_property_set_description(obj, "ic-mode", 3391 "Specifies the interrupt controller mode (xics, xive, dual)", 3392 NULL); 3393 3394 object_property_add_str(obj, "host-model", 3395 spapr_get_host_model, spapr_set_host_model, 3396 &error_abort); 3397 object_property_set_description(obj, "host-model", 3398 "Host model to advertise in guest device tree", &error_abort); 3399 object_property_add_str(obj, "host-serial", 3400 spapr_get_host_serial, spapr_set_host_serial, 3401 &error_abort); 3402 object_property_set_description(obj, "host-serial", 3403 "Host serial number to advertise in guest device tree", &error_abort); 3404 } 3405 3406 static void spapr_machine_finalizefn(Object *obj) 3407 { 3408 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3409 3410 g_free(spapr->kvm_type); 3411 } 3412 3413 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3414 { 3415 cpu_synchronize_state(cs); 3416 ppc_cpu_do_system_reset(cs); 3417 } 3418 3419 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3420 { 3421 CPUState *cs; 3422 3423 CPU_FOREACH(cs) { 3424 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3425 } 3426 } 3427 3428 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3429 void *fdt, int *fdt_start_offset, Error **errp) 3430 { 3431 uint64_t addr; 3432 uint32_t node; 3433 3434 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3435 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3436 &error_abort); 3437 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3438 SPAPR_MEMORY_BLOCK_SIZE); 3439 return 0; 3440 } 3441 3442 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3443 bool dedicated_hp_event_source, Error **errp) 3444 { 3445 SpaprDrc *drc; 3446 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3447 int i; 3448 uint64_t addr = addr_start; 3449 bool hotplugged = spapr_drc_hotplugged(dev); 3450 Error *local_err = NULL; 3451 3452 for (i = 0; i < nr_lmbs; i++) { 3453 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3454 addr / SPAPR_MEMORY_BLOCK_SIZE); 3455 g_assert(drc); 3456 3457 spapr_drc_attach(drc, dev, &local_err); 3458 if (local_err) { 3459 while (addr > addr_start) { 3460 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3461 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3462 addr / SPAPR_MEMORY_BLOCK_SIZE); 3463 spapr_drc_detach(drc); 3464 } 3465 error_propagate(errp, local_err); 3466 return; 3467 } 3468 if (!hotplugged) { 3469 spapr_drc_reset(drc); 3470 } 3471 addr += SPAPR_MEMORY_BLOCK_SIZE; 3472 } 3473 /* send hotplug notification to the 3474 * guest only in case of hotplugged memory 3475 */ 3476 if (hotplugged) { 3477 if (dedicated_hp_event_source) { 3478 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3479 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3480 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3481 nr_lmbs, 3482 spapr_drc_index(drc)); 3483 } else { 3484 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3485 nr_lmbs); 3486 } 3487 } 3488 } 3489 3490 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3491 Error **errp) 3492 { 3493 Error *local_err = NULL; 3494 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3495 PCDIMMDevice *dimm = PC_DIMM(dev); 3496 uint64_t size, addr; 3497 3498 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3499 3500 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3501 if (local_err) { 3502 goto out; 3503 } 3504 3505 addr = object_property_get_uint(OBJECT(dimm), 3506 PC_DIMM_ADDR_PROP, &local_err); 3507 if (local_err) { 3508 goto out_unplug; 3509 } 3510 3511 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3512 &local_err); 3513 if (local_err) { 3514 goto out_unplug; 3515 } 3516 3517 return; 3518 3519 out_unplug: 3520 pc_dimm_unplug(dimm, MACHINE(ms)); 3521 out: 3522 error_propagate(errp, local_err); 3523 } 3524 3525 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3526 Error **errp) 3527 { 3528 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3529 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3530 PCDIMMDevice *dimm = PC_DIMM(dev); 3531 Error *local_err = NULL; 3532 uint64_t size; 3533 Object *memdev; 3534 hwaddr pagesize; 3535 3536 if (!smc->dr_lmb_enabled) { 3537 error_setg(errp, "Memory hotplug not supported for this machine"); 3538 return; 3539 } 3540 3541 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3542 if (local_err) { 3543 error_propagate(errp, local_err); 3544 return; 3545 } 3546 3547 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3548 error_setg(errp, "Hotplugged memory size must be a multiple of " 3549 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3550 return; 3551 } 3552 3553 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3554 &error_abort); 3555 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3556 spapr_check_pagesize(spapr, pagesize, &local_err); 3557 if (local_err) { 3558 error_propagate(errp, local_err); 3559 return; 3560 } 3561 3562 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3563 } 3564 3565 struct SpaprDimmState { 3566 PCDIMMDevice *dimm; 3567 uint32_t nr_lmbs; 3568 QTAILQ_ENTRY(SpaprDimmState) next; 3569 }; 3570 3571 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3572 PCDIMMDevice *dimm) 3573 { 3574 SpaprDimmState *dimm_state = NULL; 3575 3576 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3577 if (dimm_state->dimm == dimm) { 3578 break; 3579 } 3580 } 3581 return dimm_state; 3582 } 3583 3584 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3585 uint32_t nr_lmbs, 3586 PCDIMMDevice *dimm) 3587 { 3588 SpaprDimmState *ds = NULL; 3589 3590 /* 3591 * If this request is for a DIMM whose removal had failed earlier 3592 * (due to guest's refusal to remove the LMBs), we would have this 3593 * dimm already in the pending_dimm_unplugs list. In that 3594 * case don't add again. 