xref: /openbmc/qemu/hw/ppc/spapr.c (revision 116694c3)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "hw/hw.h"
30 #include "hw/fw-path-provider.h"
31 #include "elf.h"
32 #include "net/net.h"
33 #include "sysemu/block-backend.h"
34 #include "sysemu/cpus.h"
35 #include "sysemu/kvm.h"
36 #include "kvm_ppc.h"
37 #include "mmu-hash64.h"
38 #include "qom/cpu.h"
39 
40 #include "hw/boards.h"
41 #include "hw/ppc/ppc.h"
42 #include "hw/loader.h"
43 
44 #include "hw/ppc/spapr.h"
45 #include "hw/ppc/spapr_vio.h"
46 #include "hw/pci-host/spapr.h"
47 #include "hw/ppc/xics.h"
48 #include "hw/pci/msi.h"
49 
50 #include "hw/pci/pci.h"
51 #include "hw/scsi/scsi.h"
52 #include "hw/virtio/virtio-scsi.h"
53 
54 #include "exec/address-spaces.h"
55 #include "hw/usb.h"
56 #include "qemu/config-file.h"
57 #include "qemu/error-report.h"
58 #include "trace.h"
59 #include "hw/nmi.h"
60 
61 #include "hw/compat.h"
62 
63 #include <libfdt.h>
64 
65 /* SLOF memory layout:
66  *
67  * SLOF raw image loaded at 0, copies its romfs right below the flat
68  * device-tree, then position SLOF itself 31M below that
69  *
70  * So we set FW_OVERHEAD to 40MB which should account for all of that
71  * and more
72  *
73  * We load our kernel at 4M, leaving space for SLOF initial image
74  */
75 #define FDT_MAX_SIZE            0x40000
76 #define RTAS_MAX_SIZE           0x10000
77 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
78 #define FW_MAX_SIZE             0x400000
79 #define FW_FILE_NAME            "slof.bin"
80 #define FW_OVERHEAD             0x2800000
81 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
82 
83 #define MIN_RMA_SLOF            128UL
84 
85 #define TIMEBASE_FREQ           512000000ULL
86 
87 #define MAX_CPUS                255
88 
89 #define PHANDLE_XICP            0x00001111
90 
91 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
92 
93 typedef struct sPAPRMachineState sPAPRMachineState;
94 
95 #define TYPE_SPAPR_MACHINE      "spapr-machine"
96 #define SPAPR_MACHINE(obj) \
97     OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
98 
99 /**
100  * sPAPRMachineState:
101  */
102 struct sPAPRMachineState {
103     /*< private >*/
104     MachineState parent_obj;
105 
106     /*< public >*/
107     char *kvm_type;
108 };
109 
110 sPAPREnvironment *spapr;
111 
112 static XICSState *try_create_xics(const char *type, int nr_servers,
113                                   int nr_irqs, Error **errp)
114 {
115     Error *err = NULL;
116     DeviceState *dev;
117 
118     dev = qdev_create(NULL, type);
119     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
120     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
121     object_property_set_bool(OBJECT(dev), true, "realized", &err);
122     if (err) {
123         error_propagate(errp, err);
124         object_unparent(OBJECT(dev));
125         return NULL;
126     }
127     return XICS_COMMON(dev);
128 }
129 
130 static XICSState *xics_system_init(MachineState *machine,
131                                    int nr_servers, int nr_irqs)
132 {
133     XICSState *icp = NULL;
134 
135     if (kvm_enabled()) {
136         Error *err = NULL;
137 
138         if (machine_kernel_irqchip_allowed(machine)) {
139             icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
140         }
141         if (machine_kernel_irqchip_required(machine) && !icp) {
142             error_report("kernel_irqchip requested but unavailable: %s",
143                          error_get_pretty(err));
144         }
145     }
146 
147     if (!icp) {
148         icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
149     }
150 
151     return icp;
152 }
153 
154 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
155                                   int smt_threads)
156 {
157     int i, ret = 0;
158     uint32_t servers_prop[smt_threads];
159     uint32_t gservers_prop[smt_threads * 2];
160     int index = ppc_get_vcpu_dt_id(cpu);
161 
162     if (cpu->cpu_version) {
163         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
164         if (ret < 0) {
165             return ret;
166         }
167     }
168 
169     /* Build interrupt servers and gservers properties */
170     for (i = 0; i < smt_threads; i++) {
171         servers_prop[i] = cpu_to_be32(index + i);
172         /* Hack, direct the group queues back to cpu 0 */
173         gservers_prop[i*2] = cpu_to_be32(index + i);
174         gservers_prop[i*2 + 1] = 0;
175     }
176     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
177                       servers_prop, sizeof(servers_prop));
178     if (ret < 0) {
179         return ret;
180     }
181     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
182                       gservers_prop, sizeof(gservers_prop));
183 
184     return ret;
185 }
186 
187 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
188 {
189     int ret = 0, offset, cpus_offset;
190     CPUState *cs;
191     char cpu_model[32];
192     int smt = kvmppc_smt_threads();
193     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
194 
195     CPU_FOREACH(cs) {
196         PowerPCCPU *cpu = POWERPC_CPU(cs);
197         DeviceClass *dc = DEVICE_GET_CLASS(cs);
198         int index = ppc_get_vcpu_dt_id(cpu);
199         uint32_t associativity[] = {cpu_to_be32(0x5),
200                                     cpu_to_be32(0x0),
201                                     cpu_to_be32(0x0),
202                                     cpu_to_be32(0x0),
203                                     cpu_to_be32(cs->numa_node),
204                                     cpu_to_be32(index)};
205 
206         if ((index % smt) != 0) {
207             continue;
208         }
209 
210         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
211 
212         cpus_offset = fdt_path_offset(fdt, "/cpus");
213         if (cpus_offset < 0) {
214             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
215                                           "cpus");
216             if (cpus_offset < 0) {
217                 return cpus_offset;
218             }
219         }
220         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
221         if (offset < 0) {
222             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
223             if (offset < 0) {
224                 return offset;
225             }
226         }
227 
228         if (nb_numa_nodes > 1) {
229             ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
230                               sizeof(associativity));
231             if (ret < 0) {
232                 return ret;
233             }
234         }
235 
236         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
237                           pft_size_prop, sizeof(pft_size_prop));
238         if (ret < 0) {
239             return ret;
240         }
241 
242         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
243                                      ppc_get_compat_smt_threads(cpu));
244         if (ret < 0) {
245             return ret;
246         }
247     }
248     return ret;
249 }
250 
251 
252 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
253                                      size_t maxsize)
254 {
255     size_t maxcells = maxsize / sizeof(uint32_t);
256     int i, j, count;
257     uint32_t *p = prop;
258 
259     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
260         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
261 
262         if (!sps->page_shift) {
263             break;
264         }
265         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
266             if (sps->enc[count].page_shift == 0) {
267                 break;
268             }
269         }
270         if ((p - prop) >= (maxcells - 3 - count * 2)) {
271             break;
272         }
273         *(p++) = cpu_to_be32(sps->page_shift);
274         *(p++) = cpu_to_be32(sps->slb_enc);
275         *(p++) = cpu_to_be32(count);
276         for (j = 0; j < count; j++) {
277             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
278             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
279         }
280     }
281 
282     return (p - prop) * sizeof(uint32_t);
283 }
284 
285 static hwaddr spapr_node0_size(void)
286 {
287     if (nb_numa_nodes) {
288         int i;
289         for (i = 0; i < nb_numa_nodes; ++i) {
290             if (numa_info[i].node_mem) {
291                 return MIN(pow2floor(numa_info[i].node_mem), ram_size);
292             }
293         }
294     }
295     return ram_size;
296 }
297 
298 #define _FDT(exp) \
299     do { \
300         int ret = (exp);                                           \
301         if (ret < 0) {                                             \
302             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
303                     #exp, fdt_strerror(ret));                      \
304             exit(1);                                               \
305         }                                                          \
306     } while (0)
307 
308 static void add_str(GString *s, const gchar *s1)
309 {
310     g_string_append_len(s, s1, strlen(s1) + 1);
311 }
312 
313 static void *spapr_create_fdt_skel(hwaddr initrd_base,
314                                    hwaddr initrd_size,
