xref: /openbmc/qemu/hw/ppc/spapr.c (revision 1c8f85d9)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "hw/ppc/spapr_cpu_core.h"
80 #include "hw/mem/memory-device.h"
81 #include "hw/ppc/spapr_tpm_proxy.h"
82 
83 #include "monitor/monitor.h"
84 
85 #include <libfdt.h>
86 
87 /* SLOF memory layout:
88  *
89  * SLOF raw image loaded at 0, copies its romfs right below the flat
90  * device-tree, then position SLOF itself 31M below that
91  *
92  * So we set FW_OVERHEAD to 40MB which should account for all of that
93  * and more
94  *
95  * We load our kernel at 4M, leaving space for SLOF initial image
96  */
97 #define FDT_MAX_SIZE            0x100000
98 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
99 #define FW_MAX_SIZE             0x400000
100 #define FW_FILE_NAME            "slof.bin"
101 #define FW_OVERHEAD             0x2800000
102 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
103 
104 #define MIN_RMA_SLOF            128UL
105 
106 #define PHANDLE_INTC            0x00001111
107 
108 /* These two functions implement the VCPU id numbering: one to compute them
109  * all and one to identify thread 0 of a VCORE. Any change to the first one
110  * is likely to have an impact on the second one, so let's keep them close.
111  */
112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
113 {
114     MachineState *ms = MACHINE(spapr);
115     unsigned int smp_threads = ms->smp.threads;
116 
117     assert(spapr->vsmt);
118     return
119         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
120 }
121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
122                                       PowerPCCPU *cpu)
123 {
124     assert(spapr->vsmt);
125     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
126 }
127 
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
129 {
130     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131      * and newer QEMUs don't even have them. In both cases, we don't want
132      * to send anything on the wire.
133      */
134     return false;
135 }
136 
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138     .name = "icp/server",
139     .version_id = 1,
140     .minimum_version_id = 1,
141     .needed = pre_2_10_vmstate_dummy_icp_needed,
142     .fields = (VMStateField[]) {
143         VMSTATE_UNUSED(4), /* uint32_t xirr */
144         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145         VMSTATE_UNUSED(1), /* uint8_t mfrr */
146         VMSTATE_END_OF_LIST()
147     },
148 };
149 
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
151 {
152     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153                      (void *)(uintptr_t) i);
154 }
155 
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
157 {
158     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159                        (void *)(uintptr_t) i);
160 }
161 
162 int spapr_max_server_number(SpaprMachineState *spapr)
163 {
164     MachineState *ms = MACHINE(spapr);
165 
166     assert(spapr->vsmt);
167     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
168 }
169 
170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
171                                   int smt_threads)
172 {
173     int i, ret = 0;
174     uint32_t servers_prop[smt_threads];
175     uint32_t gservers_prop[smt_threads * 2];
176     int index = spapr_get_vcpu_id(cpu);
177 
178     if (cpu->compat_pvr) {
179         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
180         if (ret < 0) {
181             return ret;
182         }
183     }
184 
185     /* Build interrupt servers and gservers properties */
186     for (i = 0; i < smt_threads; i++) {
187         servers_prop[i] = cpu_to_be32(index + i);
188         /* Hack, direct the group queues back to cpu 0 */
189         gservers_prop[i*2] = cpu_to_be32(index + i);
190         gservers_prop[i*2 + 1] = 0;
191     }
192     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
193                       servers_prop, sizeof(servers_prop));
194     if (ret < 0) {
195         return ret;
196     }
197     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
198                       gservers_prop, sizeof(gservers_prop));
199 
200     return ret;
201 }
202 
203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
204 {
205     int index = spapr_get_vcpu_id(cpu);
206     uint32_t associativity[] = {cpu_to_be32(0x5),
207                                 cpu_to_be32(0x0),
208                                 cpu_to_be32(0x0),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(cpu->node_id),
211                                 cpu_to_be32(index)};
212 
213     /* Advertise NUMA via ibm,associativity */
214     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
215                           sizeof(associativity));
216 }
217 
218 /* Populate the "ibm,pa-features" property */
219 static void spapr_populate_pa_features(SpaprMachineState *spapr,
220                                        PowerPCCPU *cpu,
221                                        void *fdt, int offset)
222 {
223     uint8_t pa_features_206[] = { 6, 0,
224         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225     uint8_t pa_features_207[] = { 24, 0,
226         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230     uint8_t pa_features_300[] = { 66, 0,
231         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
234         /* 6: DS207 */
235         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
236         /* 16: Vector */
237         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246         /* 42: PM, 44: PC RA, 46: SC vec'd */
247         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248         /* 48: SIMD, 50: QP BFP, 52: String */
249         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250         /* 54: DecFP, 56: DecI, 58: SHA */
251         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252         /* 60: NM atomic, 62: RNG */
253         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
254     };
255     uint8_t *pa_features = NULL;
256     size_t pa_size;
257 
258     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
259         pa_features = pa_features_206;
260         pa_size = sizeof(pa_features_206);
261     }
262     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
263         pa_features = pa_features_207;
264         pa_size = sizeof(pa_features_207);
265     }
266     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
267         pa_features = pa_features_300;
268         pa_size = sizeof(pa_features_300);
269     }
270     if (!pa_features) {
271         return;
272     }
273 
274     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
275         /*
276          * Note: we keep CI large pages off by default because a 64K capable
277          * guest provisioned with large pages might otherwise try to map a qemu
278          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279          * even if that qemu runs on a 4k host.
280          * We dd this bit back here if we are confident this is not an issue
281          */
282         pa_features[3] |= 0x20;
283     }
284     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
285         pa_features[24] |= 0x80;    /* Transactional memory support */
286     }
287     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
288         /* Workaround for broken kernels that attempt (guest) radix
289          * mode when they can't handle it, if they see the radix bit set
290          * in pa-features. So hide it from them. */
291         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
292     }
293 
294     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
295 }
296 
297 static hwaddr spapr_node0_size(MachineState *machine)
298 {
299     if (machine->numa_state->num_nodes) {
300         int i;
301         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
302             if (machine->numa_state->nodes[i].node_mem) {
303                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
304                            machine->ram_size);
305             }
306         }
307     }
308     return machine->ram_size;
309 }
310 
311 static void add_str(GString *s, const gchar *s1)
312 {
313     g_string_append_len(s, s1, strlen(s1) + 1);
314 }
315 
316 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
317                                        hwaddr size)
318 {
319     uint32_t associativity[] = {
320         cpu_to_be32(0x4), /* length */
321         cpu_to_be32(0x0), cpu_to_be32(0x0),
322         cpu_to_be32(0x0), cpu_to_be32(nodeid)
323     };
324     char mem_name[32];
325     uint64_t mem_reg_property[2];
326     int off;
327 
328     mem_reg_property[0] = cpu_to_be64(start);
329     mem_reg_property[1] = cpu_to_be64(size);
330 
331     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
332     off = fdt_add_subnode(fdt, 0, mem_name);
333     _FDT(off);
334     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
335     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
336                       sizeof(mem_reg_property))));
337     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
338                       sizeof(associativity))));
339     return off;
340 }
341 
342 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
343 {
344     MachineState *machine = MACHINE(spapr);
345     hwaddr mem_start, node_size;
346     int i, nb_nodes = machine->numa_state->num_nodes;
347     NodeInfo *nodes = machine->numa_state->nodes;
348 
349     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
350         if (!nodes[i].node_mem) {
351             continue;
352         }
353         if (mem_start >= machine->ram_size) {
354             node_size = 0;
355         } else {
356             node_size = nodes[i].node_mem;
357             if (node_size > machine->ram_size - mem_start) {
358                 node_size = machine->ram_size - mem_start;
359             }
360         }
361         if (!mem_start) {
362             /* spapr_machine_init() checks for rma_size <= node0_size
363              * already */
364             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
365             mem_start += spapr->rma_size;
366             node_size -= spapr->rma_size;
367         }
368         for ( ; node_size; ) {
369             hwaddr sizetmp = pow2floor(node_size);
370 
371             /* mem_start != 0 here */
372             if (ctzl(mem_start) < ctzl(sizetmp)) {
373                 sizetmp = 1ULL << ctzl(mem_start);
374             }
375 
376             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
377             node_size -= sizetmp;
378             mem_start += sizetmp;
379         }
380     }
381 
382     return 0;
383 }
384 
385 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
386                                   SpaprMachineState *spapr)
387 {
388     MachineState *ms = MACHINE(spapr);
389     PowerPCCPU *cpu = POWERPC_CPU(cs);
390     CPUPPCState *env = &cpu->env;
391     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
392     int index = spapr_get_vcpu_id(cpu);
393     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
394                        0xffffffff, 0xffffffff};
395     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
396         : SPAPR_TIMEBASE_FREQ;
397     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
398     uint32_t page_sizes_prop[64];
399     size_t page_sizes_prop_size;
400     unsigned int smp_threads = ms->smp.threads;
401     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
402     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
403     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
404     SpaprDrc *drc;
405     int drc_index;
406     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
407     int i;
408 
409     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
410     if (drc) {
411         drc_index = spapr_drc_index(drc);
412         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
413     }
414 
415     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
416     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
417 
418     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
419     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
420                            env->dcache_line_size)));
421     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
422                            env->dcache_line_size)));
423     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
424                            env->icache_line_size)));
425     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
426                            env->icache_line_size)));
427 
428     if (pcc->l1_dcache_size) {
429         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
430                                pcc->l1_dcache_size)));
431     } else {
432         warn_report("Unknown L1 dcache size for cpu");
433     }
434     if (pcc->l1_icache_size) {
435         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
436                                pcc->l1_icache_size)));
437     } else {
438         warn_report("Unknown L1 icache size for cpu");
439     }
440 
441     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
442     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
443     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
444     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
445     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
446     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
447 
448     if (env->spr_cb[SPR_PURR].oea_read) {
449         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
450     }
451     if (env->spr_cb[SPR_SPURR].oea_read) {
452         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
453     }
454 
455     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
456         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
457                           segs, sizeof(segs))));
458     }
459 
460     /* Advertise VSX (vector extensions) if available
461      *   1               == VMX / Altivec available
462      *   2               == VSX available
463      *
464      * Only CPUs for which we create core types in spapr_cpu_core.c
465      * are possible, and all of those have VMX */
466     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
467         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
468     } else {
469         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
470     }
471 
472     /* Advertise DFP (Decimal Floating Point) if available
473      *   0 / no property == no DFP
474      *   1               == DFP available */
475     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
476         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
477     }
478 
479     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
480                                                       sizeof(page_sizes_prop));
481     if (page_sizes_prop_size) {
482         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
483                           page_sizes_prop, page_sizes_prop_size)));
484     }
485 
486     spapr_populate_pa_features(spapr, cpu, fdt, offset);
487 
488     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
489                            cs->cpu_index / vcpus_per_socket)));
490 
491     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
492                       pft_size_prop, sizeof(pft_size_prop))));
493 
494     if (ms->numa_state->num_nodes > 1) {
495         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
496     }
497 
498     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
499 
500     if (pcc->radix_page_info) {
501         for (i = 0; i < pcc->radix_page_info->count; i++) {
502             radix_AP_encodings[i] =
503                 cpu_to_be32(pcc->radix_page_info->entries[i]);
504         }
505         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
506                           radix_AP_encodings,
507                           pcc->radix_page_info->count *
508                           sizeof(radix_AP_encodings[0]))));
509     }
510 
511     /*
512      * We set this property to let the guest know that it can use the large
513      * decrementer and its width in bits.
514      */
515     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
516         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
517                               pcc->lrg_decr_bits)));
518 }
519 
520 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
521 {
522     CPUState **rev;
523     CPUState *cs;
524     int n_cpus;
525     int cpus_offset;
526     char *nodename;
527     int i;
528 
529     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
530     _FDT(cpus_offset);
531     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
532     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
533 
534     /*
535      * We walk the CPUs in reverse order to ensure that CPU DT nodes
536      * created by fdt_add_subnode() end up in the right order in FDT
537      * for the guest kernel the enumerate the CPUs correctly.
538      *
539      * The CPU list cannot be traversed in reverse order, so we need
540      * to do extra work.
541      */
542     n_cpus = 0;
543     rev = NULL;
544     CPU_FOREACH(cs) {
545         rev = g_renew(CPUState *, rev, n_cpus + 1);
546         rev[n_cpus++] = cs;
547     }
548 
549     for (i = n_cpus - 1; i >= 0; i--) {
550         CPUState *cs = rev[i];
551         PowerPCCPU *cpu = POWERPC_CPU(cs);
552         int index = spapr_get_vcpu_id(cpu);
553         DeviceClass *dc = DEVICE_GET_CLASS(cs);
554         int offset;
555 
556         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
557             continue;
558         }
559 
560         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
561         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
562         g_free(nodename);
563         _FDT(offset);
564         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
565     }
566 
567     g_free(rev);
568 }
569 
570 static int spapr_rng_populate_dt(void *fdt)
571 {
572     int node;
573     int ret;
574 
575     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
576     if (node <= 0) {
577         return -1;
578     }
579     ret = fdt_setprop_string(fdt, node, "device_type",
580                              "ibm,platform-facilities");
581     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
582     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
583 
584     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
585     if (node <= 0) {
586         return -1;
587     }
588     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
589 
590     return ret ? -1 : 0;
591 }
592 
593 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
594 {
595     MemoryDeviceInfoList *info;
596 
597     for (info = list; info; info = info->next) {
598         MemoryDeviceInfo *value = info->value;
599 
600         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
601             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
602 
603             if (addr >= pcdimm_info->addr &&
604                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
605                 return pcdimm_info->node;
606             }
607         }
608     }
609 
610     return -1;
611 }
612 
613 struct sPAPRDrconfCellV2 {
614      uint32_t seq_lmbs;
615      uint64_t base_addr;
616      uint32_t drc_index;
617      uint32_t aa_index;
618      uint32_t flags;
619 } QEMU_PACKED;
620 
621 typedef struct DrconfCellQueue {
622     struct sPAPRDrconfCellV2 cell;
623     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
624 } DrconfCellQueue;
625 
626 static DrconfCellQueue *
627 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
628                       uint32_t drc_index, uint32_t aa_index,
629                       uint32_t flags)
630 {
631     DrconfCellQueue *elem;
632 
633     elem = g_malloc0(sizeof(*elem));
634     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
635     elem->cell.base_addr = cpu_to_be64(base_addr);
636     elem->cell.drc_index = cpu_to_be32(drc_index);
637     elem->cell.aa_index = cpu_to_be32(aa_index);
638     elem->cell.flags = cpu_to_be32(flags);
639 
640     return elem;
641 }
642 
643 /* ibm,dynamic-memory-v2 */
644 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
645                                    int offset, MemoryDeviceInfoList *dimms)
646 {
647     MachineState *machine = MACHINE(spapr);
648     uint8_t *int_buf, *cur_index;
649     int ret;
650     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
651     uint64_t addr, cur_addr, size;
652     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
653     uint64_t mem_end = machine->device_memory->base +
654                        memory_region_size(&machine->device_memory->mr);
655     uint32_t node, buf_len, nr_entries = 0;
656     SpaprDrc *drc;
657     DrconfCellQueue *elem, *next;
658     MemoryDeviceInfoList *info;
659     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
660         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
661 
662     /* Entry to cover RAM and the gap area */
663     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
664                                  SPAPR_LMB_FLAGS_RESERVED |
665                                  SPAPR_LMB_FLAGS_DRC_INVALID);
666     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
667     nr_entries++;
668 
669     cur_addr = machine->device_memory->base;
670     for (info = dimms; info; info = info->next) {
671         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
672 
673         addr = di->addr;
674         size = di->size;
675         node = di->node;
676 
677         /* Entry for hot-pluggable area */
678         if (cur_addr < addr) {
679             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
680             g_assert(drc);
681             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
682                                          cur_addr, spapr_drc_index(drc), -1, 0);
683             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
684             nr_entries++;
685         }
686 
687         /* Entry for DIMM */
688         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
689         g_assert(drc);
690         elem = spapr_get_drconf_cell(size / lmb_size, addr,
691                                      spapr_drc_index(drc), node,
692                                      SPAPR_LMB_FLAGS_ASSIGNED);
693         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
694         nr_entries++;
695         cur_addr = addr + size;
696     }
697 
698     /* Entry for remaining hotpluggable area */
699     if (cur_addr < mem_end) {
700         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
701         g_assert(drc);
702         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
703                                      cur_addr, spapr_drc_index(drc), -1, 0);
704         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
705         nr_entries++;
706     }
707 
708     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
709     int_buf = cur_index = g_malloc0(buf_len);
710     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
711     cur_index += sizeof(nr_entries);
712 
713     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
714         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
715         cur_index += sizeof(elem->cell);
716         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
717         g_free(elem);
718     }
719 
720     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
721     g_free(int_buf);
722     if (ret < 0) {
723         return -1;
724     }
725     return 0;
726 }
727 
728 /* ibm,dynamic-memory */
729 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
730                                    int offset, MemoryDeviceInfoList *dimms)
731 {
732     MachineState *machine = MACHINE(spapr);
733     int i, ret;
734     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
735     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
736     uint32_t nr_lmbs = (machine->device_memory->base +
737                        memory_region_size(&machine->device_memory->mr)) /
738                        lmb_size;
739     uint32_t *int_buf, *cur_index, buf_len;
740 
741     /*
742      * Allocate enough buffer size to fit in ibm,dynamic-memory
743      */
744     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
745     cur_index = int_buf = g_malloc0(buf_len);
746     int_buf[0] = cpu_to_be32(nr_lmbs);
747     cur_index++;
748     for (i = 0; i < nr_lmbs; i++) {
749         uint64_t addr = i * lmb_size;
750         uint32_t *dynamic_memory = cur_index;
751 
752         if (i >= device_lmb_start) {
753             SpaprDrc *drc;
754 
755             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
756             g_assert(drc);
757 
758             dynamic_memory[0] = cpu_to_be32(addr >> 32);
759             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
760             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
761             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
762             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
763             if (memory_region_present(get_system_memory(), addr)) {
764                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
765             } else {
766                 dynamic_memory[5] = cpu_to_be32(0);
767             }
768         } else {
769             /*
770              * LMB information for RMA, boot time RAM and gap b/n RAM and
771              * device memory region -- all these are marked as reserved
772              * and as having no valid DRC.