3595 */ 3596 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3597 if (!ds) { 3598 ds = g_malloc0(sizeof(SpaprDimmState)); 3599 ds->nr_lmbs = nr_lmbs; 3600 ds->dimm = dimm; 3601 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3602 } 3603 return ds; 3604 } 3605 3606 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3607 SpaprDimmState *dimm_state) 3608 { 3609 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3610 g_free(dimm_state); 3611 } 3612 3613 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3614 PCDIMMDevice *dimm) 3615 { 3616 SpaprDrc *drc; 3617 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3618 &error_abort); 3619 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3620 uint32_t avail_lmbs = 0; 3621 uint64_t addr_start, addr; 3622 int i; 3623 3624 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3625 &error_abort); 3626 3627 addr = addr_start; 3628 for (i = 0; i < nr_lmbs; i++) { 3629 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3630 addr / SPAPR_MEMORY_BLOCK_SIZE); 3631 g_assert(drc); 3632 if (drc->dev) { 3633 avail_lmbs++; 3634 } 3635 addr += SPAPR_MEMORY_BLOCK_SIZE; 3636 } 3637 3638 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3639 } 3640 3641 /* Callback to be called during DRC release. */ 3642 void spapr_lmb_release(DeviceState *dev) 3643 { 3644 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3645 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3646 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3647 3648 /* This information will get lost if a migration occurs 3649 * during the unplug process. In this case recover it. */ 3650 if (ds == NULL) { 3651 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3652 g_assert(ds); 3653 /* The DRC being examined by the caller at least must be counted */ 3654 g_assert(ds->nr_lmbs); 3655 } 3656 3657 if (--ds->nr_lmbs) { 3658 return; 3659 } 3660 3661 /* 3662 * Now that all the LMBs have been removed by the guest, call the 3663 * unplug handler chain. This can never fail. 3664 */ 3665 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3666 object_unparent(OBJECT(dev)); 3667 } 3668 3669 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3670 { 3671 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3672 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3673 3674 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3675 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3676 spapr_pending_dimm_unplugs_remove(spapr, ds); 3677 } 3678 3679 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3680 DeviceState *dev, Error **errp) 3681 { 3682 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3683 Error *local_err = NULL; 3684 PCDIMMDevice *dimm = PC_DIMM(dev); 3685 uint32_t nr_lmbs; 3686 uint64_t size, addr_start, addr; 3687 int i; 3688 SpaprDrc *drc; 3689 3690 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3691 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3692 3693 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3694 &local_err); 3695 if (local_err) { 3696 goto out; 3697 } 3698 3699 /* 3700 * An existing pending dimm state for this DIMM means that there is an 3701 * unplug operation in progress, waiting for the spapr_lmb_release 3702 * callback to complete the job (BQL can't cover that far). In this case, 3703 * bail out to avoid detaching DRCs that were already released. 3704 */ 3705 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3706 error_setg(&local_err, 3707 "Memory unplug already in progress for device %s", 3708 dev->id); 3709 goto out; 3710 } 3711 3712 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3713 3714 addr = addr_start; 3715 for (i = 0; i < nr_lmbs; i++) { 3716 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3717 addr / SPAPR_MEMORY_BLOCK_SIZE); 3718 g_assert(drc); 3719 3720 spapr_drc_detach(drc); 3721 addr += SPAPR_MEMORY_BLOCK_SIZE; 3722 } 3723 3724 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3725 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3726 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3727 nr_lmbs, spapr_drc_index(drc)); 3728 out: 3729 error_propagate(errp, local_err); 3730 } 3731 3732 /* Callback to be called during DRC release. */ 3733 void spapr_core_release(DeviceState *dev) 3734 { 3735 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3736 3737 /* Call the unplug handler chain. This can never fail. */ 3738 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3739 object_unparent(OBJECT(dev)); 3740 } 3741 3742 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3743 { 3744 MachineState *ms = MACHINE(hotplug_dev); 3745 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3746 CPUCore *cc = CPU_CORE(dev); 3747 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3748 3749 if (smc->pre_2_10_has_unused_icps) { 3750 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3751 int i; 3752 3753 for (i = 0; i < cc->nr_threads; i++) { 3754 CPUState *cs = CPU(sc->threads[i]); 3755 3756 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3757 } 3758 } 3759 3760 assert(core_slot); 3761 core_slot->cpu = NULL; 3762 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3763 } 3764 3765 static 3766 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3767 Error **errp) 3768 { 3769 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3770 int index; 3771 SpaprDrc *drc; 3772 CPUCore *cc = CPU_CORE(dev); 3773 3774 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3775 error_setg(errp, "Unable to find CPU core with core-id: %d", 3776 cc->core_id); 3777 return; 3778 } 3779 if (index == 0) { 3780 error_setg(errp, "Boot CPU core may not be