315                                    hwaddr kernel_size,
316                                    bool little_endian,
317                                    const char *kernel_cmdline,
318                                    uint32_t epow_irq)
319 {
320     void *fdt;
321     CPUState *cs;
322     uint32_t start_prop = cpu_to_be32(initrd_base);
323     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
324     GString *hypertas = g_string_sized_new(256);
325     GString *qemu_hypertas = g_string_sized_new(256);
326     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
327     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
328     int smt = kvmppc_smt_threads();
329     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
330     QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
331     unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
332     uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
333     char *buf;
334 
335     add_str(hypertas, "hcall-pft");
336     add_str(hypertas, "hcall-term");
337     add_str(hypertas, "hcall-dabr");
338     add_str(hypertas, "hcall-interrupt");
339     add_str(hypertas, "hcall-tce");
340     add_str(hypertas, "hcall-vio");
341     add_str(hypertas, "hcall-splpar");
342     add_str(hypertas, "hcall-bulk");
343     add_str(hypertas, "hcall-set-mode");
344     add_str(qemu_hypertas, "hcall-memop1");
345 
346     fdt = g_malloc0(FDT_MAX_SIZE);
347     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
348 
349     if (kernel_size) {
350         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
351     }
352     if (initrd_size) {
353         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
354     }
355     _FDT((fdt_finish_reservemap(fdt)));
356 
357     /* Root node */
358     _FDT((fdt_begin_node(fdt, "")));
359     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
360     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
361     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
362 
363     /*
364      * Add info to guest to indentify which host is it being run on
365      * and what is the uuid of the guest
366      */
367     if (kvmppc_get_host_model(&buf)) {
368         _FDT((fdt_property_string(fdt, "host-model", buf)));
369         g_free(buf);
370     }
371     if (kvmppc_get_host_serial(&buf)) {
372         _FDT((fdt_property_string(fdt, "host-serial", buf)));
373         g_free(buf);
374     }
375 
376     buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
377                           qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
378                           qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
379                           qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
380                           qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
381                           qemu_uuid[14], qemu_uuid[15]);
382 
383     _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
384     g_free(buf);
385 
386     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
387     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
388 
389     /* /chosen */
390     _FDT((fdt_begin_node(fdt, "chosen")));
391 
392     /* Set Form1_affinity */
393     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
394 
395     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
396     _FDT((fdt_property(fdt, "linux,initrd-start",
397                        &start_prop, sizeof(start_prop))));
398     _FDT((fdt_property(fdt, "linux,initrd-end",
399                        &end_prop, sizeof(end_prop))));
400     if (kernel_size) {
401         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
402                               cpu_to_be64(kernel_size) };
403 
404         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
405         if (little_endian) {
406             _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
407         }
408     }
409     if (boot_menu) {
410         _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
411     }
412     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
413     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
414     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
415 
416     _FDT((fdt_end_node(fdt)));
417 
418     /* cpus */
419     _FDT((fdt_begin_node(fdt, "cpus")));
420 
421     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
422     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
423 
424     CPU_FOREACH(cs) {
425         PowerPCCPU *cpu = POWERPC_CPU(cs);
426         CPUPPCState *env = &cpu->env;
427         DeviceClass *dc = DEVICE_GET_CLASS(cs);
428         PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
429         int index = ppc_get_vcpu_dt_id(cpu);
430         char *nodename;
431         uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
432                            0xffffffff, 0xffffffff};
433         uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
434         uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
435         uint32_t page_sizes_prop[64];
436         size_t page_sizes_prop_size;
437 
438         if ((index % smt) != 0) {
439             continue;
440         }
441 
442         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
443 
444         _FDT((fdt_begin_node(fdt, nodename)));
445 
446         g_free(nodename);
447 
448         _FDT((fdt_property_cell(fdt, "reg", index)));
449         _FDT((fdt_property_string(fdt, "device_type", "cpu")));
450 
451         _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
452         _FDT((fdt_property_cell(fdt, "d-cache-block-size",
453                                 env->dcache_line_size)));
454         _FDT((fdt_property_cell(fdt, "d-cache-line-size",
455                                 env->dcache_line_size)));
456         _FDT((fdt_property_cell(fdt, "i-cache-block-size",
457                                 env->icache_line_size)));
458         _FDT((fdt_property_cell(fdt, "i-cache-line-size",
459                                 env->icache_line_size)));
460 
461         if (pcc->l1_dcache_size) {
462             _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
463         } else {
464             fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
465         }
466         if (pcc->l1_icache_size) {
467             _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
468         } else {
469             fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
470         }
471 
472         _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
473         _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
474         _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
475         _FDT((fdt_property_string(fdt, "status", "okay")));
476         _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
477 
478         if (env->spr_cb[SPR_PURR].oea_read) {
479             _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
480         }
481 
482         if (env->mmu_model & POWERPC_MMU_1TSEG) {
483             _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
484                                segs, sizeof(segs))));
485         }
486 
487         /* Advertise VMX/VSX (vector extensions) if available
488          *   0 / no property == no vector extensions
489          *   1               == VMX / Altivec available
490          *   2               == VSX available */
491         if (env->insns_flags & PPC_ALTIVEC) {
492             uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
493 
494             _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
495         }
496 
497         /* Advertise DFP (Decimal Floating Point) if available
498          *   0 / no property == no DFP
499          *   1               == DFP available */
500         if (env->insns_flags2 & PPC2_DFP) {
501             _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
502         }
503 
504         page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
505                                                       sizeof(page_sizes_prop));
506         if (page_sizes_prop_size) {
507             _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
508                                page_sizes_prop, page_sizes_prop_size)));
509         }
510 
511         _FDT((fdt_property_cell(fdt, "ibm,chip-id",
512                                 cs->cpu_index / cpus_per_socket)));
513 
514         _FDT((fdt_end_node(fdt)));
515     }
516 
517     _FDT((fdt_end_node(fdt)));
518 
519     /* RTAS */
520     _FDT((fdt_begin_node(fdt, "rtas")));
521 
522     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
523         add_str(hypertas, "hcall-multi-tce");
524     }
525     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
526                        hypertas->len)));
527     g_string_free(hypertas, TRUE);
528     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
529                        qemu_hypertas->len)));
530     g_string_free(qemu_hypertas, TRUE);
531 
532     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
533         refpoints, sizeof(refpoints))));
534 
535     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
536 
537     /*
538      * According to PAPR, rtas ibm,os-term does not guarantee a return
539      * back to the guest cpu.
