1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/numa.h" 31 #include "hw/hw.h" 32 #include "qemu/log.h" 33 #include "hw/fw-path-provider.h" 34 #include "elf.h" 35 #include "net/net.h" 36 #include "sysemu/device_tree.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/misc.h" 42 #include "migration/global_state.h" 43 #include "migration/register.h" 44 #include "mmu-hash64.h" 45 #include "mmu-book3s-v3.h" 46 #include "qom/cpu.h" 47 48 #include "hw/boards.h" 49 #include "hw/ppc/ppc.h" 50 #include "hw/loader.h" 51 52 #include "hw/ppc/fdt.h" 53 #include "hw/ppc/spapr.h" 54 #include "hw/ppc/spapr_vio.h" 55 #include "hw/pci-host/spapr.h" 56 #include "hw/ppc/xics.h" 57 #include "hw/pci/msi.h" 58 59 #include "hw/pci/pci.h" 60 #include "hw/scsi/scsi.h" 61 #include "hw/virtio/virtio-scsi.h" 62 #include "hw/virtio/vhost-scsi-common.h" 63 64 #include "exec/address-spaces.h" 65 #include "hw/usb.h" 66 #include "qemu/config-file.h" 67 #include "qemu/error-report.h" 68 #include "trace.h" 69 #include "hw/nmi.h" 70 #include "hw/intc/intc.h" 71 72 #include "hw/compat.h" 73 #include "qemu/cutils.h" 74 #include "hw/ppc/spapr_cpu_core.h" 75 #include "qmp-commands.h" 76 77 #include <libfdt.h> 78 79 /* SLOF memory layout: 80 * 81 * SLOF raw image loaded at 0, copies its romfs right below the flat 82 * device-tree, then position SLOF itself 31M below that 83 * 84 * So we set FW_OVERHEAD to 40MB which should account for all of that 85 * and more 86 * 87 * We load our kernel at 4M, leaving space for SLOF initial image 88 */ 89 #define FDT_MAX_SIZE 0x100000 90 #define RTAS_MAX_SIZE 0x10000 91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 92 #define FW_MAX_SIZE 0x400000 93 #define FW_FILE_NAME "slof.bin" 94 #define FW_OVERHEAD 0x2800000 95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 96 97 #define MIN_RMA_SLOF 128UL 98 99 #define PHANDLE_XICP 0x00001111 100 101 static ICSState *spapr_ics_create(sPAPRMachineState *spapr, 102 const char *type_ics, 103 int nr_irqs, Error **errp) 104 { 105 Error *local_err = NULL; 106 Object *obj; 107 108 obj = object_new(type_ics); 109 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); 110 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr), 111 &error_abort); 112 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err); 113 if (local_err) { 114 goto error; 115 } 116 object_property_set_bool(obj, true, "realized", &local_err); 117 if (local_err) { 118 goto error; 119 } 120 121 return ICS_SIMPLE(obj); 122 123 error: 124 error_propagate(errp, local_err); 125 return NULL; 126 } 127 128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 129 { 130 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 131 * and newer QEMUs don't even have them. In both cases, we don't want 132 * to send anything on the wire. 133 */ 134 return false; 135 } 136 137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 138 .name = "icp/server", 139 .version_id = 1, 140 .minimum_version_id = 1, 141 .needed = pre_2_10_vmstate_dummy_icp_needed, 142 .fields = (VMStateField[]) { 143 VMSTATE_UNUSED(4), /* uint32_t xirr */ 144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 145 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 146 VMSTATE_END_OF_LIST() 147 }, 148 }; 149 150 static void pre_2_10_vmstate_register_dummy_icp(int i) 151 { 152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 153 (void *)(uintptr_t) i); 154 } 155 156 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 157 { 158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 159 (void *)(uintptr_t) i); 160 } 161 162 static inline int xics_max_server_number(void) 163 { 164 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads); 165 } 166 167 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp) 168 { 169 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 170 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 171 172 if (kvm_enabled()) { 173 if (machine_kernel_irqchip_allowed(machine) && 174 !xics_kvm_init(spapr, errp)) { 175 spapr->icp_type = TYPE_KVM_ICP; 176 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp); 177 } 178 if (machine_kernel_irqchip_required(machine) && !spapr->ics) { 179 error_prepend(errp, "kernel_irqchip requested but unavailable: "); 180 return; 181 } 182 } 183 184 if (!spapr->ics) { 185 xics_spapr_init(spapr); 186 spapr->icp_type = TYPE_ICP; 187 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp); 188 if (!spapr->ics) { 189 return; 190 } 191 } 192 193 if (smc->pre_2_10_has_unused_icps) { 194 int i; 195 196 for (i = 0; i < xics_max_server_number(); i++) { 197 /* Dummy entries get deregistered when real ICPState objects 198 * are registered during CPU core hotplug. 199 */ 200 pre_2_10_vmstate_register_dummy_icp(i); 201 } 202 } 203 } 204 205 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 206 int smt_threads) 207 { 208 int i, ret = 0; 209 uint32_t servers_prop[smt_threads]; 210 uint32_t gservers_prop[smt_threads * 2]; 211 int index = ppc_get_vcpu_dt_id(cpu); 212 213 if (cpu->compat_pvr) { 214 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 215 if (ret < 0) { 216 return ret; 217 } 218 } 219 220 /* Build interrupt servers and gservers properties */ 221 for (i = 0; i < smt_threads; i++) { 222 servers_prop[i] = cpu_to_be32(index + i); 223 /* Hack, direct the group queues back to cpu 0 */ 224 gservers_prop[i*2] = cpu_to_be32(index + i); 225 gservers_prop[i*2 + 1] = 0; 226 } 227 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 228 servers_prop, sizeof(servers_prop)); 229 if (ret < 0) { 230 return ret; 231 } 232 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 233 gservers_prop, sizeof(gservers_prop)); 234 235 return ret; 236 } 237 238 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 239 { 240 int index = ppc_get_vcpu_dt_id(cpu); 241 uint32_t associativity[] = {cpu_to_be32(0x5), 242 cpu_to_be32(0x0), 243 cpu_to_be32(0x0), 244 cpu_to_be32(0x0), 245 cpu_to_be32(cpu->node_id), 246 cpu_to_be32(index)}; 247 248 /* Advertise NUMA via ibm,associativity */ 249 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 250 sizeof(associativity)); 251 } 252 253 /* Populate the "ibm,pa-features" property */ 254 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset, 255 bool legacy_guest) 256 { 257 uint8_t pa_features_206[] = { 6, 0, 258 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 259 uint8_t pa_features_207[] = { 24, 0, 260 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 261 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 262 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 263 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 264 uint8_t pa_features_300[] = { 66, 0, 265 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 266 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 267 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 268 /* 6: DS207 */ 269 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 270 /* 16: Vector */ 271 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 272 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 273 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 274 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 275 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 276 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 277 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 278 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 279 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 280 /* 42: PM, 44: PC RA, 46: SC vec'd */ 281 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 282 /* 48: SIMD, 50: QP BFP, 52: String */ 283 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 284 /* 54: DecFP, 56: DecI, 58: SHA */ 285 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 286 /* 60: NM atomic, 62: RNG */ 287 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 288 }; 289 uint8_t *pa_features; 290 size_t pa_size; 291 292 switch (POWERPC_MMU_VER(env->mmu_model)) { 293 case POWERPC_MMU_VER_2_06: 294 pa_features = pa_features_206; 295 pa_size = sizeof(pa_features_206); 296 break; 297 case POWERPC_MMU_VER_2_07: 298 pa_features = pa_features_207; 299 pa_size = sizeof(pa_features_207); 300 break; 301 case POWERPC_MMU_VER_3_00: 302 pa_features = pa_features_300; 303 pa_size = sizeof(pa_features_300); 304 break; 305 default: 306 return; 307 } 308 309 if (env->ci_large_pages) { 310 /* 311 * Note: we keep CI large pages off by default because a 64K capable 312 * guest provisioned with large pages might otherwise try to map a qemu 313 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 314 * even if that qemu runs on a 4k host. 315 * We dd this bit back here if we are confident this is not an issue 316 */ 317 pa_features[3] |= 0x20; 318 } 319 if (kvmppc_has_cap_htm() && pa_size > 24) { 320 pa_features[24] |= 0x80; /* Transactional memory support */ 321 } 322 if (legacy_guest && pa_size > 40) { 323 /* Workaround for broken kernels that attempt (guest) radix 324 * mode when they can't handle it, if they see the radix bit set 325 * in pa-features. So hide it from them. */ 326 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 327 } 328 329 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 330 } 331 332 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 333 { 334 int ret = 0, offset, cpus_offset; 335 CPUState *cs; 336 char cpu_model[32]; 337 int smt = kvmppc_smt_threads(); 338 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 339 340 CPU_FOREACH(cs) { 341 PowerPCCPU *cpu = POWERPC_CPU(cs); 342 CPUPPCState *env = &cpu->env; 343 DeviceClass *dc = DEVICE_GET_CLASS(cs); 344 int index = ppc_get_vcpu_dt_id(cpu); 345 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 346 347 if ((index % smt) != 0) { 348 continue; 349 } 350 351 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 352 353 cpus_offset = fdt_path_offset(fdt, "/cpus"); 354 if (cpus_offset < 0) { 355 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), 356 "cpus"); 357 if (cpus_offset < 0) { 358 return cpus_offset; 359 } 360 } 361 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 362 if (offset < 0) { 363 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 364 if (offset < 0) { 365 return offset; 366 } 367 } 368 369 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 370 pft_size_prop, sizeof(pft_size_prop)); 371 if (ret < 0) { 372 return ret; 373 } 374 375 if (nb_numa_nodes > 1) { 376 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 377 if (ret < 0) { 378 return ret; 379 } 380 } 381 382 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 383 if (ret < 0) { 384 return ret; 385 } 386 387 spapr_populate_pa_features(env, fdt, offset, 388 spapr->cas_legacy_guest_workaround); 389 } 390 return ret; 391 } 392 393 static hwaddr spapr_node0_size(void) 394 { 395 MachineState *machine = MACHINE(qdev_get_machine()); 396 397 if (nb_numa_nodes) { 398 int i; 399 for (i = 0; i < nb_numa_nodes; ++i) { 400 if (numa_info[i].node_mem) { 401 return MIN(pow2floor(numa_info[i].node_mem), 402 machine->ram_size); 403 } 404 } 405 } 406 return machine->ram_size; 407 } 408 409 static void add_str(GString *s, const gchar *s1) 410 { 411 g_string_append_len(s, s1, strlen(s1) + 1); 412 } 413 414 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 415 hwaddr size) 416 { 417 uint32_t associativity[] = { 418 cpu_to_be32(0x4), /* length */ 419 cpu_to_be32(0x0), cpu_to_be32(0x0), 420 cpu_to_be32(0x0), cpu_to_be32(nodeid) 421 }; 422 char mem_name[32]; 423 uint64_t mem_reg_property[2]; 424 int off; 425 426 mem_reg_property[0] = cpu_to_be64(start); 427 mem_reg_property[1] = cpu_to_be64(size); 428 429 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 430 off = fdt_add_subnode(fdt, 0, mem_name); 431 _FDT(off); 432 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 433 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 434 sizeof(mem_reg_property)))); 435 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 436 sizeof(associativity)))); 437 return off; 438 } 439 440 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 441 { 442 MachineState *machine = MACHINE(spapr); 443 hwaddr mem_start, node_size; 444 int i, nb_nodes = nb_numa_nodes; 445 NodeInfo *nodes = numa_info; 446 NodeInfo ramnode; 447 448 /* No NUMA nodes, assume there is just one node with whole RAM */ 449 if (!nb_numa_nodes) { 450 nb_nodes = 1; 451 ramnode.node_mem = machine->ram_size; 452 nodes = &ramnode; 453 } 454 455 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 456 if (!nodes[i].node_mem) { 457 continue; 458 } 459 if (mem_start >= machine->ram_size) { 460 node_size = 0; 461 } else { 462 node_size = nodes[i].node_mem; 463 if (node_size > machine->ram_size - mem_start) { 464 node_size = machine->ram_size - mem_start; 465 } 466 } 467 if (!mem_start) { 468 /* ppc_spapr_init() checks for rma_size <= node0_size already */ 469 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 470 mem_start += spapr->rma_size; 471 node_size -= spapr->rma_size; 472 } 473 for ( ; node_size; ) { 474 hwaddr sizetmp = pow2floor(node_size); 475 476 /* mem_start != 0 here */ 477 if (ctzl(mem_start) < ctzl(sizetmp)) { 478 sizetmp = 1ULL << ctzl(mem_start); 479 } 480 481 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 482 node_size -= sizetmp; 483 mem_start += sizetmp; 484 } 485 } 486 487 return 0; 488 } 489 490 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 491 sPAPRMachineState *spapr) 492 { 493 PowerPCCPU *cpu = POWERPC_CPU(cs); 494 CPUPPCState *env = &cpu->env; 495 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 496 int index = ppc_get_vcpu_dt_id(cpu); 497 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 498 0xffffffff, 0xffffffff}; 499 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 500 : SPAPR_TIMEBASE_FREQ; 501 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 502 uint32_t page_sizes_prop[64]; 503 size_t page_sizes_prop_size; 504 uint32_t vcpus_per_socket = smp_threads * smp_cores; 505 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 506 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 507 sPAPRDRConnector *drc; 508 int drc_index; 509 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 510 int i; 511 512 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 513 if (drc) { 514 drc_index = spapr_drc_index(drc); 