773              */
774             dynamic_memory[0] = cpu_to_be32(addr >> 32);
775             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
776             dynamic_memory[2] = cpu_to_be32(0);
777             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
778             dynamic_memory[4] = cpu_to_be32(-1);
779             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
780                                             SPAPR_LMB_FLAGS_DRC_INVALID);
781         }
782 
783         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
784     }
785     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
786     g_free(int_buf);
787     if (ret < 0) {
788         return -1;
789     }
790     return 0;
791 }
792 
793 /*
794  * Adds ibm,dynamic-reconfiguration-memory node.
795  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
796  * of this device tree node.
797  */
798 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
799 {
800     MachineState *machine = MACHINE(spapr);
801     int nb_numa_nodes = machine->numa_state->num_nodes;
802     int ret, i, offset;
803     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
804     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
805     uint32_t *int_buf, *cur_index, buf_len;
806     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
807     MemoryDeviceInfoList *dimms = NULL;
808 
809     /*
810      * Don't create the node if there is no device memory
811      */
812     if (machine->ram_size == machine->maxram_size) {
813         return 0;
814     }
815 
816     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
817 
818     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
819                     sizeof(prop_lmb_size));
820     if (ret < 0) {
821         return ret;
822     }
823 
824     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
825     if (ret < 0) {
826         return ret;
827     }
828 
829     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
830     if (ret < 0) {
831         return ret;
832     }
833 
834     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
835     dimms = qmp_memory_device_list();
836     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
837         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
838     } else {
839         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
840     }
841     qapi_free_MemoryDeviceInfoList(dimms);
842 
843     if (ret < 0) {
844         return ret;
845     }
846 
847     /* ibm,associativity-lookup-arrays */
848     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
849     cur_index = int_buf = g_malloc0(buf_len);
850     int_buf[0] = cpu_to_be32(nr_nodes);
851     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
852     cur_index += 2;
853     for (i = 0; i < nr_nodes; i++) {
854         uint32_t associativity[] = {
855             cpu_to_be32(0x0),
856             cpu_to_be32(0x0),
857             cpu_to_be32(0x0),
858             cpu_to_be32(i)
859         };
860         memcpy(cur_index, associativity, sizeof(associativity));
861         cur_index += 4;
862     }
863     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
864             (cur_index - int_buf) * sizeof(uint32_t));
865     g_free(int_buf);
866 
867     return ret;
868 }
869 
870 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
871                                 SpaprOptionVector *ov5_updates)
872 {
873     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
874     int ret = 0, offset;
875 
876     /* Generate ibm,dynamic-reconfiguration-memory node if required */
877     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
878         g_assert(smc->dr_lmb_enabled);
879         ret = spapr_populate_drconf_memory(spapr, fdt);
880         if (ret) {
881             goto out;
882         }
883     }
884 
885     offset = fdt_path_offset(fdt, "/chosen");
886     if (offset < 0) {
887         offset = fdt_add_subnode(fdt, 0, "chosen");
888         if (offset < 0) {
889             return offset;
890         }
891     }
892     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
893                                  "ibm,architecture-vec-5");
894 
895 out:
896     return ret;
897 }
898 
899 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
900 {
901     MachineState *ms = MACHINE(spapr);
902     int rtas;
903     GString *hypertas = g_string_sized_new(256);
904     GString *qemu_hypertas = g_string_sized_new(256);
905     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
906     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
907         memory_region_size(&MACHINE(spapr)->device_memory->mr);
908     uint32_t lrdr_capacity[] = {
909         cpu_to_be32(max_device_addr >> 32),
910         cpu_to_be32(max_device_addr & 0xffffffff),
911         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
912         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
913     };
914     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
915     uint32_t maxdomains[] = {
916         cpu_to_be32(4),
917         maxdomain,
918         maxdomain,
919         maxdomain,
920         cpu_to_be32(spapr->gpu_numa_id),
921     };
922 
923     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
924 
925     /* hypertas */
926     add_str(hypertas, "hcall-pft");
927     add_str(hypertas, "hcall-term");
928     add_str(hypertas, "hcall-dabr");
929     add_str(hypertas, "hcall-interrupt");
930     add_str(hypertas, "hcall-tce");
931     add_str(hypertas, "hcall-vio");
932     add_str(hypertas, "hcall-splpar");
933     add_str(hypertas, "hcall-join");
934     add_str(hypertas, "hcall-bulk");
935     add_str(hypertas, "hcall-set-mode");
936     add_str(hypertas, "hcall-sprg0");
937     add_str(hypertas, "hcall-copy");
938     add_str(hypertas, "hcall-debug");
939     add_str(hypertas, "hcall-vphn");
940     add_str(qemu_hypertas, "hcall-memop1");
941 
942     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
943         add_str(hypertas, "hcall-multi-tce");
944     }
945 
946     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
947         add_str(hypertas, "hcall-hpt-resize");
948     }
949 
950     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
951                      hypertas->str, hypertas->len));
952     g_string_free(hypertas, TRUE);
953     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
954                      qemu_hypertas->str, qemu_hypertas->len));
955     g_string_free(qemu_hypertas, TRUE);
956 
957     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
958                      refpoints, sizeof(refpoints)));
959 
960     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
961                      maxdomains, sizeof(maxdomains)));
962 
963     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
964                           RTAS_ERROR_LOG_MAX));
965     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
966                           RTAS_EVENT_SCAN_RATE));
967 
968     g_assert(msi_nonbroken);
969     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
970 
971     /*
972      * According to PAPR, rtas ibm,os-term does not guarantee a return
973      * back to the guest cpu.
974      *
975      * While an additional ibm,extended-os-term property indicates
976      * that rtas call return will always occur. Set this property.
977      */
978     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
979 
980     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
981                      lrdr_capacity, sizeof(lrdr_capacity)));
982 
983     spapr_dt_rtas_tokens(fdt, rtas);
984 }
985 
986 /*
987  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
988  * and the XIVE features that the guest may request and thus the valid
989  * values for bytes 23..26 of option vector 5:
990  */
991 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
992                                           int chosen)
993 {
994     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
995 
996     char val[2 * 4] = {
997         23, 0x00, /* XICS / XIVE mode */
998         24, 0x00, /* Hash/Radix, filled in below. */
999         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1000         26, 0x40, /* Radix options: GTSE == yes. */
1001     };
1002 
1003     if (spapr->irq->xics && spapr->irq->xive) {
1004         val[1] = SPAPR_OV5_XIVE_BOTH;
1005     } else if (spapr->irq->xive) {
1006         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1007     } else {
1008         assert(spapr->irq->xics);
1009         val[1] = SPAPR_OV5_XIVE_LEGACY;
1010     }
1011 
1012     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1013                           first_ppc_cpu->compat_pvr)) {
1014         /*
1015          * If we're in a pre POWER9 compat mode then the guest should
1016          * do hash and use the legacy interrupt mode
1017          */
1018         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1019         val[3] = 0x00; /* Hash */
1020     } else if (kvm_enabled()) {
1021         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1022             val[3] = 0x80; /* OV5_MMU_BOTH */
1023         } else if (kvmppc_has_cap_mmu_radix()) {
1024             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1025         } else {
1026             val[3] = 0x00; /* Hash */
1027         }
1028     } else {
1029         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1030         val[3] = 0xC0;
1031     }
1032     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1033                      val, sizeof(val)));
1034 }
1035 
1036 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1037 {
1038     MachineState *machine = MACHINE(spapr);
1039     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1040     int chosen;
1041     const char *boot_device = machine->boot_order;
1042     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1043     size_t cb = 0;
1044     char *bootlist = get_boot_devices_list(&cb);
1045 
1046     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1047 
1048     if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1049         _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1050                                 machine->kernel_cmdline));
1051     }
1052     if (spapr->initrd_size) {
1053         _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1054                               spapr->initrd_base));
1055         _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1056                               spapr->initrd_base + spapr->initrd_size));
1057     }
1058 
1059     if (spapr->kernel_size) {
1060         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1061                               cpu_to_be64(spapr->kernel_size) };
1062 
1063         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1064                          &kprop, sizeof(kprop)));
1065         if (spapr->kernel_le) {
1066             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1067         }
1068     }
1069     if (boot_menu) {
1070         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1071     }
1072     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1073     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1074     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1075 
1076     if (cb && bootlist) {
1077         int i;
1078 
1079         for (i = 0; i < cb; i++) {
1080             if (bootlist[i] == '\n') {
1081                 bootlist[i] = ' ';
1082             }
1083         }
1084         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1085     }
1086 
1087     if (boot_device && strlen(boot_device)) {
1088         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1089     }
1090 
1091     if (!spapr->has_graphics && stdout_path) {
1092         /*
1093          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1094          * kernel. New platforms should only use the "stdout-path" property. Set
1095          * the new property and continue using older property to remain
1096          * compatible with the existing firmware.
1097          */
1098         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1099         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1100     }
1101 
1102     /* We can deal with BAR reallocation just fine, advertise it to the guest */
1103     if (smc->linux_pci_probe) {
1104         _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1105     }
1106 
1107     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1108 
1109     g_free(stdout_path);
1110     g_free(bootlist);
1111 }
1112 
1113 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1114 {
1115     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1116      * KVM to work under pHyp with some guest co-operation */
1117     int hypervisor;
1118     uint8_t hypercall[16];
1119 
1120     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1121     /* indicate KVM hypercall interface */
1122     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1123     if (kvmppc_has_cap_fixup_hcalls()) {
1124         /*
1125          * Older KVM versions with older guest kernels were broken
1126          * with the magic page, don't allow the guest to map it.
1127          */
1128         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1129                                   sizeof(hypercall))) {
1130             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1131                              hypercall, sizeof(hypercall)));
1132         }
1133     }
1134 }
1135 
1136 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1137 {
1138     MachineState *machine = MACHINE(spapr);
1139     MachineClass *mc = MACHINE_GET_CLASS(machine);
1140     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1141     int ret;
1142     void *fdt;
1143     SpaprPhbState *phb;
1144     char *buf;
1145 
1146     fdt = g_malloc0(space);
1147     _FDT((fdt_create_empty_tree(fdt, space)));
1148 
1149     /* Root node */
1150     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1151     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1152     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1153 
1154     /* Guest UUID & Name*/
1155     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1156     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1157     if (qemu_uuid_set) {
1158         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1159     }
1160     g_free(buf);
1161 
1162     if (qemu_get_vm_name()) {
1163         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1164                                 qemu_get_vm_name()));
1165     }
1166 
1167     /* Host Model & Serial Number */
1168     if (spapr->host_model) {
1169         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1170     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1171         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1172         g_free(buf);
1173     }
1174 
1175     if (spapr->host_serial) {
1176         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1177     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1178         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1179         g_free(buf);
1180     }
1181 
1182     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1183     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1184 
1185     /* /interrupt controller */
1186     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1187 
1188     ret = spapr_populate_memory(spapr, fdt);
1189     if (ret < 0) {
1190         error_report("couldn't setup memory nodes in fdt");
1191         exit(1);
1192     }
1193 
1194     /* /vdevice */
1195     spapr_dt_vdevice(spapr->vio_bus, fdt);
1196 
1197     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1198         ret = spapr_rng_populate_dt(fdt);
1199         if (ret < 0) {
1200             error_report("could not set up rng device in the fdt");
1201             exit(1);
1202         }
1203     }
1204 
1205     QLIST_FOREACH(phb, &spapr->phbs, list) {
1206         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1207         if (ret < 0) {
1208             error_report("couldn't setup PCI devices in fdt");
1209             exit(1);
1210         }
1211     }
1212 
1213     /* cpus */
1214     spapr_populate_cpus_dt_node(fdt, spapr);
1215 
1216     if (smc->dr_lmb_enabled) {
1217         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1218     }
1219 
1220     if (mc->has_hotpluggable_cpus) {
1221         int offset = fdt_path_offset(fdt, "/cpus");
1222         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1223         if (ret < 0) {
1224             error_report("Couldn't set up CPU DR device tree properties");
1225             exit(1);
1226         }
1227     }
1228 
1229     /* /event-sources */
1230     spapr_dt_events(spapr, fdt);
1231 
1232     /* /rtas */
1233     spapr_dt_rtas(spapr, fdt);
1234 
1235     /* /chosen */
1236     if (reset) {
1237         spapr_dt_chosen(spapr, fdt);
1238     }
1239 
1240     /* /hypervisor */
1241     if (kvm_enabled()) {
1242         spapr_dt_hypervisor(spapr, fdt);
1243     }
1244 
1245     /* Build memory reserve map */
1246     if (reset) {
1247         if (spapr->kernel_size) {
1248             _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1249         }
1250         if (spapr->initrd_size) {
1251             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1252                                   spapr->initrd_size)));
1253         }
1254     }
1255 
1256     /* ibm,client-architecture-support updates */
1257     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1258     if (ret < 0) {
1259         error_report("couldn't setup CAS properties fdt");
1260         exit(1);
1261     }
1262 
1263     if (smc->dr_phb_enabled) {
1264         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1265         if (ret < 0) {
1266             error_report("Couldn't set up PHB DR device tree properties");
1267             exit(1);
1268         }
1269     }
1270 
1271     return fdt;
1272 }
1273 
1274 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1275 {
1276     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1277 }
1278 
1279 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1280                                     PowerPCCPU *cpu)
1281 {
1282     CPUPPCState *env = &cpu->env;
1283 
1284     /* The TCG path should also be holding the BQL at this point */
1285     g_assert(qemu_mutex_iothread_locked());
1286 
1287     if (msr_pr) {
1288         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1289         env->gpr[3] = H_PRIVILEGE;
1290     } else {
1291         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1292     }
1293 }
1294 
1295 struct LPCRSyncState {
1296     target_ulong value;
1297     target_ulong mask;
1298 };
1299 
1300 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1301 {
1302     struct LPCRSyncState *s = arg.host_ptr;
1303     PowerPCCPU *cpu = POWERPC_CPU(cs);
1304     CPUPPCState *env = &cpu->env;
1305     target_ulong lpcr;
1306 
1307     cpu_synchronize_state(cs);
1308     lpcr = env->spr[SPR_LPCR];
1309     lpcr &= ~s->mask;
1310     lpcr |= s->value;
1311     ppc_store_lpcr(cpu, lpcr);
1312 }
1313 
1314 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1315 {
1316     CPUState *cs;
1317     struct LPCRSyncState s = {
1318         .value = value,
1319         .mask = mask
1320     };
1321     CPU_FOREACH(cs) {
1322         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1323     }
1324 }
1325 
1326 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1327 {
1328     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1329 
1330     /* Copy PATE1:GR into PATE0:HR */
1331     entry->dw0 = spapr->patb_entry & PATE0_HR;
1332     entry->dw1 = spapr->patb_entry;
1333 }
1334 
1335 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1336 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1337 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1338 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1339 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1340 
1341 /*
1342  * Get the fd to access the kernel htab, re-opening it if necessary
1343  */
1344 static int get_htab_fd(SpaprMachineState *spapr)
1345 {
1346     Error *local_err = NULL;
1347 
1348     if (spapr->htab_fd >= 0) {
1349         return spapr->htab_fd;
1350     }
1351 
1352     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1353     if (spapr->htab_fd < 0) {
1354         error_report_err(local_err);
1355     }
1356 
1357     return spapr->htab_fd;
1358 }
1359 
1360 void close_htab_fd(SpaprMachineState *spapr)
1361 {
1362     if (spapr->htab_fd >= 0) {
1363         close(spapr->htab_fd);
1364     }
1365     spapr->htab_fd = -1;
1366 }
1367 
1368 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1369 {
1370     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1371 
1372     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1373 }
1374 
1375 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1376 {
1377     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1378 
1379     assert(kvm_enabled());
1380 
1381     if (!spapr->htab) {
1382         return 0;
1383     }
1384 
1385     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1386 }
1387 
1388 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1389                                                 hwaddr ptex, int n)
1390 {
1391     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1392     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1393 
1394     if (!spapr->htab) {
1395         /*
1396          * HTAB is controlled by KVM. Fetch into temporary buffer
1397          */
1398         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1399         kvmppc_read_hptes(hptes, ptex, n);
1400         return hptes;
1401     }
1402 
1403     /*
1404      * HTAB is controlled by QEMU. Just point to the internally
1405      * accessible PTEG.