540      *
541      * While an additional ibm,extended-os-term property indicates that
542      * rtas call return will always occur. Set this property.
543      */
544     _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
545 
546     _FDT((fdt_end_node(fdt)));
547 
548     /* interrupt controller */
549     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
550 
551     _FDT((fdt_property_string(fdt, "device_type",
552                               "PowerPC-External-Interrupt-Presentation")));
553     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
554     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
555     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
556                        interrupt_server_ranges_prop,
557                        sizeof(interrupt_server_ranges_prop))));
558     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
559     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
560     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
561 
562     _FDT((fdt_end_node(fdt)));
563 
564     /* vdevice */
565     _FDT((fdt_begin_node(fdt, "vdevice")));
566 
567     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
568     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
569     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
570     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
571     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
572     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
573 
574     _FDT((fdt_end_node(fdt)));
575 
576     /* event-sources */
577     spapr_events_fdt_skel(fdt, epow_irq);
578 
579     /* /hypervisor node */
580     if (kvm_enabled()) {
581         uint8_t hypercall[16];
582 
583         /* indicate KVM hypercall interface */
584         _FDT((fdt_begin_node(fdt, "hypervisor")));
585         _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
586         if (kvmppc_has_cap_fixup_hcalls()) {
587             /*
588              * Older KVM versions with older guest kernels were broken with the
589              * magic page, don't allow the guest to map it.
590              */
591             kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
592                                  sizeof(hypercall));
593             _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
594                               sizeof(hypercall))));
595         }
596         _FDT((fdt_end_node(fdt)));
597     }
598 
599     _FDT((fdt_end_node(fdt))); /* close root node */
600     _FDT((fdt_finish(fdt)));
601 
602     return fdt;
603 }
604 
605 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
606 {
607     void *fdt, *fdt_skel;
608     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
609 
610     size -= sizeof(hdr);
611 
612     /* Create sceleton */
613     fdt_skel = g_malloc0(size);
614     _FDT((fdt_create(fdt_skel, size)));
615     _FDT((fdt_begin_node(fdt_skel, "")));
616     _FDT((fdt_end_node(fdt_skel)));
617     _FDT((fdt_finish(fdt_skel)));
618     fdt = g_malloc0(size);
619     _FDT((fdt_open_into(fdt_skel, fdt, size)));
620     g_free(fdt_skel);
621 
622     /* Fix skeleton up */
623     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
624 
625     /* Pack resulting tree */
626     _FDT((fdt_pack(fdt)));
627 
628     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
629         trace_spapr_cas_failed(size);
630         return -1;
631     }
632 
633     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
634     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
635     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
636     g_free(fdt);
637 
638     return 0;
639 }
640 
641 static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
642                                        hwaddr size)
643 {
644     uint32_t associativity[] = {
645         cpu_to_be32(0x4), /* length */
646         cpu_to_be32(0x0), cpu_to_be32(0x0),
647         cpu_to_be32(0x0), cpu_to_be32(nodeid)
648     };
649     char mem_name[32];
650     uint64_t mem_reg_property[2];
651     int off;
652 
653     mem_reg_property[0] = cpu_to_be64(start);
654     mem_reg_property[1] = cpu_to_be64(size);
655 
656     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
657     off = fdt_add_subnode(fdt, 0, mem_name);
658     _FDT(off);
659     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
660     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
661                       sizeof(mem_reg_property))));
662     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
663                       sizeof(associativity))));
664 }
665 
666 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
667 {
668     hwaddr mem_start, node_size;
669     int i, nb_nodes = nb_numa_nodes;
670     NodeInfo *nodes = numa_info;
671     NodeInfo ramnode;
672 
673     /* No NUMA nodes, assume there is just one node with whole RAM */
674     if (!nb_numa_nodes) {
675         nb_nodes = 1;
676         ramnode.node_mem = ram_size;
677         nodes = &ramnode;
678     }
679 
680     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
681         if (!nodes[i].node_mem) {
682             continue;
683         }
684         if (mem_start >= ram_size) {
685             node_size = 0;
686         } else {
687             node_size = nodes[i].node_mem;
688             if (node_size > ram_size - mem_start) {
689                 node_size = ram_size - mem_start;
690             }
691         }
692         if (!mem_start) {
693             /* ppc_spapr_init() checks for rma_size <= node0_size already */
694             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
695             mem_start += spapr->rma_size;
696             node_size -= spapr->rma_size;
697         }
698         for ( ; node_size; ) {
699             hwaddr sizetmp = pow2floor(node_size);
700 
701             /* mem_start != 0 here */
702             if (ctzl(mem_start) < ctzl(sizetmp)) {
703                 sizetmp = 1ULL << ctzl(mem_start);
704             }
705 
706             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
707             node_size -= sizetmp;
708             mem_start += sizetmp;
709         }
710     }
711 
712     return 0;
713 }
714 
715 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
716                                hwaddr fdt_addr,
717                                hwaddr rtas_addr,
718                                hwaddr rtas_size)
719 {
720     MachineState *machine = MACHINE(qdev_get_machine());
721     const char *boot_device = machine->boot_order;
722     int ret, i;
723     size_t cb = 0;
724     char *bootlist;
725     void *fdt;
726     sPAPRPHBState *phb;
727 
728     fdt = g_malloc(FDT_MAX_SIZE);
729 
730     /* open out the base tree into a temp buffer for the final tweaks */
731     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
732 
733     ret = spapr_populate_memory(spapr, fdt);
734     if (ret < 0) {
735         fprintf(stderr, "couldn't setup memory nodes in fdt\n");
736         exit(1);
737     }
738 
739     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
740     if (ret < 0) {
741         fprintf(stderr, "couldn't setup vio devices in fdt\n");
742         exit(1);
743     }
744 
745     QLIST_FOREACH(phb, &spapr->phbs, list) {
746         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
