xref: /openbmc/qemu/hw/ppc/spapr.c (revision 068479e1e1d680ac246f12aaaacf2c5e1a0bd97b)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hostmem.h"
35 #include "sysemu/numa.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "qemu/log.h"
40 #include "hw/fw-path-provider.h"
41 #include "elf.h"
42 #include "net/net.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/cpus.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_ppc.h"
47 #include "migration/misc.h"
48 #include "migration/qemu-file-types.h"
49 #include "migration/global_state.h"
50 #include "migration/register.h"
51 #include "migration/blocker.h"
52 #include "mmu-hash64.h"
53 #include "mmu-book3s-v3.h"
54 #include "cpu-models.h"
55 #include "hw/core/cpu.h"
56 
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
59 
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
66 
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
71 
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79 
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
85 #include "hw/ppc/pef.h"
86 
87 #include "monitor/monitor.h"
88 
89 #include <libfdt.h>
90 
91 /* SLOF memory layout:
92  *
93  * SLOF raw image loaded at 0, copies its romfs right below the flat
94  * device-tree, then position SLOF itself 31M below that
95  *
96  * So we set FW_OVERHEAD to 40MB which should account for all of that
97  * and more
98  *
99  * We load our kernel at 4M, leaving space for SLOF initial image
100  */
101 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
102 #define FW_MAX_SIZE             0x400000
103 #define FW_FILE_NAME            "slof.bin"
104 #define FW_OVERHEAD             0x2800000
105 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
106 
107 #define MIN_RMA_SLOF            (128 * MiB)
108 
109 #define PHANDLE_INTC            0x00001111
110 
111 /* These two functions implement the VCPU id numbering: one to compute them
112  * all and one to identify thread 0 of a VCORE. Any change to the first one
113  * is likely to have an impact on the second one, so let's keep them close.
114  */
115 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
116 {
117     MachineState *ms = MACHINE(spapr);
118     unsigned int smp_threads = ms->smp.threads;
119 
120     assert(spapr->vsmt);
121     return
122         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
123 }
124 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
125                                       PowerPCCPU *cpu)
126 {
127     assert(spapr->vsmt);
128     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
129 }
130 
131 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 {
133     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
134      * and newer QEMUs don't even have them. In both cases, we don't want
135      * to send anything on the wire.
136      */
137     return false;
138 }
139 
140 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
141     .name = "icp/server",
142     .version_id = 1,
143     .minimum_version_id = 1,
144     .needed = pre_2_10_vmstate_dummy_icp_needed,
145     .fields = (VMStateField[]) {
146         VMSTATE_UNUSED(4), /* uint32_t xirr */
147         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
148         VMSTATE_UNUSED(1), /* uint8_t mfrr */
149         VMSTATE_END_OF_LIST()
150     },
151 };
152 
153 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 {
155     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
156                      (void *)(uintptr_t) i);
157 }
158 
159 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 {
161     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
162                        (void *)(uintptr_t) i);
163 }
164 
165 int spapr_max_server_number(SpaprMachineState *spapr)
166 {
167     MachineState *ms = MACHINE(spapr);
168 
169     assert(spapr->vsmt);
170     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
171 }
172 
173 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
174                                   int smt_threads)
175 {
176     int i, ret = 0;
177     uint32_t servers_prop[smt_threads];
178     uint32_t gservers_prop[smt_threads * 2];
179     int index = spapr_get_vcpu_id(cpu);
180 
181     if (cpu->compat_pvr) {
182         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
183         if (ret < 0) {
184             return ret;
185         }
186     }
187 
188     /* Build interrupt servers and gservers properties */
189     for (i = 0; i < smt_threads; i++) {
190         servers_prop[i] = cpu_to_be32(index + i);
191         /* Hack, direct the group queues back to cpu 0 */
192         gservers_prop[i*2] = cpu_to_be32(index + i);
193         gservers_prop[i*2 + 1] = 0;
194     }
195     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
196                       servers_prop, sizeof(servers_prop));
197     if (ret < 0) {
198         return ret;
199     }
200     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
201                       gservers_prop, sizeof(gservers_prop));
202 
203     return ret;
204 }
205 
206 static void spapr_dt_pa_features(SpaprMachineState *spapr,
207                                  PowerPCCPU *cpu,
208                                  void *fdt, int offset)
209 {
210     uint8_t pa_features_206[] = { 6, 0,
211         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
212     uint8_t pa_features_207[] = { 24, 0,
213         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
214         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
215         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
216         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
217     uint8_t pa_features_300[] = { 66, 0,
218         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
219         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
220         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
221         /* 6: DS207 */
222         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
223         /* 16: Vector */
224         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
225         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
226         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
227         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
228         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
229         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
230         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
231         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
232         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
233         /* 42: PM, 44: PC RA, 46: SC vec'd */
234         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
235         /* 48: SIMD, 50: QP BFP, 52: String */
236         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
237         /* 54: DecFP, 56: DecI, 58: SHA */
238         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
239         /* 60: NM atomic, 62: RNG */
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
241     };
242     uint8_t *pa_features = NULL;
243     size_t pa_size;
244 
245     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
246         pa_features = pa_features_206;
247         pa_size = sizeof(pa_features_206);
248     }
249     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
250         pa_features = pa_features_207;
251         pa_size = sizeof(pa_features_207);
252     }
253     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
254         pa_features = pa_features_300;
255         pa_size = sizeof(pa_features_300);
256     }
257     if (!pa_features) {
258         return;
259     }
260 
261     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
262         /*
263          * Note: we keep CI large pages off by default because a 64K capable
264          * guest provisioned with large pages might otherwise try to map a qemu
265          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
266          * even if that qemu runs on a 4k host.
267          * We dd this bit back here if we are confident this is not an issue
268          */
269         pa_features[3] |= 0x20;
270     }
271     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
272         pa_features[24] |= 0x80;    /* Transactional memory support */
273     }
274     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
275         /* Workaround for broken kernels that attempt (guest) radix
276          * mode when they can't handle it, if they see the radix bit set
277          * in pa-features. So hide it from them. */
278         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
279     }
280 
281     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
282 }
283 
284 static hwaddr spapr_node0_size(MachineState *machine)
285 {
286     if (machine->numa_state->num_nodes) {
287         int i;
288         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
289             if (machine->numa_state->nodes[i].node_mem) {
290                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
291                            machine->ram_size);
292             }
293         }
294     }
295     return machine->ram_size;
296 }
297 
298 static void add_str(GString *s, const gchar *s1)
299 {
300     g_string_append_len(s, s1, strlen(s1) + 1);
301 }
302 
303 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
304                                 hwaddr start, hwaddr size)
305 {
306     char mem_name[32];
307     uint64_t mem_reg_property[2];
308     int off;
309 
310     mem_reg_property[0] = cpu_to_be64(start);
311     mem_reg_property[1] = cpu_to_be64(size);
312 
313     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
314     off = fdt_add_subnode(fdt, 0, mem_name);
315     _FDT(off);
316     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
317     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
318                       sizeof(mem_reg_property))));
319     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
320     return off;
321 }
322 
323 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
324 {
325     MemoryDeviceInfoList *info;
326 
327     for (info = list; info; info = info->next) {
328         MemoryDeviceInfo *value = info->value;
329 
330         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
331             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
332 
333             if (addr >= pcdimm_info->addr &&
334                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
335                 return pcdimm_info->node;
336             }
337         }
338     }
339 
340     return -1;
341 }
342 
343 struct sPAPRDrconfCellV2 {
344      uint32_t seq_lmbs;
345      uint64_t base_addr;
346      uint32_t drc_index;
347      uint32_t aa_index;
348      uint32_t flags;
349 } QEMU_PACKED;
350 
351 typedef struct DrconfCellQueue {
352     struct sPAPRDrconfCellV2 cell;
353     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
354 } DrconfCellQueue;
355 
356 static DrconfCellQueue *
357 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
358                       uint32_t drc_index, uint32_t aa_index,
359                       uint32_t flags)
360 {
361     DrconfCellQueue *elem;
362 
363     elem = g_malloc0(sizeof(*elem));
364     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
365     elem->cell.base_addr = cpu_to_be64(base_addr);
366     elem->cell.drc_index = cpu_to_be32(drc_index);
367     elem->cell.aa_index = cpu_to_be32(aa_index);
368     elem->cell.flags = cpu_to_be32(flags);
369 
370     return elem;
371 }
372 
373 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
374                                       int offset, MemoryDeviceInfoList *dimms)
375 {
376     MachineState *machine = MACHINE(spapr);
377     uint8_t *int_buf, *cur_index;
378     int ret;
379     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
380     uint64_t addr, cur_addr, size;
381     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
382     uint64_t mem_end = machine->device_memory->base +
383                        memory_region_size(&machine->device_memory->mr);
384     uint32_t node, buf_len, nr_entries = 0;
385     SpaprDrc *drc;
386     DrconfCellQueue *elem, *next;
387     MemoryDeviceInfoList *info;
388     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
389         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
390 
391     /* Entry to cover RAM and the gap area */
392     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
393                                  SPAPR_LMB_FLAGS_RESERVED |
394                                  SPAPR_LMB_FLAGS_DRC_INVALID);
395     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
396     nr_entries++;
397 
398     cur_addr = machine->device_memory->base;
399     for (info = dimms; info; info = info->next) {
400         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
401 
402         addr = di->addr;
403         size = di->size;
404         node = di->node;
405 
406         /*
407          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
408          * area is marked hotpluggable in the next iteration for the bigger
409          * chunk including the NVDIMM occupied area.
410          */
411         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
412             continue;
413 
414         /* Entry for hot-pluggable area */
415         if (cur_addr < addr) {
416             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
417             g_assert(drc);
418             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
419                                          cur_addr, spapr_drc_index(drc), -1, 0);
420             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
421             nr_entries++;
422         }
423 
424         /* Entry for DIMM */
425         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
426         g_assert(drc);
427         elem = spapr_get_drconf_cell(size / lmb_size, addr,
428                                      spapr_drc_index(drc), node,
429                                      (SPAPR_LMB_FLAGS_ASSIGNED |
430                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
431         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
432         nr_entries++;
433         cur_addr = addr + size;
434     }
435 
436     /* Entry for remaining hotpluggable area */
437     if (cur_addr < mem_end) {
438         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
439         g_assert(drc);
440         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
441                                      cur_addr, spapr_drc_index(drc), -1, 0);
442         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
443         nr_entries++;
444     }
445 
446     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
447     int_buf = cur_index = g_malloc0(buf_len);
448     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
449     cur_index += sizeof(nr_entries);
450 
451     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
452         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
453         cur_index += sizeof(elem->cell);
454         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
455         g_free(elem);
456     }
457 
458     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
459     g_free(int_buf);
460     if (ret < 0) {
461         return -1;
462     }
463     return 0;
464 }
465 
466 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
467                                    int offset, MemoryDeviceInfoList *dimms)
468 {
469     MachineState *machine = MACHINE(spapr);
470     int i, ret;
471     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
472     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
473     uint32_t nr_lmbs = (machine->device_memory->base +
474                        memory_region_size(&machine->device_memory->mr)) /
475                        lmb_size;
476     uint32_t *int_buf, *cur_index, buf_len;
477 
478     /*
479      * Allocate enough buffer size to fit in ibm,dynamic-memory
480      */
481     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
482     cur_index = int_buf = g_malloc0(buf_len);
483     int_buf[0] = cpu_to_be32(nr_lmbs);
484     cur_index++;
485     for (i = 0; i < nr_lmbs; i++) {
486         uint64_t addr = i * lmb_size;
487         uint32_t *dynamic_memory = cur_index;
488 
489         if (i >= device_lmb_start) {
490             SpaprDrc *drc;
491 
492             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
493             g_assert(drc);
494 
495             dynamic_memory[0] = cpu_to_be32(addr >> 32);
496             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
497             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
498             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
499             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
500             if (memory_region_present(get_system_memory(), addr)) {
501                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
502             } else {
503                 dynamic_memory[5] = cpu_to_be32(0);
504             }
505         } else {
506             /*
507              * LMB information for RMA, boot time RAM and gap b/n RAM and
508              * device memory region -- all these are marked as reserved
509              * and as having no valid DRC.
510              */
511             dynamic_memory[0] = cpu_to_be32(addr >> 32);
512             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
513             dynamic_memory[2] = cpu_to_be32(0);
514             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
515             dynamic_memory[4] = cpu_to_be32(-1);
516             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
517                                             SPAPR_LMB_FLAGS_DRC_INVALID);
518         }
519 
520         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
521     }
522     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
523     g_free(int_buf);
524     if (ret < 0) {
525         return -1;
526     }
527     return 0;
528 }
529 
530 /*
531  * Adds ibm,dynamic-reconfiguration-memory node.
532  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
533  * of this device tree node.
534  */
535 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
536                                                    void *fdt)
537 {
538     MachineState *machine = MACHINE(spapr);
539     int ret, offset;
540     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
541     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
542                                 cpu_to_be32(lmb_size & 0xffffffff)};
543     MemoryDeviceInfoList *dimms = NULL;
544 
545     /*
546      * Don't create the node if there is no device memory
547      */
548     if (machine->ram_size == machine->maxram_size) {
549         return 0;
550     }
551 
552     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
553 
554     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
555                     sizeof(prop_lmb_size));
556     if (ret < 0) {
557         return ret;
558     }
559 
560     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
561     if (ret < 0) {
562         return ret;
563     }
564 
565     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
566     if (ret < 0) {
567         return ret;
568     }
569 
570     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
571     dimms = qmp_memory_device_list();
572     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
573         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
574     } else {
575         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
576     }
577     qapi_free_MemoryDeviceInfoList(dimms);
578 
579     if (ret < 0) {
580         return ret;
581     }
582 
583     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
584 
585     return ret;
586 }
587 
588 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
589 {
590     MachineState *machine = MACHINE(spapr);
591     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
592     hwaddr mem_start, node_size;
593     int i, nb_nodes = machine->numa_state->num_nodes;
594     NodeInfo *nodes = machine->numa_state->nodes;
595 
596     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
597         if (!nodes[i].node_mem) {
598             continue;
599         }
600         if (mem_start >= machine->ram_size) {
601             node_size = 0;
602         } else {
603             node_size = nodes[i].node_mem;
604             if (node_size > machine->ram_size - mem_start) {
605                 node_size = machine->ram_size - mem_start;
606             }
607         }
608         if (!mem_start) {
609             /* spapr_machine_init() checks for rma_size <= node0_size
610              * already */
611             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
612             mem_start += spapr->rma_size;
613             node_size -= spapr->rma_size;
614         }
615         for ( ; node_size; ) {
616             hwaddr sizetmp = pow2floor(node_size);
617 
618             /* mem_start != 0 here */
619             if (ctzl(mem_start) < ctzl(sizetmp)) {
620                 sizetmp = 1ULL << ctzl(mem_start);
621             }
622 
623             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
624             node_size -= sizetmp;
625             mem_start += sizetmp;
626         }
627     }
628 
629     /* Generate ibm,dynamic-reconfiguration-memory node if required */
630     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
631         int ret;
632 
633         g_assert(smc->dr_lmb_enabled);
634         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
635         if (ret) {
636             return ret;
637         }
638     }
639 
640     return 0;
641 }
642 
643 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
644                          SpaprMachineState *spapr)
645 {
646     MachineState *ms = MACHINE(spapr);
647     PowerPCCPU *cpu = POWERPC_CPU(cs);
648     CPUPPCState *env = &cpu->env;
649     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
650     int index = spapr_get_vcpu_id(cpu);
651     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
652                        0xffffffff, 0xffffffff};
653     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
654         : SPAPR_TIMEBASE_FREQ;
655     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
656     uint32_t page_sizes_prop[64];
657     size_t page_sizes_prop_size;
658     unsigned int smp_threads = ms->smp.threads;
659     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
660     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
661     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
662     SpaprDrc *drc;
663     int drc_index;
664     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
665     int i;
666 
667     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
668     if (drc) {
669         drc_index = spapr_drc_index(drc);
670         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
671     }
672 
673     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
674     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
675 
676     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
677     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
678                            env->dcache_line_size)));
679     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
680                            env->dcache_line_size)));
681     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
682                            env->icache_line_size)));
683     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
684                            env->icache_line_size)));
685 
686     if (pcc->l1_dcache_size) {
687         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
688                                pcc->l1_dcache_size)));
689     } else {
690         warn_report("Unknown L1 dcache size for cpu");
691     }
692     if (pcc->l1_icache_size) {
693         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
694                                pcc->l1_icache_size)));
695     } else {
696         warn_report("Unknown L1 icache size for cpu");
697     }
698 
699     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
700     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
701     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
702     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
703     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
704     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
705 
706     if (env->spr_cb[SPR_PURR].oea_read) {
707         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
708     }
709     if (env->spr_cb[SPR_SPURR].oea_read) {
710         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
711     }
712 
713     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
714         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
715                           segs, sizeof(segs))));
716     }
717 
718     /* Advertise VSX (vector extensions) if available
719      *   1               == VMX / Altivec available
720      *   2               == VSX available
721      *
722      * Only CPUs for which we create core types in spapr_cpu_core.c
723      * are possible, and all of those have VMX */
724     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
725         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
726     } else {
727         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
728     }
729 
730     /* Advertise DFP (Decimal Floating Point) if available
731      *   0 / no property == no DFP
732      *   1               == DFP available */
733     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
734         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
735     }
736 
737     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
738                                                       sizeof(page_sizes_prop));
739     if (page_sizes_prop_size) {
740         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
741                           page_sizes_prop, page_sizes_prop_size)));
742     }
743 
744     spapr_dt_pa_features(spapr, cpu, fdt, offset);
745 
746     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
747                            cs->cpu_index / vcpus_per_socket)));
748 
749     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
750                       pft_size_prop, sizeof(pft_size_prop))));
751 
752     if (ms->numa_state->num_nodes > 1) {
753         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
754     }
755 
756     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
757 
758     if (pcc->radix_page_info) {
759         for (i = 0; i < pcc->radix_page_info->count; i++) {
760             radix_AP_encodings[i] =
761                 cpu_to_be32(pcc->radix_page_info->entries[i]);
762         }
763         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
764                           radix_AP_encodings,
765                           pcc->radix_page_info->count *
766                           sizeof(radix_AP_encodings[0]))));
767     }
768 
769     /*
770      * We set this property to let the guest know that it can use the large
771      * decrementer and its width in bits.
