1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "hw/hw.h" 33 #include "qemu/log.h" 34 #include "hw/fw-path-provider.h" 35 #include "elf.h" 36 #include "net/net.h" 37 #include "sysemu/device_tree.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/misc.h" 42 #include "migration/global_state.h" 43 #include "migration/register.h" 44 #include "mmu-hash64.h" 45 #include "mmu-book3s-v3.h" 46 #include "cpu-models.h" 47 #include "qom/cpu.h" 48 49 #include "hw/boards.h" 50 #include "hw/ppc/ppc.h" 51 #include "hw/loader.h" 52 53 #include "hw/ppc/fdt.h" 54 #include "hw/ppc/spapr.h" 55 #include "hw/ppc/spapr_vio.h" 56 #include "hw/pci-host/spapr.h" 57 #include "hw/pci/msi.h" 58 59 #include "hw/pci/pci.h" 60 #include "hw/scsi/scsi.h" 61 #include "hw/virtio/virtio-scsi.h" 62 #include "hw/virtio/vhost-scsi-common.h" 63 64 #include "exec/address-spaces.h" 65 #include "exec/ram_addr.h" 66 #include "hw/usb.h" 67 #include "qemu/config-file.h" 68 #include "qemu/error-report.h" 69 #include "trace.h" 70 #include "hw/nmi.h" 71 #include "hw/intc/intc.h" 72 73 #include "hw/compat.h" 74 #include "qemu/cutils.h" 75 #include "hw/ppc/spapr_cpu_core.h" 76 #include "hw/mem/memory-device.h" 77 78 #include <libfdt.h> 79 80 /* SLOF memory layout: 81 * 82 * SLOF raw image loaded at 0, copies its romfs right below the flat 83 * device-tree, then position SLOF itself 31M below that 84 * 85 * So we set FW_OVERHEAD to 40MB which should account for all of that 86 * and more 87 * 88 * We load our kernel at 4M, leaving space for SLOF initial image 89 */ 90 #define FDT_MAX_SIZE 0x100000 91 #define RTAS_MAX_SIZE 0x10000 92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 93 #define FW_MAX_SIZE 0x400000 94 #define FW_FILE_NAME "slof.bin" 95 #define FW_OVERHEAD 0x2800000 96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 97 98 #define MIN_RMA_SLOF 128UL 99 100 #define PHANDLE_XICP 0x00001111 101 102 /* These two functions implement the VCPU id numbering: one to compute them 103 * all and one to identify thread 0 of a VCORE. Any change to the first one 104 * is likely to have an impact on the second one, so let's keep them close. 105 */ 106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index) 107 { 108 assert(spapr->vsmt); 109 return 110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 111 } 112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr, 113 PowerPCCPU *cpu) 114 { 115 assert(spapr->vsmt); 116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 117 } 118 119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 120 { 121 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 122 * and newer QEMUs don't even have them. In both cases, we don't want 123 * to send anything on the wire. 124 */ 125 return false; 126 } 127 128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 129 .name = "icp/server", 130 .version_id = 1, 131 .minimum_version_id = 1, 132 .needed = pre_2_10_vmstate_dummy_icp_needed, 133 .fields = (VMStateField[]) { 134 VMSTATE_UNUSED(4), /* uint32_t xirr */ 135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 136 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 137 VMSTATE_END_OF_LIST() 138 }, 139 }; 140 141 static void pre_2_10_vmstate_register_dummy_icp(int i) 142 { 143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 144 (void *)(uintptr_t) i); 145 } 146 147 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 148 { 149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 150 (void *)(uintptr_t) i); 151 } 152 153 static int xics_max_server_number(sPAPRMachineState *spapr) 154 { 155 assert(spapr->vsmt); 156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 157 } 158 159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 160 int smt_threads) 161 { 162 int i, ret = 0; 163 uint32_t servers_prop[smt_threads]; 164 uint32_t gservers_prop[smt_threads * 2]; 165 int index = spapr_get_vcpu_id(cpu); 166 167 if (cpu->compat_pvr) { 168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 169 if (ret < 0) { 170 return ret; 171 } 172 } 173 174 /* Build interrupt servers and gservers properties */ 175 for (i = 0; i < smt_threads; i++) { 176 servers_prop[i] = cpu_to_be32(index + i); 177 /* Hack, direct the group queues back to cpu 0 */ 178 gservers_prop[i*2] = cpu_to_be32(index + i); 179 gservers_prop[i*2 + 1] = 0; 180 } 181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 182 servers_prop, sizeof(servers_prop)); 183 if (ret < 0) { 184 return ret; 185 } 186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 187 gservers_prop, sizeof(gservers_prop)); 188 189 return ret; 190 } 191 192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 193 { 194 int index = spapr_get_vcpu_id(cpu); 195 uint32_t associativity[] = {cpu_to_be32(0x5), 196 cpu_to_be32(0x0), 197 cpu_to_be32(0x0), 198 cpu_to_be32(0x0), 199 cpu_to_be32(cpu->node_id), 200 cpu_to_be32(index)}; 201 202 /* Advertise NUMA via ibm,associativity */ 203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 204 sizeof(associativity)); 205 } 206 207 /* Populate the "ibm,pa-features" property */ 208 static void spapr_populate_pa_features(sPAPRMachineState *spapr, 209 PowerPCCPU *cpu, 210 void *fdt, int offset, 211 bool legacy_guest) 212 { 213 uint8_t pa_features_206[] = { 6, 0, 214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 215 uint8_t pa_features_207[] = { 24, 0, 216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 220 uint8_t pa_features_300[] = { 66, 0, 221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 224 /* 6: DS207 */ 225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 226 /* 16: Vector */ 227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 236 /* 42: PM, 44: PC RA, 46: SC vec'd */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 238 /* 48: SIMD, 50: QP BFP, 52: String */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 240 /* 54: DecFP, 56: DecI, 58: SHA */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 242 /* 60: NM atomic, 62: RNG */ 243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 244 }; 245 uint8_t *pa_features = NULL; 246 size_t pa_size; 247 248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 249 pa_features = pa_features_206; 250 pa_size = sizeof(pa_features_206); 251 } 252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 253 pa_features = pa_features_207; 254 pa_size = sizeof(pa_features_207); 255 } 256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 257 pa_features = pa_features_300; 258 pa_size = sizeof(pa_features_300); 259 } 260 if (!pa_features) { 261 return; 262 } 263 264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 265 /* 266 * Note: we keep CI large pages off by default because a 64K capable 267 * guest provisioned with large pages might otherwise try to map a qemu 268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 269 * even if that qemu runs on a 4k host. 270 * We dd this bit back here if we are confident this is not an issue 271 */ 272 pa_features[3] |= 0x20; 273 } 274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 275 pa_features[24] |= 0x80; /* Transactional memory support */ 276 } 277 if (legacy_guest && pa_size > 40) { 278 /* Workaround for broken kernels that attempt (guest) radix 279 * mode when they can't handle it, if they see the radix bit set 280 * in pa-features. So hide it from them. */ 281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 282 } 283 284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 285 } 286 287 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 288 { 289 int ret = 0, offset, cpus_offset; 290 CPUState *cs; 291 char cpu_model[32]; 292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 293 294 CPU_FOREACH(cs) { 295 PowerPCCPU *cpu = POWERPC_CPU(cs); 296 DeviceClass *dc = DEVICE_GET_CLASS(cs); 297 int index = spapr_get_vcpu_id(cpu); 298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 299 300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 301 continue; 302 } 303 304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 305 306 cpus_offset = fdt_path_offset(fdt, "/cpus"); 307 if (cpus_offset < 0) { 308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 309 if (cpus_offset < 0) { 310 return cpus_offset; 311 } 312 } 313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 314 if (offset < 0) { 315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 316 if (offset < 0) { 317 return offset; 318 } 319 } 320 321 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 322 pft_size_prop, sizeof(pft_size_prop)); 323 if (ret < 0) { 324 return ret; 325 } 326 327 if (nb_numa_nodes > 1) { 328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 329 if (ret < 0) { 330 return ret; 331 } 332 } 333 334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 335 if (ret < 0) { 336 return ret; 337 } 338 339 spapr_populate_pa_features(spapr, cpu, fdt, offset, 340 spapr->cas_legacy_guest_workaround); 341 } 342 return ret; 343 } 344 345 static hwaddr spapr_node0_size(MachineState *machine) 346 { 347 if (nb_numa_nodes) { 348 int i; 349 for (i = 0; i < nb_numa_nodes; ++i) { 350 if (numa_info[i].node_mem) { 351 return MIN(pow2floor(numa_info[i].node_mem), 352 machine->ram_size); 353 } 354 } 355 } 356 return machine->ram_size; 357 } 358 359 static void add_str(GString *s, const gchar *s1) 360 { 361 g_string_append_len(s, s1, strlen(s1) + 1); 362 } 363 364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 365 hwaddr size) 366 { 367 uint32_t associativity[] = { 368 cpu_to_be32(0x4), /* length */ 369 cpu_to_be32(0x0), cpu_to_be32(0x0), 370 cpu_to_be32(0x0), cpu_to_be32(nodeid) 371 }; 372 char mem_name[32]; 373 uint64_t mem_reg_property[2]; 374 int off; 375 376 mem_reg_property[0] = cpu_to_be64(start); 377 mem_reg_property[1] = cpu_to_be64(size); 378 379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 380 off = fdt_add_subnode(fdt, 0, mem_name); 381 _FDT(off); 382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 384 sizeof(mem_reg_property)))); 385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 386 sizeof(associativity)))); 387 return off; 388 } 389 390 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 391 { 392 MachineState *machine = MACHINE(spapr); 393 hwaddr mem_start, node_size; 394 int i, nb_nodes = nb_numa_nodes; 395 NodeInfo *nodes = numa_info; 396 NodeInfo ramnode; 397 398 /* No NUMA nodes, assume there is just one node with whole RAM */ 399 if (!nb_numa_nodes) { 400 nb_nodes = 1; 401 ramnode.node_mem = machine->ram_size; 402 nodes = &ramnode; 403 } 404 405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 406 if (!nodes[i].node_mem) { 407 continue; 408 } 409 if (mem_start >= machine->ram_size) { 410 node_size = 0; 411 } else { 412 node_size = nodes[i].node_mem; 413 if (node_size > machine->ram_size - mem_start) { 414 node_size = machine->ram_size - mem_start; 415 } 416 } 417 if (!mem_start) { 418 /* spapr_machine_init() checks for rma_size <= node0_size 419 * already */ 420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 421 mem_start += spapr->rma_size; 422 node_size -= spapr->rma_size; 423 } 424 for ( ; node_size; ) { 425 hwaddr sizetmp = pow2floor(node_size); 426 427 /* mem_start != 0 here */ 428 if (ctzl(mem_start) < ctzl(sizetmp)) { 429 sizetmp = 1ULL << ctzl(mem_start); 430 } 431 432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 433 node_size -= sizetmp; 434 mem_start += sizetmp; 435 } 436 } 437 438 return 0; 439 } 440 441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 442 sPAPRMachineState *spapr) 443 { 444 PowerPCCPU *cpu = POWERPC_CPU(cs); 445 CPUPPCState *env = &cpu->env; 446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 447 int index = spapr_get_vcpu_id(cpu); 448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 449 0xffffffff, 0xffffffff}; 450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 451 : SPAPR_TIMEBASE_FREQ; 452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 453 uint32_t page_sizes_prop[64]; 454 size_t page_sizes_prop_size; 455 uint32_t vcpus_per_socket = smp_threads * smp_cores; 456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 458 sPAPRDRConnector *drc; 459 int drc_index; 460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 461 int i; 462 463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 464 if (drc) { 465 drc_index = spapr_drc_index(drc); 466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 467 } 468 469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 471 472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 474 env->dcache_line_size))); 475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 476 env->dcache_line_size))); 477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 478 env->icache_line_size))); 479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 480 env->icache_line_size))); 481 482 if (pcc->l1_dcache_size) { 483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 484 pcc->l1_dcache_size))); 485 } else { 486 warn_report("Unknown L1 dcache size for cpu"); 487 } 488 if (pcc->l1_icache_size) { 489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 490 pcc->l1_icache_size))); 491 } else { 492 warn_report("Unknown L1 icache size for cpu"); 493 } 494 495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 501 502 if (env->spr_cb[SPR_PURR].oea_read) { 503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 504 } 505 506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 508 segs, sizeof(segs)))); 509 } 510 511 /* Advertise VSX (vector extensions) if available 512 * 1 == VMX / Altivec available 513 * 2 == VSX available 514 * 515 * Only CPUs for which we create core types in spapr_cpu_core.c 516 * are possible, and all of those have VMX */ 517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 519 } else { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 521 } 522 523 /* Advertise DFP (Decimal Floating Point) if available 524 * 0 / no property == no DFP 525 * 1 == DFP available */ 526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 528 } 529 530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 531 sizeof(page_sizes_prop)); 532 if (page_sizes_prop_size) { 533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 534 page_sizes_prop, page_sizes_prop_size))); 535 } 536 537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 538 539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 540 cs->cpu_index / vcpus_per_socket))); 541 542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 543 pft_size_prop, sizeof(pft_size_prop)))); 544 545 if (nb_numa_nodes > 1) { 546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 547 } 548 549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 550 551 if (pcc->radix_page_info) { 552 for (i = 0; i < pcc->radix_page_info->count; i++) { 553 radix_AP_encodings[i] = 554 cpu_to_be32(pcc->radix_page_info->entries[i]); 555 } 556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 557 radix_AP_encodings, 558 pcc->radix_page_info->count * 559 sizeof(radix_AP_encodings[0])))); 560 } 561 } 562 563 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 564 { 565 CPUState **rev; 566 CPUState *cs; 567 int n_cpus; 568 int cpus_offset; 569 char *nodename; 570 int i; 571 572 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 573 _FDT(cpus_offset); 574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 575 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 576 577 /* 578 * We walk the CPUs in reverse order to ensure that CPU DT nodes 579 * created by fdt_add_subnode() end up in the right order in FDT 580 * for the guest kernel the enumerate the CPUs correctly. 