1406      */
1407     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1408 }
1409 
1410 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1411                               const ppc_hash_pte64_t *hptes,
1412                               hwaddr ptex, int n)
1413 {
1414     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1415 
1416     if (!spapr->htab) {
1417         g_free((void *)hptes);
1418     }
1419 
1420     /* Nothing to do for qemu managed HPT */
1421 }
1422 
1423 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1424                       uint64_t pte0, uint64_t pte1)
1425 {
1426     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1427     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1428 
1429     if (!spapr->htab) {
1430         kvmppc_write_hpte(ptex, pte0, pte1);
1431     } else {
1432         if (pte0 & HPTE64_V_VALID) {
1433             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1434             /*
1435              * When setting valid, we write PTE1 first. This ensures
1436              * proper synchronization with the reading code in
1437              * ppc_hash64_pteg_search()
1438              */
1439             smp_wmb();
1440             stq_p(spapr->htab + offset, pte0);
1441         } else {
1442             stq_p(spapr->htab + offset, pte0);
1443             /*
1444              * When clearing it we set PTE0 first. This ensures proper
1445              * synchronization with the reading code in
1446              * ppc_hash64_pteg_search()
1447              */
1448             smp_wmb();
1449             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1450         }
1451     }
1452 }
1453 
1454 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1455                              uint64_t pte1)
1456 {
1457     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1458     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1459 
1460     if (!spapr->htab) {
1461         /* There should always be a hash table when this is called */
1462         error_report("spapr_hpte_set_c called with no hash table !");
1463         return;
1464     }
1465 
1466     /* The HW performs a non-atomic byte update */
1467     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1468 }
1469 
1470 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1471                              uint64_t pte1)
1472 {
1473     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1474     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1475 
1476     if (!spapr->htab) {
1477         /* There should always be a hash table when this is called */
1478         error_report("spapr_hpte_set_r called with no hash table !");
1479         return;
1480     }
1481 
1482     /* The HW performs a non-atomic byte update */
1483     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1484 }
1485 
1486 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1487 {
1488     int shift;
1489 
1490     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1491      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1492      * that's much more than is needed for Linux guests */
1493     shift = ctz64(pow2ceil(ramsize)) - 7;
1494     shift = MAX(shift, 18); /* Minimum architected size */
1495     shift = MIN(shift, 46); /* Maximum architected size */
1496     return shift;
1497 }
1498 
1499 void spapr_free_hpt(SpaprMachineState *spapr)
1500 {
1501     g_free(spapr->htab);
1502     spapr->htab = NULL;
1503     spapr->htab_shift = 0;
1504     close_htab_fd(spapr);
1505 }
1506 
1507 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1508                           Error **errp)
1509 {
1510     long rc;
1511 
1512     /* Clean up any HPT info from a previous boot */
1513     spapr_free_hpt(spapr);
1514 
1515     rc = kvmppc_reset_htab(shift);
1516     if (rc < 0) {
1517         /* kernel-side HPT needed, but couldn't allocate one */
1518         error_setg_errno(errp, errno,
1519                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1520                          shift);
1521         /* This is almost certainly fatal, but if the caller really
1522          * wants to carry on with shift == 0, it's welcome to try */
1523     } else if (rc > 0) {
1524         /* kernel-side HPT allocated */
1525         if (rc != shift) {
1526             error_setg(errp,
1527                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1528                        shift, rc);
1529         }
1530 
1531         spapr->htab_shift = shift;
1532         spapr->htab = NULL;
1533     } else {
1534         /* kernel-side HPT not needed, allocate in userspace instead */
1535         size_t size = 1ULL << shift;
1536         int i;
1537 
1538         spapr->htab = qemu_memalign(size, size);
1539         if (!spapr->htab) {
1540             error_setg_errno(errp, errno,
1541                              "Could not allocate HPT of order %d", shift);
1542             return;
1543         }
1544 
1545         memset(spapr->htab, 0, size);
1546         spapr->htab_shift = shift;
1547 
1548         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1549             DIRTY_HPTE(HPTE(spapr->htab, i));
1550         }
1551     }
1552     /* We're setting up a hash table, so that means we're not radix */
1553     spapr->patb_entry = 0;
1554     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1555 }
1556 
1557 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1558 {
1559     int hpt_shift;
1560 
1561     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1562         || (spapr->cas_reboot
1563             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1564         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1565     } else {
1566         uint64_t current_ram_size;
1567 
1568         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1569         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1570     }
1571     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1572 
1573     if (spapr->vrma_adjust) {
1574         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1575                                           spapr->htab_shift);
1576     }
1577 }
1578 
1579 static int spapr_reset_drcs(Object *child, void *opaque)
1580 {
1581     SpaprDrc *drc =
1582         (SpaprDrc *) object_dynamic_cast(child,
1583                                                  TYPE_SPAPR_DR_CONNECTOR);
1584 
1585     if (drc) {
1586         spapr_drc_reset(drc);
1587     }
1588 
1589     return 0;
1590 }
1591 
1592 static void spapr_machine_reset(MachineState *machine)
1593 {
1594     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1595     PowerPCCPU *first_ppc_cpu;
1596     hwaddr fdt_addr;
1597     void *fdt;
1598     int rc;
1599 
1600     spapr_caps_apply(spapr);
1601 
1602     first_ppc_cpu = POWERPC_CPU(first_cpu);
1603     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1604         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1605                               spapr->max_compat_pvr)) {
1606         /*
1607          * If using KVM with radix mode available, VCPUs can be started
1608          * without a HPT because KVM will start them in radix mode.
1609          * Set the GR bit in PATE so that we know there is no HPT.
1610          */
1611         spapr->patb_entry = PATE1_GR;
1612         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1613     } else {
1614         spapr_setup_hpt_and_vrma(spapr);
1615     }
1616 
1617     qemu_devices_reset();
1618 
1619     /*
1620      * If this reset wasn't generated by CAS, we should reset our
1621      * negotiated options and start from scratch
1622      */
1623     if (!spapr->cas_reboot) {
1624         spapr_ovec_cleanup(spapr->ov5_cas);
1625         spapr->ov5_cas = spapr_ovec_new();
1626 
1627         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1628     }
1629 
1630     /*
1631      * This is fixing some of the default configuration of the XIVE
1632      * devices. To be called after the reset of the machine devices.
1633      */
1634     spapr_irq_reset(spapr, &error_fatal);
1635 
1636     /*
1637      * There is no CAS under qtest. Simulate one to please the code that
1638      * depends on spapr->ov5_cas. This is especially needed to test device
1639      * unplug, so we do that before resetting the DRCs.
1640      */
1641     if (qtest_enabled()) {
1642         spapr_ovec_cleanup(spapr->ov5_cas);
1643         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1644     }
1645 
1646     /* DRC reset may cause a device to be unplugged. This will cause troubles
1647      * if this device is used by another device (eg, a running vhost backend
1648      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1649      * situations, we reset DRCs after all devices have been reset.
1650      */
1651     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1652 
1653     spapr_clear_pending_events(spapr);
1654 
1655     /*
1656      * We place the device tree and RTAS just below either the top of the RMA,
1657      * or just below 2GB, whichever is lower, so that it can be
1658      * processed with 32-bit real mode code if necessary
1659      */
1660     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1661 
1662     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1663 
1664     rc = fdt_pack(fdt);
1665 
1666     /* Should only fail if we've built a corrupted tree */
1667     assert(rc == 0);
1668 
1669     /* Load the fdt */
1670     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1671     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1672     g_free(spapr->fdt_blob);
1673     spapr->fdt_size = fdt_totalsize(fdt);
1674     spapr->fdt_initial_size = spapr->fdt_size;
1675     spapr->fdt_blob = fdt;
1676 
1677     /* Set up the entry state */
1678     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1679     first_ppc_cpu->env.gpr[5] = 0;
1680 
1681     spapr->cas_reboot = false;
1682 }
1683 
1684 static void spapr_create_nvram(SpaprMachineState *spapr)
1685 {
1686     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1687     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1688 
1689     if (dinfo) {
1690         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1691                             &error_fatal);
1692     }
1693 
1694     qdev_init_nofail(dev);
1695 
1696     spapr->nvram = (struct SpaprNvram *)dev;
1697 }
1698 
1699 static void spapr_rtc_create(SpaprMachineState *spapr)
1700 {
1701     object_initialize_child(OBJECT(spapr), "rtc",
1702                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1703                             &error_fatal, NULL);
1704     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1705                               &error_fatal);
1706     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1707                               "date", &error_fatal);
1708 }
1709 
1710 /* Returns whether we want to use VGA or not */
1711 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1712 {
1713     switch (vga_interface_type) {
1714     case VGA_NONE:
1715         return false;
1716     case VGA_DEVICE:
1717         return true;
1718     case VGA_STD:
1719     case VGA_VIRTIO:
1720     case VGA_CIRRUS:
1721         return pci_vga_init(pci_bus) != NULL;
1722     default:
1723         error_setg(errp,
1724                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1725         return false;
1726     }
1727 }
1728 
1729 static int spapr_pre_load(void *opaque)
1730 {
1731     int rc;
1732 
1733     rc = spapr_caps_pre_load(opaque);
1734     if (rc) {
1735         return rc;
1736     }
1737 
1738     return 0;
1739 }
1740 
1741 static int spapr_post_load(void *opaque, int version_id)
1742 {
1743     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1744     int err = 0;
1745 
1746     err = spapr_caps_post_migration(spapr);
1747     if (err) {
1748         return err;
1749     }
1750 
1751     /*
1752      * In earlier versions, there was no separate qdev for the PAPR
1753      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1754      * So when migrating from those versions, poke the incoming offset
1755      * value into the RTC device
1756      */
1757     if (version_id < 3) {
1758         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1759         if (err) {
1760             return err;
1761         }
1762     }
1763 
1764     if (kvm_enabled() && spapr->patb_entry) {
1765         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1766         bool radix = !!(spapr->patb_entry & PATE1_GR);
1767         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1768 
1769         /*
1770          * Update LPCR:HR and UPRT as they may not be set properly in
1771          * the stream
1772          */
1773         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1774                             LPCR_HR | LPCR_UPRT);
1775 
1776         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1777         if (err) {
1778             error_report("Process table config unsupported by the host");
1779             return -EINVAL;
1780         }
1781     }
1782 
1783     err = spapr_irq_post_load(spapr, version_id);
1784     if (err) {
1785         return err;
1786     }
1787 
1788     return err;
1789 }
1790 
1791 static int spapr_pre_save(void *opaque)
1792 {
1793     int rc;
1794 
1795     rc = spapr_caps_pre_save(opaque);
1796     if (rc) {
1797         return rc;
1798     }
1799 
1800     return 0;
1801 }
1802 
1803 static bool version_before_3(void *opaque, int version_id)
1804 {
1805     return version_id < 3;
1806 }
1807 
1808 static bool spapr_pending_events_needed(void *opaque)
1809 {
1810     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1811     return !QTAILQ_EMPTY(&spapr->pending_events);
1812 }
1813 
1814 static const VMStateDescription vmstate_spapr_event_entry = {
1815     .name = "spapr_event_log_entry",
1816     .version_id = 1,
1817     .minimum_version_id = 1,
1818     .fields = (VMStateField[]) {
1819         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1820         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1821         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1822                                      NULL, extended_length),
1823         VMSTATE_END_OF_LIST()
1824     },
1825 };
1826 
1827 static const VMStateDescription vmstate_spapr_pending_events = {
1828     .name = "spapr_pending_events",
1829     .version_id = 1,
1830     .minimum_version_id = 1,
1831     .needed = spapr_pending_events_needed,
1832     .fields = (VMStateField[]) {
1833         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1834                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1835         VMSTATE_END_OF_LIST()
1836     },
1837 };
1838 
1839 static bool spapr_ov5_cas_needed(void *opaque)
1840 {
1841     SpaprMachineState *spapr = opaque;
1842     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1843     bool cas_needed;
1844 
1845     /* Prior to the introduction of SpaprOptionVector, we had two option
1846      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1847      * Both of these options encode machine topology into the device-tree
1848      * in such a way that the now-booted OS should still be able to interact
1849      * appropriately with QEMU regardless of what options were actually
1850      * negotiatied on the source side.
1851      *
1852      * As such, we can avoid migrating the CAS-negotiated options if these
1853      * are the only options available on the current machine/platform.
1854      * Since these are the only options available for pseries-2.7 and
1855      * earlier, this allows us to maintain old->new/new->old migration
1856      * compatibility.
1857      *
1858      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1859      * via default pseries-2.8 machines and explicit command-line parameters.
1860      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1861      * of the actual CAS-negotiated values to continue working properly. For
1862      * example, availability of memory unplug depends on knowing whether
1863      * OV5_HP_EVT was negotiated via CAS.
1864      *
1865      * Thus, for any cases where the set of available CAS-negotiatable
1866      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1867      * include the CAS-negotiated options in the migration stream, unless
1868      * if they affect boot time behaviour only.