772      */
773     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
774         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
775                               pcc->lrg_decr_bits)));
776 }
777 
778 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
779 {
780     CPUState **rev;
781     CPUState *cs;
782     int n_cpus;
783     int cpus_offset;
784     int i;
785 
786     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
787     _FDT(cpus_offset);
788     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
789     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
790 
791     /*
792      * We walk the CPUs in reverse order to ensure that CPU DT nodes
793      * created by fdt_add_subnode() end up in the right order in FDT
794      * for the guest kernel the enumerate the CPUs correctly.
795      *
796      * The CPU list cannot be traversed in reverse order, so we need
797      * to do extra work.
798      */
799     n_cpus = 0;
800     rev = NULL;
801     CPU_FOREACH(cs) {
802         rev = g_renew(CPUState *, rev, n_cpus + 1);
803         rev[n_cpus++] = cs;
804     }
805 
806     for (i = n_cpus - 1; i >= 0; i--) {
807         CPUState *cs = rev[i];
808         PowerPCCPU *cpu = POWERPC_CPU(cs);
809         int index = spapr_get_vcpu_id(cpu);
810         DeviceClass *dc = DEVICE_GET_CLASS(cs);
811         g_autofree char *nodename = NULL;
812         int offset;
813 
814         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
815             continue;
816         }
817 
818         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
819         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
820         _FDT(offset);
821         spapr_dt_cpu(cs, fdt, offset, spapr);
822     }
823 
824     g_free(rev);
825 }
826 
827 static int spapr_dt_rng(void *fdt)
828 {
829     int node;
830     int ret;
831 
832     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
833     if (node <= 0) {
834         return -1;
835     }
836     ret = fdt_setprop_string(fdt, node, "device_type",
837                              "ibm,platform-facilities");
838     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
839     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
840 
841     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
842     if (node <= 0) {
843         return -1;
844     }
845     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
846 
847     return ret ? -1 : 0;
848 }
849 
850 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
851 {
852     MachineState *ms = MACHINE(spapr);
853     int rtas;
854     GString *hypertas = g_string_sized_new(256);
855     GString *qemu_hypertas = g_string_sized_new(256);
856     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
857         memory_region_size(&MACHINE(spapr)->device_memory->mr);
858     uint32_t lrdr_capacity[] = {
859         cpu_to_be32(max_device_addr >> 32),
860         cpu_to_be32(max_device_addr & 0xffffffff),
861         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
862         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
863         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
864     };
865 
866     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
867 
868     /* hypertas */
869     add_str(hypertas, "hcall-pft");
870     add_str(hypertas, "hcall-term");
871     add_str(hypertas, "hcall-dabr");
872     add_str(hypertas, "hcall-interrupt");
873     add_str(hypertas, "hcall-tce");
874     add_str(hypertas, "hcall-vio");
875     add_str(hypertas, "hcall-splpar");
876     add_str(hypertas, "hcall-join");
877     add_str(hypertas, "hcall-bulk");
878     add_str(hypertas, "hcall-set-mode");
879     add_str(hypertas, "hcall-sprg0");
880     add_str(hypertas, "hcall-copy");
881     add_str(hypertas, "hcall-debug");
882     add_str(hypertas, "hcall-vphn");
883     add_str(qemu_hypertas, "hcall-memop1");
884 
885     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
886         add_str(hypertas, "hcall-multi-tce");
887     }
888 
889     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
890         add_str(hypertas, "hcall-hpt-resize");
891     }
892 
893     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
894                      hypertas->str, hypertas->len));
895     g_string_free(hypertas, TRUE);
896     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
897                      qemu_hypertas->str, qemu_hypertas->len));
898     g_string_free(qemu_hypertas, TRUE);
899 
900     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
901 
902     /*
903      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
904      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
905      *
906      * The system reset requirements are driven by existing Linux and PowerVM
907      * implementation which (contrary to PAPR) saves r3 in the error log
908      * structure like machine check, so Linux expects to find the saved r3
909      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
910      * does not look at the error value).
911      *
912      * System reset interrupts are not subject to interlock like machine
913      * check, so this memory area could be corrupted if the sreset is
914      * interrupted by a machine check (or vice versa) if it was shared. To
915      * prevent this, system reset uses per-CPU areas for the sreset save
916      * area. A system reset that interrupts a system reset handler could
917      * still overwrite this area, but Linux doesn't try to recover in that
918      * case anyway.
919      *
920      * The extra 8 bytes is required because Linux's FWNMI error log check
921      * is off-by-one.
922      */
923     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
924 			  ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
925     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
926                           RTAS_ERROR_LOG_MAX));
927     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
928                           RTAS_EVENT_SCAN_RATE));
929 
930     g_assert(msi_nonbroken);
931     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
932 
933     /*
934      * According to PAPR, rtas ibm,os-term does not guarantee a return
935      * back to the guest cpu.
936      *
937      * While an additional ibm,extended-os-term property indicates
938      * that rtas call return will always occur. Set this property.
939      */
940     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
941 
942     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
943                      lrdr_capacity, sizeof(lrdr_capacity)));
944 
945     spapr_dt_rtas_tokens(fdt, rtas);
946 }
947 
948 /*
949  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
950  * and the XIVE features that the guest may request and thus the valid
951  * values for bytes 23..26 of option vector 5:
952  */
953 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
954                                           int chosen)
955 {
956     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
957 
958     char val[2 * 4] = {
959         23, 0x00, /* XICS / XIVE mode */
960         24, 0x00, /* Hash/Radix, filled in below. */
961         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
962         26, 0x40, /* Radix options: GTSE == yes. */
963     };
964 
965     if (spapr->irq->xics && spapr->irq->xive) {
966         val[1] = SPAPR_OV5_XIVE_BOTH;
967     } else if (spapr->irq->xive) {
968         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
969     } else {
970         assert(spapr->irq->xics);
971         val[1] = SPAPR_OV5_XIVE_LEGACY;
972     }
973 
974     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
975                           first_ppc_cpu->compat_pvr)) {
976         /*
977          * If we're in a pre POWER9 compat mode then the guest should
978          * do hash and use the legacy interrupt mode
979          */
980         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
981         val[3] = 0x00; /* Hash */
982     } else if (kvm_enabled()) {
983         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
984             val[3] = 0x80; /* OV5_MMU_BOTH */
985         } else if (kvmppc_has_cap_mmu_radix()) {
986             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
987         } else {
988             val[3] = 0x00; /* Hash */
989         }
990     } else {
991         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
992         val[3] = 0xC0;
993     }
994     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
995                      val, sizeof(val)));
996 }
997 
998 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
999 {
1000     MachineState *machine = MACHINE(spapr);
1001     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1002     int chosen;
1003 
1004     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1005 
1006     if (reset) {
1007         const char *boot_device = machine->boot_order;
1008         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1009         size_t cb = 0;
1010         char *bootlist = get_boot_devices_list(&cb);
1011 
1012         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1013             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1014                                     machine->kernel_cmdline));
1015         }
1016 
1017         if (spapr->initrd_size) {
1018             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1019                                   spapr->initrd_base));
1020             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1021                                   spapr->initrd_base + spapr->initrd_size));
1022         }
1023 
1024         if (spapr->kernel_size) {
1025             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1026                                   cpu_to_be64(spapr->kernel_size) };
1027 
1028             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1029                          &kprop, sizeof(kprop)));
1030             if (spapr->kernel_le) {
1031                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1032             }
1033         }
1034         if (boot_menu) {
1035             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1036         }
1037         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1038         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1039         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1040 
1041         if (cb && bootlist) {
1042             int i;
1043 
1044             for (i = 0; i < cb; i++) {
1045                 if (bootlist[i] == '\n') {
1046                     bootlist[i] = ' ';
1047                 }
1048             }
1049             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1050         }
1051 
1052         if (boot_device && strlen(boot_device)) {
1053             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1054         }
1055 
1056         if (!spapr->has_graphics && stdout_path) {
1057             /*
1058              * "linux,stdout-path" and "stdout" properties are
1059              * deprecated by linux kernel. New platforms should only
1060              * use the "stdout-path" property. Set the new property
1061              * and continue using older property to remain compatible
1062              * with the existing firmware.
1063              */
1064             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1065             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1066         }
1067 
1068         /*
1069          * We can deal with BAR reallocation just fine, advertise it
1070          * to the guest
1071          */
1072         if (smc->linux_pci_probe) {
1073             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1074         }
1075 
1076         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1077 
1078         g_free(stdout_path);
1079         g_free(bootlist);
1080     }
1081 
1082     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1083 }
1084 
1085 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1086 {
1087     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1088      * KVM to work under pHyp with some guest co-operation */
1089     int hypervisor;
1090     uint8_t hypercall[16];
1091 
1092     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1093     /* indicate KVM hypercall interface */
1094     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1095     if (kvmppc_has_cap_fixup_hcalls()) {
1096         /*
1097          * Older KVM versions with older guest kernels were broken
1098          * with the magic page, don't allow the guest to map it.
1099          */
1100         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1101                                   sizeof(hypercall))) {
1102             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1103                              hypercall, sizeof(hypercall)));
1104         }
1105     }
1106 }
1107 
1108 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1109 {
1110     MachineState *machine = MACHINE(spapr);
1111     MachineClass *mc = MACHINE_GET_CLASS(machine);
1112     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1113     uint32_t root_drc_type_mask = 0;
1114     int ret;
1115     void *fdt;
1116     SpaprPhbState *phb;
1117     char *buf;
1118 
1119     fdt = g_malloc0(space);
1120     _FDT((fdt_create_empty_tree(fdt, space)));
1121 
1122     /* Root node */
1123     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1124     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1125     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1126 
1127     /* Guest UUID & Name*/
1128     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1129     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1130     if (qemu_uuid_set) {
1131         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1132     }
1133     g_free(buf);
1134 
1135     if (qemu_get_vm_name()) {
1136         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1137                                 qemu_get_vm_name()));
1138     }
1139 
1140     /* Host Model & Serial Number */
1141     if (spapr->host_model) {
1142         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1143     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1144         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1145         g_free(buf);
1146     }
1147 
1148     if (spapr->host_serial) {
1149         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1150     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1151         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1152         g_free(buf);
1153     }
1154 
1155     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1156     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1157 
1158     /* /interrupt controller */
1159     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1160 
1161     ret = spapr_dt_memory(spapr, fdt);
1162     if (ret < 0) {
1163         error_report("couldn't setup memory nodes in fdt");
1164         exit(1);
1165     }
1166 
1167     /* /vdevice */
1168     spapr_dt_vdevice(spapr->vio_bus, fdt);
1169 
1170     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1171         ret = spapr_dt_rng(fdt);
1172         if (ret < 0) {
1173             error_report("could not set up rng device in the fdt");
1174             exit(1);
1175         }
1176     }
1177 
1178     QLIST_FOREACH(phb, &spapr->phbs, list) {
1179         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1180         if (ret < 0) {
1181             error_report("couldn't setup PCI devices in fdt");
1182             exit(1);
1183         }
1184     }
1185 
1186     spapr_dt_cpus(fdt, spapr);
1187 
1188     /* ibm,drc-indexes and friends */
1189     if (smc->dr_lmb_enabled) {
1190         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1191     }
1192     if (smc->dr_phb_enabled) {
1193         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1194     }
1195     if (mc->nvdimm_supported) {
1196         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1197     }
1198     if (root_drc_type_mask) {
1199         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1200     }
1201 
1202     if (mc->has_hotpluggable_cpus) {
1203         int offset = fdt_path_offset(fdt, "/cpus");
1204         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1205         if (ret < 0) {
1206             error_report("Couldn't set up CPU DR device tree properties");
1207             exit(1);
1208         }
1209     }
1210 
1211     /* /event-sources */
1212     spapr_dt_events(spapr, fdt);
1213 
1214     /* /rtas */
1215     spapr_dt_rtas(spapr, fdt);
1216 
1217     /* /chosen */
1218     spapr_dt_chosen(spapr, fdt, reset);
1219 
1220     /* /hypervisor */
1221     if (kvm_enabled()) {
1222         spapr_dt_hypervisor(spapr, fdt);
1223     }
1224 
1225     /* Build memory reserve map */
1226     if (reset) {
1227         if (spapr->kernel_size) {
1228             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1229                                   spapr->kernel_size)));
1230         }
1231         if (spapr->initrd_size) {
1232             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1233                                   spapr->initrd_size)));
1234         }
1235     }
1236 
1237     /* NVDIMM devices */
1238     if (mc->nvdimm_supported) {
1239         spapr_dt_persistent_memory(spapr, fdt);
1240     }
1241 
1242     return fdt;
1243 }
1244 
1245 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1246 {
1247     SpaprMachineState *spapr = opaque;
1248 
1249     return (addr & 0x0fffffff) + spapr->kernel_addr;
1250 }
1251 
1252 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1253                                     PowerPCCPU *cpu)
1254 {
1255     CPUPPCState *env = &cpu->env;
1256 
1257     /* The TCG path should also be holding the BQL at this point */
1258     g_assert(qemu_mutex_iothread_locked());
1259 
1260     if (msr_pr) {
1261         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1262         env->gpr[3] = H_PRIVILEGE;
1263     } else {
1264         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1265     }
1266 }
1267 
1268 struct LPCRSyncState {
1269     target_ulong value;
1270     target_ulong mask;
1271 };
1272 
1273 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1274 {
1275     struct LPCRSyncState *s = arg.host_ptr;
1276     PowerPCCPU *cpu = POWERPC_CPU(cs);
1277     CPUPPCState *env = &cpu->env;
1278     target_ulong lpcr;
1279 
1280     cpu_synchronize_state(cs);
1281     lpcr = env->spr[SPR_LPCR];
1282     lpcr &= ~s->mask;
1283     lpcr |= s->value;
1284     ppc_store_lpcr(cpu, lpcr);
1285 }
1286 
1287 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1288 {
1289     CPUState *cs;
1290     struct LPCRSyncState s = {
1291         .value = value,
1292         .mask = mask
1293     };
1294     CPU_FOREACH(cs) {
1295         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1296     }
1297 }
1298 
1299 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1300 {
1301     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1302 
1303     /* Copy PATE1:GR into PATE0:HR */
1304     entry->dw0 = spapr->patb_entry & PATE0_HR;
1305     entry->dw1 = spapr->patb_entry;
1306 }
1307 
1308 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1309 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1310 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1311 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1312 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1313 
1314 /*
1315  * Get the fd to access the kernel htab, re-opening it if necessary
1316  */
1317 static int get_htab_fd(SpaprMachineState *spapr)
1318 {
1319     Error *local_err = NULL;
1320 
1321     if (spapr->htab_fd >= 0) {
1322         return spapr->htab_fd;
1323     }
1324 
1325     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1326     if (spapr->htab_fd < 0) {
1327         error_report_err(local_err);
1328     }
1329 
1330     return spapr->htab_fd;
1331 }
1332 
1333 void close_htab_fd(SpaprMachineState *spapr)
1334 {
1335     if (spapr->htab_fd >= 0) {
1336         close(spapr->htab_fd);
1337     }
1338     spapr->htab_fd = -1;
1339 }
1340 
1341 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1342 {
1343     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1344 
1345     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1346 }
1347 
1348 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1349 {
1350     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1351 
1352     assert(kvm_enabled());
1353 
1354     if (!spapr->htab) {
1355         return 0;
1356     }
1357 
1358     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1359 }
1360 
1361 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1362                                                 hwaddr ptex, int n)
1363 {
1364     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1365     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1366 
1367     if (!spapr->htab) {
1368         /*
1369          * HTAB is controlled by KVM. Fetch into temporary buffer
1370          */
1371         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1372         kvmppc_read_hptes(hptes, ptex, n);
1373         return hptes;
1374     }
1375 
1376     /*
1377      * HTAB is controlled by QEMU. Just point to the internally
1378      * accessible PTEG.