unplugged"); 3781 return; 3782 } 3783 3784 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3785 spapr_vcpu_id(spapr, cc->core_id)); 3786 g_assert(drc); 3787 3788 spapr_drc_detach(drc); 3789 3790 spapr_hotplug_req_remove_by_index(drc); 3791 } 3792 3793 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3794 void *fdt, int *fdt_start_offset, Error **errp) 3795 { 3796 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3797 CPUState *cs = CPU(core->threads[0]); 3798 PowerPCCPU *cpu = POWERPC_CPU(cs); 3799 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3800 int id = spapr_get_vcpu_id(cpu); 3801 char *nodename; 3802 int offset; 3803 3804 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3805 offset = fdt_add_subnode(fdt, 0, nodename); 3806 g_free(nodename); 3807 3808 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3809 3810 *fdt_start_offset = offset; 3811 return 0; 3812 } 3813 3814 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3815 Error **errp) 3816 { 3817 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3818 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3819 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3820 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3821 CPUCore *cc = CPU_CORE(dev); 3822 CPUState *cs; 3823 SpaprDrc *drc; 3824 Error *local_err = NULL; 3825 CPUArchId *core_slot; 3826 int index; 3827 bool hotplugged = spapr_drc_hotplugged(dev); 3828 3829 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3830 if (!core_slot) { 3831 error_setg(errp, "Unable to find CPU core with core-id: %d", 3832 cc->core_id); 3833 return; 3834 } 3835 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3836 spapr_vcpu_id(spapr, cc->core_id)); 3837 3838 g_assert(drc || !mc->has_hotpluggable_cpus); 3839 3840 if (drc) { 3841 spapr_drc_attach(drc, dev, &local_err); 3842 if (local_err) { 3843 error_propagate(errp, local_err); 3844 return; 3845 } 3846 3847 if (hotplugged) { 3848 /* 3849 * Send hotplug notification interrupt to the guest only 3850 * in case of hotplugged CPUs. 3851 */ 3852 spapr_hotplug_req_add_by_index(drc); 3853 } else { 3854 spapr_drc_reset(drc); 3855 } 3856 } 3857 3858 core_slot->cpu = OBJECT(dev); 3859 3860 if (smc->pre_2_10_has_unused_icps) { 3861 int i; 3862 3863 for (i = 0; i < cc->nr_threads; i++) { 3864 cs = CPU(core->threads[i]); 3865 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3866 } 3867 } 3868 } 3869 3870 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3871 Error **errp) 3872 { 3873 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3874 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3875 Error *local_err = NULL; 3876 CPUCore *cc = CPU_CORE(dev); 3877 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3878 const char *type = object_get_typename(OBJECT(dev)); 3879 CPUArchId *core_slot; 3880 int index; 3881 unsigned int smp_threads = machine->smp.threads; 3882 3883 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3884 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3885 goto out; 3886 } 3887 3888 if (strcmp(base_core_type, type)) { 3889 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3890 goto out; 3891 } 3892 3893 if (cc->core_id % smp_threads) { 3894 error_setg(&local_err, "invalid core id %d", cc->core_id); 3895 goto out; 3896 } 3897 3898 /* 3899 * In general we should have homogeneous threads-per-core, but old 3900 * (pre hotplug support) machine types allow the last core to have 3901 * reduced threads as a compatibility hack for when we allowed 3902 * total vcpus not a multiple of threads-per-core. 3903 */ 3904 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3905 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3906 cc->nr_threads, smp_threads); 3907 goto out; 3908 } 3909 3910 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3911 if (!core_slot) { 3912 error_setg(&local_err, "core id %d out of range", cc->core_id); 3913 goto out; 3914 } 3915 3916 if (core_slot->cpu) { 3917 error_setg(&local_err, "core %d already populated", cc->core_id); 3918 goto out; 3919 } 3920 3921 numa_cpu_pre_plug(core_slot, dev, &local_err); 3922 3923 out: 3924 error_propagate(errp, local_err); 3925 } 3926 3927 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3928 void *fdt, int *fdt_start_offset, Error **errp) 3929 { 3930 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3931 int intc_phandle; 3932 3933 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3934 if (intc_phandle <= 0) { 3935 return -1; 3936 } 3937 3938 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3939 fdt_start_offset)) { 3940 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3941 return -1; 3942 } 3943 3944 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3945 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3946 3947 return 0; 3948 } 3949 3950 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3951 Error **errp) 3952 { 3953 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3954 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3955 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3956 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3957 3958 if (dev->hotplugged && !smc->dr_phb_enabled) { 3959 error_setg(errp, "PHB hotplug not supported for this machine"); 3960 return; 3961 } 3962 3963 if (sphb->index == (uint32_t)-1) { 3964 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3965 return; 3966 } 3967 3968 /* 3969 * This will check that sphb->index doesn't exceed the maximum number of 3970 * PHBs for the current machine type. 3971 */ 3972 smc->phb_placement(spapr, sphb->index, 3973 &sphb->buid, &sphb->io_win_addr, 3974 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3975 windows_supported, sphb->dma_liobn, 