1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_nested.h" 65 #include "hw/ppc/spapr_vio.h" 66 #include "hw/ppc/vof.h" 67 #include "hw/qdev-properties.h" 68 #include "hw/pci-host/spapr.h" 69 #include "hw/pci/msi.h" 70 71 #include "hw/pci/pci.h" 72 #include "hw/scsi/scsi.h" 73 #include "hw/virtio/virtio-scsi.h" 74 #include "hw/virtio/vhost-scsi-common.h" 75 76 #include "exec/ram_addr.h" 77 #include "hw/usb.h" 78 #include "qemu/config-file.h" 79 #include "qemu/error-report.h" 80 #include "trace.h" 81 #include "hw/nmi.h" 82 #include "hw/intc/intc.h" 83 84 #include "hw/ppc/spapr_cpu_core.h" 85 #include "hw/mem/memory-device.h" 86 #include "hw/ppc/spapr_tpm_proxy.h" 87 #include "hw/ppc/spapr_nvdimm.h" 88 #include "hw/ppc/spapr_numa.h" 89 #include "hw/ppc/pef.h" 90 91 #include "monitor/monitor.h" 92 93 #include <libfdt.h> 94 95 /* SLOF memory layout: 96 * 97 * SLOF raw image loaded at 0, copies its romfs right below the flat 98 * device-tree, then position SLOF itself 31M below that 99 * 100 * So we set FW_OVERHEAD to 40MB which should account for all of that 101 * and more 102 * 103 * We load our kernel at 4M, leaving space for SLOF initial image 104 */ 105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 106 #define FW_MAX_SIZE 0x400000 107 #define FW_FILE_NAME "slof.bin" 108 #define FW_FILE_NAME_VOF "vof.bin" 109 #define FW_OVERHEAD 0x2800000 110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 111 112 #define MIN_RMA_SLOF (128 * MiB) 113 114 #define PHANDLE_INTC 0x00001111 115 116 /* These two functions implement the VCPU id numbering: one to compute them 117 * all and one to identify thread 0 of a VCORE. Any change to the first one 118 * is likely to have an impact on the second one, so let's keep them close. 119 */ 120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 121 { 122 MachineState *ms = MACHINE(spapr); 123 unsigned int smp_threads = ms->smp.threads; 124 125 assert(spapr->vsmt); 126 return 127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 128 } 129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 130 PowerPCCPU *cpu) 131 { 132 assert(spapr->vsmt); 133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 134 } 135 136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 137 { 138 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 139 * and newer QEMUs don't even have them. In both cases, we don't want 140 * to send anything on the wire. 141 */ 142 return false; 143 } 144 145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 146 .name = "icp/server", 147 .version_id = 1, 148 .minimum_version_id = 1, 149 .needed = pre_2_10_vmstate_dummy_icp_needed, 150 .fields = (VMStateField[]) { 151 VMSTATE_UNUSED(4), /* uint32_t xirr */ 152 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 153 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 154 VMSTATE_END_OF_LIST() 155 }, 156 }; 157 158 static void pre_2_10_vmstate_register_dummy_icp(int i) 159 { 160 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 161 (void *)(uintptr_t) i); 162 } 163 164 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 165 { 166 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 167 (void *)(uintptr_t) i); 168 } 169 170 int spapr_max_server_number(SpaprMachineState *spapr) 171 { 172 MachineState *ms = MACHINE(spapr); 173 174 assert(spapr->vsmt); 175 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 176 } 177 178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 179 int smt_threads) 180 { 181 int i, ret = 0; 182 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 183 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 184 int index = spapr_get_vcpu_id(cpu); 185 186 if (cpu->compat_pvr) { 187 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 188 if (ret < 0) { 189 return ret; 190 } 191 } 192 193 /* Build interrupt servers and gservers properties */ 194 for (i = 0; i < smt_threads; i++) { 195 servers_prop[i] = cpu_to_be32(index + i); 196 /* Hack, direct the group queues back to cpu 0 */ 197 gservers_prop[i*2] = cpu_to_be32(index + i); 198 gservers_prop[i*2 + 1] = 0; 199 } 200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 201 servers_prop, sizeof(*servers_prop) * smt_threads); 202 if (ret < 0) { 203 return ret; 204 } 205 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 206 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 207 208 return ret; 209 } 210 211 static void spapr_dt_pa_features(SpaprMachineState *spapr, 212 PowerPCCPU *cpu, 213 void *fdt, int offset) 214 { 215 uint8_t pa_features_206[] = { 6, 0, 216 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 217 uint8_t pa_features_207[] = { 24, 0, 218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 219 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 222 uint8_t pa_features_300[] = { 66, 0, 223 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 224 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 225 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 226 /* 6: DS207 */ 227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 228 /* 16: Vector */ 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 230 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 232 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 234 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 235 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 236 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 238 /* 42: PM, 44: PC RA, 46: SC vec'd */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 240 /* 48: SIMD, 50: QP BFP, 52: String */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 242 /* 54: DecFP, 56: DecI, 58: SHA */ 243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 244 /* 60: NM atomic, 62: RNG */ 245 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 246 }; 247 uint8_t *pa_features = NULL; 248 size_t pa_size; 249 250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 251 pa_features = pa_features_206; 252 pa_size = sizeof(pa_features_206); 253 } 254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 255 pa_features = pa_features_207; 256 pa_size = sizeof(pa_features_207); 257 } 258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 259 pa_features = pa_features_300; 260 pa_size = sizeof(pa_features_300); 261 } 262 if (!pa_features) { 263 return; 264 } 265 266 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 267 /* 268 * Note: we keep CI large pages off by default because a 64K capable 269 * guest provisioned with large pages might otherwise try to map a qemu 270 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 271 * even if that qemu runs on a 4k host. 272 * We dd this bit back here if we are confident this is not an issue 273 */ 274 pa_features[3] |= 0x20; 275 } 276 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 277 pa_features[24] |= 0x80; /* Transactional memory support */ 278 } 279 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 280 /* Workaround for broken kernels that attempt (guest) radix 281 * mode when they can't handle it, if they see the radix bit set 282 * in pa-features. So hide it from them. */ 283 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 284 } 285 286 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 287 } 288 289 static hwaddr spapr_node0_size(MachineState *machine) 290 { 291 if (machine->numa_state->num_nodes) { 292 int i; 293 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 294 if (machine->numa_state->nodes[i].node_mem) { 295 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 296 machine->ram_size); 297 } 298 } 299 } 300 return machine->ram_size; 301 } 302 303 static void add_str(GString *s, const gchar *s1) 304 { 305 g_string_append_len(s, s1, strlen(s1) + 1); 306 } 307 308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 309 hwaddr start, hwaddr size) 310 { 311 char mem_name[32]; 312 uint64_t mem_reg_property[2]; 313 int off; 314 315 mem_reg_property[0] = cpu_to_be64(start); 316 mem_reg_property[1] = cpu_to_be64(size); 317 318 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 319 off = fdt_add_subnode(fdt, 0, mem_name); 320 _FDT(off); 321 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 322 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 323 sizeof(mem_reg_property)))); 324 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 325 return off; 326 } 327 328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 329 { 330 MemoryDeviceInfoList *info; 331 332 for (info = list; info; info = info->next) { 333 MemoryDeviceInfo *value = info->value; 334 335 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 336 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 337 338 if (addr >= pcdimm_info->addr && 339 addr < (pcdimm_info->addr + pcdimm_info->size)) { 340 return pcdimm_info->node; 341 } 342 } 343 } 344 345 return -1; 346 } 347 348 struct sPAPRDrconfCellV2 { 349 uint32_t seq_lmbs; 350 uint64_t base_addr; 351 uint32_t drc_index; 352 uint32_t aa_index; 353 uint32_t flags; 354 } QEMU_PACKED; 355 356 typedef struct DrconfCellQueue { 357 struct sPAPRDrconfCellV2 cell; 358 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 359 } DrconfCellQueue; 360 361 static DrconfCellQueue * 362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 363 uint32_t drc_index, uint32_t aa_index, 364 uint32_t flags) 365 { 366 DrconfCellQueue *elem; 367 368 elem = g_malloc0(sizeof(*elem)); 369 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 370 elem->cell.base_addr = cpu_to_be64(base_addr); 371 elem->cell.drc_index = cpu_to_be32(drc_index); 372 elem->cell.aa_index = cpu_to_be32(aa_index); 373 elem->cell.flags = cpu_to_be32(flags); 374 375 return elem; 376 } 377 378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 379 int offset, MemoryDeviceInfoList *dimms) 380 { 381 MachineState *machine = MACHINE(spapr); 382 uint8_t *int_buf, *cur_index; 383 int ret; 384 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 385 uint64_t addr, cur_addr, size; 386 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 387 uint64_t mem_end = machine->device_memory->base + 388 memory_region_size(&machine->device_memory->mr); 389 uint32_t node, buf_len, nr_entries = 0; 390 SpaprDrc *drc; 391 DrconfCellQueue *elem, *next; 392 MemoryDeviceInfoList *info; 393 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 394 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 395 396 /* Entry to cover RAM and the gap area */ 397 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 398 SPAPR_LMB_FLAGS_RESERVED | 399 SPAPR_LMB_FLAGS_DRC_INVALID); 400 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 401 nr_entries++; 402 403 cur_addr = machine->device_memory->base; 404 for (info = dimms; info; info = info->next) { 405 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 406 407 addr = di->addr; 408 size = di->size; 409 node = di->node; 410 411 /* 412 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 413 * area is marked hotpluggable in the next iteration for the bigger 414 * chunk including the NVDIMM occupied area. 415 */ 416 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 417 continue; 418 419 /* Entry for hot-pluggable area */ 420 if (cur_addr < addr) { 421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 422 g_assert(drc); 423 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 424 cur_addr, spapr_drc_index(drc), -1, 0); 425 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 426 nr_entries++; 427 } 428 429 /* Entry for DIMM */ 430 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 431 g_assert(drc); 432 elem = spapr_get_drconf_cell(size / lmb_size, addr, 433 spapr_drc_index(drc), node, 434 (SPAPR_LMB_FLAGS_ASSIGNED | 435 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 436 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 437 nr_entries++; 438 cur_addr = addr + size; 439 } 440 441 /* Entry for remaining hotpluggable area */ 442 if (cur_addr < mem_end) { 443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 444 g_assert(drc); 445 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 446 cur_addr, spapr_drc_index(drc), -1, 0); 447 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 448 nr_entries++; 449 } 450 451 