1379      */
1380     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1381 }
1382 
1383 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1384                               const ppc_hash_pte64_t *hptes,
1385                               hwaddr ptex, int n)
1386 {
1387     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1388 
1389     if (!spapr->htab) {
1390         g_free((void *)hptes);
1391     }
1392 
1393     /* Nothing to do for qemu managed HPT */
1394 }
1395 
1396 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1397                       uint64_t pte0, uint64_t pte1)
1398 {
1399     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1400     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1401 
1402     if (!spapr->htab) {
1403         kvmppc_write_hpte(ptex, pte0, pte1);
1404     } else {
1405         if (pte0 & HPTE64_V_VALID) {
1406             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1407             /*
1408              * When setting valid, we write PTE1 first. This ensures
1409              * proper synchronization with the reading code in
1410              * ppc_hash64_pteg_search()
1411              */
1412             smp_wmb();
1413             stq_p(spapr->htab + offset, pte0);
1414         } else {
1415             stq_p(spapr->htab + offset, pte0);
1416             /*
1417              * When clearing it we set PTE0 first. This ensures proper
1418              * synchronization with the reading code in
1419              * ppc_hash64_pteg_search()
1420              */
1421             smp_wmb();
1422             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1423         }
1424     }
1425 }
1426 
1427 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1428                              uint64_t pte1)
1429 {
1430     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1431     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1432 
1433     if (!spapr->htab) {
1434         /* There should always be a hash table when this is called */
1435         error_report("spapr_hpte_set_c called with no hash table !");
1436         return;
1437     }
1438 
1439     /* The HW performs a non-atomic byte update */
1440     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1441 }
1442 
1443 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1444                              uint64_t pte1)
1445 {
1446     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1447     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1448 
1449     if (!spapr->htab) {
1450         /* There should always be a hash table when this is called */
1451         error_report("spapr_hpte_set_r called with no hash table !");
1452         return;
1453     }
1454 
1455     /* The HW performs a non-atomic byte update */
1456     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1457 }
1458 
1459 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1460 {
1461     int shift;
1462 
1463     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1464      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1465      * that's much more than is needed for Linux guests */
1466     shift = ctz64(pow2ceil(ramsize)) - 7;
1467     shift = MAX(shift, 18); /* Minimum architected size */
1468     shift = MIN(shift, 46); /* Maximum architected size */
1469     return shift;
1470 }
1471 
1472 void spapr_free_hpt(SpaprMachineState *spapr)
1473 {
1474     g_free(spapr->htab);
1475     spapr->htab = NULL;
1476     spapr->htab_shift = 0;
1477     close_htab_fd(spapr);
1478 }
1479 
1480 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1481 {
1482     ERRP_GUARD();
1483     long rc;
1484 
1485     /* Clean up any HPT info from a previous boot */
1486     spapr_free_hpt(spapr);
1487 
1488     rc = kvmppc_reset_htab(shift);
1489 
1490     if (rc == -EOPNOTSUPP) {
1491         error_setg(errp, "HPT not supported in nested guests");
1492         return -EOPNOTSUPP;
1493     }
1494 
1495     if (rc < 0) {
1496         /* kernel-side HPT needed, but couldn't allocate one */
1497         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1498                          shift);
1499         error_append_hint(errp, "Try smaller maxmem?\n");
1500         return -errno;
1501     } else if (rc > 0) {
1502         /* kernel-side HPT allocated */
1503         if (rc != shift) {
1504             error_setg(errp,
1505                        "Requested order %d HPT, but kernel allocated order %ld",
1506                        shift, rc);
1507             error_append_hint(errp, "Try smaller maxmem?\n");
1508             return -ENOSPC;
1509         }
1510 
1511         spapr->htab_shift = shift;
1512         spapr->htab = NULL;
1513     } else {
1514         /* kernel-side HPT not needed, allocate in userspace instead */
1515         size_t size = 1ULL << shift;
1516         int i;
1517 
1518         spapr->htab = qemu_memalign(size, size);
1519         memset(spapr->htab, 0, size);
1520         spapr->htab_shift = shift;
1521 
1522         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1523             DIRTY_HPTE(HPTE(spapr->htab, i));
1524         }
1525     }
1526     /* We're setting up a hash table, so that means we're not radix */
1527     spapr->patb_entry = 0;
1528     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1529     return 0;
1530 }
1531 
1532 void spapr_setup_hpt(SpaprMachineState *spapr)
1533 {
1534     int hpt_shift;
1535 
1536     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1537         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1538     } else {
1539         uint64_t current_ram_size;
1540 
1541         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1542         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1543     }
1544     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1545 
1546     if (kvm_enabled()) {
1547         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1548 
1549         /* Check our RMA fits in the possible VRMA */
1550         if (vrma_limit < spapr->rma_size) {
1551             error_report("Unable to create %" HWADDR_PRIu
1552                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1553                          spapr->rma_size / MiB, vrma_limit / MiB);
1554             exit(EXIT_FAILURE);
1555         }
1556     }
1557 }
1558 
1559 void spapr_check_mmu_mode(bool guest_radix)
1560 {
1561     if (guest_radix) {
1562         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1563             error_report("Guest requested unavailable MMU mode (radix).");
1564             exit(EXIT_FAILURE);
1565         }
1566     } else {
1567         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1568             && !kvmppc_has_cap_mmu_hash_v3()) {
1569             error_report("Guest requested unavailable MMU mode (hash).");
1570             exit(EXIT_FAILURE);
1571         }
1572     }
1573 }
1574 
1575 static void spapr_machine_reset(MachineState *machine)
1576 {
1577     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1578     PowerPCCPU *first_ppc_cpu;
1579     hwaddr fdt_addr;
1580     void *fdt;
1581     int rc;
1582 
1583     pef_kvm_reset(machine->cgs, &error_fatal);
1584     spapr_caps_apply(spapr);
1585 
1586     first_ppc_cpu = POWERPC_CPU(first_cpu);
1587     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1588         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1589                               spapr->max_compat_pvr)) {
1590         /*
1591          * If using KVM with radix mode available, VCPUs can be started
1592          * without a HPT because KVM will start them in radix mode.
1593          * Set the GR bit in PATE so that we know there is no HPT.
1594          */
1595         spapr->patb_entry = PATE1_GR;
1596         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1597     } else {
1598         spapr_setup_hpt(spapr);
1599     }
1600 
1601     qemu_devices_reset();
1602 
1603     spapr_ovec_cleanup(spapr->ov5_cas);
1604     spapr->ov5_cas = spapr_ovec_new();
1605 
1606     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1607 
1608     /*
1609      * This is fixing some of the default configuration of the XIVE
1610      * devices. To be called after the reset of the machine devices.
1611      */
1612     spapr_irq_reset(spapr, &error_fatal);
1613 
1614     /*
1615      * There is no CAS under qtest. Simulate one to please the code that
1616      * depends on spapr->ov5_cas. This is especially needed to test device
1617      * unplug, so we do that before resetting the DRCs.
1618      */
1619     if (qtest_enabled()) {
1620         spapr_ovec_cleanup(spapr->ov5_cas);
1621         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1622     }
1623 
1624     /* DRC reset may cause a device to be unplugged. This will cause troubles
1625      * if this device is used by another device (eg, a running vhost backend
1626      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1627      * situations, we reset DRCs after all devices have been reset.
1628      */
1629     spapr_drc_reset_all(spapr);
1630 
1631     spapr_clear_pending_events(spapr);
1632 
1633     /*
1634      * We place the device tree just below either the top of the RMA,
1635      * or just below 2GB, whichever is lower, so that it can be
1636      * processed with 32-bit real mode code if necessary
1637      */
1638     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1639 
1640     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1641 
1642     rc = fdt_pack(fdt);
1643 
1644     /* Should only fail if we've built a corrupted tree */
1645     assert(rc == 0);
1646 
1647     /* Load the fdt */
1648     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1649     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1650     g_free(spapr->fdt_blob);
1651     spapr->fdt_size = fdt_totalsize(fdt);
1652     spapr->fdt_initial_size = spapr->fdt_size;
1653     spapr->fdt_blob = fdt;
1654 
1655     /* Set up the entry state */
1656     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1657     first_ppc_cpu->env.gpr[5] = 0;
1658 
1659     spapr->fwnmi_system_reset_addr = -1;
1660     spapr->fwnmi_machine_check_addr = -1;
1661     spapr->fwnmi_machine_check_interlock = -1;
1662 
1663     /* Signal all vCPUs waiting on this condition */
1664     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1665 
1666     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1667 }
1668 
1669 static void spapr_create_nvram(SpaprMachineState *spapr)
1670 {
1671     DeviceState *dev = qdev_new("spapr-nvram");
1672     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1673 
1674     if (dinfo) {
1675         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1676                                 &error_fatal);
1677     }
1678 
1679     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1680 
1681     spapr->nvram = (struct SpaprNvram *)dev;
1682 }
1683 
1684 static void spapr_rtc_create(SpaprMachineState *spapr)
1685 {
1686     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1687                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1688                                        &error_fatal, NULL);
1689     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1690     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1691                               "date");
1692 }
1693 
1694 /* Returns whether we want to use VGA or not */
1695 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1696 {
1697     switch (vga_interface_type) {
1698     case VGA_NONE:
1699         return false;
1700     case VGA_DEVICE:
1701         return true;
1702     case VGA_STD:
1703     case VGA_VIRTIO:
1704     case VGA_CIRRUS:
1705         return pci_vga_init(pci_bus) != NULL;
1706     default:
1707         error_setg(errp,
1708                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1709         return false;
1710     }
1711 }
1712 
1713 static int spapr_pre_load(void *opaque)
1714 {
1715     int rc;
1716 
1717     rc = spapr_caps_pre_load(opaque);
1718     if (rc) {
1719         return rc;
1720     }
1721 
1722     return 0;
1723 }
1724 
1725 static int spapr_post_load(void *opaque, int version_id)
1726 {
1727     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1728     int err = 0;
1729 
1730     err = spapr_caps_post_migration(spapr);
1731     if (err) {
1732         return err;
1733     }
1734 
1735     /*
1736      * In earlier versions, there was no separate qdev for the PAPR
1737      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1738      * So when migrating from those versions, poke the incoming offset
1739      * value into the RTC device
1740      */
1741     if (version_id < 3) {
1742         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1743         if (err) {
1744             return err;
1745         }
1746     }
1747 
1748     if (kvm_enabled() && spapr->patb_entry) {
1749         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1750         bool radix = !!(spapr->patb_entry & PATE1_GR);
1751         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1752 
1753         /*
1754          * Update LPCR:HR and UPRT as they may not be set properly in
1755          * the stream
1756          */
1757         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1758                             LPCR_HR | LPCR_UPRT);
1759 
1760         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1761         if (err) {
1762             error_report("Process table config unsupported by the host");
1763             return -EINVAL;
1764         }
1765     }
1766 
1767     err = spapr_irq_post_load(spapr, version_id);
1768     if (err) {
1769         return err;
1770     }
1771 
1772     return err;
1773 }
1774 
1775 static int spapr_pre_save(void *opaque)
1776 {
1777     int rc;
1778 
1779     rc = spapr_caps_pre_save(opaque);
1780     if (rc) {
1781         return rc;
1782     }
1783 
1784     return 0;
1785 }
1786 
1787 static bool version_before_3(void *opaque, int version_id)
1788 {
1789     return version_id < 3;
1790 }
1791 
1792 static bool spapr_pending_events_needed(void *opaque)
1793 {
1794     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1795     return !QTAILQ_EMPTY(&spapr->pending_events);
1796 }
1797 
1798 static const VMStateDescription vmstate_spapr_event_entry = {
1799     .name = "spapr_event_log_entry",
1800     .version_id = 1,
1801     .minimum_version_id = 1,
1802     .fields = (VMStateField[]) {
1803         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1804         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1805         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1806                                      NULL, extended_length),
1807         VMSTATE_END_OF_LIST()
1808     },
1809 };
1810 
1811 static const VMStateDescription vmstate_spapr_pending_events = {
1812     .name = "spapr_pending_events",
1813     .version_id = 1,
1814     .minimum_version_id = 1,
1815     .needed = spapr_pending_events_needed,
1816     .fields = (VMStateField[]) {
1817         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1818                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1819         VMSTATE_END_OF_LIST()
1820     },
1821 };
1822 
1823 static bool spapr_ov5_cas_needed(void *opaque)
1824 {
1825     SpaprMachineState *spapr = opaque;
1826     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1827     bool cas_needed;
1828 
1829     /* Prior to the introduction of SpaprOptionVector, we had two option
1830      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1831      * Both of these options encode machine topology into the device-tree
1832      * in such a way that the now-booted OS should still be able to interact
1833      * appropriately with QEMU regardless of what options were actually
1834      * negotiatied on the source side.
1835      *
1836      * As such, we can avoid migrating the CAS-negotiated options if these
1837      * are the only options available on the current machine/platform.
1838      * Since these are the only options available for pseries-2.7 and
1839      * earlier, this allows us to maintain old->new/new->old migration
1840      * compatibility.
1841      *
1842      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1843      * via default pseries-2.8 machines and explicit command-line parameters.
1844      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1845      * of the actual CAS-negotiated values to continue working properly. For
1846      * example, availability of memory unplug depends on knowing whether
1847      * OV5_HP_EVT was negotiated via CAS.
1848      *
1849      * Thus, for any cases where the set of available CAS-negotiatable
1850      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1851      * include the CAS-negotiated options in the migration stream, unless
1852      * if they affect boot time behaviour only.
1853      */
1854     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1855     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1856     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1857 
1858     /* We need extra information if we have any bits outside the mask
1859      * defined above */
1860     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1861 
1862     spapr_ovec_cleanup(ov5_mask);
1863 
1864     return cas_needed;
1865 }
1866 
1867 static const VMStateDescription vmstate_spapr_ov5_cas = {
1868     .name = "spapr_option_vector_ov5_cas",
1869     .version_id = 1,
1870     .minimum_version_id = 1,
1871     .needed = spapr_ov5_cas_needed,
1872     .fields = (VMStateField[]) {
1873         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1874                                  vmstate_spapr_ovec, SpaprOptionVector),
1875         VMSTATE_END_OF_LIST()
1876     },
1877 };
1878 
1879 static bool spapr_patb_entry_needed(void *opaque)
1880 {
1881     SpaprMachineState *spapr = opaque;
1882 
1883     return !!spapr->patb_entry;
1884 }
1885 
1886 static const VMStateDescription vmstate_spapr_patb_entry = {
1887     .name = "spapr_patb_entry",
1888     .version_id = 1,
1889     .minimum_version_id = 1,
1890     .needed = spapr_patb_entry_needed,
1891     .fields = (VMStateField[]) {
1892         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1893         VMSTATE_END_OF_LIST()
1894     },
1895 };
1896 
1897 static bool spapr_irq_map_needed(void *opaque)
1898 {
1899     SpaprMachineState *spapr = opaque;
1900 
1901     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1902 }
1903 
1904 static const VMStateDescription vmstate_spapr_irq_map = {
1905     .name = "spapr_irq_map",
1906     .version_id = 1,
1907     .minimum_version_id = 1,
1908     .needed = spapr_irq_map_needed,
1909     .fields = (VMStateField[]) {
1910         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1911         VMSTATE_END_OF_LIST()
1912     },
1913 };
1914 
1915 static bool spapr_dtb_needed(void *opaque)
1916 {
1917     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1918 
1919     return smc->update_dt_enabled;
1920 }
1921 
1922 static int spapr_dtb_pre_load(void *opaque)
1923 {
1924     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1925 
1926     g_free(spapr->fdt_blob);
1927     spapr->fdt_blob = NULL;
1928     spapr->fdt_size = 0;
1929 
1930     return 0;
1931 }
1932 
1933 static const VMStateDescription vmstate_spapr_dtb = {
1934     .name = "spapr_dtb",
1935     .version_id = 1,
1936     .minimum_version_id = 1,
1937     .needed = spapr_dtb_needed,
1938     .pre_load = spapr_dtb_pre_load,
1939     .fields = (VMStateField[]) {
1940         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1941         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1942         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1943                                      fdt_size),
1944         VMSTATE_END_OF_LIST()
1945     },
1946 };
1947 
1948 static bool spapr_fwnmi_needed(void *opaque)
1949 {
1950     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1951 
1952     return spapr->fwnmi_machine_check_addr != -1;
1953 }
1954 
1955 static int spapr_fwnmi_pre_save(void *opaque)
1956 {
1957     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1958 
1959     /*
1960      * Check if machine check handling is in progress and print a
1961      * warning message.