3976 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3977 errp); 3978 } 3979 3980 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3981 Error **errp) 3982 { 3983 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3984 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3985 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3986 SpaprDrc *drc; 3987 bool hotplugged = spapr_drc_hotplugged(dev); 3988 Error *local_err = NULL; 3989 3990 if (!smc->dr_phb_enabled) { 3991 return; 3992 } 3993 3994 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3995 /* hotplug hooks should check it's enabled before getting this far */ 3996 assert(drc); 3997 3998 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3999 if (local_err) { 4000 error_propagate(errp, local_err); 4001 return; 4002 } 4003 4004 if (hotplugged) { 4005 spapr_hotplug_req_add_by_index(drc); 4006 } else { 4007 spapr_drc_reset(drc); 4008 } 4009 } 4010 4011 void spapr_phb_release(DeviceState *dev) 4012 { 4013 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4014 4015 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4016 object_unparent(OBJECT(dev)); 4017 } 4018 4019 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4020 { 4021 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4022 } 4023 4024 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4025 DeviceState *dev, Error **errp) 4026 { 4027 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4028 SpaprDrc *drc; 4029 4030 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4031 assert(drc); 4032 4033 if (!spapr_drc_unplug_requested(drc)) { 4034 spapr_drc_detach(drc); 4035 spapr_hotplug_req_remove_by_index(drc); 4036 } 4037 } 4038 4039 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4040 DeviceState *dev, Error **errp) 4041 { 4042 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4043 spapr_memory_plug(hotplug_dev, dev, errp); 4044 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4045 spapr_core_plug(hotplug_dev, dev, errp); 4046 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4047 spapr_phb_plug(hotplug_dev, dev, errp); 4048 } 4049 } 4050 4051 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4052 DeviceState *dev, Error **errp) 4053 { 4054 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4055 spapr_memory_unplug(hotplug_dev, dev); 4056 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4057 spapr_core_unplug(hotplug_dev, dev); 4058 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4059 spapr_phb_unplug(hotplug_dev, dev); 4060 } 4061 } 4062 4063 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4064 DeviceState *dev, Error **errp) 4065 { 4066 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4067 MachineClass *mc = MACHINE_GET_CLASS(sms); 4068 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4069 4070 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4071 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4072 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4073 } else { 4074 /* NOTE: this means there is a window after guest reset, prior to 4075 * CAS negotiation, where unplug requests will fail due to the 4076 * capability not being detected yet. This is a bit different than 4077 * the case with PCI unplug, where the events will be queued and 4078 * eventually handled by the guest after boot 4079 */ 4080 error_setg(errp, "Memory hot unplug not supported for this guest"); 4081 } 4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4083 if (!mc->has_hotpluggable_cpus) { 4084 error_setg(errp, "CPU hot unplug not supported on this machine"); 4085 return; 4086 } 4087 spapr_core_unplug_request(hotplug_dev, dev, errp); 4088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4089 if (!smc->dr_phb_enabled) { 4090 error_setg(errp, "PHB hot unplug not supported on this machine"); 4091 return; 4092 } 4093 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4094 } 4095 } 4096 4097 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4098 DeviceState *dev, Error **errp) 4099 { 4100 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4101 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4102 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4103 spapr_core_pre_plug(hotplug_dev, dev, errp); 4104 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4105 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4106 } 4107 } 4108 4109 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4110 DeviceState *dev) 4111 { 4112 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4113 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4114 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4115 return HOTPLUG_HANDLER(machine); 4116 } 4117 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4118 PCIDevice *pcidev = PCI_DEVICE(dev); 4119 PCIBus *root = pci_device_root_bus(pcidev); 4120 SpaprPhbState *phb = 4121 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4122 TYPE_SPAPR_PCI_HOST_BRIDGE); 4123 4124 if (phb) { 4125 return HOTPLUG_HANDLER(phb); 4126 } 4127 } 4128 return NULL; 4129 } 4130 4131 static CpuInstanceProperties 4132 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4133 { 4134 CPUArchId *core_slot; 4135 MachineClass *mc = MACHINE_GET_CLASS(machine); 4136 4137 /* make sure possible_cpu are intialized */ 4138 mc->possible_cpu_arch_ids(machine); 4139 /* get CPU core slot containing thread that matches cpu_index */ 4140 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4141 assert(core_slot); 4142 return core_slot->props; 4143 } 4144 4145 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4146 { 4147 return idx / ms->smp.cores % nb_numa_nodes; 4148 } 4149 4150 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4151 { 4152 int i; 4153 unsigned int smp_threads = machine->smp.threads; 4154 unsigned int smp_cpus = machine->smp.cpus; 4155 const char *core_type; 4156 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4157 MachineClass *mc = MACHINE_GET_CLASS(machine); 4158 4159 if (!mc->has_hotpluggable_cpus) { 4160 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4161 } 4162 if (machine->possible_cpus) { 4163 assert(machine->possible_cpus->len == spapr_max_cores); 4164 return machine->possible_cpus; 4165 } 4166 4167 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4168 if (!core_type) { 4169 error_report("Unable to find sPAPR CPU Core definition"); 4170 exit(1); 4171 } 4172 4173 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4174 sizeof(CPUArchId) * spapr_max_cores); 4175 machine->possible_cpus->len = spapr_max_cores; 4176 for (i = 0; i < machine->possible_cpus->len; i++) { 4177 int core_id = i * smp_threads; 4178 4179 machine->possible_cpus->cpus[i].type = core_type; 4180 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4181 machine->possible_cpus->cpus[i].arch_id = core_id; 4182 machine->possible_cpus->cpus[i].props.has_core_id = true; 4183 machine->possible_cpus->cpus[i].props.core_id = core_id; 4184 } 4185 return machine->possible_cpus; 4186 } 4187 4188 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4189 uint64_t *buid, hwaddr *pio, 4190 hwaddr *mmio32, hwaddr *mmio64, 4191 unsigned n_dma, uint32_t *liobns, 4192 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4193 { 4194 /* 4195 * New-style PHB window placement. 4196 * 4197 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4198 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4199 * windows. 4200 * 4201 * Some guest kernels can't work with MMIO windows above 1<<46 4202 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4203 * 4204 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4205 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4206 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4207 * 1TiB 64-bit MMIO windows for each PHB. 4208 */ 4209 const uint64_t base_buid = 0x800000020000000ULL; 4210 int i; 4211 4212 /* Sanity check natural alignments */ 4213 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4214 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4215 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4216 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4217 /* Sanity check bounds */ 4218 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4219 SPAPR_PCI_MEM32_WIN_SIZE); 4220 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4221 SPAPR_PCI_MEM64_WIN_SIZE); 4222 4223 if (index >= SPAPR_MAX_PHBS) { 4224 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4225 SPAPR_MAX_PHBS - 1); 4226 return; 4227 } 4228 4229 *buid = base_buid + index; 4230 for (i = 0; i < n_dma; ++i) { 4231 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4232 } 4233 4234 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4235 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4236 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4237 4238 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4239 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4240 } 4241 4242 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4243 { 4244 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4245 4246 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4247 } 4248 4249 static void spapr_ics_resend(XICSFabric *dev) 4250 { 4251 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4252 4253 ics_resend(spapr->ics); 4254 } 4255 4256 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4257 { 4258 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4259 4260 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4261 } 4262 4263 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4264 Monitor *mon) 4265 { 4266 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4267 4268 spapr->irq->print_info(spapr, mon); 4269 } 4270 4271 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4272 { 4273 return cpu->vcpu_id; 4274 } 4275 4276 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4277 { 4278 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4279 MachineState *ms = MACHINE(spapr); 4280 int vcpu_id; 4281 4282 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4283 4284 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4285 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4286 error_append_hint(errp, "Adjust the number of cpus to %d " 4287 "or try to raise the number of threads per core\n", 4288 vcpu_id * ms->smp.threads / spapr->vsmt); 4289 return; 4290 } 4291 4292 cpu->vcpu_id = vcpu_id; 4293 } 4294 4295 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4296 { 4297 CPUState *cs; 4298 4299 CPU_FOREACH(cs) { 4300 PowerPCCPU *cpu = POWERPC_CPU(cs); 4301 4302 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4303 return cpu; 4304 } 4305 } 4306 4307 return NULL; 4308 } 4309 4310 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4311 { 4312 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4313 4314 /* These are only called by TCG, KVM maintains dispatch state */ 4315 4316 spapr_cpu->prod = false; 4317 if (spapr_cpu->vpa_addr) { 4318 CPUState *cs = CPU(cpu); 4319 uint32_t dispatch; 4320 4321 dispatch = ldl_be_phys(cs->as, 4322 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4323 dispatch++; 4324 if ((dispatch & 1) != 0) { 4325 qemu_log_mask(LOG_GUEST_ERROR, 4326 "VPA: incorrect dispatch counter value for " 4327 "dispatched partition %u, correcting.