515 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 516 } 517 518 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 519 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 520 521 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 522 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 523 env->dcache_line_size))); 524 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 525 env->dcache_line_size))); 526 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 527 env->icache_line_size))); 528 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 529 env->icache_line_size))); 530 531 if (pcc->l1_dcache_size) { 532 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 533 pcc->l1_dcache_size))); 534 } else { 535 warn_report("Unknown L1 dcache size for cpu"); 536 } 537 if (pcc->l1_icache_size) { 538 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 539 pcc->l1_icache_size))); 540 } else { 541 warn_report("Unknown L1 icache size for cpu"); 542 } 543 544 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 545 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 546 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); 547 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); 548 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 549 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 550 551 if (env->spr_cb[SPR_PURR].oea_read) { 552 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 553 } 554 555 if (env->mmu_model & POWERPC_MMU_1TSEG) { 556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 557 segs, sizeof(segs)))); 558 } 559 560 /* Advertise VMX/VSX (vector extensions) if available 561 * 0 / no property == no vector extensions 562 * 1 == VMX / Altivec available 563 * 2 == VSX available */ 564 if (env->insns_flags & PPC_ALTIVEC) { 565 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 566 567 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 568 } 569 570 /* Advertise DFP (Decimal Floating Point) if available 571 * 0 / no property == no DFP 572 * 1 == DFP available */ 573 if (env->insns_flags2 & PPC2_DFP) { 574 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 575 } 576 577 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, 578 sizeof(page_sizes_prop)); 579 if (page_sizes_prop_size) { 580 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 581 page_sizes_prop, page_sizes_prop_size))); 582 } 583 584 spapr_populate_pa_features(env, fdt, offset, false); 585 586 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 587 cs->cpu_index / vcpus_per_socket))); 588 589 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 590 pft_size_prop, sizeof(pft_size_prop)))); 591 592 if (nb_numa_nodes > 1) { 593 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 594 } 595 596 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 597 598 if (pcc->radix_page_info) { 599 for (i = 0; i < pcc->radix_page_info->count; i++) { 600 radix_AP_encodings[i] = 601 cpu_to_be32(pcc->radix_page_info->entries[i]); 602 } 603 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 604 radix_AP_encodings, 605 pcc->radix_page_info->count * 606 sizeof(radix_AP_encodings[0])))); 607 } 608 } 609 610 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 611 { 612 CPUState *cs; 613 int cpus_offset; 614 char *nodename; 615 int smt = kvmppc_smt_threads(); 616 617 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 618 _FDT(cpus_offset); 619 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 620 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 621 622 /* 623 * We walk the CPUs in reverse order to ensure that CPU DT nodes 624 * created by fdt_add_subnode() end up in the right order in FDT 625 * for the guest kernel the enumerate the CPUs correctly. 626 */ 627 CPU_FOREACH_REVERSE(cs) { 628 PowerPCCPU *cpu = POWERPC_CPU(cs); 629 int index = ppc_get_vcpu_dt_id(cpu); 630 DeviceClass *dc = DEVICE_GET_CLASS(cs); 631 int offset; 632 633 if ((index % smt) != 0) { 634 continue; 635 } 636 637 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 638 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 639 g_free(nodename); 640 _FDT(offset); 641 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 642 } 643 644 } 645 646 /* 647 * Adds ibm,dynamic-reconfiguration-memory node. 648 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 649 * of this device tree node. 650 */ 651 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 652 { 653 MachineState *machine = MACHINE(spapr); 654 int ret, i, offset; 655 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 656 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 657 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; 658 uint32_t nr_lmbs = (spapr->hotplug_memory.base + 659 memory_region_size(&spapr->hotplug_memory.mr)) / 660 lmb_size; 661 uint32_t *int_buf, *cur_index, buf_len; 662 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 663 664 /* 665 * Don't create the node if there is no hotpluggable memory 666 */ 667 if (machine->ram_size == machine->maxram_size) { 668 return 0; 669 } 670 671 /* 672 * Allocate enough buffer size to fit in ibm,dynamic-memory 673 * or ibm,associativity-lookup-arrays 674 */ 675 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) 676 * sizeof(uint32_t); 677 cur_index = int_buf = g_malloc0(buf_len); 678 679 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 680 681 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 682 sizeof(prop_lmb_size)); 683 if (ret < 0) { 684 goto out; 685 } 686 687 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 688 if (ret < 0) { 689 goto out; 690 } 691 692 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 693 if (ret < 0) { 694 goto out; 695 } 696 697 /* ibm,dynamic-memory */ 698 int_buf[0] = cpu_to_be32(nr_lmbs); 699 cur_index++; 700 for (i = 0; i < nr_lmbs; i++) { 701 uint64_t addr = i * lmb_size; 702 uint32_t *dynamic_memory = cur_index; 703 704 if (i >= hotplug_lmb_start) { 705 sPAPRDRConnector *drc; 706 707 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 708 g_assert(drc); 709 710 dynamic_memory[0] = cpu_to_be32(addr >> 32); 711 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 712 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 713 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 714 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL)); 715 if (memory_region_present(get_system_memory(), addr)) { 716 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 717 } else { 718 dynamic_memory[5] = cpu_to_be32(0); 719 } 720 } else { 721 /* 722 * LMB information for RMA, boot time RAM and gap b/n RAM and 723 * hotplug memory region -- all these are marked as reserved 724 * and as having no valid DRC. 725 */ 726 dynamic_memory[0] = cpu_to_be32(addr >> 32); 727 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 728 dynamic_memory[2] = cpu_to_be32(0); 729 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 730 dynamic_memory[4] = cpu_to_be32(-1); 731 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 732 SPAPR_LMB_FLAGS_DRC_INVALID); 733 } 734 735 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 736 } 737 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 738 if (ret < 0) { 739 goto out; 740 } 741 742 /* ibm,associativity-lookup-arrays */ 743 cur_index = int_buf; 744 int_buf[0] = cpu_to_be32(nr_nodes); 745 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 746 cur_index += 2; 747 for (i = 0; i < nr_nodes; i++) { 748 uint32_t associativity[] = { 749 cpu_to_be32(0x0), 750 cpu_to_be32(0x0), 751 cpu_to_be32(0x0), 752 cpu_to_be32(i) 753 }; 754 memcpy(cur_index, associativity, sizeof(associativity)); 755 cur_index += 4; 756 } 757 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 758 (cur_index - int_buf) * sizeof(uint32_t)); 759 out: 760 g_free(int_buf); 761 return ret; 762 } 763 764 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 765 sPAPROptionVector *ov5_updates) 766 { 767 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 768 int ret = 0, offset; 769 770 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 771 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 772 g_assert(smc->dr_lmb_enabled); 773 ret = spapr_populate_drconf_memory(spapr, fdt); 774 if (ret) { 775 goto out; 776 } 777 } 778 779 /* /interrupt controller */ 780 if (!spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)) { 781 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP); 782 } 783 784 offset = fdt_path_offset(fdt, "/chosen"); 785 if (offset < 0) { 786 offset = fdt_add_subnode(fdt, 0, "chosen"); 787 if (offset < 0) { 788 return offset; 789 } 790 } 791 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 792 "ibm,architecture-vec-5"); 793 794 out: 795 return ret; 796 } 797 798 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 799 target_ulong addr, target_ulong size, 800 sPAPROptionVector *ov5_updates) 801 { 802 void *fdt, *fdt_skel; 803 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 804 805 size -= sizeof(hdr); 806 807 /* Create skeleton */ 808 fdt_skel = g_malloc0(size); 809 _FDT((fdt_create(fdt_skel, size))); 810 _FDT((fdt_begin_node(fdt_skel, ""))); 811 _FDT((fdt_end_node(fdt_skel))); 812 _FDT((fdt_finish(fdt_skel))); 813 fdt = g_malloc0(size); 814 _FDT((fdt_open_into(fdt_skel, fdt, size))); 815 g_free(fdt_skel); 816 817 /* Fixup cpu nodes */ 818 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 819 820 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 821 return -1; 822 } 823 824 /* Pack resulting tree */ 825 _FDT((fdt_pack(fdt))); 826 827 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 828 trace_spapr_cas_failed(size); 829 return -1; 830 } 831 832 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 833 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 834 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 835 g_free(fdt); 836 837 return 0; 838 } 839 840 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 841 { 842 int rtas; 843 GString *hypertas = g_string_sized_new(256); 844 GString *qemu_hypertas = g_string_sized_new(256); 845 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 846 uint64_t max_hotplug_addr = spapr->hotplug_memory.base + 847 memory_region_size(&spapr->hotplug_memory.mr); 848 uint32_t lrdr_capacity[] = { 849 cpu_to_be32(max_hotplug_addr >> 32), 850 cpu_to_be32(max_hotplug_addr & 0xffffffff), 851 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 852 cpu_to_be32(max_cpus / smp_threads), 853 }; 854 855 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 856 857 /* hypertas */ 858 add_str(hypertas, "hcall-pft"); 859 add_str(hypertas, "hcall-term"); 860 add_str(hypertas, "hcall-dabr"); 861 add_str(hypertas, "hcall-interrupt"); 862 add_str(hypertas, "hcall-tce"); 863 add_str(hypertas, "hcall-vio"); 864 add_str(hypertas, "hcall-splpar"); 865 add_str(hypertas, "hcall-bulk"); 866 add_str(hypertas, "hcall-set-mode"); 867 add_str(hypertas, "hcall-sprg0"); 868 add_str(hypertas, "hcall-copy"); 869 add_str(hypertas, "hcall-debug"); 870 add_str(qemu_hypertas, "hcall-memop1"); 871 872 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 873 add_str(hypertas, "hcall-multi-tce"); 874 } 875 876 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 877 add_str(hypertas, "hcall-hpt-resize"); 878 } 879 880 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 881 hypertas->str, hypertas->len)); 882 g_string_free(hypertas, TRUE); 883 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 884 qemu_hypertas->str, qemu_hypertas->len)); 885 g_string_free(qemu_hypertas, TRUE); 886 887 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 888 refpoints, sizeof(refpoints))); 889 890 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 891 RTAS_ERROR_LOG_MAX)); 892 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 893 RTAS_EVENT_SCAN_RATE)); 894 895 if (msi_nonbroken) { 896 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 897 } 898 899 /* 900 * According to PAPR, rtas ibm,os-term does not guarantee a return 901 * back to the guest cpu. 902 * 903 * While an additional ibm,extended-os-term property indicates 904 * that rtas call return will always occur. Set this property. 905 */ 906 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 907 908 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 909 lrdr_capacity, sizeof(lrdr_capacity))); 910 911 spapr_dt_rtas_tokens(fdt, rtas); 912 } 913 914 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features 915 * that the guest may request and thus the valid values for bytes 24..26 of 916 * option vector 5: */ 917 static void spapr_dt_ov5_platform_support(void *fdt, int chosen) 918 { 919 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 920 921 char val[2 * 4] = { 922 23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */ 923 24, 0x00, /* Hash/Radix, filled in below. */ 924 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 925 26, 0x40, /* Radix options: GTSE == yes. */ 926 }; 927 928 if (kvm_enabled()) { 929 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 930 val[3] = 0x80; /* OV5_MMU_BOTH */ 931 } else if (kvmppc_has_cap_mmu_radix()) { 932 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 933 } else { 934 val[3] = 0x00; /* Hash */ 935 } 936 } else { 937 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) { 938 /* V3 MMU supports both hash and radix (with dynamic switching) */ 939 val[3] = 0xC0; 940 } else { 941 /* Otherwise we can only do hash */ 942 val[3] = 0x00; 943 } 944 } 945 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 946 val, sizeof(val))); 947 } 948 949 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 950 { 951 MachineState *machine = MACHINE(spapr); 952 int chosen; 953 const char *boot_device = machine->boot_order; 954 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 955 size_t cb = 0; 956 char *bootlist = get_boot_devices_list(&cb, true); 957 958 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 959 960 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 961 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 962 spapr->initrd_base)); 963 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 964 spapr->initrd_base + spapr->initrd_size)); 965 966 if (spapr->kernel_size) { 967 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 968 cpu_to_be64(spapr->kernel_size) }; 