747     }
748 
749     if (ret < 0) {
750         fprintf(stderr, "couldn't setup PCI devices in fdt\n");
751         exit(1);
752     }
753 
754     /* RTAS */
755     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
756     if (ret < 0) {
757         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
758     }
759 
760     /* Advertise NUMA via ibm,associativity */
761     ret = spapr_fixup_cpu_dt(fdt, spapr);
762     if (ret < 0) {
763         fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
764     }
765 
766     bootlist = get_boot_devices_list(&cb, true);
767     if (cb && bootlist) {
768         int offset = fdt_path_offset(fdt, "/chosen");
769         if (offset < 0) {
770             exit(1);
771         }
772         for (i = 0; i < cb; i++) {
773             if (bootlist[i] == '\n') {
774                 bootlist[i] = ' ';
775             }
776 
777         }
778         ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
779     }
780 
781     if (boot_device && strlen(boot_device)) {
782         int offset = fdt_path_offset(fdt, "/chosen");
783 
784         if (offset < 0) {
785             exit(1);
786         }
787         fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
788     }
789 
790     if (!spapr->has_graphics) {
791         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
792     }
793 
794     _FDT((fdt_pack(fdt)));
795 
796     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
797         hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
798                  fdt_totalsize(fdt), FDT_MAX_SIZE);
799         exit(1);
800     }
801 
802     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
803 
804     g_free(bootlist);
805     g_free(fdt);
806 }
807 
808 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
809 {
810     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
811 }
812 
813 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
814 {
815     CPUPPCState *env = &cpu->env;
816 
817     if (msr_pr) {
818         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
819         env->gpr[3] = H_PRIVILEGE;
820     } else {
821         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
822     }
823 }
824 
825 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
826 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
827 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
828 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
829 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
830 
831 static void spapr_reset_htab(sPAPREnvironment *spapr)
832 {
833     long shift;
834     int index;
835 
836     /* allocate hash page table.  For now we always make this 16mb,
837      * later we should probably make it scale to the size of guest
838      * RAM */
839 
840     shift = kvmppc_reset_htab(spapr->htab_shift);
841 
842     if (shift > 0) {
843         /* Kernel handles htab, we don't need to allocate one */
844         spapr->htab_shift = shift;
845         kvmppc_kern_htab = true;
846 
847         /* Tell readers to update their file descriptor */
848         if (spapr->htab_fd >= 0) {
849             spapr->htab_fd_stale = true;
850         }
851     } else {
852         if (!spapr->htab) {
853             /* Allocate an htab if we don't yet have one */
854             spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
855         }
856 
857         /* And clear it */
858         memset(spapr->htab, 0, HTAB_SIZE(spapr));
859 
860         for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
861             DIRTY_HPTE(HPTE(spapr->htab, index));
862         }
863     }
864 
865     /* Update the RMA size if necessary */
866     if (spapr->vrma_adjust) {
867         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
868                                           spapr->htab_shift);
869     }
870 }
871 
872 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
873 {
874     bool matched = false;
875 
876     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
877         matched = true;
878     }
879 
880     if (!matched) {
881         error_report("Device %s is not supported by this machine yet.",
882                      qdev_fw_name(DEVICE(sbdev)));
883         exit(1);
884     }
885 
886     return 0;
887 }
888 
889 /*
890  * A guest reset will cause spapr->htab_fd to become stale if being used.
891  * Reopen the file descriptor to make sure the whole HTAB is properly read.
892  */
893 static int spapr_check_htab_fd(sPAPREnvironment *spapr)
894 {
895     int rc = 0;
896 
897     if (spapr->htab_fd_stale) {
898         close(spapr->htab_fd);
899         spapr->htab_fd = kvmppc_get_htab_fd(false);
900         if (spapr->htab_fd < 0) {
901             error_report("Unable to open fd for reading hash table from KVM: "
902                     "%s", strerror(errno));
903             rc = -1;
904         }
905         spapr->htab_fd_stale = false;
906     }
907 
908     return rc;
909 }
910 
911 static void ppc_spapr_reset(void)
912 {
913     PowerPCCPU *first_ppc_cpu;
914     uint32_t rtas_limit;
915 
916     /* Check for unknown sysbus devices */
917     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
918 
919     /* Reset the hash table & recalc the RMA */
920     spapr_reset_htab(spapr);
921 
922     qemu_devices_reset();
923 
924     /*
925      * We place the device tree and RTAS just below either the top of the RMA,
926      * or just below 2GB, whichever is lowere, so that it can be
927      * processed with 32-bit real mode code if necessary
928      */
929     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
930     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
931     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
932 
933     /* Load the fdt */
934     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
935                        spapr->rtas_size);
936 
937     /* Copy RTAS over */
938     cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
939                               spapr->rtas_size);
940 
941     /* Set up the entry state */
942     first_ppc_cpu = POWERPC_CPU(first_cpu);
943     first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
944     first_ppc_cpu->env.gpr[5] = 0;
945     first_cpu->halted = 0;
946     first_ppc_cpu->env.nip = spapr->entry_point;
947 
948 }
949 
950 static void spapr_cpu_reset(void *opaque)
951 {
952     PowerPCCPU *cpu = opaque;
953     CPUState *cs = CPU(cpu);
954     CPUPPCState *env = &cpu->env;
955 
956     cpu_reset(cs);
957 
958     /* All CPUs start halted.  CPU0 is unhalted from the machine level
959      * reset code and the rest are explicitly started up by the guest
960      * using an RTAS call */
961     cs->halted = 1;
962 
963     env->spr[SPR_HIOR] = 0;
964 
965     env->external_htab = (uint8_t *)spapr->htab;
966     if (kvm_enabled() && !env->external_htab) {
967         /*
968          * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
969          * functions do the right thing.
970          */
971         env->external_htab = (void *)1;
972     }
973     env->htab_base = -1;
974     /*
975      * htab_mask is the mask used to normalize hash value to PTEG index.
976      * htab_shift is log2 of hash table size.
977      * We have 8 hpte per group, and each hpte is 16 bytes.
978      * ie have 128 bytes per hpte entry.