1869      */
1870     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1871     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1872     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1873 
1874     /* We need extra information if we have any bits outside the mask
1875      * defined above */
1876     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1877 
1878     spapr_ovec_cleanup(ov5_mask);
1879 
1880     return cas_needed;
1881 }
1882 
1883 static const VMStateDescription vmstate_spapr_ov5_cas = {
1884     .name = "spapr_option_vector_ov5_cas",
1885     .version_id = 1,
1886     .minimum_version_id = 1,
1887     .needed = spapr_ov5_cas_needed,
1888     .fields = (VMStateField[]) {
1889         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1890                                  vmstate_spapr_ovec, SpaprOptionVector),
1891         VMSTATE_END_OF_LIST()
1892     },
1893 };
1894 
1895 static bool spapr_patb_entry_needed(void *opaque)
1896 {
1897     SpaprMachineState *spapr = opaque;
1898 
1899     return !!spapr->patb_entry;
1900 }
1901 
1902 static const VMStateDescription vmstate_spapr_patb_entry = {
1903     .name = "spapr_patb_entry",
1904     .version_id = 1,
1905     .minimum_version_id = 1,
1906     .needed = spapr_patb_entry_needed,
1907     .fields = (VMStateField[]) {
1908         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1909         VMSTATE_END_OF_LIST()
1910     },
1911 };
1912 
1913 static bool spapr_irq_map_needed(void *opaque)
1914 {
1915     SpaprMachineState *spapr = opaque;
1916 
1917     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1918 }
1919 
1920 static const VMStateDescription vmstate_spapr_irq_map = {
1921     .name = "spapr_irq_map",
1922     .version_id = 1,
1923     .minimum_version_id = 1,
1924     .needed = spapr_irq_map_needed,
1925     .fields = (VMStateField[]) {
1926         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1927         VMSTATE_END_OF_LIST()
1928     },
1929 };
1930 
1931 static bool spapr_dtb_needed(void *opaque)
1932 {
1933     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1934 
1935     return smc->update_dt_enabled;
1936 }
1937 
1938 static int spapr_dtb_pre_load(void *opaque)
1939 {
1940     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1941 
1942     g_free(spapr->fdt_blob);
1943     spapr->fdt_blob = NULL;
1944     spapr->fdt_size = 0;
1945 
1946     return 0;
1947 }
1948 
1949 static const VMStateDescription vmstate_spapr_dtb = {
1950     .name = "spapr_dtb",
1951     .version_id = 1,
1952     .minimum_version_id = 1,
1953     .needed = spapr_dtb_needed,
1954     .pre_load = spapr_dtb_pre_load,
1955     .fields = (VMStateField[]) {
1956         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1957         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1958         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1959                                      fdt_size),
1960         VMSTATE_END_OF_LIST()
1961     },
1962 };
1963 
1964 static const VMStateDescription vmstate_spapr = {
1965     .name = "spapr",
1966     .version_id = 3,
1967     .minimum_version_id = 1,
1968     .pre_load = spapr_pre_load,
1969     .post_load = spapr_post_load,
1970     .pre_save = spapr_pre_save,
1971     .fields = (VMStateField[]) {
1972         /* used to be @next_irq */
1973         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1974 
1975         /* RTC offset */
1976         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1977 
1978         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1979         VMSTATE_END_OF_LIST()
1980     },
1981     .subsections = (const VMStateDescription*[]) {
1982         &vmstate_spapr_ov5_cas,
1983         &vmstate_spapr_patb_entry,
1984         &vmstate_spapr_pending_events,
1985         &vmstate_spapr_cap_htm,
1986         &vmstate_spapr_cap_vsx,
1987         &vmstate_spapr_cap_dfp,
1988         &vmstate_spapr_cap_cfpc,
1989         &vmstate_spapr_cap_sbbc,
1990         &vmstate_spapr_cap_ibs,
1991         &vmstate_spapr_cap_hpt_maxpagesize,
1992         &vmstate_spapr_irq_map,
1993         &vmstate_spapr_cap_nested_kvm_hv,
1994         &vmstate_spapr_dtb,
1995         &vmstate_spapr_cap_large_decr,
1996         &vmstate_spapr_cap_ccf_assist,
1997         NULL
1998     }
1999 };
2000 
2001 static int htab_save_setup(QEMUFile *f, void *opaque)
2002 {
2003     SpaprMachineState *spapr = opaque;
2004 
2005     /* "Iteration" header */
2006     if (!spapr->htab_shift) {
2007         qemu_put_be32(f, -1);
2008     } else {
2009         qemu_put_be32(f, spapr->htab_shift);
2010     }
2011 
2012     if (spapr->htab) {
2013         spapr->htab_save_index = 0;
2014         spapr->htab_first_pass = true;
2015     } else {
2016         if (spapr->htab_shift) {
2017             assert(kvm_enabled());
2018         }
2019     }
2020 
2021 
2022     return 0;
2023 }
2024 
2025 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2026                             int chunkstart, int n_valid, int n_invalid)
2027 {
2028     qemu_put_be32(f, chunkstart);
2029     qemu_put_be16(f, n_valid);
2030     qemu_put_be16(f, n_invalid);
2031     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2032                     HASH_PTE_SIZE_64 * n_valid);
2033 }
2034 
2035 static void htab_save_end_marker(QEMUFile *f)
2036 {
2037     qemu_put_be32(f, 0);
2038     qemu_put_be16(f, 0);
2039     qemu_put_be16(f, 0);
2040 }
2041 
2042 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2043                                  int64_t max_ns)
2044 {
2045     bool has_timeout = max_ns != -1;
2046     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2047     int index = spapr->htab_save_index;
2048     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2049 
2050     assert(spapr->htab_first_pass);
2051 
2052     do {
2053         int chunkstart;
2054 
2055         /* Consume invalid HPTEs */
2056         while ((index < htabslots)
2057                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2058             CLEAN_HPTE(HPTE(spapr->htab, index));
2059             index++;
2060         }
2061 
2062         /* Consume valid HPTEs */
2063         chunkstart = index;
2064         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2065                && HPTE_VALID(HPTE(spapr->htab, index))) {
2066             CLEAN_HPTE(HPTE(spapr->htab, index));
2067             index++;
2068         }
2069 
2070         if (index > chunkstart) {
2071             int n_valid = index - chunkstart;
2072 
2073             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2074 
2075             if (has_timeout &&
2076                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2077                 break;
2078             }
2079         }
2080     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2081 
2082     if (index >= htabslots) {
2083         assert(index == htabslots);
2084         index = 0;
2085         spapr->htab_first_pass = false;
2086     }
2087     spapr->htab_save_index = index;
2088 }
2089 
2090 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2091                                 int64_t max_ns)
2092 {
2093     bool final = max_ns < 0;
2094     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2095     int examined = 0, sent = 0;
2096     int index = spapr->htab_save_index;
2097     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2098 
2099     assert(!spapr->htab_first_pass);
2100 
2101     do {
2102         int chunkstart, invalidstart;
2103 
2104         /* Consume non-dirty HPTEs */
2105         while ((index < htabslots)
2106                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2107             index++;
2108             examined++;
2109         }
2110 
2111         chunkstart = index;
2112         /* Consume valid dirty HPTEs */
2113         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2114                && HPTE_DIRTY(HPTE(spapr->htab, index))
2115                && HPTE_VALID(HPTE(spapr->htab, index))) {
2116             CLEAN_HPTE(HPTE(spapr->htab, index));
2117             index++;
2118             examined++;
2119         }
2120 
2121         invalidstart = index;
2122         /* Consume invalid dirty HPTEs */
2123         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2124                && HPTE_DIRTY(HPTE(spapr->htab, index))
2125                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2126             CLEAN_HPTE(HPTE(spapr->htab, index));
2127             index++;
2128             examined++;
2129         }
2130 
2131         if (index > chunkstart) {
2132             int n_valid = invalidstart - chunkstart;
2133             int n_invalid = index - invalidstart;
2134 
2135             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2136             sent += index - chunkstart;
2137 
2138             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2139                 break;
2140             }
2141         }
2142 
2143         if (examined >= htabslots) {
2144             break;
2145         }
2146 
2147         if (index >= htabslots) {
2148             assert(index == htabslots);
2149             index = 0;
2150         }
2151     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2152 
2153     if (index >= htabslots) {
2154         assert(index == htabslots);
2155         index = 0;
2156     }
2157 
2158     spapr->htab_save_index = index;
2159 
2160     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2161 }
2162 
2163 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2164 #define MAX_KVM_BUF_SIZE    2048
2165 
2166 static int htab_save_iterate(QEMUFile *f, void *opaque)
2167 {
2168     SpaprMachineState *spapr = opaque;
2169     int fd;
2170     int rc = 0;
2171 
2172     /* Iteration header */
2173     if (!spapr->htab_shift) {
2174         qemu_put_be32(f, -1);
2175         return 1;
2176     } else {
2177         qemu_put_be32(f, 0);
2178     }
2179 
2180     if (!spapr->htab) {
2181         assert(kvm_enabled());
2182 
2183         fd = get_htab_fd(spapr);
2184         if (fd < 0) {
2185             return fd;
2186         }
2187 
2188         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2189         if (rc < 0) {
2190             return rc;
2191         }
2192     } else  if (spapr->htab_first_pass) {
2193         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2194     } else {
2195         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2196     }
2197 
2198     htab_save_end_marker(f);
2199 
2200     return rc;
2201 }
2202 
2203 static int htab_save_complete(QEMUFile *f, void *opaque)
2204 {
2205     SpaprMachineState *spapr = opaque;
2206     int fd;
2207 
2208     /* Iteration header */
2209     if (!spapr->htab_shift) {
2210         qemu_put_be32(f, -1);
2211         return 0;
2212     } else {
2213         qemu_put_be32(f, 0);
2214     }
2215 
2216     if (!spapr->htab) {
2217         int rc;
2218 
2219         assert(kvm_enabled());
2220 
2221         fd = get_htab_fd(spapr);
2222         if (fd < 0) {
2223             return fd;
2224         }
2225 
2226         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2227         if (rc < 0) {
2228             return rc;
2229         }
2230     } else {
2231         if (spapr->htab_first_pass) {
2232             htab_save_first_pass(f, spapr, -1);
2233         }
2234         htab_save_later_pass(f, spapr, -1);
2235     }
2236 
2237     /* End marker */
2238     htab_save_end_marker(f);
2239 
2240     return 0;
2241 }
2242 
2243 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2244 {
2245     SpaprMachineState *spapr = opaque;
2246     uint32_t section_hdr;
2247     int fd = -1;
2248     Error *local_err = NULL;
2249 
2250     if (version_id < 1 || version_id > 1) {
2251         error_report("htab_load() bad version");
2252         return -EINVAL;
2253     }
2254 
2255     section_hdr = qemu_get_be32(f);
2256 
2257     if (section_hdr == -1) {
2258         spapr_free_hpt(spapr);
2259         return 0;
2260     }
2261 
2262     if (section_hdr) {
2263         /* First section gives the htab size */
2264         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2265         if (local_err) {
2266             error_report_err(local_err);
2267             return -EINVAL;
2268         }
2269         return 0;
2270     }
2271 
2272     if (!spapr->htab) {
2273         assert(kvm_enabled());
2274 
2275         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2276         if (fd < 0) {
2277             error_report_err(local_err);
2278             return fd;
2279         }
2280     }
2281 
2282     while (true) {
2283         uint32_t index;
2284         uint16_t n_valid, n_invalid;
2285 
2286         index = qemu_get_be32(f);
2287         n_valid = qemu_get_be16(f);
2288         n_invalid = qemu_get_be16(f);
2289 
2290         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2291             /* End of Stream */
2292             break;
2293         }
2294 
2295         if ((index + n_valid + n_invalid) >
2296             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2297             /* Bad index in stream */
2298             error_report(
2299                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2300                 index, n_valid, n_invalid, spapr->htab_shift);
2301             return -EINVAL;
2302         }
2303 
2304         if (spapr->htab) {
2305             if (n_valid) {
2306                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2307                                 HASH_PTE_SIZE_64 * n_valid);
2308             }
2309             if (n_invalid) {
2310                 memset(HPTE(spapr->htab, index + n_valid), 0,
2311                        HASH_PTE_SIZE_64 * n_invalid);
2312             }
2313         } else {
2314             int rc;
2315 
2316             assert(fd >= 0);
2317 
2318             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2319             if (rc < 0) {
2320                 return rc;
2321             }
2322         }
2323     }
2324 
2325     if (!spapr->htab) {
2326         assert(fd >= 0);
2327         close(fd);
2328     }
2329 
2330     return 0;
2331 }
2332 
2333 static void htab_save_cleanup(void *opaque)
2334 {
2335     SpaprMachineState *spapr = opaque;
2336 
2337     close_htab_fd(spapr);
2338 }
2339 
2340 static SaveVMHandlers savevm_htab_handlers = {
2341     .save_setup = htab_save_setup,
2342     .save_live_iterate = htab_save_iterate,
2343     .save_live_complete_precopy = htab_save_complete,
2344     .save_cleanup = htab_save_cleanup,
2345     .load_state = htab_load,
2346 };
2347 
2348 static void spapr_boot_set(void *opaque, const char *boot_device,
2349                            Error **errp)
2350 {
2351     MachineState *machine = MACHINE(opaque);
2352     machine->boot_order = g_strdup(boot_device);
2353 }
2354 
2355 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2356 {
2357     MachineState *machine = MACHINE(spapr);
2358     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2359     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2360     int i;
2361 
2362     for (i = 0; i < nr_lmbs; i++) {
2363         uint64_t addr;
2364 
2365         addr = i * lmb_size + machine->device_memory->base;
2366         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2367                                addr / lmb_size);
2368     }
2369 }
2370 
2371 /*
2372  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2373  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2374  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2375  */
2376 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2377 {
2378     int i;
2379 
2380     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2381         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2382                    " is not aligned to %" PRIu64 " MiB",
2383                    machine->ram_size,
2384                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2385         return;
2386     }
2387 
2388     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2389         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2390                    " is not aligned to %" PRIu64 " MiB",
2391                    machine->ram_size,
2392                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2393         return;
2394     }
2395 
2396     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2397         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2398             error_setg(errp,
2399                        "Node %d memory size 0x%" PRIx64
2400                        " is not aligned to %" PRIu64 " MiB",
2401                        i, machine->numa_state->nodes[i].node_mem,
2402                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2403             return;
2404         }
2405     }
2406 }
2407 
2408 /* find cpu slot in machine->possible_cpus by core_id */
2409 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2410 {
2411     int index = id / ms->smp.threads;
2412 
2413     if (index >= ms->possible_cpus->len) {
2414         return NULL;
2415     }
2416     if (idx) {
2417         *idx = index;
2418     }
2419     return &ms->possible_cpus->cpus[index];
2420 }
2421 
2422 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2423 {
2424     MachineState *ms = MACHINE(spapr);
2425     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2426     Error *local_err = NULL;
2427     bool vsmt_user = !!spapr->vsmt;
2428     int kvm_smt = kvmppc_smt_threads();
2429     int ret;
2430     unsigned int smp_threads = ms->smp.threads;
2431 
2432     if (!kvm_enabled() && (smp_threads > 1)) {
2433         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2434                      "on a pseries machine");
2435         goto out;
2436     }
2437     if (!is_power_of_2(smp_threads)) {
2438         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2439                      "machine because it must be a power of 2", smp_threads);
2440         goto out;
2441     }
2442 
2443     /* Detemine the VSMT mode to use: */
2444     if (vsmt_user) {
2445         if (spapr->vsmt < smp_threads) {
2446             error_setg(&local_err, "Cannot support VSMT mode %d"
2447                          " because it must be >= threads/core (%d)",
2448                          spapr->vsmt, smp_threads);
2449             goto out;
2450         }
2451         /* In this case, spapr->vsmt has been set by the command line */
2452     } else if (!smc->smp_threads_vsmt) {
2453         /*
2454          * Default VSMT value is tricky, because we need it to be as
2455          * consistent as possible (for migration), but this requires
2456          * changing it for at least some existing cases.  We pick 8 as
2457          * the value that we'd get with KVM on POWER8, the
2458          * overwhelmingly common case in production systems.
