xref: /openbmc/qemu/hw/ppc/spapr.c (revision 0b1183e3)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "qom/cpu.h"
47 
48 #include "hw/boards.h"
49 #include "hw/ppc/ppc.h"
50 #include "hw/loader.h"
51 
52 #include "hw/ppc/fdt.h"
53 #include "hw/ppc/spapr.h"
54 #include "hw/ppc/spapr_vio.h"
55 #include "hw/pci-host/spapr.h"
56 #include "hw/ppc/xics.h"
57 #include "hw/pci/msi.h"
58 
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63 
64 #include "exec/address-spaces.h"
65 #include "hw/usb.h"
66 #include "qemu/config-file.h"
67 #include "qemu/error-report.h"
68 #include "trace.h"
69 #include "hw/nmi.h"
70 #include "hw/intc/intc.h"
71 
72 #include "hw/compat.h"
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "qmp-commands.h"
76 
77 #include <libfdt.h>
78 
79 /* SLOF memory layout:
80  *
81  * SLOF raw image loaded at 0, copies its romfs right below the flat
82  * device-tree, then position SLOF itself 31M below that
83  *
84  * So we set FW_OVERHEAD to 40MB which should account for all of that
85  * and more
86  *
87  * We load our kernel at 4M, leaving space for SLOF initial image
88  */
89 #define FDT_MAX_SIZE            0x100000
90 #define RTAS_MAX_SIZE           0x10000
91 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE             0x400000
93 #define FW_FILE_NAME            "slof.bin"
94 #define FW_OVERHEAD             0x2800000
95 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
96 
97 #define MIN_RMA_SLOF            128UL
98 
99 #define PHANDLE_XICP            0x00001111
100 
101 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
102                                   const char *type_ics,
103                                   int nr_irqs, Error **errp)
104 {
105     Error *local_err = NULL;
106     Object *obj;
107 
108     obj = object_new(type_ics);
109     object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
110     object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
111                                    &error_abort);
112     object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
113     if (local_err) {
114         goto error;
115     }
116     object_property_set_bool(obj, true, "realized", &local_err);
117     if (local_err) {
118         goto error;
119     }
120 
121     return ICS_SIMPLE(obj);
122 
123 error:
124     error_propagate(errp, local_err);
125     return NULL;
126 }
127 
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
129 {
130     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131      * and newer QEMUs don't even have them. In both cases, we don't want
132      * to send anything on the wire.
133      */
134     return false;
135 }
136 
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138     .name = "icp/server",
139     .version_id = 1,
140     .minimum_version_id = 1,
141     .needed = pre_2_10_vmstate_dummy_icp_needed,
142     .fields = (VMStateField[]) {
143         VMSTATE_UNUSED(4), /* uint32_t xirr */
144         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145         VMSTATE_UNUSED(1), /* uint8_t mfrr */
146         VMSTATE_END_OF_LIST()
147     },
148 };
149 
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
151 {
152     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153                      (void *)(uintptr_t) i);
154 }
155 
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
157 {
158     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159                        (void *)(uintptr_t) i);
160 }
161 
162 static inline int xics_max_server_number(void)
163 {
164     return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
165 }
166 
167 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
168 {
169     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
170     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
171 
172     if (kvm_enabled()) {
173         if (machine_kernel_irqchip_allowed(machine) &&
174             !xics_kvm_init(spapr, errp)) {
175             spapr->icp_type = TYPE_KVM_ICP;
176             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
177         }
178         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
179             error_prepend(errp, "kernel_irqchip requested but unavailable: ");
180             return;
181         }
182     }
183 
184     if (!spapr->ics) {
185         xics_spapr_init(spapr);
186         spapr->icp_type = TYPE_ICP;
187         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
188         if (!spapr->ics) {
189             return;
190         }
191     }
192 
193     if (smc->pre_2_10_has_unused_icps) {
194         int i;
195 
196         for (i = 0; i < xics_max_server_number(); i++) {
197             /* Dummy entries get deregistered when real ICPState objects
198              * are registered during CPU core hotplug.
199              */
200             pre_2_10_vmstate_register_dummy_icp(i);
201         }
202     }
203 }
204 
205 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
206                                   int smt_threads)
207 {
208     int i, ret = 0;
209     uint32_t servers_prop[smt_threads];
210     uint32_t gservers_prop[smt_threads * 2];
211     int index = ppc_get_vcpu_dt_id(cpu);
212 
213     if (cpu->compat_pvr) {
214         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
215         if (ret < 0) {
216             return ret;
217         }
218     }
219 
220     /* Build interrupt servers and gservers properties */
221     for (i = 0; i < smt_threads; i++) {
222         servers_prop[i] = cpu_to_be32(index + i);
223         /* Hack, direct the group queues back to cpu 0 */
224         gservers_prop[i*2] = cpu_to_be32(index + i);
225         gservers_prop[i*2 + 1] = 0;
226     }
227     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
228                       servers_prop, sizeof(servers_prop));
229     if (ret < 0) {
230         return ret;
231     }
232     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
233                       gservers_prop, sizeof(gservers_prop));
234 
235     return ret;
236 }
237 
238 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
239 {
240     int index = ppc_get_vcpu_dt_id(cpu);
241     uint32_t associativity[] = {cpu_to_be32(0x5),
242                                 cpu_to_be32(0x0),
243                                 cpu_to_be32(0x0),
244                                 cpu_to_be32(0x0),
245                                 cpu_to_be32(cpu->node_id),
246                                 cpu_to_be32(index)};
247 
248     /* Advertise NUMA via ibm,associativity */
249     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
250                           sizeof(associativity));
251 }
252 
253 /* Populate the "ibm,pa-features" property */
254 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
255                                       bool legacy_guest)
256 {
257     uint8_t pa_features_206[] = { 6, 0,
258         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
259     uint8_t pa_features_207[] = { 24, 0,
260         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
261         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
262         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
263         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
264     uint8_t pa_features_300[] = { 66, 0,
265         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
266         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
267         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
268         /* 6: DS207 */
269         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
270         /* 16: Vector */
271         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
272         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
273         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
274         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
275         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
276         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
277         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
278         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
279         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
280         /* 42: PM, 44: PC RA, 46: SC vec'd */
281         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
282         /* 48: SIMD, 50: QP BFP, 52: String */
283         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
284         /* 54: DecFP, 56: DecI, 58: SHA */
285         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
286         /* 60: NM atomic, 62: RNG */
287         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
288     };
289     uint8_t *pa_features;
290     size_t pa_size;
291 
292     switch (POWERPC_MMU_VER(env->mmu_model)) {
293     case POWERPC_MMU_VER_2_06:
294         pa_features = pa_features_206;
295         pa_size = sizeof(pa_features_206);
296         break;
297     case POWERPC_MMU_VER_2_07:
298         pa_features = pa_features_207;
299         pa_size = sizeof(pa_features_207);
300         break;
301     case POWERPC_MMU_VER_3_00:
302         pa_features = pa_features_300;
303         pa_size = sizeof(pa_features_300);
304         break;
305     default:
306         return;
307     }
308 
309     if (env->ci_large_pages) {
310         /*
311          * Note: we keep CI large pages off by default because a 64K capable
312          * guest provisioned with large pages might otherwise try to map a qemu
313          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
314          * even if that qemu runs on a 4k host.
315          * We dd this bit back here if we are confident this is not an issue
316          */
317         pa_features[3] |= 0x20;
318     }
319     if (kvmppc_has_cap_htm() && pa_size > 24) {
320         pa_features[24] |= 0x80;    /* Transactional memory support */
321     }
322     if (legacy_guest && pa_size > 40) {
323         /* Workaround for broken kernels that attempt (guest) radix
324          * mode when they can't handle it, if they see the radix bit set
325          * in pa-features. So hide it from them. */
326         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
327     }
328 
329     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
330 }
331 
332 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
333 {
334     int ret = 0, offset, cpus_offset;
335     CPUState *cs;
336     char cpu_model[32];
337     int smt = kvmppc_smt_threads();
338     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
339 
340     CPU_FOREACH(cs) {
341         PowerPCCPU *cpu = POWERPC_CPU(cs);
342         CPUPPCState *env = &cpu->env;
343         DeviceClass *dc = DEVICE_GET_CLASS(cs);
344         int index = ppc_get_vcpu_dt_id(cpu);
345         int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
346 
347         if ((index % smt) != 0) {
348             continue;
349         }
350 
351         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
352 
353         cpus_offset = fdt_path_offset(fdt, "/cpus");
354         if (cpus_offset < 0) {
355             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
356                                           "cpus");
357             if (cpus_offset < 0) {
358                 return cpus_offset;
359             }
360         }
361         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
362         if (offset < 0) {
363             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
364             if (offset < 0) {
365                 return offset;
366             }
367         }
368 
369         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
370                           pft_size_prop, sizeof(pft_size_prop));
371         if (ret < 0) {
372             return ret;
373         }
374 
375         if (nb_numa_nodes > 1) {
376             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
377             if (ret < 0) {
378                 return ret;
379             }
380         }
381 
382         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
383         if (ret < 0) {
384             return ret;
385         }
386 
387         spapr_populate_pa_features(env, fdt, offset,
388                                          spapr->cas_legacy_guest_workaround);
389     }
390     return ret;
391 }
392 
393 static hwaddr spapr_node0_size(void)
394 {
395     MachineState *machine = MACHINE(qdev_get_machine());
396 
397     if (nb_numa_nodes) {
398         int i;
399         for (i = 0; i < nb_numa_nodes; ++i) {
400             if (numa_info[i].node_mem) {
401                 return MIN(pow2floor(numa_info[i].node_mem),
402                            machine->ram_size);
403             }
404         }
405     }
406     return machine->ram_size;
407 }
408 
409 static void add_str(GString *s, const gchar *s1)
410 {
411     g_string_append_len(s, s1, strlen(s1) + 1);
412 }
413 
414 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
415                                        hwaddr size)
416 {
417     uint32_t associativity[] = {
418         cpu_to_be32(0x4), /* length */
419         cpu_to_be32(0x0), cpu_to_be32(0x0),
420         cpu_to_be32(0x0), cpu_to_be32(nodeid)
421     };
422     char mem_name[32];
423     uint64_t mem_reg_property[2];
424     int off;
425 
426     mem_reg_property[0] = cpu_to_be64(start);
427     mem_reg_property[1] = cpu_to_be64(size);
428 
429     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
430     off = fdt_add_subnode(fdt, 0, mem_name);
431     _FDT(off);
432     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
433     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
434                       sizeof(mem_reg_property))));
435     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
436                       sizeof(associativity))));
437     return off;
438 }
439 
440 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
441 {
442     MachineState *machine = MACHINE(spapr);
443     hwaddr mem_start, node_size;
444     int i, nb_nodes = nb_numa_nodes;
445     NodeInfo *nodes = numa_info;
446     NodeInfo ramnode;
447 
448     /* No NUMA nodes, assume there is just one node with whole RAM */
449     if (!nb_numa_nodes) {
450         nb_nodes = 1;
451         ramnode.node_mem = machine->ram_size;
452         nodes = &ramnode;
453     }
454 
455     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
456         if (!nodes[i].node_mem) {
457             continue;
458         }
459         if (mem_start >= machine->ram_size) {
460             node_size = 0;
461         } else {
462             node_size = nodes[i].node_mem;
463             if (node_size > machine->ram_size - mem_start) {
464                 node_size = machine->ram_size - mem_start;
465             }
466         }
467         if (!mem_start) {
468             /* ppc_spapr_init() checks for rma_size <= node0_size already */
469             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
470             mem_start += spapr->rma_size;
471             node_size -= spapr->rma_size;
472         }
473         for ( ; node_size; ) {
474             hwaddr sizetmp = pow2floor(node_size);
475 
476             /* mem_start != 0 here */
477             if (ctzl(mem_start) < ctzl(sizetmp)) {
478                 sizetmp = 1ULL << ctzl(mem_start);
479             }
480 
481             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
482             node_size -= sizetmp;
483             mem_start += sizetmp;
484         }
485     }
486 
487     return 0;
488 }
489 
490 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
491                                   sPAPRMachineState *spapr)
492 {
493     PowerPCCPU *cpu = POWERPC_CPU(cs);
494     CPUPPCState *env = &cpu->env;
495     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
496     int index = ppc_get_vcpu_dt_id(cpu);
497     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
498                        0xffffffff, 0xffffffff};
499     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
500         : SPAPR_TIMEBASE_FREQ;
501     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
502     uint32_t page_sizes_prop[64];
503     size_t page_sizes_prop_size;
504     uint32_t vcpus_per_socket = smp_threads * smp_cores;
505     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
506     int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
507     sPAPRDRConnector *drc;
508     int drc_index;
509     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
510     int i;
511 
512     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
513     if (drc) {
514         drc_index = spapr_drc_index(drc);
515         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
516     }
517 
518     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
519     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
520 
521     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
522     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
523                            env->dcache_line_size)));
524     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
525                            env->dcache_line_size)));
526     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
527                            env->icache_line_size)));
528     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
529                            env->icache_line_size)));
530 
531     if (pcc->l1_dcache_size) {
532         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
533                                pcc->l1_dcache_size)));
534     } else {
535         warn_report("Unknown L1 dcache size for cpu");
536     }
537     if (pcc->l1_icache_size) {
538         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
539                                pcc->l1_icache_size)));
540     } else {
541         warn_report("Unknown L1 icache size for cpu");
542     }
543 
544     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
545     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
546     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
547     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
548     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
549     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
550 
551     if (env->spr_cb[SPR_PURR].oea_read) {
552         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
553     }
554 
555     if (env->mmu_model & POWERPC_MMU_1TSEG) {
556         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
557                           segs, sizeof(segs))));
558     }
559 
560     /* Advertise VMX/VSX (vector extensions) if available
561      *   0 / no property == no vector extensions
562      *   1               == VMX / Altivec available
563      *   2               == VSX available */
564     if (env->insns_flags & PPC_ALTIVEC) {
565         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
566 
567         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
568     }
569 
570     /* Advertise DFP (Decimal Floating Point) if available
571      *   0 / no property == no DFP
572      *   1               == DFP available */
573     if (env->insns_flags2 & PPC2_DFP) {
574         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
575     }
576 
577     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
578                                                   sizeof(page_sizes_prop));
579     if (page_sizes_prop_size) {
580         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
581                           page_sizes_prop, page_sizes_prop_size)));
582     }
583 
584     spapr_populate_pa_features(env, fdt, offset, false);
585 
586     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
587                            cs->cpu_index / vcpus_per_socket)));
588 
589     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
590                       pft_size_prop, sizeof(pft_size_prop))));
591 
592     if (nb_numa_nodes > 1) {
593         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
594     }
595 
596     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
597 
598     if (pcc->radix_page_info) {
599         for (i = 0; i < pcc->radix_page_info->count; i++) {
600             radix_AP_encodings[i] =
601                 cpu_to_be32(pcc->radix_page_info->entries[i]);
602         }
603         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
604                           radix_AP_encodings,
605                           pcc->radix_page_info->count *
606                           sizeof(radix_AP_encodings[0]))));
607     }
608 }
609 
610 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
611 {
612     CPUState *cs;
613     int cpus_offset;
614     char *nodename;
615     int smt = kvmppc_smt_threads();
616 
617     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
618     _FDT(cpus_offset);
619     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
620     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
621 
622     /*
623      * We walk the CPUs in reverse order to ensure that CPU DT nodes
624      * created by fdt_add_subnode() end up in the right order in FDT
625      * for the guest kernel the enumerate the CPUs correctly.