979      */
980     env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
981     env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
982         (spapr->htab_shift - 18);
983 }
984 
985 static void spapr_create_nvram(sPAPREnvironment *spapr)
986 {
987     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
988     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
989 
990     if (dinfo) {
991         qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
992     }
993 
994     qdev_init_nofail(dev);
995 
996     spapr->nvram = (struct sPAPRNVRAM *)dev;
997 }
998 
999 static void spapr_rtc_create(sPAPREnvironment *spapr)
1000 {
1001     DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1002 
1003     qdev_init_nofail(dev);
1004     spapr->rtc = dev;
1005 
1006     object_property_add_alias(qdev_get_machine(), "rtc-time",
1007                               OBJECT(spapr->rtc), "date", NULL);
1008 }
1009 
1010 /* Returns whether we want to use VGA or not */
1011 static int spapr_vga_init(PCIBus *pci_bus)
1012 {
1013     switch (vga_interface_type) {
1014     case VGA_NONE:
1015         return false;
1016     case VGA_DEVICE:
1017         return true;
1018     case VGA_STD:
1019         return pci_vga_init(pci_bus) != NULL;
1020     default:
1021         fprintf(stderr, "This vga model is not supported,"
1022                 "currently it only supports -vga std\n");
1023         exit(0);
1024     }
1025 }
1026 
1027 static int spapr_post_load(void *opaque, int version_id)
1028 {
1029     sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
1030     int err = 0;
1031 
1032     /* In earlier versions, there was no separate qdev for the PAPR
1033      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1034      * So when migrating from those versions, poke the incoming offset
1035      * value into the RTC device */
1036     if (version_id < 3) {
1037         err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1038     }
1039 
1040     return err;
1041 }
1042 
1043 static bool version_before_3(void *opaque, int version_id)
1044 {
1045     return version_id < 3;
1046 }
1047 
1048 static const VMStateDescription vmstate_spapr = {
1049     .name = "spapr",
1050     .version_id = 3,
1051     .minimum_version_id = 1,
1052     .post_load = spapr_post_load,
1053     .fields = (VMStateField[]) {
1054         /* used to be @next_irq */
1055         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1056 
1057         /* RTC offset */
1058         VMSTATE_UINT64_TEST(rtc_offset, sPAPREnvironment, version_before_3),
1059 
1060         VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
1061         VMSTATE_END_OF_LIST()
1062     },
1063 };
1064 
1065 static int htab_save_setup(QEMUFile *f, void *opaque)
1066 {
1067     sPAPREnvironment *spapr = opaque;
1068 
1069     /* "Iteration" header */
1070     qemu_put_be32(f, spapr->htab_shift);
1071 
1072     if (spapr->htab) {
1073         spapr->htab_save_index = 0;
1074         spapr->htab_first_pass = true;
1075     } else {
1076         assert(kvm_enabled());
1077 
1078         spapr->htab_fd = kvmppc_get_htab_fd(false);
1079         spapr->htab_fd_stale = false;
1080         if (spapr->htab_fd < 0) {
1081             fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1082                     strerror(errno));
1083             return -1;
1084         }
1085     }
1086 
1087 
1088     return 0;
1089 }
1090 
1091 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
1092                                  int64_t max_ns)
1093 {
1094     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1095     int index = spapr->htab_save_index;
1096     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1097 
1098     assert(spapr->htab_first_pass);
1099 
1100     do {
1101         int chunkstart;
1102 
1103         /* Consume invalid HPTEs */
1104         while ((index < htabslots)
1105                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1106             index++;
1107             CLEAN_HPTE(HPTE(spapr->htab, index));
1108         }
1109 
1110         /* Consume valid HPTEs */
1111         chunkstart = index;
1112         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1113                && HPTE_VALID(HPTE(spapr->htab, index))) {
1114             index++;
1115             CLEAN_HPTE(HPTE(spapr->htab, index));
1116         }
1117 
1118         if (index > chunkstart) {
1119             int n_valid = index - chunkstart;
1120 
1121             qemu_put_be32(f, chunkstart);
1122             qemu_put_be16(f, n_valid);
1123             qemu_put_be16(f, 0);
1124             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1125                             HASH_PTE_SIZE_64 * n_valid);
1126 
1127             if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1128                 break;
1129             }
1130         }
1131     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1132 
1133     if (index >= htabslots) {
1134         assert(index == htabslots);
1135         index = 0;
1136         spapr->htab_first_pass = false;
1137     }
1138     spapr->htab_save_index = index;
1139 }
1140 
1141 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
1142                                 int64_t max_ns)
1143 {
1144     bool final = max_ns < 0;
1145     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1146     int examined = 0, sent = 0;
1147     int index = spapr->htab_save_index;
1148     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1149 
1150     assert(!spapr->htab_first_pass);
1151 
1152     do {
1153         int chunkstart, invalidstart;
1154 
1155         /* Consume non-dirty HPTEs */
1156         while ((index < htabslots)
1157                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1158             index++;
1159             examined++;
1160         }
1161 
1162         chunkstart = index;
1163         /* Consume valid dirty HPTEs */
1164         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1165                && HPTE_DIRTY(HPTE(spapr->htab, index))
1166                && HPTE_VALID(HPTE(spapr->htab, index))) {
1167             CLEAN_HPTE(HPTE(spapr->htab, index));
1168             index++;
1169             examined++;
1170         }
1171 
1172         invalidstart = index;
1173         /* Consume invalid dirty HPTEs */
1174         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1175                && HPTE_DIRTY(HPTE(spapr->htab, index))
1176                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1177             CLEAN_HPTE(HPTE(spapr->htab, index));
1178             index++;
1179             examined++;
1180         }
1181 
1182         if (index > chunkstart) {
1183             int n_valid = invalidstart - chunkstart;
1184             int n_invalid = index - invalidstart;
1185 
1186             qemu_put_be32(f, chunkstart);
1187             qemu_put_be16(f, n_valid);
1188             qemu_put_be16(f, n_invalid);
1189             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1190                             HASH_PTE_SIZE_64 * n_valid);
1191             sent += index - chunkstart;
1192 
1193             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1194                 break;
1195             }
1196         }
1197 
1198         if (examined >= htabslots) {
1199             break;
1200         }
1201 
1202         if (index >= htabslots) {
1203             assert(index == htabslots);
1204             index = 0;
1205         }
1206     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1207 
1208     if (index >= htabslots) {
1209         assert(index == htabslots);
1210         index = 0;
1211     }
1212 
1213     spapr->htab_save_index = index;
1214 
1215     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1216 }
1217 
1218 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1219 #define MAX_KVM_BUF_SIZE    2048
1220 
1221 static int htab_save_iterate(QEMUFile *f, void *opaque)
1222 {
1223     sPAPREnvironment *spapr = opaque;
1224     int rc = 0;
1225 
1226     /* Iteration header */
1227     qemu_put_be32(f, 0);
1228 
1229     if (!spapr->htab) {
1230         assert(kvm_enabled());
1231 
1232         rc = spapr_check_htab_fd(spapr);
1233         if (rc < 0) {
1234             return rc;
1235         }
1236 