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 452 int_buf = cur_index = g_malloc0(buf_len); 453 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 454 cur_index += sizeof(nr_entries); 455 456 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 457 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 458 cur_index += sizeof(elem->cell); 459 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 460 g_free(elem); 461 } 462 463 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 464 g_free(int_buf); 465 if (ret < 0) { 466 return -1; 467 } 468 return 0; 469 } 470 471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 472 int offset, MemoryDeviceInfoList *dimms) 473 { 474 MachineState *machine = MACHINE(spapr); 475 int i, ret; 476 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 477 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 478 uint32_t nr_lmbs = (machine->device_memory->base + 479 memory_region_size(&machine->device_memory->mr)) / 480 lmb_size; 481 uint32_t *int_buf, *cur_index, buf_len; 482 483 /* 484 * Allocate enough buffer size to fit in ibm,dynamic-memory 485 */ 486 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 487 cur_index = int_buf = g_malloc0(buf_len); 488 int_buf[0] = cpu_to_be32(nr_lmbs); 489 cur_index++; 490 for (i = 0; i < nr_lmbs; i++) { 491 uint64_t addr = i * lmb_size; 492 uint32_t *dynamic_memory = cur_index; 493 494 if (i >= device_lmb_start) { 495 SpaprDrc *drc; 496 497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 498 g_assert(drc); 499 500 dynamic_memory[0] = cpu_to_be32(addr >> 32); 501 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 502 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 503 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 504 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 505 if (memory_region_present(get_system_memory(), addr)) { 506 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 507 } else { 508 dynamic_memory[5] = cpu_to_be32(0); 509 } 510 } else { 511 /* 512 * LMB information for RMA, boot time RAM and gap b/n RAM and 513 * device memory region -- all these are marked as reserved 514 * and as having no valid DRC. 515 */ 516 dynamic_memory[0] = cpu_to_be32(addr >> 32); 517 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 518 dynamic_memory[2] = cpu_to_be32(0); 519 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 520 dynamic_memory[4] = cpu_to_be32(-1); 521 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 522 SPAPR_LMB_FLAGS_DRC_INVALID); 523 } 524 525 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 526 } 527 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 528 g_free(int_buf); 529 if (ret < 0) { 530 return -1; 531 } 532 return 0; 533 } 534 535 /* 536 * Adds ibm,dynamic-reconfiguration-memory node. 537 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 538 * of this device tree node. 539 */ 540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 541 void *fdt) 542 { 543 MachineState *machine = MACHINE(spapr); 544 int ret, offset; 545 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 546 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 547 cpu_to_be32(lmb_size & 0xffffffff)}; 548 MemoryDeviceInfoList *dimms = NULL; 549 550 /* Don't create the node if there is no device memory. */ 551 if (!machine->device_memory) { 552 return 0; 553 } 554 555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 556 557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 558 sizeof(prop_lmb_size)); 559 if (ret < 0) { 560 return ret; 561 } 562 563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 564 if (ret < 0) { 565 return ret; 566 } 567 568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 569 if (ret < 0) { 570 return ret; 571 } 572 573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 574 dimms = qmp_memory_device_list(); 575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 577 } else { 578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 579 } 580 qapi_free_MemoryDeviceInfoList(dimms); 581 582 if (ret < 0) { 583 return ret; 584 } 585 586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 587 588 return ret; 589 } 590 591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 592 { 593 MachineState *machine = MACHINE(spapr); 594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 595 hwaddr mem_start, node_size; 596 int i, nb_nodes = machine->numa_state->num_nodes; 597 NodeInfo *nodes = machine->numa_state->nodes; 598 599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 600 if (!nodes[i].node_mem) { 601 continue; 602 } 603 if (mem_start >= machine->ram_size) { 604 node_size = 0; 605 } else { 606 node_size = nodes[i].node_mem; 607 if (node_size > machine->ram_size - mem_start) { 608 node_size = machine->ram_size - mem_start; 609 } 610 } 611 if (!mem_start) { 612 /* spapr_machine_init() checks for rma_size <= node0_size 613 * already */ 614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 615 mem_start += spapr->rma_size; 616 node_size -= spapr->rma_size; 617 } 618 for ( ; node_size; ) { 619 hwaddr sizetmp = pow2floor(node_size); 620 621 /* mem_start != 0 here */ 622 if (ctzl(mem_start) < ctzl(sizetmp)) { 623 sizetmp = 1ULL << ctzl(mem_start); 624 } 625 626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 627 node_size -= sizetmp; 628 mem_start += sizetmp; 629 } 630 } 631 632 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 634 int ret; 635 636 g_assert(smc->dr_lmb_enabled); 637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 638 if (ret) { 639 return ret; 640 } 641 } 642 643 return 0; 644 } 645 646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 647 SpaprMachineState *spapr) 648 { 649 MachineState *ms = MACHINE(spapr); 650 PowerPCCPU *cpu = POWERPC_CPU(cs); 651 CPUPPCState *env = &cpu->env; 652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 653 int index = spapr_get_vcpu_id(cpu); 654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 655 0xffffffff, 0xffffffff}; 656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 657 : SPAPR_TIMEBASE_FREQ; 658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 659 uint32_t page_sizes_prop[64]; 660 size_t page_sizes_prop_size; 661 unsigned int smp_threads = ms->smp.threads; 662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 665 SpaprDrc *drc; 666 int drc_index; 667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 668 int i; 669 670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 671 if (drc) { 672 drc_index = spapr_drc_index(drc); 673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 674 } 675 676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 678 679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 681 env->dcache_line_size))); 682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 683 env->dcache_line_size))); 684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 685 env->icache_line_size))); 686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 687 env->icache_line_size))); 688 689 if (pcc->l1_dcache_size) { 690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 691 pcc->l1_dcache_size))); 692 } else { 693 warn_report("Unknown L1 dcache size for cpu"); 694 } 695 if (pcc->l1_icache_size) { 696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 697 pcc->l1_icache_size))); 698 } else { 699 warn_report("Unknown L1 icache size for cpu"); 700 } 701 702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 708 709 if (ppc_has_spr(cpu, SPR_PURR)) { 710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 711 } 712 if (ppc_has_spr(cpu, SPR_PURR)) { 713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 714 } 715 716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 718 segs, sizeof(segs)))); 719 } 720 721 /* Advertise VSX (vector extensions) if available 722 * 1 == VMX / Altivec available 723 * 2 == VSX available 724 * 725 * Only CPUs for which we create core types in spapr_cpu_core.c 726 * are possible, and all of those have VMX */ 727 if (env->insns_flags & PPC_ALTIVEC) { 728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 730 } else { 731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 732 } 733 } 734 735 /* Advertise DFP (Decimal Floating Point) if available 736 * 0 / no property == no DFP 737 * 1 == DFP available */ 738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 740 } 741 742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 743 sizeof(page_sizes_prop)); 744 if (page_sizes_prop_size) { 745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 746 page_sizes_prop, page_sizes_prop_size))); 747 } 748 749 spapr_dt_pa_features(spapr, cpu, fdt, offset); 750 751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 752 cs->cpu_index / vcpus_per_socket))); 753 754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 755 pft_size_prop, sizeof(pft_size_prop)))); 756 757 if (ms->numa_state->num_nodes > 1) { 758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 759 } 760 761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 762 763 if (pcc->radix_page_info) { 764 for (i = 0; i < pcc->radix_page_info->count; i++) { 765 radix_AP_encodings[i] = 766 cpu_to_be32(pcc->radix_page_info->entries[i]); 767 } 768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 769 radix_AP_encodings, 770 pcc->radix_page_info->count * 771 sizeof(radix_AP_encodings[0])))); 772 } 773 774 /* 775 * We set this property to let the guest know that it can use the large 776 * decrementer and its width in bits. 777 */ 778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 780 pcc->lrg_decr_bits))); 781 } 782 783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 784 { 785 CPUState **rev; 786 CPUState *cs; 787 int n_cpus; 788 int cpus_offset; 789 int i; 790 791 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 792 _FDT(cpus_offset); 793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 795 796 /* 797 * We walk the CPUs in reverse order to ensure that CPU DT nodes 798 * created by fdt_add_subnode() end up in the right order in FDT 799 * for the guest kernel the enumerate the CPUs correctly. 800 * 801 * The CPU list cannot be traversed in reverse order, so we need 802 * to do extra work. 803 */ 804 n_cpus = 0; 805 rev = NULL; 806 CPU_FOREACH(cs) { 807 rev = g_renew(CPUState *, rev, n_cpus + 1); 808 rev[n_cpus++] = cs; 809 } 810 811 for (i = n_cpus - 1; i >= 0; i--) { 812 CPUState *cs = rev[i]; 813 PowerPCCPU *cpu = POWERPC_CPU(cs); 814 int index = spapr_get_vcpu_id(cpu); 815 DeviceClass *dc = DEVICE_GET_CLASS(cs); 816 g_autofree char *nodename = NULL; 817 int offset; 818 819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 820 continue; 821 } 822 823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 824 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 825 _FDT(offset); 826 spapr_dt_cpu(cs, fdt, offset, spapr); 827 } 828 829 g_free(rev); 830 } 831 832 static int spapr_dt_rng(void *fdt) 833 { 834 int node; 835 int ret; 836 837 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 838 if (node <= 0) { 839 return -1; 840 } 841 ret = fdt_setprop_string(fdt, node, "device_type", 842 "ibm,platform-facilities"); 843 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 844 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 845 846 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 847 if (node <= 0) { 848 return -1; 849 } 850 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 851 852 return ret ? -1 : 0; 853 } 854 855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 856 { 857 MachineState *ms = MACHINE(spapr); 858 int rtas; 859 GString *hypertas = g_string_sized_new(256); 860 GString *qemu_hypertas = g_string_sized_new(256); 861 uint32_t lrdr_capacity[] = { 862 0, 863 0, 864 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 865 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 866 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 867 }; 868 869 /* Do we have device memory? */ 870 if (MACHINE(spapr)->device_memory) { 871 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 872 memory_region_size(&MACHINE(spapr)->device_memory->mr); 873 874 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 875 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 876 } 877 878 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 879 880 /* hypertas */ 881 add_str(hypertas, "hcall-pft"); 882 add_str(hypertas, "hcall-term"); 883 add_str(hypertas, "hcall-dabr"); 884 add_str(hypertas, "hcall-interrupt"); 885 add_str(hypertas, "hcall-tce"); 886 add_str(hypertas, "hcall-vio"); 887 add_str(hypertas, "hcall-splpar"); 888 add_str(hypertas, "hcall-join"); 889 add_str(hypertas, "hcall-bulk"); 890 add_str(hypertas, "hcall-set-mode"); 891 add_str(hypertas, "hcall-sprg0"); 892 add_str(hypertas, "hcall-copy"); 893 add_str(hypertas, "hcall-debug"); 894 add_str(hypertas, "hcall-vphn"); 895 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 896 add_str(hypertas, "hcall-rpt-invalidate"); 897 } 898 899 add_str(qemu_hypertas, "hcall-memop1"); 900 901 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 902 add_str(hypertas, "hcall-multi-tce"); 903 } 904 905 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 906 add_str(hypertas, "hcall-hpt-resize"); 907 } 908 909 add_str(hypertas, "hcall-watchdog"); 910 911 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 912 hypertas->str, hypertas->len)); 913 g_string_free(hypertas, TRUE); 914 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 915 qemu_hypertas->str, qemu_hypertas->len)); 916 g_string_free(qemu_hypertas, TRUE); 917 918 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 919 920 /* 921 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 922 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 923 * 924 * The system reset requirements are driven by existing Linux and PowerVM 925 * implementation which (contrary to PAPR) saves r3 in the error log 926 * structure like machine check, so Linux expects to find the saved r3 927 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 928 * does not look at the error value). 