2459          */
2460         spapr->vsmt = MAX(8, smp_threads);
2461     } else {
2462         spapr->vsmt = smp_threads;
2463     }
2464 
2465     /* KVM: If necessary, set the SMT mode: */
2466     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2467         ret = kvmppc_set_smt_threads(spapr->vsmt);
2468         if (ret) {
2469             /* Looks like KVM isn't able to change VSMT mode */
2470             error_setg(&local_err,
2471                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2472                        spapr->vsmt, ret);
2473             /* We can live with that if the default one is big enough
2474              * for the number of threads, and a submultiple of the one
2475              * we want.  In this case we'll waste some vcpu ids, but
2476              * behaviour will be correct */
2477             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2478                 warn_report_err(local_err);
2479                 local_err = NULL;
2480                 goto out;
2481             } else {
2482                 if (!vsmt_user) {
2483                     error_append_hint(&local_err,
2484                                       "On PPC, a VM with %d threads/core"
2485                                       " on a host with %d threads/core"
2486                                       " requires the use of VSMT mode %d.\n",
2487                                       smp_threads, kvm_smt, spapr->vsmt);
2488                 }
2489                 kvmppc_error_append_smt_possible_hint(&local_err);
2490                 goto out;
2491             }
2492         }
2493     }
2494     /* else TCG: nothing to do currently */
2495 out:
2496     error_propagate(errp, local_err);
2497 }
2498 
2499 static void spapr_init_cpus(SpaprMachineState *spapr)
2500 {
2501     MachineState *machine = MACHINE(spapr);
2502     MachineClass *mc = MACHINE_GET_CLASS(machine);
2503     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2504     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2505     const CPUArchIdList *possible_cpus;
2506     unsigned int smp_cpus = machine->smp.cpus;
2507     unsigned int smp_threads = machine->smp.threads;
2508     unsigned int max_cpus = machine->smp.max_cpus;
2509     int boot_cores_nr = smp_cpus / smp_threads;
2510     int i;
2511 
2512     possible_cpus = mc->possible_cpu_arch_ids(machine);
2513     if (mc->has_hotpluggable_cpus) {
2514         if (smp_cpus % smp_threads) {
2515             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2516                          smp_cpus, smp_threads);
2517             exit(1);
2518         }
2519         if (max_cpus % smp_threads) {
2520             error_report("max_cpus (%u) must be multiple of threads (%u)",
2521                          max_cpus, smp_threads);
2522             exit(1);
2523         }
2524     } else {
2525         if (max_cpus != smp_cpus) {
2526             error_report("This machine version does not support CPU hotplug");
2527             exit(1);
2528         }
2529         boot_cores_nr = possible_cpus->len;
2530     }
2531 
2532     if (smc->pre_2_10_has_unused_icps) {
2533         int i;
2534 
2535         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2536             /* Dummy entries get deregistered when real ICPState objects
2537              * are registered during CPU core hotplug.
2538              */
2539             pre_2_10_vmstate_register_dummy_icp(i);
2540         }
2541     }
2542 
2543     for (i = 0; i < possible_cpus->len; i++) {
2544         int core_id = i * smp_threads;
2545 
2546         if (mc->has_hotpluggable_cpus) {
2547             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2548                                    spapr_vcpu_id(spapr, core_id));
2549         }
2550 
2551         if (i < boot_cores_nr) {
2552             Object *core  = object_new(type);
2553             int nr_threads = smp_threads;
2554 
2555             /* Handle the partially filled core for older machine types */
2556             if ((i + 1) * smp_threads >= smp_cpus) {
2557                 nr_threads = smp_cpus - i * smp_threads;
2558             }
2559 
2560             object_property_set_int(core, nr_threads, "nr-threads",
2561                                     &error_fatal);
2562             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2563                                     &error_fatal);
2564             object_property_set_bool(core, true, "realized", &error_fatal);
2565 
2566             object_unref(core);
2567         }
2568     }
2569 }
2570 
2571 static PCIHostState *spapr_create_default_phb(void)
2572 {
2573     DeviceState *dev;
2574 
2575     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2576     qdev_prop_set_uint32(dev, "index", 0);
2577     qdev_init_nofail(dev);
2578 
2579     return PCI_HOST_BRIDGE(dev);
2580 }
2581 
2582 /* pSeries LPAR / sPAPR hardware init */
2583 static void spapr_machine_init(MachineState *machine)
2584 {
2585     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2586     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2587     const char *kernel_filename = machine->kernel_filename;
2588     const char *initrd_filename = machine->initrd_filename;
2589     PCIHostState *phb;
2590     int i;
2591     MemoryRegion *sysmem = get_system_memory();
2592     MemoryRegion *ram = g_new(MemoryRegion, 1);
2593     hwaddr node0_size = spapr_node0_size(machine);
2594     long load_limit, fw_size;
2595     char *filename;
2596     Error *resize_hpt_err = NULL;
2597 
2598     msi_nonbroken = true;
2599 
2600     QLIST_INIT(&spapr->phbs);
2601     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2602 
2603     /* Determine capabilities to run with */
2604     spapr_caps_init(spapr);
2605 
2606     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2607     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2608         /*
2609          * If the user explicitly requested a mode we should either
2610          * supply it, or fail completely (which we do below).  But if
2611          * it's not set explicitly, we reset our mode to something
2612          * that works
2613          */
2614         if (resize_hpt_err) {
2615             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2616             error_free(resize_hpt_err);
2617             resize_hpt_err = NULL;
2618         } else {
2619             spapr->resize_hpt = smc->resize_hpt_default;
2620         }
2621     }
2622 
2623     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2624 
2625     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2626         /*
2627          * User requested HPT resize, but this host can't supply it.  Bail out
2628          */
2629         error_report_err(resize_hpt_err);
2630         exit(1);
2631     }
2632 
2633     spapr->rma_size = node0_size;
2634 
2635     /* With KVM, we don't actually know whether KVM supports an
2636      * unbounded RMA (PR KVM) or is limited by the hash table size
2637      * (HV KVM using VRMA), so we always assume the latter
2638      *
2639      * In that case, we also limit the initial allocations for RTAS
2640      * etc... to 256M since we have no way to know what the VRMA size
2641      * is going to be as it depends on the size of the hash table
2642      * which isn't determined yet.
2643      */
2644     if (kvm_enabled()) {
2645         spapr->vrma_adjust = 1;
2646         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2647     }
2648 
2649     /* Actually we don't support unbounded RMA anymore since we added
2650      * proper emulation of HV mode. The max we can get is 16G which
2651      * also happens to be what we configure for PAPR mode so make sure
2652      * we don't do anything bigger than that
2653      */
2654     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2655 
2656     if (spapr->rma_size > node0_size) {
2657         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2658                      spapr->rma_size);
2659         exit(1);
2660     }
2661 
2662     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2663     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2664 
2665     /*
2666      * VSMT must be set in order to be able to compute VCPU ids, ie to
2667      * call spapr_max_server_number() or spapr_vcpu_id().
2668      */
2669     spapr_set_vsmt_mode(spapr, &error_fatal);
2670 
2671     /* Set up Interrupt Controller before we create the VCPUs */
2672     spapr_irq_init(spapr, &error_fatal);
2673 
2674     /* Set up containers for ibm,client-architecture-support negotiated options
2675      */
2676     spapr->ov5 = spapr_ovec_new();
2677     spapr->ov5_cas = spapr_ovec_new();
2678 
2679     if (smc->dr_lmb_enabled) {
2680         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2681         spapr_validate_node_memory(machine, &error_fatal);
2682     }
2683 
2684     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2685 
2686     /* advertise support for dedicated HP event source to guests */
2687     if (spapr->use_hotplug_event_source) {
2688         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2689     }
2690 
2691     /* advertise support for HPT resizing */
2692     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2693         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2694     }
2695 
2696     /* advertise support for ibm,dyamic-memory-v2 */
2697     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2698 
2699     /* advertise XIVE on POWER9 machines */
2700     if (spapr->irq->xive) {
2701         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2702     }
2703 
2704     /* init CPUs */
2705     spapr_init_cpus(spapr);
2706 
2707     /*
2708      * check we don't have a memory-less/cpu-less NUMA node
2709      * Firmware relies on the existing memory/cpu topology to provide the
2710      * NUMA topology to the kernel.
2711      * And the linux kernel needs to know the NUMA topology at start
2712      * to be able to hotplug CPUs later.
2713      */
2714     if (machine->numa_state->num_nodes) {
2715         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2716             /* check for memory-less node */
2717             if (machine->numa_state->nodes[i].node_mem == 0) {
2718                 CPUState *cs;
2719                 int found = 0;
2720                 /* check for cpu-less node */
2721                 CPU_FOREACH(cs) {
2722                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2723                     if (cpu->node_id == i) {
2724                         found = 1;
2725                         break;
2726                     }
2727                 }
2728                 /* memory-less and cpu-less node */
2729                 if (!found) {
2730                     error_report(
2731                        "Memory-less/cpu-less nodes are not supported (node %d)",
2732                                  i);
2733                     exit(1);
2734                 }
2735             }
2736         }
2737 
2738     }
2739 
2740     /*
2741      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2742      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2743      * called from vPHB reset handler so we initialize the counter here.
2744      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2745      * must be equally distant from any other node.
2746      * The final value of spapr->gpu_numa_id is going to be written to
2747      * max-associativity-domains in spapr_build_fdt().
2748      */
2749     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2750 
2751     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2752         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2753                               spapr->max_compat_pvr)) {
2754         /* KVM and TCG always allow GTSE with radix... */
2755         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2756     }
2757     /* ... but not with hash (currently). */
2758 
2759     if (kvm_enabled()) {
2760         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2761         kvmppc_enable_logical_ci_hcalls();
2762         kvmppc_enable_set_mode_hcall();
2763 
2764         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2765         kvmppc_enable_clear_ref_mod_hcalls();
2766 
2767         /* Enable H_PAGE_INIT */
2768         kvmppc_enable_h_page_init();
2769     }
2770 
2771     /* allocate RAM */
2772     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2773                                          machine->ram_size);
2774     memory_region_add_subregion(sysmem, 0, ram);
2775 
2776     /* always allocate the device memory information */
2777     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2778 
2779     /* initialize hotplug memory address space */
2780     if (machine->ram_size < machine->maxram_size) {
2781         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2782         /*
2783          * Limit the number of hotpluggable memory slots to half the number
2784          * slots that KVM supports, leaving the other half for PCI and other
2785          * devices. However ensure that number of slots doesn't drop below 32.
2786          */
2787         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2788                            SPAPR_MAX_RAM_SLOTS;
2789 
2790         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2791             max_memslots = SPAPR_MAX_RAM_SLOTS;
2792         }
2793         if (machine->ram_slots > max_memslots) {
2794             error_report("Specified number of memory slots %"
2795                          PRIu64" exceeds max supported %d",
2796                          machine->ram_slots, max_memslots);
2797             exit(1);
2798         }
2799 
2800         machine->device_memory->base = ROUND_UP(machine->ram_size,
2801                                                 SPAPR_DEVICE_MEM_ALIGN);
2802         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2803                            "device-memory", device_mem_size);
2804         memory_region_add_subregion(sysmem, machine->device_memory->base,
2805                                     &machine->device_memory->mr);
2806     }
2807 
2808     if (smc->dr_lmb_enabled) {
2809         spapr_create_lmb_dr_connectors(spapr);
2810     }
2811 
2812     /* Set up RTAS event infrastructure */
2813     spapr_events_init(spapr);
2814 
2815     /* Set up the RTC RTAS interfaces */
2816     spapr_rtc_create(spapr);
2817 
2818     /* Set up VIO bus */
2819     spapr->vio_bus = spapr_vio_bus_init();
2820 
2821     for (i = 0; i < serial_max_hds(); i++) {
2822         if (serial_hd(i)) {
2823             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2824         }
2825     }
2826 
2827     /* We always have at least the nvram device on VIO */
2828     spapr_create_nvram(spapr);
2829 
2830     /*
2831      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2832      * connectors (described in root DT node's "ibm,drc-types" property)
2833      * are pre-initialized here. additional child connectors (such as
2834      * connectors for a PHBs PCI slots) are added as needed during their
2835      * parent's realization.
2836      */
2837     if (smc->dr_phb_enabled) {
2838         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2839             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2840         }
2841     }
2842 
2843     /* Set up PCI */
2844     spapr_pci_rtas_init();
2845 
2846     phb = spapr_create_default_phb();
2847 
2848     for (i = 0; i < nb_nics; i++) {
2849         NICInfo *nd = &nd_table[i];
2850 
2851         if (!nd->model) {
2852             nd->model = g_strdup("spapr-vlan");
2853         }
2854 
2855         if (g_str_equal(nd->model, "spapr-vlan") ||
2856             g_str_equal(nd->model, "ibmveth")) {
2857             spapr_vlan_create(spapr->vio_bus, nd);
2858         } else {
2859             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2860         }
2861     }
2862 
2863     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2864         spapr_vscsi_create(spapr->vio_bus);
2865     }
2866 
2867     /* Graphics */
2868     if (spapr_vga_init(phb->bus, &error_fatal)) {
2869         spapr->has_graphics = true;
2870         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2871     }
2872 
2873     if (machine->usb) {
2874         if (smc->use_ohci_by_default) {
2875             pci_create_simple(phb->bus, -1, "pci-ohci");
2876         } else {
2877             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2878         }
2879 
2880         if (spapr->has_graphics) {
2881             USBBus *usb_bus = usb_bus_find(-1);
2882 
2883             usb_create_simple(usb_bus, "usb-kbd");
2884             usb_create_simple(usb_bus, "usb-mouse");
2885         }
2886     }
2887 
2888     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2889         error_report(
2890             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2891             MIN_RMA_SLOF);
2892         exit(1);
2893     }
2894 
2895     if (kernel_filename) {
2896         uint64_t lowaddr = 0;
2897 
2898         spapr->kernel_size = load_elf(kernel_filename, NULL,
2899                                       translate_kernel_address, NULL,
2900                                       NULL, &lowaddr, NULL, 1,
2901                                       PPC_ELF_MACHINE, 0, 0);
2902         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2903             spapr->kernel_size = load_elf(kernel_filename, NULL,
2904                                           translate_kernel_address, NULL, NULL,
2905                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2906                                           0, 0);
2907             spapr->kernel_le = spapr->kernel_size > 0;
2908         }
2909         if (spapr->kernel_size < 0) {
2910             error_report("error loading %s: %s", kernel_filename,
2911                          load_elf_strerror(spapr->kernel_size));
2912             exit(1);
2913         }
2914 
2915         /* load initrd */
2916         if (initrd_filename) {
2917             /* Try to locate the initrd in the gap between the kernel
2918              * and the firmware. Add a bit of space just in case
2919              */
2920             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2921                                   + 0x1ffff) & ~0xffff;
2922             spapr->initrd_size = load_image_targphys(initrd_filename,
2923                                                      spapr->initrd_base,
2924                                                      load_limit
2925                                                      - spapr->initrd_base);
2926             if (spapr->initrd_size < 0) {
2927                 error_report("could not load initial ram disk '%s'",
2928                              initrd_filename);
2929                 exit(1);
2930             }
2931         }
2932     }
2933 
2934     if (bios_name == NULL) {
2935         bios_name = FW_FILE_NAME;
2936     }
2937     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2938     if (!filename) {
2939         error_report("Could not find LPAR firmware '%s'", bios_name);
2940         exit(1);
2941     }
2942     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2943     if (fw_size <= 0) {
2944         error_report("Could not load LPAR firmware '%s'", filename);
2945         exit(1);
2946     }
2947     g_free(filename);
2948 
2949     /* FIXME: Should register things through the MachineState's qdev
2950      * interface, this is a legacy from the sPAPREnvironment structure
2951      * which predated MachineState but had a similar function */
2952     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2953     register_savevm_live("spapr/htab", -1, 1,
2954                          &savevm_htab_handlers, spapr);
2955 
2956     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
2957                              &error_fatal);
2958 
2959     qemu_register_boot_set(spapr_boot_set, spapr);
2960 
2961     /*
2962      * Nothing needs to be done to resume a suspended guest because
2963      * suspending does not change the machine state, so no need for
2964      * a ->wakeup method.
2965      */
2966     qemu_register_wakeup_support();
2967 
2968     if (kvm_enabled()) {
2969         /* to stop and start vmclock */
2970         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2971                                          &spapr->tb);
2972 
2973         kvmppc_spapr_enable_inkernel_multitce();
2974     }
2975 }
2976 
2977 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
2978 {
2979     if (!vm_type) {
2980         return 0;
2981     }
2982 
2983     if (!strcmp(vm_type, "HV")) {
2984         return 1;
2985     }
2986 
2987     if (!strcmp(vm_type, "PR")) {
2988         return 2;
2989     }
2990 
2991     error_report("Unknown kvm-type specified '%s'", vm_type);
2992     exit(1);
2993 }
2994 
2995 /*
2996  * Implementation of an interface to adjust firmware path
2997  * for the bootindex property handling.