1237         rc = kvmppc_save_htab(f, spapr->htab_fd,
1238                               MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1239         if (rc < 0) {
1240             return rc;
1241         }
1242     } else  if (spapr->htab_first_pass) {
1243         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1244     } else {
1245         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1246     }
1247 
1248     /* End marker */
1249     qemu_put_be32(f, 0);
1250     qemu_put_be16(f, 0);
1251     qemu_put_be16(f, 0);
1252 
1253     return rc;
1254 }
1255 
1256 static int htab_save_complete(QEMUFile *f, void *opaque)
1257 {
1258     sPAPREnvironment *spapr = opaque;
1259 
1260     /* Iteration header */
1261     qemu_put_be32(f, 0);
1262 
1263     if (!spapr->htab) {
1264         int rc;
1265 
1266         assert(kvm_enabled());
1267 
1268         rc = spapr_check_htab_fd(spapr);
1269         if (rc < 0) {
1270             return rc;
1271         }
1272 
1273         rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1274         if (rc < 0) {
1275             return rc;
1276         }
1277         close(spapr->htab_fd);
1278         spapr->htab_fd = -1;
1279     } else {
1280         htab_save_later_pass(f, spapr, -1);
1281     }
1282 
1283     /* End marker */
1284     qemu_put_be32(f, 0);
1285     qemu_put_be16(f, 0);
1286     qemu_put_be16(f, 0);
1287 
1288     return 0;
1289 }
1290 
1291 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1292 {
1293     sPAPREnvironment *spapr = opaque;
1294     uint32_t section_hdr;
1295     int fd = -1;
1296 
1297     if (version_id < 1 || version_id > 1) {
1298         fprintf(stderr, "htab_load() bad version\n");
1299         return -EINVAL;
1300     }
1301 
1302     section_hdr = qemu_get_be32(f);
1303 
1304     if (section_hdr) {
1305         /* First section, just the hash shift */
1306         if (spapr->htab_shift != section_hdr) {
1307             return -EINVAL;
1308         }
1309         return 0;
1310     }
1311 
1312     if (!spapr->htab) {
1313         assert(kvm_enabled());
1314 
1315         fd = kvmppc_get_htab_fd(true);
1316         if (fd < 0) {
1317             fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1318                     strerror(errno));
1319         }
1320     }
1321 
1322     while (true) {
1323         uint32_t index;
1324         uint16_t n_valid, n_invalid;
1325 
1326         index = qemu_get_be32(f);
1327         n_valid = qemu_get_be16(f);
1328         n_invalid = qemu_get_be16(f);
1329 
1330         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1331             /* End of Stream */
1332             break;
1333         }
1334 
1335         if ((index + n_valid + n_invalid) >
1336             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1337             /* Bad index in stream */
1338             fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1339                     "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1340                     spapr->htab_shift);
1341             return -EINVAL;
1342         }
1343 
1344         if (spapr->htab) {
1345             if (n_valid) {
1346                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1347                                 HASH_PTE_SIZE_64 * n_valid);
1348             }
1349             if (n_invalid) {
1350                 memset(HPTE(spapr->htab, index + n_valid), 0,
1351                        HASH_PTE_SIZE_64 * n_invalid);
1352             }
1353         } else {
1354             int rc;
1355 
1356             assert(fd >= 0);
1357 
1358             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1359             if (rc < 0) {
1360                 return rc;
1361             }
1362         }
1363     }
1364 
1365     if (!spapr->htab) {
1366         assert(fd >= 0);
1367         close(fd);
1368     }
1369 
1370     return 0;
1371 }
1372 
1373 static SaveVMHandlers savevm_htab_handlers = {
1374     .save_live_setup = htab_save_setup,
1375     .save_live_iterate = htab_save_iterate,
1376     .save_live_complete = htab_save_complete,
1377     .load_state = htab_load,
1378 };
1379 
1380 static void spapr_boot_set(void *opaque, const char *boot_device,
1381                            Error **errp)
1382 {
1383     MachineState *machine = MACHINE(qdev_get_machine());
1384     machine->boot_order = g_strdup(boot_device);
1385 }
1386 
1387 /* pSeries LPAR / sPAPR hardware init */
1388 static void ppc_spapr_init(MachineState *machine)
1389 {
1390     ram_addr_t ram_size = machine->ram_size;
1391     const char *cpu_model = machine->cpu_model;
1392     const char *kernel_filename = machine->kernel_filename;
1393     const char *kernel_cmdline = machine->kernel_cmdline;
1394     const char *initrd_filename = machine->initrd_filename;
1395     PowerPCCPU *cpu;
1396     CPUPPCState *env;
1397     PCIHostState *phb;
1398     int i;
1399     MemoryRegion *sysmem = get_system_memory();
1400     MemoryRegion *ram = g_new(MemoryRegion, 1);
1401     MemoryRegion *rma_region;
1402     void *rma = NULL;
1403     hwaddr rma_alloc_size;
1404     hwaddr node0_size = spapr_node0_size();
1405     uint32_t initrd_base = 0;
1406     long kernel_size = 0, initrd_size = 0;
1407     long load_limit, fw_size;
1408     bool kernel_le = false;
1409     char *filename;
1410 
1411     msi_supported = true;
1412 
1413     spapr = g_malloc0(sizeof(*spapr));
1414     QLIST_INIT(&spapr->phbs);
1415 
1416     cpu_ppc_hypercall = emulate_spapr_hypercall;
1417 
1418     /* Allocate RMA if necessary */
1419     rma_alloc_size = kvmppc_alloc_rma(&rma);
1420 
1421     if (rma_alloc_size == -1) {
1422         hw_error("qemu: Unable to create RMA\n");
1423         exit(1);
1424     }
1425 
1426     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1427         spapr->rma_size = rma_alloc_size;
1428     } else {
1429         spapr->rma_size = node0_size;
1430 
1431         /* With KVM, we don't actually know whether KVM supports an
1432          * unbounded RMA (PR KVM) or is limited by the hash table size
1433          * (HV KVM using VRMA), so we always assume the latter
1434          *
1435          * In that case, we also limit the initial allocations for RTAS
1436          * etc... to 256M since we have no way to know what the VRMA size
1437          * is going to be as it depends on the size of the hash table
1438          * isn't determined yet.
1439          */
1440         if (kvm_enabled()) {
1441             spapr->vrma_adjust = 1;
1442             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1443         }
1444     }
1445 
1446     if (spapr->rma_size > node0_size) {
1447         fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1448                 spapr->rma_size);
1449         exit(1);
1450     }
1451 
1452     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1453     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1454 
1455     /* We aim for a hash table of size 1/128 the size of RAM.  The
1456      * normal rule of thumb is 1/64 the size of RAM, but that's much
1457      * more than needed for the Linux guests we support. */
1458     spapr->htab_shift = 18; /* Minimum architected size */
1459     while (spapr->htab_shift <= 46) {
1460         if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1461             break;
1462         }
1463         spapr->htab_shift++;
1464     }
1465 
1466     /* Set up Interrupt Controller before we create the VCPUs */
1467     spapr->icp = xics_system_init(machine,
1468                                   smp_cpus * kvmppc_smt_threads() / smp_threads,
1469                                   XICS_IRQS);
1470 
1471     /* init CPUs */
1472     if (cpu_model == NULL) {
1473         cpu_model = kvm_enabled() ? "host" : "POWER7";
1474     }
1475     for (i = 0; i < smp_cpus; i++) {
1476         cpu = cpu_ppc_init(cpu_model);
1477         if (cpu == NULL) {
1478             fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1479             exit(1);
1480         }
1481         env = &cpu->env;
1482 
1483         /* Set time-base frequency to 512 MHz */
1484         cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1485 
1486         /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1487          * MSR[IP] should never be set.