969 970 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 971 &kprop, sizeof(kprop))); 972 if (spapr->kernel_le) { 973 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 974 } 975 } 976 if (boot_menu) { 977 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 978 } 979 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 980 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 981 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 982 983 if (cb && bootlist) { 984 int i; 985 986 for (i = 0; i < cb; i++) { 987 if (bootlist[i] == '\n') { 988 bootlist[i] = ' '; 989 } 990 } 991 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 992 } 993 994 if (boot_device && strlen(boot_device)) { 995 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 996 } 997 998 if (!spapr->has_graphics && stdout_path) { 999 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1000 } 1001 1002 spapr_dt_ov5_platform_support(fdt, chosen); 1003 1004 g_free(stdout_path); 1005 g_free(bootlist); 1006 } 1007 1008 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 1009 { 1010 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1011 * KVM to work under pHyp with some guest co-operation */ 1012 int hypervisor; 1013 uint8_t hypercall[16]; 1014 1015 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1016 /* indicate KVM hypercall interface */ 1017 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1018 if (kvmppc_has_cap_fixup_hcalls()) { 1019 /* 1020 * Older KVM versions with older guest kernels were broken 1021 * with the magic page, don't allow the guest to map it. 1022 */ 1023 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1024 sizeof(hypercall))) { 1025 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1026 hypercall, sizeof(hypercall))); 1027 } 1028 } 1029 } 1030 1031 static void *spapr_build_fdt(sPAPRMachineState *spapr, 1032 hwaddr rtas_addr, 1033 hwaddr rtas_size) 1034 { 1035 MachineState *machine = MACHINE(qdev_get_machine()); 1036 MachineClass *mc = MACHINE_GET_CLASS(machine); 1037 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1038 int ret; 1039 void *fdt; 1040 sPAPRPHBState *phb; 1041 char *buf; 1042 1043 fdt = g_malloc0(FDT_MAX_SIZE); 1044 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1045 1046 /* Root node */ 1047 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1048 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1049 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1050 1051 /* 1052 * Add info to guest to indentify which host is it being run on 1053 * and what is the uuid of the guest 1054 */ 1055 if (kvmppc_get_host_model(&buf)) { 1056 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1057 g_free(buf); 1058 } 1059 if (kvmppc_get_host_serial(&buf)) { 1060 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1061 g_free(buf); 1062 } 1063 1064 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1065 1066 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1067 if (qemu_uuid_set) { 1068 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1069 } 1070 g_free(buf); 1071 1072 if (qemu_get_vm_name()) { 1073 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1074 qemu_get_vm_name())); 1075 } 1076 1077 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1078 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1079 1080 ret = spapr_populate_memory(spapr, fdt); 1081 if (ret < 0) { 1082 error_report("couldn't setup memory nodes in fdt"); 1083 exit(1); 1084 } 1085 1086 /* /vdevice */ 1087 spapr_dt_vdevice(spapr->vio_bus, fdt); 1088 1089 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1090 ret = spapr_rng_populate_dt(fdt); 1091 if (ret < 0) { 1092 error_report("could not set up rng device in the fdt"); 1093 exit(1); 1094 } 1095 } 1096 1097 QLIST_FOREACH(phb, &spapr->phbs, list) { 1098 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 1099 if (ret < 0) { 1100 error_report("couldn't setup PCI devices in fdt"); 1101 exit(1); 1102 } 1103 } 1104 1105 /* cpus */ 1106 spapr_populate_cpus_dt_node(fdt, spapr); 1107 1108 if (smc->dr_lmb_enabled) { 1109 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1110 } 1111 1112 if (mc->has_hotpluggable_cpus) { 1113 int offset = fdt_path_offset(fdt, "/cpus"); 1114 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1115 SPAPR_DR_CONNECTOR_TYPE_CPU); 1116 if (ret < 0) { 1117 error_report("Couldn't set up CPU DR device tree properties"); 1118 exit(1); 1119 } 1120 } 1121 1122 /* /event-sources */ 1123 spapr_dt_events(spapr, fdt); 1124 1125 /* /rtas */ 1126 spapr_dt_rtas(spapr, fdt); 1127 1128 /* /chosen */ 1129 spapr_dt_chosen(spapr, fdt); 1130 1131 /* /hypervisor */ 1132 if (kvm_enabled()) { 1133 spapr_dt_hypervisor(spapr, fdt); 1134 } 1135 1136 /* Build memory reserve map */ 1137 if (spapr->kernel_size) { 1138 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1139 } 1140 if (spapr->initrd_size) { 1141 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1142 } 1143 1144 /* ibm,client-architecture-support updates */ 1145 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1146 if (ret < 0) { 1147 error_report("couldn't setup CAS properties fdt"); 1148 exit(1); 1149 } 1150 1151 return fdt; 1152 } 1153 1154 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1155 { 1156 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1157 } 1158 1159 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1160 PowerPCCPU *cpu) 1161 { 1162 CPUPPCState *env = &cpu->env; 1163 1164 /* The TCG path should also be holding the BQL at this point */ 1165 g_assert(qemu_mutex_iothread_locked()); 1166 1167 if (msr_pr) { 1168 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1169 env->gpr[3] = H_PRIVILEGE; 1170 } else { 1171 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1172 } 1173 } 1174 1175 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1176 { 1177 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1178 1179 return spapr->patb_entry; 1180 } 1181 1182 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1183 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1184 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1185 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1186 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1187 1188 /* 1189 * Get the fd to access the kernel htab, re-opening it if necessary 1190 */ 1191 static int get_htab_fd(sPAPRMachineState *spapr) 1192 { 1193 if (spapr->htab_fd >= 0) { 1194 return spapr->htab_fd; 1195 } 1196 1197 spapr->htab_fd = kvmppc_get_htab_fd(false); 1198 if (spapr->htab_fd < 0) { 1199 error_report("Unable to open fd for reading hash table from KVM: %s", 1200 strerror(errno)); 1201 } 1202 1203 return spapr->htab_fd; 1204 } 1205 1206 void close_htab_fd(sPAPRMachineState *spapr) 1207 { 1208 if (spapr->htab_fd >= 0) { 1209 close(spapr->htab_fd); 1210 } 1211 spapr->htab_fd = -1; 1212 } 1213 1214 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1215 { 1216 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1217 1218 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1219 } 1220 1221 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1222 hwaddr ptex, int n) 1223 { 1224 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1225 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1226 1227 if (!spapr->htab) { 1228 /* 1229 * HTAB is controlled by KVM. Fetch into temporary buffer 1230 */ 1231 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1232 kvmppc_read_hptes(hptes, ptex, n); 1233 return hptes; 1234 } 1235 1236 /* 1237 * HTAB is controlled by QEMU. Just point to the internally 1238 * accessible PTEG. 1239 */ 1240 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1241 } 1242 1243 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1244 const ppc_hash_pte64_t *hptes, 1245 hwaddr ptex, int n) 1246 { 1247 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1248 1249 if (!spapr->htab) { 1250 g_free((void *)hptes); 1251 } 1252 1253 /* Nothing to do for qemu managed HPT */ 1254 } 1255 1256 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1257 uint64_t pte0, uint64_t pte1) 1258 { 1259 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1260 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1261 1262 if (!spapr->htab) { 1263 kvmppc_write_hpte(ptex, pte0, pte1); 1264 } else { 1265 stq_p(spapr->htab + offset, pte0); 1266 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1267 } 1268 } 1269 1270 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1271 { 1272 int shift; 1273 1274 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1275 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1276 * that's much more than is needed for Linux guests */ 1277 shift = ctz64(pow2ceil(ramsize)) - 7; 1278 shift = MAX(shift, 18); /* Minimum architected size */ 1279 shift = MIN(shift, 46); /* Maximum architected size */ 1280 return shift; 1281 } 1282 1283 void spapr_free_hpt(sPAPRMachineState *spapr) 1284 { 1285 g_free(spapr->htab); 1286 spapr->htab = NULL; 1287 spapr->htab_shift = 0; 1288 close_htab_fd(spapr); 1289 } 1290 1291 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1292 Error **errp) 1293 { 1294 long rc; 1295 1296 /* Clean up any HPT info from a previous boot */ 1297 spapr_free_hpt(spapr); 1298 1299 rc = kvmppc_reset_htab(shift); 1300 if (rc < 0) { 1301 /* kernel-side HPT needed, but couldn't allocate one */ 1302 error_setg_errno(errp, errno, 1303 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1304 shift); 1305 /* This is almost certainly fatal, but if the caller really 1306 * wants to carry on with shift == 0, it's welcome to try */ 1307 } else if (rc > 0) { 1308 /* kernel-side HPT allocated */ 1309 if (rc != shift) { 1310 error_setg(errp, 1311 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1312 shift, rc); 1313 } 1314 1315 spapr->htab_shift = shift; 1316 spapr->htab = NULL; 1317 } else { 1318 /* kernel-side HPT not needed, allocate in userspace instead */ 1319 size_t size = 1ULL << shift; 1320 int i; 1321 1322 spapr->htab = qemu_memalign(size, size); 1323 if (!spapr->htab) { 1324 error_setg_errno(errp, errno, 1325 "Could not allocate HPT of order %d", shift); 1326 return; 1327 } 1328 1329 memset(spapr->htab, 0, size); 1330 spapr->htab_shift = shift; 1331 1332 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1333 DIRTY_HPTE(HPTE(spapr->htab, i)); 1334 } 1335 } 1336 } 1337 1338 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1339 { 1340 int hpt_shift; 1341 1342 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1343 || (spapr->cas_reboot 1344 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1345 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1346 } else { 1347 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size); 1348 } 1349 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1350 1351 if (spapr->vrma_adjust) { 1352 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(), 1353 spapr->htab_shift); 1354 } 1355 /* We're setting up a hash table, so that means we're not radix */ 1356 spapr->patb_entry = 0; 1357 } 1358 1359 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) 1360 { 1361 bool matched = false; 1362 1363 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 1364 matched = true; 1365 } 1366 1367 if (!matched) { 1368 error_report("Device %s is not supported by this machine yet.", 1369 qdev_fw_name(DEVICE(sbdev))); 1370 exit(1); 1371 } 1372 } 1373 1374 static void ppc_spapr_reset(void) 1375 { 1376 MachineState *machine = MACHINE(qdev_get_machine()); 1377 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1378 PowerPCCPU *first_ppc_cpu; 1379 uint32_t rtas_limit; 1380 hwaddr rtas_addr, fdt_addr; 1381 void *fdt; 1382 int rc; 1383 1384 /* Check for unknown sysbus devices */ 1385 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); 1386 1387 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) { 1388 /* If using KVM with radix mode available, VCPUs can be started 1389 * without a HPT because KVM will start them in radix mode. 1390 * Set the GR bit in PATB so that we know there is no HPT. */ 1391 spapr->patb_entry = PATBE1_GR; 1392 } else { 1393 spapr_setup_hpt_and_vrma(spapr); 1394 } 1395 1396 qemu_devices_reset(); 1397 1398 /* 1399 * We place the device tree and RTAS just below either the top of the RMA, 1400 * or just below 2GB, whichever is lowere, so that it can be 1401 * processed with 32-bit real mode code if necessary 1402 */ 1403 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1404 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1405 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1406 1407 /* if this reset wasn't generated by CAS, we should reset our 1408 * negotiated options and start from scratch */ 1409 if (!spapr->cas_reboot) { 1410 spapr_ovec_cleanup(spapr->ov5_cas); 1411 spapr->ov5_cas = spapr_ovec_new(); 1412 1413 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1414 } 1415 1416 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1417 1418 spapr_load_rtas(spapr, fdt, rtas_addr); 1419 1420 rc = fdt_pack(fdt); 1421 1422 /* Should only fail if we've built a corrupted tree */ 1423 assert(rc == 0); 1424 1425 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1426 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1427 fdt_totalsize(fdt), FDT_MAX_SIZE); 1428 exit(1); 1429 } 1430 1431 /* Load the fdt */ 1432 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1433 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1434 g_free(fdt); 1435 1436 /* Set up the entry state */ 1437 first_ppc_cpu = POWERPC_CPU(first_cpu); 1438 first_ppc_cpu->env.gpr[3] = fdt_addr; 1439 first_ppc_cpu->env.gpr[5] = 0; 1440 first_cpu->halted = 0; 1441 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; 1442 1443 spapr->cas_reboot = false; 1444 } 1445 1446 static void spapr_create_nvram(sPAPRMachineState *spapr) 1447 { 1448 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1449 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1450 1451 if (dinfo) { 1452 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1453 &error_fatal); 1454 } 1455 1456 qdev_init_nofail(dev); 1457 1458 spapr->nvram = (struct sPAPRNVRAM *)dev; 1459 } 1460 1461 static void spapr_rtc_create(sPAPRMachineState *spapr) 1462 { 1463 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1464 