2998  */
2999 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3000                                    DeviceState *dev)
3001 {
3002 #define CAST(type, obj, name) \
3003     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3004     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3005     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3006     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3007 
3008     if (d) {
3009         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3010         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3011         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3012 
3013         if (spapr) {
3014             /*
3015              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3016              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3017              * 0x8000 | (target << 8) | (bus << 5) | lun
3018              * (see the "Logical unit addressing format" table in SAM5)
3019              */
3020             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3021             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3022                                    (uint64_t)id << 48);
3023         } else if (virtio) {
3024             /*
3025              * We use SRP luns of the form 01000000 | (target << 8) | lun
3026              * in the top 32 bits of the 64-bit LUN
3027              * Note: the quote above is from SLOF and it is wrong,
3028              * the actual binding is:
3029              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3030              */
3031             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3032             if (d->lun >= 256) {
3033                 /* Use the LUN "flat space addressing method" */
3034                 id |= 0x4000;
3035             }
3036             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3037                                    (uint64_t)id << 32);
3038         } else if (usb) {
3039             /*
3040              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3041              * in the top 32 bits of the 64-bit LUN
3042              */
3043             unsigned usb_port = atoi(usb->port->path);
3044             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3045             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3046                                    (uint64_t)id << 32);
3047         }
3048     }
3049 
3050     /*
3051      * SLOF probes the USB devices, and if it recognizes that the device is a
3052      * storage device, it changes its name to "storage" instead of "usb-host",
3053      * and additionally adds a child node for the SCSI LUN, so the correct
3054      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3055      */
3056     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3057         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3058         if (usb_host_dev_is_scsi_storage(usbdev)) {
3059             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3060         }
3061     }
3062 
3063     if (phb) {
3064         /* Replace "pci" with "pci@800000020000000" */
3065         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3066     }
3067 
3068     if (vsc) {
3069         /* Same logic as virtio above */
3070         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3071         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3072     }
3073 
3074     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3075         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3076         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3077         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3078     }
3079 
3080     return NULL;
3081 }
3082 
3083 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3084 {
3085     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3086 
3087     return g_strdup(spapr->kvm_type);
3088 }
3089 
3090 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3091 {
3092     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3093 
3094     g_free(spapr->kvm_type);
3095     spapr->kvm_type = g_strdup(value);
3096 }
3097 
3098 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3099 {
3100     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3101 
3102     return spapr->use_hotplug_event_source;
3103 }
3104 
3105 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3106                                             Error **errp)
3107 {
3108     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3109 
3110     spapr->use_hotplug_event_source = value;
3111 }
3112 
3113 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3114 {
3115     return true;
3116 }
3117 
3118 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3119 {
3120     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3121 
3122     switch (spapr->resize_hpt) {
3123     case SPAPR_RESIZE_HPT_DEFAULT:
3124         return g_strdup("default");
3125     case SPAPR_RESIZE_HPT_DISABLED:
3126         return g_strdup("disabled");
3127     case SPAPR_RESIZE_HPT_ENABLED:
3128         return g_strdup("enabled");
3129     case SPAPR_RESIZE_HPT_REQUIRED:
3130         return g_strdup("required");
3131     }
3132     g_assert_not_reached();
3133 }
3134 
3135 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3136 {
3137     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3138 
3139     if (strcmp(value, "default") == 0) {
3140         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3141     } else if (strcmp(value, "disabled") == 0) {
3142         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3143     } else if (strcmp(value, "enabled") == 0) {
3144         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3145     } else if (strcmp(value, "required") == 0) {
3146         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3147     } else {
3148         error_setg(errp, "Bad value for \"resize-hpt\" property");
3149     }
3150 }
3151 
3152 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3153                                    void *opaque, Error **errp)
3154 {
3155     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3156 }
3157 
3158 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3159                                    void *opaque, Error **errp)
3160 {
3161     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3162 }
3163 
3164 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3165 {
3166     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3167 
3168     if (spapr->irq == &spapr_irq_xics_legacy) {
3169         return g_strdup("legacy");
3170     } else if (spapr->irq == &spapr_irq_xics) {
3171         return g_strdup("xics");
3172     } else if (spapr->irq == &spapr_irq_xive) {
3173         return g_strdup("xive");
3174     } else if (spapr->irq == &spapr_irq_dual) {
3175         return g_strdup("dual");
3176     }
3177     g_assert_not_reached();
3178 }
3179 
3180 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3181 {
3182     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3183 
3184     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3185         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3186         return;
3187     }
3188 
3189     /* The legacy IRQ backend can not be set */
3190     if (strcmp(value, "xics") == 0) {
3191         spapr->irq = &spapr_irq_xics;
3192     } else if (strcmp(value, "xive") == 0) {
3193         spapr->irq = &spapr_irq_xive;
3194     } else if (strcmp(value, "dual") == 0) {
3195         spapr->irq = &spapr_irq_dual;
3196     } else {
3197         error_setg(errp, "Bad value for \"ic-mode\" property");
3198     }
3199 }
3200 
3201 static char *spapr_get_host_model(Object *obj, Error **errp)
3202 {
3203     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3204 
3205     return g_strdup(spapr->host_model);
3206 }
3207 
3208 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3209 {
3210     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3211 
3212     g_free(spapr->host_model);
3213     spapr->host_model = g_strdup(value);
3214 }
3215 
3216 static char *spapr_get_host_serial(Object *obj, Error **errp)
3217 {
3218     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219 
3220     return g_strdup(spapr->host_serial);
3221 }
3222 
3223 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3224 {
3225     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3226 
3227     g_free(spapr->host_serial);
3228     spapr->host_serial = g_strdup(value);
3229 }
3230 
3231 static void spapr_instance_init(Object *obj)
3232 {
3233     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3234     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3235 
3236     spapr->htab_fd = -1;
3237     spapr->use_hotplug_event_source = true;
3238     object_property_add_str(obj, "kvm-type",
3239                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3240     object_property_set_description(obj, "kvm-type",
3241                                     "Specifies the KVM virtualization mode (HV, PR)",
3242                                     NULL);
3243     object_property_add_bool(obj, "modern-hotplug-events",
3244                             spapr_get_modern_hotplug_events,
3245                             spapr_set_modern_hotplug_events,
3246                             NULL);
3247     object_property_set_description(obj, "modern-hotplug-events",
3248                                     "Use dedicated hotplug event mechanism in"
3249                                     " place of standard EPOW events when possible"
3250                                     " (required for memory hot-unplug support)",
3251                                     NULL);
3252     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3253                             "Maximum permitted CPU compatibility mode",
3254                             &error_fatal);
3255 
3256     object_property_add_str(obj, "resize-hpt",
3257                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3258     object_property_set_description(obj, "resize-hpt",
3259                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3260                                     NULL);
3261     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3262                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3263     object_property_set_description(obj, "vsmt",
3264                                     "Virtual SMT: KVM behaves as if this were"
3265                                     " the host's SMT mode", &error_abort);
3266     object_property_add_bool(obj, "vfio-no-msix-emulation",
3267                              spapr_get_msix_emulation, NULL, NULL);
3268 
3269     /* The machine class defines the default interrupt controller mode */
3270     spapr->irq = smc->irq;
3271     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3272                             spapr_set_ic_mode, NULL);
3273     object_property_set_description(obj, "ic-mode",
3274                  "Specifies the interrupt controller mode (xics, xive, dual)",
3275                  NULL);
3276 
3277     object_property_add_str(obj, "host-model",
3278         spapr_get_host_model, spapr_set_host_model,
3279         &error_abort);
3280     object_property_set_description(obj, "host-model",
3281         "Host model to advertise in guest device tree", &error_abort);
3282     object_property_add_str(obj, "host-serial",
3283         spapr_get_host_serial, spapr_set_host_serial,
3284         &error_abort);
3285     object_property_set_description(obj, "host-serial",
3286         "Host serial number to advertise in guest device tree", &error_abort);
3287 }
3288 
3289 static void spapr_machine_finalizefn(Object *obj)
3290 {
3291     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3292 
3293     g_free(spapr->kvm_type);
3294 }
3295 
3296 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3297 {
3298     cpu_synchronize_state(cs);
3299     ppc_cpu_do_system_reset(cs);
3300 }
3301 
3302 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3303 {
3304     CPUState *cs;
3305 
3306     CPU_FOREACH(cs) {
3307         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3308     }
3309 }
3310 
3311 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3312                           void *fdt, int *fdt_start_offset, Error **errp)
3313 {
3314     uint64_t addr;
3315     uint32_t node;
3316 
3317     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3318     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3319                                     &error_abort);
3320     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3321                                                    SPAPR_MEMORY_BLOCK_SIZE);
3322     return 0;
3323 }
3324 
3325 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3326                            bool dedicated_hp_event_source, Error **errp)
3327 {
3328     SpaprDrc *drc;
3329     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3330     int i;
3331     uint64_t addr = addr_start;
3332     bool hotplugged = spapr_drc_hotplugged(dev);
3333     Error *local_err = NULL;
3334 
3335     for (i = 0; i < nr_lmbs; i++) {
3336         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3337                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3338         g_assert(drc);
3339 
3340         spapr_drc_attach(drc, dev, &local_err);
3341         if (local_err) {
3342             while (addr > addr_start) {
3343                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3344                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3345                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3346                 spapr_drc_detach(drc);
3347             }
3348             error_propagate(errp, local_err);
3349             return;
3350         }
3351         if (!hotplugged) {
3352             spapr_drc_reset(drc);
3353         }
3354         addr += SPAPR_MEMORY_BLOCK_SIZE;
3355     }
3356     /* send hotplug notification to the
3357      * guest only in case of hotplugged memory
3358      */
3359     if (hotplugged) {
3360         if (dedicated_hp_event_source) {
3361             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3362                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3363             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3364                                                    nr_lmbs,
3365                                                    spapr_drc_index(drc));
3366         } else {
3367             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3368                                            nr_lmbs);
3369         }
3370     }
3371 }
3372 
3373 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3374                               Error **errp)
3375 {
3376     Error *local_err = NULL;
3377     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3378     PCDIMMDevice *dimm = PC_DIMM(dev);
3379     uint64_t size, addr;
3380 
3381     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3382 
3383     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3384     if (local_err) {
3385         goto out;
3386     }
3387 
3388     addr = object_property_get_uint(OBJECT(dimm),
3389                                     PC_DIMM_ADDR_PROP, &local_err);
3390     if (local_err) {
3391         goto out_unplug;
3392     }
3393 
3394     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3395                    &local_err);
3396     if (local_err) {
3397         goto out_unplug;
3398     }
3399 
3400     return;
3401 
3402 out_unplug:
3403     pc_dimm_unplug(dimm, MACHINE(ms));
3404 out:
3405     error_propagate(errp, local_err);
3406 }
3407 
3408 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3409                                   Error **errp)
3410 {
3411     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3412     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3413     PCDIMMDevice *dimm = PC_DIMM(dev);
3414     Error *local_err = NULL;
3415     uint64_t size;
3416     Object *memdev;
3417     hwaddr pagesize;
3418 
3419     if (!smc->dr_lmb_enabled) {
3420         error_setg(errp, "Memory hotplug not supported for this machine");
3421         return;
3422     }
3423 
3424     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3425     if (local_err) {
3426         error_propagate(errp, local_err);
3427         return;
3428     }
3429 
3430     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3431         error_setg(errp, "Hotplugged memory size must be a multiple of "
3432                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3433         return;
3434     }
3435 
3436     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3437                                       &error_abort);
3438     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3439     spapr_check_pagesize(spapr, pagesize, &local_err);
3440     if (local_err) {
3441         error_propagate(errp, local_err);
3442         return;
3443     }
3444 
3445     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3446 }
3447 
3448 struct SpaprDimmState {
3449     PCDIMMDevice *dimm;
3450     uint32_t nr_lmbs;
3451     QTAILQ_ENTRY(SpaprDimmState) next;
3452 };
3453 
3454 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3455                                                        PCDIMMDevice *dimm)
3456 {
3457     SpaprDimmState *dimm_state = NULL;
3458 
3459     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3460         if (dimm_state->dimm == dimm) {
3461             break;
3462         }
3463     }
3464     return dimm_state;
3465 }
3466 
3467 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3468                                                       uint32_t nr_lmbs,
3469                                                       PCDIMMDevice *dimm)
3470 {
3471     SpaprDimmState *ds = NULL;
3472 
3473     /*
3474      * If this request is for a DIMM whose removal had failed earlier
3475      * (due to guest's refusal to remove the LMBs), we would have this
3476      * dimm already in the pending_dimm_unplugs list. In that
3477      * case don't add again.
3478      */
3479     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3480     if (!ds) {
3481         ds = g_malloc0(sizeof(SpaprDimmState));
3482         ds->nr_lmbs = nr_lmbs;
3483         ds->dimm = dimm;
3484         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3485     }
3486     return ds;
3487 }
3488 
3489 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3490                                               SpaprDimmState *dimm_state)
3491 {
3492     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3493     g_free(dimm_state);
3494 }
3495 
3496 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3497                                                         PCDIMMDevice *dimm)
3498 {
3499     SpaprDrc *drc;
3500     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3501                                                   &error_abort);
3502     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3503     uint32_t avail_lmbs = 0;
3504     uint64_t addr_start, addr;
3505     int i;
3506 
3507     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3508                                          &error_abort);
3509 
3510     addr = addr_start;
3511     for (i = 0; i < nr_lmbs; i++) {
3512         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3513                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3514         g_assert(drc);
3515         if (drc->dev) {
3516             avail_lmbs++;
3517         }
3518         addr += SPAPR_MEMORY_BLOCK_SIZE;
3519     }
3520 
3521     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3522 }
3523 
3524 /* Callback to be called during DRC release. */
3525 void spapr_lmb_release(DeviceState *dev)
3526 {
3527     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3528     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3529     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3530 
3531     /* This information will get lost if a migration occurs
3532      * during the unplug process. In this case recover it. */
3533     if (ds == NULL) {
3534         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3535         g_assert(ds);
3536         /* The DRC being examined by the caller at least must be counted */
3537         g_assert(ds->nr_lmbs);
3538     }
3539 
3540     if (--ds->nr_lmbs) {
3541         return;
3542     }
3543 
3544     /*
3545      * Now that all the LMBs have been removed by the guest, call the
3546      * unplug handler chain. This can never fail.
3547      */
3548     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3549     object_unparent(OBJECT(dev));
3550 }
3551 
3552 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3553 {
3554     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3555     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3556 
3557     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3558     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3559     spapr_pending_dimm_unplugs_remove(spapr, ds);
3560 }
3561 
3562 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3563                                         DeviceState *dev, Error **errp)
3564 {
3565     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3566     Error *local_err = NULL;
3567     PCDIMMDevice *dimm = PC_DIMM(dev);
3568     uint32_t nr_lmbs;
3569     uint64_t size, addr_start, addr;
3570     int i;
3571     SpaprDrc *drc;
3572 
3573     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3574     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3575 
3576     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3577                                          &local_err);
3578     if (local_err) {
3579         goto out;
3580     }
3581 
3582     /*
3583      * An existing pending dimm state for this DIMM means that there is an
3584      * unplug operation in progress, waiting for the spapr_lmb_release
3585      * callback to complete the job (BQL can't cover that far). In this case,
3586      * bail out to avoid detaching DRCs that were already released.