1488          */
1489         env->msr_mask &= ~(1 << 6);
1490 
1491         /* Tell KVM that we're in PAPR mode */
1492         if (kvm_enabled()) {
1493             kvmppc_set_papr(cpu);
1494         }
1495 
1496         if (cpu->max_compat) {
1497             if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1498                 exit(1);
1499             }
1500         }
1501 
1502         xics_cpu_setup(spapr->icp, cpu);
1503 
1504         qemu_register_reset(spapr_cpu_reset, cpu);
1505     }
1506 
1507     /* allocate RAM */
1508     spapr->ram_limit = ram_size;
1509     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1510                                          spapr->ram_limit);
1511     memory_region_add_subregion(sysmem, 0, ram);
1512 
1513     if (rma_alloc_size && rma) {
1514         rma_region = g_new(MemoryRegion, 1);
1515         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1516                                    rma_alloc_size, rma);
1517         vmstate_register_ram_global(rma_region);
1518         memory_region_add_subregion(sysmem, 0, rma_region);
1519     }
1520 
1521     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1522     if (!filename) {
1523         hw_error("Could not find LPAR rtas '%s'\n", "spapr-rtas.bin");
1524         exit(1);
1525     }
1526     spapr->rtas_size = get_image_size(filename);
1527     spapr->rtas_blob = g_malloc(spapr->rtas_size);
1528     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1529         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1530         exit(1);
1531     }
1532     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1533         hw_error("RTAS too big ! 0x%zx bytes (max is 0x%x)\n",
1534                  (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1535         exit(1);
1536     }
1537     g_free(filename);
1538 
1539     /* Set up EPOW events infrastructure */
1540     spapr_events_init(spapr);
1541 
1542     /* Set up the RTC RTAS interfaces */
1543     spapr_rtc_create(spapr);
1544 
1545     /* Set up VIO bus */
1546     spapr->vio_bus = spapr_vio_bus_init();
1547 
1548     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1549         if (serial_hds[i]) {
1550             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1551         }
1552     }
1553 
1554     /* We always have at least the nvram device on VIO */
1555     spapr_create_nvram(spapr);
1556 
1557     /* Set up PCI */
1558     spapr_pci_rtas_init();
1559 
1560     phb = spapr_create_phb(spapr, 0);
1561 
1562     for (i = 0; i < nb_nics; i++) {
1563         NICInfo *nd = &nd_table[i];
1564 
1565         if (!nd->model) {
1566             nd->model = g_strdup("ibmveth");
1567         }
1568 
1569         if (strcmp(nd->model, "ibmveth") == 0) {
1570             spapr_vlan_create(spapr->vio_bus, nd);
1571         } else {
1572             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1573         }
1574     }
1575 
1576     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1577         spapr_vscsi_create(spapr->vio_bus);
1578     }
1579 
1580     /* Graphics */
1581     if (spapr_vga_init(phb->bus)) {
1582         spapr->has_graphics = true;
1583         machine->usb |= defaults_enabled() && !machine->usb_disabled;
1584     }
1585 
1586     if (machine->usb) {
1587         pci_create_simple(phb->bus, -1, "pci-ohci");
1588 
1589         if (spapr->has_graphics) {
1590             USBBus *usb_bus = usb_bus_find(-1);
1591 
1592             usb_create_simple(usb_bus, "usb-kbd");
1593             usb_create_simple(usb_bus, "usb-mouse");
1594         }
1595     }
1596 
1597     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1598         fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1599                 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1600         exit(1);
1601     }
1602 
1603     if (kernel_filename) {
1604         uint64_t lowaddr = 0;
1605 
1606         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1607                                NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1608         if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1609             kernel_size = load_elf(kernel_filename,
1610                                    translate_kernel_address, NULL,
1611                                    NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1612             kernel_le = kernel_size > 0;
1613         }
1614         if (kernel_size < 0) {
1615             fprintf(stderr, "qemu: error loading %s: %s\n",
1616                     kernel_filename, load_elf_strerror(kernel_size));
1617             exit(1);
1618         }
1619 
1620         /* load initrd */
1621         if (initrd_filename) {
1622             /* Try to locate the initrd in the gap between the kernel
1623              * and the firmware. Add a bit of space just in case
1624              */
1625             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1626             initrd_size = load_image_targphys(initrd_filename, initrd_base,
1627                                               load_limit - initrd_base);
1628             if (initrd_size < 0) {
1629                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1630                         initrd_filename);
1631                 exit(1);
1632             }
1633         } else {
1634             initrd_base = 0;
1635             initrd_size = 0;
1636         }
1637     }
1638 
1639     if (bios_name == NULL) {
1640         bios_name = FW_FILE_NAME;
1641     }
1642     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1643     if (!filename) {
1644         hw_error("Could not find LPAR rtas '%s'\n", bios_name);
1645         exit(1);
1646     }
1647     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1648     if (fw_size < 0) {
1649         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1650         exit(1);
1651     }
1652     g_free(filename);
1653 
1654     spapr->entry_point = 0x100;
1655 
1656     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1657     register_savevm_live(NULL, "spapr/htab", -1, 1,
1658                          &savevm_htab_handlers, spapr);
1659 
1660     /* Prepare the device tree */
1661     spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1662                                             kernel_size, kernel_le,
1663                                             kernel_cmdline, spapr->epow_irq);
1664     assert(spapr->fdt_skel != NULL);
1665 
1666     qemu_register_boot_set(spapr_boot_set, spapr);
1667 }
1668 
1669 static int spapr_kvm_type(const char *vm_type)
1670 {
1671     if (!vm_type) {
1672         return 0;
1673     }
1674 
1675     if (!strcmp(vm_type, "HV")) {
1676         return 1;
1677     }
1678 
1679     if (!strcmp(vm_type, "PR")) {
1680         return 2;
1681     }
1682 
1683     error_report("Unknown kvm-type specified '%s'", vm_type);
1684     exit(1);
1685 }
1686 
1687 /*
1688  * Implementation of an interface to adjust firmware path
1689  * for the bootindex property handling.