\n", dispatch); 4328 dispatch++; 4329 } 4330 stl_be_phys(cs->as, 4331 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4332 } 4333 } 4334 4335 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4336 { 4337 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4338 4339 if (spapr_cpu->vpa_addr) { 4340 CPUState *cs = CPU(cpu); 4341 uint32_t dispatch; 4342 4343 dispatch = ldl_be_phys(cs->as, 4344 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4345 dispatch++; 4346 if ((dispatch & 1) != 1) { 4347 qemu_log_mask(LOG_GUEST_ERROR, 4348 "VPA: incorrect dispatch counter value for " 4349 "preempted partition %u, correcting.\n", dispatch); 4350 dispatch++; 4351 } 4352 stl_be_phys(cs->as, 4353 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4354 } 4355 } 4356 4357 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4358 { 4359 MachineClass *mc = MACHINE_CLASS(oc); 4360 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4361 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4362 NMIClass *nc = NMI_CLASS(oc); 4363 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4364 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4365 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4366 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4367 4368 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4369 mc->ignore_boot_device_suffixes = true; 4370 4371 /* 4372 * We set up the default / latest behaviour here. The class_init 4373 * functions for the specific versioned machine types can override 4374 * these details for backwards compatibility 4375 */ 4376 mc->init = spapr_machine_init; 4377 mc->reset = spapr_machine_reset; 4378 mc->block_default_type = IF_SCSI; 4379 mc->max_cpus = 1024; 4380 mc->no_parallel = 1; 4381 mc->default_boot_order = ""; 4382 mc->default_ram_size = 512 * MiB; 4383 mc->default_display = "std"; 4384 mc->kvm_type = spapr_kvm_type; 4385 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4386 mc->pci_allow_0_address = true; 4387 assert(!mc->get_hotplug_handler); 4388 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4389 hc->pre_plug = spapr_machine_device_pre_plug; 4390 hc->plug = spapr_machine_device_plug; 4391 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4392 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4393 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4394 hc->unplug_request = spapr_machine_device_unplug_request; 4395 hc->unplug = spapr_machine_device_unplug; 4396 4397 smc->dr_lmb_enabled = true; 4398 smc->update_dt_enabled = true; 4399 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4400 mc->has_hotpluggable_cpus = true; 4401 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4402 fwc->get_dev_path = spapr_get_fw_dev_path; 4403 nc->nmi_monitor_handler = spapr_nmi; 4404 smc->phb_placement = spapr_phb_placement; 4405 vhc->hypercall = emulate_spapr_hypercall; 4406 vhc->hpt_mask = spapr_hpt_mask; 4407 vhc->map_hptes = spapr_map_hptes; 4408 vhc->unmap_hptes = spapr_unmap_hptes; 4409 vhc->hpte_set_c = spapr_hpte_set_c; 4410 vhc->hpte_set_r = spapr_hpte_set_r; 4411 vhc->get_pate = spapr_get_pate; 4412 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4413 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4414 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4415 xic->ics_get = spapr_ics_get; 4416 xic->ics_resend = spapr_ics_resend; 4417 xic->icp_get = spapr_icp_get; 4418 ispc->print_info = spapr_pic_print_info; 4419 /* Force NUMA node memory size to be a multiple of 4420 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4421 * in which LMBs are represented and hot-added 4422 */ 4423 mc->numa_mem_align_shift = 28; 4424 mc->numa_mem_supported = true; 4425 4426 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4427 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4428 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4429 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4430 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4431 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4432 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4433 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4434 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4435 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4436 spapr_caps_add_properties(smc, &error_abort); 4437 smc->irq = &spapr_irq_dual; 4438 smc->dr_phb_enabled = true; 4439 } 4440 4441 static const TypeInfo spapr_machine_info = { 4442 .name = TYPE_SPAPR_MACHINE, 4443 .parent = TYPE_MACHINE, 4444 .abstract = true, 4445 .instance_size = sizeof(SpaprMachineState), 4446 .instance_init = spapr_instance_init, 4447 .instance_finalize = spapr_machine_finalizefn, 4448 .class_size = sizeof(SpaprMachineClass), 4449 .class_init = spapr_machine_class_init, 4450 .interfaces = (InterfaceInfo[]) { 4451 { TYPE_FW_PATH_PROVIDER }, 4452 { TYPE_NMI }, 4453 { TYPE_HOTPLUG_HANDLER }, 4454 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4455 { TYPE_XICS_FABRIC }, 4456 { TYPE_INTERRUPT_STATS_PROVIDER }, 4457 { } 4458 }, 4459 }; 4460 4461 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4462 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4463 void *data) \ 4464 { \ 4465 MachineClass *mc = MACHINE_CLASS(oc); \ 4466 spapr_machine_##suffix##_class_options(mc); \ 4467 if (latest) { \ 4468 mc->alias = "pseries"; \ 4469 mc->is_default = 1; \ 4470 } \ 4471 } \ 4472 static const TypeInfo spapr_machine_##suffix##_info = { \ 4473 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4474 .parent = TYPE_SPAPR_MACHINE, \ 4475 .class_init = spapr_machine_##suffix##_class_init, \ 4476 }; \ 4477 static void spapr_machine_register_##suffix(void) \ 4478 { \ 4479 type_register(&spapr_machine_##suffix##_info); \ 4480 } \ 4481 type_init(spapr_machine_register_##suffix) 4482 4483 /* 4484 * pseries-4.2 4485 */ 4486 static void