581 * 582 * The CPU list cannot be traversed in reverse order, so we need 583 * to do extra work. 584 */ 585 n_cpus = 0; 586 rev = NULL; 587 CPU_FOREACH(cs) { 588 rev = g_renew(CPUState *, rev, n_cpus + 1); 589 rev[n_cpus++] = cs; 590 } 591 592 for (i = n_cpus - 1; i >= 0; i--) { 593 CPUState *cs = rev[i]; 594 PowerPCCPU *cpu = POWERPC_CPU(cs); 595 int index = spapr_get_vcpu_id(cpu); 596 DeviceClass *dc = DEVICE_GET_CLASS(cs); 597 int offset; 598 599 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 600 continue; 601 } 602 603 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 604 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 605 g_free(nodename); 606 _FDT(offset); 607 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 608 } 609 610 g_free(rev); 611 } 612 613 static int spapr_rng_populate_dt(void *fdt) 614 { 615 int node; 616 int ret; 617 618 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 619 if (node <= 0) { 620 return -1; 621 } 622 ret = fdt_setprop_string(fdt, node, "device_type", 623 "ibm,platform-facilities"); 624 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 625 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 626 627 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 628 if (node <= 0) { 629 return -1; 630 } 631 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 632 633 return ret ? -1 : 0; 634 } 635 636 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 637 { 638 MemoryDeviceInfoList *info; 639 640 for (info = list; info; info = info->next) { 641 MemoryDeviceInfo *value = info->value; 642 643 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 644 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 645 646 if (addr >= pcdimm_info->addr && 647 addr < (pcdimm_info->addr + pcdimm_info->size)) { 648 return pcdimm_info->node; 649 } 650 } 651 } 652 653 return -1; 654 } 655 656 struct sPAPRDrconfCellV2 { 657 uint32_t seq_lmbs; 658 uint64_t base_addr; 659 uint32_t drc_index; 660 uint32_t aa_index; 661 uint32_t flags; 662 } QEMU_PACKED; 663 664 typedef struct DrconfCellQueue { 665 struct sPAPRDrconfCellV2 cell; 666 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 667 } DrconfCellQueue; 668 669 static DrconfCellQueue * 670 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 671 uint32_t drc_index, uint32_t aa_index, 672 uint32_t flags) 673 { 674 DrconfCellQueue *elem; 675 676 elem = g_malloc0(sizeof(*elem)); 677 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 678 elem->cell.base_addr = cpu_to_be64(base_addr); 679 elem->cell.drc_index = cpu_to_be32(drc_index); 680 elem->cell.aa_index = cpu_to_be32(aa_index); 681 elem->cell.flags = cpu_to_be32(flags); 682 683 return elem; 684 } 685 686 /* ibm,dynamic-memory-v2 */ 687 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt, 688 int offset, MemoryDeviceInfoList *dimms) 689 { 690 MachineState *machine = MACHINE(spapr); 691 uint8_t *int_buf, *cur_index, buf_len; 692 int ret; 693 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 694 uint64_t addr, cur_addr, size; 695 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 696 uint64_t mem_end = machine->device_memory->base + 697 memory_region_size(&machine->device_memory->mr); 698 uint32_t node, nr_entries = 0; 699 sPAPRDRConnector *drc; 700 DrconfCellQueue *elem, *next; 701 MemoryDeviceInfoList *info; 702 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 703 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 704 705 /* Entry to cover RAM and the gap area */ 706 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 707 SPAPR_LMB_FLAGS_RESERVED | 708 SPAPR_LMB_FLAGS_DRC_INVALID); 709 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 710 nr_entries++; 711 712 cur_addr = machine->device_memory->base; 713 for (info = dimms; info; info = info->next) { 714 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 715 716 addr = di->addr; 717 size = di->size; 718 node = di->node; 719 720 /* Entry for hot-pluggable area */ 721 if (cur_addr < addr) { 722 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 723 g_assert(drc); 724 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 725 cur_addr, spapr_drc_index(drc), -1, 0); 726 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 727 nr_entries++; 728 } 729 730 /* Entry for DIMM */ 731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 732 g_assert(drc); 733 elem = spapr_get_drconf_cell(size / lmb_size, addr, 734 spapr_drc_index(drc), node, 735 SPAPR_LMB_FLAGS_ASSIGNED); 736 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 737 nr_entries++; 738 cur_addr = addr + size; 739 } 740 741 /* Entry for remaining hotpluggable area */ 742 if (cur_addr < mem_end) { 743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 744 g_assert(drc); 745 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 746 cur_addr, spapr_drc_index(drc), -1, 0); 747 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 748 nr_entries++; 749 } 750 751 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 752 int_buf = cur_index = g_malloc0(buf_len); 753 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 754 cur_index += sizeof(nr_entries); 755 756 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 757 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 758 cur_index += sizeof(elem->cell); 759 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 760 g_free(elem); 761 } 762 763 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 764 g_free(int_buf); 765 if (ret < 0) { 766 return -1; 767 } 768 return 0; 769 } 770 771 /* ibm,dynamic-memory */ 772 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt, 773 int offset, MemoryDeviceInfoList *dimms) 774 { 775 MachineState *machine = MACHINE(spapr); 776 int i, ret; 777 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 778 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 779 uint32_t nr_lmbs = (machine->device_memory->base + 780 memory_region_size(&machine->device_memory->mr)) / 781 lmb_size; 782 uint32_t *int_buf, *cur_index, buf_len; 783 784 /* 785 * Allocate enough buffer size to fit in ibm,dynamic-memory 786 */ 787 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 788 cur_index = int_buf = g_malloc0(buf_len); 789 int_buf[0] = cpu_to_be32(nr_lmbs); 790 cur_index++; 791 for (i = 0; i < nr_lmbs; i++) { 792 uint64_t addr = i * lmb_size; 793 uint32_t *dynamic_memory = cur_index; 794 795 if (i >= device_lmb_start) { 796 sPAPRDRConnector *drc; 797 798 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 799 g_assert(drc); 800 801 dynamic_memory[0] = cpu_to_be32(addr >> 32); 802 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 803 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 804 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 805 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 806 if (memory_region_present(get_system_memory(), addr)) { 807 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 808 } else { 809 dynamic_memory[5] = cpu_to_be32(0); 810 } 811 } else { 812 /* 813 * LMB information for RMA, boot time RAM and gap b/n RAM and 814 * device memory region -- all these are marked as reserved 815 * and as having no valid DRC. 816 */ 817 dynamic_memory[0] = cpu_to_be32(addr >> 32); 818 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 819 dynamic_memory[2] = cpu_to_be32(0); 820 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 821 dynamic_memory[4] = cpu_to_be32(-1); 822 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 823 SPAPR_LMB_FLAGS_DRC_INVALID); 824 } 825 826 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 827 } 828 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 829 g_free(int_buf); 830 if (ret < 0) { 831 return -1; 832 } 833 return 0; 834 } 835 836 /* 837 * Adds ibm,dynamic-reconfiguration-memory node. 838 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 839 * of this device tree node. 840 */ 841 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 842 { 843 MachineState *machine = MACHINE(spapr); 844 int ret, i, offset; 845 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 846 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 847 uint32_t *int_buf, *cur_index, buf_len; 848 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 849 MemoryDeviceInfoList *dimms = NULL; 850 851 /* 852 * Don't create the node if there is no device memory 853 */ 854 if (machine->ram_size == machine->maxram_size) { 855 return 0; 856 } 857 858 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 859 860 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 861 sizeof(prop_lmb_size)); 862 if (ret < 0) { 863 return ret; 864 } 865 866 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 867 if (ret < 0) { 868 return ret; 869 } 870 871 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 872 if (ret < 0) { 873 return ret; 874 } 875 876 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 877 dimms = qmp_memory_device_list(); 878 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 879 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 880 } else { 881 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 882 } 883 qapi_free_MemoryDeviceInfoList(dimms); 884 885 if (ret < 0) { 886 return ret; 887 } 888 889 /* ibm,associativity-lookup-arrays */ 890 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 891 cur_index = int_buf = g_malloc0(buf_len); 892 893 cur_index = int_buf; 894 int_buf[0] = cpu_to_be32(nr_nodes); 895 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 896 cur_index += 2; 897 for (i = 0; i < nr_nodes; i++) { 898 uint32_t associativity[] = { 899 cpu_to_be32(0x0), 900 cpu_to_be32(0x0), 901 cpu_to_be32(0x0), 902 cpu_to_be32(i) 903 }; 904 memcpy(cur_index, associativity, sizeof(associativity)); 905 cur_index += 4; 906 } 907 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 908 (cur_index - int_buf) * sizeof(uint32_t)); 909 g_free(int_buf); 910 911 return ret; 912 } 913 914 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 915 sPAPROptionVector *ov5_updates) 916 { 917 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 918 int ret = 0, offset; 919 920 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 921 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 922 g_assert(smc->dr_lmb_enabled); 923 ret = spapr_populate_drconf_memory(spapr, fdt); 924 if (ret) { 925 goto out; 926 } 927 } 928 929 offset = fdt_path_offset(fdt, "/chosen"); 930 if (offset < 0) { 931 offset = fdt_add_subnode(fdt, 0, "chosen"); 932 if (offset < 0) { 933 return offset; 934 } 935 } 936 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 937 "ibm,architecture-vec-5"); 938 939 out: 940 return ret; 941 } 942 943 static bool spapr_hotplugged_dev_before_cas(void) 944 { 945 Object *drc_container, *obj; 946 ObjectProperty *prop; 947 ObjectPropertyIterator iter; 948 949 drc_container = container_get(object_get_root(), "/dr-connector"); 950 object_property_iter_init(&iter, drc_container); 951 while ((prop = object_property_iter_next(&iter))) { 952 if (!strstart(prop->type, "link<", NULL)) { 953 continue; 954 } 955 obj = object_property_get_link(drc_container, prop->name, NULL); 956 if (spapr_drc_needed(obj)) { 957 return true; 958 } 959 } 960 return false; 961 } 962 963 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 964 target_ulong addr, target_ulong size, 965 sPAPROptionVector *ov5_updates) 966 { 967 void *fdt, *fdt_skel; 968 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 969 970 if (spapr_hotplugged_dev_before_cas()) { 971 return 1; 972 } 973 974 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 975 error_report("SLOF provided an unexpected CAS buffer size " 976 TARGET_FMT_lu " (min: %zu, max: %u)", 977 size, sizeof(hdr), FW_MAX_SIZE); 978 exit(EXIT_FAILURE); 979 } 980 981 size -= sizeof(hdr); 982 983 /* Create skeleton */ 984 fdt_skel = g_malloc0(size); 985 _FDT((fdt_create(fdt_skel, size))); 986 _FDT((fdt_finish_reservemap(fdt_skel))); 987 _FDT((fdt_begin_node(fdt_skel, ""))); 988 _FDT((fdt_end_node(fdt_skel))); 989 _FDT((fdt_finish(fdt_skel))); 990 fdt = g_malloc0(size); 991 _FDT((fdt_open_into(fdt_skel, fdt, size))); 992 g_free(fdt_skel); 993 994 /* Fixup cpu nodes */ 995 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 996 997 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 998 return -1; 999 } 1000 1001 /* Pack resulting tree */ 1002 _FDT((fdt_pack(fdt))); 1003 1004 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1005 trace_spapr_cas_failed(size); 1006 return -1; 1007 } 1008 1009 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1010 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1011 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1012 g_free(fdt); 1013 1014 return 0; 1015 } 1016 1017 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 1018 { 1019 int rtas; 1020 GString *hypertas = g_string_sized_new(256); 1021 GString *qemu_hypertas = g_string_sized_new(256); 1022 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1023 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1024 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1025 uint32_t lrdr_capacity[] = { 1026 cpu_to_be32(max_device_addr >> 32), 1027 cpu_to_be32(max_device_addr & 0xffffffff), 1028 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1029 cpu_to_be32(max_cpus / smp_threads), 1030 }; 1031 uint32_t maxdomains[] = { 1032 cpu_to_be32(4), 1033 cpu_to_be32(0), 1034 cpu_to_be32(0), 1035 cpu_to_be32(0), 1036 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0), 1037 }; 1038 1039 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1040 1041 /* hypertas */ 1042 add_str(hypertas, "hcall-pft"); 1043 add_str(hypertas, "hcall-term"); 1044 add_str(hypertas, "hcall-dabr"); 1045 add_str(hypertas, "hcall-interrupt"); 1046 add_str(hypertas, "hcall-tce"); 1047 add_str(hypertas, "hcall-vio"); 1048 add_str(hypertas, "hcall-splpar"); 1049 add_str(hypertas, "hcall-bulk"); 1050 add_str(hypertas, "hcall-set-mode"); 1051 add_str(hypertas, "hcall-sprg0"); 1052 add_str(hypertas, "hcall-copy"); 1053 add_str(hypertas, "hcall-debug"); 1054 add_str(qemu_hypertas, "hcall-memop1"); 1055 1056 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1057 add_str(hypertas, "hcall-multi-tce"); 1058 } 1059 1060 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1061 add_str(hypertas, "hcall-hpt-resize"); 1062 } 1063 1064 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1065 hypertas->str, hypertas->len)); 1066 g_string_free(hypertas, TRUE); 1067 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1068 qemu_hypertas->str, qemu_hypertas->len)); 1069 g_string_free(qemu_hypertas, TRUE); 1070 1071 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1072 refpoints, sizeof(refpoints))); 1073 1074 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1075 maxdomains, sizeof(maxdomains))); 1076 1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1078 RTAS_ERROR_LOG_MAX)); 1079 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1080 RTAS_EVENT_SCAN_RATE)); 1081 1082 g_assert(msi_nonbroken); 1083 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1084 1085 /* 1086 * According to PAPR, rtas ibm,os-term does not guarantee a return 1087 * back to the guest cpu. 1088 * 1089 * While an additional ibm,extended-os-term property indicates 1090 * that rtas call return will always occur. Set this property. 