929 * 930 * System reset interrupts are not subject to interlock like machine 931 * check, so this memory area could be corrupted if the sreset is 932 * interrupted by a machine check (or vice versa) if it was shared. To 933 * prevent this, system reset uses per-CPU areas for the sreset save 934 * area. A system reset that interrupts a system reset handler could 935 * still overwrite this area, but Linux doesn't try to recover in that 936 * case anyway. 937 * 938 * The extra 8 bytes is required because Linux's FWNMI error log check 939 * is off-by-one. 940 * 941 * RTAS_MIN_SIZE is required for the RTAS blob itself. 942 */ 943 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 944 RTAS_ERROR_LOG_MAX + 945 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 946 sizeof(uint64_t))); 947 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 948 RTAS_ERROR_LOG_MAX)); 949 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 950 RTAS_EVENT_SCAN_RATE)); 951 952 g_assert(msi_nonbroken); 953 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 954 955 /* 956 * According to PAPR, rtas ibm,os-term does not guarantee a return 957 * back to the guest cpu. 958 * 959 * While an additional ibm,extended-os-term property indicates 960 * that rtas call return will always occur. Set this property. 961 */ 962 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 963 964 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 965 lrdr_capacity, sizeof(lrdr_capacity))); 966 967 spapr_dt_rtas_tokens(fdt, rtas); 968 } 969 970 /* 971 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 972 * and the XIVE features that the guest may request and thus the valid 973 * values for bytes 23..26 of option vector 5: 974 */ 975 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 976 int chosen) 977 { 978 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 979 980 char val[2 * 4] = { 981 23, 0x00, /* XICS / XIVE mode */ 982 24, 0x00, /* Hash/Radix, filled in below. */ 983 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 984 26, 0x40, /* Radix options: GTSE == yes. */ 985 }; 986 987 if (spapr->irq->xics && spapr->irq->xive) { 988 val[1] = SPAPR_OV5_XIVE_BOTH; 989 } else if (spapr->irq->xive) { 990 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 991 } else { 992 assert(spapr->irq->xics); 993 val[1] = SPAPR_OV5_XIVE_LEGACY; 994 } 995 996 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 997 first_ppc_cpu->compat_pvr)) { 998 /* 999 * If we're in a pre POWER9 compat mode then the guest should 1000 * do hash and use the legacy interrupt mode 1001 */ 1002 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1003 val[3] = 0x00; /* Hash */ 1004 spapr_check_mmu_mode(false); 1005 } else if (kvm_enabled()) { 1006 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1007 val[3] = 0x80; /* OV5_MMU_BOTH */ 1008 } else if (kvmppc_has_cap_mmu_radix()) { 1009 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1010 } else { 1011 val[3] = 0x00; /* Hash */ 1012 } 1013 } else { 1014 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1015 val[3] = 0xC0; 1016 } 1017 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1018 val, sizeof(val))); 1019 } 1020 1021 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1022 { 1023 MachineState *machine = MACHINE(spapr); 1024 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1025 int chosen; 1026 1027 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1028 1029 if (reset) { 1030 const char *boot_device = spapr->boot_device; 1031 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1032 size_t cb = 0; 1033 g_autofree char *bootlist = get_boot_devices_list(&cb); 1034 1035 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1036 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1037 machine->kernel_cmdline)); 1038 } 1039 1040 if (spapr->initrd_size) { 1041 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1042 spapr->initrd_base)); 1043 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1044 spapr->initrd_base + spapr->initrd_size)); 1045 } 1046 1047 if (spapr->kernel_size) { 1048 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1049 cpu_to_be64(spapr->kernel_size) }; 1050 1051 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1052 &kprop, sizeof(kprop))); 1053 if (spapr->kernel_le) { 1054 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1055 } 1056 } 1057 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1058 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1059 } 1060 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1061 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1062 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1063 1064 if (cb && bootlist) { 1065 int i; 1066 1067 for (i = 0; i < cb; i++) { 1068 if (bootlist[i] == '\n') { 1069 bootlist[i] = ' '; 1070 } 1071 } 1072 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1073 } 1074 1075 if (boot_device && strlen(boot_device)) { 1076 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1077 } 1078 1079 if (spapr->want_stdout_path && stdout_path) { 1080 /* 1081 * "linux,stdout-path" and "stdout" properties are 1082 * deprecated by linux kernel. New platforms should only 1083 * use the "stdout-path" property. Set the new property 1084 * and continue using older property to remain compatible 1085 * with the existing firmware. 1086 */ 1087 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1088 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1089 } 1090 1091 /* 1092 * We can deal with BAR reallocation just fine, advertise it 1093 * to the guest 1094 */ 1095 if (smc->linux_pci_probe) { 1096 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1097 } 1098 1099 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1100 } 1101 1102 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); 1103 1104 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1105 } 1106 1107 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1108 { 1109 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1110 * KVM to work under pHyp with some guest co-operation */ 1111 int hypervisor; 1112 uint8_t hypercall[16]; 1113 1114 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1115 /* indicate KVM hypercall interface */ 1116 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1117 if (kvmppc_has_cap_fixup_hcalls()) { 1118 /* 1119 * Older KVM versions with older guest kernels were broken 1120 * with the magic page, don't allow the guest to map it. 1121 */ 1122 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1123 sizeof(hypercall))) { 1124 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1125 hypercall, sizeof(hypercall))); 1126 } 1127 } 1128 } 1129 1130 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1131 { 1132 MachineState *machine = MACHINE(spapr); 1133 MachineClass *mc = MACHINE_GET_CLASS(machine); 1134 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1135 uint32_t root_drc_type_mask = 0; 1136 int ret; 1137 void *fdt; 1138 SpaprPhbState *phb; 1139 char *buf; 1140 1141 fdt = g_malloc0(space); 1142 _FDT((fdt_create_empty_tree(fdt, space))); 1143 1144 /* Root node */ 1145 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1146 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1147 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1148 1149 /* Guest UUID & Name*/ 1150 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1151 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1152 if (qemu_uuid_set) { 1153 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1154 } 1155 g_free(buf); 1156 1157 if (qemu_get_vm_name()) { 1158 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1159 qemu_get_vm_name())); 1160 } 1161 1162 /* Host Model & Serial Number */ 1163 if (spapr->host_model) { 1164 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1165 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1166 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1167 g_free(buf); 1168 } 1169 1170 if (spapr->host_serial) { 1171 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1172 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1173 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1174 g_free(buf); 1175 } 1176 1177 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1178 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1179 1180 /* /interrupt controller */ 1181 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1182 1183 ret = spapr_dt_memory(spapr, fdt); 1184 if (ret < 0) { 1185 error_report("couldn't setup memory nodes in fdt"); 1186 exit(1); 1187 } 1188 1189 /* /vdevice */ 1190 spapr_dt_vdevice(spapr->vio_bus, fdt); 1191 1192 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1193 ret = spapr_dt_rng(fdt); 1194 if (ret < 0) { 1195 error_report("could not set up rng device in the fdt"); 1196 exit(1); 1197 } 1198 } 1199 1200 QLIST_FOREACH(phb, &spapr->phbs, list) { 1201 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1202 if (ret < 0) { 1203 error_report("couldn't setup PCI devices in fdt"); 1204 exit(1); 1205 } 1206 } 1207 1208 spapr_dt_cpus(fdt, spapr); 1209 1210 /* ibm,drc-indexes and friends */ 1211 if (smc->dr_lmb_enabled) { 1212 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1213 } 1214 if (smc->dr_phb_enabled) { 1215 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1216 } 1217 if (mc->nvdimm_supported) { 1218 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1219 } 1220 if (root_drc_type_mask) { 1221 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1222 } 1223 1224 if (mc->has_hotpluggable_cpus) { 1225 int offset = fdt_path_offset(fdt, "/cpus"); 1226 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1227 if (ret < 0) { 1228 error_report("Couldn't set up CPU DR device tree properties"); 1229 exit(1); 1230 } 1231 } 1232 1233 /* /event-sources */ 1234 spapr_dt_events(spapr, fdt); 1235 1236 /* /rtas */ 1237 spapr_dt_rtas(spapr, fdt); 1238 1239 /* /chosen */ 1240 spapr_dt_chosen(spapr, fdt, reset); 1241 1242 /* /hypervisor */ 1243 if (kvm_enabled()) { 1244 spapr_dt_hypervisor(spapr, fdt); 1245 } 1246 1247 /* Build memory reserve map */ 1248 if (reset) { 1249 if (spapr->kernel_size) { 1250 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1251 spapr->kernel_size))); 1252 } 1253 if (spapr->initrd_size) { 1254 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1255 spapr->initrd_size))); 1256 } 1257 } 1258 1259 /* NVDIMM devices */ 1260 if (mc->nvdimm_supported) { 1261 spapr_dt_persistent_memory(spapr, fdt); 1262 } 1263 1264 return fdt; 1265 } 1266 1267 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1268 { 1269 SpaprMachineState *spapr = opaque; 1270 1271 return (addr & 0x0fffffff) + spapr->kernel_addr; 1272 } 1273 1274 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1275 PowerPCCPU *cpu) 1276 { 1277 CPUPPCState *env = &cpu->env; 1278 1279 /* The TCG path should also be holding the BQL at this point */ 1280 g_assert(qemu_mutex_iothread_locked()); 1281 1282 g_assert(!vhyp_cpu_in_nested(cpu)); 1283 1284 if (FIELD_EX64(env->msr, MSR, PR)) { 1285 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1286 env->gpr[3] = H_PRIVILEGE; 1287 } else { 1288 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1289 } 1290 } 1291 1292 struct LPCRSyncState { 1293 target_ulong value; 1294 target_ulong mask; 1295 }; 1296 1297 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1298 { 1299 struct LPCRSyncState *s = arg.host_ptr; 1300 PowerPCCPU *cpu = POWERPC_CPU(cs); 1301 CPUPPCState *env = &cpu->env; 1302 target_ulong lpcr; 1303 1304 cpu_synchronize_state(cs); 1305 lpcr = env->spr[SPR_LPCR]; 1306 lpcr &= ~s->mask; 1307 lpcr |= s->value; 1308 ppc_store_lpcr(cpu, lpcr); 1309 } 1310 1311 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1312 { 1313 CPUState *cs; 1314 struct LPCRSyncState s = { 1315 .value = value, 1316 .mask = mask 1317 }; 1318 CPU_FOREACH(cs) { 1319 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1320 } 1321 } 1322 1323 /* May be used when the machine is not running */ 1324 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1325 { 1326 CPUState *cs; 1327 CPU_FOREACH(cs) { 1328 PowerPCCPU *cpu = POWERPC_CPU(cs); 1329 CPUPPCState *env = &cpu->env; 1330 target_ulong lpcr; 1331 1332 lpcr = env->spr[SPR_LPCR]; 1333 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1334 ppc_store_lpcr(cpu, lpcr); 1335 } 1336 } 1337 1338 1339 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1340 target_ulong lpid, ppc_v3_pate_t *entry) 1341 { 1342 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1343 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1344 1345 if (!spapr_cpu->in_nested) { 1346 assert(lpid == 0); 1347 1348 /* Copy PATE1:GR into PATE0:HR */ 1349 entry->dw0 = spapr->patb_entry & PATE0_HR; 1350 entry->dw1 = spapr->patb_entry; 1351 1352 } else { 1353 uint64_t patb, pats; 1354 1355 assert(lpid != 0); 1356 1357 patb = spapr->nested_ptcr & PTCR_PATB; 1358 pats = spapr->nested_ptcr & PTCR_PATS; 1359 1360 /* Check if partition table is properly aligned */ 1361 if (patb & MAKE_64BIT_MASK(0, pats + 12)) { 1362 return false; 1363 } 1364 1365 /* Calculate number of entries */ 1366 pats = 1ull << (pats + 12 - 4); 1367 if (pats <= lpid) { 1368 return false; 1369 } 1370 1371 /* Grab entry */ 1372 patb += 16 * lpid; 1373 entry->dw0 = ldq_phys(CPU(cpu)->as, patb); 1374 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8); 1375 } 1376 1377 return true; 1378 } 1379 1380 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1381 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1382 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1383 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1384 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1385 1386 /* 1387 * Get the fd to access the kernel htab, re-opening it if necessary 1388 */ 1389 static int get_htab_fd(SpaprMachineState *spapr) 1390 { 1391 Error *local_err = NULL; 1392 1393 if (spapr->htab_fd >= 0) { 1394 return spapr->htab_fd; 1395 } 1396 1397 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1398 if (spapr->htab_fd < 0) { 1399 error_report_err(local_err); 1400 } 1401 1402 return spapr->htab_fd; 1403 } 1404 1405 void close_htab_fd(SpaprMachineState *spapr) 1406 { 1407 if (spapr->htab_fd >= 0) { 1408 close(spapr->htab_fd); 1409 } 1410 spapr->htab_fd = -1; 1411 } 1412 1413 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1414 { 1415 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1416 1417 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1418 } 1419 1420 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1421 { 1422 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1423 1424 assert(kvm_enabled()); 1425 1426 if (!spapr->htab) { 1427 return 0; 1428 } 1429 1430 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1431 } 1432 1433 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1434 hwaddr ptex, int n) 1435 { 1436 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1437 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1438 1439 if (!spapr->htab) { 1440 /* 1441 * HTAB is controlled by KVM. Fetch into temporary buffer 1442 */ 1443 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1444 kvmppc_read_hptes(hptes, ptex, n); 1445 return hptes; 1446 } 1447 1448 /* 1449 * HTAB is controlled by QEMU. Just point to the internally 1450 * accessible PTEG. 1451 */ 1452 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1453 } 1454 1455 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1456 const ppc_hash_pte64_t *hptes, 1457 hwaddr ptex, int n) 1458 { 1459 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1460 1461 if (!spapr->htab) { 1462 g_free((void *)hptes); 1463 } 1464 1465 /* Nothing to do for qemu managed HPT */ 1466 } 1467 1468 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1469 uint64_t pte0, uint64_t pte1) 1470 { 1471 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1472 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1473 1474 if (!spapr->htab) { 1475 kvmppc_write_hpte(ptex, pte0, pte1); 1476 } else { 1477 if (pte0 & HPTE64_V_VALID) { 1478 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1479 /* 1480 * When setting valid, we write PTE1 first. This ensures 1481 * proper synchronization with the reading code in 1482 * ppc_hash64_pteg_search() 1483 */ 1484 smp_wmb(); 1485 stq_p(spapr->htab + offset, pte0); 1486 } else { 1487 stq_p(spapr->htab + offset, pte0); 1488 /* 1489 * When clearing it we set PTE0 first. This ensures proper 1490 * synchronization with the reading code in 1491 * ppc_hash64_pteg_search() 1492 */ 1493 smp_wmb(); 1494 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1495 } 1496 } 1497 } 1498 1499 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1500 uint64_t pte1) 1501 { 1502 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1503 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1504 1505 if (!spapr->htab) { 1506 /* There should always be a hash table when this is called */ 1507 error_report("spapr_hpte_set_c called with no hash table !"); 1508 return; 1509 } 1510 1511 /* The HW performs a non-atomic byte update */ 1512 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1513 } 1514 1515 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1516 uint64_t pte1) 1517 { 1518 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1519 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1520 1521 if (!spapr->htab) { 1522 /* There should always be a hash table when this is called */ 1523 error_report("spapr_hpte_set_r called with no hash table !"); 1524 return; 1525 } 1526 1527 /* The HW performs a non-atomic byte update */ 1528 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1529 } 1530 1531 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1532 { 1533 int shift; 1534 1535 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1536 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1537 * that's much more than is needed for Linux guests */ 1538 shift = ctz64(pow2ceil(ramsize)) - 7; 1539 shift = MAX(shift, 18); /* Minimum architected size */ 1540 shift = MIN(shift, 46); /* Maximum architected size */ 1541 return shift; 1542 } 1543 1544 void spapr_free_hpt(SpaprMachineState *spapr) 1545 { 1546 qemu_vfree(spapr->htab); 1547 spapr->htab = NULL; 1548 spapr->htab_shift = 0; 1549 close_htab_fd(spapr); 1550 } 1551 1552 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1553 { 1554 ERRP_GUARD(); 1555 long rc; 1556 1557 /* Clean up any HPT info from a previous boot */ 1558 spapr_free_hpt(spapr); 1559 1560 rc = kvmppc_reset_htab(shift); 1561 1562 if (rc == -EOPNOTSUPP) { 1563 error_setg(errp, "HPT not supported in nested guests"); 1564 return -EOPNOTSUPP; 1565 } 1566 1567 if (rc < 0) { 1568 /* kernel-side HPT needed, but couldn't allocate one */ 1569 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1570 shift); 1571 error_append_hint(errp, "Try smaller maxmem?\n"); 1572 return -errno; 1573 } else if (rc > 0) { 1574 /* kernel-side HPT allocated */ 1575 if (rc != shift) { 1576 error_setg(errp, 1577 "Requested order %d HPT, but kernel allocated order %ld", 1578 shift, rc); 1579 error_append_hint(errp, "Try smaller maxmem?\n"); 1580 return -ENOSPC; 1581 } 1582 1583 spapr->htab_shift = shift; 1584 spapr->htab = NULL; 1585 } else { 1586 /* kernel-side HPT not needed, allocate in userspace instead */ 1587 size_t size = 1ULL << shift; 1588 int i; 1589 1590 spapr->htab = qemu_memalign(size, size); 1591 memset(spapr->htab, 0, size); 1592 spapr->htab_shift = shift; 1593 1594 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1595 DIRTY_HPTE(HPTE(spapr->htab, i)); 1596 } 1597 } 1598 /* We're setting up a hash table, so that means we're not radix */ 1599 spapr->patb_entry = 0; 1600 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1601 return 0; 1602 } 1603 1604 void spapr_setup_hpt(SpaprMachineState *spapr) 1605 { 1606 int hpt_shift; 1607 1608 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1609 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1610 } else { 1611 uint64_t current_ram_size; 1612 1613 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1614 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1615 } 1616 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1617 1618 if (kvm_enabled()) { 1619 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1620 1621 /* Check our RMA fits in the possible VRMA */ 1622 if (vrma_limit < spapr->rma_size) { 1623 error_report("Unable to create %" HWADDR_PRIu 1624 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1625 spapr->rma_size / MiB, vrma_limit / MiB); 1626 exit(EXIT_FAILURE); 1627 } 1628 } 1629 } 1630 1631 void spapr_check_mmu_mode(bool guest_radix) 1632 { 1633 if (guest_radix) { 1634 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1635 error_report("Guest requested unavailable MMU mode (radix)."); 1636 exit(EXIT_FAILURE); 1637 } 1638 } else { 1639 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1640 && !kvmppc_has_cap_mmu_hash_v3()) { 1641 error_report("Guest requested unavailable MMU mode (hash)."); 1642 exit(EXIT_FAILURE); 1643 } 1644 } 1645 } 1646 1647 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1648 { 1649 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1650 PowerPCCPU *first_ppc_cpu; 1651 hwaddr fdt_addr; 1652 void *fdt; 1653 int rc; 1654 1655 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) { 1656 /* 1657 * Record-replay snapshot load must not consume random, this was 1658 * already replayed from initial machine reset. 1659 */ 1660 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); 1661 } 1662 1663 pef_kvm_reset(machine->cgs, &error_fatal); 1664 spapr_caps_apply(spapr); 1665 1666 first_ppc_cpu = POWERPC_CPU(first_cpu); 1667 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1668 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1669 spapr->max_compat_pvr)) { 1670 /* 1671 * If using KVM with radix mode available, VCPUs can be started 1672 * without a HPT because KVM will start them in radix mode. 1673 * Set the GR bit in PATE so that we know there is no HPT. 1674 */ 1675 spapr->patb_entry = PATE1_GR; 1676 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1677 } else { 1678 spapr_setup_hpt(spapr); 1679 } 1680 1681 qemu_devices_reset(reason); 1682 1683 spapr_ovec_cleanup(spapr->ov5_cas); 1684 spapr->ov5_cas = spapr_ovec_new(); 1685 1686 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1687 1688 /* 1689 * This is fixing some of the default configuration of the XIVE 1690 * devices. To be called after the reset of the machine devices. 