626      */
627     CPU_FOREACH_REVERSE(cs) {
628         PowerPCCPU *cpu = POWERPC_CPU(cs);
629         int index = ppc_get_vcpu_dt_id(cpu);
630         DeviceClass *dc = DEVICE_GET_CLASS(cs);
631         int offset;
632 
633         if ((index % smt) != 0) {
634             continue;
635         }
636 
637         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
638         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
639         g_free(nodename);
640         _FDT(offset);
641         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
642     }
643 
644 }
645 
646 /*
647  * Adds ibm,dynamic-reconfiguration-memory node.
648  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
649  * of this device tree node.
650  */
651 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
652 {
653     MachineState *machine = MACHINE(spapr);
654     int ret, i, offset;
655     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
656     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
657     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
658     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
659                        memory_region_size(&spapr->hotplug_memory.mr)) /
660                        lmb_size;
661     uint32_t *int_buf, *cur_index, buf_len;
662     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
663 
664     /*
665      * Don't create the node if there is no hotpluggable memory
666      */
667     if (machine->ram_size == machine->maxram_size) {
668         return 0;
669     }
670 
671     /*
672      * Allocate enough buffer size to fit in ibm,dynamic-memory
673      * or ibm,associativity-lookup-arrays
674      */
675     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
676               * sizeof(uint32_t);
677     cur_index = int_buf = g_malloc0(buf_len);
678 
679     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
680 
681     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
682                     sizeof(prop_lmb_size));
683     if (ret < 0) {
684         goto out;
685     }
686 
687     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
688     if (ret < 0) {
689         goto out;
690     }
691 
692     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
693     if (ret < 0) {
694         goto out;
695     }
696 
697     /* ibm,dynamic-memory */
698     int_buf[0] = cpu_to_be32(nr_lmbs);
699     cur_index++;
700     for (i = 0; i < nr_lmbs; i++) {
701         uint64_t addr = i * lmb_size;
702         uint32_t *dynamic_memory = cur_index;
703 
704         if (i >= hotplug_lmb_start) {
705             sPAPRDRConnector *drc;
706 
707             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
708             g_assert(drc);
709 
710             dynamic_memory[0] = cpu_to_be32(addr >> 32);
711             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
712             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
713             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
714             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
715             if (memory_region_present(get_system_memory(), addr)) {
716                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
717             } else {
718                 dynamic_memory[5] = cpu_to_be32(0);
719             }
720         } else {
721             /*
722              * LMB information for RMA, boot time RAM and gap b/n RAM and
723              * hotplug memory region -- all these are marked as reserved
724              * and as having no valid DRC.
725              */
726             dynamic_memory[0] = cpu_to_be32(addr >> 32);
727             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
728             dynamic_memory[2] = cpu_to_be32(0);
729             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
730             dynamic_memory[4] = cpu_to_be32(-1);
731             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
732                                             SPAPR_LMB_FLAGS_DRC_INVALID);
733         }
734 
735         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
736     }
737     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
738     if (ret < 0) {
739         goto out;
740     }
741 
742     /* ibm,associativity-lookup-arrays */
743     cur_index = int_buf;
744     int_buf[0] = cpu_to_be32(nr_nodes);
745     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
746     cur_index += 2;
747     for (i = 0; i < nr_nodes; i++) {
748         uint32_t associativity[] = {
749             cpu_to_be32(0x0),
750             cpu_to_be32(0x0),
751             cpu_to_be32(0x0),
752             cpu_to_be32(i)
753         };
754         memcpy(cur_index, associativity, sizeof(associativity));
755         cur_index += 4;
756     }
757     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
758             (cur_index - int_buf) * sizeof(uint32_t));
759 out:
760     g_free(int_buf);
761     return ret;
762 }
763 
764 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
765                                 sPAPROptionVector *ov5_updates)
766 {
767     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
768     int ret = 0, offset;
769 
770     /* Generate ibm,dynamic-reconfiguration-memory node if required */
771     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
772         g_assert(smc->dr_lmb_enabled);
773         ret = spapr_populate_drconf_memory(spapr, fdt);
774         if (ret) {
775             goto out;
776         }
777     }
778 
779     /* /interrupt controller */
780     if (!spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)) {
781         spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
782     }
783 
784     offset = fdt_path_offset(fdt, "/chosen");
785     if (offset < 0) {
786         offset = fdt_add_subnode(fdt, 0, "chosen");
787         if (offset < 0) {
788             return offset;
789         }
790     }
791     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
792                                  "ibm,architecture-vec-5");
793 
794 out:
795     return ret;
796 }
797 
798 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
799                                  target_ulong addr, target_ulong size,
800                                  sPAPROptionVector *ov5_updates)
801 {
802     void *fdt, *fdt_skel;
803     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
804 
805     size -= sizeof(hdr);
806 
807     /* Create skeleton */
808     fdt_skel = g_malloc0(size);
809     _FDT((fdt_create(fdt_skel, size)));
810     _FDT((fdt_begin_node(fdt_skel, "")));
811     _FDT((fdt_end_node(fdt_skel)));
812     _FDT((fdt_finish(fdt_skel)));
813     fdt = g_malloc0(size);
814     _FDT((fdt_open_into(fdt_skel, fdt, size)));
815     g_free(fdt_skel);
816 
817     /* Fixup cpu nodes */
818     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
819 
820     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
821         return -1;
822     }
823 
824     /* Pack resulting tree */
825     _FDT((fdt_pack(fdt)));
826 
827     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
828         trace_spapr_cas_failed(size);
829         return -1;
830     }
831 
832     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
833     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
834     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
835     g_free(fdt);
836 
837     return 0;
838 }
839 
840 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
841 {
842     int rtas;
843     GString *hypertas = g_string_sized_new(256);
844     GString *qemu_hypertas = g_string_sized_new(256);
845     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
846     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
847         memory_region_size(&spapr->hotplug_memory.mr);
848     uint32_t lrdr_capacity[] = {
849         cpu_to_be32(max_hotplug_addr >> 32),
850         cpu_to_be32(max_hotplug_addr & 0xffffffff),
851         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
852         cpu_to_be32(max_cpus / smp_threads),
853     };
854 
855     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
856 
857     /* hypertas */
858     add_str(hypertas, "hcall-pft");
859     add_str(hypertas, "hcall-term");
860     add_str(hypertas, "hcall-dabr");
861     add_str(hypertas, "hcall-interrupt");
862     add_str(hypertas, "hcall-tce");
863     add_str(hypertas, "hcall-vio");
864     add_str(hypertas, "hcall-splpar");
865     add_str(hypertas, "hcall-bulk");
866     add_str(hypertas, "hcall-set-mode");
867     add_str(hypertas, "hcall-sprg0");
868     add_str(hypertas, "hcall-copy");
869     add_str(hypertas, "hcall-debug");
870     add_str(qemu_hypertas, "hcall-memop1");
871 
872     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
873         add_str(hypertas, "hcall-multi-tce");
874     }
875 
876     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
877         add_str(hypertas, "hcall-hpt-resize");
878     }
879 
880     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
881                      hypertas->str, hypertas->len));
882     g_string_free(hypertas, TRUE);
883     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
884                      qemu_hypertas->str, qemu_hypertas->len));
885     g_string_free(qemu_hypertas, TRUE);
886 
887     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
888                      refpoints, sizeof(refpoints)));
889 
890     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
891                           RTAS_ERROR_LOG_MAX));
892     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
893                           RTAS_EVENT_SCAN_RATE));
894 
895     if (msi_nonbroken) {
896         _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
897     }
898 
899     /*
900      * According to PAPR, rtas ibm,os-term does not guarantee a return
901      * back to the guest cpu.
902      *
903      * While an additional ibm,extended-os-term property indicates
904      * that rtas call return will always occur. Set this property.
905      */
906     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
907 
908     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
909                      lrdr_capacity, sizeof(lrdr_capacity)));
910 
911     spapr_dt_rtas_tokens(fdt, rtas);
912 }
913 
914 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
915  * that the guest may request and thus the valid values for bytes 24..26 of
916  * option vector 5: */
917 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
918 {
919     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
920 
921     char val[2 * 4] = {
922         23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */
923         24, 0x00, /* Hash/Radix, filled in below. */
924         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
925         26, 0x40, /* Radix options: GTSE == yes. */
926     };
927 
928     if (kvm_enabled()) {
929         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
930             val[3] = 0x80; /* OV5_MMU_BOTH */
931         } else if (kvmppc_has_cap_mmu_radix()) {
932             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
933         } else {
934             val[3] = 0x00; /* Hash */
935         }
936     } else {
937         if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
938             /* V3 MMU supports both hash and radix (with dynamic switching) */
939             val[3] = 0xC0;
940         } else {
941             /* Otherwise we can only do hash */
942             val[3] = 0x00;
943         }
944     }
945     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
946                      val, sizeof(val)));
947 }
948 
949 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
950 {
951     MachineState *machine = MACHINE(spapr);
952     int chosen;
953     const char *boot_device = machine->boot_order;
954     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
955     size_t cb = 0;
956     char *bootlist = get_boot_devices_list(&cb, true);
957 
958     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
959 
960     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
961     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
962                           spapr->initrd_base));
963     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
964                           spapr->initrd_base + spapr->initrd_size));
965 
966     if (spapr->kernel_size) {
967         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
968                               cpu_to_be64(spapr->kernel_size) };
969 
970         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
971                          &kprop, sizeof(kprop)));
972         if (spapr->kernel_le) {
973             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
974         }
975     }
976     if (boot_menu) {
977         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
978     }
979     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
980     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
981     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
982 
983     if (cb && bootlist) {
984         int i;
985 
986         for (i = 0; i < cb; i++) {
987             if (bootlist[i] == '\n') {
988                 bootlist[i] = ' ';
989             }
990         }
991         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
992     }
993 
994     if (boot_device && strlen(boot_device)) {
995         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
996     }
997 
998     if (!spapr->has_graphics && stdout_path) {
999         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1000     }
1001 
1002     spapr_dt_ov5_platform_support(fdt, chosen);
1003 
1004     g_free(stdout_path);
1005     g_free(bootlist);
1006 }
1007 
1008 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1009 {
1010     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1011      * KVM to work under pHyp with some guest co-operation */
1012     int hypervisor;
1013     uint8_t hypercall[16];
1014 
1015     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1016     /* indicate KVM hypercall interface */
1017     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1018     if (kvmppc_has_cap_fixup_hcalls()) {
1019         /*
1020          * Older KVM versions with older guest kernels were broken
1021          * with the magic page, don't allow the guest to map it.