1091 */ 1092 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1093 1094 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1095 lrdr_capacity, sizeof(lrdr_capacity))); 1096 1097 spapr_dt_rtas_tokens(fdt, rtas); 1098 } 1099 1100 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features 1101 * that the guest may request and thus the valid values for bytes 24..26 of 1102 * option vector 5: */ 1103 static void spapr_dt_ov5_platform_support(void *fdt, int chosen) 1104 { 1105 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1106 1107 char val[2 * 4] = { 1108 23, 0x00, /* Xive mode, filled in below. */ 1109 24, 0x00, /* Hash/Radix, filled in below. */ 1110 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1111 26, 0x40, /* Radix options: GTSE == yes. */ 1112 }; 1113 1114 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1115 first_ppc_cpu->compat_pvr)) { 1116 /* If we're in a pre POWER9 compat mode then the guest should do hash */ 1117 val[3] = 0x00; /* Hash */ 1118 } else if (kvm_enabled()) { 1119 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1120 val[3] = 0x80; /* OV5_MMU_BOTH */ 1121 } else if (kvmppc_has_cap_mmu_radix()) { 1122 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1123 } else { 1124 val[3] = 0x00; /* Hash */ 1125 } 1126 } else { 1127 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1128 val[3] = 0xC0; 1129 } 1130 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1131 val, sizeof(val))); 1132 } 1133 1134 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 1135 { 1136 MachineState *machine = MACHINE(spapr); 1137 int chosen; 1138 const char *boot_device = machine->boot_order; 1139 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1140 size_t cb = 0; 1141 char *bootlist = get_boot_devices_list(&cb); 1142 1143 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1144 1145 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1146 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1147 spapr->initrd_base)); 1148 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1149 spapr->initrd_base + spapr->initrd_size)); 1150 1151 if (spapr->kernel_size) { 1152 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1153 cpu_to_be64(spapr->kernel_size) }; 1154 1155 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1156 &kprop, sizeof(kprop))); 1157 if (spapr->kernel_le) { 1158 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1159 } 1160 } 1161 if (boot_menu) { 1162 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1163 } 1164 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1165 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1166 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1167 1168 if (cb && bootlist) { 1169 int i; 1170 1171 for (i = 0; i < cb; i++) { 1172 if (bootlist[i] == '\n') { 1173 bootlist[i] = ' '; 1174 } 1175 } 1176 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1177 } 1178 1179 if (boot_device && strlen(boot_device)) { 1180 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1181 } 1182 1183 if (!spapr->has_graphics && stdout_path) { 1184 /* 1185 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1186 * kernel. New platforms should only use the "stdout-path" property. Set 1187 * the new property and continue using older property to remain 1188 * compatible with the existing firmware. 1189 */ 1190 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1191 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1192 } 1193 1194 spapr_dt_ov5_platform_support(fdt, chosen); 1195 1196 g_free(stdout_path); 1197 g_free(bootlist); 1198 } 1199 1200 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 1201 { 1202 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1203 * KVM to work under pHyp with some guest co-operation */ 1204 int hypervisor; 1205 uint8_t hypercall[16]; 1206 1207 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1208 /* indicate KVM hypercall interface */ 1209 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1210 if (kvmppc_has_cap_fixup_hcalls()) { 1211 /* 1212 * Older KVM versions with older guest kernels were broken 1213 * with the magic page, don't allow the guest to map it. 1214 */ 1215 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1216 sizeof(hypercall))) { 1217 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1218 hypercall, sizeof(hypercall))); 1219 } 1220 } 1221 } 1222 1223 static void *spapr_build_fdt(sPAPRMachineState *spapr, 1224 hwaddr rtas_addr, 1225 hwaddr rtas_size) 1226 { 1227 MachineState *machine = MACHINE(spapr); 1228 MachineClass *mc = MACHINE_GET_CLASS(machine); 1229 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1230 int ret; 1231 void *fdt; 1232 sPAPRPHBState *phb; 1233 char *buf; 1234 1235 fdt = g_malloc0(FDT_MAX_SIZE); 1236 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1237 1238 /* Root node */ 1239 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1240 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1241 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1242 1243 /* 1244 * Add info to guest to indentify which host is it being run on 1245 * and what is the uuid of the guest 1246 */ 1247 if (kvmppc_get_host_model(&buf)) { 1248 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1249 g_free(buf); 1250 } 1251 if (kvmppc_get_host_serial(&buf)) { 1252 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1253 g_free(buf); 1254 } 1255 1256 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1257 1258 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1259 if (qemu_uuid_set) { 1260 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1261 } 1262 g_free(buf); 1263 1264 if (qemu_get_vm_name()) { 1265 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1266 qemu_get_vm_name())); 1267 } 1268 1269 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1270 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1271 1272 /* /interrupt controller */ 1273 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP); 1274 1275 ret = spapr_populate_memory(spapr, fdt); 1276 if (ret < 0) { 1277 error_report("couldn't setup memory nodes in fdt"); 1278 exit(1); 1279 } 1280 1281 /* /vdevice */ 1282 spapr_dt_vdevice(spapr->vio_bus, fdt); 1283 1284 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1285 ret = spapr_rng_populate_dt(fdt); 1286 if (ret < 0) { 1287 error_report("could not set up rng device in the fdt"); 1288 exit(1); 1289 } 1290 } 1291 1292 QLIST_FOREACH(phb, &spapr->phbs, list) { 1293 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt, smc->irq->nr_msis); 1294 if (ret < 0) { 1295 error_report("couldn't setup PCI devices in fdt"); 1296 exit(1); 1297 } 1298 } 1299 1300 /* cpus */ 1301 spapr_populate_cpus_dt_node(fdt, spapr); 1302 1303 if (smc->dr_lmb_enabled) { 1304 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1305 } 1306 1307 if (mc->has_hotpluggable_cpus) { 1308 int offset = fdt_path_offset(fdt, "/cpus"); 1309 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1310 SPAPR_DR_CONNECTOR_TYPE_CPU); 1311 if (ret < 0) { 1312 error_report("Couldn't set up CPU DR device tree properties"); 1313 exit(1); 1314 } 1315 } 1316 1317 /* /event-sources */ 1318 spapr_dt_events(spapr, fdt); 1319 1320 /* /rtas */ 1321 spapr_dt_rtas(spapr, fdt); 1322 1323 /* /chosen */ 1324 spapr_dt_chosen(spapr, fdt); 1325 1326 /* /hypervisor */ 1327 if (kvm_enabled()) { 1328 spapr_dt_hypervisor(spapr, fdt); 1329 } 1330 1331 /* Build memory reserve map */ 1332 if (spapr->kernel_size) { 1333 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1334 } 1335 if (spapr->initrd_size) { 1336 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1337 } 1338 1339 /* ibm,client-architecture-support updates */ 1340 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1341 if (ret < 0) { 1342 error_report("couldn't setup CAS properties fdt"); 1343 exit(1); 1344 } 1345 1346 return fdt; 1347 } 1348 1349 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1350 { 1351 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1352 } 1353 1354 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1355 PowerPCCPU *cpu) 1356 { 1357 CPUPPCState *env = &cpu->env; 1358 1359 /* The TCG path should also be holding the BQL at this point */ 1360 g_assert(qemu_mutex_iothread_locked()); 1361 1362 if (msr_pr) { 1363 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1364 env->gpr[3] = H_PRIVILEGE; 1365 } else { 1366 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1367 } 1368 } 1369 1370 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1371 { 1372 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1373 1374 return spapr->patb_entry; 1375 } 1376 1377 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1378 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1379 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1380 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1381 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1382 1383 /* 1384 * Get the fd to access the kernel htab, re-opening it if necessary 1385 */ 1386 static int get_htab_fd(sPAPRMachineState *spapr) 1387 { 1388 Error *local_err = NULL; 1389 1390 if (spapr->htab_fd >= 0) { 1391 return spapr->htab_fd; 1392 } 1393 1394 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1395 if (spapr->htab_fd < 0) { 1396 error_report_err(local_err); 1397 } 1398 1399 return spapr->htab_fd; 1400 } 1401 1402 void close_htab_fd(sPAPRMachineState *spapr) 1403 { 1404 if (spapr->htab_fd >= 0) { 1405 close(spapr->htab_fd); 1406 } 1407 spapr->htab_fd = -1; 1408 } 1409 1410 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1411 { 1412 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1413 1414 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1415 } 1416 1417 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1418 { 1419 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1420 1421 assert(kvm_enabled()); 1422 1423 if (!spapr->htab) { 1424 return 0; 1425 } 1426 1427 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1428 } 1429 1430 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1431 hwaddr ptex, int n) 1432 { 1433 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1434 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1435 1436 if (!spapr->htab) { 1437 /* 1438 * HTAB is controlled by KVM. Fetch into temporary buffer 1439 */ 1440 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1441 kvmppc_read_hptes(hptes, ptex, n); 1442 return hptes; 1443 } 1444 1445 /* 1446 * HTAB is controlled by QEMU. Just point to the internally 1447 * accessible PTEG. 1448 */ 1449 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1450 } 1451 1452 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1453 const ppc_hash_pte64_t *hptes, 1454 hwaddr ptex, int n) 1455 { 1456 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1457 1458 if (!spapr->htab) { 1459 g_free((void *)hptes); 1460 } 1461 1462 /* Nothing to do for qemu managed HPT */ 1463 } 1464 1465 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1466 uint64_t pte0, uint64_t pte1) 1467 { 1468 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1469 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1470 1471 if (!spapr->htab) { 1472 kvmppc_write_hpte(ptex, pte0, pte1); 1473 } else { 1474 stq_p(spapr->htab + offset, pte0); 1475 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1476 } 1477 } 1478 1479 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1480 { 1481 int shift; 1482 1483 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1484 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1485 * that's much more than is needed for Linux guests */ 1486 shift = ctz64(pow2ceil(ramsize)) - 7; 1487 shift = MAX(shift, 18); /* Minimum architected size */ 1488 shift = MIN(shift, 46); /* Maximum architected size */ 1489 return shift; 1490 } 1491 1492 void spapr_free_hpt(sPAPRMachineState *spapr) 1493 { 1494 g_free(spapr->htab); 1495 spapr->htab = NULL; 1496 spapr->htab_shift = 0; 1497 close_htab_fd(spapr); 1498 } 1499 1500 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1501 Error **errp) 1502 { 1503 long rc; 1504 1505 /* Clean up any HPT info from a previous boot */ 1506 spapr_free_hpt(spapr); 1507 1508 rc = kvmppc_reset_htab(shift); 1509 if (rc < 0) { 1510 /* kernel-side HPT needed, but couldn't allocate one */ 1511 error_setg_errno(errp, errno, 1512 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1513 shift); 1514 /* This is almost certainly fatal, but if the caller really 1515 * wants to carry on with shift == 0, it's welcome to try */ 1516 } else if (rc > 0) { 1517 /* kernel-side HPT allocated */ 1518 if (rc != shift) { 1519 error_setg(errp, 1520 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1521 shift, rc); 1522 } 1523 1524 spapr->htab_shift = shift; 1525 spapr->htab = NULL; 1526 } else { 1527 /* kernel-side HPT not needed, allocate in userspace instead */ 1528 size_t size = 1ULL << shift; 1529 int i; 1530 1531 spapr->htab = qemu_memalign(size, size); 1532 if (!spapr->htab) { 1533 error_setg_errno(errp, errno, 1534 "Could not allocate HPT of order %d", shift); 1535 return; 1536 } 1537 1538 memset(spapr->htab, 0, size); 1539 spapr->htab_shift = shift; 1540 1541 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1542 DIRTY_HPTE(HPTE(spapr->htab, i)); 1543 } 1544 } 1545 /* We're setting up a hash table, so that means we're not radix */ 1546 spapr->patb_entry = 0; 1547 } 1548 1549 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1550 { 1551 int hpt_shift; 1552 1553 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1554 || (spapr->cas_reboot 1555 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1556 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1557 } else { 1558 uint64_t current_ram_size; 1559 1560 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1561 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1562 } 1563 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1564 1565 if (spapr->vrma_adjust) { 1566 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1567 spapr->htab_shift); 1568 } 1569 } 1570 1571 static int spapr_reset_drcs(Object *child, void *opaque) 1572 { 1573 sPAPRDRConnector *drc = 1574 (sPAPRDRConnector *) object_dynamic_cast(child, 1575 TYPE_SPAPR_DR_CONNECTOR); 1576 1577 if (drc) { 1578 spapr_drc_reset(drc); 1579 } 1580 1581 return 0; 1582 } 1583 1584 static void spapr_machine_reset(void) 1585 { 1586 MachineState *machine = MACHINE(qdev_get_machine()); 1587 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1588 PowerPCCPU *first_ppc_cpu; 1589 uint32_t rtas_limit; 1590 hwaddr rtas_addr, fdt_addr; 1591 void *fdt; 1592 int rc; 1593 1594 spapr_caps_apply(spapr); 1595 1596 first_ppc_cpu = POWERPC_CPU(first_cpu); 1597 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1598 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1599 spapr->max_compat_pvr)) { 1600 /* If using KVM with radix mode available, VCPUs can be started 1601 * without a HPT because KVM will start them in radix mode. 1602 * Set the GR bit in PATB so that we know there is no HPT. */ 1603 spapr->patb_entry = PATBE1_GR; 1604 } else { 1605 spapr_setup_hpt_and_vrma(spapr); 1606 } 1607 1608 /* if this reset wasn't generated by CAS, we should reset our 1609 * negotiated options and start from scratch */ 1610 if (!spapr->cas_reboot) { 1611 spapr_ovec_cleanup(spapr->ov5_cas); 1612 spapr->ov5_cas = spapr_ovec_new(); 1613 1614 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1615 } 1616 1617 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1618 spapr_irq_msi_reset(spapr); 1619 } 1620 1621 qemu_devices_reset(); 1622 1623 /* DRC reset may cause a device to be unplugged. This will cause troubles 1624 * if this device is used by another device (eg, a running vhost backend 1625 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1626 * situations, we reset DRCs after all devices have been reset. 