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1465 &error_fatal); 1466 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1467 &error_fatal); 1468 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1469 "date", &error_fatal); 1470 } 1471 1472 /* Returns whether we want to use VGA or not */ 1473 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1474 { 1475 switch (vga_interface_type) { 1476 case VGA_NONE: 1477 return false; 1478 case VGA_DEVICE: 1479 return true; 1480 case VGA_STD: 1481 case VGA_VIRTIO: 1482 return pci_vga_init(pci_bus) != NULL; 1483 default: 1484 error_setg(errp, 1485 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1486 return false; 1487 } 1488 } 1489 1490 static int spapr_post_load(void *opaque, int version_id) 1491 { 1492 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1493 int err = 0; 1494 1495 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1496 CPUState *cs; 1497 CPU_FOREACH(cs) { 1498 PowerPCCPU *cpu = POWERPC_CPU(cs); 1499 icp_resend(ICP(cpu->intc)); 1500 } 1501 } 1502 1503 /* In earlier versions, there was no separate qdev for the PAPR 1504 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1505 * So when migrating from those versions, poke the incoming offset 1506 * value into the RTC device */ 1507 if (version_id < 3) { 1508 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1509 } 1510 1511 if (spapr->patb_entry) { 1512 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1513 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1514 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1515 1516 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1517 if (err) { 1518 error_report("Process table config unsupported by the host"); 1519 return -EINVAL; 1520 } 1521 } 1522 1523 return err; 1524 } 1525 1526 static bool version_before_3(void *opaque, int version_id) 1527 { 1528 return version_id < 3; 1529 } 1530 1531 static bool spapr_pending_events_needed(void *opaque) 1532 { 1533 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1534 return !QTAILQ_EMPTY(&spapr->pending_events); 1535 } 1536 1537 static const VMStateDescription vmstate_spapr_event_entry = { 1538 .name = "spapr_event_log_entry", 1539 .version_id = 1, 1540 .minimum_version_id = 1, 1541 .fields = (VMStateField[]) { 1542 VMSTATE_UINT32(summary, sPAPREventLogEntry), 1543 VMSTATE_UINT32(extended_length, sPAPREventLogEntry), 1544 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, 1545 NULL, extended_length), 1546 VMSTATE_END_OF_LIST() 1547 }, 1548 }; 1549 1550 static const VMStateDescription vmstate_spapr_pending_events = { 1551 .name = "spapr_pending_events", 1552 .version_id = 1, 1553 .minimum_version_id = 1, 1554 .needed = spapr_pending_events_needed, 1555 .fields = (VMStateField[]) { 1556 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, 1557 vmstate_spapr_event_entry, sPAPREventLogEntry, next), 1558 VMSTATE_END_OF_LIST() 1559 }, 1560 }; 1561 1562 static bool spapr_ov5_cas_needed(void *opaque) 1563 { 1564 sPAPRMachineState *spapr = opaque; 1565 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1566 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1567 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1568 bool cas_needed; 1569 1570 /* Prior to the introduction of sPAPROptionVector, we had two option 1571 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1572 * Both of these options encode machine topology into the device-tree 1573 * in such a way that the now-booted OS should still be able to interact 1574 * appropriately with QEMU regardless of what options were actually 1575 * negotiatied on the source side. 1576 * 1577 * As such, we can avoid migrating the CAS-negotiated options if these 1578 * are the only options available on the current machine/platform. 1579 * Since these are the only options available for pseries-2.7 and 1580 * earlier, this allows us to maintain old->new/new->old migration 1581 * compatibility. 1582 * 1583 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1584 * via default pseries-2.8 machines and explicit command-line parameters. 1585 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1586 * of the actual CAS-negotiated values to continue working properly. For 1587 * example, availability of memory unplug depends on knowing whether 1588 * OV5_HP_EVT was negotiated via CAS. 1589 * 1590 * Thus, for any cases where the set of available CAS-negotiatable 1591 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1592 * include the CAS-negotiated options in the migration stream. 1593 */ 1594 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1595 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1596 1597 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1598 * the mask itself since in the future it's possible "legacy" bits may be 1599 * removed via machine options, which could generate a false positive 1600 * that breaks migration. 1601 */ 1602 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1603 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1604 1605 spapr_ovec_cleanup(ov5_mask); 1606 spapr_ovec_cleanup(ov5_legacy); 1607 spapr_ovec_cleanup(ov5_removed); 1608 1609 return cas_needed; 1610 } 1611 1612 static const VMStateDescription vmstate_spapr_ov5_cas = { 1613 .name = "spapr_option_vector_ov5_cas", 1614 .version_id = 1, 1615 .minimum_version_id = 1, 1616 .needed = spapr_ov5_cas_needed, 1617 .fields = (VMStateField[]) { 1618 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1619 vmstate_spapr_ovec, sPAPROptionVector), 1620 VMSTATE_END_OF_LIST() 1621 }, 1622 }; 1623 1624 static bool spapr_patb_entry_needed(void *opaque) 1625 { 1626 sPAPRMachineState *spapr = opaque; 1627 1628 return !!spapr->patb_entry; 1629 } 1630 1631 static const VMStateDescription vmstate_spapr_patb_entry = { 1632 .name = "spapr_patb_entry", 1633 .version_id = 1, 1634 .minimum_version_id = 1, 1635 .needed = spapr_patb_entry_needed, 1636 .fields = (VMStateField[]) { 1637 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1638 VMSTATE_END_OF_LIST() 1639 }, 1640 }; 1641 1642 static const VMStateDescription vmstate_spapr = { 1643 .name = "spapr", 1644 .version_id = 3, 1645 .minimum_version_id = 1, 1646 .post_load = spapr_post_load, 1647 .fields = (VMStateField[]) { 1648 /* used to be @next_irq */ 1649 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1650 1651 /* RTC offset */ 1652 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1653 1654 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1655 VMSTATE_END_OF_LIST() 1656 }, 1657 .subsections = (const VMStateDescription*[]) { 1658 &vmstate_spapr_ov5_cas, 1659 &vmstate_spapr_patb_entry, 1660 &vmstate_spapr_pending_events, 1661 NULL 1662 } 1663 }; 1664 1665 static int htab_save_setup(QEMUFile *f, void *opaque) 1666 { 1667 sPAPRMachineState *spapr = opaque; 1668 1669 /* "Iteration" header */ 1670 if (!spapr->htab_shift) { 1671 qemu_put_be32(f, -1); 1672 } else { 1673 qemu_put_be32(f, spapr->htab_shift); 1674 } 1675 1676 if (spapr->htab) { 1677 spapr->htab_save_index = 0; 1678 spapr->htab_first_pass = true; 1679 } else { 1680 if (spapr->htab_shift) { 1681 assert(kvm_enabled()); 1682 } 1683 } 1684 1685 1686 return 0; 1687 } 1688 1689 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1690 int64_t max_ns) 1691 { 1692 bool has_timeout = max_ns != -1; 1693 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1694 int index = spapr->htab_save_index; 1695 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1696 1697 assert(spapr->htab_first_pass); 1698 1699 do { 1700 int chunkstart; 1701 1702 /* Consume invalid HPTEs */ 1703 while ((index < htabslots) 1704 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1705 CLEAN_HPTE(HPTE(spapr->htab, index)); 1706 index++; 1707 } 1708 1709 /* Consume valid HPTEs */ 1710 chunkstart = index; 1711 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1712 && HPTE_VALID(HPTE(spapr->htab, index))) { 1713 CLEAN_HPTE(HPTE(spapr->htab, index)); 1714 index++; 1715 } 1716 1717 if (index > chunkstart) { 1718 int n_valid = index - chunkstart; 1719 1720 qemu_put_be32(f, chunkstart); 1721 qemu_put_be16(f, n_valid); 1722 qemu_put_be16(f, 0); 1723 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1724 HASH_PTE_SIZE_64 * n_valid); 1725 1726 if (has_timeout && 1727 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1728 break; 1729 } 1730 } 1731 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 1732 1733 if (index >= htabslots) { 1734 assert(index == htabslots); 1735 index = 0; 1736 spapr->htab_first_pass = false; 1737 } 1738 spapr->htab_save_index = index; 1739 } 1740 1741 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 1742 int64_t max_ns) 1743 { 1744 bool final = max_ns < 0; 1745 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1746 int examined = 0, sent = 0; 1747 int index = spapr->htab_save_index; 1748 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1749 1750 assert(!spapr->htab_first_pass); 1751 1752 do { 1753 int chunkstart, invalidstart; 1754 1755 /* Consume non-dirty HPTEs */ 1756 while ((index < htabslots) 1757 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 1758 index++; 1759 examined++; 1760 } 1761 1762 chunkstart = index; 1763 /* Consume valid dirty HPTEs */ 1764 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1765 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1766 && HPTE_VALID(HPTE(spapr->htab, index))) { 1767 CLEAN_HPTE(HPTE(spapr->htab, index)); 1768 index++; 1769 examined++; 1770 } 1771 1772 invalidstart = index; 1773 /* Consume invalid dirty HPTEs */ 1774 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 1775 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1776 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1777 CLEAN_HPTE(HPTE(spapr->htab, index)); 1778 index++; 1779 examined++; 1780 } 1781 1782 if (index > chunkstart) { 1783 int n_valid = invalidstart - chunkstart; 1784 int n_invalid = index - invalidstart; 1785 1786 qemu_put_be32(f, chunkstart); 1787 qemu_put_be16(f, n_valid); 1788 qemu_put_be16(f, n_invalid); 1789 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1790 HASH_PTE_SIZE_64 * n_valid); 1791 sent += index - chunkstart; 1792 1793 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1794 break; 1795 } 1796 } 1797 1798 if (examined >= htabslots) { 1799 break; 1800 } 1801 1802 if (index >= htabslots) { 1803 assert(index == htabslots); 1804 index = 0; 1805 } 1806 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 1807 1808 if (index >= htabslots) { 1809 assert(index == htabslots); 1810 index = 0; 1811 } 1812 1813 spapr->htab_save_index = index; 1814 1815 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 1816 } 1817 1818 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 1819 #define MAX_KVM_BUF_SIZE 2048 1820 1821 static int htab_save_iterate(QEMUFile *f, void *opaque) 1822 { 1823 sPAPRMachineState *spapr = opaque; 1824 int fd; 1825 int rc = 0; 1826 1827 /* Iteration header */ 1828 if (!spapr->htab_shift) { 1829 qemu_put_be32(f, -1); 1830 return 0; 1831 } else { 1832 qemu_put_be32(f, 0); 1833 } 1834 1835 if (!spapr->htab) { 1836 assert(kvm_enabled()); 1837 1838 fd = get_htab_fd(spapr); 1839 if (fd < 0) { 1840 return fd; 1841 } 1842 1843 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 1844 if (rc < 0) { 1845 return rc; 1846 } 1847 } else if (spapr->htab_first_pass) { 1848 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 1849 } else { 1850 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 1851 } 1852 1853 /* End marker */ 1854 qemu_put_be32(f, 0); 1855 qemu_put_be16(f, 0); 1856 qemu_put_be16(f, 0); 1857 1858 return rc; 1859 } 1860 1861 static int htab_save_complete(QEMUFile *f, void *opaque) 1862 { 1863 sPAPRMachineState *spapr = opaque; 1864 int fd; 1865 1866 /* Iteration header */ 1867 if (!spapr->htab_shift) { 1868 qemu_put_be32(f, -1); 1869 return 0; 1870 } else { 1871 qemu_put_be32(f, 0); 1872 } 1873 1874 if (!spapr->htab) { 1875 int rc; 1876 1877 assert(kvm_enabled()); 1878 1879 fd = get_htab_fd(spapr); 1880 if (fd < 0) { 1881 return fd; 1882 } 1883 1884 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 1885 if (rc < 0) { 1886 return rc; 1887 } 1888 } else { 1889 if (spapr->htab_first_pass) { 1890 htab_save_first_pass(f, spapr, -1); 1891 } 1892 htab_save_later_pass(f, spapr, -1); 1893 } 1894 1895 /* End marker */ 1896 qemu_put_be32(f, 0); 1897 qemu_put_be16(f, 0); 1898 qemu_put_be16(f, 0); 1899 1900 return 0; 1901 } 1902 1903 static int htab_load(QEMUFile *f, void *opaque, int version_id) 1904 { 1905 sPAPRMachineState *spapr = opaque; 1906 uint32_t section_hdr; 1907 int fd = -1; 1908 1909 if (version_id < 1 || version_id > 1) { 1910 error_report("htab_load() bad version"); 1911 return -EINVAL; 1912 } 1913 1914 section_hdr = qemu_get_be32(f); 1915 1916 if (section_hdr == -1) { 1917 spapr_free_hpt(spapr); 1918 return 0; 1919 } 1920 1921 if (section_hdr) { 1922 Error *local_err = NULL; 1923 1924 /* First section gives the htab size */ 1925 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 1926 if (local_err) { 1927 error_report_err(local_err); 1928 return -EINVAL; 1929 } 1930 return 0; 1931 } 1932 1933 if (!spapr->htab) { 1934 assert(kvm_enabled()); 1935 1936 fd = kvmppc_get_htab_fd(true); 1937 if (fd < 0) { 1938 error_report("Unable to open fd to restore KVM hash table: %s", 1939 strerror(errno)); 1940 } 1941 } 1942 1943 while (true) { 1944 uint32_t index; 1945 uint16_t n_valid, n_invalid; 1946 1947 index = qemu_get_be32(f); 1948 n_valid = qemu_get_be16(f); 1949 n_invalid = qemu_get_be16(f); 1950 1951 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 1952 /* End of Stream */ 1953 break; 1954 } 1955 1956 if ((index + n_valid + n_invalid) > 1957 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 1958 /* Bad index in stream */ 1959 error_report( 1960 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 1961 index, n_valid, n_invalid, spapr->htab_shift); 1962 return -EINVAL; 1963 } 1964 1965 if (spapr->htab) { 1966 if (n_valid) { 1967 qemu_get_buffer(f, HPTE(spapr->htab, index), 1968 HASH_PTE_SIZE_64 * n_valid); 1969 } 1970 if (n_invalid) { 1971 memset(HPTE(spapr->htab, index + n_valid), 0, 1972 HASH_PTE_SIZE_64 * n_invalid); 1973 } 1974 } else { 1975 int rc; 1976 1977 assert(fd >= 0); 1978 1979 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 