1022          */
1023         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1024                                   sizeof(hypercall))) {
1025             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1026                              hypercall, sizeof(hypercall)));
1027         }
1028     }
1029 }
1030 
1031 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1032                              hwaddr rtas_addr,
1033                              hwaddr rtas_size)
1034 {
1035     MachineState *machine = MACHINE(qdev_get_machine());
1036     MachineClass *mc = MACHINE_GET_CLASS(machine);
1037     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1038     int ret;
1039     void *fdt;
1040     sPAPRPHBState *phb;
1041     char *buf;
1042 
1043     fdt = g_malloc0(FDT_MAX_SIZE);
1044     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1045 
1046     /* Root node */
1047     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1048     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1049     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1050 
1051     /*
1052      * Add info to guest to indentify which host is it being run on
1053      * and what is the uuid of the guest
1054      */
1055     if (kvmppc_get_host_model(&buf)) {
1056         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1057         g_free(buf);
1058     }
1059     if (kvmppc_get_host_serial(&buf)) {
1060         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1061         g_free(buf);
1062     }
1063 
1064     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1065 
1066     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1067     if (qemu_uuid_set) {
1068         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1069     }
1070     g_free(buf);
1071 
1072     if (qemu_get_vm_name()) {
1073         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1074                                 qemu_get_vm_name()));
1075     }
1076 
1077     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1078     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1079 
1080     ret = spapr_populate_memory(spapr, fdt);
1081     if (ret < 0) {
1082         error_report("couldn't setup memory nodes in fdt");
1083         exit(1);
1084     }
1085 
1086     /* /vdevice */
1087     spapr_dt_vdevice(spapr->vio_bus, fdt);
1088 
1089     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1090         ret = spapr_rng_populate_dt(fdt);
1091         if (ret < 0) {
1092             error_report("could not set up rng device in the fdt");
1093             exit(1);
1094         }
1095     }
1096 
1097     QLIST_FOREACH(phb, &spapr->phbs, list) {
1098         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1099         if (ret < 0) {
1100             error_report("couldn't setup PCI devices in fdt");
1101             exit(1);
1102         }
1103     }
1104 
1105     /* cpus */
1106     spapr_populate_cpus_dt_node(fdt, spapr);
1107 
1108     if (smc->dr_lmb_enabled) {
1109         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1110     }
1111 
1112     if (mc->has_hotpluggable_cpus) {
1113         int offset = fdt_path_offset(fdt, "/cpus");
1114         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1115                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1116         if (ret < 0) {
1117             error_report("Couldn't set up CPU DR device tree properties");
1118             exit(1);
1119         }
1120     }
1121 
1122     /* /event-sources */
1123     spapr_dt_events(spapr, fdt);
1124 
1125     /* /rtas */
1126     spapr_dt_rtas(spapr, fdt);
1127 
1128     /* /chosen */
1129     spapr_dt_chosen(spapr, fdt);
1130 
1131     /* /hypervisor */
1132     if (kvm_enabled()) {
1133         spapr_dt_hypervisor(spapr, fdt);
1134     }
1135 
1136     /* Build memory reserve map */
1137     if (spapr->kernel_size) {
1138         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1139     }
1140     if (spapr->initrd_size) {
1141         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1142     }
1143 
1144     /* ibm,client-architecture-support updates */
1145     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1146     if (ret < 0) {
1147         error_report("couldn't setup CAS properties fdt");
1148         exit(1);
1149     }
1150 
1151     return fdt;
1152 }
1153 
1154 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1155 {
1156     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1157 }
1158 
1159 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1160                                     PowerPCCPU *cpu)
1161 {
1162     CPUPPCState *env = &cpu->env;
1163 
1164     /* The TCG path should also be holding the BQL at this point */
1165     g_assert(qemu_mutex_iothread_locked());
1166 
1167     if (msr_pr) {
1168         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1169         env->gpr[3] = H_PRIVILEGE;
1170     } else {
1171         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1172     }
1173 }
1174 
1175 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1176 {
1177     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1178 
1179     return spapr->patb_entry;
1180 }
1181 
1182 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1183 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1184 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1185 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1186 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1187 
1188 /*
1189  * Get the fd to access the kernel htab, re-opening it if necessary
1190  */
1191 static int get_htab_fd(sPAPRMachineState *spapr)
1192 {
1193     if (spapr->htab_fd >= 0) {
1194         return spapr->htab_fd;
1195     }
1196 
1197     spapr->htab_fd = kvmppc_get_htab_fd(false);
1198     if (spapr->htab_fd < 0) {
1199         error_report("Unable to open fd for reading hash table from KVM: %s",
1200                      strerror(errno));
1201     }
1202 
1203     return spapr->htab_fd;
1204 }
1205 
1206 void close_htab_fd(sPAPRMachineState *spapr)
1207 {
1208     if (spapr->htab_fd >= 0) {
1209         close(spapr->htab_fd);
1210     }
1211     spapr->htab_fd = -1;
1212 }
1213 
1214 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1215 {
1216     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1217 
1218     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1219 }
1220 
1221 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1222                                                 hwaddr ptex, int n)
1223 {
1224     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1225     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1226 
1227     if (!spapr->htab) {
1228         /*
1229          * HTAB is controlled by KVM. Fetch into temporary buffer
1230          */
1231         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1232         kvmppc_read_hptes(hptes, ptex, n);
1233         return hptes;
1234     }
1235 
1236     /*
1237      * HTAB is controlled by QEMU. Just point to the internally
1238      * accessible PTEG.
1239      */
1240     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1241 }
1242 
1243 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1244                               const ppc_hash_pte64_t *hptes,
1245                               hwaddr ptex, int n)
1246 {
1247     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1248 
1249     if (!spapr->htab) {
1250         g_free((void *)hptes);
1251     }
1252 
1253     /* Nothing to do for qemu managed HPT */
1254 }
1255 
1256 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1257                              uint64_t pte0, uint64_t pte1)
1258 {
1259     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1260     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1261 
1262     if (!spapr->htab) {
1263         kvmppc_write_hpte(ptex, pte0, pte1);
1264     } else {
1265         stq_p(spapr->htab + offset, pte0);
1266         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1267     }
1268 }
1269 
1270 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1271 {
1272     int shift;
1273 
1274     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1275      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1276      * that's much more than is needed for Linux guests */
1277     shift = ctz64(pow2ceil(ramsize)) - 7;
1278     shift = MAX(shift, 18); /* Minimum architected size */
1279     shift = MIN(shift, 46); /* Maximum architected size */
1280     return shift;
1281 }
1282 
1283 void spapr_free_hpt(sPAPRMachineState *spapr)
1284 {
1285     g_free(spapr->htab);
1286     spapr->htab = NULL;
1287     spapr->htab_shift = 0;
1288     close_htab_fd(spapr);
1289 }
1290 
1291 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1292                           Error **errp)
1293 {
1294     long rc;
1295 
1296     /* Clean up any HPT info from a previous boot */
1297     spapr_free_hpt(spapr);
1298 
1299     rc = kvmppc_reset_htab(shift);
1300     if (rc < 0) {
1301         /* kernel-side HPT needed, but couldn't allocate one */
1302         error_setg_errno(errp, errno,
1303                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1304                          shift);
1305         /* This is almost certainly fatal, but if the caller really
1306          * wants to carry on with shift == 0, it's welcome to try */
1307     } else if (rc > 0) {
1308         /* kernel-side HPT allocated */
1309         if (rc != shift) {
1310             error_setg(errp,
1311                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1312                        shift, rc);
1313         }
1314 
1315         spapr->htab_shift = shift;
1316         spapr->htab = NULL;
1317     } else {
1318         /* kernel-side HPT not needed, allocate in userspace instead */
1319         size_t size = 1ULL << shift;
1320         int i;
1321 
1322         spapr->htab = qemu_memalign(size, size);
1323         if (!spapr->htab) {
1324             error_setg_errno(errp, errno,
1325                              "Could not allocate HPT of order %d", shift);
1326             return;
1327         }
1328 
1329         memset(spapr->htab, 0, size);
1330         spapr->htab_shift = shift;
1331 
1332         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1333             DIRTY_HPTE(HPTE(spapr->htab, i));
1334         }
1335     }
1336 }
1337 
1338 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1339 {
1340     int hpt_shift;
1341 
1342     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1343         || (spapr->cas_reboot
1344             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1345         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1346     } else {
1347         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size);
1348     }
1349     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1350 
1351     if (spapr->vrma_adjust) {
1352         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1353                                           spapr->htab_shift);
1354     }
1355     /* We're setting up a hash table, so that means we're not radix */
1356     spapr->patb_entry = 0;
1357 }
1358 
1359 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1360 {
1361     bool matched = false;
1362 
1363     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1364         matched = true;
1365     }
1366 
1367     if (!matched) {
1368         error_report("Device %s is not supported by this machine yet.",
1369                      qdev_fw_name(DEVICE(sbdev)));
1370         exit(1);
1371     }
1372 }
1373 
1374 static void ppc_spapr_reset(void)
1375 {
1376     MachineState *machine = MACHINE(qdev_get_machine());
1377     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1378     PowerPCCPU *first_ppc_cpu;
1379     uint32_t rtas_limit;
1380     hwaddr rtas_addr, fdt_addr;
1381     void *fdt;
1382     int rc;
1383 
1384     /* Check for unknown sysbus devices */
1385     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1386 
1387     if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1388         /* If using KVM with radix mode available, VCPUs can be started
1389          * without a HPT because KVM will start them in radix mode.
1390          * Set the GR bit in PATB so that we know there is no HPT. */
1391         spapr->patb_entry = PATBE1_GR;
1392     } else {
1393         spapr_setup_hpt_and_vrma(spapr);
1394     }
1395 
1396     qemu_devices_reset();
1397 
1398     /*
1399      * We place the device tree and RTAS just below either the top of the RMA,
1400      * or just below 2GB, whichever is lowere, so that it can be
1401      * processed with 32-bit real mode code if necessary
1402      */
1403     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1404     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1405     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1406 
1407     /* if this reset wasn't generated by CAS, we should reset our
1408      * negotiated options and start from scratch */
1409     if (!spapr->cas_reboot) {
1410         spapr_ovec_cleanup(spapr->ov5_cas);
1411         spapr->ov5_cas = spapr_ovec_new();
1412 
1413         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1414     }
1415 
1416     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1417 
1418     spapr_load_rtas(spapr, fdt, rtas_addr);
1419 
1420     rc = fdt_pack(fdt);
1421 
1422     /* Should only fail if we've built a corrupted tree */
1423     assert(rc == 0);
1424 
1425     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1426         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1427                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1428         exit(1);
1429     }
1430 
1431     /* Load the fdt */
1432     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1433     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1434     g_free(fdt);
1435 
1436     /* Set up the entry state */
1437     first_ppc_cpu = POWERPC_CPU(first_cpu);
1438     first_ppc_cpu->env.gpr[3] = fdt_addr;
1439     first_ppc_cpu->env.gpr[5] = 0;
1440     first_cpu->halted = 0;
1441     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1442 
1443     spapr->cas_reboot = false;
1444 }
1445 
1446 static void spapr_create_nvram(sPAPRMachineState *spapr)
1447 {
1448     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1449     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1450 
1451     if (dinfo) {
1452         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1453                             &error_fatal);
1454     }
1455 
1456     qdev_init_nofail(dev);
1457 
1458     spapr->nvram = (struct sPAPRNVRAM *)dev;
1459 }
1460 
1461 static void spapr_rtc_create(sPAPRMachineState *spapr)
1462 {
1463     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1464     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1465                               &error_fatal);
1466     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1467                               &error_fatal);
1468     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1469                               "date", &error_fatal);
1470 }
1471 
1472 /* Returns whether we want to use VGA or not */
1473 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1474 {
1475     switch (vga_interface_type) {
1476     case VGA_NONE:
1477         return false;
1478     case VGA_DEVICE:
1479         return true;
1480     case VGA_STD:
1481     case VGA_VIRTIO:
1482         return pci_vga_init(pci_bus) != NULL;
1483     default:
1484         error_setg(errp,
1485                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1486         return false;
1487     }
1488 }
1489 
1490 static int spapr_post_load(void *opaque, int version_id)
1491 {
1492     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1493     int err = 0;
1494 
1495     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1496         CPUState *cs;
1497         CPU_FOREACH(cs) {
1498             PowerPCCPU *cpu = POWERPC_CPU(cs);
1499             icp_resend(ICP(cpu->intc));
1500         }
1501     }
1502 
1503     /* In earlier versions, there was no separate qdev for the PAPR
1504      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1505      * So when migrating from those versions, poke the incoming offset
1506      * value into the RTC device */
1507     if (version_id < 3) {
1508         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1509     }
1510 
1511     if (spapr->patb_entry) {
1512         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1513         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1514         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1515 
1516         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1517         if (err) {
1518             error_report("Process table config unsupported by the host");
1519             return -EINVAL;
1520         }
1521     }
1522 
1523     return err;
1524 }
1525 
1526 static bool version_before_3(void *opaque, int version_id)
1527 {
1528     return version_id < 3;
1529 }
1530 
1531 static bool spapr_pending_events_needed(void *opaque)
1532 {
1533     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1534     return !QTAILQ_EMPTY(&spapr->pending_events);
1535 }
1536 
1537 static const VMStateDescription vmstate_spapr_event_entry = {
1538     .name = "spapr_event_log_entry",
1539     .version_id = 1,
1540     .minimum_version_id = 1,
1541     .fields = (VMStateField[]) {
1542         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1543         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1544         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1545                                      NULL, extended_length),
1546         VMSTATE_END_OF_LIST()
1547     },
1548 };
1549 
1550 static const VMStateDescription vmstate_spapr_pending_events = {
1551     .name = "spapr_pending_events",
1552     .version_id = 1,
1553     .minimum_version_id = 1,
1554     .needed = spapr_pending_events_needed,
1555     .fields = (VMStateField[]) {
1556         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1557                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1558         VMSTATE_END_OF_LIST()
1559     },
1560 };
1561 
1562 static bool spapr_ov5_cas_needed(void *opaque)
1563 {
1564     sPAPRMachineState *spapr = opaque;
1565     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1566     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1567     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1568     bool cas_needed;
1569 
1570     /* Prior to the introduction of sPAPROptionVector, we had two option
1571      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1572      * Both of these options encode machine topology into the device-tree
1573      * in such a way that the now-booted OS should still be able to interact
1574      * appropriately with QEMU regardless of what options were actually
1575      * negotiatied on the source side.