1627 */ 1628 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1629 1630 spapr_clear_pending_events(spapr); 1631 1632 /* 1633 * We place the device tree and RTAS just below either the top of the RMA, 1634 * or just below 2GB, whichever is lowere, so that it can be 1635 * processed with 32-bit real mode code if necessary 1636 */ 1637 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1638 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1639 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1640 1641 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1642 1643 spapr_load_rtas(spapr, fdt, rtas_addr); 1644 1645 rc = fdt_pack(fdt); 1646 1647 /* Should only fail if we've built a corrupted tree */ 1648 assert(rc == 0); 1649 1650 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1651 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1652 fdt_totalsize(fdt), FDT_MAX_SIZE); 1653 exit(1); 1654 } 1655 1656 /* Load the fdt */ 1657 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1658 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1659 g_free(fdt); 1660 1661 /* Set up the entry state */ 1662 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1663 first_ppc_cpu->env.gpr[5] = 0; 1664 1665 spapr->cas_reboot = false; 1666 } 1667 1668 static void spapr_create_nvram(sPAPRMachineState *spapr) 1669 { 1670 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1671 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1672 1673 if (dinfo) { 1674 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1675 &error_fatal); 1676 } 1677 1678 qdev_init_nofail(dev); 1679 1680 spapr->nvram = (struct sPAPRNVRAM *)dev; 1681 } 1682 1683 static void spapr_rtc_create(sPAPRMachineState *spapr) 1684 { 1685 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1686 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1687 &error_fatal); 1688 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1689 &error_fatal); 1690 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1691 "date", &error_fatal); 1692 } 1693 1694 /* Returns whether we want to use VGA or not */ 1695 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1696 { 1697 switch (vga_interface_type) { 1698 case VGA_NONE: 1699 return false; 1700 case VGA_DEVICE: 1701 return true; 1702 case VGA_STD: 1703 case VGA_VIRTIO: 1704 return pci_vga_init(pci_bus) != NULL; 1705 default: 1706 error_setg(errp, 1707 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1708 return false; 1709 } 1710 } 1711 1712 static int spapr_pre_load(void *opaque) 1713 { 1714 int rc; 1715 1716 rc = spapr_caps_pre_load(opaque); 1717 if (rc) { 1718 return rc; 1719 } 1720 1721 return 0; 1722 } 1723 1724 static int spapr_post_load(void *opaque, int version_id) 1725 { 1726 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1727 int err = 0; 1728 1729 err = spapr_caps_post_migration(spapr); 1730 if (err) { 1731 return err; 1732 } 1733 1734 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1735 CPUState *cs; 1736 CPU_FOREACH(cs) { 1737 PowerPCCPU *cpu = POWERPC_CPU(cs); 1738 icp_resend(ICP(cpu->intc)); 1739 } 1740 } 1741 1742 /* In earlier versions, there was no separate qdev for the PAPR 1743 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1744 * So when migrating from those versions, poke the incoming offset 1745 * value into the RTC device */ 1746 if (version_id < 3) { 1747 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1748 } 1749 1750 if (kvm_enabled() && spapr->patb_entry) { 1751 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1752 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1753 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1754 1755 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1756 if (err) { 1757 error_report("Process table config unsupported by the host"); 1758 return -EINVAL; 1759 } 1760 } 1761 1762 return err; 1763 } 1764 1765 static int spapr_pre_save(void *opaque) 1766 { 1767 int rc; 1768 1769 rc = spapr_caps_pre_save(opaque); 1770 if (rc) { 1771 return rc; 1772 } 1773 1774 return 0; 1775 } 1776 1777 static bool version_before_3(void *opaque, int version_id) 1778 { 1779 return version_id < 3; 1780 } 1781 1782 static bool spapr_pending_events_needed(void *opaque) 1783 { 1784 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1785 return !QTAILQ_EMPTY(&spapr->pending_events); 1786 } 1787 1788 static const VMStateDescription vmstate_spapr_event_entry = { 1789 .name = "spapr_event_log_entry", 1790 .version_id = 1, 1791 .minimum_version_id = 1, 1792 .fields = (VMStateField[]) { 1793 VMSTATE_UINT32(summary, sPAPREventLogEntry), 1794 VMSTATE_UINT32(extended_length, sPAPREventLogEntry), 1795 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, 1796 NULL, extended_length), 1797 VMSTATE_END_OF_LIST() 1798 }, 1799 }; 1800 1801 static const VMStateDescription vmstate_spapr_pending_events = { 1802 .name = "spapr_pending_events", 1803 .version_id = 1, 1804 .minimum_version_id = 1, 1805 .needed = spapr_pending_events_needed, 1806 .fields = (VMStateField[]) { 1807 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, 1808 vmstate_spapr_event_entry, sPAPREventLogEntry, next), 1809 VMSTATE_END_OF_LIST() 1810 }, 1811 }; 1812 1813 static bool spapr_ov5_cas_needed(void *opaque) 1814 { 1815 sPAPRMachineState *spapr = opaque; 1816 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1817 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1818 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1819 bool cas_needed; 1820 1821 /* Prior to the introduction of sPAPROptionVector, we had two option 1822 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1823 * Both of these options encode machine topology into the device-tree 1824 * in such a way that the now-booted OS should still be able to interact 1825 * appropriately with QEMU regardless of what options were actually 1826 * negotiatied on the source side. 1827 * 1828 * As such, we can avoid migrating the CAS-negotiated options if these 1829 * are the only options available on the current machine/platform. 1830 * Since these are the only options available for pseries-2.7 and 1831 * earlier, this allows us to maintain old->new/new->old migration 1832 * compatibility. 1833 * 1834 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1835 * via default pseries-2.8 machines and explicit command-line parameters. 1836 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1837 * of the actual CAS-negotiated values to continue working properly. For 1838 * example, availability of memory unplug depends on knowing whether 1839 * OV5_HP_EVT was negotiated via CAS. 1840 * 1841 * Thus, for any cases where the set of available CAS-negotiatable 1842 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1843 * include the CAS-negotiated options in the migration stream, unless 1844 * if they affect boot time behaviour only. 1845 */ 1846 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1847 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1848 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1849 1850 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1851 * the mask itself since in the future it's possible "legacy" bits may be 1852 * removed via machine options, which could generate a false positive 1853 * that breaks migration. 1854 */ 1855 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1856 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1857 1858 spapr_ovec_cleanup(ov5_mask); 1859 spapr_ovec_cleanup(ov5_legacy); 1860 spapr_ovec_cleanup(ov5_removed); 1861 1862 return cas_needed; 1863 } 1864 1865 static const VMStateDescription vmstate_spapr_ov5_cas = { 1866 .name = "spapr_option_vector_ov5_cas", 1867 .version_id = 1, 1868 .minimum_version_id = 1, 1869 .needed = spapr_ov5_cas_needed, 1870 .fields = (VMStateField[]) { 1871 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1872 vmstate_spapr_ovec, sPAPROptionVector), 1873 VMSTATE_END_OF_LIST() 1874 }, 1875 }; 1876 1877 static bool spapr_patb_entry_needed(void *opaque) 1878 { 1879 sPAPRMachineState *spapr = opaque; 1880 1881 return !!spapr->patb_entry; 1882 } 1883 1884 static const VMStateDescription vmstate_spapr_patb_entry = { 1885 .name = "spapr_patb_entry", 1886 .version_id = 1, 1887 .minimum_version_id = 1, 1888 .needed = spapr_patb_entry_needed, 1889 .fields = (VMStateField[]) { 1890 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1891 VMSTATE_END_OF_LIST() 1892 }, 1893 }; 1894 1895 static bool spapr_irq_map_needed(void *opaque) 1896 { 1897 sPAPRMachineState *spapr = opaque; 1898 1899 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1900 } 1901 1902 static const VMStateDescription vmstate_spapr_irq_map = { 1903 .name = "spapr_irq_map", 1904 .version_id = 1, 1905 .minimum_version_id = 1, 1906 .needed = spapr_irq_map_needed, 1907 .fields = (VMStateField[]) { 1908 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr), 1909 VMSTATE_END_OF_LIST() 1910 }, 1911 }; 1912 1913 static const VMStateDescription vmstate_spapr = { 1914 .name = "spapr", 1915 .version_id = 3, 1916 .minimum_version_id = 1, 1917 .pre_load = spapr_pre_load, 1918 .post_load = spapr_post_load, 1919 .pre_save = spapr_pre_save, 1920 .fields = (VMStateField[]) { 1921 /* used to be @next_irq */ 1922 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1923 1924 /* RTC offset */ 1925 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1926 1927 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1928 VMSTATE_END_OF_LIST() 1929 }, 1930 .subsections = (const VMStateDescription*[]) { 1931 &vmstate_spapr_ov5_cas, 1932 &vmstate_spapr_patb_entry, 1933 &vmstate_spapr_pending_events, 1934 &vmstate_spapr_cap_htm, 1935 &vmstate_spapr_cap_vsx, 1936 &vmstate_spapr_cap_dfp, 1937 &vmstate_spapr_cap_cfpc, 1938 &vmstate_spapr_cap_sbbc, 1939 &vmstate_spapr_cap_ibs, 1940 &vmstate_spapr_irq_map, 1941 NULL 1942 } 1943 }; 1944 1945 static int htab_save_setup(QEMUFile *f, void *opaque) 1946 { 1947 sPAPRMachineState *spapr = opaque; 1948 1949 /* "Iteration" header */ 1950 if (!spapr->htab_shift) { 1951 qemu_put_be32(f, -1); 1952 } else { 1953 qemu_put_be32(f, spapr->htab_shift); 1954 } 1955 1956 if (spapr->htab) { 1957 spapr->htab_save_index = 0; 1958 spapr->htab_first_pass = true; 1959 } else { 1960 if (spapr->htab_shift) { 1961 assert(kvm_enabled()); 1962 } 1963 } 1964 1965 1966 return 0; 1967 } 1968 1969 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, 1970 int chunkstart, int n_valid, int n_invalid) 1971 { 1972 qemu_put_be32(f, chunkstart); 1973 qemu_put_be16(f, n_valid); 1974 qemu_put_be16(f, n_invalid); 1975 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1976 HASH_PTE_SIZE_64 * n_valid); 1977 } 1978 1979 static void htab_save_end_marker(QEMUFile *f) 1980 { 1981 qemu_put_be32(f, 0); 1982 qemu_put_be16(f, 0); 1983 qemu_put_be16(f, 0); 1984 } 1985 1986 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1987 int64_t max_ns) 1988 { 1989 bool has_timeout = max_ns != -1; 1990 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1991 int index = spapr->htab_save_index; 1992 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1993 1994 assert(spapr->htab_first_pass); 1995 1996 do { 1997 int chunkstart; 1998 1999 /* Consume invalid HPTEs */ 2000 while ((index < htabslots) 2001 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2002 CLEAN_HPTE(HPTE(spapr->htab, index)); 2003 index++; 2004 } 2005 2006 /* Consume valid HPTEs */ 2007 chunkstart = index; 2008 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2009 && HPTE_VALID(HPTE(spapr->htab, index))) { 2010 CLEAN_HPTE(HPTE(spapr->htab, index)); 2011 index++; 2012 } 2013 2014 if (index > chunkstart) { 2015 int n_valid = index - chunkstart; 2016 2017 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2018 2019 if (has_timeout && 2020 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2021 break; 2022 } 2023 } 2024 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2025 2026 if (index >= htabslots) { 2027 assert(index == htabslots); 2028 index = 0; 2029 spapr->htab_first_pass = false; 2030 } 2031 spapr->htab_save_index = index; 2032 } 2033 2034 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 2035 int64_t max_ns) 2036 { 2037 bool final = max_ns < 0; 2038 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2039 int examined = 0, sent = 0; 2040 int index = spapr->htab_save_index; 2041 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2042 2043 assert(!spapr->htab_first_pass); 2044 2045 do { 2046 int chunkstart, invalidstart; 2047 2048 /* Consume non-dirty HPTEs */ 2049 while ((index < htabslots) 2050 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2051 index++; 2052 examined++; 2053 } 2054 2055 chunkstart = index; 2056 /* Consume valid dirty HPTEs */ 2057 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2058 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2059 && HPTE_VALID(HPTE(spapr->htab, index))) { 2060 CLEAN_HPTE(HPTE(spapr->htab, index)); 2061 index++; 2062 examined++; 2063 } 2064 2065 invalidstart = index; 2066 /* Consume invalid dirty HPTEs */ 2067 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2068 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2069 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2070 CLEAN_HPTE(HPTE(spapr->htab, index)); 2071 index++; 2072 examined++; 2073 } 2074 2075 if (index > chunkstart) { 2076 int n_valid = invalidstart - chunkstart; 2077 int n_invalid = index - invalidstart; 2078 2079 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2080 sent += index - chunkstart; 2081 2082 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2083 break; 2084 } 2085 } 2086 2087 if (examined >= htabslots) { 2088 break; 2089 } 2090 2091 if (index >= htabslots) { 2092 assert(index == htabslots); 2093 index = 0; 2094 } 2095 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2096 2097 if (index >= htabslots) { 2098 assert(index == htabslots); 2099 index = 0; 2100 } 2101 2102 spapr->htab_save_index = index; 2103 2104 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2105 } 2106 2107 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2108 #define MAX_KVM_BUF_SIZE 2048 2109 2110 static int htab_save_iterate(QEMUFile *f, void *opaque) 2111 { 2112 sPAPRMachineState *spapr = opaque; 2113 int fd; 2114 int rc = 0; 2115 2116 /* Iteration header */ 2117 if (!spapr->htab_shift) { 2118 qemu_put_be32(f, -1); 2119 return 1; 2120 } else { 2121 qemu_put_be32(f, 0); 2122 } 2123 2124 if (!spapr->htab) { 2125 assert(kvm_enabled()); 2126 2127 fd = get_htab_fd(spapr); 2128 if (fd < 0) { 2129 return fd; 2130 } 2131 2132 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2133 if (rc < 0) { 2134 return rc; 2135 } 2136 } else if (spapr->htab_first_pass) { 2137 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2138 } else { 2139 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2140 } 2141 2142 htab_save_end_marker(f); 2143 2144 return rc; 2145 } 2146 2147 static int htab_save_complete(QEMUFile *f, void *opaque) 2148 { 2149 sPAPRMachineState *spapr = opaque; 2150 int fd; 2151 2152 /* Iteration header */ 2153 if (!spapr->htab_shift) { 2154 qemu_put_be32(f, -1); 2155 return 0; 2156 } else { 2157 qemu_put_be32(f, 0); 2158 } 2159 2160 if (!spapr->htab) { 2161 int rc; 2162 2163 assert(kvm_enabled()); 2164 2165 fd = get_htab_fd(spapr); 2166 if (fd < 0) { 2167 return fd; 2168 } 2169 2170 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2171 if (rc < 0) { 2172 return rc; 2173 } 2174 } else { 2175 if (spapr->htab_first_pass) { 2176 htab_save_first_pass(f, spapr, -1); 2177 } 2178 htab_save_later_pass(f, spapr, -1); 2179 } 2180 2181 /* End marker */ 2182 htab_save_end_marker(f); 2183 2184 return 0; 2185 } 2186 2187 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2188 { 2189 sPAPRMachineState *spapr = opaque; 2190 uint32_t section_hdr; 2191 int fd = -1; 2192 Error *local_err = NULL; 2193 2194 if (version_id < 1 || version_id > 1) { 2195 error_report("htab_load() bad version"); 2196 return -EINVAL; 2197 } 2198 2199 section_hdr = qemu_get_be32(f); 2200 2201 if (section_hdr == -1) { 2202 spapr_free_hpt(spapr); 2203 return 0; 2204 } 2205 2206 if (section_hdr) { 2207 /* First section gives the htab size */ 2208 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2209 if (local_err) { 2210 error_report_err(local_err); 2211 return -EINVAL; 2212 } 2213 return 0; 2214 } 2215 2216 if (!spapr->htab) { 2217 assert(kvm_enabled()); 2218 2219 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2220 if (fd < 0) { 2221 error_report_err(local_err); 2222 return fd; 2223 } 2224 } 2225 2226 while (true) { 2227 uint32_t index; 2228 uint16_t n_valid, n_invalid; 2229 2230 index = qemu_get_be32(f); 2231 n_valid = qemu_get_be16(f); 2232 n_invalid = qemu_get_be16(f); 2233 2234 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2235 /* End of Stream */ 2236 break; 2237 } 2238 2239 if ((index + n_valid + n_invalid) > 2240 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2241 /* Bad index in stream */ 2242 error_report( 2243 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2244 index, n_valid, n_invalid, spapr->htab_shift); 2245 return -EINVAL; 2246 } 2247 2248 if (spapr->htab) { 2249 if (n_valid) { 2250 qemu_get_buffer(f, HPTE(spapr->htab, index), 2251 HASH_PTE_SIZE_64 * n_valid); 2252 } 2253 if (n_invalid) { 2254 memset(HPTE(spapr->htab, index + n_valid), 0, 2255 HASH_PTE_SIZE_64 * n_invalid); 2256 } 2257 } else { 2258 int rc; 2259 2260 assert(fd >= 0); 2261 2262 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2263 if (rc < 0) { 2264 return rc; 2265 } 2266 } 2267 } 2268 2269 if (!spapr->htab) { 2270 assert(fd >= 0); 2271 close(fd); 2272 } 2273 2274 return 0; 2275 } 2276 2277 static void htab_save_cleanup(void *opaque) 2278 { 2279 sPAPRMachineState *spapr = opaque; 2280 2281 close_htab_fd(spapr); 2282 } 2283 2284 static SaveVMHandlers savevm_htab_handlers = { 2285 .save_setup = htab_save_setup, 2286 .save_live_iterate = htab_save_iterate, 2287 .save_live_complete_precopy = htab_save_complete, 2288 .save_cleanup = htab_save_cleanup, 2289 .load_state = htab_load, 2290 }; 2291 2292 static void spapr_boot_set(void *opaque, const char *boot_device, 2293 Error **errp) 2294 { 2295 MachineState *machine = MACHINE(opaque); 2296 machine->boot_order = g_strdup(boot_device); 2297 } 2298 2299 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 2300 { 2301 MachineState *machine = MACHINE(spapr); 2302 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2303 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2304 int i; 2305 2306 for (i = 0; i < nr_lmbs; i++) { 2307 uint64_t addr; 2308 2309 addr = i * lmb_size + machine->device_memory->base; 2310 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2311 addr / lmb_size); 2312 } 2313 } 2314 2315 /* 2316 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2317 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2318 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2319 */ 2320 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2321 { 2322 int i; 2323 2324 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2325 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2326 " is not aligned to %" PRIu64 " MiB", 2327 machine->ram_size, 2328 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2329 return; 2330 } 2331 2332 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2333 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2334 " is not aligned to %" PRIu64 " MiB", 2335 machine->ram_size, 2336 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2337 return; 2338 } 2339 2340 for (i = 0; i < nb_numa_nodes; i++) { 2341 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2342 error_setg(errp, 2343 "Node %d memory size 0x%" PRIx64 2344 " is not aligned to %" PRIu64 " MiB", 2345 i, numa_info[i].node_mem, 2346 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2347 return; 2348 } 2349 } 2350 } 2351 2352 /* find cpu slot in machine->possible_cpus by core_id */ 2353 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2354 { 2355 int index = id / smp_threads; 2356 2357 if (index >= ms->possible_cpus->len) { 2358 return NULL; 2359 } 2360 if (idx) { 2361 *idx = index; 2362 } 2363 return &ms->possible_cpus->cpus[index]; 2364 } 2365 2366 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) 2367 { 2368 Error *local_err = NULL; 2369 bool vsmt_user = !!spapr->vsmt; 2370 int kvm_smt = kvmppc_smt_threads(); 2371 int ret; 2372 2373 if (!kvm_enabled() && (smp_threads > 1)) { 2374 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2375 "on a pseries machine"); 2376 goto out; 2377 } 2378 if (!is_power_of_2(smp_threads)) { 2379 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2380 "machine because it must be a power of 2", smp_threads); 2381 goto out; 2382 } 2383 2384 /* Detemine the VSMT mode to use: */ 2385 if (vsmt_user) { 2386 if (spapr->vsmt < smp_threads) { 2387 error_setg(&local_err, "Cannot support VSMT mode %d" 2388 " because it must be >= threads/core (%d)", 2389 spapr->vsmt, smp_threads); 2390 goto out; 2391 } 2392 /* In this case, spapr->vsmt has been set by the command line */ 2393 } else { 2394 /* 2395 * Default VSMT value is tricky, because we need it to be as 2396 * consistent as possible (for migration), but this requires 2397 * changing it for at least some existing cases. We pick 8 as 2398 * the value that we'd get with KVM on POWER8, the 2399 * overwhelmingly common case in production systems. 2400 */ 2401 spapr->vsmt = MAX(8, smp_threads); 2402 } 2403 2404 /* KVM: If necessary, set the SMT mode: */ 2405 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2406 ret = kvmppc_set_smt_threads(spapr->vsmt); 2407 if (ret) { 2408 /* Looks like KVM isn't able to change VSMT mode */ 2409 error_setg(&local_err, 2410 "Failed to set KVM's VSMT mode to %d (errno %d)", 2411 spapr->vsmt, ret); 2412 /* We can live with that if the default one is big enough 2413 * for the number of threads, and a submultiple of the one 2414 * we want. In this case we'll waste some vcpu ids, but 2415 * behaviour will be correct */ 2416 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2417 warn_report_err(local_err); 2418 local_err = NULL; 2419 goto out; 2420 } else { 2421 if (!vsmt_user) { 2422 error_append_hint(&local_err, 2423 "On PPC, a VM with %d threads/core" 2424 " on a host with %d threads/core" 2425 " requires the use of VSMT mode %d.\n", 2426 smp_threads, kvm_smt, spapr->vsmt); 2427 } 2428 kvmppc_hint_smt_possible(&local_err); 2429 goto out; 2430 } 2431 } 2432 } 2433 /* else TCG: nothing to do currently */ 2434 out: 2435 error_propagate(errp, local_err); 2436 } 2437 2438 static void spapr_init_cpus(sPAPRMachineState *spapr) 2439 { 2440 MachineState *machine = MACHINE(spapr); 2441 MachineClass *mc = MACHINE_GET_CLASS(machine); 2442 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2443 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2444 const CPUArchIdList *possible_cpus; 2445 int boot_cores_nr = smp_cpus / smp_threads; 2446 int i; 2447 2448 possible_cpus = mc->possible_cpu_arch_ids(machine); 2449 if (mc->has_hotpluggable_cpus) { 2450 if (smp_cpus % smp_threads) { 2451 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2452 smp_cpus, smp_threads); 2453 exit(1); 2454 } 2455 if (max_cpus % smp_threads) { 2456 error_report("max_cpus (%u) must be multiple of threads (%u)", 2457 max_cpus, smp_threads); 2458 exit(1); 2459 } 2460 } else { 2461 if (max_cpus != smp_cpus) { 2462 error_report("This machine version does not support CPU hotplug"); 2463 exit(1); 2464 } 2465 boot_cores_nr = possible_cpus->len; 2466 } 2467 2468 /* VSMT must be set in order to be able to compute VCPU ids, ie to 2469 * call xics_max_server_number() or spapr_vcpu_id(). 2470 */ 2471 spapr_set_vsmt_mode(spapr, &error_fatal); 2472 2473 if (smc->pre_2_10_has_unused_icps) { 2474 int i; 2475 2476 for (i = 0; i < xics_max_server_number(spapr); i++) { 2477 /* Dummy entries get deregistered when real ICPState objects 2478 * are registered during CPU core hotplug. 2479 */ 2480 pre_2_10_vmstate_register_dummy_icp(i); 2481 } 2482 } 2483 2484 for (i = 0; i < possible_cpus->len; i++) { 2485 int core_id = i * smp_threads; 2486 2487 if (mc->has_hotpluggable_cpus) { 2488 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2489 spapr_vcpu_id(spapr, core_id)); 2490 } 2491 2492 if (i < boot_cores_nr) { 2493 Object *core = object_new(type); 2494 int nr_threads = smp_threads; 2495 2496 /* Handle the partially filled core for older machine types */ 2497 if ((i + 1) * smp_threads >= smp_cpus) { 2498 nr_threads = smp_cpus - i * smp_threads; 2499 } 2500 2501 object_property_set_int(core, nr_threads, "nr-threads", 2502 &error_fatal); 2503 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2504 &error_fatal); 2505 object_property_set_bool(core, true, "realized", &error_fatal); 2506 2507 object_unref(core); 2508 } 2509 } 2510 } 2511 2512 /* pSeries LPAR / sPAPR hardware init */ 2513 static void spapr_machine_init(MachineState *machine) 2514 { 2515 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2516 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2517 const char *kernel_filename = machine->kernel_filename; 2518 const char *initrd_filename = machine->initrd_filename; 2519 PCIHostState *phb; 2520 int i; 2521 MemoryRegion *sysmem = get_system_memory(); 2522 MemoryRegion *ram = g_new(MemoryRegion, 1); 2523 hwaddr node0_size = spapr_node0_size(machine); 2524 long load_limit, fw_size; 2525 char *filename; 2526 Error *resize_hpt_err = NULL; 2527 2528 msi_nonbroken = true; 2529 2530 QLIST_INIT(&spapr->phbs); 2531 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2532 2533 /* Determine capabilities to run with */ 2534 spapr_caps_init(spapr); 2535 2536 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2537 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2538 /* 2539 * If the user explicitly requested a mode we should either 2540 * supply it, or fail completely (which we do below). But if 2541 * it's not set explicitly, we reset our mode to something 2542 * that works 2543 */ 2544 if (resize_hpt_err) { 2545 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2546 error_free(resize_hpt_err); 2547 resize_hpt_err = NULL; 2548 } else { 2549 spapr->resize_hpt = smc->resize_hpt_default; 2550 } 2551 } 2552 2553 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2554 2555 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2556 /* 2557 * User requested HPT resize, but this host can't supply it. Bail out 2558 */ 2559 error_report_err(resize_hpt_err); 2560 exit(1); 2561 } 2562 2563 spapr->rma_size = node0_size; 2564 2565 /* With KVM, we don't actually know whether KVM supports an 2566 * unbounded RMA (PR KVM) or is limited by the hash table size 2567 * (HV KVM using VRMA), so we always assume the latter 2568 * 2569 * In that case, we also limit the initial allocations for RTAS 2570 * etc... to 256M since we have no way to know what the VRMA size 2571 * is going to be as it depends on the size of the hash table 2572 * which isn't determined yet. 2573 */ 2574 if (kvm_enabled()) { 2575 spapr->vrma_adjust = 1; 2576 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2577 } 2578 2579 /* Actually we don't support unbounded RMA anymore since we added 2580 * proper emulation of HV mode. The max we can get is 16G which 2581 * also happens to be what we configure for PAPR mode so make sure 2582 * we don't do anything bigger than that 2583 */ 2584 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2585 2586 if (spapr->rma_size > node0_size) { 2587 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2588 spapr->rma_size); 2589 exit(1); 2590 } 2591 2592 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2593 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2594 2595 /* Set up Interrupt Controller before we create the VCPUs */ 2596 smc->irq->init(spapr, &error_fatal); 2597 2598 /* Set up containers for ibm,client-architecture-support negotiated options 2599 */ 2600 spapr->ov5 = spapr_ovec_new(); 2601 spapr->ov5_cas = spapr_ovec_new(); 2602 2603 if (smc->dr_lmb_enabled) { 2604 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2605 spapr_validate_node_memory(machine, &error_fatal); 2606 } 2607 2608 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2609 2610 /* advertise support for dedicated HP event source to guests */ 2611 if (spapr->use_hotplug_event_source) { 2612 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2613 } 2614 2615 /* advertise support for HPT resizing */ 2616 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2617 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2618 } 2619 2620 /* advertise support for ibm,dyamic-memory-v2 */ 2621 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2622 2623 /* init CPUs */ 2624 spapr_init_cpus(spapr); 2625 2626 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2627 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2628 spapr->max_compat_pvr)) { 2629 /* KVM and TCG always allow GTSE with radix... */ 2630 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2631 } 2632 /* ... but not with hash (currently). */ 2633 2634 if (kvm_enabled()) { 2635 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2636 kvmppc_enable_logical_ci_hcalls(); 2637 kvmppc_enable_set_mode_hcall(); 2638 2639 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2640 kvmppc_enable_clear_ref_mod_hcalls(); 2641 } 2642 2643 /* allocate RAM */ 2644 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2645 machine->ram_size); 2646 memory_region_add_subregion(sysmem, 0, ram); 2647 2648 /* always allocate the device memory information */ 2649 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2650 2651 /* initialize hotplug memory address space */ 2652 if (machine->ram_size < machine->maxram_size) { 2653 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2654 /* 2655 * Limit the number of hotpluggable memory slots to half the number 2656 * slots that KVM supports, leaving the other half for PCI and other 2657 * devices. However ensure that number of slots doesn't drop below 32. 2658 */ 2659 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2660 SPAPR_MAX_RAM_SLOTS; 2661 2662 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2663 max_memslots = SPAPR_MAX_RAM_SLOTS; 2664 } 2665 if (machine->ram_slots > max_memslots) { 2666 error_report("Specified number of memory slots %" 2667 PRIu64" exceeds max supported %d", 2668 machine->ram_slots, max_memslots); 2669 exit(1); 2670 } 2671 2672 machine->device_memory->base = ROUND_UP(machine->ram_size, 2673 SPAPR_DEVICE_MEM_ALIGN); 2674 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2675 "device-memory", device_mem_size); 2676 memory_region_add_subregion(sysmem, machine->device_memory->base, 2677 &machine->device_memory->mr); 2678 } 2679 2680 if (smc->dr_lmb_enabled) { 2681 spapr_create_lmb_dr_connectors(spapr); 2682 } 2683 2684 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2685 if (!filename) { 2686 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2687 exit(1); 2688 } 2689 spapr->rtas_size = get_image_size(filename); 2690 if (spapr->rtas_size < 0) { 2691 error_report("Could not get size of LPAR rtas '%s'", filename); 2692 exit(1); 2693 } 2694 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2695 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2696 error_report("Could not load LPAR rtas '%s'", filename); 2697 exit(1); 2698 } 2699 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2700 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2701 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2702 exit(1); 2703 } 2704 g_free(filename); 2705 2706 /* Set up RTAS event infrastructure */ 2707 spapr_events_init(spapr); 2708 2709 /* Set up the RTC RTAS interfaces */ 2710 spapr_rtc_create(spapr); 2711 2712 /* Set up VIO bus */ 2713 spapr->vio_bus = spapr_vio_bus_init(); 2714 2715 for (i = 0; i < serial_max_hds(); i++) { 2716 if (serial_hd(i)) { 2717 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2718 } 2719 } 2720 2721 /* We always have at least the nvram device on VIO */ 2722 spapr_create_nvram(spapr); 2723 2724 /* Set up PCI */ 2725 spapr_pci_rtas_init(); 2726 2727 phb = spapr_create_phb(spapr, 0); 2728 2729 for (i = 0; i < nb_nics; i++) { 2730 NICInfo *nd = &nd_table[i]; 2731 2732 if (!nd->model) { 2733 nd->model = g_strdup("spapr-vlan"); 2734 } 2735 2736 if (g_str_equal(nd->model, "spapr-vlan") || 2737 g_str_equal(nd->model, "ibmveth")) { 2738 spapr_vlan_create(spapr->vio_bus, nd); 2739 } else { 2740 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2741 } 2742 } 2743 2744 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2745 spapr_vscsi_create(spapr->vio_bus); 2746 } 2747 2748 /* Graphics */ 2749 if (spapr_vga_init(phb->bus, &error_fatal)) { 2750 spapr->has_graphics = true; 2751 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2752 } 2753 2754 if (machine->usb) { 2755 if (smc->use_ohci_by_default) { 2756 pci_create_simple(phb->bus, -1, "pci-ohci"); 2757 } else { 2758 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2759 } 2760 2761 if (spapr->has_graphics) { 2762 USBBus *usb_bus = usb_bus_find(-1); 2763 2764 usb_create_simple(usb_bus, "usb-kbd"); 2765 usb_create_simple(usb_bus, "usb-mouse"); 2766 } 2767 } 2768 2769 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2770 error_report( 2771 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2772 MIN_RMA_SLOF); 2773 exit(1); 2774 } 2775 2776 if (kernel_filename) { 2777 uint64_t lowaddr = 0; 2778 2779 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2780 NULL, NULL, &lowaddr, NULL, 1, 2781 PPC_ELF_MACHINE, 0, 0); 2782 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2783 spapr->kernel_size = load_elf(kernel_filename, 2784 translate_kernel_address, NULL, NULL, 2785 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2786 0, 0); 2787 spapr->kernel_le = spapr->kernel_size > 0; 2788 } 2789 if (spapr->kernel_size < 0) { 2790 error_report("error loading %s: %s", kernel_filename, 2791 load_elf_strerror(spapr->kernel_size)); 2792 exit(1); 2793 } 2794 2795 /* load initrd */ 2796 if (initrd_filename) { 2797 /* Try to locate the initrd in the gap between the kernel 2798 * and the firmware. Add a bit of space just in case 2799 */ 2800 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2801 + 0x1ffff) & ~0xffff; 2802 spapr->initrd_size = load_image_targphys(initrd_filename, 2803 spapr->initrd_base, 2804 load_limit 2805 - spapr->initrd_base); 2806 if (spapr->initrd_size < 0) { 2807 error_report("could not load initial ram disk '%s'", 2808 initrd_filename); 2809 exit(1); 2810 } 2811 } 2812 } 2813 2814 if (bios_name == NULL) { 2815 bios_name = FW_FILE_NAME; 2816 } 2817 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2818 if (!filename) { 2819 error_report("Could not find LPAR firmware '%s'", bios_name); 2820 exit(1); 2821 } 2822 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2823 if (fw_size <= 0) { 2824 error_report("Could not load LPAR firmware '%s'", filename); 2825 exit(1); 2826 } 2827 g_free(filename); 2828 2829 /* FIXME: Should register things through the MachineState's qdev 2830 * interface, this is a legacy from the sPAPREnvironment structure 2831 * which predated MachineState but had a similar function */ 2832 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2833 register_savevm_live(NULL, "spapr/htab", -1, 1, 2834 &savevm_htab_handlers, spapr); 2835 2836 qemu_register_boot_set(spapr_boot_set, spapr); 2837 2838 if (kvm_enabled()) { 2839 /* to stop and start vmclock */ 2840 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2841 &spapr->tb); 2842 2843 kvmppc_spapr_enable_inkernel_multitce(); 2844 } 2845 } 2846 2847 static int spapr_kvm_type(const char *vm_type) 2848 { 2849 if (!vm_type) { 2850 return 0; 2851 } 2852 2853 if (!strcmp(vm_type, "HV")) { 2854 return 1; 2855 } 2856 2857 if (!strcmp(vm_type, "PR")) { 2858 return 2; 2859 } 2860 2861 error_report("Unknown kvm-type specified '%s'", vm_type); 2862 exit(1); 2863 } 2864 2865 /* 2866 * Implementation of an interface to adjust firmware path 2867 * for the bootindex property handling. 