1980 if (rc < 0) { 1981 return rc; 1982 } 1983 } 1984 } 1985 1986 if (!spapr->htab) { 1987 assert(fd >= 0); 1988 close(fd); 1989 } 1990 1991 return 0; 1992 } 1993 1994 static void htab_save_cleanup(void *opaque) 1995 { 1996 sPAPRMachineState *spapr = opaque; 1997 1998 close_htab_fd(spapr); 1999 } 2000 2001 static SaveVMHandlers savevm_htab_handlers = { 2002 .save_setup = htab_save_setup, 2003 .save_live_iterate = htab_save_iterate, 2004 .save_live_complete_precopy = htab_save_complete, 2005 .save_cleanup = htab_save_cleanup, 2006 .load_state = htab_load, 2007 }; 2008 2009 static void spapr_boot_set(void *opaque, const char *boot_device, 2010 Error **errp) 2011 { 2012 MachineState *machine = MACHINE(qdev_get_machine()); 2013 machine->boot_order = g_strdup(boot_device); 2014 } 2015 2016 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 2017 { 2018 MachineState *machine = MACHINE(spapr); 2019 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2020 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2021 int i; 2022 2023 for (i = 0; i < nr_lmbs; i++) { 2024 uint64_t addr; 2025 2026 addr = i * lmb_size + spapr->hotplug_memory.base; 2027 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2028 addr / lmb_size); 2029 } 2030 } 2031 2032 /* 2033 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2034 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2035 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2036 */ 2037 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2038 { 2039 int i; 2040 2041 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2042 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2043 " is not aligned to %llu MiB", 2044 machine->ram_size, 2045 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2046 return; 2047 } 2048 2049 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2050 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2051 " is not aligned to %llu MiB", 2052 machine->ram_size, 2053 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2054 return; 2055 } 2056 2057 for (i = 0; i < nb_numa_nodes; i++) { 2058 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2059 error_setg(errp, 2060 "Node %d memory size 0x%" PRIx64 2061 " is not aligned to %llu MiB", 2062 i, numa_info[i].node_mem, 2063 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2064 return; 2065 } 2066 } 2067 } 2068 2069 /* find cpu slot in machine->possible_cpus by core_id */ 2070 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2071 { 2072 int index = id / smp_threads; 2073 2074 if (index >= ms->possible_cpus->len) { 2075 return NULL; 2076 } 2077 if (idx) { 2078 *idx = index; 2079 } 2080 return &ms->possible_cpus->cpus[index]; 2081 } 2082 2083 static void spapr_init_cpus(sPAPRMachineState *spapr) 2084 { 2085 MachineState *machine = MACHINE(spapr); 2086 MachineClass *mc = MACHINE_GET_CLASS(machine); 2087 char *type = spapr_get_cpu_core_type(machine->cpu_model); 2088 int smt = kvmppc_smt_threads(); 2089 const CPUArchIdList *possible_cpus; 2090 int boot_cores_nr = smp_cpus / smp_threads; 2091 int i; 2092 2093 if (!type) { 2094 error_report("Unable to find sPAPR CPU Core definition"); 2095 exit(1); 2096 } 2097 2098 possible_cpus = mc->possible_cpu_arch_ids(machine); 2099 if (mc->has_hotpluggable_cpus) { 2100 if (smp_cpus % smp_threads) { 2101 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2102 smp_cpus, smp_threads); 2103 exit(1); 2104 } 2105 if (max_cpus % smp_threads) { 2106 error_report("max_cpus (%u) must be multiple of threads (%u)", 2107 max_cpus, smp_threads); 2108 exit(1); 2109 } 2110 } else { 2111 if (max_cpus != smp_cpus) { 2112 error_report("This machine version does not support CPU hotplug"); 2113 exit(1); 2114 } 2115 boot_cores_nr = possible_cpus->len; 2116 } 2117 2118 for (i = 0; i < possible_cpus->len; i++) { 2119 int core_id = i * smp_threads; 2120 2121 if (mc->has_hotpluggable_cpus) { 2122 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2123 (core_id / smp_threads) * smt); 2124 } 2125 2126 if (i < boot_cores_nr) { 2127 Object *core = object_new(type); 2128 int nr_threads = smp_threads; 2129 2130 /* Handle the partially filled core for older machine types */ 2131 if ((i + 1) * smp_threads >= smp_cpus) { 2132 nr_threads = smp_cpus - i * smp_threads; 2133 } 2134 2135 object_property_set_int(core, nr_threads, "nr-threads", 2136 &error_fatal); 2137 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2138 &error_fatal); 2139 object_property_set_bool(core, true, "realized", &error_fatal); 2140 } 2141 } 2142 g_free(type); 2143 } 2144 2145 /* pSeries LPAR / sPAPR hardware init */ 2146 static void ppc_spapr_init(MachineState *machine) 2147 { 2148 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2149 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2150 const char *kernel_filename = machine->kernel_filename; 2151 const char *initrd_filename = machine->initrd_filename; 2152 PCIHostState *phb; 2153 int i; 2154 MemoryRegion *sysmem = get_system_memory(); 2155 MemoryRegion *ram = g_new(MemoryRegion, 1); 2156 MemoryRegion *rma_region; 2157 void *rma = NULL; 2158 hwaddr rma_alloc_size; 2159 hwaddr node0_size = spapr_node0_size(); 2160 long load_limit, fw_size; 2161 char *filename; 2162 Error *resize_hpt_err = NULL; 2163 2164 msi_nonbroken = true; 2165 2166 QLIST_INIT(&spapr->phbs); 2167 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2168 2169 /* Check HPT resizing availability */ 2170 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2171 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2172 /* 2173 * If the user explicitly requested a mode we should either 2174 * supply it, or fail completely (which we do below). But if 2175 * it's not set explicitly, we reset our mode to something 2176 * that works 2177 */ 2178 if (resize_hpt_err) { 2179 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2180 error_free(resize_hpt_err); 2181 resize_hpt_err = NULL; 2182 } else { 2183 spapr->resize_hpt = smc->resize_hpt_default; 2184 } 2185 } 2186 2187 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2188 2189 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2190 /* 2191 * User requested HPT resize, but this host can't supply it. Bail out 2192 */ 2193 error_report_err(resize_hpt_err); 2194 exit(1); 2195 } 2196 2197 /* Allocate RMA if necessary */ 2198 rma_alloc_size = kvmppc_alloc_rma(&rma); 2199 2200 if (rma_alloc_size == -1) { 2201 error_report("Unable to create RMA"); 2202 exit(1); 2203 } 2204 2205 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 2206 spapr->rma_size = rma_alloc_size; 2207 } else { 2208 spapr->rma_size = node0_size; 2209 2210 /* With KVM, we don't actually know whether KVM supports an 2211 * unbounded RMA (PR KVM) or is limited by the hash table size 2212 * (HV KVM using VRMA), so we always assume the latter 2213 * 2214 * In that case, we also limit the initial allocations for RTAS 2215 * etc... to 256M since we have no way to know what the VRMA size 2216 * is going to be as it depends on the size of the hash table 2217 * isn't determined yet. 2218 */ 2219 if (kvm_enabled()) { 2220 spapr->vrma_adjust = 1; 2221 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2222 } 2223 2224 /* Actually we don't support unbounded RMA anymore since we 2225 * added proper emulation of HV mode. The max we can get is 2226 * 16G which also happens to be what we configure for PAPR 2227 * mode so make sure we don't do anything bigger than that 2228 */ 2229 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2230 } 2231 2232 if (spapr->rma_size > node0_size) { 2233 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2234 spapr->rma_size); 2235 exit(1); 2236 } 2237 2238 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2239 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2240 2241 /* Set up Interrupt Controller before we create the VCPUs */ 2242 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal); 2243 2244 /* Set up containers for ibm,client-set-architecture negotiated options */ 2245 spapr->ov5 = spapr_ovec_new(); 2246 spapr->ov5_cas = spapr_ovec_new(); 2247 2248 if (smc->dr_lmb_enabled) { 2249 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2250 spapr_validate_node_memory(machine, &error_fatal); 2251 } 2252 2253 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2254 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) { 2255 /* KVM and TCG always allow GTSE with radix... */ 2256 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2257 } 2258 /* ... but not with hash (currently). */ 2259 2260 /* advertise support for dedicated HP event source to guests */ 2261 if (spapr->use_hotplug_event_source) { 2262 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2263 } 2264 2265 /* advertise support for HPT resizing */ 2266 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2267 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2268 } 2269 2270 /* init CPUs */ 2271 if (machine->cpu_model == NULL) { 2272 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu; 2273 } 2274 2275 spapr_cpu_parse_features(spapr); 2276 2277 spapr_init_cpus(spapr); 2278 2279 if (kvm_enabled()) { 2280 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2281 kvmppc_enable_logical_ci_hcalls(); 2282 kvmppc_enable_set_mode_hcall(); 2283 2284 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2285 kvmppc_enable_clear_ref_mod_hcalls(); 2286 } 2287 2288 /* allocate RAM */ 2289 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2290 machine->ram_size); 2291 memory_region_add_subregion(sysmem, 0, ram); 2292 2293 if (rma_alloc_size && rma) { 2294 rma_region = g_new(MemoryRegion, 1); 2295 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", 2296 rma_alloc_size, rma); 2297 vmstate_register_ram_global(rma_region); 2298 memory_region_add_subregion(sysmem, 0, rma_region); 2299 } 2300 2301 /* initialize hotplug memory address space */ 2302 if (machine->ram_size < machine->maxram_size) { 2303 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; 2304 /* 2305 * Limit the number of hotpluggable memory slots to half the number 2306 * slots that KVM supports, leaving the other half for PCI and other 2307 * devices. However ensure that number of slots doesn't drop below 32. 2308 */ 2309 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2310 SPAPR_MAX_RAM_SLOTS; 2311 2312 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2313 max_memslots = SPAPR_MAX_RAM_SLOTS; 2314 } 2315 if (machine->ram_slots > max_memslots) { 2316 error_report("Specified number of memory slots %" 2317 PRIu64" exceeds max supported %d", 2318 machine->ram_slots, max_memslots); 2319 exit(1); 2320 } 2321 2322 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, 2323 SPAPR_HOTPLUG_MEM_ALIGN); 2324 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), 2325 "hotplug-memory", hotplug_mem_size); 2326 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, 2327 &spapr->hotplug_memory.mr); 2328 } 2329 2330 if (smc->dr_lmb_enabled) { 2331 spapr_create_lmb_dr_connectors(spapr); 2332 } 2333 2334 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2335 if (!filename) { 2336 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2337 exit(1); 2338 } 2339 spapr->rtas_size = get_image_size(filename); 2340 if (spapr->rtas_size < 0) { 2341 error_report("Could not get size of LPAR rtas '%s'", filename); 2342 exit(1); 2343 } 2344 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2345 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2346 error_report("Could not load LPAR rtas '%s'", filename); 2347 exit(1); 2348 } 2349 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2350 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2351 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2352 exit(1); 2353 } 2354 g_free(filename); 2355 2356 /* Set up RTAS event infrastructure */ 2357 spapr_events_init(spapr); 2358 2359 /* Set up the RTC RTAS interfaces */ 2360 spapr_rtc_create(spapr); 2361 2362 /* Set up VIO bus */ 2363 spapr->vio_bus = spapr_vio_bus_init(); 2364 2365 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 2366 if (serial_hds[i]) { 2367 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 2368 } 2369 } 2370 2371 /* We always have at least the nvram device on VIO */ 2372 spapr_create_nvram(spapr); 2373 2374 /* Set up PCI */ 2375 spapr_pci_rtas_init(); 2376 2377 phb = spapr_create_phb(spapr, 0); 2378 2379 for (i = 0; i < nb_nics; i++) { 2380 NICInfo *nd = &nd_table[i]; 2381 2382 if (!nd->model) { 2383 nd->model = g_strdup("ibmveth"); 2384 } 2385 2386 if (strcmp(nd->model, "ibmveth") == 0) { 2387 spapr_vlan_create(spapr->vio_bus, nd); 2388 } else { 2389 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2390 } 2391 } 2392 2393 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2394 spapr_vscsi_create(spapr->vio_bus); 2395 } 2396 2397 /* Graphics */ 2398 if (spapr_vga_init(phb->bus, &error_fatal)) { 2399 spapr->has_graphics = true; 2400 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2401 } 2402 2403 if (machine->usb) { 2404 if (smc->use_ohci_by_default) { 2405 pci_create_simple(phb->bus, -1, "pci-ohci"); 2406 } else { 2407 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2408 } 2409 2410 if (spapr->has_graphics) { 2411 USBBus *usb_bus = usb_bus_find(-1); 2412 2413 usb_create_simple(usb_bus, "usb-kbd"); 2414 usb_create_simple(usb_bus, "usb-mouse"); 2415 } 2416 } 2417 2418 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 2419 error_report( 2420 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2421 MIN_RMA_SLOF); 2422 exit(1); 2423 } 2424 2425 if (kernel_filename) { 2426 uint64_t lowaddr = 0; 2427 2428 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2429 NULL, NULL, &lowaddr, NULL, 1, 2430 PPC_ELF_MACHINE, 0, 0); 2431 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2432 spapr->kernel_size = load_elf(kernel_filename, 2433 translate_kernel_address, NULL, NULL, 2434 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2435 0, 0); 2436 spapr->kernel_le = spapr->kernel_size > 0; 2437 } 2438 if (spapr->kernel_size < 0) { 2439 error_report("error loading %s: %s", kernel_filename, 2440 load_elf_strerror(spapr->kernel_size)); 2441 exit(1); 2442 } 2443 2444 /* load initrd */ 2445 if (initrd_filename) { 2446 /* Try to locate the initrd in the gap between the kernel 2447 * and the firmware. Add a bit of space just in case 2448 */ 2449 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2450 + 0x1ffff) & ~0xffff; 2451 spapr->initrd_size = load_image_targphys(initrd_filename, 2452 spapr->initrd_base, 2453 load_limit 2454 - spapr->initrd_base); 2455 if (spapr->initrd_size < 0) { 2456 error_report("could not load initial ram disk '%s'", 2457 initrd_filename); 2458 exit(1); 2459 } 2460 } 2461 } 2462 2463 if (bios_name == NULL) { 2464 bios_name = FW_FILE_NAME; 2465 } 2466 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2467 if (!filename) { 2468 error_report("Could not find LPAR firmware '%s'", bios_name); 2469 exit(1); 2470 } 2471 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2472 if (fw_size <= 0) { 2473 error_report("Could not load LPAR firmware '%s'", filename); 2474 exit(1); 2475 } 2476 g_free(filename); 2477 2478 /* FIXME: Should register things through the MachineState's qdev 2479 * interface, this is a legacy from the sPAPREnvironment structure 2480 * which predated MachineState but had a similar function */ 2481 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2482 register_savevm_live(NULL, "spapr/htab", -1, 1, 2483 &savevm_htab_handlers, spapr); 2484 2485 qemu_register_boot_set(spapr_boot_set, spapr); 2486 2487 if (kvm_enabled()) { 2488 /* to stop and start vmclock */ 2489 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2490 &spapr->tb); 2491 2492 kvmppc_spapr_enable_inkernel_multitce(); 2493 } 2494 } 2495 2496 static int spapr_kvm_type(const char *vm_type) 2497 { 2498 if (!vm_type) { 2499 return 0; 2500 } 2501 2502 if (!strcmp(vm_type, "HV")) { 2503 return 1; 2504 } 2505 2506 if (!strcmp(vm_type, "PR")) { 2507 return 2; 2508 } 2509 2510 error_report("Unknown kvm-type specified '%s'", vm_type); 2511 exit(1); 2512 } 2513 2514 /* 2515 * Implementation of an interface to adjust firmware path 2516 * for the bootindex property handling. 