1576      *
1577      * As such, we can avoid migrating the CAS-negotiated options if these
1578      * are the only options available on the current machine/platform.
1579      * Since these are the only options available for pseries-2.7 and
1580      * earlier, this allows us to maintain old->new/new->old migration
1581      * compatibility.
1582      *
1583      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1584      * via default pseries-2.8 machines and explicit command-line parameters.
1585      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1586      * of the actual CAS-negotiated values to continue working properly. For
1587      * example, availability of memory unplug depends on knowing whether
1588      * OV5_HP_EVT was negotiated via CAS.
1589      *
1590      * Thus, for any cases where the set of available CAS-negotiatable
1591      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1592      * include the CAS-negotiated options in the migration stream.
1593      */
1594     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1595     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1596 
1597     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1598      * the mask itself since in the future it's possible "legacy" bits may be
1599      * removed via machine options, which could generate a false positive
1600      * that breaks migration.
1601      */
1602     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1603     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1604 
1605     spapr_ovec_cleanup(ov5_mask);
1606     spapr_ovec_cleanup(ov5_legacy);
1607     spapr_ovec_cleanup(ov5_removed);
1608 
1609     return cas_needed;
1610 }
1611 
1612 static const VMStateDescription vmstate_spapr_ov5_cas = {
1613     .name = "spapr_option_vector_ov5_cas",
1614     .version_id = 1,
1615     .minimum_version_id = 1,
1616     .needed = spapr_ov5_cas_needed,
1617     .fields = (VMStateField[]) {
1618         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1619                                  vmstate_spapr_ovec, sPAPROptionVector),
1620         VMSTATE_END_OF_LIST()
1621     },
1622 };
1623 
1624 static bool spapr_patb_entry_needed(void *opaque)
1625 {
1626     sPAPRMachineState *spapr = opaque;
1627 
1628     return !!spapr->patb_entry;
1629 }
1630 
1631 static const VMStateDescription vmstate_spapr_patb_entry = {
1632     .name = "spapr_patb_entry",
1633     .version_id = 1,
1634     .minimum_version_id = 1,
1635     .needed = spapr_patb_entry_needed,
1636     .fields = (VMStateField[]) {
1637         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1638         VMSTATE_END_OF_LIST()
1639     },
1640 };
1641 
1642 static const VMStateDescription vmstate_spapr = {
1643     .name = "spapr",
1644     .version_id = 3,
1645     .minimum_version_id = 1,
1646     .post_load = spapr_post_load,
1647     .fields = (VMStateField[]) {
1648         /* used to be @next_irq */
1649         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1650 
1651         /* RTC offset */
1652         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1653 
1654         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1655         VMSTATE_END_OF_LIST()
1656     },
1657     .subsections = (const VMStateDescription*[]) {
1658         &vmstate_spapr_ov5_cas,
1659         &vmstate_spapr_patb_entry,
1660         &vmstate_spapr_pending_events,
1661         NULL
1662     }
1663 };
1664 
1665 static int htab_save_setup(QEMUFile *f, void *opaque)
1666 {
1667     sPAPRMachineState *spapr = opaque;
1668 
1669     /* "Iteration" header */
1670     if (!spapr->htab_shift) {
1671         qemu_put_be32(f, -1);
1672     } else {
1673         qemu_put_be32(f, spapr->htab_shift);
1674     }
1675 
1676     if (spapr->htab) {
1677         spapr->htab_save_index = 0;
1678         spapr->htab_first_pass = true;
1679     } else {
1680         if (spapr->htab_shift) {
1681             assert(kvm_enabled());
1682         }
1683     }
1684 
1685 
1686     return 0;
1687 }
1688 
1689 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1690                                  int64_t max_ns)
1691 {
1692     bool has_timeout = max_ns != -1;
1693     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1694     int index = spapr->htab_save_index;
1695     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1696 
1697     assert(spapr->htab_first_pass);
1698 
1699     do {
1700         int chunkstart;
1701 
1702         /* Consume invalid HPTEs */
1703         while ((index < htabslots)
1704                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1705             CLEAN_HPTE(HPTE(spapr->htab, index));
1706             index++;
1707         }
1708 
1709         /* Consume valid HPTEs */
1710         chunkstart = index;
1711         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1712                && HPTE_VALID(HPTE(spapr->htab, index))) {
1713             CLEAN_HPTE(HPTE(spapr->htab, index));
1714             index++;
1715         }
1716 
1717         if (index > chunkstart) {
1718             int n_valid = index - chunkstart;
1719 
1720             qemu_put_be32(f, chunkstart);
1721             qemu_put_be16(f, n_valid);
1722             qemu_put_be16(f, 0);
1723             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1724                             HASH_PTE_SIZE_64 * n_valid);
1725 
1726             if (has_timeout &&
1727                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1728                 break;
1729             }
1730         }
1731     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1732 
1733     if (index >= htabslots) {
1734         assert(index == htabslots);
1735         index = 0;
1736         spapr->htab_first_pass = false;
1737     }
1738     spapr->htab_save_index = index;
1739 }
1740 
1741 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1742                                 int64_t max_ns)
1743 {
1744     bool final = max_ns < 0;
1745     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1746     int examined = 0, sent = 0;
1747     int index = spapr->htab_save_index;
1748     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1749 
1750     assert(!spapr->htab_first_pass);
1751 
1752     do {
1753         int chunkstart, invalidstart;
1754 
1755         /* Consume non-dirty HPTEs */
1756         while ((index < htabslots)
1757                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1758             index++;
1759             examined++;
1760         }
1761 
1762         chunkstart = index;
1763         /* Consume valid dirty HPTEs */
1764         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1765                && HPTE_DIRTY(HPTE(spapr->htab, index))
1766                && HPTE_VALID(HPTE(spapr->htab, index))) {
1767             CLEAN_HPTE(HPTE(spapr->htab, index));
1768             index++;
1769             examined++;
1770         }
1771 
1772         invalidstart = index;
1773         /* Consume invalid dirty HPTEs */
1774         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1775                && HPTE_DIRTY(HPTE(spapr->htab, index))
1776                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1777             CLEAN_HPTE(HPTE(spapr->htab, index));
1778             index++;
1779             examined++;
1780         }
1781 
1782         if (index > chunkstart) {
1783             int n_valid = invalidstart - chunkstart;
1784             int n_invalid = index - invalidstart;
1785 
1786             qemu_put_be32(f, chunkstart);
1787             qemu_put_be16(f, n_valid);
1788             qemu_put_be16(f, n_invalid);
1789             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1790                             HASH_PTE_SIZE_64 * n_valid);
1791             sent += index - chunkstart;
1792 
1793             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1794                 break;
1795             }
1796         }
1797 
1798         if (examined >= htabslots) {
1799             break;
1800         }
1801 
1802         if (index >= htabslots) {
1803             assert(index == htabslots);
1804             index = 0;
1805         }
1806     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1807 
1808     if (index >= htabslots) {
1809         assert(index == htabslots);
1810         index = 0;
1811     }
1812 
1813     spapr->htab_save_index = index;
1814 
1815     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1816 }
1817 
1818 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1819 #define MAX_KVM_BUF_SIZE    2048
1820 
1821 static int htab_save_iterate(QEMUFile *f, void *opaque)
1822 {
1823     sPAPRMachineState *spapr = opaque;
1824     int fd;
1825     int rc = 0;
1826 
1827     /* Iteration header */
1828     if (!spapr->htab_shift) {
1829         qemu_put_be32(f, -1);
1830         return 0;
1831     } else {
1832         qemu_put_be32(f, 0);
1833     }
1834 
1835     if (!spapr->htab) {
1836         assert(kvm_enabled());
1837 
1838         fd = get_htab_fd(spapr);
1839         if (fd < 0) {
1840             return fd;
1841         }
1842 
1843         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1844         if (rc < 0) {
1845             return rc;
1846         }
1847     } else  if (spapr->htab_first_pass) {
1848         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1849     } else {
1850         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1851     }
1852 
1853     /* End marker */
1854     qemu_put_be32(f, 0);
1855     qemu_put_be16(f, 0);
1856     qemu_put_be16(f, 0);
1857 
1858     return rc;
1859 }
1860 
1861 static int htab_save_complete(QEMUFile *f, void *opaque)
1862 {
1863     sPAPRMachineState *spapr = opaque;
1864     int fd;
1865 
1866     /* Iteration header */
1867     if (!spapr->htab_shift) {
1868         qemu_put_be32(f, -1);
1869         return 0;
1870     } else {
1871         qemu_put_be32(f, 0);
1872     }
1873 
1874     if (!spapr->htab) {
1875         int rc;
1876 
1877         assert(kvm_enabled());
1878 
1879         fd = get_htab_fd(spapr);
1880         if (fd < 0) {
1881             return fd;
1882         }
1883 
1884         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1885         if (rc < 0) {
1886             return rc;
1887         }
1888     } else {
1889         if (spapr->htab_first_pass) {
1890             htab_save_first_pass(f, spapr, -1);
1891         }
1892         htab_save_later_pass(f, spapr, -1);
1893     }
1894 
1895     /* End marker */
1896     qemu_put_be32(f, 0);
1897     qemu_put_be16(f, 0);
1898     qemu_put_be16(f, 0);
1899 
1900     return 0;
1901 }
1902 
1903 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1904 {
1905     sPAPRMachineState *spapr = opaque;
1906     uint32_t section_hdr;
1907     int fd = -1;
1908 
1909     if (version_id < 1 || version_id > 1) {
1910         error_report("htab_load() bad version");
1911         return -EINVAL;
1912     }
1913 
1914     section_hdr = qemu_get_be32(f);
1915 
1916     if (section_hdr == -1) {
1917         spapr_free_hpt(spapr);
1918         return 0;
1919     }
1920 
1921     if (section_hdr) {
1922         Error *local_err = NULL;
1923 
1924         /* First section gives the htab size */
1925         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1926         if (local_err) {
1927             error_report_err(local_err);
1928             return -EINVAL;
1929         }
1930         return 0;
1931     }
1932 
1933     if (!spapr->htab) {
1934         assert(kvm_enabled());
1935 
1936         fd = kvmppc_get_htab_fd(true);
1937         if (fd < 0) {
1938             error_report("Unable to open fd to restore KVM hash table: %s",
1939                          strerror(errno));
1940         }
1941     }
1942 
1943     while (true) {
1944         uint32_t index;
1945         uint16_t n_valid, n_invalid;
1946 
1947         index = qemu_get_be32(f);
1948         n_valid = qemu_get_be16(f);
1949         n_invalid = qemu_get_be16(f);
1950 
1951         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1952             /* End of Stream */
1953             break;
1954         }
1955 
1956         if ((index + n_valid + n_invalid) >
1957             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1958             /* Bad index in stream */
1959             error_report(
1960                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1961                 index, n_valid, n_invalid, spapr->htab_shift);
1962             return -EINVAL;
1963         }
1964 
1965         if (spapr->htab) {
1966             if (n_valid) {
1967                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1968                                 HASH_PTE_SIZE_64 * n_valid);
1969             }
1970             if (n_invalid) {
1971                 memset(HPTE(spapr->htab, index + n_valid), 0,
1972                        HASH_PTE_SIZE_64 * n_invalid);
1973             }
1974         } else {
1975             int rc;
1976 
1977             assert(fd >= 0);
1978 
1979             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1980             if (rc < 0) {
1981                 return rc;
1982             }
1983         }
1984     }
1985 
1986     if (!spapr->htab) {
1987         assert(fd >= 0);
1988         close(fd);
1989     }
1990 
1991     return 0;
1992 }
1993 
1994 static void htab_save_cleanup(void *opaque)
1995 {
1996     sPAPRMachineState *spapr = opaque;
1997 
1998     close_htab_fd(spapr);
1999 }
2000 
2001 static SaveVMHandlers savevm_htab_handlers = {
2002     .save_setup = htab_save_setup,
2003     .save_live_iterate = htab_save_iterate,
2004     .save_live_complete_precopy = htab_save_complete,
2005     .save_cleanup = htab_save_cleanup,
2006     .load_state = htab_load,
2007 };
2008 
2009 static void spapr_boot_set(void *opaque, const char *boot_device,
2010                            Error **errp)
2011 {
2012     MachineState *machine = MACHINE(qdev_get_machine());
2013     machine->boot_order = g_strdup(boot_device);
2014 }
2015 
2016 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2017 {
2018     MachineState *machine = MACHINE(spapr);
2019     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2020     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2021     int i;
2022 
2023     for (i = 0; i < nr_lmbs; i++) {
2024         uint64_t addr;
2025 
2026         addr = i * lmb_size + spapr->hotplug_memory.base;
2027         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2028                                addr / lmb_size);
2029     }
2030 }
2031 
2032 /*
2033  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2034  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2035  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2036  */
2037 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2038 {
2039     int i;
2040 
2041     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2042         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2043                    " is not aligned to %llu MiB",
2044                    machine->ram_size,
2045                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2046         return;
2047     }
2048 
2049     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2050         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2051                    " is not aligned to %llu MiB",
2052                    machine->ram_size,
2053                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2054         return;
2055     }
2056 
2057     for (i = 0; i < nb_numa_nodes; i++) {
2058         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2059             error_setg(errp,
2060                        "Node %d memory size 0x%" PRIx64
2061                        " is not aligned to %llu MiB",
2062                        i, numa_info[i].node_mem,
2063                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2064             return;
2065         }
2066     }
2067 }
2068 
2069 /* find cpu slot in machine->possible_cpus by core_id */
2070 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2071 {
2072     int index = id / smp_threads;
2073 
2074     if (index >= ms->possible_cpus->len) {
2075         return NULL;
2076     }
2077     if (idx) {
2078         *idx = index;
2079     }
2080     return &ms->possible_cpus->cpus[index];
2081 }
2082 
2083 static void spapr_init_cpus(sPAPRMachineState *spapr)
2084 {
2085     MachineState *machine = MACHINE(spapr);
2086     MachineClass *mc = MACHINE_GET_CLASS(machine);