1691 */ 1692 spapr_irq_reset(spapr, &error_fatal); 1693 1694 /* 1695 * There is no CAS under qtest. Simulate one to please the code that 1696 * depends on spapr->ov5_cas. This is especially needed to test device 1697 * unplug, so we do that before resetting the DRCs. 1698 */ 1699 if (qtest_enabled()) { 1700 spapr_ovec_cleanup(spapr->ov5_cas); 1701 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1702 } 1703 1704 spapr_nvdimm_finish_flushes(); 1705 1706 /* DRC reset may cause a device to be unplugged. This will cause troubles 1707 * if this device is used by another device (eg, a running vhost backend 1708 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1709 * situations, we reset DRCs after all devices have been reset. 1710 */ 1711 spapr_drc_reset_all(spapr); 1712 1713 spapr_clear_pending_events(spapr); 1714 1715 /* 1716 * We place the device tree just below either the top of the RMA, 1717 * or just below 2GB, whichever is lower, so that it can be 1718 * processed with 32-bit real mode code if necessary 1719 */ 1720 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1721 1722 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1723 if (spapr->vof) { 1724 spapr_vof_reset(spapr, fdt, &error_fatal); 1725 /* 1726 * Do not pack the FDT as the client may change properties. 1727 * VOF client does not expect the FDT so we do not load it to the VM. 1728 */ 1729 } else { 1730 rc = fdt_pack(fdt); 1731 /* Should only fail if we've built a corrupted tree */ 1732 assert(rc == 0); 1733 1734 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1735 0, fdt_addr, 0); 1736 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1737 } 1738 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1739 1740 g_free(spapr->fdt_blob); 1741 spapr->fdt_size = fdt_totalsize(fdt); 1742 spapr->fdt_initial_size = spapr->fdt_size; 1743 spapr->fdt_blob = fdt; 1744 1745 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1746 machine->fdt = fdt; 1747 1748 /* Set up the entry state */ 1749 first_ppc_cpu->env.gpr[5] = 0; 1750 1751 spapr->fwnmi_system_reset_addr = -1; 1752 spapr->fwnmi_machine_check_addr = -1; 1753 spapr->fwnmi_machine_check_interlock = -1; 1754 1755 /* Signal all vCPUs waiting on this condition */ 1756 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1757 1758 migrate_del_blocker(spapr->fwnmi_migration_blocker); 1759 } 1760 1761 static void spapr_create_nvram(SpaprMachineState *spapr) 1762 { 1763 DeviceState *dev = qdev_new("spapr-nvram"); 1764 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1765 1766 if (dinfo) { 1767 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1768 &error_fatal); 1769 } 1770 1771 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1772 1773 spapr->nvram = (struct SpaprNvram *)dev; 1774 } 1775 1776 static void spapr_rtc_create(SpaprMachineState *spapr) 1777 { 1778 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1779 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1780 &error_fatal, NULL); 1781 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1782 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1783 "date"); 1784 } 1785 1786 /* Returns whether we want to use VGA or not */ 1787 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1788 { 1789 vga_interface_created = true; 1790 switch (vga_interface_type) { 1791 case VGA_NONE: 1792 return false; 1793 case VGA_DEVICE: 1794 return true; 1795 case VGA_STD: 1796 case VGA_VIRTIO: 1797 case VGA_CIRRUS: 1798 return pci_vga_init(pci_bus) != NULL; 1799 default: 1800 error_setg(errp, 1801 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1802 return false; 1803 } 1804 } 1805 1806 static int spapr_pre_load(void *opaque) 1807 { 1808 int rc; 1809 1810 rc = spapr_caps_pre_load(opaque); 1811 if (rc) { 1812 return rc; 1813 } 1814 1815 return 0; 1816 } 1817 1818 static int spapr_post_load(void *opaque, int version_id) 1819 { 1820 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1821 int err = 0; 1822 1823 err = spapr_caps_post_migration(spapr); 1824 if (err) { 1825 return err; 1826 } 1827 1828 /* 1829 * In earlier versions, there was no separate qdev for the PAPR 1830 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1831 * So when migrating from those versions, poke the incoming offset 1832 * value into the RTC device 1833 */ 1834 if (version_id < 3) { 1835 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1836 if (err) { 1837 return err; 1838 } 1839 } 1840 1841 if (kvm_enabled() && spapr->patb_entry) { 1842 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1843 bool radix = !!(spapr->patb_entry & PATE1_GR); 1844 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1845 1846 /* 1847 * Update LPCR:HR and UPRT as they may not be set properly in 1848 * the stream 1849 */ 1850 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1851 LPCR_HR | LPCR_UPRT); 1852 1853 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1854 if (err) { 1855 error_report("Process table config unsupported by the host"); 1856 return -EINVAL; 1857 } 1858 } 1859 1860 err = spapr_irq_post_load(spapr, version_id); 1861 if (err) { 1862 return err; 1863 } 1864 1865 return err; 1866 } 1867 1868 static int spapr_pre_save(void *opaque) 1869 { 1870 int rc; 1871 1872 rc = spapr_caps_pre_save(opaque); 1873 if (rc) { 1874 return rc; 1875 } 1876 1877 return 0; 1878 } 1879 1880 static bool version_before_3(void *opaque, int version_id) 1881 { 1882 return version_id < 3; 1883 } 1884 1885 static bool spapr_pending_events_needed(void *opaque) 1886 { 1887 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1888 return !QTAILQ_EMPTY(&spapr->pending_events); 1889 } 1890 1891 static const VMStateDescription vmstate_spapr_event_entry = { 1892 .name = "spapr_event_log_entry", 1893 .version_id = 1, 1894 .minimum_version_id = 1, 1895 .fields = (VMStateField[]) { 1896 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1897 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1898 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1899 NULL, extended_length), 1900 VMSTATE_END_OF_LIST() 1901 }, 1902 }; 1903 1904 static const VMStateDescription vmstate_spapr_pending_events = { 1905 .name = "spapr_pending_events", 1906 .version_id = 1, 1907 .minimum_version_id = 1, 1908 .needed = spapr_pending_events_needed, 1909 .fields = (VMStateField[]) { 1910 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1911 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1912 VMSTATE_END_OF_LIST() 1913 }, 1914 }; 1915 1916 static bool spapr_ov5_cas_needed(void *opaque) 1917 { 1918 SpaprMachineState *spapr = opaque; 1919 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1920 bool cas_needed; 1921 1922 /* Prior to the introduction of SpaprOptionVector, we had two option 1923 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1924 * Both of these options encode machine topology into the device-tree 1925 * in such a way that the now-booted OS should still be able to interact 1926 * appropriately with QEMU regardless of what options were actually 1927 * negotiatied on the source side. 1928 * 1929 * As such, we can avoid migrating the CAS-negotiated options if these 1930 * are the only options available on the current machine/platform. 1931 * Since these are the only options available for pseries-2.7 and 1932 * earlier, this allows us to maintain old->new/new->old migration 1933 * compatibility. 1934 * 1935 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1936 * via default pseries-2.8 machines and explicit command-line parameters. 1937 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1938 * of the actual CAS-negotiated values to continue working properly. For 1939 * example, availability of memory unplug depends on knowing whether 1940 * OV5_HP_EVT was negotiated via CAS. 1941 * 1942 * Thus, for any cases where the set of available CAS-negotiatable 1943 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1944 * include the CAS-negotiated options in the migration stream, unless 1945 * if they affect boot time behaviour only. 1946 */ 1947 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1948 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1949 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1950 1951 /* We need extra information if we have any bits outside the mask 1952 * defined above */ 1953 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1954 1955 spapr_ovec_cleanup(ov5_mask); 1956 1957 return cas_needed; 1958 } 1959 1960 static const VMStateDescription vmstate_spapr_ov5_cas = { 1961 .name = "spapr_option_vector_ov5_cas", 1962 .version_id = 1, 1963 .minimum_version_id = 1, 1964 .needed = spapr_ov5_cas_needed, 1965 .fields = (VMStateField[]) { 1966 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1967 vmstate_spapr_ovec, SpaprOptionVector), 1968 VMSTATE_END_OF_LIST() 1969 }, 1970 }; 1971 1972 static bool spapr_patb_entry_needed(void *opaque) 1973 { 1974 SpaprMachineState *spapr = opaque; 1975 1976 return !!spapr->patb_entry; 1977 } 1978 1979 static const VMStateDescription vmstate_spapr_patb_entry = { 1980 .name = "spapr_patb_entry", 1981 .version_id = 1, 1982 .minimum_version_id = 1, 1983 .needed = spapr_patb_entry_needed, 1984 .fields = (VMStateField[]) { 1985 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1986 VMSTATE_END_OF_LIST() 1987 }, 1988 }; 1989 1990 static bool spapr_irq_map_needed(void *opaque) 1991 { 1992 SpaprMachineState *spapr = opaque; 1993 1994 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1995 } 1996 1997 static const VMStateDescription vmstate_spapr_irq_map = { 1998 .name = "spapr_irq_map", 1999 .version_id = 1, 2000 .minimum_version_id = 1, 2001 .needed = spapr_irq_map_needed, 2002 .fields = (VMStateField[]) { 2003 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2004 VMSTATE_END_OF_LIST() 2005 }, 2006 }; 2007 2008 static bool spapr_dtb_needed(void *opaque) 2009 { 2010 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2011 2012 return smc->update_dt_enabled; 2013 } 2014 2015 static int spapr_dtb_pre_load(void *opaque) 2016 { 2017 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2018 2019 g_free(spapr->fdt_blob); 2020 spapr->fdt_blob = NULL; 2021 spapr->fdt_size = 0; 2022 2023 return 0; 2024 } 2025 2026 static const VMStateDescription vmstate_spapr_dtb = { 2027 .name = "spapr_dtb", 2028 .version_id = 1, 2029 .minimum_version_id = 1, 2030 .needed = spapr_dtb_needed, 2031 .pre_load = spapr_dtb_pre_load, 2032 .fields = (VMStateField[]) { 2033 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2034 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2035 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2036 fdt_size), 2037 VMSTATE_END_OF_LIST() 2038 }, 2039 }; 2040 2041 static bool spapr_fwnmi_needed(void *opaque) 2042 { 2043 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2044 2045 return spapr->fwnmi_machine_check_addr != -1; 2046 } 2047 2048 static int spapr_fwnmi_pre_save(void *opaque) 2049 { 2050 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2051 2052 /* 2053 * Check if machine check handling is in progress and print a 2054 * warning message. 