2868 */ 2869 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2870 DeviceState *dev) 2871 { 2872 #define CAST(type, obj, name) \ 2873 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2874 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2875 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2876 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2877 2878 if (d) { 2879 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2880 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2881 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2882 2883 if (spapr) { 2884 /* 2885 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2886 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2887 * in the top 16 bits of the 64-bit LUN 2888 */ 2889 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2890 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2891 (uint64_t)id << 48); 2892 } else if (virtio) { 2893 /* 2894 * We use SRP luns of the form 01000000 | (target << 8) | lun 2895 * in the top 32 bits of the 64-bit LUN 2896 * Note: the quote above is from SLOF and it is wrong, 2897 * the actual binding is: 2898 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2899 */ 2900 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2901 if (d->lun >= 256) { 2902 /* Use the LUN "flat space addressing method" */ 2903 id |= 0x4000; 2904 } 2905 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2906 (uint64_t)id << 32); 2907 } else if (usb) { 2908 /* 2909 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2910 * in the top 32 bits of the 64-bit LUN 2911 */ 2912 unsigned usb_port = atoi(usb->port->path); 2913 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2914 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2915 (uint64_t)id << 32); 2916 } 2917 } 2918 2919 /* 2920 * SLOF probes the USB devices, and if it recognizes that the device is a 2921 * storage device, it changes its name to "storage" instead of "usb-host", 2922 * and additionally adds a child node for the SCSI LUN, so the correct 2923 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2924 */ 2925 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2926 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2927 if (usb_host_dev_is_scsi_storage(usbdev)) { 2928 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2929 } 2930 } 2931 2932 if (phb) { 2933 /* Replace "pci" with "pci@800000020000000" */ 2934 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2935 } 2936 2937 if (vsc) { 2938 /* Same logic as virtio above */ 2939 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 2940 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 2941 } 2942 2943 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 2944 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 2945 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 2946 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 2947 } 2948 2949 return NULL; 2950 } 2951 2952 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2953 { 2954 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2955 2956 return g_strdup(spapr->kvm_type); 2957 } 2958 2959 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2960 { 2961 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2962 2963 g_free(spapr->kvm_type); 2964 spapr->kvm_type = g_strdup(value); 2965 } 2966 2967 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2968 { 2969 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2970 2971 return spapr->use_hotplug_event_source; 2972 } 2973 2974 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2975 Error **errp) 2976 { 2977 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2978 2979 spapr->use_hotplug_event_source = value; 2980 } 2981 2982 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 2983 { 2984 return true; 2985 } 2986 2987 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 2988 { 2989 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2990 2991 switch (spapr->resize_hpt) { 2992 case SPAPR_RESIZE_HPT_DEFAULT: 2993 return g_strdup("default"); 2994 case SPAPR_RESIZE_HPT_DISABLED: 2995 return g_strdup("disabled"); 2996 case SPAPR_RESIZE_HPT_ENABLED: 2997 return g_strdup("enabled"); 2998 case SPAPR_RESIZE_HPT_REQUIRED: 2999 return g_strdup("required"); 3000 } 3001 g_assert_not_reached(); 3002 } 3003 3004 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3005 { 3006 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3007 3008 if (strcmp(value, "default") == 0) { 3009 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3010 } else if (strcmp(value, "disabled") == 0) { 3011 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3012 } else if (strcmp(value, "enabled") == 0) { 3013 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3014 } else if (strcmp(value, "required") == 0) { 3015 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3016 } else { 3017 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3018 } 3019 } 3020 3021 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3022 void *opaque, Error **errp) 3023 { 3024 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3025 } 3026 3027 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3028 void *opaque, Error **errp) 3029 { 3030 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3031 } 3032 3033 static void spapr_instance_init(Object *obj) 3034 { 3035 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3036 3037 spapr->htab_fd = -1; 3038 spapr->use_hotplug_event_source = true; 3039 object_property_add_str(obj, "kvm-type", 3040 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3041 object_property_set_description(obj, "kvm-type", 3042 "Specifies the KVM virtualization mode (HV, PR)", 3043 NULL); 3044 object_property_add_bool(obj, "modern-hotplug-events", 3045 spapr_get_modern_hotplug_events, 3046 spapr_set_modern_hotplug_events, 3047 NULL); 3048 object_property_set_description(obj, "modern-hotplug-events", 3049 "Use dedicated hotplug event mechanism in" 3050 " place of standard EPOW events when possible" 3051 " (required for memory hot-unplug support)", 3052 NULL); 3053 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3054 "Maximum permitted CPU compatibility mode", 3055 &error_fatal); 3056 3057 object_property_add_str(obj, "resize-hpt", 3058 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3059 object_property_set_description(obj, "resize-hpt", 3060 "Resizing of the Hash Page Table (enabled, disabled, required)", 3061 NULL); 3062 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3063 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3064 object_property_set_description(obj, "vsmt", 3065 "Virtual SMT: KVM behaves as if this were" 3066 " the host's SMT mode", &error_abort); 3067 object_property_add_bool(obj, "vfio-no-msix-emulation", 3068 spapr_get_msix_emulation, NULL, NULL); 3069 } 3070 3071 static void spapr_machine_finalizefn(Object *obj) 3072 { 3073 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3074 3075 g_free(spapr->kvm_type); 3076 } 3077 3078 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3079 { 3080 cpu_synchronize_state(cs); 3081 ppc_cpu_do_system_reset(cs); 3082 } 3083 3084 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3085 { 3086 CPUState *cs; 3087 3088 CPU_FOREACH(cs) { 3089 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3090 } 3091 } 3092 3093 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3094 uint32_t node, bool dedicated_hp_event_source, 3095 Error **errp) 3096 { 3097 sPAPRDRConnector *drc; 3098 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3099 int i, fdt_offset, fdt_size; 3100 void *fdt; 3101 uint64_t addr = addr_start; 3102 bool hotplugged = spapr_drc_hotplugged(dev); 3103 Error *local_err = NULL; 3104 3105 for (i = 0; i < nr_lmbs; i++) { 3106 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3107 addr / SPAPR_MEMORY_BLOCK_SIZE); 3108 g_assert(drc); 3109 3110 fdt = create_device_tree(&fdt_size); 3111 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 3112 SPAPR_MEMORY_BLOCK_SIZE); 3113 3114 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3115 if (local_err) { 3116 while (addr > addr_start) { 3117 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3118 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3119 addr / SPAPR_MEMORY_BLOCK_SIZE); 3120 spapr_drc_detach(drc); 3121 } 3122 g_free(fdt); 3123 error_propagate(errp, local_err); 3124 return; 3125 } 3126 if (!hotplugged) { 3127 spapr_drc_reset(drc); 3128 } 3129 addr += SPAPR_MEMORY_BLOCK_SIZE; 3130 } 3131 /* send hotplug notification to the 3132 * guest only in case of hotplugged memory 3133 */ 3134 if (hotplugged) { 3135 if (dedicated_hp_event_source) { 3136 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3137 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3138 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3139 nr_lmbs, 3140 spapr_drc_index(drc)); 3141 } else { 3142 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3143 nr_lmbs); 3144 } 3145 } 3146 } 3147 3148 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3149 Error **errp) 3150 { 3151 Error *local_err = NULL; 3152 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3153 PCDIMMDevice *dimm = PC_DIMM(dev); 3154 uint64_t size, addr; 3155 uint32_t node; 3156 3157 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3158 3159 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3160 if (local_err) { 3161 goto out; 3162 } 3163 3164 addr = object_property_get_uint(OBJECT(dimm), 3165 PC_DIMM_ADDR_PROP, &local_err); 3166 if (local_err) { 3167 goto out_unplug; 3168 } 3169 3170 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, 3171 &error_abort); 3172 spapr_add_lmbs(dev, addr, size, node, 3173 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3174 &local_err); 3175 if (local_err) { 3176 goto out_unplug; 3177 } 3178 3179 return; 3180 3181 out_unplug: 3182 pc_dimm_unplug(dimm, MACHINE(ms)); 3183 out: 3184 error_propagate(errp, local_err); 3185 } 3186 3187 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3188 Error **errp) 3189 { 3190 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3191 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3192 PCDIMMDevice *dimm = PC_DIMM(dev); 3193 Error *local_err = NULL; 3194 uint64_t size; 3195 Object *memdev; 3196 hwaddr pagesize; 3197 3198 if (!smc->dr_lmb_enabled) { 3199 error_setg(errp, "Memory hotplug not supported for this machine"); 3200 return; 3201 } 3202 3203 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3204 if (local_err) { 3205 error_propagate(errp, local_err); 3206 return; 3207 } 3208 3209 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3210 error_setg(errp, "Hotplugged memory size must be a multiple of " 3211 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3212 return; 3213 } 3214 3215 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3216 &error_abort); 3217 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3218 spapr_check_pagesize(spapr, pagesize, &local_err); 3219 if (local_err) { 3220 error_propagate(errp, local_err); 3221 return; 3222 } 3223 3224 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3225 } 3226 3227 struct sPAPRDIMMState { 3228 PCDIMMDevice *dimm; 3229 uint32_t nr_lmbs; 3230 QTAILQ_ENTRY(sPAPRDIMMState) next; 3231 }; 3232 3233 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 3234 PCDIMMDevice *dimm) 3235 { 3236 sPAPRDIMMState *dimm_state = NULL; 3237 3238 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3239 if (dimm_state->dimm == dimm) { 3240 break; 3241 } 3242 } 3243 return dimm_state; 3244 } 3245 3246 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 3247 uint32_t nr_lmbs, 3248 PCDIMMDevice *dimm) 3249 { 3250 sPAPRDIMMState *ds = NULL; 3251 3252 /* 3253 * If this request is for a DIMM whose removal had failed earlier 3254 * (due to guest's refusal to remove the LMBs), we would have this 3255 * dimm already in the pending_dimm_unplugs list. In that 3256 * case don't add again. 3257 */ 3258 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3259 if (!ds) { 3260 ds = g_malloc0(sizeof(sPAPRDIMMState)); 3261 ds->nr_lmbs = nr_lmbs; 3262 ds->dimm = dimm; 3263 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3264 } 3265 return ds; 3266 } 3267 3268 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 3269 sPAPRDIMMState *dimm_state) 3270 { 3271 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3272 g_free(dimm_state); 3273 } 3274 3275 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 3276 PCDIMMDevice *dimm) 3277 { 3278 sPAPRDRConnector *drc; 3279 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3280 &error_abort); 3281 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3282 uint32_t avail_lmbs = 0; 3283 uint64_t addr_start, addr; 3284 int i; 3285 3286 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3287 &error_abort); 3288 3289 addr = addr_start; 3290 for (i = 0; i < nr_lmbs; i++) { 3291 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3292 addr / SPAPR_MEMORY_BLOCK_SIZE); 3293 g_assert(drc); 3294 if (drc->dev) { 3295 avail_lmbs++; 3296 } 3297 addr += SPAPR_MEMORY_BLOCK_SIZE; 3298 } 3299 3300 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3301 } 3302 3303 /* Callback to be called during DRC release. */ 3304 void spapr_lmb_release(DeviceState *dev) 3305 { 3306 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3307 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3308 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3309 3310 /* This information will get lost if a migration occurs 3311 * during the unplug process. In this case recover it. */ 3312 if (ds == NULL) { 3313 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3314 g_assert(ds); 3315 /* The DRC being examined by the caller at least must be counted */ 3316 g_assert(ds->nr_lmbs); 3317 } 3318 3319 if (--ds->nr_lmbs) { 3320 return; 3321 } 3322 3323 /* 3324 * Now that all the LMBs have been removed by the guest, call the 3325 * unplug handler chain. This can never fail. 3326 */ 3327 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3328 } 3329 3330 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3331 { 3332 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3333 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3334 3335 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3336 object_unparent(OBJECT(dev)); 3337 spapr_pending_dimm_unplugs_remove(spapr, ds); 3338 } 3339 3340 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3341 DeviceState *dev, Error **errp) 3342 { 3343 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3344 Error *local_err = NULL; 3345 PCDIMMDevice *dimm = PC_DIMM(dev); 3346 uint32_t nr_lmbs; 3347 uint64_t size, addr_start, addr; 3348 int i; 3349 sPAPRDRConnector *drc; 3350 3351 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3352 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3353 3354 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3355 &local_err); 3356 if (local_err) { 3357 goto out; 3358 } 3359 3360 /* 3361 * An existing pending dimm state for this DIMM means that there is an 3362 * unplug operation in progress, waiting for the spapr_lmb_release 3363 * callback to complete the job (BQL can't cover that far). In this case, 3364 * bail out to avoid detaching DRCs that were already released. 