2087     char *type = spapr_get_cpu_core_type(machine->cpu_model);
2088     int smt = kvmppc_smt_threads();
2089     const CPUArchIdList *possible_cpus;
2090     int boot_cores_nr = smp_cpus / smp_threads;
2091     int i;
2092 
2093     if (!type) {
2094         error_report("Unable to find sPAPR CPU Core definition");
2095         exit(1);
2096     }
2097 
2098     possible_cpus = mc->possible_cpu_arch_ids(machine);
2099     if (mc->has_hotpluggable_cpus) {
2100         if (smp_cpus % smp_threads) {
2101             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2102                          smp_cpus, smp_threads);
2103             exit(1);
2104         }
2105         if (max_cpus % smp_threads) {
2106             error_report("max_cpus (%u) must be multiple of threads (%u)",
2107                          max_cpus, smp_threads);
2108             exit(1);
2109         }
2110     } else {
2111         if (max_cpus != smp_cpus) {
2112             error_report("This machine version does not support CPU hotplug");
2113             exit(1);
2114         }
2115         boot_cores_nr = possible_cpus->len;
2116     }
2117 
2118     for (i = 0; i < possible_cpus->len; i++) {
2119         int core_id = i * smp_threads;
2120 
2121         if (mc->has_hotpluggable_cpus) {
2122             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2123                                    (core_id / smp_threads) * smt);
2124         }
2125 
2126         if (i < boot_cores_nr) {
2127             Object *core  = object_new(type);
2128             int nr_threads = smp_threads;
2129 
2130             /* Handle the partially filled core for older machine types */
2131             if ((i + 1) * smp_threads >= smp_cpus) {
2132                 nr_threads = smp_cpus - i * smp_threads;
2133             }
2134 
2135             object_property_set_int(core, nr_threads, "nr-threads",
2136                                     &error_fatal);
2137             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2138                                     &error_fatal);
2139             object_property_set_bool(core, true, "realized", &error_fatal);
2140         }
2141     }
2142     g_free(type);
2143 }
2144 
2145 /* pSeries LPAR / sPAPR hardware init */
2146 static void ppc_spapr_init(MachineState *machine)
2147 {
2148     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2149     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2150     const char *kernel_filename = machine->kernel_filename;
2151     const char *initrd_filename = machine->initrd_filename;
2152     PCIHostState *phb;
2153     int i;
2154     MemoryRegion *sysmem = get_system_memory();
2155     MemoryRegion *ram = g_new(MemoryRegion, 1);
2156     MemoryRegion *rma_region;
2157     void *rma = NULL;
2158     hwaddr rma_alloc_size;
2159     hwaddr node0_size = spapr_node0_size();
2160     long load_limit, fw_size;
2161     char *filename;
2162     Error *resize_hpt_err = NULL;
2163 
2164     msi_nonbroken = true;
2165 
2166     QLIST_INIT(&spapr->phbs);
2167     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2168 
2169     /* Check HPT resizing availability */
2170     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2171     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2172         /*
2173          * If the user explicitly requested a mode we should either
2174          * supply it, or fail completely (which we do below).  But if
2175          * it's not set explicitly, we reset our mode to something
2176          * that works
2177          */
2178         if (resize_hpt_err) {
2179             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2180             error_free(resize_hpt_err);
2181             resize_hpt_err = NULL;
2182         } else {
2183             spapr->resize_hpt = smc->resize_hpt_default;
2184         }
2185     }
2186 
2187     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2188 
2189     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2190         /*
2191          * User requested HPT resize, but this host can't supply it.  Bail out
2192          */
2193         error_report_err(resize_hpt_err);
2194         exit(1);
2195     }
2196 
2197     /* Allocate RMA if necessary */
2198     rma_alloc_size = kvmppc_alloc_rma(&rma);
2199 
2200     if (rma_alloc_size == -1) {
2201         error_report("Unable to create RMA");
2202         exit(1);
2203     }
2204 
2205     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2206         spapr->rma_size = rma_alloc_size;
2207     } else {
2208         spapr->rma_size = node0_size;
2209 
2210         /* With KVM, we don't actually know whether KVM supports an
2211          * unbounded RMA (PR KVM) or is limited by the hash table size
2212          * (HV KVM using VRMA), so we always assume the latter
2213          *
2214          * In that case, we also limit the initial allocations for RTAS
2215          * etc... to 256M since we have no way to know what the VRMA size
2216          * is going to be as it depends on the size of the hash table
2217          * isn't determined yet.
2218          */
2219         if (kvm_enabled()) {
2220             spapr->vrma_adjust = 1;
2221             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2222         }
2223 
2224         /* Actually we don't support unbounded RMA anymore since we
2225          * added proper emulation of HV mode. The max we can get is
2226          * 16G which also happens to be what we configure for PAPR
2227          * mode so make sure we don't do anything bigger than that
2228          */
2229         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2230     }
2231 
2232     if (spapr->rma_size > node0_size) {
2233         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2234                      spapr->rma_size);
2235         exit(1);
2236     }
2237 
2238     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2239     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2240 
2241     /* Set up Interrupt Controller before we create the VCPUs */
2242     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2243 
2244     /* Set up containers for ibm,client-set-architecture negotiated options */
2245     spapr->ov5 = spapr_ovec_new();
2246     spapr->ov5_cas = spapr_ovec_new();
2247 
2248     if (smc->dr_lmb_enabled) {
2249         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2250         spapr_validate_node_memory(machine, &error_fatal);
2251     }
2252 
2253     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2254     if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2255         /* KVM and TCG always allow GTSE with radix... */
2256         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2257     }
2258     /* ... but not with hash (currently). */
2259 
2260     /* advertise support for dedicated HP event source to guests */
2261     if (spapr->use_hotplug_event_source) {
2262         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2263     }
2264 
2265     /* advertise support for HPT resizing */
2266     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2267         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2268     }
2269 
2270     /* init CPUs */
2271     if (machine->cpu_model == NULL) {
2272         machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2273     }
2274 
2275     spapr_cpu_parse_features(spapr);
2276 
2277     spapr_init_cpus(spapr);
2278 
2279     if (kvm_enabled()) {
2280         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2281         kvmppc_enable_logical_ci_hcalls();
2282         kvmppc_enable_set_mode_hcall();
2283 
2284         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2285         kvmppc_enable_clear_ref_mod_hcalls();
2286     }
2287 
2288     /* allocate RAM */
2289     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2290                                          machine->ram_size);
2291     memory_region_add_subregion(sysmem, 0, ram);
2292 
2293     if (rma_alloc_size && rma) {
2294         rma_region = g_new(MemoryRegion, 1);
2295         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2296                                    rma_alloc_size, rma);
2297         vmstate_register_ram_global(rma_region);
2298         memory_region_add_subregion(sysmem, 0, rma_region);
2299     }
2300 
2301     /* initialize hotplug memory address space */
2302     if (machine->ram_size < machine->maxram_size) {
2303         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2304         /*
2305          * Limit the number of hotpluggable memory slots to half the number
2306          * slots that KVM supports, leaving the other half for PCI and other
2307          * devices. However ensure that number of slots doesn't drop below 32.
2308          */
2309         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2310                            SPAPR_MAX_RAM_SLOTS;
2311 
2312         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2313             max_memslots = SPAPR_MAX_RAM_SLOTS;
2314         }
2315         if (machine->ram_slots > max_memslots) {
2316             error_report("Specified number of memory slots %"
2317                          PRIu64" exceeds max supported %d",
2318                          machine->ram_slots, max_memslots);
2319             exit(1);
2320         }
2321 
2322         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2323                                               SPAPR_HOTPLUG_MEM_ALIGN);
2324         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2325                            "hotplug-memory", hotplug_mem_size);
2326         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2327                                     &spapr->hotplug_memory.mr);
2328     }
2329 
2330     if (smc->dr_lmb_enabled) {
2331         spapr_create_lmb_dr_connectors(spapr);
2332     }
2333 
2334     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2335     if (!filename) {
2336         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2337         exit(1);
2338     }
2339     spapr->rtas_size = get_image_size(filename);
2340     if (spapr->rtas_size < 0) {
2341         error_report("Could not get size of LPAR rtas '%s'", filename);
2342         exit(1);
2343     }
2344     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2345     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2346         error_report("Could not load LPAR rtas '%s'", filename);
2347         exit(1);
2348     }
2349     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2350         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2351                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2352         exit(1);
2353     }
2354     g_free(filename);
2355 
2356     /* Set up RTAS event infrastructure */
2357     spapr_events_init(spapr);
2358 
2359     /* Set up the RTC RTAS interfaces */
2360     spapr_rtc_create(spapr);
2361 
2362     /* Set up VIO bus */
2363     spapr->vio_bus = spapr_vio_bus_init();
2364 
2365     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2366         if (serial_hds[i]) {
2367             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2368         }
2369     }
2370 
2371     /* We always have at least the nvram device on VIO */
2372     spapr_create_nvram(spapr);
2373 
2374     /* Set up PCI */
2375     spapr_pci_rtas_init();
2376 
2377     phb = spapr_create_phb(spapr, 0);
2378 
2379     for (i = 0; i < nb_nics; i++) {
2380         NICInfo *nd = &nd_table[i];
2381 
2382         if (!nd->model) {
2383             nd->model = g_strdup("ibmveth");
2384         }
2385 
2386         if (strcmp(nd->model, "ibmveth") == 0) {
2387             spapr_vlan_create(spapr->vio_bus, nd);
2388         } else {
2389             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2390         }
2391     }
2392 
2393     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2394         spapr_vscsi_create(spapr->vio_bus);
2395     }
2396 
2397     /* Graphics */
2398     if (spapr_vga_init(phb->bus, &error_fatal)) {
2399         spapr->has_graphics = true;
2400         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2401     }
2402 
2403     if (machine->usb) {
2404         if (smc->use_ohci_by_default) {
2405             pci_create_simple(phb->bus, -1, "pci-ohci");
2406         } else {
2407             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2408         }
2409 
2410         if (spapr->has_graphics) {
2411             USBBus *usb_bus = usb_bus_find(-1);
2412 
2413             usb_create_simple(usb_bus, "usb-kbd");
2414             usb_create_simple(usb_bus, "usb-mouse");
2415         }
2416     }
2417 
2418     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2419         error_report(
2420             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2421             MIN_RMA_SLOF);
2422         exit(1);
2423     }
2424 
2425     if (kernel_filename) {
2426         uint64_t lowaddr = 0;
2427 
2428         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2429                                       NULL, NULL, &lowaddr, NULL, 1,
2430                                       PPC_ELF_MACHINE, 0, 0);
2431         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2432             spapr->kernel_size = load_elf(kernel_filename,
2433                                           translate_kernel_address, NULL, NULL,
2434                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2435                                           0, 0);
2436             spapr->kernel_le = spapr->kernel_size > 0;
2437         }
2438         if (spapr->kernel_size < 0) {
2439             error_report("error loading %s: %s", kernel_filename,
2440                          load_elf_strerror(spapr->kernel_size));
2441             exit(1);
2442         }
2443 
2444         /* load initrd */
2445         if (initrd_filename) {
2446             /* Try to locate the initrd in the gap between the kernel
2447              * and the firmware. Add a bit of space just in case
2448              */
2449             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2450                                   + 0x1ffff) & ~0xffff;
2451             spapr->initrd_size = load_image_targphys(initrd_filename,
2452                                                      spapr->initrd_base,
2453                                                      load_limit
2454                                                      - spapr->initrd_base);
2455             if (spapr->initrd_size < 0) {
2456                 error_report("could not load initial ram disk '%s'",
2457                              initrd_filename);
2458                 exit(1);
2459             }
2460         }
2461     }
2462 
2463     if (bios_name == NULL) {
2464         bios_name = FW_FILE_NAME;
2465     }
2466     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2467     if (!filename) {
2468         error_report("Could not find LPAR firmware '%s'", bios_name);
2469         exit(1);
2470     }
2471     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2472     if (fw_size <= 0) {
2473         error_report("Could not load LPAR firmware '%s'", filename);
2474         exit(1);
2475     }
2476     g_free(filename);
2477 
2478     /* FIXME: Should register things through the MachineState's qdev
2479      * interface, this is a legacy from the sPAPREnvironment structure
2480      * which predated MachineState but had a similar function */
2481     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2482     register_savevm_live(NULL, "spapr/htab", -1, 1,
2483                          &savevm_htab_handlers, spapr);
2484 
2485     qemu_register_boot_set(spapr_boot_set, spapr);
2486 
2487     if (kvm_enabled()) {
2488         /* to stop and start vmclock */
2489         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2490                                          &spapr->tb);
2491 
2492         kvmppc_spapr_enable_inkernel_multitce();
2493     }
2494 }
2495 
2496 static int spapr_kvm_type(const char *vm_type)
2497 {
2498     if (!vm_type) {
2499         return 0;
2500     }
2501 
2502     if (!strcmp(vm_type, "HV")) {
2503         return 1;
2504     }
2505 
2506     if (!strcmp(vm_type, "PR")) {
2507         return 2;
2508     }
2509 
2510     error_report("Unknown kvm-type specified '%s'", vm_type);
2511     exit(1);
2512 }
2513 
2514 /*
2515  * Implementation of an interface to adjust firmware path
2516  * for the bootindex property handling.