1962      */
1963     if (spapr->fwnmi_machine_check_interlock != -1) {
1964         warn_report("A machine check is being handled during migration. The"
1965                 "handler may run and log hardware error on the destination");
1966     }
1967 
1968     return 0;
1969 }
1970 
1971 static const VMStateDescription vmstate_spapr_fwnmi = {
1972     .name = "spapr_fwnmi",
1973     .version_id = 1,
1974     .minimum_version_id = 1,
1975     .needed = spapr_fwnmi_needed,
1976     .pre_save = spapr_fwnmi_pre_save,
1977     .fields = (VMStateField[]) {
1978         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1979         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1980         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1981         VMSTATE_END_OF_LIST()
1982     },
1983 };
1984 
1985 static const VMStateDescription vmstate_spapr = {
1986     .name = "spapr",
1987     .version_id = 3,
1988     .minimum_version_id = 1,
1989     .pre_load = spapr_pre_load,
1990     .post_load = spapr_post_load,
1991     .pre_save = spapr_pre_save,
1992     .fields = (VMStateField[]) {
1993         /* used to be @next_irq */
1994         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1995 
1996         /* RTC offset */
1997         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1998 
1999         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2000         VMSTATE_END_OF_LIST()
2001     },
2002     .subsections = (const VMStateDescription*[]) {
2003         &vmstate_spapr_ov5_cas,
2004         &vmstate_spapr_patb_entry,
2005         &vmstate_spapr_pending_events,
2006         &vmstate_spapr_cap_htm,
2007         &vmstate_spapr_cap_vsx,
2008         &vmstate_spapr_cap_dfp,
2009         &vmstate_spapr_cap_cfpc,
2010         &vmstate_spapr_cap_sbbc,
2011         &vmstate_spapr_cap_ibs,
2012         &vmstate_spapr_cap_hpt_maxpagesize,
2013         &vmstate_spapr_irq_map,
2014         &vmstate_spapr_cap_nested_kvm_hv,
2015         &vmstate_spapr_dtb,
2016         &vmstate_spapr_cap_large_decr,
2017         &vmstate_spapr_cap_ccf_assist,
2018         &vmstate_spapr_cap_fwnmi,
2019         &vmstate_spapr_fwnmi,
2020         NULL
2021     }
2022 };
2023 
2024 static int htab_save_setup(QEMUFile *f, void *opaque)
2025 {
2026     SpaprMachineState *spapr = opaque;
2027 
2028     /* "Iteration" header */
2029     if (!spapr->htab_shift) {
2030         qemu_put_be32(f, -1);
2031     } else {
2032         qemu_put_be32(f, spapr->htab_shift);
2033     }
2034 
2035     if (spapr->htab) {
2036         spapr->htab_save_index = 0;
2037         spapr->htab_first_pass = true;
2038     } else {
2039         if (spapr->htab_shift) {
2040             assert(kvm_enabled());
2041         }
2042     }
2043 
2044 
2045     return 0;
2046 }
2047 
2048 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2049                             int chunkstart, int n_valid, int n_invalid)
2050 {
2051     qemu_put_be32(f, chunkstart);
2052     qemu_put_be16(f, n_valid);
2053     qemu_put_be16(f, n_invalid);
2054     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2055                     HASH_PTE_SIZE_64 * n_valid);
2056 }
2057 
2058 static void htab_save_end_marker(QEMUFile *f)
2059 {
2060     qemu_put_be32(f, 0);
2061     qemu_put_be16(f, 0);
2062     qemu_put_be16(f, 0);
2063 }
2064 
2065 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2066                                  int64_t max_ns)
2067 {
2068     bool has_timeout = max_ns != -1;
2069     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2070     int index = spapr->htab_save_index;
2071     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2072 
2073     assert(spapr->htab_first_pass);
2074 
2075     do {
2076         int chunkstart;
2077 
2078         /* Consume invalid HPTEs */
2079         while ((index < htabslots)
2080                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2081             CLEAN_HPTE(HPTE(spapr->htab, index));
2082             index++;
2083         }
2084 
2085         /* Consume valid HPTEs */
2086         chunkstart = index;
2087         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2088                && HPTE_VALID(HPTE(spapr->htab, index))) {
2089             CLEAN_HPTE(HPTE(spapr->htab, index));
2090             index++;
2091         }
2092 
2093         if (index > chunkstart) {
2094             int n_valid = index - chunkstart;
2095 
2096             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2097 
2098             if (has_timeout &&
2099                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2100                 break;
2101             }
2102         }
2103     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2104 
2105     if (index >= htabslots) {
2106         assert(index == htabslots);
2107         index = 0;
2108         spapr->htab_first_pass = false;
2109     }
2110     spapr->htab_save_index = index;
2111 }
2112 
2113 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2114                                 int64_t max_ns)
2115 {
2116     bool final = max_ns < 0;
2117     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2118     int examined = 0, sent = 0;
2119     int index = spapr->htab_save_index;
2120     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2121 
2122     assert(!spapr->htab_first_pass);
2123 
2124     do {
2125         int chunkstart, invalidstart;
2126 
2127         /* Consume non-dirty HPTEs */
2128         while ((index < htabslots)
2129                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2130             index++;
2131             examined++;
2132         }
2133 
2134         chunkstart = index;
2135         /* Consume valid dirty HPTEs */
2136         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2137                && HPTE_DIRTY(HPTE(spapr->htab, index))
2138                && HPTE_VALID(HPTE(spapr->htab, index))) {
2139             CLEAN_HPTE(HPTE(spapr->htab, index));
2140             index++;
2141             examined++;
2142         }
2143 
2144         invalidstart = index;
2145         /* Consume invalid dirty HPTEs */
2146         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2147                && HPTE_DIRTY(HPTE(spapr->htab, index))
2148                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2149             CLEAN_HPTE(HPTE(spapr->htab, index));
2150             index++;
2151             examined++;
2152         }
2153 
2154         if (index > chunkstart) {
2155             int n_valid = invalidstart - chunkstart;
2156             int n_invalid = index - invalidstart;
2157 
2158             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2159             sent += index - chunkstart;
2160 
2161             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2162                 break;
2163             }
2164         }
2165 
2166         if (examined >= htabslots) {
2167             break;
2168         }
2169 
2170         if (index >= htabslots) {
2171             assert(index == htabslots);
2172             index = 0;
2173         }
2174     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2175 
2176     if (index >= htabslots) {
2177         assert(index == htabslots);
2178         index = 0;
2179     }
2180 
2181     spapr->htab_save_index = index;
2182 
2183     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2184 }
2185 
2186 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2187 #define MAX_KVM_BUF_SIZE    2048
2188 
2189 static int htab_save_iterate(QEMUFile *f, void *opaque)
2190 {
2191     SpaprMachineState *spapr = opaque;
2192     int fd;
2193     int rc = 0;
2194 
2195     /* Iteration header */
2196     if (!spapr->htab_shift) {
2197         qemu_put_be32(f, -1);
2198         return 1;
2199     } else {
2200         qemu_put_be32(f, 0);
2201     }
2202 
2203     if (!spapr->htab) {
2204         assert(kvm_enabled());
2205 
2206         fd = get_htab_fd(spapr);
2207         if (fd < 0) {
2208             return fd;
2209         }
2210 
2211         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2212         if (rc < 0) {
2213             return rc;
2214         }
2215     } else  if (spapr->htab_first_pass) {
2216         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2217     } else {
2218         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2219     }
2220 
2221     htab_save_end_marker(f);
2222 
2223     return rc;
2224 }
2225 
2226 static int htab_save_complete(QEMUFile *f, void *opaque)
2227 {
2228     SpaprMachineState *spapr = opaque;
2229     int fd;
2230 
2231     /* Iteration header */
2232     if (!spapr->htab_shift) {
2233         qemu_put_be32(f, -1);
2234         return 0;
2235     } else {
2236         qemu_put_be32(f, 0);
2237     }
2238 
2239     if (!spapr->htab) {
2240         int rc;
2241 
2242         assert(kvm_enabled());
2243 
2244         fd = get_htab_fd(spapr);
2245         if (fd < 0) {
2246             return fd;
2247         }
2248 
2249         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2250         if (rc < 0) {
2251             return rc;
2252         }
2253     } else {
2254         if (spapr->htab_first_pass) {
2255             htab_save_first_pass(f, spapr, -1);
2256         }
2257         htab_save_later_pass(f, spapr, -1);
2258     }
2259 
2260     /* End marker */
2261     htab_save_end_marker(f);
2262 
2263     return 0;
2264 }
2265 
2266 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2267 {
2268     SpaprMachineState *spapr = opaque;
2269     uint32_t section_hdr;
2270     int fd = -1;
2271     Error *local_err = NULL;
2272 
2273     if (version_id < 1 || version_id > 1) {
2274         error_report("htab_load() bad version");
2275         return -EINVAL;
2276     }
2277 
2278     section_hdr = qemu_get_be32(f);
2279 
2280     if (section_hdr == -1) {
2281         spapr_free_hpt(spapr);
2282         return 0;
2283     }
2284 
2285     if (section_hdr) {
2286         int ret;
2287 
2288         /* First section gives the htab size */
2289         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2290         if (ret < 0) {
2291             error_report_err(local_err);
2292             return ret;
2293         }
2294         return 0;
2295     }
2296 
2297     if (!spapr->htab) {
2298         assert(kvm_enabled());
2299 
2300         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2301         if (fd < 0) {
2302             error_report_err(local_err);
2303             return fd;
2304         }
2305     }
2306 
2307     while (true) {
2308         uint32_t index;
2309         uint16_t n_valid, n_invalid;
2310 
2311         index = qemu_get_be32(f);
2312         n_valid = qemu_get_be16(f);
2313         n_invalid = qemu_get_be16(f);
2314 
2315         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2316             /* End of Stream */
2317             break;
2318         }
2319 
2320         if ((index + n_valid + n_invalid) >
2321             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2322             /* Bad index in stream */
2323             error_report(
2324                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2325                 index, n_valid, n_invalid, spapr->htab_shift);
2326             return -EINVAL;
2327         }
2328 
2329         if (spapr->htab) {
2330             if (n_valid) {
2331                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2332                                 HASH_PTE_SIZE_64 * n_valid);
2333             }
2334             if (n_invalid) {
2335                 memset(HPTE(spapr->htab, index + n_valid), 0,
2336                        HASH_PTE_SIZE_64 * n_invalid);
2337             }
2338         } else {
2339             int rc;
2340 
2341             assert(fd >= 0);
2342 
2343             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2344                                         &local_err);
2345             if (rc < 0) {
2346                 error_report_err(local_err);
2347                 return rc;
2348             }
2349         }
2350     }
2351 
2352     if (!spapr->htab) {
2353         assert(fd >= 0);
2354         close(fd);
2355     }
2356 
2357     return 0;
2358 }
2359 
2360 static void htab_save_cleanup(void *opaque)
2361 {
2362     SpaprMachineState *spapr = opaque;
2363 
2364     close_htab_fd(spapr);
2365 }
2366 
2367 static SaveVMHandlers savevm_htab_handlers = {
2368     .save_setup = htab_save_setup,
2369     .save_live_iterate = htab_save_iterate,
2370     .save_live_complete_precopy = htab_save_complete,
2371     .save_cleanup = htab_save_cleanup,
2372     .load_state = htab_load,
2373 };
2374 
2375 static void spapr_boot_set(void *opaque, const char *boot_device,
2376                            Error **errp)
2377 {
2378     MachineState *machine = MACHINE(opaque);
2379     machine->boot_order = g_strdup(boot_device);
2380 }
2381 
2382 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2383 {
2384     MachineState *machine = MACHINE(spapr);
2385     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2386     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2387     int i;
2388 
2389     for (i = 0; i < nr_lmbs; i++) {
2390         uint64_t addr;
2391 
2392         addr = i * lmb_size + machine->device_memory->base;
2393         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2394                                addr / lmb_size);
2395     }
2396 }
2397 
2398 /*
2399  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2400  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2401  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2402  */
2403 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2404 {
2405     int i;
2406 
2407     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2408         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2409                    " is not aligned to %" PRIu64 " MiB",
2410                    machine->ram_size,
2411                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2412         return;
2413     }
2414 
2415     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2416         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2417                    " is not aligned to %" PRIu64 " MiB",
2418                    machine->ram_size,
2419                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2420         return;
2421     }
2422 
2423     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2424         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2425             error_setg(errp,
2426                        "Node %d memory size 0x%" PRIx64
2427                        " is not aligned to %" PRIu64 " MiB",
2428                        i, machine->numa_state->nodes[i].node_mem,
2429                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2430             return;
2431         }
2432     }
2433 }
2434 
2435 /* find cpu slot in machine->possible_cpus by core_id */
2436 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2437 {
2438     int index = id / ms->smp.threads;
2439 
2440     if (index >= ms->possible_cpus->len) {
2441         return NULL;
2442     }
2443     if (idx) {
2444         *idx = index;
2445     }
2446     return &ms->possible_cpus->cpus[index];
2447 }
2448 
2449 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2450 {
2451     MachineState *ms = MACHINE(spapr);
2452     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2453     Error *local_err = NULL;
2454     bool vsmt_user = !!spapr->vsmt;
2455     int kvm_smt = kvmppc_smt_threads();
2456     int ret;
2457     unsigned int smp_threads = ms->smp.threads;
2458 
2459     if (!kvm_enabled() && (smp_threads > 1)) {
2460         error_setg(errp, "TCG cannot support more than 1 thread/core "
2461                    "on a pseries machine");
2462         return;
2463     }
2464     if (!is_power_of_2(smp_threads)) {
2465         error_setg(errp, "Cannot support %d threads/core on a pseries "
2466                    "machine because it must be a power of 2", smp_threads);
2467         return;
2468     }
2469 
2470     /* Detemine the VSMT mode to use: */
2471     if (vsmt_user) {
2472         if (spapr->vsmt < smp_threads) {
2473             error_setg(errp, "Cannot support VSMT mode %d"
2474                        " because it must be >= threads/core (%d)",
2475                        spapr->vsmt, smp_threads);
2476             return;
2477         }
2478         /* In this case, spapr->vsmt has been set by the command line */
2479     } else if (!smc->smp_threads_vsmt) {
2480         /*
2481          * Default VSMT value is tricky, because we need it to be as
2482          * consistent as possible (for migration), but this requires
2483          * changing it for at least some existing cases.  We pick 8 as
2484          * the value that we'd get with KVM on POWER8, the
2485          * overwhelmingly common case in production systems.
2486          */
2487         spapr->vsmt = MAX(8, smp_threads);
2488     } else {
2489         spapr->vsmt = smp_threads;
2490     }
2491 
2492     /* KVM: If necessary, set the SMT mode: */
2493     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2494         ret = kvmppc_set_smt_threads(spapr->vsmt);
2495         if (ret) {
2496             /* Looks like KVM isn't able to change VSMT mode */
2497             error_setg(&local_err,
2498                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2499                        spapr->vsmt, ret);
2500             /* We can live with that if the default one is big enough
2501              * for the number of threads, and a submultiple of the one
2502              * we want.  In this case we'll waste some vcpu ids, but
2503              * behaviour will be correct */
2504             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2505                 warn_report_err(local_err);
2506             } else {
2507                 if (!vsmt_user) {
2508                     error_append_hint(&local_err,
2509                                       "On PPC, a VM with %d threads/core"
2510                                       " on a host with %d threads/core"
2511                                       " requires the use of VSMT mode %d.\n",
2512                                       smp_threads, kvm_smt, spapr->vsmt);
2513                 }
2514                 kvmppc_error_append_smt_possible_hint(&local_err);
2515                 error_propagate(errp, local_err);
2516             }
2517         }
2518     }
2519     /* else TCG: nothing to do currently */
2520 }
2521 
2522 static void spapr_init_cpus(SpaprMachineState *spapr)
2523 {
2524     MachineState *machine = MACHINE(spapr);
2525     MachineClass *mc = MACHINE_GET_CLASS(machine);
2526     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2527     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2528     const CPUArchIdList *possible_cpus;
2529     unsigned int smp_cpus = machine->smp.cpus;
2530     unsigned int smp_threads = machine->smp.threads;
2531     unsigned int max_cpus = machine->smp.max_cpus;
2532     int boot_cores_nr = smp_cpus / smp_threads;
2533     int i;
2534 
2535     possible_cpus = mc->possible_cpu_arch_ids(machine);
2536     if (mc->has_hotpluggable_cpus) {
2537         if (smp_cpus % smp_threads) {
2538             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2539                          smp_cpus, smp_threads);
2540             exit(1);
2541         }
2542         if (max_cpus % smp_threads) {
2543             error_report("max_cpus (%u) must be multiple of threads (%u)",
2544                          max_cpus, smp_threads);
2545             exit(1);
2546         }
2547     } else {
2548         if (max_cpus != smp_cpus) {
2549             error_report("This machine version does not support CPU hotplug");
2550             exit(1);
2551         }
2552         boot_cores_nr = possible_cpus->len;
2553     }
2554 
2555     if (smc->pre_2_10_has_unused_icps) {
2556         int i;
2557 
2558         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2559             /* Dummy entries get deregistered when real ICPState objects
2560              * are registered during CPU core hotplug.