2055 */ 2056 if (spapr->fwnmi_machine_check_interlock != -1) { 2057 warn_report("A machine check is being handled during migration. The" 2058 "handler may run and log hardware error on the destination"); 2059 } 2060 2061 return 0; 2062 } 2063 2064 static const VMStateDescription vmstate_spapr_fwnmi = { 2065 .name = "spapr_fwnmi", 2066 .version_id = 1, 2067 .minimum_version_id = 1, 2068 .needed = spapr_fwnmi_needed, 2069 .pre_save = spapr_fwnmi_pre_save, 2070 .fields = (VMStateField[]) { 2071 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2072 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2073 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2074 VMSTATE_END_OF_LIST() 2075 }, 2076 }; 2077 2078 static const VMStateDescription vmstate_spapr = { 2079 .name = "spapr", 2080 .version_id = 3, 2081 .minimum_version_id = 1, 2082 .pre_load = spapr_pre_load, 2083 .post_load = spapr_post_load, 2084 .pre_save = spapr_pre_save, 2085 .fields = (VMStateField[]) { 2086 /* used to be @next_irq */ 2087 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2088 2089 /* RTC offset */ 2090 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2091 2092 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2093 VMSTATE_END_OF_LIST() 2094 }, 2095 .subsections = (const VMStateDescription*[]) { 2096 &vmstate_spapr_ov5_cas, 2097 &vmstate_spapr_patb_entry, 2098 &vmstate_spapr_pending_events, 2099 &vmstate_spapr_cap_htm, 2100 &vmstate_spapr_cap_vsx, 2101 &vmstate_spapr_cap_dfp, 2102 &vmstate_spapr_cap_cfpc, 2103 &vmstate_spapr_cap_sbbc, 2104 &vmstate_spapr_cap_ibs, 2105 &vmstate_spapr_cap_hpt_maxpagesize, 2106 &vmstate_spapr_irq_map, 2107 &vmstate_spapr_cap_nested_kvm_hv, 2108 &vmstate_spapr_dtb, 2109 &vmstate_spapr_cap_large_decr, 2110 &vmstate_spapr_cap_ccf_assist, 2111 &vmstate_spapr_cap_fwnmi, 2112 &vmstate_spapr_fwnmi, 2113 &vmstate_spapr_cap_rpt_invalidate, 2114 NULL 2115 } 2116 }; 2117 2118 static int htab_save_setup(QEMUFile *f, void *opaque) 2119 { 2120 SpaprMachineState *spapr = opaque; 2121 2122 /* "Iteration" header */ 2123 if (!spapr->htab_shift) { 2124 qemu_put_be32(f, -1); 2125 } else { 2126 qemu_put_be32(f, spapr->htab_shift); 2127 } 2128 2129 if (spapr->htab) { 2130 spapr->htab_save_index = 0; 2131 spapr->htab_first_pass = true; 2132 } else { 2133 if (spapr->htab_shift) { 2134 assert(kvm_enabled()); 2135 } 2136 } 2137 2138 2139 return 0; 2140 } 2141 2142 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2143 int chunkstart, int n_valid, int n_invalid) 2144 { 2145 qemu_put_be32(f, chunkstart); 2146 qemu_put_be16(f, n_valid); 2147 qemu_put_be16(f, n_invalid); 2148 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2149 HASH_PTE_SIZE_64 * n_valid); 2150 } 2151 2152 static void htab_save_end_marker(QEMUFile *f) 2153 { 2154 qemu_put_be32(f, 0); 2155 qemu_put_be16(f, 0); 2156 qemu_put_be16(f, 0); 2157 } 2158 2159 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2160 int64_t max_ns) 2161 { 2162 bool has_timeout = max_ns != -1; 2163 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2164 int index = spapr->htab_save_index; 2165 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2166 2167 assert(spapr->htab_first_pass); 2168 2169 do { 2170 int chunkstart; 2171 2172 /* Consume invalid HPTEs */ 2173 while ((index < htabslots) 2174 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2175 CLEAN_HPTE(HPTE(spapr->htab, index)); 2176 index++; 2177 } 2178 2179 /* Consume valid HPTEs */ 2180 chunkstart = index; 2181 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2182 && HPTE_VALID(HPTE(spapr->htab, index))) { 2183 CLEAN_HPTE(HPTE(spapr->htab, index)); 2184 index++; 2185 } 2186 2187 if (index > chunkstart) { 2188 int n_valid = index - chunkstart; 2189 2190 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2191 2192 if (has_timeout && 2193 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2194 break; 2195 } 2196 } 2197 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2198 2199 if (index >= htabslots) { 2200 assert(index == htabslots); 2201 index = 0; 2202 spapr->htab_first_pass = false; 2203 } 2204 spapr->htab_save_index = index; 2205 } 2206 2207 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2208 int64_t max_ns) 2209 { 2210 bool final = max_ns < 0; 2211 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2212 int examined = 0, sent = 0; 2213 int index = spapr->htab_save_index; 2214 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2215 2216 assert(!spapr->htab_first_pass); 2217 2218 do { 2219 int chunkstart, invalidstart; 2220 2221 /* Consume non-dirty HPTEs */ 2222 while ((index < htabslots) 2223 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2224 index++; 2225 examined++; 2226 } 2227 2228 chunkstart = index; 2229 /* Consume valid dirty HPTEs */ 2230 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2231 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2232 && HPTE_VALID(HPTE(spapr->htab, index))) { 2233 CLEAN_HPTE(HPTE(spapr->htab, index)); 2234 index++; 2235 examined++; 2236 } 2237 2238 invalidstart = index; 2239 /* Consume invalid dirty HPTEs */ 2240 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2241 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2242 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2243 CLEAN_HPTE(HPTE(spapr->htab, index)); 2244 index++; 2245 examined++; 2246 } 2247 2248 if (index > chunkstart) { 2249 int n_valid = invalidstart - chunkstart; 2250 int n_invalid = index - invalidstart; 2251 2252 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2253 sent += index - chunkstart; 2254 2255 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2256 break; 2257 } 2258 } 2259 2260 if (examined >= htabslots) { 2261 break; 2262 } 2263 2264 if (index >= htabslots) { 2265 assert(index == htabslots); 2266 index = 0; 2267 } 2268 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2269 2270 if (index >= htabslots) { 2271 assert(index == htabslots); 2272 index = 0; 2273 } 2274 2275 spapr->htab_save_index = index; 2276 2277 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2278 } 2279 2280 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2281 #define MAX_KVM_BUF_SIZE 2048 2282 2283 static int htab_save_iterate(QEMUFile *f, void *opaque) 2284 { 2285 SpaprMachineState *spapr = opaque; 2286 int fd; 2287 int rc = 0; 2288 2289 /* Iteration header */ 2290 if (!spapr->htab_shift) { 2291 qemu_put_be32(f, -1); 2292 return 1; 2293 } else { 2294 qemu_put_be32(f, 0); 2295 } 2296 2297 if (!spapr->htab) { 2298 assert(kvm_enabled()); 2299 2300 fd = get_htab_fd(spapr); 2301 if (fd < 0) { 2302 return fd; 2303 } 2304 2305 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2306 if (rc < 0) { 2307 return rc; 2308 } 2309 } else if (spapr->htab_first_pass) { 2310 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2311 } else { 2312 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2313 } 2314 2315 htab_save_end_marker(f); 2316 2317 return rc; 2318 } 2319 2320 static int htab_save_complete(QEMUFile *f, void *opaque) 2321 { 2322 SpaprMachineState *spapr = opaque; 2323 int fd; 2324 2325 /* Iteration header */ 2326 if (!spapr->htab_shift) { 2327 qemu_put_be32(f, -1); 2328 return 0; 2329 } else { 2330 qemu_put_be32(f, 0); 2331 } 2332 2333 if (!spapr->htab) { 2334 int rc; 2335 2336 assert(kvm_enabled()); 2337 2338 fd = get_htab_fd(spapr); 2339 if (fd < 0) { 2340 return fd; 2341 } 2342 2343 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2344 if (rc < 0) { 2345 return rc; 2346 } 2347 } else { 2348 if (spapr->htab_first_pass) { 2349 htab_save_first_pass(f, spapr, -1); 2350 } 2351 htab_save_later_pass(f, spapr, -1); 2352 } 2353 2354 /* End marker */ 2355 htab_save_end_marker(f); 2356 2357 return 0; 2358 } 2359 2360 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2361 { 2362 SpaprMachineState *spapr = opaque; 2363 uint32_t section_hdr; 2364 int fd = -1; 2365 Error *local_err = NULL; 2366 2367 if (version_id < 1 || version_id > 1) { 2368 error_report("htab_load() bad version"); 2369 return -EINVAL; 2370 } 2371 2372 section_hdr = qemu_get_be32(f); 2373 2374 if (section_hdr == -1) { 2375 spapr_free_hpt(spapr); 2376 return 0; 2377 } 2378 2379 if (section_hdr) { 2380 int ret; 2381 2382 /* First section gives the htab size */ 2383 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2384 if (ret < 0) { 2385 error_report_err(local_err); 2386 return ret; 2387 } 2388 return 0; 2389 } 2390 2391 if (!spapr->htab) { 2392 assert(kvm_enabled()); 2393 2394 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2395 if (fd < 0) { 2396 error_report_err(local_err); 2397 return fd; 2398 } 2399 } 2400 2401 while (true) { 2402 uint32_t index; 2403 uint16_t n_valid, n_invalid; 2404 2405 index = qemu_get_be32(f); 2406 n_valid = qemu_get_be16(f); 2407 n_invalid = qemu_get_be16(f); 2408 2409 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2410 /* End of Stream */ 2411 break; 2412 } 2413 2414 if ((index + n_valid + n_invalid) > 2415 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2416 /* Bad index in stream */ 2417 error_report( 2418 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2419 index, n_valid, n_invalid, spapr->htab_shift); 2420 return -EINVAL; 2421 } 2422 2423 if (spapr->htab) { 2424 if (n_valid) { 2425 qemu_get_buffer(f, HPTE(spapr->htab, index), 2426 HASH_PTE_SIZE_64 * n_valid); 2427 } 2428 if (n_invalid) { 2429 memset(HPTE(spapr->htab, index + n_valid), 0, 2430 HASH_PTE_SIZE_64 * n_invalid); 2431 } 2432 } else { 2433 int rc; 2434 2435 assert(fd >= 0); 2436 2437 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2438 &local_err); 2439 if (rc < 0) { 2440 error_report_err(local_err); 2441 return rc; 2442 } 2443 } 2444 } 2445 2446 if (!spapr->htab) { 2447 assert(fd >= 0); 2448 close(fd); 2449 } 2450 2451 return 0; 2452 } 2453 2454 static void htab_save_cleanup(void *opaque) 2455 { 2456 SpaprMachineState *spapr = opaque; 2457 2458 close_htab_fd(spapr); 2459 } 2460 2461 static SaveVMHandlers savevm_htab_handlers = { 2462 .save_setup = htab_save_setup, 2463 .save_live_iterate = htab_save_iterate, 2464 .save_live_complete_precopy = htab_save_complete, 2465 .save_cleanup = htab_save_cleanup, 2466 .load_state = htab_load, 2467 }; 2468 2469 static void spapr_boot_set(void *opaque, const char *boot_device, 2470 Error **errp) 2471 { 2472 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2473 2474 g_free(spapr->boot_device); 2475 spapr->boot_device = g_strdup(boot_device); 2476 } 2477 2478 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2479 { 2480 MachineState *machine = MACHINE(spapr); 2481 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2482 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2483 int i; 2484 2485 g_assert(!nr_lmbs || machine->device_memory); 2486 for (i = 0; i < nr_lmbs; i++) { 2487 uint64_t addr; 2488 2489 addr = i * lmb_size + machine->device_memory->base; 2490 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2491 addr / lmb_size); 2492 } 2493 } 2494 2495 /* 2496 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2497 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2498 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2499 */ 2500 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2501 { 2502 int i; 2503 2504 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2505 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2506 " is not aligned to %" PRIu64 " MiB", 2507 machine->ram_size, 2508 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2509 return; 2510 } 2511 2512 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2513 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2514 " is not aligned to %" PRIu64 " MiB", 2515 machine->ram_size, 2516 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2517 return; 2518 } 2519 2520 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2521 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2522 error_setg(errp, 2523 "Node %d memory size 0x%" PRIx64 2524 " is not aligned to %" PRIu64 " MiB", 2525 i, machine->numa_state->nodes[i].node_mem, 2526 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2527 return; 2528 } 2529 } 2530 } 2531 2532 /* find cpu slot in machine->possible_cpus by core_id */ 2533 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2534 { 2535 int index = id / ms->smp.threads; 2536 2537 if (index >= ms->possible_cpus->len) { 2538 return NULL; 2539 } 2540 if (idx) { 2541 *idx = index; 2542 } 2543 return &ms->possible_cpus->cpus[index]; 2544 } 2545 2546 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2547 { 2548 MachineState *ms = MACHINE(spapr); 2549 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2550 Error *local_err = NULL; 2551 bool vsmt_user = !!spapr->vsmt; 2552 int kvm_smt = kvmppc_smt_threads(); 2553 int ret; 2554 unsigned int smp_threads = ms->smp.threads; 2555 2556 if (tcg_enabled()) { 2557 if (smp_threads > 1 && 2558 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2559 spapr->max_compat_pvr)) { 2560 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2561 return; 2562 } 2563 2564 if (smp_threads > 8) { 2565 error_setg(errp, "TCG cannot support more than 8 threads/core " 2566 "on a pseries machine"); 2567 return; 2568 } 2569 } 2570 if (!is_power_of_2(smp_threads)) { 2571 error_setg(errp, "Cannot support %d threads/core on a pseries " 2572 "machine because it must be a power of 2", smp_threads); 2573 return; 2574 } 2575 2576 /* Detemine the VSMT mode to use: */ 2577 if (vsmt_user) { 2578 if (spapr->vsmt < smp_threads) { 2579 error_setg(errp, "Cannot support VSMT mode %d" 2580 " because it must be >= threads/core (%d)", 2581 spapr->vsmt, smp_threads); 2582 return; 2583 } 2584 /* In this case, spapr->vsmt has been set by the command line */ 2585 } else if (!smc->smp_threads_vsmt) { 2586 /* 2587 * Default VSMT value is tricky, because we need it to be as 2588 * consistent as possible (for migration), but this requires 2589 * changing it for at least some existing cases. We pick 8 as 2590 * the value that we'd get with KVM on POWER8, the 2591 * overwhelmingly common case in production systems. 