2517  */
2518 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2519                                    DeviceState *dev)
2520 {
2521 #define CAST(type, obj, name) \
2522     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2523     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2524     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2525     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2526 
2527     if (d) {
2528         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2529         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2530         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2531 
2532         if (spapr) {
2533             /*
2534              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2535              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2536              * in the top 16 bits of the 64-bit LUN
2537              */
2538             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2539             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2540                                    (uint64_t)id << 48);
2541         } else if (virtio) {
2542             /*
2543              * We use SRP luns of the form 01000000 | (target << 8) | lun
2544              * in the top 32 bits of the 64-bit LUN
2545              * Note: the quote above is from SLOF and it is wrong,
2546              * the actual binding is:
2547              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2548              */
2549             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2550             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2551                                    (uint64_t)id << 32);
2552         } else if (usb) {
2553             /*
2554              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2555              * in the top 32 bits of the 64-bit LUN
2556              */
2557             unsigned usb_port = atoi(usb->port->path);
2558             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2559             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2560                                    (uint64_t)id << 32);
2561         }
2562     }
2563 
2564     /*
2565      * SLOF probes the USB devices, and if it recognizes that the device is a
2566      * storage device, it changes its name to "storage" instead of "usb-host",
2567      * and additionally adds a child node for the SCSI LUN, so the correct
2568      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2569      */
2570     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2571         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2572         if (usb_host_dev_is_scsi_storage(usbdev)) {
2573             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2574         }
2575     }
2576 
2577     if (phb) {
2578         /* Replace "pci" with "pci@800000020000000" */
2579         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2580     }
2581 
2582     if (vsc) {
2583         /* Same logic as virtio above */
2584         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2585         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2586     }
2587 
2588     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2589         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2590         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2591         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2592     }
2593 
2594     return NULL;
2595 }
2596 
2597 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2598 {
2599     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2600 
2601     return g_strdup(spapr->kvm_type);
2602 }
2603 
2604 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2605 {
2606     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2607 
2608     g_free(spapr->kvm_type);
2609     spapr->kvm_type = g_strdup(value);
2610 }
2611 
2612 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2613 {
2614     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2615 
2616     return spapr->use_hotplug_event_source;
2617 }
2618 
2619 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2620                                             Error **errp)
2621 {
2622     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2623 
2624     spapr->use_hotplug_event_source = value;
2625 }
2626 
2627 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2628 {
2629     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2630 
2631     switch (spapr->resize_hpt) {
2632     case SPAPR_RESIZE_HPT_DEFAULT:
2633         return g_strdup("default");
2634     case SPAPR_RESIZE_HPT_DISABLED:
2635         return g_strdup("disabled");
2636     case SPAPR_RESIZE_HPT_ENABLED:
2637         return g_strdup("enabled");
2638     case SPAPR_RESIZE_HPT_REQUIRED:
2639         return g_strdup("required");
2640     }
2641     g_assert_not_reached();
2642 }
2643 
2644 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2645 {
2646     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2647 
2648     if (strcmp(value, "default") == 0) {
2649         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2650     } else if (strcmp(value, "disabled") == 0) {
2651         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2652     } else if (strcmp(value, "enabled") == 0) {
2653         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2654     } else if (strcmp(value, "required") == 0) {
2655         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2656     } else {
2657         error_setg(errp, "Bad value for \"resize-hpt\" property");
2658     }
2659 }
2660 
2661 static void spapr_machine_initfn(Object *obj)
2662 {
2663     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2664 
2665     spapr->htab_fd = -1;
2666     spapr->use_hotplug_event_source = true;
2667     object_property_add_str(obj, "kvm-type",
2668                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2669     object_property_set_description(obj, "kvm-type",
2670                                     "Specifies the KVM virtualization mode (HV, PR)",
2671                                     NULL);
2672     object_property_add_bool(obj, "modern-hotplug-events",
2673                             spapr_get_modern_hotplug_events,
2674                             spapr_set_modern_hotplug_events,
2675                             NULL);
2676     object_property_set_description(obj, "modern-hotplug-events",
2677                                     "Use dedicated hotplug event mechanism in"
2678                                     " place of standard EPOW events when possible"
2679                                     " (required for memory hot-unplug support)",
2680                                     NULL);
2681 
2682     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2683                             "Maximum permitted CPU compatibility mode",
2684                             &error_fatal);
2685 
2686     object_property_add_str(obj, "resize-hpt",
2687                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2688     object_property_set_description(obj, "resize-hpt",
2689                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
2690                                     NULL);
2691 }
2692 
2693 static void spapr_machine_finalizefn(Object *obj)
2694 {
2695     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2696 
2697     g_free(spapr->kvm_type);
2698 }
2699 
2700 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2701 {
2702     cpu_synchronize_state(cs);
2703     ppc_cpu_do_system_reset(cs);
2704 }
2705 
2706 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2707 {
2708     CPUState *cs;
2709 
2710     CPU_FOREACH(cs) {
2711         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2712     }
2713 }
2714 
2715 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2716                            uint32_t node, bool dedicated_hp_event_source,
2717                            Error **errp)
2718 {
2719     sPAPRDRConnector *drc;
2720     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2721     int i, fdt_offset, fdt_size;
2722     void *fdt;
2723     uint64_t addr = addr_start;
2724     bool hotplugged = spapr_drc_hotplugged(dev);
2725     Error *local_err = NULL;
2726 
2727     for (i = 0; i < nr_lmbs; i++) {
2728         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2729                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2730         g_assert(drc);
2731 
2732         fdt = create_device_tree(&fdt_size);
2733         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2734                                                 SPAPR_MEMORY_BLOCK_SIZE);
2735 
2736         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2737         if (local_err) {
2738             while (addr > addr_start) {
2739                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2740                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2741                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
2742                 spapr_drc_detach(drc);
2743             }
2744             g_free(fdt);
2745             error_propagate(errp, local_err);
2746             return;
2747         }
2748         if (!hotplugged) {
2749             spapr_drc_reset(drc);
2750         }
2751         addr += SPAPR_MEMORY_BLOCK_SIZE;
2752     }
2753     /* send hotplug notification to the
2754      * guest only in case of hotplugged memory
2755      */
2756     if (hotplugged) {
2757         if (dedicated_hp_event_source) {
2758             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2759                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2760             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2761                                                    nr_lmbs,
2762                                                    spapr_drc_index(drc));
2763         } else {
2764             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2765                                            nr_lmbs);
2766         }
2767     }
2768 }
2769 
2770 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2771                               uint32_t node, Error **errp)
2772 {
2773     Error *local_err = NULL;
2774     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2775     PCDIMMDevice *dimm = PC_DIMM(dev);
2776     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2777     MemoryRegion *mr = ddc->get_memory_region(dimm);
2778     uint64_t align = memory_region_get_alignment(mr);
2779     uint64_t size = memory_region_size(mr);
2780     uint64_t addr;
2781 
2782     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2783     if (local_err) {
2784         goto out;
2785     }
2786 
2787     addr = object_property_get_uint(OBJECT(dimm),
2788                                     PC_DIMM_ADDR_PROP, &local_err);
2789     if (local_err) {
2790         goto out_unplug;
2791     }
2792 
2793     spapr_add_lmbs(dev, addr, size, node,
2794                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2795                    &local_err);
2796     if (local_err) {
2797         goto out_unplug;
2798     }
2799 
2800     return;
2801 
2802 out_unplug:
2803     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2804 out:
2805     error_propagate(errp, local_err);
2806 }
2807 
2808 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2809                                   Error **errp)
2810 {
2811     PCDIMMDevice *dimm = PC_DIMM(dev);
2812     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2813     MemoryRegion *mr = ddc->get_memory_region(dimm);
2814     uint64_t size = memory_region_size(mr);
2815     char *mem_dev;
2816 
2817     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2818         error_setg(errp, "Hotplugged memory size must be a multiple of "
2819                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2820         return;
2821     }
2822 
2823     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2824     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2825         error_setg(errp, "Memory backend has bad page size. "
2826                    "Use 'memory-backend-file' with correct mem-path.");
2827         goto out;
2828     }
2829 
2830 out:
2831     g_free(mem_dev);
2832 }
2833 
2834 struct sPAPRDIMMState {
2835     PCDIMMDevice *dimm;
2836     uint32_t nr_lmbs;
2837     QTAILQ_ENTRY(sPAPRDIMMState) next;
2838 };
2839 
2840 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2841                                                        PCDIMMDevice *dimm)
2842 {
2843     sPAPRDIMMState *dimm_state = NULL;
2844 
2845     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2846         if (dimm_state->dimm == dimm) {
2847             break;
2848         }
2849     }
2850     return dimm_state;
2851 }
2852 
2853 static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2854                                            sPAPRDIMMState *dimm_state)
2855 {
2856     g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm));
2857     QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next);
2858 }
2859 
2860 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2861                                               sPAPRDIMMState *dimm_state)
2862 {
2863     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2864     g_free(dimm_state);
2865 }
2866 
2867 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2868                                                         PCDIMMDevice *dimm)
2869 {
2870     sPAPRDRConnector *drc;
2871     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2872     MemoryRegion *mr = ddc->get_memory_region(dimm);
2873     uint64_t size = memory_region_size(mr);
2874     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2875     uint32_t avail_lmbs = 0;
2876     uint64_t addr_start, addr;
2877     int i;
2878     sPAPRDIMMState *ds;
2879 
2880     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2881                                          &error_abort);
2882 
2883     addr = addr_start;
2884     for (i = 0; i < nr_lmbs; i++) {
2885         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2886                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2887         g_assert(drc);
2888         if (drc->dev) {
2889             avail_lmbs++;
2890         }
2891         addr += SPAPR_MEMORY_BLOCK_SIZE;
2892     }
2893 
2894     ds = g_malloc0(sizeof(sPAPRDIMMState));
2895     ds->nr_lmbs = avail_lmbs;
2896     ds->dimm = dimm;
2897     spapr_pending_dimm_unplugs_add(ms, ds);
2898     return ds;
2899 }
2900 
2901 /* Callback to be called during DRC release. */
2902 void spapr_lmb_release(DeviceState *dev)
2903 {
2904     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
2905     PCDIMMDevice *dimm = PC_DIMM(dev);
2906     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2907     MemoryRegion *mr = ddc->get_memory_region(dimm);
2908     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
2909 
2910     /* This information will get lost if a migration occurs
2911      * during the unplug process. In this case recover it. */
2912     if (ds == NULL) {
2913         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
2914         /* The DRC being examined by the caller at least must be counted */
2915         g_assert(ds->nr_lmbs);
2916     }
2917 
2918     if (--ds->nr_lmbs) {
2919         return;
2920     }
2921 
2922     spapr_pending_dimm_unplugs_remove(spapr, ds);
2923 
2924     /*
2925      * Now that all the LMBs have been removed by the guest, call the
2926      * pc-dimm unplug handler to cleanup up the pc-dimm device.