3365 */ 3366 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3367 error_setg(&local_err, 3368 "Memory unplug already in progress for device %s", 3369 dev->id); 3370 goto out; 3371 } 3372 3373 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3374 3375 addr = addr_start; 3376 for (i = 0; i < nr_lmbs; i++) { 3377 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3378 addr / SPAPR_MEMORY_BLOCK_SIZE); 3379 g_assert(drc); 3380 3381 spapr_drc_detach(drc); 3382 addr += SPAPR_MEMORY_BLOCK_SIZE; 3383 } 3384 3385 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3386 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3387 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3388 nr_lmbs, spapr_drc_index(drc)); 3389 out: 3390 error_propagate(errp, local_err); 3391 } 3392 3393 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 3394 sPAPRMachineState *spapr) 3395 { 3396 PowerPCCPU *cpu = POWERPC_CPU(cs); 3397 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3398 int id = spapr_get_vcpu_id(cpu); 3399 void *fdt; 3400 int offset, fdt_size; 3401 char *nodename; 3402 3403 fdt = create_device_tree(&fdt_size); 3404 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3405 offset = fdt_add_subnode(fdt, 0, nodename); 3406 3407 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3408 g_free(nodename); 3409 3410 *fdt_offset = offset; 3411 return fdt; 3412 } 3413 3414 /* Callback to be called during DRC release. */ 3415 void spapr_core_release(DeviceState *dev) 3416 { 3417 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3418 3419 /* Call the unplug handler chain. This can never fail. */ 3420 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3421 } 3422 3423 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3424 { 3425 MachineState *ms = MACHINE(hotplug_dev); 3426 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3427 CPUCore *cc = CPU_CORE(dev); 3428 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3429 3430 if (smc->pre_2_10_has_unused_icps) { 3431 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3432 int i; 3433 3434 for (i = 0; i < cc->nr_threads; i++) { 3435 CPUState *cs = CPU(sc->threads[i]); 3436 3437 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3438 } 3439 } 3440 3441 assert(core_slot); 3442 core_slot->cpu = NULL; 3443 object_unparent(OBJECT(dev)); 3444 } 3445 3446 static 3447 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3448 Error **errp) 3449 { 3450 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3451 int index; 3452 sPAPRDRConnector *drc; 3453 CPUCore *cc = CPU_CORE(dev); 3454 3455 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3456 error_setg(errp, "Unable to find CPU core with core-id: %d", 3457 cc->core_id); 3458 return; 3459 } 3460 if (index == 0) { 3461 error_setg(errp, "Boot CPU core may not be unplugged"); 3462 return; 3463 } 3464 3465 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3466 spapr_vcpu_id(spapr, cc->core_id)); 3467 g_assert(drc); 3468 3469 spapr_drc_detach(drc); 3470 3471 spapr_hotplug_req_remove_by_index(drc); 3472 } 3473 3474 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3475 Error **errp) 3476 { 3477 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3478 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3479 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3480 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3481 CPUCore *cc = CPU_CORE(dev); 3482 CPUState *cs = CPU(core->threads[0]); 3483 sPAPRDRConnector *drc; 3484 Error *local_err = NULL; 3485 CPUArchId *core_slot; 3486 int index; 3487 bool hotplugged = spapr_drc_hotplugged(dev); 3488 3489 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3490 if (!core_slot) { 3491 error_setg(errp, "Unable to find CPU core with core-id: %d", 3492 cc->core_id); 3493 return; 3494 } 3495 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3496 spapr_vcpu_id(spapr, cc->core_id)); 3497 3498 g_assert(drc || !mc->has_hotpluggable_cpus); 3499 3500 if (drc) { 3501 void *fdt; 3502 int fdt_offset; 3503 3504 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 3505 3506 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3507 if (local_err) { 3508 g_free(fdt); 3509 error_propagate(errp, local_err); 3510 return; 3511 } 3512 3513 if (hotplugged) { 3514 /* 3515 * Send hotplug notification interrupt to the guest only 3516 * in case of hotplugged CPUs. 3517 */ 3518 spapr_hotplug_req_add_by_index(drc); 3519 } else { 3520 spapr_drc_reset(drc); 3521 } 3522 } 3523 3524 core_slot->cpu = OBJECT(dev); 3525 3526 if (smc->pre_2_10_has_unused_icps) { 3527 int i; 3528 3529 for (i = 0; i < cc->nr_threads; i++) { 3530 cs = CPU(core->threads[i]); 3531 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3532 } 3533 } 3534 } 3535 3536 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3537 Error **errp) 3538 { 3539 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3540 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3541 Error *local_err = NULL; 3542 CPUCore *cc = CPU_CORE(dev); 3543 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3544 const char *type = object_get_typename(OBJECT(dev)); 3545 CPUArchId *core_slot; 3546 int index; 3547 3548 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3549 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3550 goto out; 3551 } 3552 3553 if (strcmp(base_core_type, type)) { 3554 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3555 goto out; 3556 } 3557 3558 if (cc->core_id % smp_threads) { 3559 error_setg(&local_err, "invalid core id %d", cc->core_id); 3560 goto out; 3561 } 3562 3563 /* 3564 * In general we should have homogeneous threads-per-core, but old 3565 * (pre hotplug support) machine types allow the last core to have 3566 * reduced threads as a compatibility hack for when we allowed 3567 * total vcpus not a multiple of threads-per-core. 3568 */ 3569 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3570 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3571 cc->nr_threads, smp_threads); 3572 goto out; 3573 } 3574 3575 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3576 if (!core_slot) { 3577 error_setg(&local_err, "core id %d out of range", cc->core_id); 3578 goto out; 3579 } 3580 3581 if (core_slot->cpu) { 3582 error_setg(&local_err, "core %d already populated", cc->core_id); 3583 goto out; 3584 } 3585 3586 numa_cpu_pre_plug(core_slot, dev, &local_err); 3587 3588 out: 3589 error_propagate(errp, local_err); 3590 } 3591 3592 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3593 DeviceState *dev, Error **errp) 3594 { 3595 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3596 spapr_memory_plug(hotplug_dev, dev, errp); 3597 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3598 spapr_core_plug(hotplug_dev, dev, errp); 3599 } 3600 } 3601 3602 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 3603 DeviceState *dev, Error **errp) 3604 { 3605 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3606 spapr_memory_unplug(hotplug_dev, dev); 3607 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3608 spapr_core_unplug(hotplug_dev, dev); 3609 } 3610 } 3611 3612 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3613 DeviceState *dev, Error **errp) 3614 { 3615 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3616 MachineClass *mc = MACHINE_GET_CLASS(sms); 3617 3618 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3619 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3620 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3621 } else { 3622 /* NOTE: this means there is a window after guest reset, prior to 3623 * CAS negotiation, where unplug requests will fail due to the 3624 * capability not being detected yet. This is a bit different than 3625 * the case with PCI unplug, where the events will be queued and 3626 * eventually handled by the guest after boot 3627 */ 3628 error_setg(errp, "Memory hot unplug not supported for this guest"); 3629 } 3630 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3631 if (!mc->has_hotpluggable_cpus) { 3632 error_setg(errp, "CPU hot unplug not supported on this machine"); 3633 return; 3634 } 3635 spapr_core_unplug_request(hotplug_dev, dev, errp); 3636 } 3637 } 3638 3639 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3640 DeviceState *dev, Error **errp) 3641 { 3642 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3643 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3644 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3645 spapr_core_pre_plug(hotplug_dev, dev, errp); 3646 } 3647 } 3648 3649 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3650 DeviceState *dev) 3651 { 3652 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3653 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3654 return HOTPLUG_HANDLER(machine); 3655 } 3656 return NULL; 3657 } 3658 3659 static CpuInstanceProperties 3660 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3661 { 3662 CPUArchId *core_slot; 3663 MachineClass *mc = MACHINE_GET_CLASS(machine); 3664 3665 /* make sure possible_cpu are intialized */ 3666 mc->possible_cpu_arch_ids(machine); 3667 /* get CPU core slot containing thread that matches cpu_index */ 3668 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3669 assert(core_slot); 3670 return core_slot->props; 3671 } 3672 3673 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 3674 { 3675 return idx / smp_cores % nb_numa_nodes; 3676 } 3677 3678 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3679 { 3680 int i; 3681 const char *core_type; 3682 int spapr_max_cores = max_cpus / smp_threads; 3683 MachineClass *mc = MACHINE_GET_CLASS(machine); 3684 3685 if (!mc->has_hotpluggable_cpus) { 3686 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3687 } 3688 if (machine->possible_cpus) { 3689 assert(machine->possible_cpus->len == spapr_max_cores); 3690 return machine->possible_cpus; 3691 } 3692 3693 core_type = spapr_get_cpu_core_type(machine->cpu_type); 3694 if (!core_type) { 3695 error_report("Unable to find sPAPR CPU Core definition"); 3696 exit(1); 3697 } 3698 3699 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3700 sizeof(CPUArchId) * spapr_max_cores); 3701 machine->possible_cpus->len = spapr_max_cores; 3702 for (i = 0; i < machine->possible_cpus->len; i++) { 3703 int core_id = i * smp_threads; 3704 3705 machine->possible_cpus->cpus[i].type = core_type; 3706 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3707 machine->possible_cpus->cpus[i].arch_id = core_id; 3708 machine->possible_cpus->cpus[i].props.has_core_id = true; 3709 machine->possible_cpus->cpus[i].props.core_id = core_id; 3710 } 3711 return machine->possible_cpus; 3712 } 3713 3714 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3715 uint64_t *buid, hwaddr *pio, 3716 hwaddr *mmio32, hwaddr *mmio64, 3717 unsigned n_dma, uint32_t *liobns, Error **errp) 3718 { 3719 /* 3720 * New-style PHB window placement. 3721 * 3722 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3723 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3724 * windows. 3725 * 3726 * Some guest kernels can't work with MMIO windows above 1<<46 3727 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3728 * 3729 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3730 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3731 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3732 * 1TiB 64-bit MMIO windows for each PHB. 3733 */ 3734 const uint64_t base_buid = 0x800000020000000ULL; 3735 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 3736 SPAPR_PCI_MEM64_WIN_SIZE - 1) 3737 int i; 3738 3739 /* Sanity check natural alignments */ 3740 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3741 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3742 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3743 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3744 /* Sanity check bounds */ 3745 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3746 SPAPR_PCI_MEM32_WIN_SIZE); 3747 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3748 SPAPR_PCI_MEM64_WIN_SIZE); 3749 3750 if (index >= SPAPR_MAX_PHBS) { 3751 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3752 SPAPR_MAX_PHBS - 1); 3753 return; 3754 } 3755 3756 *buid = base_buid + index; 3757 for (i = 0; i < n_dma; ++i) { 3758 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3759 } 3760 3761 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3762 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3763 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3764 } 3765 3766 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3767 { 3768 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3769 3770 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3771 } 3772 3773 static void spapr_ics_resend(XICSFabric *dev) 3774 { 3775 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3776 3777 ics_resend(spapr->ics); 3778 } 3779 3780 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 3781 { 3782 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 3783 3784 return cpu ? ICP(cpu->intc) : NULL; 3785 } 3786 3787 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3788 Monitor *mon) 3789 { 3790 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3791 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3792 3793 smc->irq->print_info(spapr, mon); 3794 } 3795 3796 int spapr_get_vcpu_id(PowerPCCPU *cpu) 3797 { 3798 return cpu->vcpu_id; 3799 } 3800 3801 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 3802 { 3803 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3804 int vcpu_id; 3805 3806 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 3807 3808 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 3809 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 3810 error_append_hint(errp, "Adjust the number of cpus to %d " 3811 "or try to raise the number of threads per core\n", 3812 vcpu_id * smp_threads / spapr->vsmt); 3813 return; 3814 } 3815 3816 cpu->vcpu_id = vcpu_id; 3817 } 3818 3819 PowerPCCPU *spapr_find_cpu(int vcpu_id) 3820 { 3821 CPUState *cs; 3822 3823 CPU_FOREACH(cs) { 3824 PowerPCCPU *cpu = POWERPC_CPU(cs); 3825 3826 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 3827 return cpu; 3828 } 3829 } 3830 3831 return NULL; 3832 } 3833 3834 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3835 { 3836 MachineClass *mc = MACHINE_CLASS(oc); 3837 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3838 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3839 NMIClass *nc = NMI_CLASS(oc); 3840 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3841 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3842 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3843 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3844 3845 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3846 mc->ignore_boot_device_suffixes = true; 3847 3848 /* 3849 * We set up the default / latest behaviour here. The class_init 3850 * functions for the specific versioned machine types can override 3851 * these details for backwards compatibility 3852 */ 3853 mc->init = spapr_machine_init; 3854 mc->reset = spapr_machine_reset; 3855 mc->block_default_type = IF_SCSI; 3856 mc->max_cpus = 1024; 3857 mc->no_parallel = 1; 3858 mc->default_boot_order = ""; 3859 mc->default_ram_size = 512 * MiB; 3860 mc->default_display = "std"; 3861 mc->kvm_type = spapr_kvm_type; 3862 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 3863 mc->pci_allow_0_address = true; 3864 assert(!mc->get_hotplug_handler); 3865 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3866 hc->pre_plug = spapr_machine_device_pre_plug; 3867 hc->plug = spapr_machine_device_plug; 3868 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 3869 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 3870 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3871 hc->unplug_request = spapr_machine_device_unplug_request; 3872 hc->unplug = spapr_machine_device_unplug; 3873 3874 smc->dr_lmb_enabled = true; 3875 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 3876 mc->has_hotpluggable_cpus = true; 3877 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 3878 fwc->get_dev_path = spapr_get_fw_dev_path; 3879 nc->nmi_monitor_handler = spapr_nmi; 3880 smc->phb_placement = spapr_phb_placement; 3881 vhc->hypercall = emulate_spapr_hypercall; 3882 vhc->hpt_mask = spapr_hpt_mask; 3883 vhc->map_hptes = spapr_map_hptes; 3884 vhc->unmap_hptes = spapr_unmap_hptes; 3885 vhc->store_hpte = spapr_store_hpte; 3886 vhc->get_patbe = spapr_get_patbe; 3887 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 3888 xic->ics_get = spapr_ics_get; 3889 xic->ics_resend = spapr_ics_resend; 3890 xic->icp_get = spapr_icp_get; 3891 ispc->print_info = spapr_pic_print_info; 3892 /* Force NUMA node memory size to be a multiple of 3893 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 3894 * in which LMBs are represented and hot-added 3895 */ 3896 mc->numa_mem_align_shift = 28; 3897 3898 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 3899 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 3900 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 3901 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 3902 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 3903 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 3904 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 3905 spapr_caps_add_properties(smc, &error_abort); 3906 smc->irq = &spapr_irq_xics; 3907 } 3908 3909 static const TypeInfo spapr_machine_info = { 3910 .name = TYPE_SPAPR_MACHINE, 3911 .parent = TYPE_MACHINE, 3912 .abstract = true, 3913 .instance_size = sizeof(sPAPRMachineState), 3914 .instance_init = spapr_instance_init, 3915 .instance_finalize = spapr_machine_finalizefn, 3916 .class_size = sizeof(sPAPRMachineClass), 3917 .class_init = spapr_machine_class_init, 3918 .interfaces = (InterfaceInfo[]) { 3919 { TYPE_FW_PATH_PROVIDER }, 3920 { TYPE_NMI }, 3921 { TYPE_HOTPLUG_HANDLER }, 3922 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 3923 { TYPE_XICS_FABRIC }, 3924 { TYPE_INTERRUPT_STATS_PROVIDER }, 3925 { } 3926 }, 3927 }; 3928 3929 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 3930 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 3931 void *data) \ 3932 { \ 3933 MachineClass *mc = MACHINE_CLASS(oc); \ 3934 spapr_machine_##suffix##_class_options(mc); \ 3935 if (latest) { \ 3936 mc->alias = "pseries"; \ 3937 mc->is_default = 1; \ 3938 } \ 3939 } \ 3940 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 3941 { \ 3942 MachineState *machine = MACHINE(obj); \ 3943 spapr_machine_##suffix##_instance_options(machine); \ 3944 } \ 3945 static const TypeInfo spapr_machine_##suffix##_info = { \ 3946 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 3947 .parent = TYPE_SPAPR_MACHINE, \ 3948 .class_init = spapr_machine_##suffix##_class_init, \ 3949 .instance_init = spapr_machine_##suffix##_instance_init, \ 3950 }; \ 3951 static void spapr_machine_register_##suffix(void) \ 3952 { \ 3953 type_register(&spapr_machine_##suffix##_info); \ 3954 } \ 3955 type_init(spapr_machine_register_##suffix) 3956 3957 /* 3958 * pseries-3.1 3959 */ 3960 static void spapr_machine_3_1_instance_options(MachineState *machine) 3961 { 3962 } 3963 3964 static void spapr_machine_3_1_class_options(MachineClass *mc) 3965 { 3966 /* Defaults for the latest behaviour inherited from the base class */ 3967 } 3968 3969 DEFINE_SPAPR_MACHINE(3_1, "3.1", true); 3970 3971 /* 3972 * pseries-3.0 3973 */ 3974 #define SPAPR_COMPAT_3_0 \ 3975 HW_COMPAT_3_0 3976 3977 static void spapr_machine_3_0_instance_options(MachineState *machine) 3978 { 3979 spapr_machine_3_1_instance_options(machine); 3980 } 3981 3982 static void spapr_machine_3_0_class_options(MachineClass *mc) 3983 { 3984 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3985 3986 spapr_machine_3_1_class_options(mc); 3987 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_0); 3988 3989 smc->legacy_irq_allocation = true; 3990 smc->irq = &spapr_irq_xics_legacy; 3991 } 3992 3993 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 3994 3995 /* 3996 * pseries-2.12 3997 */ 3998 #define SPAPR_COMPAT_2_12 \ 3999 HW_COMPAT_2_12 \ 4000 { \ 4001 .driver = TYPE_POWERPC_CPU, \ 4002 .property = "pre-3.0-migration", \ 4003 .value = "on", \ 4004 }, \ 4005 { \ 4006 .driver = TYPE_SPAPR_CPU_CORE, \ 4007 .property = "pre-3.0-migration", \ 4008 .value = "on", \ 4009 }, 4010 4011 static void spapr_machine_2_12_instance_options(MachineState *machine) 4012 { 4013 spapr_machine_3_0_instance_options(machine); 4014 } 4015 4016 static void spapr_machine_2_12_class_options(MachineClass *mc) 4017 { 4018 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4019 4020 spapr_machine_3_0_class_options(mc); 4021 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12); 4022 4023 /* We depend on kvm_enabled() to choose a default value for the 4024 * hpt-max-page-size capability. Of course we can't do it here 4025 * because this is too early and the HW accelerator isn't initialzed 4026 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4027 */ 4028 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4029 } 4030 4031 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4032 4033 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine) 4034 { 4035 spapr_machine_2_12_instance_options(machine); 4036 } 4037 4038 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4039 { 4040 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4041 4042 spapr_machine_2_12_class_options(mc); 4043 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4044 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4045 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4046 } 4047 4048 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4049 4050 /* 4051 * pseries-2.11 4052 */ 4053 #define SPAPR_COMPAT_2_11 \ 4054 HW_COMPAT_2_11 4055 4056 static void spapr_machine_2_11_instance_options(MachineState *machine) 4057 { 4058 spapr_machine_2_12_instance_options(machine); 4059 } 4060 4061 static void spapr_machine_2_11_class_options(MachineClass *mc) 4062 { 4063 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4064 4065 spapr_machine_2_12_class_options(mc); 4066 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4067 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11); 4068 } 4069 4070 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4071 4072 /* 4073 * pseries-2.10 4074 */ 4075 #define SPAPR_COMPAT_2_10 \ 4076 HW_COMPAT_2_10 4077 4078 static void spapr_machine_2_10_instance_options(MachineState *machine) 4079 { 4080 spapr_machine_2_11_instance_options(machine); 4081 } 4082 4083 static void spapr_machine_2_10_class_options(MachineClass *mc) 4084 { 4085 spapr_machine_2_11_class_options(mc); 4086 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10); 4087 } 4088 4089 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4090 4091 /* 4092 * pseries-2.9 4093 */ 4094 #define SPAPR_COMPAT_2_9 \ 4095 HW_COMPAT_2_9 \ 4096 { \ 4097 .driver = TYPE_POWERPC_CPU, \ 4098 .property = "pre-2.10-migration", \ 4099 .value = "on", \ 4100 }, \ 4101 4102 static void spapr_machine_2_9_instance_options(MachineState *machine) 4103 { 4104 spapr_machine_2_10_instance_options(machine); 4105 } 4106 4107 static void spapr_machine_2_9_class_options(MachineClass *mc) 4108 { 4109 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4110 4111 spapr_machine_2_10_class_options(mc); 4112 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); 4113 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4114 smc->pre_2_10_has_unused_icps = true; 4115 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4116 } 4117 4118 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4119 4120 /* 4121 * pseries-2.8 4122 */ 4123 #define SPAPR_COMPAT_2_8 \ 4124 HW_COMPAT_2_8 \ 4125 { \ 4126 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4127 .property = "pcie-extended-configuration-space", \ 4128 .value = "off", \ 4129 }, 4130 4131 static void spapr_machine_2_8_instance_options(MachineState *machine) 4132 { 4133 spapr_machine_2_9_instance_options(machine); 4134 } 4135 4136 static void spapr_machine_2_8_class_options(MachineClass *mc) 4137 { 4138 spapr_machine_2_9_class_options(mc); 4139 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 4140 mc->numa_mem_align_shift = 23; 4141 } 4142 4143 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4144 4145 /* 4146 * pseries-2.7 4147 */ 4148 #define SPAPR_COMPAT_2_7 \ 4149 HW_COMPAT_2_7 \ 4150 { \ 4151 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4152 .property = "mem_win_size", \ 4153 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 4154 }, \ 4155 { \ 4156 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4157 .property = "mem64_win_size", \ 4158 .value = "0", \ 4159 }, \ 4160 { \ 4161 .driver = TYPE_POWERPC_CPU, \ 4162 .property = "pre-2.8-migration", \ 4163 .value = "on", \ 4164 }, \ 4165 { \ 4166 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4167 .property = "pre-2.8-migration", \ 4168 .value = "on", \ 4169 }, 4170 4171 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 4172 uint64_t *buid, hwaddr *pio, 4173 hwaddr *mmio32, hwaddr *mmio64, 4174 unsigned n_dma, uint32_t *liobns, Error **errp) 4175 { 4176 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4177 const uint64_t base_buid = 0x800000020000000ULL; 4178 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4179 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4180 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4181 const uint32_t max_index = 255; 4182 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4183 4184 uint64_t ram_top = MACHINE(spapr)->ram_size; 4185 hwaddr phb0_base, phb_base; 4186 int i; 4187 4188 /* Do we have device memory? */ 4189 if (MACHINE(spapr)->maxram_size > ram_top) { 4190 /* Can't just use maxram_size, because there may be an 4191 * alignment gap between normal and device memory regions 4192 */ 4193 ram_top = MACHINE(spapr)->device_memory->base + 4194 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4195 } 4196 4197 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4198 4199 if (index > max_index) { 4200 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4201 max_index); 4202 return; 4203 } 4204 4205 *buid = base_buid + index; 4206 for (i = 0; i < n_dma; ++i) { 4207 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4208 } 4209 4210 phb_base = phb0_base + index * phb_spacing; 4211 *pio = phb_base + pio_offset; 4212 *mmio32 = phb_base + mmio_offset; 4213 /* 4214 * We don't set the 64-bit MMIO window, relying on the PHB's 4215 * fallback behaviour of automatically splitting a large "32-bit" 4216 * window into contiguous 32-bit and 64-bit windows 4217 */ 4218 } 4219 4220 static void spapr_machine_2_7_instance_options(MachineState *machine) 4221 { 4222 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 4223 4224 spapr_machine_2_8_instance_options(machine); 4225 spapr->use_hotplug_event_source = false; 4226 } 4227 4228 static void spapr_machine_2_7_class_options(MachineClass *mc) 4229 { 4230 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4231 4232 spapr_machine_2_8_class_options(mc); 4233 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4234 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 4235 smc->phb_placement = phb_placement_2_7; 4236 } 4237 4238 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4239 4240 /* 4241 * pseries-2.6 4242 */ 4243 #define SPAPR_COMPAT_2_6 \ 4244 HW_COMPAT_2_6 \ 4245 { \ 4246 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4247 .property = "ddw",\ 4248 .value = stringify(off),\ 4249 }, 4250 4251 static void spapr_machine_2_6_instance_options(MachineState *machine) 4252 { 4253 spapr_machine_2_7_instance_options(machine); 4254 } 4255 4256 static void spapr_machine_2_6_class_options(MachineClass *mc) 4257 { 4258 spapr_machine_2_7_class_options(mc); 4259 mc->has_hotpluggable_cpus = false; 4260 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 4261 } 4262 4263 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4264 4265 /* 4266 * pseries-2.5 4267 */ 4268 #define SPAPR_COMPAT_2_5 \ 4269 HW_COMPAT_2_5 \ 4270 { \ 4271 .driver = "spapr-vlan", \ 4272 .property = "use-rx-buffer-pools", \ 4273 .value = "off", \ 4274 }, 4275 4276 static void spapr_machine_2_5_instance_options(MachineState *machine) 4277 { 4278 spapr_machine_2_6_instance_options(machine); 4279 } 4280 4281 static void spapr_machine_2_5_class_options(MachineClass *mc) 4282 { 4283 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4284 4285 spapr_machine_2_6_class_options(mc); 4286 smc->use_ohci_by_default = true; 4287 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 4288 } 4289 4290 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4291 4292 /* 4293 * pseries-2.4 4294 */ 4295 #define SPAPR_COMPAT_2_4 \ 4296 HW_COMPAT_2_4 4297 4298 static void spapr_machine_2_4_instance_options(MachineState *machine) 4299 { 4300 spapr_machine_2_5_instance_options(machine); 4301 } 4302 4303 static void spapr_machine_2_4_class_options(MachineClass *mc) 4304 { 4305 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4306 4307 spapr_machine_2_5_class_options(mc); 4308 smc->dr_lmb_enabled = false; 4309 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 4310 } 4311 4312 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4313 4314 /* 4315 * pseries-2.3 4316 */ 4317 #define SPAPR_COMPAT_2_3 \ 4318 HW_COMPAT_2_3 \ 4319 {\ 4320 .driver = "spapr-pci-host-bridge",\ 4321 .property = "dynamic-reconfiguration",\ 4322 .value = "off",\ 4323 }, 4324 4325 static void spapr_machine_2_3_instance_options(MachineState *machine) 4326 { 4327 spapr_machine_2_4_instance_options(machine); 4328 } 4329 4330 static void spapr_machine_2_3_class_options(MachineClass *mc) 4331 { 4332 spapr_machine_2_4_class_options(mc); 4333 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 4334 } 4335 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4336 4337 /* 4338 * pseries-2.2 4339 */ 4340 4341 #define SPAPR_COMPAT_2_2 \ 4342 HW_COMPAT_2_2 \ 4343 {\ 4344 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4345 .property = "mem_win_size",\ 4346 .value = "0x20000000",\ 4347 }, 4348 4349 static void spapr_machine_2_2_instance_options(MachineState *machine) 4350 { 4351 spapr_machine_2_3_instance_options(machine); 4352 machine->suppress_vmdesc = true; 4353 } 4354 4355 static void spapr_machine_2_2_class_options(MachineClass *mc) 4356 { 4357 spapr_machine_2_3_class_options(mc); 4358 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 4359 } 4360 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4361 4362 /* 4363 * pseries-2.1 4364 */ 4365 #define SPAPR_COMPAT_2_1 \ 4366 HW_COMPAT_2_1 4367 4368 static void spapr_machine_2_1_instance_options(MachineState *machine) 4369 { 4370 spapr_machine_2_2_instance_options(machine); 4371 } 4372 4373 static void spapr_machine_2_1_class_options(MachineClass *mc) 4374 { 4375 spapr_machine_2_2_class_options(mc); 4376 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 4377 } 4378 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4379 4380 static void spapr_machine_register_types(void) 4381 { 4382 type_register_static(&spapr_machine_info); 4383 } 4384 4385 type_init(spapr_machine_register_types) 4386