2517 */ 2518 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2519 DeviceState *dev) 2520 { 2521 #define CAST(type, obj, name) \ 2522 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2523 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2524 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2525 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2526 2527 if (d) { 2528 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2529 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2530 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2531 2532 if (spapr) { 2533 /* 2534 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2535 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2536 * in the top 16 bits of the 64-bit LUN 2537 */ 2538 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2539 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2540 (uint64_t)id << 48); 2541 } else if (virtio) { 2542 /* 2543 * We use SRP luns of the form 01000000 | (target << 8) | lun 2544 * in the top 32 bits of the 64-bit LUN 2545 * Note: the quote above is from SLOF and it is wrong, 2546 * the actual binding is: 2547 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2548 */ 2549 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2550 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2551 (uint64_t)id << 32); 2552 } else if (usb) { 2553 /* 2554 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2555 * in the top 32 bits of the 64-bit LUN 2556 */ 2557 unsigned usb_port = atoi(usb->port->path); 2558 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2559 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2560 (uint64_t)id << 32); 2561 } 2562 } 2563 2564 /* 2565 * SLOF probes the USB devices, and if it recognizes that the device is a 2566 * storage device, it changes its name to "storage" instead of "usb-host", 2567 * and additionally adds a child node for the SCSI LUN, so the correct 2568 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2569 */ 2570 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2571 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2572 if (usb_host_dev_is_scsi_storage(usbdev)) { 2573 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2574 } 2575 } 2576 2577 if (phb) { 2578 /* Replace "pci" with "pci@800000020000000" */ 2579 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2580 } 2581 2582 if (vsc) { 2583 /* Same logic as virtio above */ 2584 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 2585 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 2586 } 2587 2588 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 2589 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 2590 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 2591 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 2592 } 2593 2594 return NULL; 2595 } 2596 2597 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2598 { 2599 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2600 2601 return g_strdup(spapr->kvm_type); 2602 } 2603 2604 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2605 { 2606 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2607 2608 g_free(spapr->kvm_type); 2609 spapr->kvm_type = g_strdup(value); 2610 } 2611 2612 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2613 { 2614 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2615 2616 return spapr->use_hotplug_event_source; 2617 } 2618 2619 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2620 Error **errp) 2621 { 2622 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2623 2624 spapr->use_hotplug_event_source = value; 2625 } 2626 2627 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 2628 { 2629 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2630 2631 switch (spapr->resize_hpt) { 2632 case SPAPR_RESIZE_HPT_DEFAULT: 2633 return g_strdup("default"); 2634 case SPAPR_RESIZE_HPT_DISABLED: 2635 return g_strdup("disabled"); 2636 case SPAPR_RESIZE_HPT_ENABLED: 2637 return g_strdup("enabled"); 2638 case SPAPR_RESIZE_HPT_REQUIRED: 2639 return g_strdup("required"); 2640 } 2641 g_assert_not_reached(); 2642 } 2643 2644 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 2645 { 2646 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2647 2648 if (strcmp(value, "default") == 0) { 2649 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 2650 } else if (strcmp(value, "disabled") == 0) { 2651 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2652 } else if (strcmp(value, "enabled") == 0) { 2653 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 2654 } else if (strcmp(value, "required") == 0) { 2655 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 2656 } else { 2657 error_setg(errp, "Bad value for \"resize-hpt\" property"); 2658 } 2659 } 2660 2661 static void spapr_machine_initfn(Object *obj) 2662 { 2663 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2664 2665 spapr->htab_fd = -1; 2666 spapr->use_hotplug_event_source = true; 2667 object_property_add_str(obj, "kvm-type", 2668 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 2669 object_property_set_description(obj, "kvm-type", 2670 "Specifies the KVM virtualization mode (HV, PR)", 2671 NULL); 2672 object_property_add_bool(obj, "modern-hotplug-events", 2673 spapr_get_modern_hotplug_events, 2674 spapr_set_modern_hotplug_events, 2675 NULL); 2676 object_property_set_description(obj, "modern-hotplug-events", 2677 "Use dedicated hotplug event mechanism in" 2678 " place of standard EPOW events when possible" 2679 " (required for memory hot-unplug support)", 2680 NULL); 2681 2682 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 2683 "Maximum permitted CPU compatibility mode", 2684 &error_fatal); 2685 2686 object_property_add_str(obj, "resize-hpt", 2687 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 2688 object_property_set_description(obj, "resize-hpt", 2689 "Resizing of the Hash Page Table (enabled, disabled, required)", 2690 NULL); 2691 } 2692 2693 static void spapr_machine_finalizefn(Object *obj) 2694 { 2695 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2696 2697 g_free(spapr->kvm_type); 2698 } 2699 2700 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 2701 { 2702 cpu_synchronize_state(cs); 2703 ppc_cpu_do_system_reset(cs); 2704 } 2705 2706 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 2707 { 2708 CPUState *cs; 2709 2710 CPU_FOREACH(cs) { 2711 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 2712 } 2713 } 2714 2715 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2716 uint32_t node, bool dedicated_hp_event_source, 2717 Error **errp) 2718 { 2719 sPAPRDRConnector *drc; 2720 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 2721 int i, fdt_offset, fdt_size; 2722 void *fdt; 2723 uint64_t addr = addr_start; 2724 bool hotplugged = spapr_drc_hotplugged(dev); 2725 Error *local_err = NULL; 2726 2727 for (i = 0; i < nr_lmbs; i++) { 2728 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2729 addr / SPAPR_MEMORY_BLOCK_SIZE); 2730 g_assert(drc); 2731 2732 fdt = create_device_tree(&fdt_size); 2733 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 2734 SPAPR_MEMORY_BLOCK_SIZE); 2735 2736 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 2737 if (local_err) { 2738 while (addr > addr_start) { 2739 addr -= SPAPR_MEMORY_BLOCK_SIZE; 2740 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2741 addr / SPAPR_MEMORY_BLOCK_SIZE); 2742 spapr_drc_detach(drc); 2743 } 2744 g_free(fdt); 2745 error_propagate(errp, local_err); 2746 return; 2747 } 2748 if (!hotplugged) { 2749 spapr_drc_reset(drc); 2750 } 2751 addr += SPAPR_MEMORY_BLOCK_SIZE; 2752 } 2753 /* send hotplug notification to the 2754 * guest only in case of hotplugged memory 2755 */ 2756 if (hotplugged) { 2757 if (dedicated_hp_event_source) { 2758 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2759 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2760 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2761 nr_lmbs, 2762 spapr_drc_index(drc)); 2763 } else { 2764 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 2765 nr_lmbs); 2766 } 2767 } 2768 } 2769 2770 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2771 uint32_t node, Error **errp) 2772 { 2773 Error *local_err = NULL; 2774 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2775 PCDIMMDevice *dimm = PC_DIMM(dev); 2776 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2777 MemoryRegion *mr = ddc->get_memory_region(dimm); 2778 uint64_t align = memory_region_get_alignment(mr); 2779 uint64_t size = memory_region_size(mr); 2780 uint64_t addr; 2781 2782 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); 2783 if (local_err) { 2784 goto out; 2785 } 2786 2787 addr = object_property_get_uint(OBJECT(dimm), 2788 PC_DIMM_ADDR_PROP, &local_err); 2789 if (local_err) { 2790 goto out_unplug; 2791 } 2792 2793 spapr_add_lmbs(dev, addr, size, node, 2794 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 2795 &local_err); 2796 if (local_err) { 2797 goto out_unplug; 2798 } 2799 2800 return; 2801 2802 out_unplug: 2803 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2804 out: 2805 error_propagate(errp, local_err); 2806 } 2807 2808 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2809 Error **errp) 2810 { 2811 PCDIMMDevice *dimm = PC_DIMM(dev); 2812 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2813 MemoryRegion *mr = ddc->get_memory_region(dimm); 2814 uint64_t size = memory_region_size(mr); 2815 char *mem_dev; 2816 2817 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 2818 error_setg(errp, "Hotplugged memory size must be a multiple of " 2819 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2820 return; 2821 } 2822 2823 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); 2824 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { 2825 error_setg(errp, "Memory backend has bad page size. " 2826 "Use 'memory-backend-file' with correct mem-path."); 2827 goto out; 2828 } 2829 2830 out: 2831 g_free(mem_dev); 2832 } 2833 2834 struct sPAPRDIMMState { 2835 PCDIMMDevice *dimm; 2836 uint32_t nr_lmbs; 2837 QTAILQ_ENTRY(sPAPRDIMMState) next; 2838 }; 2839 2840 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 2841 PCDIMMDevice *dimm) 2842 { 2843 sPAPRDIMMState *dimm_state = NULL; 2844 2845 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 2846 if (dimm_state->dimm == dimm) { 2847 break; 2848 } 2849 } 2850 return dimm_state; 2851 } 2852 2853 static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 2854 sPAPRDIMMState *dimm_state) 2855 { 2856 g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm)); 2857 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next); 2858 } 2859 2860 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 2861 sPAPRDIMMState *dimm_state) 2862 { 2863 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 2864 g_free(dimm_state); 2865 } 2866 2867 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 2868 PCDIMMDevice *dimm) 2869 { 2870 sPAPRDRConnector *drc; 2871 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2872 MemoryRegion *mr = ddc->get_memory_region(dimm); 2873 uint64_t size = memory_region_size(mr); 2874 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 2875 uint32_t avail_lmbs = 0; 2876 uint64_t addr_start, addr; 2877 int i; 2878 sPAPRDIMMState *ds; 2879 2880 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 2881 &error_abort); 2882 2883 addr = addr_start; 2884 for (i = 0; i < nr_lmbs; i++) { 2885 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2886 addr / SPAPR_MEMORY_BLOCK_SIZE); 2887 g_assert(drc); 2888 if (drc->dev) { 2889 avail_lmbs++; 2890 } 2891 addr += SPAPR_MEMORY_BLOCK_SIZE; 2892 } 2893 2894 ds = g_malloc0(sizeof(sPAPRDIMMState)); 2895 ds->nr_lmbs = avail_lmbs; 2896 ds->dimm = dimm; 2897 spapr_pending_dimm_unplugs_add(ms, ds); 2898 return ds; 2899 } 2900 2901 /* Callback to be called during DRC release. */ 2902 void spapr_lmb_release(DeviceState *dev) 2903 { 2904 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev)); 2905 PCDIMMDevice *dimm = PC_DIMM(dev); 2906 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2907 MemoryRegion *mr = ddc->get_memory_region(dimm); 2908 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 2909 2910 /* This information will get lost if a migration occurs 2911 * during the unplug process. In this case recover it. */ 2912 if (ds == NULL) { 2913 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 2914 /* The DRC being examined by the caller at least must be counted */ 2915 g_assert(ds->nr_lmbs); 2916 } 2917 2918 if (--ds->nr_lmbs) { 2919 return; 2920 } 2921 2922 spapr_pending_dimm_unplugs_remove(spapr, ds); 2923 2924 /* 2925 * Now that all the LMBs have been removed by the guest, call the 2926 * pc-dimm unplug handler to cleanup up the pc-dimm device. 