spapr_machine_4_2_class_options(MachineClass *mc) 4487 { 4488 /* Defaults for the latest behaviour inherited from the base class */ 4489 } 4490 4491 DEFINE_SPAPR_MACHINE(4_2, "4.2", true); 4492 4493 /* 4494 * pseries-4.1 4495 */ 4496 static void spapr_machine_4_1_class_options(MachineClass *mc) 4497 { 4498 static GlobalProperty compat[] = { 4499 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4500 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4501 }; 4502 4503 spapr_machine_4_2_class_options(mc); 4504 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4505 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4506 } 4507 4508 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4509 4510 /* 4511 * pseries-4.0 4512 */ 4513 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4514 uint64_t *buid, hwaddr *pio, 4515 hwaddr *mmio32, hwaddr *mmio64, 4516 unsigned n_dma, uint32_t *liobns, 4517 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4518 { 4519 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4520 nv2gpa, nv2atsd, errp); 4521 *nv2gpa = 0; 4522 *nv2atsd = 0; 4523 } 4524 4525 static void spapr_machine_4_0_class_options(MachineClass *mc) 4526 { 4527 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4528 4529 spapr_machine_4_1_class_options(mc); 4530 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4531 smc->phb_placement = phb_placement_4_0; 4532 smc->irq = &spapr_irq_xics; 4533 smc->pre_4_1_migration = true; 4534 } 4535 4536 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4537 4538 /* 4539 * pseries-3.1 4540 */ 4541 static void spapr_machine_3_1_class_options(MachineClass *mc) 4542 { 4543 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4544 4545 spapr_machine_4_0_class_options(mc); 4546 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4547 4548 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4549 smc->update_dt_enabled = false; 4550 smc->dr_phb_enabled = false; 4551 smc->broken_host_serial_model = true; 4552 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4553 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4554 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4555 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4556 } 4557 4558 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4559 4560 /* 4561 * pseries-3.0 4562 */ 4563 4564 static void spapr_machine_3_0_class_options(MachineClass *mc) 4565 { 4566 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4567 4568 spapr_machine_3_1_class_options(mc); 4569 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4570 4571 smc->legacy_irq_allocation = true; 4572 smc->irq = &spapr_irq_xics_legacy; 4573 } 4574 4575 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4576 4577 /* 4578 * pseries-2.12 4579 */ 4580 static void spapr_machine_2_12_class_options(MachineClass *mc) 4581 { 4582 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4583 static GlobalProperty compat[] = { 4584 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4585 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4586 }; 4587 4588 spapr_machine_3_0_class_options(mc); 4589 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4590 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4591 4592 /* We depend on kvm_enabled() to choose a default value for the 4593 * hpt-max-page-size capability. Of course we can't do it here 4594 * because this is too early and the HW accelerator isn't initialzed 4595 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4596 */ 4597 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4598 } 4599 4600 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4601 4602 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4603 { 4604 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4605 4606 spapr_machine_2_12_class_options(mc); 4607 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4608 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4609 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4610 } 4611 4612 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4613 4614 /* 4615 * pseries-2.11 4616 */ 4617 4618 static void spapr_machine_2_11_class_options(MachineClass *mc) 4619 { 4620 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4621 4622 spapr_machine_2_12_class_options(mc); 4623 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4624 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4625 } 4626 4627 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4628 4629 /* 4630 * pseries-2.10 4631 */ 4632 4633 static void spapr_machine_2_10_class_options(MachineClass *mc) 4634 { 4635 spapr_machine_2_11_class_options(mc); 4636 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4637 } 4638 4639 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4640 4641 /* 4642 * pseries-2.9 4643 */ 4644 4645 static void spapr_machine_2_9_class_options(MachineClass *mc) 4646 { 4647 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4648 static GlobalProperty compat[] = { 4649 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4650 }; 4651 4652 spapr_machine_2_10_class_options(mc); 4653 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4654 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4655 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4656 smc->pre_2_10_has_unused_icps = true; 4657 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4658 } 4659 4660 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4661 4662 /* 4663 * pseries-2.8 4664 */ 4665 4666 static void spapr_machine_2_8_class_options(MachineClass *mc) 4667 { 4668 static GlobalProperty compat[] = { 4669 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4670 }; 4671 4672 spapr_machine_2_9_class_options(mc); 