2561              */
2562             pre_2_10_vmstate_register_dummy_icp(i);
2563         }
2564     }
2565 
2566     for (i = 0; i < possible_cpus->len; i++) {
2567         int core_id = i * smp_threads;
2568 
2569         if (mc->has_hotpluggable_cpus) {
2570             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2571                                    spapr_vcpu_id(spapr, core_id));
2572         }
2573 
2574         if (i < boot_cores_nr) {
2575             Object *core  = object_new(type);
2576             int nr_threads = smp_threads;
2577 
2578             /* Handle the partially filled core for older machine types */
2579             if ((i + 1) * smp_threads >= smp_cpus) {
2580                 nr_threads = smp_cpus - i * smp_threads;
2581             }
2582 
2583             object_property_set_int(core, "nr-threads", nr_threads,
2584                                     &error_fatal);
2585             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2586                                     &error_fatal);
2587             qdev_realize(DEVICE(core), NULL, &error_fatal);
2588 
2589             object_unref(core);
2590         }
2591     }
2592 }
2593 
2594 static PCIHostState *spapr_create_default_phb(void)
2595 {
2596     DeviceState *dev;
2597 
2598     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2599     qdev_prop_set_uint32(dev, "index", 0);
2600     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2601 
2602     return PCI_HOST_BRIDGE(dev);
2603 }
2604 
2605 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2606 {
2607     MachineState *machine = MACHINE(spapr);
2608     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2609     hwaddr rma_size = machine->ram_size;
2610     hwaddr node0_size = spapr_node0_size(machine);
2611 
2612     /* RMA has to fit in the first NUMA node */
2613     rma_size = MIN(rma_size, node0_size);
2614 
2615     /*
2616      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2617      * never exceed that
2618      */
2619     rma_size = MIN(rma_size, 1 * TiB);
2620 
2621     /*
2622      * Clamp the RMA size based on machine type.  This is for
2623      * migration compatibility with older qemu versions, which limited
2624      * the RMA size for complicated and mostly bad reasons.
2625      */
2626     if (smc->rma_limit) {
2627         rma_size = MIN(rma_size, smc->rma_limit);
2628     }
2629 
2630     if (rma_size < MIN_RMA_SLOF) {
2631         error_setg(errp,
2632                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2633                    "ldMiB guest RMA (Real Mode Area memory)",
2634                    MIN_RMA_SLOF / MiB);
2635         return 0;
2636     }
2637 
2638     return rma_size;
2639 }
2640 
2641 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2642 {
2643     MachineState *machine = MACHINE(spapr);
2644     int i;
2645 
2646     for (i = 0; i < machine->ram_slots; i++) {
2647         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2648     }
2649 }
2650 
2651 /* pSeries LPAR / sPAPR hardware init */
2652 static void spapr_machine_init(MachineState *machine)
2653 {
2654     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2655     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2656     MachineClass *mc = MACHINE_GET_CLASS(machine);
2657     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
2658     const char *kernel_filename = machine->kernel_filename;
2659     const char *initrd_filename = machine->initrd_filename;
2660     PCIHostState *phb;
2661     int i;
2662     MemoryRegion *sysmem = get_system_memory();
2663     long load_limit, fw_size;
2664     char *filename;
2665     Error *resize_hpt_err = NULL;
2666 
2667     /*
2668      * if Secure VM (PEF) support is configured, then initialize it
2669      */
2670     pef_kvm_init(machine->cgs, &error_fatal);
2671 
2672     msi_nonbroken = true;
2673 
2674     QLIST_INIT(&spapr->phbs);
2675     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2676 
2677     /* Determine capabilities to run with */
2678     spapr_caps_init(spapr);
2679 
2680     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2681     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2682         /*
2683          * If the user explicitly requested a mode we should either
2684          * supply it, or fail completely (which we do below).  But if
2685          * it's not set explicitly, we reset our mode to something
2686          * that works
2687          */
2688         if (resize_hpt_err) {
2689             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2690             error_free(resize_hpt_err);
2691             resize_hpt_err = NULL;
2692         } else {
2693             spapr->resize_hpt = smc->resize_hpt_default;
2694         }
2695     }
2696 
2697     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2698 
2699     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2700         /*
2701          * User requested HPT resize, but this host can't supply it.  Bail out
2702          */
2703         error_report_err(resize_hpt_err);
2704         exit(1);
2705     }
2706     error_free(resize_hpt_err);
2707 
2708     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2709 
2710     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2711     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2712 
2713     /*
2714      * VSMT must be set in order to be able to compute VCPU ids, ie to
2715      * call spapr_max_server_number() or spapr_vcpu_id().
2716      */
2717     spapr_set_vsmt_mode(spapr, &error_fatal);
2718 
2719     /* Set up Interrupt Controller before we create the VCPUs */
2720     spapr_irq_init(spapr, &error_fatal);
2721 
2722     /* Set up containers for ibm,client-architecture-support negotiated options
2723      */
2724     spapr->ov5 = spapr_ovec_new();
2725     spapr->ov5_cas = spapr_ovec_new();
2726 
2727     if (smc->dr_lmb_enabled) {
2728         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2729         spapr_validate_node_memory(machine, &error_fatal);
2730     }
2731 
2732     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2733 
2734     /* advertise support for dedicated HP event source to guests */
2735     if (spapr->use_hotplug_event_source) {
2736         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2737     }
2738 
2739     /* advertise support for HPT resizing */
2740     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2741         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2742     }
2743 
2744     /* advertise support for ibm,dyamic-memory-v2 */
2745     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2746 
2747     /* advertise XIVE on POWER9 machines */
2748     if (spapr->irq->xive) {
2749         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2750     }
2751 
2752     /* init CPUs */
2753     spapr_init_cpus(spapr);
2754 
2755     /*
2756      * check we don't have a memory-less/cpu-less NUMA node
2757      * Firmware relies on the existing memory/cpu topology to provide the
2758      * NUMA topology to the kernel.
2759      * And the linux kernel needs to know the NUMA topology at start
2760      * to be able to hotplug CPUs later.
2761      */
2762     if (machine->numa_state->num_nodes) {
2763         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2764             /* check for memory-less node */
2765             if (machine->numa_state->nodes[i].node_mem == 0) {
2766                 CPUState *cs;
2767                 int found = 0;
2768                 /* check for cpu-less node */
2769                 CPU_FOREACH(cs) {
2770                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2771                     if (cpu->node_id == i) {
2772                         found = 1;
2773                         break;
2774                     }
2775                 }
2776                 /* memory-less and cpu-less node */
2777                 if (!found) {
2778                     error_report(
2779                        "Memory-less/cpu-less nodes are not supported (node %d)",
2780                                  i);
2781                     exit(1);
2782                 }
2783             }
2784         }
2785 
2786     }
2787 
2788     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2789 
2790     /* Init numa_assoc_array */
2791     spapr_numa_associativity_init(spapr, machine);
2792 
2793     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2794         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2795                               spapr->max_compat_pvr)) {
2796         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2797         /* KVM and TCG always allow GTSE with radix... */
2798         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2799     }
2800     /* ... but not with hash (currently). */
2801 
2802     if (kvm_enabled()) {
2803         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2804         kvmppc_enable_logical_ci_hcalls();
2805         kvmppc_enable_set_mode_hcall();
2806 
2807         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2808         kvmppc_enable_clear_ref_mod_hcalls();
2809 
2810         /* Enable H_PAGE_INIT */
2811         kvmppc_enable_h_page_init();
2812     }
2813 
2814     /* map RAM */
2815     memory_region_add_subregion(sysmem, 0, machine->ram);
2816 
2817     /* always allocate the device memory information */
2818     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2819 
2820     /* initialize hotplug memory address space */
2821     if (machine->ram_size < machine->maxram_size) {
2822         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2823         /*
2824          * Limit the number of hotpluggable memory slots to half the number
2825          * slots that KVM supports, leaving the other half for PCI and other
2826          * devices. However ensure that number of slots doesn't drop below 32.
2827          */
2828         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2829                            SPAPR_MAX_RAM_SLOTS;
2830 
2831         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2832             max_memslots = SPAPR_MAX_RAM_SLOTS;
2833         }
2834         if (machine->ram_slots > max_memslots) {
2835             error_report("Specified number of memory slots %"
2836                          PRIu64" exceeds max supported %d",
2837                          machine->ram_slots, max_memslots);
2838             exit(1);
2839         }
2840 
2841         machine->device_memory->base = ROUND_UP(machine->ram_size,
2842                                                 SPAPR_DEVICE_MEM_ALIGN);
2843         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2844                            "device-memory", device_mem_size);
2845         memory_region_add_subregion(sysmem, machine->device_memory->base,
2846                                     &machine->device_memory->mr);
2847     }
2848 
2849     if (smc->dr_lmb_enabled) {
2850         spapr_create_lmb_dr_connectors(spapr);
2851     }
2852 
2853     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2854         /* Create the error string for live migration blocker */
2855         error_setg(&spapr->fwnmi_migration_blocker,
2856             "A machine check is being handled during migration. The handler"
2857             "may run and log hardware error on the destination");
2858     }
2859 
2860     if (mc->nvdimm_supported) {
2861         spapr_create_nvdimm_dr_connectors(spapr);
2862     }
2863 
2864     /* Set up RTAS event infrastructure */
2865     spapr_events_init(spapr);
2866 
2867     /* Set up the RTC RTAS interfaces */
2868     spapr_rtc_create(spapr);
2869 
2870     /* Set up VIO bus */
2871     spapr->vio_bus = spapr_vio_bus_init();
2872 
2873     for (i = 0; serial_hd(i); i++) {
2874         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2875     }
2876 
2877     /* We always have at least the nvram device on VIO */
2878     spapr_create_nvram(spapr);
2879 
2880     /*
2881      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2882      * connectors (described in root DT node's "ibm,drc-types" property)
2883      * are pre-initialized here. additional child connectors (such as
2884      * connectors for a PHBs PCI slots) are added as needed during their
2885      * parent's realization.
2886      */
2887     if (smc->dr_phb_enabled) {
2888         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2889             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2890         }
2891     }
2892 
2893     /* Set up PCI */
2894     spapr_pci_rtas_init();
2895 
2896     phb = spapr_create_default_phb();
2897 
2898     for (i = 0; i < nb_nics; i++) {
2899         NICInfo *nd = &nd_table[i];
2900 
2901         if (!nd->model) {
2902             nd->model = g_strdup("spapr-vlan");
2903         }
2904 
2905         if (g_str_equal(nd->model, "spapr-vlan") ||
2906             g_str_equal(nd->model, "ibmveth")) {
2907             spapr_vlan_create(spapr->vio_bus, nd);
2908         } else {
2909             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2910         }
2911     }
2912 
2913     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2914         spapr_vscsi_create(spapr->vio_bus);
2915     }
2916 
2917     /* Graphics */
2918     if (spapr_vga_init(phb->bus, &error_fatal)) {
2919         spapr->has_graphics = true;
2920         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2921     }
2922 
2923     if (machine->usb) {
2924         if (smc->use_ohci_by_default) {
2925             pci_create_simple(phb->bus, -1, "pci-ohci");
2926         } else {
2927             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2928         }
2929 
2930         if (spapr->has_graphics) {
2931             USBBus *usb_bus = usb_bus_find(-1);
2932 
2933             usb_create_simple(usb_bus, "usb-kbd");
2934             usb_create_simple(usb_bus, "usb-mouse");
2935         }
2936     }
2937 
2938     if (kernel_filename) {
2939         spapr->kernel_size = load_elf(kernel_filename, NULL,
2940                                       translate_kernel_address, spapr,
2941                                       NULL, NULL, NULL, NULL, 1,
2942                                       PPC_ELF_MACHINE, 0, 0);
2943         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2944             spapr->kernel_size = load_elf(kernel_filename, NULL,
2945                                           translate_kernel_address, spapr,
2946                                           NULL, NULL, NULL, NULL, 0,
2947                                           PPC_ELF_MACHINE, 0, 0);
2948             spapr->kernel_le = spapr->kernel_size > 0;
2949         }
2950         if (spapr->kernel_size < 0) {
2951             error_report("error loading %s: %s", kernel_filename,
2952                          load_elf_strerror(spapr->kernel_size));
2953             exit(1);
2954         }
2955 
2956         /* load initrd */
2957         if (initrd_filename) {
2958             /* Try to locate the initrd in the gap between the kernel
2959              * and the firmware. Add a bit of space just in case
2960              */
2961             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2962                                   + 0x1ffff) & ~0xffff;
2963             spapr->initrd_size = load_image_targphys(initrd_filename,
2964                                                      spapr->initrd_base,
2965                                                      load_limit
2966                                                      - spapr->initrd_base);
2967             if (spapr->initrd_size < 0) {
2968                 error_report("could not load initial ram disk '%s'",
2969                              initrd_filename);
2970                 exit(1);
2971             }
2972         }
2973     }
2974 
2975     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2976     if (!filename) {
2977         error_report("Could not find LPAR firmware '%s'", bios_name);
2978         exit(1);
2979     }
2980     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2981     if (fw_size <= 0) {
2982         error_report("Could not load LPAR firmware '%s'", filename);
2983         exit(1);
2984     }
2985     g_free(filename);
2986 
2987     /* FIXME: Should register things through the MachineState's qdev
2988      * interface, this is a legacy from the sPAPREnvironment structure
2989      * which predated MachineState but had a similar function */
2990     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2991     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2992                          &savevm_htab_handlers, spapr);
2993 
2994     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2995 
2996     qemu_register_boot_set(spapr_boot_set, spapr);
2997 
2998     /*
2999      * Nothing needs to be done to resume a suspended guest because
3000      * suspending does not change the machine state, so no need for
3001      * a ->wakeup method.
3002      */
3003     qemu_register_wakeup_support();
3004 
3005     if (kvm_enabled()) {
3006         /* to stop and start vmclock */
3007         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3008                                          &spapr->tb);
3009 
3010         kvmppc_spapr_enable_inkernel_multitce();
3011     }
3012 
3013     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3014 }
3015 
3016 #define DEFAULT_KVM_TYPE "auto"
3017 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3018 {
3019     /*
3020      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3021      * accomodate the 'HV' and 'PV' formats that exists in the
3022      * wild. The 'auto' mode is being introduced already as
3023      * lower-case, thus we don't need to bother checking for
3024      * "AUTO".
3025      */
3026     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3027         return 0;
3028     }
3029 
3030     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3031         return 1;
3032     }
3033 
3034     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3035         return 2;
3036     }
3037 
3038     error_report("Unknown kvm-type specified '%s'", vm_type);
3039     exit(1);
3040 }
3041 
3042 /*
3043  * Implementation of an interface to adjust firmware path
3044  * for the bootindex property handling.