2927      */
2928     pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
2929     object_unparent(OBJECT(dev));
2930 }
2931 
2932 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2933                                         DeviceState *dev, Error **errp)
2934 {
2935     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
2936     Error *local_err = NULL;
2937     PCDIMMDevice *dimm = PC_DIMM(dev);
2938     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2939     MemoryRegion *mr = ddc->get_memory_region(dimm);
2940     uint64_t size = memory_region_size(mr);
2941     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2942     uint64_t addr_start, addr;
2943     int i;
2944     sPAPRDRConnector *drc;
2945     sPAPRDIMMState *ds;
2946 
2947     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2948                                          &local_err);
2949     if (local_err) {
2950         goto out;
2951     }
2952 
2953     ds = g_malloc0(sizeof(sPAPRDIMMState));
2954     ds->nr_lmbs = nr_lmbs;
2955     ds->dimm = dimm;
2956     spapr_pending_dimm_unplugs_add(spapr, ds);
2957 
2958     addr = addr_start;
2959     for (i = 0; i < nr_lmbs; i++) {
2960         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2961                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2962         g_assert(drc);
2963 
2964         spapr_drc_detach(drc);
2965         addr += SPAPR_MEMORY_BLOCK_SIZE;
2966     }
2967 
2968     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2969                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2970     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2971                                               nr_lmbs, spapr_drc_index(drc));
2972 out:
2973     error_propagate(errp, local_err);
2974 }
2975 
2976 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2977                                            sPAPRMachineState *spapr)
2978 {
2979     PowerPCCPU *cpu = POWERPC_CPU(cs);
2980     DeviceClass *dc = DEVICE_GET_CLASS(cs);
2981     int id = ppc_get_vcpu_dt_id(cpu);
2982     void *fdt;
2983     int offset, fdt_size;
2984     char *nodename;
2985 
2986     fdt = create_device_tree(&fdt_size);
2987     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2988     offset = fdt_add_subnode(fdt, 0, nodename);
2989 
2990     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2991     g_free(nodename);
2992 
2993     *fdt_offset = offset;
2994     return fdt;
2995 }
2996 
2997 /* Callback to be called during DRC release. */
2998 void spapr_core_release(DeviceState *dev)
2999 {
3000     MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3001     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3002     CPUCore *cc = CPU_CORE(dev);
3003     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3004 
3005     if (smc->pre_2_10_has_unused_icps) {
3006         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3007         sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3008         const char *typename = object_class_get_name(scc->cpu_class);
3009         size_t size = object_type_get_instance_size(typename);
3010         int i;
3011 
3012         for (i = 0; i < cc->nr_threads; i++) {
3013             CPUState *cs = CPU(sc->threads + i * size);
3014 
3015             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3016         }
3017     }
3018 
3019     assert(core_slot);
3020     core_slot->cpu = NULL;
3021     object_unparent(OBJECT(dev));
3022 }
3023 
3024 static
3025 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3026                                Error **errp)
3027 {
3028     int index;
3029     sPAPRDRConnector *drc;
3030     CPUCore *cc = CPU_CORE(dev);
3031     int smt = kvmppc_smt_threads();
3032 
3033     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3034         error_setg(errp, "Unable to find CPU core with core-id: %d",
3035                    cc->core_id);
3036         return;
3037     }
3038     if (index == 0) {
3039         error_setg(errp, "Boot CPU core may not be unplugged");
3040         return;
3041     }
3042 
3043     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3044     g_assert(drc);
3045 
3046     spapr_drc_detach(drc);
3047 
3048     spapr_hotplug_req_remove_by_index(drc);
3049 }
3050 
3051 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3052                             Error **errp)
3053 {
3054     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3055     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3056     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3057     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3058     CPUCore *cc = CPU_CORE(dev);
3059     CPUState *cs = CPU(core->threads);
3060     sPAPRDRConnector *drc;
3061     Error *local_err = NULL;
3062     int smt = kvmppc_smt_threads();
3063     CPUArchId *core_slot;
3064     int index;
3065     bool hotplugged = spapr_drc_hotplugged(dev);
3066 
3067     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3068     if (!core_slot) {
3069         error_setg(errp, "Unable to find CPU core with core-id: %d",
3070                    cc->core_id);
3071         return;
3072     }
3073     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3074 
3075     g_assert(drc || !mc->has_hotpluggable_cpus);
3076 
3077     if (drc) {
3078         void *fdt;
3079         int fdt_offset;
3080 
3081         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3082 
3083         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3084         if (local_err) {
3085             g_free(fdt);
3086             error_propagate(errp, local_err);
3087             return;
3088         }
3089 
3090         if (hotplugged) {
3091             /*
3092              * Send hotplug notification interrupt to the guest only
3093              * in case of hotplugged CPUs.
3094              */
3095             spapr_hotplug_req_add_by_index(drc);
3096         } else {
3097             spapr_drc_reset(drc);
3098         }
3099     }
3100 
3101     core_slot->cpu = OBJECT(dev);
3102 
3103     if (smc->pre_2_10_has_unused_icps) {
3104         sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3105         const char *typename = object_class_get_name(scc->cpu_class);
3106         size_t size = object_type_get_instance_size(typename);
3107         int i;
3108 
3109         for (i = 0; i < cc->nr_threads; i++) {
3110             sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3111             void *obj = sc->threads + i * size;
3112 
3113             cs = CPU(obj);
3114             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3115         }
3116     }
3117 }
3118 
3119 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3120                                 Error **errp)
3121 {
3122     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3123     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3124     Error *local_err = NULL;
3125     CPUCore *cc = CPU_CORE(dev);
3126     char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
3127     const char *type = object_get_typename(OBJECT(dev));
3128     CPUArchId *core_slot;
3129     int index;
3130 
3131     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3132         error_setg(&local_err, "CPU hotplug not supported for this machine");
3133         goto out;
3134     }
3135 
3136     if (strcmp(base_core_type, type)) {
3137         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3138         goto out;
3139     }
3140 
3141     if (cc->core_id % smp_threads) {
3142         error_setg(&local_err, "invalid core id %d", cc->core_id);
3143         goto out;
3144     }
3145 
3146     /*
3147      * In general we should have homogeneous threads-per-core, but old
3148      * (pre hotplug support) machine types allow the last core to have
3149      * reduced threads as a compatibility hack for when we allowed
3150      * total vcpus not a multiple of threads-per-core.
3151      */
3152     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3153         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3154                    cc->nr_threads, smp_threads);
3155         goto out;
3156     }
3157 
3158     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3159     if (!core_slot) {
3160         error_setg(&local_err, "core id %d out of range", cc->core_id);
3161         goto out;
3162     }
3163 
3164     if (core_slot->cpu) {
3165         error_setg(&local_err, "core %d already populated", cc->core_id);
3166         goto out;
3167     }
3168 
3169     numa_cpu_pre_plug(core_slot, dev, &local_err);
3170 
3171 out:
3172     g_free(base_core_type);
3173     error_propagate(errp, local_err);
3174 }
3175 
3176 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3177                                       DeviceState *dev, Error **errp)
3178 {
3179     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
3180 
3181     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3182         int node;
3183 
3184         if (!smc->dr_lmb_enabled) {
3185             error_setg(errp, "Memory hotplug not supported for this machine");
3186             return;
3187         }
3188         node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3189         if (*errp) {
3190             return;
3191         }
3192         if (node < 0 || node >= MAX_NODES) {
3193             error_setg(errp, "Invaild node %d", node);
3194             return;
3195         }
3196 
3197         /*
3198          * Currently PowerPC kernel doesn't allow hot-adding memory to
3199          * memory-less node, but instead will silently add the memory
3200          * to the first node that has some memory. This causes two
3201          * unexpected behaviours for the user.
3202          *
3203          * - Memory gets hotplugged to a different node than what the user
3204          *   specified.
3205          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3206          *   to memory-less node, a reboot will set things accordingly
3207          *   and the previously hotplugged memory now ends in the right node.
3208          *   This appears as if some memory moved from one node to another.
3209          *
3210          * So until kernel starts supporting memory hotplug to memory-less
3211          * nodes, just prevent such attempts upfront in QEMU.
3212          */
3213         if (nb_numa_nodes && !numa_info[node].node_mem) {
3214             error_setg(errp, "Can't hotplug memory to memory-less node %d",
3215                        node);
3216             return;
3217         }
3218 
3219         spapr_memory_plug(hotplug_dev, dev, node, errp);
3220     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3221         spapr_core_plug(hotplug_dev, dev, errp);
3222     }
3223 }
3224 
3225 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3226                                                 DeviceState *dev, Error **errp)
3227 {
3228     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3229     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3230 
3231     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3232         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3233             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3234         } else {
3235             /* NOTE: this means there is a window after guest reset, prior to
3236              * CAS negotiation, where unplug requests will fail due to the
3237              * capability not being detected yet. This is a bit different than
3238              * the case with PCI unplug, where the events will be queued and
3239              * eventually handled by the guest after boot
3240              */
3241             error_setg(errp, "Memory hot unplug not supported for this guest");
3242         }
3243     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3244         if (!mc->has_hotpluggable_cpus) {
3245             error_setg(errp, "CPU hot unplug not supported on this machine");
3246             return;
3247         }
3248         spapr_core_unplug_request(hotplug_dev, dev, errp);
3249     }
3250 }
3251 
3252 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3253                                           DeviceState *dev, Error **errp)
3254 {
3255     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3256         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3257     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3258         spapr_core_pre_plug(hotplug_dev, dev, errp);
3259     }
3260 }
3261 
3262 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3263                                                  DeviceState *dev)
3264 {
3265     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3266         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3267         return HOTPLUG_HANDLER(machine);
3268     }
3269     return NULL;
3270 }
3271 
3272 static CpuInstanceProperties
3273 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3274 {
3275     CPUArchId *core_slot;
3276     MachineClass *mc = MACHINE_GET_CLASS(machine);
3277 
3278     /* make sure possible_cpu are intialized */
3279     mc->possible_cpu_arch_ids(machine);
3280     /* get CPU core slot containing thread that matches cpu_index */
3281     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3282     assert(core_slot);
3283     return core_slot->props;
3284 }
3285 
3286 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3287 {
3288     int i;
3289     int spapr_max_cores = max_cpus / smp_threads;
3290     MachineClass *mc = MACHINE_GET_CLASS(machine);
3291 
3292     if (!mc->has_hotpluggable_cpus) {
3293         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3294     }
3295     if (machine->possible_cpus) {
3296         assert(machine->possible_cpus->len == spapr_max_cores);
3297         return machine->possible_cpus;
3298     }
3299 
3300     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3301                              sizeof(CPUArchId) * spapr_max_cores);
3302     machine->possible_cpus->len = spapr_max_cores;
3303     for (i = 0; i < machine->possible_cpus->len; i++) {
3304         int core_id = i * smp_threads;
3305 
3306         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3307         machine->possible_cpus->cpus[i].arch_id = core_id;
3308         machine->possible_cpus->cpus[i].props.has_core_id = true;
3309         machine->possible_cpus->cpus[i].props.core_id = core_id;
3310 
3311         /* default distribution of CPUs over NUMA nodes */
3312         if (nb_numa_nodes) {
3313             /* preset values but do not enable them i.e. 'has_node_id = false',
3314              * numa init code will enable them later if manual mapping wasn't
3315              * present on CLI */
3316             machine->possible_cpus->cpus[i].props.node_id =
3317                 core_id / smp_threads / smp_cores % nb_numa_nodes;
3318         }
3319     }
3320     return machine->possible_cpus;
3321 }
3322 
3323 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3324                                 uint64_t *buid, hwaddr *pio,
3325                                 hwaddr *mmio32, hwaddr *mmio64,
3326                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3327 {
3328     /*
3329      * New-style PHB window placement.
3330      *
3331      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3332      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3333      * windows.
3334      *
3335      * Some guest kernels can't work with MMIO windows above 1<<46
3336      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3337      *
3338      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3339      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3340      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3341      * 1TiB 64-bit MMIO windows for each PHB.