2592 */ 2593 spapr->vsmt = MAX(8, smp_threads); 2594 } else { 2595 spapr->vsmt = smp_threads; 2596 } 2597 2598 /* KVM: If necessary, set the SMT mode: */ 2599 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2600 ret = kvmppc_set_smt_threads(spapr->vsmt); 2601 if (ret) { 2602 /* Looks like KVM isn't able to change VSMT mode */ 2603 error_setg(&local_err, 2604 "Failed to set KVM's VSMT mode to %d (errno %d)", 2605 spapr->vsmt, ret); 2606 /* We can live with that if the default one is big enough 2607 * for the number of threads, and a submultiple of the one 2608 * we want. In this case we'll waste some vcpu ids, but 2609 * behaviour will be correct */ 2610 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2611 warn_report_err(local_err); 2612 } else { 2613 if (!vsmt_user) { 2614 error_append_hint(&local_err, 2615 "On PPC, a VM with %d threads/core" 2616 " on a host with %d threads/core" 2617 " requires the use of VSMT mode %d.\n", 2618 smp_threads, kvm_smt, spapr->vsmt); 2619 } 2620 kvmppc_error_append_smt_possible_hint(&local_err); 2621 error_propagate(errp, local_err); 2622 } 2623 } 2624 } 2625 /* else TCG: nothing to do currently */ 2626 } 2627 2628 static void spapr_init_cpus(SpaprMachineState *spapr) 2629 { 2630 MachineState *machine = MACHINE(spapr); 2631 MachineClass *mc = MACHINE_GET_CLASS(machine); 2632 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2633 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2634 const CPUArchIdList *possible_cpus; 2635 unsigned int smp_cpus = machine->smp.cpus; 2636 unsigned int smp_threads = machine->smp.threads; 2637 unsigned int max_cpus = machine->smp.max_cpus; 2638 int boot_cores_nr = smp_cpus / smp_threads; 2639 int i; 2640 2641 possible_cpus = mc->possible_cpu_arch_ids(machine); 2642 if (mc->has_hotpluggable_cpus) { 2643 if (smp_cpus % smp_threads) { 2644 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2645 smp_cpus, smp_threads); 2646 exit(1); 2647 } 2648 if (max_cpus % smp_threads) { 2649 error_report("max_cpus (%u) must be multiple of threads (%u)", 2650 max_cpus, smp_threads); 2651 exit(1); 2652 } 2653 } else { 2654 if (max_cpus != smp_cpus) { 2655 error_report("This machine version does not support CPU hotplug"); 2656 exit(1); 2657 } 2658 boot_cores_nr = possible_cpus->len; 2659 } 2660 2661 if (smc->pre_2_10_has_unused_icps) { 2662 int i; 2663 2664 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2665 /* Dummy entries get deregistered when real ICPState objects 2666 * are registered during CPU core hotplug. 2667 */ 2668 pre_2_10_vmstate_register_dummy_icp(i); 2669 } 2670 } 2671 2672 for (i = 0; i < possible_cpus->len; i++) { 2673 int core_id = i * smp_threads; 2674 2675 if (mc->has_hotpluggable_cpus) { 2676 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2677 spapr_vcpu_id(spapr, core_id)); 2678 } 2679 2680 if (i < boot_cores_nr) { 2681 Object *core = object_new(type); 2682 int nr_threads = smp_threads; 2683 2684 /* Handle the partially filled core for older machine types */ 2685 if ((i + 1) * smp_threads >= smp_cpus) { 2686 nr_threads = smp_cpus - i * smp_threads; 2687 } 2688 2689 object_property_set_int(core, "nr-threads", nr_threads, 2690 &error_fatal); 2691 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2692 &error_fatal); 2693 qdev_realize(DEVICE(core), NULL, &error_fatal); 2694 2695 object_unref(core); 2696 } 2697 } 2698 } 2699 2700 static PCIHostState *spapr_create_default_phb(void) 2701 { 2702 DeviceState *dev; 2703 2704 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2705 qdev_prop_set_uint32(dev, "index", 0); 2706 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2707 2708 return PCI_HOST_BRIDGE(dev); 2709 } 2710 2711 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2712 { 2713 MachineState *machine = MACHINE(spapr); 2714 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2715 hwaddr rma_size = machine->ram_size; 2716 hwaddr node0_size = spapr_node0_size(machine); 2717 2718 /* RMA has to fit in the first NUMA node */ 2719 rma_size = MIN(rma_size, node0_size); 2720 2721 /* 2722 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2723 * never exceed that 2724 */ 2725 rma_size = MIN(rma_size, 1 * TiB); 2726 2727 /* 2728 * Clamp the RMA size based on machine type. This is for 2729 * migration compatibility with older qemu versions, which limited 2730 * the RMA size for complicated and mostly bad reasons. 2731 */ 2732 if (smc->rma_limit) { 2733 rma_size = MIN(rma_size, smc->rma_limit); 2734 } 2735 2736 if (rma_size < MIN_RMA_SLOF) { 2737 error_setg(errp, 2738 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2739 "ldMiB guest RMA (Real Mode Area memory)", 2740 MIN_RMA_SLOF / MiB); 2741 return 0; 2742 } 2743 2744 return rma_size; 2745 } 2746 2747 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2748 { 2749 MachineState *machine = MACHINE(spapr); 2750 int i; 2751 2752 for (i = 0; i < machine->ram_slots; i++) { 2753 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2754 } 2755 } 2756 2757 /* pSeries LPAR / sPAPR hardware init */ 2758 static void spapr_machine_init(MachineState *machine) 2759 { 2760 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2761 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2762 MachineClass *mc = MACHINE_GET_CLASS(machine); 2763 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2764 const char *bios_name = machine->firmware ?: bios_default; 2765 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2766 const char *kernel_filename = machine->kernel_filename; 2767 const char *initrd_filename = machine->initrd_filename; 2768 PCIHostState *phb; 2769 bool has_vga; 2770 int i; 2771 MemoryRegion *sysmem = get_system_memory(); 2772 long load_limit, fw_size; 2773 Error *resize_hpt_err = NULL; 2774 2775 if (!filename) { 2776 error_report("Could not find LPAR firmware '%s'", bios_name); 2777 exit(1); 2778 } 2779 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2780 if (fw_size <= 0) { 2781 error_report("Could not load LPAR firmware '%s'", filename); 2782 exit(1); 2783 } 2784 2785 /* 2786 * if Secure VM (PEF) support is configured, then initialize it 2787 */ 2788 pef_kvm_init(machine->cgs, &error_fatal); 2789 2790 msi_nonbroken = true; 2791 2792 QLIST_INIT(&spapr->phbs); 2793 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2794 2795 /* Determine capabilities to run with */ 2796 spapr_caps_init(spapr); 2797 2798 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2799 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2800 /* 2801 * If the user explicitly requested a mode we should either 2802 * supply it, or fail completely (which we do below). But if 2803 * it's not set explicitly, we reset our mode to something 2804 * that works 2805 */ 2806 if (resize_hpt_err) { 2807 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2808 error_free(resize_hpt_err); 2809 resize_hpt_err = NULL; 2810 } else { 2811 spapr->resize_hpt = smc->resize_hpt_default; 2812 } 2813 } 2814 2815 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2816 2817 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2818 /* 2819 * User requested HPT resize, but this host can't supply it. Bail out 2820 */ 2821 error_report_err(resize_hpt_err); 2822 exit(1); 2823 } 2824 error_free(resize_hpt_err); 2825 2826 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2827 2828 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2829 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2830 2831 /* 2832 * VSMT must be set in order to be able to compute VCPU ids, ie to 2833 * call spapr_max_server_number() or spapr_vcpu_id(). 2834 */ 2835 spapr_set_vsmt_mode(spapr, &error_fatal); 2836 2837 /* Set up Interrupt Controller before we create the VCPUs */ 2838 spapr_irq_init(spapr, &error_fatal); 2839 2840 /* Set up containers for ibm,client-architecture-support negotiated options 2841 */ 2842 spapr->ov5 = spapr_ovec_new(); 2843 spapr->ov5_cas = spapr_ovec_new(); 2844 2845 if (smc->dr_lmb_enabled) { 2846 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2847 spapr_validate_node_memory(machine, &error_fatal); 2848 } 2849 2850 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2851 2852 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2853 if (!smc->pre_6_2_numa_affinity) { 2854 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2855 } 2856 2857 /* advertise support for dedicated HP event source to guests */ 2858 if (spapr->use_hotplug_event_source) { 2859 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2860 } 2861 2862 /* advertise support for HPT resizing */ 2863 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2864 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2865 } 2866 2867 /* advertise support for ibm,dyamic-memory-v2 */ 2868 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2869 2870 /* advertise XIVE on POWER9 machines */ 2871 if (spapr->irq->xive) { 2872 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2873 } 2874 2875 /* init CPUs */ 2876 spapr_init_cpus(spapr); 2877 2878 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine); 2879 2880 /* Init numa_assoc_array */ 2881 spapr_numa_associativity_init(spapr, machine); 2882 2883 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2884 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2885 spapr->max_compat_pvr)) { 2886 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2887 /* KVM and TCG always allow GTSE with radix... */ 2888 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2889 } 2890 /* ... but not with hash (currently). */ 2891 2892 if (kvm_enabled()) { 2893 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2894 kvmppc_enable_logical_ci_hcalls(); 2895 kvmppc_enable_set_mode_hcall(); 2896 2897 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2898 kvmppc_enable_clear_ref_mod_hcalls(); 2899 2900 /* Enable H_PAGE_INIT */ 2901 kvmppc_enable_h_page_init(); 2902 } 2903 2904 /* map RAM */ 2905 memory_region_add_subregion(sysmem, 0, machine->ram); 2906 2907 /* initialize hotplug memory address space */ 2908 if (machine->ram_size < machine->maxram_size) { 2909 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2910 hwaddr device_mem_base; 2911 2912 /* 2913 * Limit the number of hotpluggable memory slots to half the number 2914 * slots that KVM supports, leaving the other half for PCI and other 2915 * devices. However ensure that number of slots doesn't drop below 32. 2916 */ 2917 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2918 SPAPR_MAX_RAM_SLOTS; 2919 2920 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2921 max_memslots = SPAPR_MAX_RAM_SLOTS; 2922 } 2923 if (machine->ram_slots > max_memslots) { 2924 error_report("Specified number of memory slots %" 2925 PRIu64" exceeds max supported %d", 2926 machine->ram_slots, max_memslots); 2927 exit(1); 2928 } 2929 2930 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2931 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2932 } 2933 2934 if (smc->dr_lmb_enabled) { 2935 spapr_create_lmb_dr_connectors(spapr); 2936 } 2937 2938 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) { 2939 /* Create the error string for live migration blocker */ 2940 error_setg(&spapr->fwnmi_migration_blocker, 2941 "A machine check is being handled during migration. The handler" 2942 "may run and log hardware error on the destination"); 2943 } 2944 2945 if (mc->nvdimm_supported) { 2946 spapr_create_nvdimm_dr_connectors(spapr); 2947 } 2948 2949 /* Set up RTAS event infrastructure */ 2950 spapr_events_init(spapr); 2951 2952 /* Set up the RTC RTAS interfaces */ 2953 spapr_rtc_create(spapr); 2954 2955 /* Set up VIO bus */ 2956 spapr->vio_bus = spapr_vio_bus_init(); 2957 2958 for (i = 0; serial_hd(i); i++) { 2959 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2960 } 2961 2962 /* We always have at least the nvram device on VIO */ 2963 spapr_create_nvram(spapr); 2964 2965 /* 2966 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2967 * connectors (described in root DT node's "ibm,drc-types" property) 2968 * are pre-initialized here. additional child connectors (such as 2969 * connectors for a PHBs PCI slots) are added as needed during their 2970 * parent's realization. 