3045  */
3046 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3047                                    DeviceState *dev)
3048 {
3049 #define CAST(type, obj, name) \
3050     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3051     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3052     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3053     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3054     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3055 
3056     if (d) {
3057         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3058         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3059         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3060 
3061         if (spapr) {
3062             /*
3063              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3064              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3065              * 0x8000 | (target << 8) | (bus << 5) | lun
3066              * (see the "Logical unit addressing format" table in SAM5)
3067              */
3068             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3069             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3070                                    (uint64_t)id << 48);
3071         } else if (virtio) {
3072             /*
3073              * We use SRP luns of the form 01000000 | (target << 8) | lun
3074              * in the top 32 bits of the 64-bit LUN
3075              * Note: the quote above is from SLOF and it is wrong,
3076              * the actual binding is:
3077              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3078              */
3079             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3080             if (d->lun >= 256) {
3081                 /* Use the LUN "flat space addressing method" */
3082                 id |= 0x4000;
3083             }
3084             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3085                                    (uint64_t)id << 32);
3086         } else if (usb) {
3087             /*
3088              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3089              * in the top 32 bits of the 64-bit LUN
3090              */
3091             unsigned usb_port = atoi(usb->port->path);
3092             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3093             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3094                                    (uint64_t)id << 32);
3095         }
3096     }
3097 
3098     /*
3099      * SLOF probes the USB devices, and if it recognizes that the device is a
3100      * storage device, it changes its name to "storage" instead of "usb-host",
3101      * and additionally adds a child node for the SCSI LUN, so the correct
3102      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3103      */
3104     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3105         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3106         if (usb_host_dev_is_scsi_storage(usbdev)) {
3107             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3108         }
3109     }
3110 
3111     if (phb) {
3112         /* Replace "pci" with "pci@800000020000000" */
3113         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3114     }
3115 
3116     if (vsc) {
3117         /* Same logic as virtio above */
3118         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3119         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3120     }
3121 
3122     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3123         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3124         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3125         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3126     }
3127 
3128     if (pcidev) {
3129         return spapr_pci_fw_dev_name(pcidev);
3130     }
3131 
3132     return NULL;
3133 }
3134 
3135 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3136 {
3137     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3138 
3139     return g_strdup(spapr->kvm_type);
3140 }
3141 
3142 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3143 {
3144     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3145 
3146     g_free(spapr->kvm_type);
3147     spapr->kvm_type = g_strdup(value);
3148 }
3149 
3150 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3151 {
3152     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3153 
3154     return spapr->use_hotplug_event_source;
3155 }
3156 
3157 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3158                                             Error **errp)
3159 {
3160     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3161 
3162     spapr->use_hotplug_event_source = value;
3163 }
3164 
3165 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3166 {
3167     return true;
3168 }
3169 
3170 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3171 {
3172     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3173 
3174     switch (spapr->resize_hpt) {
3175     case SPAPR_RESIZE_HPT_DEFAULT:
3176         return g_strdup("default");
3177     case SPAPR_RESIZE_HPT_DISABLED:
3178         return g_strdup("disabled");
3179     case SPAPR_RESIZE_HPT_ENABLED:
3180         return g_strdup("enabled");
3181     case SPAPR_RESIZE_HPT_REQUIRED:
3182         return g_strdup("required");
3183     }
3184     g_assert_not_reached();
3185 }
3186 
3187 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3188 {
3189     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3190 
3191     if (strcmp(value, "default") == 0) {
3192         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3193     } else if (strcmp(value, "disabled") == 0) {
3194         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3195     } else if (strcmp(value, "enabled") == 0) {
3196         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3197     } else if (strcmp(value, "required") == 0) {
3198         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3199     } else {
3200         error_setg(errp, "Bad value for \"resize-hpt\" property");
3201     }
3202 }
3203 
3204 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3205 {
3206     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207 
3208     if (spapr->irq == &spapr_irq_xics_legacy) {
3209         return g_strdup("legacy");
3210     } else if (spapr->irq == &spapr_irq_xics) {
3211         return g_strdup("xics");
3212     } else if (spapr->irq == &spapr_irq_xive) {
3213         return g_strdup("xive");
3214     } else if (spapr->irq == &spapr_irq_dual) {
3215         return g_strdup("dual");
3216     }
3217     g_assert_not_reached();
3218 }
3219 
3220 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3221 {
3222     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3223 
3224     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3225         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3226         return;
3227     }
3228 
3229     /* The legacy IRQ backend can not be set */
3230     if (strcmp(value, "xics") == 0) {
3231         spapr->irq = &spapr_irq_xics;
3232     } else if (strcmp(value, "xive") == 0) {
3233         spapr->irq = &spapr_irq_xive;
3234     } else if (strcmp(value, "dual") == 0) {
3235         spapr->irq = &spapr_irq_dual;
3236     } else {
3237         error_setg(errp, "Bad value for \"ic-mode\" property");
3238     }
3239 }
3240 
3241 static char *spapr_get_host_model(Object *obj, Error **errp)
3242 {
3243     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3244 
3245     return g_strdup(spapr->host_model);
3246 }
3247 
3248 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3249 {
3250     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3251 
3252     g_free(spapr->host_model);
3253     spapr->host_model = g_strdup(value);
3254 }
3255 
3256 static char *spapr_get_host_serial(Object *obj, Error **errp)
3257 {
3258     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259 
3260     return g_strdup(spapr->host_serial);
3261 }
3262 
3263 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3264 {
3265     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3266 
3267     g_free(spapr->host_serial);
3268     spapr->host_serial = g_strdup(value);
3269 }
3270 
3271 static void spapr_instance_init(Object *obj)
3272 {
3273     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3274     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3275     MachineState *ms = MACHINE(spapr);
3276     MachineClass *mc = MACHINE_GET_CLASS(ms);
3277 
3278     /*
3279      * NVDIMM support went live in 5.1 without considering that, in
3280      * other archs, the user needs to enable NVDIMM support with the
3281      * 'nvdimm' machine option and the default behavior is NVDIMM
3282      * support disabled. It is too late to roll back to the standard
3283      * behavior without breaking 5.1 guests.
3284      */
3285     if (mc->nvdimm_supported) {
3286         ms->nvdimms_state->is_enabled = true;
3287     }
3288 
3289     spapr->htab_fd = -1;
3290     spapr->use_hotplug_event_source = true;
3291     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3292     object_property_add_str(obj, "kvm-type",
3293                             spapr_get_kvm_type, spapr_set_kvm_type);
3294     object_property_set_description(obj, "kvm-type",
3295                                     "Specifies the KVM virtualization mode (auto,"
3296                                     " hv, pr). Defaults to 'auto'. This mode will use"
3297                                     " any available KVM module loaded in the host,"
3298                                     " where kvm_hv takes precedence if both kvm_hv and"
3299                                     " kvm_pr are loaded.");
3300     object_property_add_bool(obj, "modern-hotplug-events",
3301                             spapr_get_modern_hotplug_events,
3302                             spapr_set_modern_hotplug_events);
3303     object_property_set_description(obj, "modern-hotplug-events",
3304                                     "Use dedicated hotplug event mechanism in"
3305                                     " place of standard EPOW events when possible"
3306                                     " (required for memory hot-unplug support)");
3307     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3308                             "Maximum permitted CPU compatibility mode");
3309 
3310     object_property_add_str(obj, "resize-hpt",
3311                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3312     object_property_set_description(obj, "resize-hpt",
3313                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3314     object_property_add_uint32_ptr(obj, "vsmt",
3315                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3316     object_property_set_description(obj, "vsmt",
3317                                     "Virtual SMT: KVM behaves as if this were"
3318                                     " the host's SMT mode");
3319 
3320     object_property_add_bool(obj, "vfio-no-msix-emulation",
3321                              spapr_get_msix_emulation, NULL);
3322 
3323     object_property_add_uint64_ptr(obj, "kernel-addr",
3324                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3325     object_property_set_description(obj, "kernel-addr",
3326                                     stringify(KERNEL_LOAD_ADDR)
3327                                     " for -kernel is the default");
3328     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3329     /* The machine class defines the default interrupt controller mode */
3330     spapr->irq = smc->irq;
3331     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3332                             spapr_set_ic_mode);
3333     object_property_set_description(obj, "ic-mode",
3334                  "Specifies the interrupt controller mode (xics, xive, dual)");
3335 
3336     object_property_add_str(obj, "host-model",
3337         spapr_get_host_model, spapr_set_host_model);
3338     object_property_set_description(obj, "host-model",
3339         "Host model to advertise in guest device tree");
3340     object_property_add_str(obj, "host-serial",
3341         spapr_get_host_serial, spapr_set_host_serial);
3342     object_property_set_description(obj, "host-serial",
3343         "Host serial number to advertise in guest device tree");
3344 }
3345 
3346 static void spapr_machine_finalizefn(Object *obj)
3347 {
3348     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3349 
3350     g_free(spapr->kvm_type);
3351 }
3352 
3353 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3354 {
3355     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3356     PowerPCCPU *cpu = POWERPC_CPU(cs);
3357     CPUPPCState *env = &cpu->env;
3358 
3359     cpu_synchronize_state(cs);
3360     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3361     if (spapr->fwnmi_system_reset_addr != -1) {
3362         uint64_t rtas_addr, addr;
3363 
3364         /* get rtas addr from fdt */
3365         rtas_addr = spapr_get_rtas_addr();
3366         if (!rtas_addr) {
3367             qemu_system_guest_panicked(NULL);
3368             return;
3369         }
3370 
3371         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3372         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3373         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3374         env->gpr[3] = addr;
3375     }
3376     ppc_cpu_do_system_reset(cs);
3377     if (spapr->fwnmi_system_reset_addr != -1) {
3378         env->nip = spapr->fwnmi_system_reset_addr;
3379     }
3380 }
3381 
3382 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3383 {
3384     CPUState *cs;
3385 
3386     CPU_FOREACH(cs) {
3387         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3388     }
3389 }
3390 
3391 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3392                           void *fdt, int *fdt_start_offset, Error **errp)
3393 {
3394     uint64_t addr;
3395     uint32_t node;
3396 
3397     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3398     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3399                                     &error_abort);
3400     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3401                                              SPAPR_MEMORY_BLOCK_SIZE);
3402     return 0;
3403 }
3404 
3405 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3406                            bool dedicated_hp_event_source)
3407 {
3408     SpaprDrc *drc;
3409     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3410     int i;
3411     uint64_t addr = addr_start;
3412     bool hotplugged = spapr_drc_hotplugged(dev);
3413 
3414     for (i = 0; i < nr_lmbs; i++) {
3415         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3416                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3417         g_assert(drc);
3418 
3419         /*
3420          * memory_device_get_free_addr() provided a range of free addresses
3421          * that doesn't overlap with any existing mapping at pre-plug. The
3422          * corresponding LMB DRCs are thus assumed to be all attachable.
3423          */
3424         spapr_drc_attach(drc, dev);
3425         if (!hotplugged) {
3426             spapr_drc_reset(drc);
3427         }
3428         addr += SPAPR_MEMORY_BLOCK_SIZE;
3429     }
3430     /* send hotplug notification to the
3431      * guest only in case of hotplugged memory
3432      */
3433     if (hotplugged) {
3434         if (dedicated_hp_event_source) {
3435             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3436                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3437             g_assert(drc);
3438             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3439                                                    nr_lmbs,
3440                                                    spapr_drc_index(drc));
3441         } else {
3442             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3443                                            nr_lmbs);
3444         }
3445     }
3446 }
3447 
3448 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3449 {
3450     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3451     PCDIMMDevice *dimm = PC_DIMM(dev);
3452     uint64_t size, addr;
3453     int64_t slot;
3454     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3455 
3456     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3457 
3458     pc_dimm_plug(dimm, MACHINE(ms));
3459 
3460     if (!is_nvdimm) {
3461         addr = object_property_get_uint(OBJECT(dimm),
3462                                         PC_DIMM_ADDR_PROP, &error_abort);
3463         spapr_add_lmbs(dev, addr, size,
3464                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3465     } else {
3466         slot = object_property_get_int(OBJECT(dimm),
3467                                        PC_DIMM_SLOT_PROP, &error_abort);
3468         /* We should have valid slot number at this point */
3469         g_assert(slot >= 0);
3470         spapr_add_nvdimm(dev, slot);
3471     }
3472 }
3473 
3474 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3475                                   Error **errp)
3476 {
3477     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3478     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3479     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3480     PCDIMMDevice *dimm = PC_DIMM(dev);
3481     Error *local_err = NULL;
3482     uint64_t size;
3483     Object *memdev;
3484     hwaddr pagesize;
3485 
3486     if (!smc->dr_lmb_enabled) {
3487         error_setg(errp, "Memory hotplug not supported for this machine");
3488         return;
3489     }
3490 
3491     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3492     if (local_err) {
3493         error_propagate(errp, local_err);
3494         return;
3495     }
3496 
3497     if (is_nvdimm) {
3498         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3499             return;
3500         }
3501     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3502         error_setg(errp, "Hotplugged memory size must be a multiple of "
3503                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3504         return;
3505     }
3506 
3507     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3508                                       &error_abort);
3509     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3510     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3511         return;
3512     }
3513 
3514     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3515 }
3516 
3517 struct SpaprDimmState {
3518     PCDIMMDevice *dimm;
3519     uint32_t nr_lmbs;
3520     QTAILQ_ENTRY(SpaprDimmState) next;
3521 };
3522 
3523 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3524                                                        PCDIMMDevice *dimm)
3525 {
3526     SpaprDimmState *dimm_state = NULL;
3527 
3528     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3529         if (dimm_state->dimm == dimm) {
3530             break;
3531         }
3532     }
3533     return dimm_state;
3534 }
3535 
3536 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3537                                                       uint32_t nr_lmbs,
3538                                                       PCDIMMDevice *dimm)
3539 {
3540     SpaprDimmState *ds = NULL;
3541 
3542     /*
3543      * If this request is for a DIMM whose removal had failed earlier
3544      * (due to guest's refusal to remove the LMBs), we would have this
3545      * dimm already in the pending_dimm_unplugs list. In that
3546      * case don't add again.
3547      */
3548     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3549     if (!ds) {
3550         ds = g_malloc0(sizeof(SpaprDimmState));
3551         ds->nr_lmbs = nr_lmbs;
3552         ds->dimm = dimm;
3553         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3554     }
3555     return ds;
3556 }
3557 
3558 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3559                                               SpaprDimmState *dimm_state)
3560 {
3561     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3562     g_free(dimm_state);
3563 }
3564 
3565 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3566                                                         PCDIMMDevice *dimm)
3567 {
3568     SpaprDrc *drc;
3569     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3570                                                   &error_abort);
3571     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3572     uint32_t avail_lmbs = 0;
3573     uint64_t addr_start, addr;
3574     int i;
3575 
3576     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3577                                           &error_abort);
3578 
3579     addr = addr_start;
3580     for (i = 0; i < nr_lmbs; i++) {
3581         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3582                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3583         g_assert(drc);
3584         if (drc->dev) {
3585             avail_lmbs++;
3586         }
3587         addr += SPAPR_MEMORY_BLOCK_SIZE;
3588     }
3589 
3590     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3591 }
3592 
3593 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3594 {
3595     SpaprDimmState *ds;
3596     PCDIMMDevice *dimm;
3597     SpaprDrc *drc;
3598     uint32_t nr_lmbs;
3599     uint64_t size, addr_start, addr;
3600     g_autofree char *qapi_error = NULL;
3601     int i;
3602 
3603     if (!dev) {
3604         return;
3605     }
3606 
3607     dimm = PC_DIMM(dev);
3608     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3609 
3610     /*
3611      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3612      * unplug state, but one of its DRC is marked as unplug_requested.
3613      * This is bad and weird enough to g_assert() out.
3614      */
3615     g_assert(ds);
3616 
3617     spapr_pending_dimm_unplugs_remove(spapr, ds);
3618 
3619     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3620     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3621 
3622     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3623                                           &error_abort);
3624 
3625     addr = addr_start;
3626     for (i = 0; i < nr_lmbs; i++) {
3627         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3628                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3629         g_assert(drc);
3630 
3631         drc->unplug_requested = false;
3632         addr += SPAPR_MEMORY_BLOCK_SIZE;
3633     }
3634 
3635     /*
3636      * Tell QAPI that something happened and the memory
3637      * hotunplug wasn't successful.
3638      */
3639     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3640                                  "for device %s", dev->id);
3641     qapi_event_send_mem_unplug_error(dev->id, qapi_error);
3642 }
3643 
3644 /* Callback to be called during DRC release. */
3645 void spapr_lmb_release(DeviceState *dev)
3646 {
3647     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3648     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3649     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3650 
3651     /* This information will get lost if a migration occurs
3652      * during the unplug process. In this case recover it. */
3653     if (ds == NULL) {
3654         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3655         g_assert(ds);
3656         /* The DRC being examined by the caller at least must be counted */
3657         g_assert(ds->nr_lmbs);
3658     }
3659 
3660     if (--ds->nr_lmbs) {
3661         return;
3662     }
3663 
3664     /*
3665      * Now that all the LMBs have been removed by the guest, call the
3666      * unplug handler chain. This can never fail.
3667      */
3668     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3669     object_unparent(OBJECT(dev));
3670 }
3671 
3672 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3673 {
3674     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3675     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3676 
3677     /* We really shouldn't get this far without anything to unplug */
3678     g_assert(ds);
3679 
3680     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3681     qdev_unrealize(dev);
3682     spapr_pending_dimm_unplugs_remove(spapr, ds);
3683 }
3684 
3685 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3686                                         DeviceState *dev, Error **errp)
3687 {
3688     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3689     PCDIMMDevice *dimm = PC_DIMM(dev);
3690     uint32_t nr_lmbs;
3691     uint64_t size, addr_start, addr;
3692     int i;
3693     SpaprDrc *drc;
3694 
3695     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3696         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3697         return;
3698     }
3699 
3700     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3701     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3702 
3703     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3704                                           &error_abort);
3705 
3706     /*
3707      * An existing pending dimm state for this DIMM means that there is an
3708      * unplug operation in progress, waiting for the spapr_lmb_release
3709      * callback to complete the job (BQL can't cover that far). In this case,
3710      * bail out to avoid detaching DRCs that were already released.
3711      */
3712     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3713         error_setg(errp, "Memory unplug already in progress for device %s",
3714                    dev->id);
3715         return;
3716     }
3717 
3718     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3719 
3720     addr = addr_start;
3721     for (i = 0; i < nr_lmbs; i++) {
3722         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3723                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3724         g_assert(drc);
3725 
3726         spapr_drc_unplug_request(drc);
3727         addr += SPAPR_MEMORY_BLOCK_SIZE;
3728     }
3729 
3730     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3731                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3732     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3733                                               nr_lmbs, spapr_drc_index(drc));
3734 }
3735 
3736 /* Callback to be called during DRC release. */
3737 void spapr_core_release(DeviceState *dev)
3738 {
3739     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3740 
3741     /* Call the unplug handler chain. This can never fail. */
3742     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3743     object_unparent(OBJECT(dev));
3744 }
3745 
3746 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3747 {
3748     MachineState *ms = MACHINE(hotplug_dev);
3749     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3750     CPUCore *cc = CPU_CORE(dev);
3751     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3752 
3753     if (smc->pre_2_10_has_unused_icps) {
3754         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3755         int i;
3756 
3757         for (i = 0; i < cc->nr_threads; i++) {
3758             CPUState *cs = CPU(sc->threads[i]);
3759 
3760             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3761         }
3762     }
3763 
3764     assert(core_slot);
3765     core_slot->cpu = NULL;
3766     qdev_unrealize(dev);
3767 }
3768 
3769 static
3770 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3771                                Error **errp)
3772 {
3773     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3774     int index;
3775     SpaprDrc *drc;
3776     CPUCore *cc = CPU_CORE(dev);
3777 
3778     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3779         error_setg(errp, "Unable to find CPU core with core-id: %d",
3780                    cc->core_id);
3781         return;
3782     }
3783     if (index == 0) {
3784         error_setg(errp, "Boot CPU core may not be unplugged");
3785         return;
3786     }
3787 
3788     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3789                           spapr_vcpu_id(spapr, cc->core_id));
3790     g_assert(drc);
3791 
3792     if (!spapr_drc_unplug_requested(drc)) {
3793         spapr_drc_unplug_request(drc);
3794     }
3795 
3796     /*
3797      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3798      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3799      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3800      * attempt (e.g. the kernel will refuse to remove the last online
3801      * CPU), we will never attempt it again because unplug_requested
3802      * will still be 'true' in that case.