2927 */ 2928 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr); 2929 object_unparent(OBJECT(dev)); 2930 } 2931 2932 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 2933 DeviceState *dev, Error **errp) 2934 { 2935 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 2936 Error *local_err = NULL; 2937 PCDIMMDevice *dimm = PC_DIMM(dev); 2938 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2939 MemoryRegion *mr = ddc->get_memory_region(dimm); 2940 uint64_t size = memory_region_size(mr); 2941 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 2942 uint64_t addr_start, addr; 2943 int i; 2944 sPAPRDRConnector *drc; 2945 sPAPRDIMMState *ds; 2946 2947 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 2948 &local_err); 2949 if (local_err) { 2950 goto out; 2951 } 2952 2953 ds = g_malloc0(sizeof(sPAPRDIMMState)); 2954 ds->nr_lmbs = nr_lmbs; 2955 ds->dimm = dimm; 2956 spapr_pending_dimm_unplugs_add(spapr, ds); 2957 2958 addr = addr_start; 2959 for (i = 0; i < nr_lmbs; i++) { 2960 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2961 addr / SPAPR_MEMORY_BLOCK_SIZE); 2962 g_assert(drc); 2963 2964 spapr_drc_detach(drc); 2965 addr += SPAPR_MEMORY_BLOCK_SIZE; 2966 } 2967 2968 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2969 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2970 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2971 nr_lmbs, spapr_drc_index(drc)); 2972 out: 2973 error_propagate(errp, local_err); 2974 } 2975 2976 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 2977 sPAPRMachineState *spapr) 2978 { 2979 PowerPCCPU *cpu = POWERPC_CPU(cs); 2980 DeviceClass *dc = DEVICE_GET_CLASS(cs); 2981 int id = ppc_get_vcpu_dt_id(cpu); 2982 void *fdt; 2983 int offset, fdt_size; 2984 char *nodename; 2985 2986 fdt = create_device_tree(&fdt_size); 2987 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 2988 offset = fdt_add_subnode(fdt, 0, nodename); 2989 2990 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 2991 g_free(nodename); 2992 2993 *fdt_offset = offset; 2994 return fdt; 2995 } 2996 2997 /* Callback to be called during DRC release. */ 2998 void spapr_core_release(DeviceState *dev) 2999 { 3000 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev)); 3001 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3002 CPUCore *cc = CPU_CORE(dev); 3003 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3004 3005 if (smc->pre_2_10_has_unused_icps) { 3006 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3007 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc)); 3008 const char *typename = object_class_get_name(scc->cpu_class); 3009 size_t size = object_type_get_instance_size(typename); 3010 int i; 3011 3012 for (i = 0; i < cc->nr_threads; i++) { 3013 CPUState *cs = CPU(sc->threads + i * size); 3014 3015 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3016 } 3017 } 3018 3019 assert(core_slot); 3020 core_slot->cpu = NULL; 3021 object_unparent(OBJECT(dev)); 3022 } 3023 3024 static 3025 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3026 Error **errp) 3027 { 3028 int index; 3029 sPAPRDRConnector *drc; 3030 CPUCore *cc = CPU_CORE(dev); 3031 int smt = kvmppc_smt_threads(); 3032 3033 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3034 error_setg(errp, "Unable to find CPU core with core-id: %d", 3035 cc->core_id); 3036 return; 3037 } 3038 if (index == 0) { 3039 error_setg(errp, "Boot CPU core may not be unplugged"); 3040 return; 3041 } 3042 3043 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); 3044 g_assert(drc); 3045 3046 spapr_drc_detach(drc); 3047 3048 spapr_hotplug_req_remove_by_index(drc); 3049 } 3050 3051 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3052 Error **errp) 3053 { 3054 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3055 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3056 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3057 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3058 CPUCore *cc = CPU_CORE(dev); 3059 CPUState *cs = CPU(core->threads); 3060 sPAPRDRConnector *drc; 3061 Error *local_err = NULL; 3062 int smt = kvmppc_smt_threads(); 3063 CPUArchId *core_slot; 3064 int index; 3065 bool hotplugged = spapr_drc_hotplugged(dev); 3066 3067 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3068 if (!core_slot) { 3069 error_setg(errp, "Unable to find CPU core with core-id: %d", 3070 cc->core_id); 3071 return; 3072 } 3073 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); 3074 3075 g_assert(drc || !mc->has_hotpluggable_cpus); 3076 3077 if (drc) { 3078 void *fdt; 3079 int fdt_offset; 3080 3081 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 3082 3083 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3084 if (local_err) { 3085 g_free(fdt); 3086 error_propagate(errp, local_err); 3087 return; 3088 } 3089 3090 if (hotplugged) { 3091 /* 3092 * Send hotplug notification interrupt to the guest only 3093 * in case of hotplugged CPUs. 3094 */ 3095 spapr_hotplug_req_add_by_index(drc); 3096 } else { 3097 spapr_drc_reset(drc); 3098 } 3099 } 3100 3101 core_slot->cpu = OBJECT(dev); 3102 3103 if (smc->pre_2_10_has_unused_icps) { 3104 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc)); 3105 const char *typename = object_class_get_name(scc->cpu_class); 3106 size_t size = object_type_get_instance_size(typename); 3107 int i; 3108 3109 for (i = 0; i < cc->nr_threads; i++) { 3110 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev); 3111 void *obj = sc->threads + i * size; 3112 3113 cs = CPU(obj); 3114 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3115 } 3116 } 3117 } 3118 3119 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3120 Error **errp) 3121 { 3122 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3123 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3124 Error *local_err = NULL; 3125 CPUCore *cc = CPU_CORE(dev); 3126 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model); 3127 const char *type = object_get_typename(OBJECT(dev)); 3128 CPUArchId *core_slot; 3129 int index; 3130 3131 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3132 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3133 goto out; 3134 } 3135 3136 if (strcmp(base_core_type, type)) { 3137 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3138 goto out; 3139 } 3140 3141 if (cc->core_id % smp_threads) { 3142 error_setg(&local_err, "invalid core id %d", cc->core_id); 3143 goto out; 3144 } 3145 3146 /* 3147 * In general we should have homogeneous threads-per-core, but old 3148 * (pre hotplug support) machine types allow the last core to have 3149 * reduced threads as a compatibility hack for when we allowed 3150 * total vcpus not a multiple of threads-per-core. 3151 */ 3152 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3153 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3154 cc->nr_threads, smp_threads); 3155 goto out; 3156 } 3157 3158 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3159 if (!core_slot) { 3160 error_setg(&local_err, "core id %d out of range", cc->core_id); 3161 goto out; 3162 } 3163 3164 if (core_slot->cpu) { 3165 error_setg(&local_err, "core %d already populated", cc->core_id); 3166 goto out; 3167 } 3168 3169 numa_cpu_pre_plug(core_slot, dev, &local_err); 3170 3171 out: 3172 g_free(base_core_type); 3173 error_propagate(errp, local_err); 3174 } 3175 3176 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3177 DeviceState *dev, Error **errp) 3178 { 3179 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); 3180 3181 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3182 int node; 3183 3184 if (!smc->dr_lmb_enabled) { 3185 error_setg(errp, "Memory hotplug not supported for this machine"); 3186 return; 3187 } 3188 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 3189 if (*errp) { 3190 return; 3191 } 3192 if (node < 0 || node >= MAX_NODES) { 3193 error_setg(errp, "Invaild node %d", node); 3194 return; 3195 } 3196 3197 /* 3198 * Currently PowerPC kernel doesn't allow hot-adding memory to 3199 * memory-less node, but instead will silently add the memory 3200 * to the first node that has some memory. This causes two 3201 * unexpected behaviours for the user. 3202 * 3203 * - Memory gets hotplugged to a different node than what the user 3204 * specified. 3205 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs 3206 * to memory-less node, a reboot will set things accordingly 3207 * and the previously hotplugged memory now ends in the right node. 3208 * This appears as if some memory moved from one node to another. 3209 * 3210 * So until kernel starts supporting memory hotplug to memory-less 3211 * nodes, just prevent such attempts upfront in QEMU. 3212 */ 3213 if (nb_numa_nodes && !numa_info[node].node_mem) { 3214 error_setg(errp, "Can't hotplug memory to memory-less node %d", 3215 node); 3216 return; 3217 } 3218 3219 spapr_memory_plug(hotplug_dev, dev, node, errp); 3220 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3221 spapr_core_plug(hotplug_dev, dev, errp); 3222 } 3223 } 3224 3225 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3226 DeviceState *dev, Error **errp) 3227 { 3228 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); 3229 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 3230 3231 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3232 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3233 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3234 } else { 3235 /* NOTE: this means there is a window after guest reset, prior to 3236 * CAS negotiation, where unplug requests will fail due to the 3237 * capability not being detected yet. This is a bit different than 3238 * the case with PCI unplug, where the events will be queued and 3239 * eventually handled by the guest after boot 3240 */ 3241 error_setg(errp, "Memory hot unplug not supported for this guest"); 3242 } 3243 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3244 if (!mc->has_hotpluggable_cpus) { 3245 error_setg(errp, "CPU hot unplug not supported on this machine"); 3246 return; 3247 } 3248 spapr_core_unplug_request(hotplug_dev, dev, errp); 3249 } 3250 } 3251 3252 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3253 DeviceState *dev, Error **errp) 3254 { 3255 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3256 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3257 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3258 spapr_core_pre_plug(hotplug_dev, dev, errp); 3259 } 3260 } 3261 3262 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3263 DeviceState *dev) 3264 { 3265 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3266 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3267 return HOTPLUG_HANDLER(machine); 3268 } 3269 return NULL; 3270 } 3271 3272 static CpuInstanceProperties 3273 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3274 { 3275 CPUArchId *core_slot; 3276 MachineClass *mc = MACHINE_GET_CLASS(machine); 3277 3278 /* make sure possible_cpu are intialized */ 3279 mc->possible_cpu_arch_ids(machine); 3280 /* get CPU core slot containing thread that matches cpu_index */ 3281 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3282 assert(core_slot); 3283 return core_slot->props; 3284 } 3285 3286 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3287 { 3288 int i; 3289 int spapr_max_cores = max_cpus / smp_threads; 3290 MachineClass *mc = MACHINE_GET_CLASS(machine); 3291 3292 if (!mc->has_hotpluggable_cpus) { 3293 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3294 } 3295 if (machine->possible_cpus) { 3296 assert(machine->possible_cpus->len == spapr_max_cores); 3297 return machine->possible_cpus; 3298 } 3299 3300 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3301 sizeof(CPUArchId) * spapr_max_cores); 3302 machine->possible_cpus->len = spapr_max_cores; 3303 for (i = 0; i < machine->possible_cpus->len; i++) { 3304 int core_id = i * smp_threads; 3305 3306 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3307 machine->possible_cpus->cpus[i].arch_id = core_id; 3308 machine->possible_cpus->cpus[i].props.has_core_id = true; 3309 machine->possible_cpus->cpus[i].props.core_id = core_id; 3310 3311 /* default distribution of CPUs over NUMA nodes */ 3312 if (nb_numa_nodes) { 3313 /* preset values but do not enable them i.e. 'has_node_id = false', 3314 * numa init code will enable them later if manual mapping wasn't 3315 * present on CLI */ 3316 machine->possible_cpus->cpus[i].props.node_id = 3317 core_id / smp_threads / smp_cores % nb_numa_nodes; 3318 } 3319 } 3320 return machine->possible_cpus; 3321 } 3322 3323 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3324 uint64_t *buid, hwaddr *pio, 3325 hwaddr *mmio32, hwaddr *mmio64, 3326 unsigned n_dma, uint32_t *liobns, Error **errp) 3327 { 3328 /* 3329 * New-style PHB window placement. 3330 * 3331 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3332 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3333 * windows. 