1690  */
1691 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1692                                    DeviceState *dev)
1693 {
1694 #define CAST(type, obj, name) \
1695     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1696     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
1697     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1698 
1699     if (d) {
1700         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1701         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1702         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1703 
1704         if (spapr) {
1705             /*
1706              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1707              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1708              * in the top 16 bits of the 64-bit LUN
1709              */
1710             unsigned id = 0x8000 | (d->id << 8) | d->lun;
1711             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1712                                    (uint64_t)id << 48);
1713         } else if (virtio) {
1714             /*
1715              * We use SRP luns of the form 01000000 | (target << 8) | lun
1716              * in the top 32 bits of the 64-bit LUN
1717              * Note: the quote above is from SLOF and it is wrong,
1718              * the actual binding is:
1719              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1720              */
1721             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1722             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1723                                    (uint64_t)id << 32);
1724         } else if (usb) {
1725             /*
1726              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1727              * in the top 32 bits of the 64-bit LUN
1728              */
1729             unsigned usb_port = atoi(usb->port->path);
1730             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1731             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1732                                    (uint64_t)id << 32);
1733         }
1734     }
1735 
1736     if (phb) {
1737         /* Replace "pci" with "pci@800000020000000" */
1738         return g_strdup_printf("pci@%"PRIX64, phb->buid);
1739     }
1740 
1741     return NULL;
1742 }
1743 
1744 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1745 {
1746     sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1747 
1748     return g_strdup(sm->kvm_type);
1749 }
1750 
1751 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1752 {
1753     sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1754 
1755     g_free(sm->kvm_type);
1756     sm->kvm_type = g_strdup(value);
1757 }
1758 
1759 static void spapr_machine_initfn(Object *obj)
1760 {
1761     object_property_add_str(obj, "kvm-type",
1762                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1763     object_property_set_description(obj, "kvm-type",
1764                                     "Specifies the KVM virtualization mode (HV, PR)",
1765                                     NULL);
1766 }
1767 
1768 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1769 {
1770     CPUState *cs = arg;
1771 
1772     cpu_synchronize_state(cs);
1773     ppc_cpu_do_system_reset(cs);
1774 }
1775 
1776 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1777 {
1778     CPUState *cs;
1779 
1780     CPU_FOREACH(cs) {
1781         async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1782     }
1783 }
1784 
1785 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1786 {
1787     MachineClass *mc = MACHINE_CLASS(oc);
1788     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1789     NMIClass *nc = NMI_CLASS(oc);
1790 
1791     mc->init = ppc_spapr_init;
1792     mc->reset = ppc_spapr_reset;
1793     mc->block_default_type = IF_SCSI;
1794     mc->max_cpus = MAX_CPUS;
1795     mc->no_parallel = 1;
1796     mc->default_boot_order = "";
1797     mc->kvm_type = spapr_kvm_type;
1798     mc->has_dynamic_sysbus = true;
1799 
1800     fwc->get_dev_path = spapr_get_fw_dev_path;
1801     nc->nmi_monitor_handler = spapr_nmi;
1802 }
1803 
1804 static const TypeInfo spapr_machine_info = {
1805     .name          = TYPE_SPAPR_MACHINE,
1806     .parent        = TYPE_MACHINE,
1807     .abstract      = true,
1808     .instance_size = sizeof(sPAPRMachineState),
1809     .instance_init = spapr_machine_initfn,
1810     .class_init    = spapr_machine_class_init,
1811     .interfaces = (InterfaceInfo[]) {
1812         { TYPE_FW_PATH_PROVIDER },
1813         { TYPE_NMI },
1814         { }
1815     },
1816 };
1817 
1818 #define SPAPR_COMPAT_2_3 \
1819         HW_COMPAT_2_3
1820 
1821 #define SPAPR_COMPAT_2_2 \
1822         SPAPR_COMPAT_2_3 \
1823         HW_COMPAT_2_2 \
1824         {\
1825             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
1826             .property = "mem_win_size",\
1827             .value    = "0x20000000",\
1828         },
1829 
1830 #define SPAPR_COMPAT_2_1 \
1831         SPAPR_COMPAT_2_2 \
1832         HW_COMPAT_2_1
1833 
1834 static void spapr_compat_2_3(Object *obj)
1835 {
1836 }
1837 
1838 static void spapr_compat_2_2(Object *obj)
1839 {
1840     spapr_compat_2_3(obj);
1841 }
1842 
1843 static void spapr_compat_2_1(Object *obj)
1844 {
1845     spapr_compat_2_2(obj);
1846 }
1847 
1848 static void spapr_machine_2_3_instance_init(Object *obj)
1849 {
1850     spapr_compat_2_3(obj);
1851     spapr_machine_initfn(obj);
1852 }
1853 
1854 static void spapr_machine_2_2_instance_init(Object *obj)
1855 {
1856     spapr_compat_2_2(obj);
1857     spapr_machine_initfn(obj);
1858 }
1859 
1860 static void spapr_machine_2_1_instance_init(Object *obj)
1861 {
1862     spapr_compat_2_1(obj);
1863     spapr_machine_initfn(obj);
1864 }
1865 
1866 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1867 {
1868     MachineClass *mc = MACHINE_CLASS(oc);
1869     static GlobalProperty compat_props[] = {
1870         SPAPR_COMPAT_2_1
1871         { /* end of list */ }
1872     };
1873 
1874     mc->name = "pseries-2.1";
1875     mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1876     mc->compat_props = compat_props;
1877 }
1878 
1879 static const TypeInfo spapr_machine_2_1_info = {
1880     .name          = TYPE_SPAPR_MACHINE "2.1",
1881     .parent        = TYPE_SPAPR_MACHINE,
1882     .class_init    = spapr_machine_2_1_class_init,
1883     .instance_init = spapr_machine_2_1_instance_init,
1884 };
1885 
1886 static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
1887 {
1888     static GlobalProperty compat_props[] = {
1889         SPAPR_COMPAT_2_2
1890         { /* end of list */ }
1891     };
1892     MachineClass *mc = MACHINE_CLASS(oc);
1893 
1894     mc->name = "pseries-2.2";
1895     mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
1896     mc->compat_props = compat_props;
1897 }
1898 
1899 static const TypeInfo spapr_machine_2_2_info = {
1900     .name          = TYPE_SPAPR_MACHINE "2.2",
1901     .parent        = TYPE_SPAPR_MACHINE,
1902     .class_init    = spapr_machine_2_2_class_init,
1903     .instance_init = spapr_machine_2_2_instance_init,
1904 };
1905 
1906 static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
1907 {
1908     MachineClass *mc = MACHINE_CLASS(oc);
1909 
1910     mc->name = "pseries-2.3";
1911     mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
1912 }
1913 
1914 static const TypeInfo spapr_machine_2_3_info = {
1915     .name          = TYPE_SPAPR_MACHINE "2.3",
1916     .parent        = TYPE_SPAPR_MACHINE,
1917     .class_init    = spapr_machine_2_3_class_init,
1918     .instance_init = spapr_machine_2_3_instance_init,
1919 };
1920 
1921 static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
1922 {
1923     MachineClass *mc = MACHINE_CLASS(oc);
1924 
1925     mc->name = "pseries-2.4";
1926     mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
1927     mc->alias = "pseries";
1928     mc->is_default = 1;
1929 }
1930 
1931 static const TypeInfo spapr_machine_2_4_info = {
1932     .name          = TYPE_SPAPR_MACHINE "2.4",
1933     .parent        = TYPE_SPAPR_MACHINE,
1934     .class_init    = spapr_machine_2_4_class_init,
1935 };
1936 
1937 static void spapr_machine_register_types(void)
1938 {
1939     type_register_static(&spapr_machine_info);
1940     type_register_static(&spapr_machine_2_1_info);
1941     type_register_static(&spapr_machine_2_2_info);
1942     type_register_static(&spapr_machine_2_3_info);
1943     type_register_static(&spapr_machine_2_4_info);
1944 }
1945 
1946 type_init(spapr_machine_register_types)
1947