3803      */
3804     spapr_hotplug_req_remove_by_index(drc);
3805 }
3806 
3807 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3808                            void *fdt, int *fdt_start_offset, Error **errp)
3809 {
3810     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3811     CPUState *cs = CPU(core->threads[0]);
3812     PowerPCCPU *cpu = POWERPC_CPU(cs);
3813     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3814     int id = spapr_get_vcpu_id(cpu);
3815     g_autofree char *nodename = NULL;
3816     int offset;
3817 
3818     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3819     offset = fdt_add_subnode(fdt, 0, nodename);
3820 
3821     spapr_dt_cpu(cs, fdt, offset, spapr);
3822 
3823     /*
3824      * spapr_dt_cpu() does not fill the 'name' property in the
3825      * CPU node. The function is called during boot process, before
3826      * and after CAS, and overwriting the 'name' property written
3827      * by SLOF is not allowed.
3828      *
3829      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3830      * CPUs more compatible with the coldplugged ones, which have
3831      * the 'name' property. Linux Kernel also relies on this
3832      * property to identify CPU nodes.
3833      */
3834     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3835 
3836     *fdt_start_offset = offset;
3837     return 0;
3838 }
3839 
3840 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3841 {
3842     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3843     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3844     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3845     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3846     CPUCore *cc = CPU_CORE(dev);
3847     CPUState *cs;
3848     SpaprDrc *drc;
3849     CPUArchId *core_slot;
3850     int index;
3851     bool hotplugged = spapr_drc_hotplugged(dev);
3852     int i;
3853 
3854     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3855     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3856 
3857     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3858                           spapr_vcpu_id(spapr, cc->core_id));
3859 
3860     g_assert(drc || !mc->has_hotpluggable_cpus);
3861 
3862     if (drc) {
3863         /*
3864          * spapr_core_pre_plug() already buys us this is a brand new
3865          * core being plugged into a free slot. Nothing should already
3866          * be attached to the corresponding DRC.
3867          */
3868         spapr_drc_attach(drc, dev);
3869 
3870         if (hotplugged) {
3871             /*
3872              * Send hotplug notification interrupt to the guest only
3873              * in case of hotplugged CPUs.
3874              */
3875             spapr_hotplug_req_add_by_index(drc);
3876         } else {
3877             spapr_drc_reset(drc);
3878         }
3879     }
3880 
3881     core_slot->cpu = OBJECT(dev);
3882 
3883     /*
3884      * Set compatibility mode to match the boot CPU, which was either set
3885      * by the machine reset code or by CAS. This really shouldn't fail at
3886      * this point.
3887      */
3888     if (hotplugged) {
3889         for (i = 0; i < cc->nr_threads; i++) {
3890             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3891                            &error_abort);
3892         }
3893     }
3894 
3895     if (smc->pre_2_10_has_unused_icps) {
3896         for (i = 0; i < cc->nr_threads; i++) {
3897             cs = CPU(core->threads[i]);
3898             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3899         }
3900     }
3901 }
3902 
3903 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3904                                 Error **errp)
3905 {
3906     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3907     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3908     CPUCore *cc = CPU_CORE(dev);
3909     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3910     const char *type = object_get_typename(OBJECT(dev));
3911     CPUArchId *core_slot;
3912     int index;
3913     unsigned int smp_threads = machine->smp.threads;
3914 
3915     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3916         error_setg(errp, "CPU hotplug not supported for this machine");
3917         return;
3918     }
3919 
3920     if (strcmp(base_core_type, type)) {
3921         error_setg(errp, "CPU core type should be %s", base_core_type);
3922         return;
3923     }
3924 
3925     if (cc->core_id % smp_threads) {
3926         error_setg(errp, "invalid core id %d", cc->core_id);
3927         return;
3928     }
3929 
3930     /*
3931      * In general we should have homogeneous threads-per-core, but old
3932      * (pre hotplug support) machine types allow the last core to have
3933      * reduced threads as a compatibility hack for when we allowed
3934      * total vcpus not a multiple of threads-per-core.
3935      */
3936     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3937         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3938                    smp_threads);
3939         return;
3940     }
3941 
3942     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3943     if (!core_slot) {
3944         error_setg(errp, "core id %d out of range", cc->core_id);
3945         return;
3946     }
3947 
3948     if (core_slot->cpu) {
3949         error_setg(errp, "core %d already populated", cc->core_id);
3950         return;
3951     }
3952 
3953     numa_cpu_pre_plug(core_slot, dev, errp);
3954 }
3955 
3956 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3957                           void *fdt, int *fdt_start_offset, Error **errp)
3958 {
3959     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3960     int intc_phandle;
3961 
3962     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3963     if (intc_phandle <= 0) {
3964         return -1;
3965     }
3966 
3967     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3968         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3969         return -1;
3970     }
3971 
3972     /* generally SLOF creates these, for hotplug it's up to QEMU */
3973     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3974 
3975     return 0;
3976 }
3977 
3978 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3979                                Error **errp)
3980 {
3981     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3982     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3983     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3984     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3985     SpaprDrc *drc;
3986 
3987     if (dev->hotplugged && !smc->dr_phb_enabled) {
3988         error_setg(errp, "PHB hotplug not supported for this machine");
3989         return false;
3990     }
3991 
3992     if (sphb->index == (uint32_t)-1) {
3993         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3994         return false;
3995     }
3996 
3997     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3998     if (drc && drc->dev) {
3999         error_setg(errp, "PHB %d already attached", sphb->index);
4000         return false;
4001     }
4002 
4003     /*
4004      * This will check that sphb->index doesn't exceed the maximum number of
4005      * PHBs for the current machine type.
4006      */
4007     return
4008         smc->phb_placement(spapr, sphb->index,
4009                            &sphb->buid, &sphb->io_win_addr,
4010                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4011                            windows_supported, sphb->dma_liobn,
4012                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4013                            errp);
4014 }
4015 
4016 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4017 {
4018     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4019     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4020     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4021     SpaprDrc *drc;
4022     bool hotplugged = spapr_drc_hotplugged(dev);
4023 
4024     if (!smc->dr_phb_enabled) {
4025         return;
4026     }
4027 
4028     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4029     /* hotplug hooks should check it's enabled before getting this far */
4030     assert(drc);
4031 
4032     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4033     spapr_drc_attach(drc, dev);
4034 
4035     if (hotplugged) {
4036         spapr_hotplug_req_add_by_index(drc);
4037     } else {
4038         spapr_drc_reset(drc);
4039     }
4040 }
4041 
4042 void spapr_phb_release(DeviceState *dev)
4043 {
4044     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4045 
4046     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4047     object_unparent(OBJECT(dev));
4048 }
4049 
4050 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4051 {
4052     qdev_unrealize(dev);
4053 }
4054 
4055 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4056                                      DeviceState *dev, Error **errp)
4057 {
4058     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4059     SpaprDrc *drc;
4060 
4061     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4062     assert(drc);
4063 
4064     if (!spapr_drc_unplug_requested(drc)) {
4065         spapr_drc_unplug_request(drc);
4066         spapr_hotplug_req_remove_by_index(drc);
4067     } else {
4068         error_setg(errp,
4069                    "PCI Host Bridge unplug already in progress for device %s",
4070                    dev->id);
4071     }
4072 }
4073 
4074 static
4075 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4076                               Error **errp)
4077 {
4078     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4079 
4080     if (spapr->tpm_proxy != NULL) {
4081         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4082         return false;
4083     }
4084 
4085     return true;
4086 }
4087 
4088 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4089 {
4090     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4091     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4092 
4093     /* Already checked in spapr_tpm_proxy_pre_plug() */
4094     g_assert(spapr->tpm_proxy == NULL);
4095 
4096     spapr->tpm_proxy = tpm_proxy;
4097 }
4098 
4099 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4100 {
4101     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4102 
4103     qdev_unrealize(dev);
4104     object_unparent(OBJECT(dev));
4105     spapr->tpm_proxy = NULL;
4106 }
4107 
4108 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4109                                       DeviceState *dev, Error **errp)
4110 {
4111     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4112         spapr_memory_plug(hotplug_dev, dev);
4113     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4114         spapr_core_plug(hotplug_dev, dev);
4115     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4116         spapr_phb_plug(hotplug_dev, dev);
4117     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4118         spapr_tpm_proxy_plug(hotplug_dev, dev);
4119     }
4120 }
4121 
4122 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4123                                         DeviceState *dev, Error **errp)
4124 {
4125     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4126         spapr_memory_unplug(hotplug_dev, dev);
4127     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4128         spapr_core_unplug(hotplug_dev, dev);
4129     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4130         spapr_phb_unplug(hotplug_dev, dev);
4131     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4132         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4133     }
4134 }
4135 
4136 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4137 {
4138     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4139         /*
4140          * CAS will process all pending unplug requests.
4141          *
4142          * HACK: a guest could theoretically have cleared all bits in OV5,
4143          * but none of the guests we care for do.
4144          */
4145         spapr_ovec_empty(spapr->ov5_cas);
4146 }
4147 
4148 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4149                                                 DeviceState *dev, Error **errp)
4150 {
4151     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4152     MachineClass *mc = MACHINE_GET_CLASS(sms);
4153     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4154 
4155     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4156         if (spapr_memory_hot_unplug_supported(sms)) {
4157             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4158         } else {
4159             error_setg(errp, "Memory hot unplug not supported for this guest");
4160         }
4161     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4162         if (!mc->has_hotpluggable_cpus) {
4163             error_setg(errp, "CPU hot unplug not supported on this machine");
4164             return;
4165         }
4166         spapr_core_unplug_request(hotplug_dev, dev, errp);
4167     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4168         if (!smc->dr_phb_enabled) {
4169             error_setg(errp, "PHB hot unplug not supported on this machine");
4170             return;
4171         }
4172         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4173     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4174         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4175     }
4176 }
4177 
4178 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4179                                           DeviceState *dev, Error **errp)
4180 {
4181     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4182         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4183     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4184         spapr_core_pre_plug(hotplug_dev, dev, errp);
4185     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4186         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4187     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4188         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4189     }
4190 }
4191 
4192 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4193                                                  DeviceState *dev)
4194 {
4195     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4196         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4197         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4198         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4199         return HOTPLUG_HANDLER(machine);
4200     }
4201     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4202         PCIDevice *pcidev = PCI_DEVICE(dev);
4203         PCIBus *root = pci_device_root_bus(pcidev);
4204         SpaprPhbState *phb =
4205             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4206                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4207 
4208         if (phb) {
4209             return HOTPLUG_HANDLER(phb);
4210         }
4211     }
4212     return NULL;
4213 }
4214 
4215 static CpuInstanceProperties
4216 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4217 {
4218     CPUArchId *core_slot;
4219     MachineClass *mc = MACHINE_GET_CLASS(machine);
4220 
4221     /* make sure possible_cpu are intialized */
4222     mc->possible_cpu_arch_ids(machine);
4223     /* get CPU core slot containing thread that matches cpu_index */
4224     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4225     assert(core_slot);
4226     return core_slot->props;
4227 }
4228 
4229 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4230 {
4231     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4232 }
4233 
4234 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4235 {
4236     int i;
4237     unsigned int smp_threads = machine->smp.threads;
4238     unsigned int smp_cpus = machine->smp.cpus;
4239     const char *core_type;
4240     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4241     MachineClass *mc = MACHINE_GET_CLASS(machine);
4242 
4243     if (!mc->has_hotpluggable_cpus) {
4244         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4245     }
4246     if (machine->possible_cpus) {
4247         assert(machine->possible_cpus->len == spapr_max_cores);
4248         return machine->possible_cpus;
4249     }
4250 
4251     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4252     if (!core_type) {
4253         error_report("Unable to find sPAPR CPU Core definition");
4254         exit(1);
4255     }
4256 
4257     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4258                              sizeof(CPUArchId) * spapr_max_cores);
4259     machine->possible_cpus->len = spapr_max_cores;
4260     for (i = 0; i < machine->possible_cpus->len; i++) {
4261         int core_id = i * smp_threads;
4262 
4263         machine->possible_cpus->cpus[i].type = core_type;
4264         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4265         machine->possible_cpus->cpus[i].arch_id = core_id;
4266         machine->possible_cpus->cpus[i].props.has_core_id = true;
4267         machine->possible_cpus->cpus[i].props.core_id = core_id;
4268     }
4269     return machine->possible_cpus;
4270 }
4271 
4272 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4273                                 uint64_t *buid, hwaddr *pio,
4274                                 hwaddr *mmio32, hwaddr *mmio64,
4275                                 unsigned n_dma, uint32_t *liobns,
4276                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4277 {
4278     /*
4279      * New-style PHB window placement.
4280      *
4281      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4282      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4283      * windows.
4284      *
4285      * Some guest kernels can't work with MMIO windows above 1<<46
4286      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4287      *
4288      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4289      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4290      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4291      * 1TiB 64-bit MMIO windows for each PHB.
4292      */
4293     const uint64_t base_buid = 0x800000020000000ULL;
4294     int i;
4295 
4296     /* Sanity check natural alignments */
4297     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4298     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4299     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4300     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4301     /* Sanity check bounds */
4302     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4303                       SPAPR_PCI_MEM32_WIN_SIZE);
4304     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4305                       SPAPR_PCI_MEM64_WIN_SIZE);
4306 
4307     if (index >= SPAPR_MAX_PHBS) {
4308         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4309                    SPAPR_MAX_PHBS - 1);
4310         return false;
4311     }
4312 
4313     *buid = base_buid + index;
4314     for (i = 0; i < n_dma; ++i) {
4315         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4316     }
4317 
4318     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4319     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4320     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4321 
4322     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4323     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4324     return true;
4325 }
4326 
4327 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4328 {
4329     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4330 
4331     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4332 }
4333 
4334 static void spapr_ics_resend(XICSFabric *dev)
4335 {
4336     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4337 
4338     ics_resend(spapr->ics);
4339 }
4340 
4341 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4342 {
4343     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4344 
4345     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4346 }
4347 
4348 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4349                                  Monitor *mon)
4350 {
4351     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4352 
4353     spapr_irq_print_info(spapr, mon);
4354     monitor_printf(mon, "irqchip: %s\n",
4355                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4356 }
4357 
4358 /*
4359  * This is a XIVE only operation
4360  */
4361 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4362                            uint8_t nvt_blk, uint32_t nvt_idx,
4363                            bool cam_ignore, uint8_t priority,
4364                            uint32_t logic_serv, XiveTCTXMatch *match)
4365 {
4366     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4367     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4368     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4369     int count;
4370 
4371     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4372                            priority, logic_serv, match);
4373     if (count < 0) {
4374         return count;
4375     }
4376 
4377     /*
4378      * When we implement the save and restore of the thread interrupt
4379      * contexts in the enter/exit CPU handlers of the machine and the
4380      * escalations in QEMU, we should be able to handle non dispatched
4381      * vCPUs.
4382      *
4383      * Until this is done, the sPAPR machine should find at least one
4384      * matching context always.