3342      */
3343     const uint64_t base_buid = 0x800000020000000ULL;
3344 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3345                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3346     int i;
3347 
3348     /* Sanity check natural alignments */
3349     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3350     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3351     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3352     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3353     /* Sanity check bounds */
3354     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3355                       SPAPR_PCI_MEM32_WIN_SIZE);
3356     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3357                       SPAPR_PCI_MEM64_WIN_SIZE);
3358 
3359     if (index >= SPAPR_MAX_PHBS) {
3360         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3361                    SPAPR_MAX_PHBS - 1);
3362         return;
3363     }
3364 
3365     *buid = base_buid + index;
3366     for (i = 0; i < n_dma; ++i) {
3367         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3368     }
3369 
3370     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3371     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3372     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3373 }
3374 
3375 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3376 {
3377     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3378 
3379     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3380 }
3381 
3382 static void spapr_ics_resend(XICSFabric *dev)
3383 {
3384     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3385 
3386     ics_resend(spapr->ics);
3387 }
3388 
3389 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3390 {
3391     PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3392 
3393     return cpu ? ICP(cpu->intc) : NULL;
3394 }
3395 
3396 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3397                                  Monitor *mon)
3398 {
3399     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3400     CPUState *cs;
3401 
3402     CPU_FOREACH(cs) {
3403         PowerPCCPU *cpu = POWERPC_CPU(cs);
3404 
3405         icp_pic_print_info(ICP(cpu->intc), mon);
3406     }
3407 
3408     ics_pic_print_info(spapr->ics, mon);
3409 }
3410 
3411 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3412 {
3413     MachineClass *mc = MACHINE_CLASS(oc);
3414     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3415     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3416     NMIClass *nc = NMI_CLASS(oc);
3417     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3418     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3419     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3420     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3421 
3422     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3423 
3424     /*
3425      * We set up the default / latest behaviour here.  The class_init
3426      * functions for the specific versioned machine types can override
3427      * these details for backwards compatibility
3428      */
3429     mc->init = ppc_spapr_init;
3430     mc->reset = ppc_spapr_reset;
3431     mc->block_default_type = IF_SCSI;
3432     mc->max_cpus = 1024;
3433     mc->no_parallel = 1;
3434     mc->default_boot_order = "";
3435     mc->default_ram_size = 512 * M_BYTE;
3436     mc->kvm_type = spapr_kvm_type;
3437     mc->has_dynamic_sysbus = true;
3438     mc->pci_allow_0_address = true;
3439     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3440     hc->pre_plug = spapr_machine_device_pre_plug;
3441     hc->plug = spapr_machine_device_plug;
3442     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3443     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3444     hc->unplug_request = spapr_machine_device_unplug_request;
3445 
3446     smc->dr_lmb_enabled = true;
3447     smc->tcg_default_cpu = "POWER8";
3448     mc->has_hotpluggable_cpus = true;
3449     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3450     fwc->get_dev_path = spapr_get_fw_dev_path;
3451     nc->nmi_monitor_handler = spapr_nmi;
3452     smc->phb_placement = spapr_phb_placement;
3453     vhc->hypercall = emulate_spapr_hypercall;
3454     vhc->hpt_mask = spapr_hpt_mask;
3455     vhc->map_hptes = spapr_map_hptes;
3456     vhc->unmap_hptes = spapr_unmap_hptes;
3457     vhc->store_hpte = spapr_store_hpte;
3458     vhc->get_patbe = spapr_get_patbe;
3459     xic->ics_get = spapr_ics_get;
3460     xic->ics_resend = spapr_ics_resend;
3461     xic->icp_get = spapr_icp_get;
3462     ispc->print_info = spapr_pic_print_info;
3463     /* Force NUMA node memory size to be a multiple of
3464      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3465      * in which LMBs are represented and hot-added
3466      */
3467     mc->numa_mem_align_shift = 28;
3468 }
3469 
3470 static const TypeInfo spapr_machine_info = {
3471     .name          = TYPE_SPAPR_MACHINE,
3472     .parent        = TYPE_MACHINE,
3473     .abstract      = true,
3474     .instance_size = sizeof(sPAPRMachineState),
3475     .instance_init = spapr_machine_initfn,
3476     .instance_finalize = spapr_machine_finalizefn,
3477     .class_size    = sizeof(sPAPRMachineClass),
3478     .class_init    = spapr_machine_class_init,
3479     .interfaces = (InterfaceInfo[]) {
3480         { TYPE_FW_PATH_PROVIDER },
3481         { TYPE_NMI },
3482         { TYPE_HOTPLUG_HANDLER },
3483         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3484         { TYPE_XICS_FABRIC },
3485         { TYPE_INTERRUPT_STATS_PROVIDER },
3486         { }
3487     },
3488 };
3489 
3490 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3491     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3492                                                     void *data)      \
3493     {                                                                \
3494         MachineClass *mc = MACHINE_CLASS(oc);                        \
3495         spapr_machine_##suffix##_class_options(mc);                  \
3496         if (latest) {                                                \
3497             mc->alias = "pseries";                                   \
3498             mc->is_default = 1;                                      \
3499         }                                                            \
3500     }                                                                \
3501     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3502     {                                                                \
3503         MachineState *machine = MACHINE(obj);                        \
3504         spapr_machine_##suffix##_instance_options(machine);          \
3505     }                                                                \
3506     static const TypeInfo spapr_machine_##suffix##_info = {          \
3507         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3508         .parent = TYPE_SPAPR_MACHINE,                                \
3509         .class_init = spapr_machine_##suffix##_class_init,           \
3510         .instance_init = spapr_machine_##suffix##_instance_init,     \
3511     };                                                               \
3512     static void spapr_machine_register_##suffix(void)                \
3513     {                                                                \
3514         type_register(&spapr_machine_##suffix##_info);               \
3515     }                                                                \
3516     type_init(spapr_machine_register_##suffix)
3517 
3518 /*
3519  * pseries-2.10
3520  */
3521 static void spapr_machine_2_10_instance_options(MachineState *machine)
3522 {
3523 }
3524 
3525 static void spapr_machine_2_10_class_options(MachineClass *mc)
3526 {
3527     /* Defaults for the latest behaviour inherited from the base class */
3528 }
3529 
3530 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3531 
3532 /*
3533  * pseries-2.9
3534  */
3535 #define SPAPR_COMPAT_2_9                                               \
3536     HW_COMPAT_2_9                                                      \
3537     {                                                                  \
3538         .driver = TYPE_POWERPC_CPU,                                    \
3539         .property = "pre-2.10-migration",                              \
3540         .value    = "on",                                              \
3541     },                                                                 \
3542 
3543 static void spapr_machine_2_9_instance_options(MachineState *machine)
3544 {
3545     spapr_machine_2_10_instance_options(machine);
3546 }
3547 
3548 static void spapr_machine_2_9_class_options(MachineClass *mc)
3549 {
3550     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3551 
3552     spapr_machine_2_10_class_options(mc);
3553     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3554     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3555     smc->pre_2_10_has_unused_icps = true;
3556     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3557 }
3558 
3559 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3560 
3561 /*
3562  * pseries-2.8
3563  */
3564 #define SPAPR_COMPAT_2_8                                        \
3565     HW_COMPAT_2_8                                               \
3566     {                                                           \
3567         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3568         .property = "pcie-extended-configuration-space",        \
3569         .value    = "off",                                      \
3570     },
3571 
3572 static void spapr_machine_2_8_instance_options(MachineState *machine)
3573 {
3574     spapr_machine_2_9_instance_options(machine);
3575 }
3576 
3577 static void spapr_machine_2_8_class_options(MachineClass *mc)
3578 {
3579     spapr_machine_2_9_class_options(mc);
3580     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3581     mc->numa_mem_align_shift = 23;
3582 }
3583 
3584 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3585 
3586 /*
3587  * pseries-2.7
3588  */
3589 #define SPAPR_COMPAT_2_7                            \
3590     HW_COMPAT_2_7                                   \
3591     {                                               \
3592         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3593         .property = "mem_win_size",                 \
3594         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3595     },                                              \
3596     {                                               \
3597         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3598         .property = "mem64_win_size",               \
3599         .value    = "0",                            \
3600     },                                              \
3601     {                                               \
3602         .driver = TYPE_POWERPC_CPU,                 \
3603         .property = "pre-2.8-migration",            \
3604         .value    = "on",                           \
3605     },                                              \
3606     {                                               \
3607         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3608         .property = "pre-2.8-migration",            \
3609         .value    = "on",                           \
3610     },
3611 
3612 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3613                               uint64_t *buid, hwaddr *pio,
3614                               hwaddr *mmio32, hwaddr *mmio64,
3615                               unsigned n_dma, uint32_t *liobns, Error **errp)
3616 {
3617     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3618     const uint64_t base_buid = 0x800000020000000ULL;
3619     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3620     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3621     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3622     const uint32_t max_index = 255;
3623     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3624 
3625     uint64_t ram_top = MACHINE(spapr)->ram_size;
3626     hwaddr phb0_base, phb_base;
3627     int i;
3628 
3629     /* Do we have hotpluggable memory? */
3630     if (MACHINE(spapr)->maxram_size > ram_top) {
3631         /* Can't just use maxram_size, because there may be an
3632          * alignment gap between normal and hotpluggable memory
3633          * regions */
3634         ram_top = spapr->hotplug_memory.base +
3635             memory_region_size(&spapr->hotplug_memory.mr);
3636     }
3637 
3638     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3639 
3640     if (index > max_index) {
3641         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3642                    max_index);
3643         return;
3644     }
3645 
3646     *buid = base_buid + index;
3647     for (i = 0; i < n_dma; ++i) {
3648         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3649     }
3650 
3651     phb_base = phb0_base + index * phb_spacing;
3652     *pio = phb_base + pio_offset;
3653     *mmio32 = phb_base + mmio_offset;
3654     /*
3655      * We don't set the 64-bit MMIO window, relying on the PHB's
3656      * fallback behaviour of automatically splitting a large "32-bit"
3657      * window into contiguous 32-bit and 64-bit windows
3658      */
3659 }
3660 
3661 static void spapr_machine_2_7_instance_options(MachineState *machine)
3662 {
3663     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3664 
3665     spapr_machine_2_8_instance_options(machine);
3666     spapr->use_hotplug_event_source = false;
3667 }
3668 
3669 static void spapr_machine_2_7_class_options(MachineClass *mc)
3670 {
3671     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3672 
3673     spapr_machine_2_8_class_options(mc);
3674     smc->tcg_default_cpu = "POWER7";
3675     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3676     smc->phb_placement = phb_placement_2_7;
3677 }
3678 
3679 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3680 
3681 /*
3682  * pseries-2.6
3683  */
3684 #define SPAPR_COMPAT_2_6 \
3685     HW_COMPAT_2_6 \
3686     { \
3687         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3688         .property = "ddw",\
3689         .value    = stringify(off),\
3690     },
3691 
3692 static void spapr_machine_2_6_instance_options(MachineState *machine)
3693 {
3694     spapr_machine_2_7_instance_options(machine);
3695 }
3696 
3697 static void spapr_machine_2_6_class_options(MachineClass *mc)
3698 {
3699     spapr_machine_2_7_class_options(mc);
3700     mc->has_hotpluggable_cpus = false;
3701     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3702 }
3703 
3704 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3705 
3706 /*
3707  * pseries-2.5
3708  */
3709 #define SPAPR_COMPAT_2_5 \
3710     HW_COMPAT_2_5 \
3711     { \
3712         .driver   = "spapr-vlan", \
3713         .property = "use-rx-buffer-pools", \
3714         .value    = "off", \
3715     },
3716 
3717 static void spapr_machine_2_5_instance_options(MachineState *machine)
3718 {
3719     spapr_machine_2_6_instance_options(machine);
3720 }
3721 
3722 static void spapr_machine_2_5_class_options(MachineClass *mc)
3723 {
3724     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3725 
3726     spapr_machine_2_6_class_options(mc);
3727     smc->use_ohci_by_default = true;
3728     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3729 }
3730 
3731 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3732 
3733 /*
3734  * pseries-2.4
3735  */
3736 #define SPAPR_COMPAT_2_4 \
3737         HW_COMPAT_2_4
3738 
3739 static void spapr_machine_2_4_instance_options(MachineState *machine)
3740 {
3741     spapr_machine_2_5_instance_options(machine);
3742 }
3743 
3744 static void spapr_machine_2_4_class_options(MachineClass *mc)
3745 {
3746     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3747 
3748     spapr_machine_2_5_class_options(mc);
3749     smc->dr_lmb_enabled = false;
3750     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3751 }
3752 
3753 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3754 
3755 /*
3756  * pseries-2.3
3757  */
3758 #define SPAPR_COMPAT_2_3 \
3759         HW_COMPAT_2_3 \
3760         {\
3761             .driver   = "spapr-pci-host-bridge",\
3762             .property = "dynamic-reconfiguration",\
3763             .value    = "off",\
3764         },
3765 
3766 static void spapr_machine_2_3_instance_options(MachineState *machine)
3767 {
3768     spapr_machine_2_4_instance_options(machine);
3769 }
3770 
3771 static void spapr_machine_2_3_class_options(MachineClass *mc)
3772 {
3773     spapr_machine_2_4_class_options(mc);
3774     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3775 }
3776 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3777 
3778 /*
3779  * pseries-2.2
3780  */
3781 
3782 #define SPAPR_COMPAT_2_2 \
3783         HW_COMPAT_2_2 \
3784         {\
3785             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3786             .property = "mem_win_size",\
3787             .value    = "0x20000000",\
3788         },
3789 
3790 static void spapr_machine_2_2_instance_options(MachineState *machine)
3791 {
3792     spapr_machine_2_3_instance_options(machine);
3793     machine->suppress_vmdesc = true;
3794 }
3795 
3796 static void spapr_machine_2_2_class_options(MachineClass *mc)
3797 {
3798     spapr_machine_2_3_class_options(mc);
3799     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3800 }
3801 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3802 
3803 /*
3804  * pseries-2.1
3805  */
3806 #define SPAPR_COMPAT_2_1 \
3807         HW_COMPAT_2_1
3808 
3809 static void spapr_machine_2_1_instance_options(MachineState *machine)
3810 {
3811     spapr_machine_2_2_instance_options(machine);
3812 }
3813 
3814 static void spapr_machine_2_1_class_options(MachineClass *mc)
3815 {
3816     spapr_machine_2_2_class_options(mc);
3817     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3818 }
3819 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3820 
3821 static void spapr_machine_register_types(void)
3822 {
3823     type_register_static(&spapr_machine_info);
3824 }
3825 
3826 type_init(spapr_machine_register_types)
3827