3587      */
3588     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3589         error_setg(&local_err,
3590                    "Memory unplug already in progress for device %s",
3591                    dev->id);
3592         goto out;
3593     }
3594 
3595     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3596 
3597     addr = addr_start;
3598     for (i = 0; i < nr_lmbs; i++) {
3599         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3600                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3601         g_assert(drc);
3602 
3603         spapr_drc_detach(drc);
3604         addr += SPAPR_MEMORY_BLOCK_SIZE;
3605     }
3606 
3607     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3608                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3609     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3610                                               nr_lmbs, spapr_drc_index(drc));
3611 out:
3612     error_propagate(errp, local_err);
3613 }
3614 
3615 /* Callback to be called during DRC release. */
3616 void spapr_core_release(DeviceState *dev)
3617 {
3618     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3619 
3620     /* Call the unplug handler chain. This can never fail. */
3621     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3622     object_unparent(OBJECT(dev));
3623 }
3624 
3625 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3626 {
3627     MachineState *ms = MACHINE(hotplug_dev);
3628     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3629     CPUCore *cc = CPU_CORE(dev);
3630     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3631 
3632     if (smc->pre_2_10_has_unused_icps) {
3633         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3634         int i;
3635 
3636         for (i = 0; i < cc->nr_threads; i++) {
3637             CPUState *cs = CPU(sc->threads[i]);
3638 
3639             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3640         }
3641     }
3642 
3643     assert(core_slot);
3644     core_slot->cpu = NULL;
3645     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3646 }
3647 
3648 static
3649 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3650                                Error **errp)
3651 {
3652     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3653     int index;
3654     SpaprDrc *drc;
3655     CPUCore *cc = CPU_CORE(dev);
3656 
3657     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3658         error_setg(errp, "Unable to find CPU core with core-id: %d",
3659                    cc->core_id);
3660         return;
3661     }
3662     if (index == 0) {
3663         error_setg(errp, "Boot CPU core may not be unplugged");
3664         return;
3665     }
3666 
3667     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3668                           spapr_vcpu_id(spapr, cc->core_id));
3669     g_assert(drc);
3670 
3671     if (!spapr_drc_unplug_requested(drc)) {
3672         spapr_drc_detach(drc);
3673         spapr_hotplug_req_remove_by_index(drc);
3674     }
3675 }
3676 
3677 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3678                            void *fdt, int *fdt_start_offset, Error **errp)
3679 {
3680     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3681     CPUState *cs = CPU(core->threads[0]);
3682     PowerPCCPU *cpu = POWERPC_CPU(cs);
3683     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3684     int id = spapr_get_vcpu_id(cpu);
3685     char *nodename;
3686     int offset;
3687 
3688     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3689     offset = fdt_add_subnode(fdt, 0, nodename);
3690     g_free(nodename);
3691 
3692     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3693 
3694     *fdt_start_offset = offset;
3695     return 0;
3696 }
3697 
3698 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3699                             Error **errp)
3700 {
3701     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3702     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3703     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3704     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3705     CPUCore *cc = CPU_CORE(dev);
3706     CPUState *cs;
3707     SpaprDrc *drc;
3708     Error *local_err = NULL;
3709     CPUArchId *core_slot;
3710     int index;
3711     bool hotplugged = spapr_drc_hotplugged(dev);
3712     int i;
3713 
3714     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3715     if (!core_slot) {
3716         error_setg(errp, "Unable to find CPU core with core-id: %d",
3717                    cc->core_id);
3718         return;
3719     }
3720     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3721                           spapr_vcpu_id(spapr, cc->core_id));
3722 
3723     g_assert(drc || !mc->has_hotpluggable_cpus);
3724 
3725     if (drc) {
3726         spapr_drc_attach(drc, dev, &local_err);
3727         if (local_err) {
3728             error_propagate(errp, local_err);
3729             return;
3730         }
3731 
3732         if (hotplugged) {
3733             /*
3734              * Send hotplug notification interrupt to the guest only
3735              * in case of hotplugged CPUs.
3736              */
3737             spapr_hotplug_req_add_by_index(drc);
3738         } else {
3739             spapr_drc_reset(drc);
3740         }
3741     }
3742 
3743     core_slot->cpu = OBJECT(dev);
3744 
3745     if (smc->pre_2_10_has_unused_icps) {
3746         for (i = 0; i < cc->nr_threads; i++) {
3747             cs = CPU(core->threads[i]);
3748             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3749         }
3750     }
3751 
3752     /*
3753      * Set compatibility mode to match the boot CPU, which was either set
3754      * by the machine reset code or by CAS.
3755      */
3756     if (hotplugged) {
3757         for (i = 0; i < cc->nr_threads; i++) {
3758             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3759                            &local_err);
3760             if (local_err) {
3761                 error_propagate(errp, local_err);
3762                 return;
3763             }
3764         }
3765     }
3766 }
3767 
3768 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3769                                 Error **errp)
3770 {
3771     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3772     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3773     Error *local_err = NULL;
3774     CPUCore *cc = CPU_CORE(dev);
3775     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3776     const char *type = object_get_typename(OBJECT(dev));
3777     CPUArchId *core_slot;
3778     int index;
3779     unsigned int smp_threads = machine->smp.threads;
3780 
3781     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3782         error_setg(&local_err, "CPU hotplug not supported for this machine");
3783         goto out;
3784     }
3785 
3786     if (strcmp(base_core_type, type)) {
3787         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3788         goto out;
3789     }
3790 
3791     if (cc->core_id % smp_threads) {
3792         error_setg(&local_err, "invalid core id %d", cc->core_id);
3793         goto out;
3794     }
3795 
3796     /*
3797      * In general we should have homogeneous threads-per-core, but old
3798      * (pre hotplug support) machine types allow the last core to have
3799      * reduced threads as a compatibility hack for when we allowed
3800      * total vcpus not a multiple of threads-per-core.
3801      */
3802     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3803         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3804                    cc->nr_threads, smp_threads);
3805         goto out;
3806     }
3807 
3808     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3809     if (!core_slot) {
3810         error_setg(&local_err, "core id %d out of range", cc->core_id);
3811         goto out;
3812     }
3813 
3814     if (core_slot->cpu) {
3815         error_setg(&local_err, "core %d already populated", cc->core_id);
3816         goto out;
3817     }
3818 
3819     numa_cpu_pre_plug(core_slot, dev, &local_err);
3820 
3821 out:
3822     error_propagate(errp, local_err);
3823 }
3824 
3825 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3826                           void *fdt, int *fdt_start_offset, Error **errp)
3827 {
3828     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3829     int intc_phandle;
3830 
3831     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3832     if (intc_phandle <= 0) {
3833         return -1;
3834     }
3835 
3836     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3837         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3838         return -1;
3839     }
3840 
3841     /* generally SLOF creates these, for hotplug it's up to QEMU */
3842     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3843 
3844     return 0;
3845 }
3846 
3847 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3848                                Error **errp)
3849 {
3850     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3851     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3852     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3853     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3854 
3855     if (dev->hotplugged && !smc->dr_phb_enabled) {
3856         error_setg(errp, "PHB hotplug not supported for this machine");
3857         return;
3858     }
3859 
3860     if (sphb->index == (uint32_t)-1) {
3861         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3862         return;
3863     }
3864 
3865     /*
3866      * This will check that sphb->index doesn't exceed the maximum number of
3867      * PHBs for the current machine type.
3868      */
3869     smc->phb_placement(spapr, sphb->index,
3870                        &sphb->buid, &sphb->io_win_addr,
3871                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3872                        windows_supported, sphb->dma_liobn,
3873                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3874                        errp);
3875 }
3876 
3877 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3878                            Error **errp)
3879 {
3880     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3881     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3882     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3883     SpaprDrc *drc;
3884     bool hotplugged = spapr_drc_hotplugged(dev);
3885     Error *local_err = NULL;
3886 
3887     if (!smc->dr_phb_enabled) {
3888         return;
3889     }
3890 
3891     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3892     /* hotplug hooks should check it's enabled before getting this far */
3893     assert(drc);
3894 
3895     spapr_drc_attach(drc, DEVICE(dev), &local_err);
3896     if (local_err) {
3897         error_propagate(errp, local_err);
3898         return;
3899     }
3900 
3901     if (hotplugged) {
3902         spapr_hotplug_req_add_by_index(drc);
3903     } else {
3904         spapr_drc_reset(drc);
3905     }
3906 }
3907 
3908 void spapr_phb_release(DeviceState *dev)
3909 {
3910     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3911 
3912     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3913     object_unparent(OBJECT(dev));
3914 }
3915 
3916 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3917 {
3918     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3919 }
3920 
3921 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3922                                      DeviceState *dev, Error **errp)
3923 {
3924     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3925     SpaprDrc *drc;
3926 
3927     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3928     assert(drc);
3929 
3930     if (!spapr_drc_unplug_requested(drc)) {
3931         spapr_drc_detach(drc);
3932         spapr_hotplug_req_remove_by_index(drc);
3933     }
3934 }
3935 
3936 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3937                                  Error **errp)
3938 {
3939     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3940     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
3941 
3942     if (spapr->tpm_proxy != NULL) {
3943         error_setg(errp, "Only one TPM proxy can be specified for this machine");
3944         return;
3945     }
3946 
3947     spapr->tpm_proxy = tpm_proxy;
3948 }
3949 
3950 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3951 {
3952     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3953 
3954     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3955     object_unparent(OBJECT(dev));
3956     spapr->tpm_proxy = NULL;
3957 }
3958 
3959 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3960                                       DeviceState *dev, Error **errp)
3961 {
3962     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3963         spapr_memory_plug(hotplug_dev, dev, errp);
3964     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3965         spapr_core_plug(hotplug_dev, dev, errp);
3966     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3967         spapr_phb_plug(hotplug_dev, dev, errp);
3968     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
3969         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
3970     }
3971 }
3972 
3973 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3974                                         DeviceState *dev, Error **errp)
3975 {
3976     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3977         spapr_memory_unplug(hotplug_dev, dev);
3978     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3979         spapr_core_unplug(hotplug_dev, dev);
3980     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3981         spapr_phb_unplug(hotplug_dev, dev);
3982     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
3983         spapr_tpm_proxy_unplug(hotplug_dev, dev);
3984     }
3985 }
3986 
3987 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3988                                                 DeviceState *dev, Error **errp)
3989 {
3990     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3991     MachineClass *mc = MACHINE_GET_CLASS(sms);
3992     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3993 
3994     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3995         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3996             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3997         } else {
3998             /* NOTE: this means there is a window after guest reset, prior to
3999              * CAS negotiation, where unplug requests will fail due to the
4000              * capability not being detected yet. This is a bit different than
4001              * the case with PCI unplug, where the events will be queued and
4002              * eventually handled by the guest after boot
4003              */
4004             error_setg(errp, "Memory hot unplug not supported for this guest");
4005         }
4006     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4007         if (!mc->has_hotpluggable_cpus) {
4008             error_setg(errp, "CPU hot unplug not supported on this machine");
4009             return;
4010         }
4011         spapr_core_unplug_request(hotplug_dev, dev, errp);
4012     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4013         if (!smc->dr_phb_enabled) {
4014             error_setg(errp, "PHB hot unplug not supported on this machine");
4015             return;
4016         }
4017         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4018     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4019         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4020     }
4021 }
4022 
4023 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4024                                           DeviceState *dev, Error **errp)
4025 {
4026     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4027         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4028     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4029         spapr_core_pre_plug(hotplug_dev, dev, errp);
4030     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4031         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4032     }
4033 }
4034 
4035 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4036                                                  DeviceState *dev)
4037 {
4038     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4039         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4040         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4041         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4042         return HOTPLUG_HANDLER(machine);
4043     }
4044     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4045         PCIDevice *pcidev = PCI_DEVICE(dev);
4046         PCIBus *root = pci_device_root_bus(pcidev);
4047         SpaprPhbState *phb =
4048             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4049                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4050 
4051         if (phb) {
4052             return HOTPLUG_HANDLER(phb);
4053         }
4054     }
4055     return NULL;
4056 }
4057 
4058 static CpuInstanceProperties
4059 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4060 {
4061     CPUArchId *core_slot;
4062     MachineClass *mc = MACHINE_GET_CLASS(machine);
4063 
4064     /* make sure possible_cpu are intialized */
4065     mc->possible_cpu_arch_ids(machine);
4066     /* get CPU core slot containing thread that matches cpu_index */
4067     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4068     assert(core_slot);
4069     return core_slot->props;
4070 }
4071 
4072 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4073 {
4074     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4075 }
4076 
4077 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4078 {
4079     int i;
4080     unsigned int smp_threads = machine->smp.threads;
4081     unsigned int smp_cpus = machine->smp.cpus;
4082     const char *core_type;
4083     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4084     MachineClass *mc = MACHINE_GET_CLASS(machine);
4085 
4086     if (!mc->has_hotpluggable_cpus) {
4087         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4088     }
4089     if (machine->possible_cpus) {
4090         assert(machine->possible_cpus->len == spapr_max_cores);
4091         return machine->possible_cpus;
4092     }
4093 
4094     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4095     if (!core_type) {
4096         error_report("Unable to find sPAPR CPU Core definition");
4097         exit(1);
4098     }
4099 
4100     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4101                              sizeof(CPUArchId) * spapr_max_cores);
4102     machine->possible_cpus->len = spapr_max_cores;
4103     for (i = 0; i < machine->possible_cpus->len; i++) {
4104         int core_id = i * smp_threads;
4105 
4106         machine->possible_cpus->cpus[i].type = core_type;
4107         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4108         machine->possible_cpus->cpus[i].arch_id = core_id;
4109         machine->possible_cpus->cpus[i].props.has_core_id = true;
4110         machine->possible_cpus->cpus[i].props.core_id = core_id;
4111     }
4112     return machine->possible_cpus;
4113 }
4114 
4115 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4116                                 uint64_t *buid, hwaddr *pio,
4117                                 hwaddr *mmio32, hwaddr *mmio64,
4118                                 unsigned n_dma, uint32_t *liobns,
4119                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4120 {
4121     /*
4122      * New-style PHB window placement.
4123      *
4124      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4125      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4126      * windows.
4127      *
4128      * Some guest kernels can't work with MMIO windows above 1<<46
4129      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4130      *
4131      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4132      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4133      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4134      * 1TiB 64-bit MMIO windows for each PHB.
4135      */
4136     const uint64_t base_buid = 0x800000020000000ULL;
4137     int i;
4138 
4139     /* Sanity check natural alignments */
4140     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4141     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4142     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4143     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4144     /* Sanity check bounds */
4145     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4146                       SPAPR_PCI_MEM32_WIN_SIZE);
4147     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4148                       SPAPR_PCI_MEM64_WIN_SIZE);
4149 
4150     if (index >= SPAPR_MAX_PHBS) {
4151         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4152                    SPAPR_MAX_PHBS - 1);
4153         return;
4154     }
4155 
4156     *buid = base_buid + index;
4157     for (i = 0; i < n_dma; ++i) {
4158         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4159     }
4160 
4161     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4162     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4163     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4164 
4165     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4166     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4167 }
4168 
4169 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4170 {
4171     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4172 
4173     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4174 }
4175 
4176 static void spapr_ics_resend(XICSFabric *dev)
4177 {
4178     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4179 
4180     ics_resend(spapr->ics);
4181 }
4182 
4183 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4184 {
4185     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4186 
4187     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4188 }
4189 
4190 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4191                                  Monitor *mon)
4192 {
4193     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4194 
4195     spapr_irq_print_info(spapr, mon);
4196     monitor_printf(mon, "irqchip: %s\n",
4197                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4198 }
4199 
4200 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4201                            uint8_t nvt_blk, uint32_t nvt_idx,
4202                            bool cam_ignore, uint8_t priority,
4203                            uint32_t logic_serv, XiveTCTXMatch *match)
4204 {
4205     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4206     XivePresenter *xptr = XIVE_PRESENTER(spapr->xive);
4207     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4208     int count;
4209 
4210     /* This is a XIVE only operation */
4211     assert(spapr->active_intc == SPAPR_INTC(spapr->xive));
4212 
4213     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4214                            priority, logic_serv, match);
4215     if (count < 0) {
4216         return count;
4217     }
4218 
4219     /*
4220      * When we implement the save and restore of the thread interrupt
4221      * contexts in the enter/exit CPU handlers of the machine and the
4222      * escalations in QEMU, we should be able to handle non dispatched
4223      * vCPUs.
4224      *
4225      * Until this is done, the sPAPR machine should find at least one
4226      * matching context always.