4385      */
4386     if (count == 0) {
4387         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4388                       nvt_blk, nvt_idx);
4389     }
4390 
4391     return count;
4392 }
4393 
4394 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4395 {
4396     return cpu->vcpu_id;
4397 }
4398 
4399 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4400 {
4401     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4402     MachineState *ms = MACHINE(spapr);
4403     int vcpu_id;
4404 
4405     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4406 
4407     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4408         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4409         error_append_hint(errp, "Adjust the number of cpus to %d "
4410                           "or try to raise the number of threads per core\n",
4411                           vcpu_id * ms->smp.threads / spapr->vsmt);
4412         return false;
4413     }
4414 
4415     cpu->vcpu_id = vcpu_id;
4416     return true;
4417 }
4418 
4419 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4420 {
4421     CPUState *cs;
4422 
4423     CPU_FOREACH(cs) {
4424         PowerPCCPU *cpu = POWERPC_CPU(cs);
4425 
4426         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4427             return cpu;
4428         }
4429     }
4430 
4431     return NULL;
4432 }
4433 
4434 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4435 {
4436     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4437 
4438     /* These are only called by TCG, KVM maintains dispatch state */
4439 
4440     spapr_cpu->prod = false;
4441     if (spapr_cpu->vpa_addr) {
4442         CPUState *cs = CPU(cpu);
4443         uint32_t dispatch;
4444 
4445         dispatch = ldl_be_phys(cs->as,
4446                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4447         dispatch++;
4448         if ((dispatch & 1) != 0) {
4449             qemu_log_mask(LOG_GUEST_ERROR,
4450                           "VPA: incorrect dispatch counter value for "
4451                           "dispatched partition %u, correcting.\n", dispatch);
4452             dispatch++;
4453         }
4454         stl_be_phys(cs->as,
4455                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4456     }
4457 }
4458 
4459 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4460 {
4461     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4462 
4463     if (spapr_cpu->vpa_addr) {
4464         CPUState *cs = CPU(cpu);
4465         uint32_t dispatch;
4466 
4467         dispatch = ldl_be_phys(cs->as,
4468                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4469         dispatch++;
4470         if ((dispatch & 1) != 1) {
4471             qemu_log_mask(LOG_GUEST_ERROR,
4472                           "VPA: incorrect dispatch counter value for "
4473                           "preempted partition %u, correcting.\n", dispatch);
4474             dispatch++;
4475         }
4476         stl_be_phys(cs->as,
4477                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4478     }
4479 }
4480 
4481 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4482 {
4483     MachineClass *mc = MACHINE_CLASS(oc);
4484     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4485     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4486     NMIClass *nc = NMI_CLASS(oc);
4487     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4488     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4489     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4490     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4491     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4492 
4493     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4494     mc->ignore_boot_device_suffixes = true;
4495 
4496     /*
4497      * We set up the default / latest behaviour here.  The class_init
4498      * functions for the specific versioned machine types can override
4499      * these details for backwards compatibility
4500      */
4501     mc->init = spapr_machine_init;
4502     mc->reset = spapr_machine_reset;
4503     mc->block_default_type = IF_SCSI;
4504 
4505     /*
4506      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4507      * should be limited by the host capability instead of hardcoded.
4508      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4509      * guests are welcome to have as many CPUs as the host are capable
4510      * of emulate.
4511      */
4512     mc->max_cpus = INT32_MAX;
4513 
4514     mc->no_parallel = 1;
4515     mc->default_boot_order = "";
4516     mc->default_ram_size = 512 * MiB;
4517     mc->default_ram_id = "ppc_spapr.ram";
4518     mc->default_display = "std";
4519     mc->kvm_type = spapr_kvm_type;
4520     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4521     mc->pci_allow_0_address = true;
4522     assert(!mc->get_hotplug_handler);
4523     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4524     hc->pre_plug = spapr_machine_device_pre_plug;
4525     hc->plug = spapr_machine_device_plug;
4526     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4527     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4528     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4529     hc->unplug_request = spapr_machine_device_unplug_request;
4530     hc->unplug = spapr_machine_device_unplug;
4531 
4532     smc->dr_lmb_enabled = true;
4533     smc->update_dt_enabled = true;
4534     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4535     mc->has_hotpluggable_cpus = true;
4536     mc->nvdimm_supported = true;
4537     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4538     fwc->get_dev_path = spapr_get_fw_dev_path;
4539     nc->nmi_monitor_handler = spapr_nmi;
4540     smc->phb_placement = spapr_phb_placement;
4541     vhc->hypercall = emulate_spapr_hypercall;
4542     vhc->hpt_mask = spapr_hpt_mask;
4543     vhc->map_hptes = spapr_map_hptes;
4544     vhc->unmap_hptes = spapr_unmap_hptes;
4545     vhc->hpte_set_c = spapr_hpte_set_c;
4546     vhc->hpte_set_r = spapr_hpte_set_r;
4547     vhc->get_pate = spapr_get_pate;
4548     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4549     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4550     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4551     xic->ics_get = spapr_ics_get;
4552     xic->ics_resend = spapr_ics_resend;
4553     xic->icp_get = spapr_icp_get;
4554     ispc->print_info = spapr_pic_print_info;
4555     /* Force NUMA node memory size to be a multiple of
4556      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4557      * in which LMBs are represented and hot-added
4558      */
4559     mc->numa_mem_align_shift = 28;
4560     mc->auto_enable_numa = true;
4561 
4562     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4563     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4564     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4565     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4566     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4567     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4568     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4569     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4570     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4571     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4572     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4573     spapr_caps_add_properties(smc);
4574     smc->irq = &spapr_irq_dual;
4575     smc->dr_phb_enabled = true;
4576     smc->linux_pci_probe = true;
4577     smc->smp_threads_vsmt = true;
4578     smc->nr_xirqs = SPAPR_NR_XIRQS;
4579     xfc->match_nvt = spapr_match_nvt;
4580 }
4581 
4582 static const TypeInfo spapr_machine_info = {
4583     .name          = TYPE_SPAPR_MACHINE,
4584     .parent        = TYPE_MACHINE,
4585     .abstract      = true,
4586     .instance_size = sizeof(SpaprMachineState),
4587     .instance_init = spapr_instance_init,
4588     .instance_finalize = spapr_machine_finalizefn,
4589     .class_size    = sizeof(SpaprMachineClass),
4590     .class_init    = spapr_machine_class_init,
4591     .interfaces = (InterfaceInfo[]) {
4592         { TYPE_FW_PATH_PROVIDER },
4593         { TYPE_NMI },
4594         { TYPE_HOTPLUG_HANDLER },
4595         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4596         { TYPE_XICS_FABRIC },
4597         { TYPE_INTERRUPT_STATS_PROVIDER },
4598         { TYPE_XIVE_FABRIC },
4599         { }
4600     },
4601 };
4602 
4603 static void spapr_machine_latest_class_options(MachineClass *mc)
4604 {
4605     mc->alias = "pseries";
4606     mc->is_default = true;
4607 }
4608 
4609 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4610     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4611                                                     void *data)      \
4612     {                                                                \
4613         MachineClass *mc = MACHINE_CLASS(oc);                        \
4614         spapr_machine_##suffix##_class_options(mc);                  \
4615         if (latest) {                                                \
4616             spapr_machine_latest_class_options(mc);                  \
4617         }                                                            \
4618     }                                                                \
4619     static const TypeInfo spapr_machine_##suffix##_info = {          \
4620         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4621         .parent = TYPE_SPAPR_MACHINE,                                \
4622         .class_init = spapr_machine_##suffix##_class_init,           \
4623     };                                                               \
4624     static void spapr_machine_register_##suffix(void)                \
4625     {                                                                \
4626         type_register(&spapr_machine_##suffix##_info);               \
4627     }                                                                \
4628     type_init(spapr_machine_register_##suffix)
4629 
4630 /*
4631  * pseries-6.1
4632  */
4633 static void spapr_machine_6_1_class_options(MachineClass *mc)
4634 {
4635     /* Defaults for the latest behaviour inherited from the base class */
4636 }
4637 
4638 DEFINE_SPAPR_MACHINE(6_1, "6.1", true);
4639 
4640 /*
4641  * pseries-6.0
4642  */
4643 static void spapr_machine_6_0_class_options(MachineClass *mc)
4644 {
4645     spapr_machine_6_1_class_options(mc);
4646     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4647 }
4648 
4649 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4650 
4651 /*
4652  * pseries-5.2
4653  */
4654 static void spapr_machine_5_2_class_options(MachineClass *mc)
4655 {
4656     spapr_machine_6_0_class_options(mc);
4657     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4658 }
4659 
4660 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4661 
4662 /*
4663  * pseries-5.1
4664  */
4665 static void spapr_machine_5_1_class_options(MachineClass *mc)
4666 {
4667     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4668 
4669     spapr_machine_5_2_class_options(mc);
4670     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4671     smc->pre_5_2_numa_associativity = true;
4672 }
4673 
4674 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4675 
4676 /*
4677  * pseries-5.0
4678  */
4679 static void spapr_machine_5_0_class_options(MachineClass *mc)
4680 {
4681     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4682     static GlobalProperty compat[] = {
4683         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4684     };
4685 
4686     spapr_machine_5_1_class_options(mc);
4687     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4688     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4689     mc->numa_mem_supported = true;
4690     smc->pre_5_1_assoc_refpoints = true;
4691 }
4692 
4693 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4694 
4695 /*
4696  * pseries-4.2
4697  */
4698 static void spapr_machine_4_2_class_options(MachineClass *mc)
4699 {
4700     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4701 
4702     spapr_machine_5_0_class_options(mc);
4703     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4704     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4705     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4706     smc->rma_limit = 16 * GiB;
4707     mc->nvdimm_supported = false;
4708 }
4709 
4710 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4711 
4712 /*
4713  * pseries-4.1
4714  */
4715 static void spapr_machine_4_1_class_options(MachineClass *mc)
4716 {
4717     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4718     static GlobalProperty compat[] = {
4719         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4720         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4721     };
4722 
4723     spapr_machine_4_2_class_options(mc);
4724     smc->linux_pci_probe = false;
4725     smc->smp_threads_vsmt = false;
4726     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4727     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4728 }
4729 
4730 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4731 
4732 /*
4733  * pseries-4.0
4734  */
4735 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4736                               uint64_t *buid, hwaddr *pio,
4737                               hwaddr *mmio32, hwaddr *mmio64,
4738                               unsigned n_dma, uint32_t *liobns,
4739                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4740 {
4741     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4742                              liobns, nv2gpa, nv2atsd, errp)) {
4743         return false;
4744     }
4745 
4746     *nv2gpa = 0;
4747     *nv2atsd = 0;
4748     return true;
4749 }
4750 static void spapr_machine_4_0_class_options(MachineClass *mc)
4751 {
4752     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4753 
4754     spapr_machine_4_1_class_options(mc);
4755     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4756     smc->phb_placement = phb_placement_4_0;
4757     smc->irq = &spapr_irq_xics;
4758     smc->pre_4_1_migration = true;
4759 }
4760 
4761 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4762 
4763 /*
4764  * pseries-3.1
4765  */
4766 static void spapr_machine_3_1_class_options(MachineClass *mc)
4767 {
4768     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4769 
4770     spapr_machine_4_0_class_options(mc);
4771     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4772 
4773     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4774     smc->update_dt_enabled = false;
4775     smc->dr_phb_enabled = false;
4776     smc->broken_host_serial_model = true;
4777     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4778     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4779     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4780     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4781 }
4782 
4783 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4784 
4785 /*
4786  * pseries-3.0
4787  */
4788 
4789 static void spapr_machine_3_0_class_options(MachineClass *mc)
4790 {
4791     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4792 
4793     spapr_machine_3_1_class_options(mc);
4794     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4795 
4796     smc->legacy_irq_allocation = true;
4797     smc->nr_xirqs = 0x400;
4798     smc->irq = &spapr_irq_xics_legacy;
4799 }
4800 
4801 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4802 
4803 /*
4804  * pseries-2.12
4805  */
4806 static void spapr_machine_2_12_class_options(MachineClass *mc)
4807 {
4808     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4809     static GlobalProperty compat[] = {
4810         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4811         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4812     };
4813 
4814     spapr_machine_3_0_class_options(mc);
4815     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4816     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4817 
4818     /* We depend on kvm_enabled() to choose a default value for the
4819      * hpt-max-page-size capability. Of course we can't do it here
4820      * because this is too early and the HW accelerator isn't initialzed
4821      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4822      */
4823     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4824 }
4825 
4826 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4827 
4828 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4829 {
4830     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4831 
4832     spapr_machine_2_12_class_options(mc);
4833     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4834     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4835     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4836 }
4837 
4838 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4839 
4840 /*
4841  * pseries-2.11
4842  */
4843 
4844 static void spapr_machine_2_11_class_options(MachineClass *mc)
4845 {
4846     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4847 
4848     spapr_machine_2_12_class_options(mc);
4849     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4850     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4851 }
4852 
4853 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4854 
4855 /*
4856  * pseries-2.10
4857  */
4858 
4859 static void spapr_machine_2_10_class_options(MachineClass *mc)
4860 {
4861     spapr_machine_2_11_class_options(mc);
4862     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4863 }
4864 
4865 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4866 
4867 /*
4868  * pseries-2.9
4869  */
4870 
4871 static void spapr_machine_2_9_class_options(MachineClass *mc)
4872 {
4873     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4874     static GlobalProperty compat[] = {
4875         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4876     };
4877 
4878     spapr_machine_2_10_class_options(mc);
4879     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4880     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4881     smc->pre_2_10_has_unused_icps = true;
4882     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4883 }
4884 
4885 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4886 
4887 /*
4888  * pseries-2.8
4889  */
4890 
4891 static void spapr_machine_2_8_class_options(MachineClass *mc)
4892 {
4893     static GlobalProperty compat[] = {
4894         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4895     };
4896 
4897     spapr_machine_2_9_class_options(mc);
4898     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4899     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4900     mc->numa_mem_align_shift = 23;
4901 }
4902 
4903 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4904 
4905 /*
4906  * pseries-2.7
4907  */
4908 
4909 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4910                               uint64_t *buid, hwaddr *pio,
4911                               hwaddr *mmio32, hwaddr *mmio64,
4912                               unsigned n_dma, uint32_t *liobns,
4913                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4914 {
4915     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4916     const uint64_t base_buid = 0x800000020000000ULL;
4917     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4918     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4919     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4920     const uint32_t max_index = 255;
4921     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4922 
4923     uint64_t ram_top = MACHINE(spapr)->ram_size;
4924     hwaddr phb0_base, phb_base;
4925     int i;
4926 
4927     /* Do we have device memory? */
4928     if (MACHINE(spapr)->maxram_size > ram_top) {
4929         /* Can't just use maxram_size, because there may be an
4930          * alignment gap between normal and device memory regions
4931          */
4932         ram_top = MACHINE(spapr)->device_memory->base +
4933             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4934     }
4935 
4936     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4937 
4938     if (index > max_index) {
4939         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4940                    max_index);
4941         return false;
4942     }
4943 
4944     *buid = base_buid + index;
4945     for (i = 0; i < n_dma; ++i) {
4946         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4947     }
4948 
4949     phb_base = phb0_base + index * phb_spacing;
4950     *pio = phb_base + pio_offset;
4951     *mmio32 = phb_base + mmio_offset;
4952     /*
4953      * We don't set the 64-bit MMIO window, relying on the PHB's
4954      * fallback behaviour of automatically splitting a large "32-bit"
4955      * window into contiguous 32-bit and 64-bit windows
4956      */
4957 
4958     *nv2gpa = 0;
4959     *nv2atsd = 0;
4960     return true;
4961 }
4962 
4963 static void spapr_machine_2_7_class_options(MachineClass *mc)
4964 {
4965     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4966     static GlobalProperty compat[] = {
4967         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4968         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4969         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4970         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4971     };
4972 
4973     spapr_machine_2_8_class_options(mc);
4974     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4975     mc->default_machine_opts = "modern-hotplug-events=off";
4976     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4977     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4978     smc->phb_placement = phb_placement_2_7;
4979 }
4980 
4981 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4982 
4983 /*
4984  * pseries-2.6
4985  */
4986 
4987 static void spapr_machine_2_6_class_options(MachineClass *mc)
4988 {
4989     static GlobalProperty compat[] = {
4990         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4991     };
4992 
4993     spapr_machine_2_7_class_options(mc);
4994     mc->has_hotpluggable_cpus = false;
4995     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4996     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4997 }
4998 
4999 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5000 
5001 /*
5002  * pseries-2.5
5003  */
5004 
5005 static void spapr_machine_2_5_class_options(MachineClass *mc)
5006 {
5007     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5008     static GlobalProperty compat[] = {
5009         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5010     };
5011 
5012     spapr_machine_2_6_class_options(mc);
5013     smc->use_ohci_by_default = true;
5014     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5015     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5016 }
5017 
5018 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5019 
5020 /*
5021  * pseries-2.4
5022  */
5023 
5024 static void spapr_machine_2_4_class_options(MachineClass *mc)
5025 {
5026     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5027 
5028     spapr_machine_2_5_class_options(mc);
5029     smc->dr_lmb_enabled = false;
5030     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5031 }
5032 
5033 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5034 
5035 /*
5036  * pseries-2.3
5037  */
5038 
5039 static void spapr_machine_2_3_class_options(MachineClass *mc)
5040 {
5041     static GlobalProperty compat[] = {
5042         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5043     };
5044     spapr_machine_2_4_class_options(mc);
5045     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5046     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5047 }
5048 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5049 
5050 /*
5051  * pseries-2.2
5052  */
5053 
5054 static void spapr_machine_2_2_class_options(MachineClass *mc)
5055 {
5056     static GlobalProperty compat[] = {
5057         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5058     };
5059 
5060     spapr_machine_2_3_class_options(mc);
5061     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5062     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5063     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5064 }
5065 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5066 
5067 /*
5068  * pseries-2.1
5069  */
5070 
5071 static void spapr_machine_2_1_class_options(MachineClass *mc)
5072 {
5073     spapr_machine_2_2_class_options(mc);
5074     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5075 }
5076 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5077 
5078 static void spapr_machine_register_types(void)
5079 {
5080     type_register_static(&spapr_machine_info);
5081 }
5082 
5083 type_init(spapr_machine_register_types)
5084