4673 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4674 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4675 mc->numa_mem_align_shift = 23; 4676 } 4677 4678 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4679 4680 /* 4681 * pseries-2.7 4682 */ 4683 4684 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4685 uint64_t *buid, hwaddr *pio, 4686 hwaddr *mmio32, hwaddr *mmio64, 4687 unsigned n_dma, uint32_t *liobns, 4688 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4689 { 4690 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4691 const uint64_t base_buid = 0x800000020000000ULL; 4692 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4693 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4694 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4695 const uint32_t max_index = 255; 4696 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4697 4698 uint64_t ram_top = MACHINE(spapr)->ram_size; 4699 hwaddr phb0_base, phb_base; 4700 int i; 4701 4702 /* Do we have device memory? */ 4703 if (MACHINE(spapr)->maxram_size > ram_top) { 4704 /* Can't just use maxram_size, because there may be an 4705 * alignment gap between normal and device memory regions 4706 */ 4707 ram_top = MACHINE(spapr)->device_memory->base + 4708 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4709 } 4710 4711 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4712 4713 if (index > max_index) { 4714 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4715 max_index); 4716 return; 4717 } 4718 4719 *buid = base_buid + index; 4720 for (i = 0; i < n_dma; ++i) { 4721 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4722 } 4723 4724 phb_base = phb0_base + index * phb_spacing; 4725 *pio = phb_base + pio_offset; 4726 *mmio32 = phb_base + mmio_offset; 4727 /* 4728 * We don't set the 64-bit MMIO window, relying on the PHB's 4729 * fallback behaviour of automatically splitting a large "32-bit" 4730 * window into contiguous 32-bit and 64-bit windows 4731 */ 4732 4733 *nv2gpa = 0; 4734 *nv2atsd = 0; 4735 } 4736 4737 static void spapr_machine_2_7_class_options(MachineClass *mc) 4738 { 4739 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4740 static GlobalProperty compat[] = { 4741 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4742 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4743 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4744 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4745 }; 4746 4747 spapr_machine_2_8_class_options(mc); 4748 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4749 mc->default_machine_opts = "modern-hotplug-events=off"; 4750 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4751 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4752 smc->phb_placement = phb_placement_2_7; 4753 } 4754 4755 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4756 4757 /* 4758 * pseries-2.6 4759 */ 4760 4761 static void spapr_machine_2_6_class_options(MachineClass *mc) 4762 { 4763 static GlobalProperty compat[] = { 4764 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4765 }; 4766 4767 spapr_machine_2_7_class_options(mc); 4768 mc->has_hotpluggable_cpus = false; 4769 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4770 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4771 } 4772 4773 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4774 4775 /* 4776 * pseries-2.5 4777 */ 4778 4779 static void spapr_machine_2_5_class_options(MachineClass *mc) 4780 { 4781 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4782 static GlobalProperty compat[] = { 4783 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4784 }; 4785 4786 spapr_machine_2_6_class_options(mc); 4787 smc->use_ohci_by_default = true; 4788 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4789 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4790 } 4791 4792 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4793 4794 /* 4795 * pseries-2.4 4796 */ 4797 4798 static void spapr_machine_2_4_class_options(MachineClass *mc) 4799 { 4800 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4801 4802 spapr_machine_2_5_class_options(mc); 4803 smc->dr_lmb_enabled = false; 4804 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4805 } 4806 4807 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4808 4809 /* 4810 * pseries-2.3 4811 */ 4812 4813 static void spapr_machine_2_3_class_options(MachineClass *mc) 4814 { 4815 static GlobalProperty compat[] = { 4816 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4817 }; 4818 spapr_machine_2_4_class_options(mc); 4819 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4820 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4821 } 4822 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4823 4824 /* 4825 * pseries-2.2 4826 */ 4827 4828 static void spapr_machine_2_2_class_options(MachineClass *mc) 4829 { 4830 static GlobalProperty compat[] = { 4831 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4832 }; 4833 4834 spapr_machine_2_3_class_options(mc); 4835 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4836 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4837 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4838 } 4839 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4840 4841 /* 4842 * pseries-2.1 4843 */ 4844 4845 static void spapr_machine_2_1_class_options(MachineClass *mc) 4846 { 4847 spapr_machine_2_2_class_options(mc); 4848 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4849 } 4850 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4851 4852 static void spapr_machine_register_types(void) 4853 { 4854 type_register_static(&spapr_machine_info); 4855 } 4856 4857 type_init(spapr_machine_register_types) 4858