4227      */
4228     if (count == 0) {
4229         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4230                       nvt_blk, nvt_idx);
4231     }
4232 
4233     return count;
4234 }
4235 
4236 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4237 {
4238     return cpu->vcpu_id;
4239 }
4240 
4241 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4242 {
4243     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4244     MachineState *ms = MACHINE(spapr);
4245     int vcpu_id;
4246 
4247     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4248 
4249     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4250         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4251         error_append_hint(errp, "Adjust the number of cpus to %d "
4252                           "or try to raise the number of threads per core\n",
4253                           vcpu_id * ms->smp.threads / spapr->vsmt);
4254         return;
4255     }
4256 
4257     cpu->vcpu_id = vcpu_id;
4258 }
4259 
4260 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4261 {
4262     CPUState *cs;
4263 
4264     CPU_FOREACH(cs) {
4265         PowerPCCPU *cpu = POWERPC_CPU(cs);
4266 
4267         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4268             return cpu;
4269         }
4270     }
4271 
4272     return NULL;
4273 }
4274 
4275 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4276 {
4277     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4278 
4279     /* These are only called by TCG, KVM maintains dispatch state */
4280 
4281     spapr_cpu->prod = false;
4282     if (spapr_cpu->vpa_addr) {
4283         CPUState *cs = CPU(cpu);
4284         uint32_t dispatch;
4285 
4286         dispatch = ldl_be_phys(cs->as,
4287                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4288         dispatch++;
4289         if ((dispatch & 1) != 0) {
4290             qemu_log_mask(LOG_GUEST_ERROR,
4291                           "VPA: incorrect dispatch counter value for "
4292                           "dispatched partition %u, correcting.\n", dispatch);
4293             dispatch++;
4294         }
4295         stl_be_phys(cs->as,
4296                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4297     }
4298 }
4299 
4300 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4301 {
4302     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4303 
4304     if (spapr_cpu->vpa_addr) {
4305         CPUState *cs = CPU(cpu);
4306         uint32_t dispatch;
4307 
4308         dispatch = ldl_be_phys(cs->as,
4309                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4310         dispatch++;
4311         if ((dispatch & 1) != 1) {
4312             qemu_log_mask(LOG_GUEST_ERROR,
4313                           "VPA: incorrect dispatch counter value for "
4314                           "preempted partition %u, correcting.\n", dispatch);
4315             dispatch++;
4316         }
4317         stl_be_phys(cs->as,
4318                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4319     }
4320 }
4321 
4322 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4323 {
4324     MachineClass *mc = MACHINE_CLASS(oc);
4325     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4326     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4327     NMIClass *nc = NMI_CLASS(oc);
4328     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4329     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4330     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4331     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4332     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4333 
4334     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4335     mc->ignore_boot_device_suffixes = true;
4336 
4337     /*
4338      * We set up the default / latest behaviour here.  The class_init
4339      * functions for the specific versioned machine types can override
4340      * these details for backwards compatibility
4341      */
4342     mc->init = spapr_machine_init;
4343     mc->reset = spapr_machine_reset;
4344     mc->block_default_type = IF_SCSI;
4345     mc->max_cpus = 1024;
4346     mc->no_parallel = 1;
4347     mc->default_boot_order = "";
4348     mc->default_ram_size = 512 * MiB;
4349     mc->default_display = "std";
4350     mc->kvm_type = spapr_kvm_type;
4351     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4352     mc->pci_allow_0_address = true;
4353     assert(!mc->get_hotplug_handler);
4354     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4355     hc->pre_plug = spapr_machine_device_pre_plug;
4356     hc->plug = spapr_machine_device_plug;
4357     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4358     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4359     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4360     hc->unplug_request = spapr_machine_device_unplug_request;
4361     hc->unplug = spapr_machine_device_unplug;
4362 
4363     smc->dr_lmb_enabled = true;
4364     smc->update_dt_enabled = true;
4365     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4366     mc->has_hotpluggable_cpus = true;
4367     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4368     fwc->get_dev_path = spapr_get_fw_dev_path;
4369     nc->nmi_monitor_handler = spapr_nmi;
4370     smc->phb_placement = spapr_phb_placement;
4371     vhc->hypercall = emulate_spapr_hypercall;
4372     vhc->hpt_mask = spapr_hpt_mask;
4373     vhc->map_hptes = spapr_map_hptes;
4374     vhc->unmap_hptes = spapr_unmap_hptes;
4375     vhc->hpte_set_c = spapr_hpte_set_c;
4376     vhc->hpte_set_r = spapr_hpte_set_r;
4377     vhc->get_pate = spapr_get_pate;
4378     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4379     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4380     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4381     xic->ics_get = spapr_ics_get;
4382     xic->ics_resend = spapr_ics_resend;
4383     xic->icp_get = spapr_icp_get;
4384     ispc->print_info = spapr_pic_print_info;
4385     /* Force NUMA node memory size to be a multiple of
4386      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4387      * in which LMBs are represented and hot-added
4388      */
4389     mc->numa_mem_align_shift = 28;
4390     mc->numa_mem_supported = true;
4391     mc->auto_enable_numa = true;
4392 
4393     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4394     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4395     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4396     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4397     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4398     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4399     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4400     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4401     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4402     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4403     spapr_caps_add_properties(smc, &error_abort);
4404     smc->irq = &spapr_irq_dual;
4405     smc->dr_phb_enabled = true;
4406     smc->linux_pci_probe = true;
4407     smc->smp_threads_vsmt = true;
4408     smc->nr_xirqs = SPAPR_NR_XIRQS;
4409     xfc->match_nvt = spapr_match_nvt;
4410 }
4411 
4412 static const TypeInfo spapr_machine_info = {
4413     .name          = TYPE_SPAPR_MACHINE,
4414     .parent        = TYPE_MACHINE,
4415     .abstract      = true,
4416     .instance_size = sizeof(SpaprMachineState),
4417     .instance_init = spapr_instance_init,
4418     .instance_finalize = spapr_machine_finalizefn,
4419     .class_size    = sizeof(SpaprMachineClass),
4420     .class_init    = spapr_machine_class_init,
4421     .interfaces = (InterfaceInfo[]) {
4422         { TYPE_FW_PATH_PROVIDER },
4423         { TYPE_NMI },
4424         { TYPE_HOTPLUG_HANDLER },
4425         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4426         { TYPE_XICS_FABRIC },
4427         { TYPE_INTERRUPT_STATS_PROVIDER },
4428         { TYPE_XIVE_FABRIC },
4429         { }
4430     },
4431 };
4432 
4433 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4434     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4435                                                     void *data)      \
4436     {                                                                \
4437         MachineClass *mc = MACHINE_CLASS(oc);                        \
4438         spapr_machine_##suffix##_class_options(mc);                  \
4439         if (latest) {                                                \
4440             mc->alias = "pseries";                                   \
4441             mc->is_default = 1;                                      \
4442         }                                                            \
4443     }                                                                \
4444     static const TypeInfo spapr_machine_##suffix##_info = {          \
4445         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4446         .parent = TYPE_SPAPR_MACHINE,                                \
4447         .class_init = spapr_machine_##suffix##_class_init,           \
4448     };                                                               \
4449     static void spapr_machine_register_##suffix(void)                \
4450     {                                                                \
4451         type_register(&spapr_machine_##suffix##_info);               \
4452     }                                                                \
4453     type_init(spapr_machine_register_##suffix)
4454 
4455 /*
4456  * pseries-5.0
4457  */
4458 static void spapr_machine_5_0_class_options(MachineClass *mc)
4459 {
4460     /* Defaults for the latest behaviour inherited from the base class */
4461 }
4462 
4463 DEFINE_SPAPR_MACHINE(5_0, "5.0", true);
4464 
4465 /*
4466  * pseries-4.2
4467  */
4468 static void spapr_machine_4_2_class_options(MachineClass *mc)
4469 {
4470     spapr_machine_5_0_class_options(mc);
4471     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4472 }
4473 
4474 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4475 
4476 /*
4477  * pseries-4.1
4478  */
4479 static void spapr_machine_4_1_class_options(MachineClass *mc)
4480 {
4481     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4482     static GlobalProperty compat[] = {
4483         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4484         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4485     };
4486 
4487     spapr_machine_4_2_class_options(mc);
4488     smc->linux_pci_probe = false;
4489     smc->smp_threads_vsmt = false;
4490     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4491     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4492 }
4493 
4494 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4495 
4496 /*
4497  * pseries-4.0
4498  */
4499 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4500                               uint64_t *buid, hwaddr *pio,
4501                               hwaddr *mmio32, hwaddr *mmio64,
4502                               unsigned n_dma, uint32_t *liobns,
4503                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4504 {
4505     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4506                         nv2gpa, nv2atsd, errp);
4507     *nv2gpa = 0;
4508     *nv2atsd = 0;
4509 }
4510 
4511 static void spapr_machine_4_0_class_options(MachineClass *mc)
4512 {
4513     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4514 
4515     spapr_machine_4_1_class_options(mc);
4516     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4517     smc->phb_placement = phb_placement_4_0;
4518     smc->irq = &spapr_irq_xics;
4519     smc->pre_4_1_migration = true;
4520 }
4521 
4522 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4523 
4524 /*
4525  * pseries-3.1
4526  */
4527 static void spapr_machine_3_1_class_options(MachineClass *mc)
4528 {
4529     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4530 
4531     spapr_machine_4_0_class_options(mc);
4532     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4533 
4534     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4535     smc->update_dt_enabled = false;
4536     smc->dr_phb_enabled = false;
4537     smc->broken_host_serial_model = true;
4538     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4539     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4540     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4541     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4542 }
4543 
4544 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4545 
4546 /*
4547  * pseries-3.0
4548  */
4549 
4550 static void spapr_machine_3_0_class_options(MachineClass *mc)
4551 {
4552     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4553 
4554     spapr_machine_3_1_class_options(mc);
4555     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4556 
4557     smc->legacy_irq_allocation = true;
4558     smc->nr_xirqs = 0x400;
4559     smc->irq = &spapr_irq_xics_legacy;
4560 }
4561 
4562 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4563 
4564 /*
4565  * pseries-2.12
4566  */
4567 static void spapr_machine_2_12_class_options(MachineClass *mc)
4568 {
4569     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4570     static GlobalProperty compat[] = {
4571         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4572         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4573     };
4574 
4575     spapr_machine_3_0_class_options(mc);
4576     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4577     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4578 
4579     /* We depend on kvm_enabled() to choose a default value for the
4580      * hpt-max-page-size capability. Of course we can't do it here
4581      * because this is too early and the HW accelerator isn't initialzed
4582      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4583      */
4584     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4585 }
4586 
4587 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4588 
4589 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4590 {
4591     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4592 
4593     spapr_machine_2_12_class_options(mc);
4594     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4595     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4596     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4597 }
4598 
4599 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4600 
4601 /*
4602  * pseries-2.11
4603  */
4604 
4605 static void spapr_machine_2_11_class_options(MachineClass *mc)
4606 {
4607     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4608 
4609     spapr_machine_2_12_class_options(mc);
4610     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4611     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4612 }
4613 
4614 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4615 
4616 /*
4617  * pseries-2.10
4618  */
4619 
4620 static void spapr_machine_2_10_class_options(MachineClass *mc)
4621 {
4622     spapr_machine_2_11_class_options(mc);
4623     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4624 }
4625 
4626 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4627 
4628 /*
4629  * pseries-2.9
4630  */
4631 
4632 static void spapr_machine_2_9_class_options(MachineClass *mc)
4633 {
4634     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4635     static GlobalProperty compat[] = {
4636         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4637     };
4638 
4639     spapr_machine_2_10_class_options(mc);
4640     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4641     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4642     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4643     smc->pre_2_10_has_unused_icps = true;
4644     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4645 }
4646 
4647 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4648 
4649 /*
4650  * pseries-2.8
4651  */
4652 
4653 static void spapr_machine_2_8_class_options(MachineClass *mc)
4654 {
4655     static GlobalProperty compat[] = {
4656         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4657     };
4658 
4659     spapr_machine_2_9_class_options(mc);
4660     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4661     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4662     mc->numa_mem_align_shift = 23;
4663 }
4664 
4665 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4666 
4667 /*
4668  * pseries-2.7
4669  */
4670 
4671 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4672                               uint64_t *buid, hwaddr *pio,
4673                               hwaddr *mmio32, hwaddr *mmio64,
4674                               unsigned n_dma, uint32_t *liobns,
4675                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4676 {
4677     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4678     const uint64_t base_buid = 0x800000020000000ULL;
4679     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4680     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4681     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4682     const uint32_t max_index = 255;
4683     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4684 
4685     uint64_t ram_top = MACHINE(spapr)->ram_size;
4686     hwaddr phb0_base, phb_base;
4687     int i;
4688 
4689     /* Do we have device memory? */
4690     if (MACHINE(spapr)->maxram_size > ram_top) {
4691         /* Can't just use maxram_size, because there may be an
4692          * alignment gap between normal and device memory regions
4693          */
4694         ram_top = MACHINE(spapr)->device_memory->base +
4695             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4696     }
4697 
4698     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4699 
4700     if (index > max_index) {
4701         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4702                    max_index);
4703         return;
4704     }
4705 
4706     *buid = base_buid + index;
4707     for (i = 0; i < n_dma; ++i) {
4708         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4709     }
4710 
4711     phb_base = phb0_base + index * phb_spacing;
4712     *pio = phb_base + pio_offset;
4713     *mmio32 = phb_base + mmio_offset;
4714     /*
4715      * We don't set the 64-bit MMIO window, relying on the PHB's
4716      * fallback behaviour of automatically splitting a large "32-bit"
4717      * window into contiguous 32-bit and 64-bit windows
4718      */
4719 
4720     *nv2gpa = 0;
4721     *nv2atsd = 0;
4722 }
4723 
4724 static void spapr_machine_2_7_class_options(MachineClass *mc)
4725 {
4726     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4727     static GlobalProperty compat[] = {
4728         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4729         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4730         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4731         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4732     };
4733 
4734     spapr_machine_2_8_class_options(mc);
4735     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4736     mc->default_machine_opts = "modern-hotplug-events=off";
4737     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4738     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4739     smc->phb_placement = phb_placement_2_7;
4740 }
4741 
4742 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4743 
4744 /*
4745  * pseries-2.6
4746  */
4747 
4748 static void spapr_machine_2_6_class_options(MachineClass *mc)
4749 {
4750     static GlobalProperty compat[] = {
4751         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4752     };
4753 
4754     spapr_machine_2_7_class_options(mc);
4755     mc->has_hotpluggable_cpus = false;
4756     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4757     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4758 }
4759 
4760 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4761 
4762 /*
4763  * pseries-2.5
4764  */
4765 
4766 static void spapr_machine_2_5_class_options(MachineClass *mc)
4767 {
4768     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4769     static GlobalProperty compat[] = {
4770         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4771     };
4772 
4773     spapr_machine_2_6_class_options(mc);
4774     smc->use_ohci_by_default = true;
4775     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4776     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4777 }
4778 
4779 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4780 
4781 /*
4782  * pseries-2.4
4783  */
4784 
4785 static void spapr_machine_2_4_class_options(MachineClass *mc)
4786 {
4787     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4788 
4789     spapr_machine_2_5_class_options(mc);
4790     smc->dr_lmb_enabled = false;
4791     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4792 }
4793 
4794 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4795 
4796 /*
4797  * pseries-2.3
4798  */
4799 
4800 static void spapr_machine_2_3_class_options(MachineClass *mc)
4801 {
4802     static GlobalProperty compat[] = {
4803         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4804     };
4805     spapr_machine_2_4_class_options(mc);
4806     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4807     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4808 }
4809 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4810 
4811 /*
4812  * pseries-2.2
4813  */
4814 
4815 static void spapr_machine_2_2_class_options(MachineClass *mc)
4816 {
4817     static GlobalProperty compat[] = {
4818         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4819     };
4820 
4821     spapr_machine_2_3_class_options(mc);
4822     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4823     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4824     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4825 }
4826 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4827 
4828 /*
4829  * pseries-2.1
4830  */
4831 
4832 static void spapr_machine_2_1_class_options(MachineClass *mc)
4833 {
4834     spapr_machine_2_2_class_options(mc);
4835     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4836 }
4837 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4838 
4839 static void spapr_machine_register_types(void)
4840 {
4841     type_register_static(&spapr_machine_info);
4842 }
4843 
4844 type_init(spapr_machine_register_types)
4845