3334 * 3335 * Some guest kernels can't work with MMIO windows above 1<<46 3336 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3337 * 3338 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3339 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3340 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3341 * 1TiB 64-bit MMIO windows for each PHB. 3342 */ 3343 const uint64_t base_buid = 0x800000020000000ULL; 3344 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 3345 SPAPR_PCI_MEM64_WIN_SIZE - 1) 3346 int i; 3347 3348 /* Sanity check natural alignments */ 3349 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3350 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3351 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3352 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3353 /* Sanity check bounds */ 3354 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3355 SPAPR_PCI_MEM32_WIN_SIZE); 3356 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3357 SPAPR_PCI_MEM64_WIN_SIZE); 3358 3359 if (index >= SPAPR_MAX_PHBS) { 3360 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3361 SPAPR_MAX_PHBS - 1); 3362 return; 3363 } 3364 3365 *buid = base_buid + index; 3366 for (i = 0; i < n_dma; ++i) { 3367 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3368 } 3369 3370 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3371 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3372 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3373 } 3374 3375 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3376 { 3377 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3378 3379 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3380 } 3381 3382 static void spapr_ics_resend(XICSFabric *dev) 3383 { 3384 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3385 3386 ics_resend(spapr->ics); 3387 } 3388 3389 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id) 3390 { 3391 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id); 3392 3393 return cpu ? ICP(cpu->intc) : NULL; 3394 } 3395 3396 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3397 Monitor *mon) 3398 { 3399 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3400 CPUState *cs; 3401 3402 CPU_FOREACH(cs) { 3403 PowerPCCPU *cpu = POWERPC_CPU(cs); 3404 3405 icp_pic_print_info(ICP(cpu->intc), mon); 3406 } 3407 3408 ics_pic_print_info(spapr->ics, mon); 3409 } 3410 3411 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3412 { 3413 MachineClass *mc = MACHINE_CLASS(oc); 3414 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3415 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3416 NMIClass *nc = NMI_CLASS(oc); 3417 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3418 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3419 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3420 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3421 3422 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3423 3424 /* 3425 * We set up the default / latest behaviour here. The class_init 3426 * functions for the specific versioned machine types can override 3427 * these details for backwards compatibility 3428 */ 3429 mc->init = ppc_spapr_init; 3430 mc->reset = ppc_spapr_reset; 3431 mc->block_default_type = IF_SCSI; 3432 mc->max_cpus = 1024; 3433 mc->no_parallel = 1; 3434 mc->default_boot_order = ""; 3435 mc->default_ram_size = 512 * M_BYTE; 3436 mc->kvm_type = spapr_kvm_type; 3437 mc->has_dynamic_sysbus = true; 3438 mc->pci_allow_0_address = true; 3439 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3440 hc->pre_plug = spapr_machine_device_pre_plug; 3441 hc->plug = spapr_machine_device_plug; 3442 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 3443 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3444 hc->unplug_request = spapr_machine_device_unplug_request; 3445 3446 smc->dr_lmb_enabled = true; 3447 smc->tcg_default_cpu = "POWER8"; 3448 mc->has_hotpluggable_cpus = true; 3449 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 3450 fwc->get_dev_path = spapr_get_fw_dev_path; 3451 nc->nmi_monitor_handler = spapr_nmi; 3452 smc->phb_placement = spapr_phb_placement; 3453 vhc->hypercall = emulate_spapr_hypercall; 3454 vhc->hpt_mask = spapr_hpt_mask; 3455 vhc->map_hptes = spapr_map_hptes; 3456 vhc->unmap_hptes = spapr_unmap_hptes; 3457 vhc->store_hpte = spapr_store_hpte; 3458 vhc->get_patbe = spapr_get_patbe; 3459 xic->ics_get = spapr_ics_get; 3460 xic->ics_resend = spapr_ics_resend; 3461 xic->icp_get = spapr_icp_get; 3462 ispc->print_info = spapr_pic_print_info; 3463 /* Force NUMA node memory size to be a multiple of 3464 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 3465 * in which LMBs are represented and hot-added 3466 */ 3467 mc->numa_mem_align_shift = 28; 3468 } 3469 3470 static const TypeInfo spapr_machine_info = { 3471 .name = TYPE_SPAPR_MACHINE, 3472 .parent = TYPE_MACHINE, 3473 .abstract = true, 3474 .instance_size = sizeof(sPAPRMachineState), 3475 .instance_init = spapr_machine_initfn, 3476 .instance_finalize = spapr_machine_finalizefn, 3477 .class_size = sizeof(sPAPRMachineClass), 3478 .class_init = spapr_machine_class_init, 3479 .interfaces = (InterfaceInfo[]) { 3480 { TYPE_FW_PATH_PROVIDER }, 3481 { TYPE_NMI }, 3482 { TYPE_HOTPLUG_HANDLER }, 3483 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 3484 { TYPE_XICS_FABRIC }, 3485 { TYPE_INTERRUPT_STATS_PROVIDER }, 3486 { } 3487 }, 3488 }; 3489 3490 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 3491 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 3492 void *data) \ 3493 { \ 3494 MachineClass *mc = MACHINE_CLASS(oc); \ 3495 spapr_machine_##suffix##_class_options(mc); \ 3496 if (latest) { \ 3497 mc->alias = "pseries"; \ 3498 mc->is_default = 1; \ 3499 } \ 3500 } \ 3501 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 3502 { \ 3503 MachineState *machine = MACHINE(obj); \ 3504 spapr_machine_##suffix##_instance_options(machine); \ 3505 } \ 3506 static const TypeInfo spapr_machine_##suffix##_info = { \ 3507 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 3508 .parent = TYPE_SPAPR_MACHINE, \ 3509 .class_init = spapr_machine_##suffix##_class_init, \ 3510 .instance_init = spapr_machine_##suffix##_instance_init, \ 3511 }; \ 3512 static void spapr_machine_register_##suffix(void) \ 3513 { \ 3514 type_register(&spapr_machine_##suffix##_info); \ 3515 } \ 3516 type_init(spapr_machine_register_##suffix) 3517 3518 /* 3519 * pseries-2.10 3520 */ 3521 static void spapr_machine_2_10_instance_options(MachineState *machine) 3522 { 3523 } 3524 3525 static void spapr_machine_2_10_class_options(MachineClass *mc) 3526 { 3527 /* Defaults for the latest behaviour inherited from the base class */ 3528 } 3529 3530 DEFINE_SPAPR_MACHINE(2_10, "2.10", true); 3531 3532 /* 3533 * pseries-2.9 3534 */ 3535 #define SPAPR_COMPAT_2_9 \ 3536 HW_COMPAT_2_9 \ 3537 { \ 3538 .driver = TYPE_POWERPC_CPU, \ 3539 .property = "pre-2.10-migration", \ 3540 .value = "on", \ 3541 }, \ 3542 3543 static void spapr_machine_2_9_instance_options(MachineState *machine) 3544 { 3545 spapr_machine_2_10_instance_options(machine); 3546 } 3547 3548 static void spapr_machine_2_9_class_options(MachineClass *mc) 3549 { 3550 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3551 3552 spapr_machine_2_10_class_options(mc); 3553 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); 3554 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 3555 smc->pre_2_10_has_unused_icps = true; 3556 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 3557 } 3558 3559 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 3560 3561 /* 3562 * pseries-2.8 3563 */ 3564 #define SPAPR_COMPAT_2_8 \ 3565 HW_COMPAT_2_8 \ 3566 { \ 3567 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3568 .property = "pcie-extended-configuration-space", \ 3569 .value = "off", \ 3570 }, 3571 3572 static void spapr_machine_2_8_instance_options(MachineState *machine) 3573 { 3574 spapr_machine_2_9_instance_options(machine); 3575 } 3576 3577 static void spapr_machine_2_8_class_options(MachineClass *mc) 3578 { 3579 spapr_machine_2_9_class_options(mc); 3580 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 3581 mc->numa_mem_align_shift = 23; 3582 } 3583 3584 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 3585 3586 /* 3587 * pseries-2.7 3588 */ 3589 #define SPAPR_COMPAT_2_7 \ 3590 HW_COMPAT_2_7 \ 3591 { \ 3592 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3593 .property = "mem_win_size", \ 3594 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 3595 }, \ 3596 { \ 3597 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3598 .property = "mem64_win_size", \ 3599 .value = "0", \ 3600 }, \ 3601 { \ 3602 .driver = TYPE_POWERPC_CPU, \ 3603 .property = "pre-2.8-migration", \ 3604 .value = "on", \ 3605 }, \ 3606 { \ 3607 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3608 .property = "pre-2.8-migration", \ 3609 .value = "on", \ 3610 }, 3611 3612 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 3613 uint64_t *buid, hwaddr *pio, 3614 hwaddr *mmio32, hwaddr *mmio64, 3615 unsigned n_dma, uint32_t *liobns, Error **errp) 3616 { 3617 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 3618 const uint64_t base_buid = 0x800000020000000ULL; 3619 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 3620 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 3621 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 3622 const uint32_t max_index = 255; 3623 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 3624 3625 uint64_t ram_top = MACHINE(spapr)->ram_size; 3626 hwaddr phb0_base, phb_base; 3627 int i; 3628 3629 /* Do we have hotpluggable memory? */ 3630 if (MACHINE(spapr)->maxram_size > ram_top) { 3631 /* Can't just use maxram_size, because there may be an 3632 * alignment gap between normal and hotpluggable memory 3633 * regions */ 3634 ram_top = spapr->hotplug_memory.base + 3635 memory_region_size(&spapr->hotplug_memory.mr); 3636 } 3637 3638 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 3639 3640 if (index > max_index) { 3641 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 3642 max_index); 3643 return; 3644 } 3645 3646 *buid = base_buid + index; 3647 for (i = 0; i < n_dma; ++i) { 3648 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3649 } 3650 3651 phb_base = phb0_base + index * phb_spacing; 3652 *pio = phb_base + pio_offset; 3653 *mmio32 = phb_base + mmio_offset; 3654 /* 3655 * We don't set the 64-bit MMIO window, relying on the PHB's 3656 * fallback behaviour of automatically splitting a large "32-bit" 3657 * window into contiguous 32-bit and 64-bit windows 3658 */ 3659 } 3660 3661 static void spapr_machine_2_7_instance_options(MachineState *machine) 3662 { 3663 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 3664 3665 spapr_machine_2_8_instance_options(machine); 3666 spapr->use_hotplug_event_source = false; 3667 } 3668 3669 static void spapr_machine_2_7_class_options(MachineClass *mc) 3670 { 3671 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3672 3673 spapr_machine_2_8_class_options(mc); 3674 smc->tcg_default_cpu = "POWER7"; 3675 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 3676 smc->phb_placement = phb_placement_2_7; 3677 } 3678 3679 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 3680 3681 /* 3682 * pseries-2.6 3683 */ 3684 #define SPAPR_COMPAT_2_6 \ 3685 HW_COMPAT_2_6 \ 3686 { \ 3687 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3688 .property = "ddw",\ 3689 .value = stringify(off),\ 3690 }, 3691 3692 static void spapr_machine_2_6_instance_options(MachineState *machine) 3693 { 3694 spapr_machine_2_7_instance_options(machine); 3695 } 3696 3697 static void spapr_machine_2_6_class_options(MachineClass *mc) 3698 { 3699 spapr_machine_2_7_class_options(mc); 3700 mc->has_hotpluggable_cpus = false; 3701 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 3702 } 3703 3704 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 3705 3706 /* 3707 * pseries-2.5 3708 */ 3709 #define SPAPR_COMPAT_2_5 \ 3710 HW_COMPAT_2_5 \ 3711 { \ 3712 .driver = "spapr-vlan", \ 3713 .property = "use-rx-buffer-pools", \ 3714 .value = "off", \ 3715 }, 3716 3717 static void spapr_machine_2_5_instance_options(MachineState *machine) 3718 { 3719 spapr_machine_2_6_instance_options(machine); 3720 } 3721 3722 static void spapr_machine_2_5_class_options(MachineClass *mc) 3723 { 3724 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3725 3726 spapr_machine_2_6_class_options(mc); 3727 smc->use_ohci_by_default = true; 3728 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 3729 } 3730 3731 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 3732 3733 /* 3734 * pseries-2.4 3735 */ 3736 #define SPAPR_COMPAT_2_4 \ 3737 HW_COMPAT_2_4 3738 3739 static void spapr_machine_2_4_instance_options(MachineState *machine) 3740 { 3741 spapr_machine_2_5_instance_options(machine); 3742 } 3743 3744 static void spapr_machine_2_4_class_options(MachineClass *mc) 3745 { 3746 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3747 3748 spapr_machine_2_5_class_options(mc); 3749 smc->dr_lmb_enabled = false; 3750 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 3751 } 3752 3753 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 3754 3755 /* 3756 * pseries-2.3 3757 */ 3758 #define SPAPR_COMPAT_2_3 \ 3759 HW_COMPAT_2_3 \ 3760 {\ 3761 .driver = "spapr-pci-host-bridge",\ 3762 .property = "dynamic-reconfiguration",\ 3763 .value = "off",\ 3764 }, 3765 3766 static void spapr_machine_2_3_instance_options(MachineState *machine) 3767 { 3768 spapr_machine_2_4_instance_options(machine); 3769 } 3770 3771 static void spapr_machine_2_3_class_options(MachineClass *mc) 3772 { 3773 spapr_machine_2_4_class_options(mc); 3774 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 3775 } 3776 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 3777 3778 /* 3779 * pseries-2.2 3780 */ 3781 3782 #define SPAPR_COMPAT_2_2 \ 3783 HW_COMPAT_2_2 \ 3784 {\ 3785 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3786 .property = "mem_win_size",\ 3787 .value = "0x20000000",\ 3788 }, 3789 3790 static void spapr_machine_2_2_instance_options(MachineState *machine) 3791 { 3792 spapr_machine_2_3_instance_options(machine); 3793 machine->suppress_vmdesc = true; 3794 } 3795 3796 static void spapr_machine_2_2_class_options(MachineClass *mc) 3797 { 3798 spapr_machine_2_3_class_options(mc); 3799 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 3800 } 3801 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 3802 3803 /* 3804 * pseries-2.1 3805 */ 3806 #define SPAPR_COMPAT_2_1 \ 3807 HW_COMPAT_2_1 3808 3809 static void spapr_machine_2_1_instance_options(MachineState *machine) 3810 { 3811 spapr_machine_2_2_instance_options(machine); 3812 } 3813 3814 static void spapr_machine_2_1_class_options(MachineClass *mc) 3815 { 3816 spapr_machine_2_2_class_options(mc); 3817 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 3818 } 3819 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 3820 3821 static void spapr_machine_register_types(void) 3822 { 3823 type_register_static(&spapr_machine_info); 3824 } 3825 3826 type_init(spapr_machine_register_types) 3827