2971 */ 2972 if (smc->dr_phb_enabled) { 2973 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2974 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2975 } 2976 } 2977 2978 /* Set up PCI */ 2979 spapr_pci_rtas_init(); 2980 2981 phb = spapr_create_default_phb(); 2982 2983 for (i = 0; i < nb_nics; i++) { 2984 NICInfo *nd = &nd_table[i]; 2985 2986 if (!nd->model) { 2987 nd->model = g_strdup("spapr-vlan"); 2988 } 2989 2990 if (g_str_equal(nd->model, "spapr-vlan") || 2991 g_str_equal(nd->model, "ibmveth")) { 2992 spapr_vlan_create(spapr->vio_bus, nd); 2993 } else { 2994 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2995 } 2996 } 2997 2998 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2999 spapr_vscsi_create(spapr->vio_bus); 3000 } 3001 3002 /* Graphics */ 3003 has_vga = spapr_vga_init(phb->bus, &error_fatal); 3004 if (has_vga) { 3005 spapr->want_stdout_path = !machine->enable_graphics; 3006 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3007 } else { 3008 spapr->want_stdout_path = true; 3009 } 3010 3011 if (machine->usb) { 3012 if (smc->use_ohci_by_default) { 3013 pci_create_simple(phb->bus, -1, "pci-ohci"); 3014 } else { 3015 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3016 } 3017 3018 if (has_vga) { 3019 USBBus *usb_bus = usb_bus_find(-1); 3020 3021 usb_create_simple(usb_bus, "usb-kbd"); 3022 usb_create_simple(usb_bus, "usb-mouse"); 3023 } 3024 } 3025 3026 if (kernel_filename) { 3027 uint64_t loaded_addr = 0; 3028 3029 spapr->kernel_size = load_elf(kernel_filename, NULL, 3030 translate_kernel_address, spapr, 3031 NULL, &loaded_addr, NULL, NULL, 1, 3032 PPC_ELF_MACHINE, 0, 0); 3033 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3034 spapr->kernel_size = load_elf(kernel_filename, NULL, 3035 translate_kernel_address, spapr, 3036 NULL, &loaded_addr, NULL, NULL, 0, 3037 PPC_ELF_MACHINE, 0, 0); 3038 spapr->kernel_le = spapr->kernel_size > 0; 3039 } 3040 if (spapr->kernel_size < 0) { 3041 error_report("error loading %s: %s", kernel_filename, 3042 load_elf_strerror(spapr->kernel_size)); 3043 exit(1); 3044 } 3045 3046 if (spapr->kernel_addr != loaded_addr) { 3047 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3048 " to 0x%"PRIx64, 3049 spapr->kernel_addr, loaded_addr); 3050 spapr->kernel_addr = loaded_addr; 3051 } 3052 3053 /* load initrd */ 3054 if (initrd_filename) { 3055 /* Try to locate the initrd in the gap between the kernel 3056 * and the firmware. Add a bit of space just in case 3057 */ 3058 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3059 + 0x1ffff) & ~0xffff; 3060 spapr->initrd_size = load_image_targphys(initrd_filename, 3061 spapr->initrd_base, 3062 load_limit 3063 - spapr->initrd_base); 3064 if (spapr->initrd_size < 0) { 3065 error_report("could not load initial ram disk '%s'", 3066 initrd_filename); 3067 exit(1); 3068 } 3069 } 3070 } 3071 3072 /* FIXME: Should register things through the MachineState's qdev 3073 * interface, this is a legacy from the sPAPREnvironment structure 3074 * which predated MachineState but had a similar function */ 3075 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3076 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3077 &savevm_htab_handlers, spapr); 3078 3079 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3080 3081 qemu_register_boot_set(spapr_boot_set, spapr); 3082 3083 /* 3084 * Nothing needs to be done to resume a suspended guest because 3085 * suspending does not change the machine state, so no need for 3086 * a ->wakeup method. 3087 */ 3088 qemu_register_wakeup_support(); 3089 3090 if (kvm_enabled()) { 3091 /* to stop and start vmclock */ 3092 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3093 &spapr->tb); 3094 3095 kvmppc_spapr_enable_inkernel_multitce(); 3096 } 3097 3098 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3099 if (spapr->vof) { 3100 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3101 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3102 } 3103 3104 spapr_watchdog_init(spapr); 3105 } 3106 3107 #define DEFAULT_KVM_TYPE "auto" 3108 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3109 { 3110 /* 3111 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3112 * accomodate the 'HV' and 'PV' formats that exists in the 3113 * wild. The 'auto' mode is being introduced already as 3114 * lower-case, thus we don't need to bother checking for 3115 * "AUTO". 3116 */ 3117 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3118 return 0; 3119 } 3120 3121 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3122 return 1; 3123 } 3124 3125 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3126 return 2; 3127 } 3128 3129 error_report("Unknown kvm-type specified '%s'", vm_type); 3130 return -1; 3131 } 3132 3133 /* 3134 * Implementation of an interface to adjust firmware path 3135 * for the bootindex property handling. 3136 */ 3137 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3138 DeviceState *dev) 3139 { 3140 #define CAST(type, obj, name) \ 3141 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3142 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3143 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3144 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3145 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3146 3147 if (d && bus) { 3148 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3149 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3150 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3151 3152 if (spapr) { 3153 /* 3154 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3155 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3156 * 0x8000 | (target << 8) | (bus << 5) | lun 3157 * (see the "Logical unit addressing format" table in SAM5) 3158 */ 3159 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3160 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3161 (uint64_t)id << 48); 3162 } else if (virtio) { 3163 /* 3164 * We use SRP luns of the form 01000000 | (target << 8) | lun 3165 * in the top 32 bits of the 64-bit LUN 3166 * Note: the quote above is from SLOF and it is wrong, 3167 * the actual binding is: 3168 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3169 */ 3170 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3171 if (d->lun >= 256) { 3172 /* Use the LUN "flat space addressing method" */ 3173 id |= 0x4000; 3174 } 3175 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3176 (uint64_t)id << 32); 3177 } else if (usb) { 3178 /* 3179 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3180 * in the top 32 bits of the 64-bit LUN 3181 */ 3182 unsigned usb_port = atoi(usb->port->path); 3183 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3184 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3185 (uint64_t)id << 32); 3186 } 3187 } 3188 3189 /* 3190 * SLOF probes the USB devices, and if it recognizes that the device is a 3191 * storage device, it changes its name to "storage" instead of "usb-host", 3192 * and additionally adds a child node for the SCSI LUN, so the correct 3193 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3194 */ 3195 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3196 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3197 if (usb_device_is_scsi_storage(usbdev)) { 3198 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3199 } 3200 } 3201 3202 if (phb) { 3203 /* Replace "pci" with "pci@800000020000000" */ 3204 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3205 } 3206 3207 if (vsc) { 3208 /* Same logic as virtio above */ 3209 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3210 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3211 } 3212 3213 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3214 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3215 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3216 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3217 } 3218 3219 if (pcidev) { 3220 return spapr_pci_fw_dev_name(pcidev); 3221 } 3222 3223 return NULL; 3224 } 3225 3226 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3227 { 3228 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3229 3230 return g_strdup(spapr->kvm_type); 3231 } 3232 3233 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3234 { 3235 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3236 3237 g_free(spapr->kvm_type); 3238 spapr->kvm_type = g_strdup(value); 3239 } 3240 3241 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3242 { 3243 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3244 3245 return spapr->use_hotplug_event_source; 3246 } 3247 3248 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3249 Error **errp) 3250 { 3251 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3252 3253 spapr->use_hotplug_event_source = value; 3254 } 3255 3256 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3257 { 3258 return true; 3259 } 3260 3261 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3262 { 3263 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3264 3265 switch (spapr->resize_hpt) { 3266 case SPAPR_RESIZE_HPT_DEFAULT: 3267 return g_strdup("default"); 3268 case SPAPR_RESIZE_HPT_DISABLED: 3269 return g_strdup("disabled"); 3270 case SPAPR_RESIZE_HPT_ENABLED: 3271 return g_strdup("enabled"); 3272 case SPAPR_RESIZE_HPT_REQUIRED: 3273 return g_strdup("required"); 3274 } 3275 g_assert_not_reached(); 3276 } 3277 3278 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3279 { 3280 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3281 3282 if (strcmp(value, "default") == 0) { 3283 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3284 } else if (strcmp(value, "disabled") == 0) { 3285 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3286 } else if (strcmp(value, "enabled") == 0) { 3287 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3288 } else if (strcmp(value, "required") == 0) { 3289 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3290 } else { 3291 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3292 } 3293 } 3294 3295 static bool spapr_get_vof(Object *obj, Error **errp) 3296 { 3297 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3298 3299 return spapr->vof != NULL; 3300 } 3301 3302 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3303 { 3304 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3305 3306 if (spapr->vof) { 3307 vof_cleanup(spapr->vof); 3308 g_free(spapr->vof); 3309 spapr->vof = NULL; 3310 } 3311 if (!value) { 3312 return; 3313 } 3314 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3315 } 3316 3317 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3318 { 3319 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3320 3321 if (spapr->irq == &spapr_irq_xics_legacy) { 3322 return g_strdup("legacy"); 3323 } else if (spapr->irq == &spapr_irq_xics) { 3324 return g_strdup("xics"); 3325 } else if (spapr->irq == &spapr_irq_xive) { 3326 return g_strdup("xive"); 3327 } else if (spapr->irq == &spapr_irq_dual) { 3328 return g_strdup("dual"); 3329 } 3330 g_assert_not_reached(); 3331 } 3332 3333 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3334 { 3335 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3336 3337 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3338 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3339 return; 3340 } 3341 3342 /* The legacy IRQ backend can not be set */ 3343 if (strcmp(value, "xics") == 0) { 3344 spapr->irq = &spapr_irq_xics; 3345 } else if (strcmp(value, "xive") == 0) { 3346 spapr->irq = &spapr_irq_xive; 3347 } else if (strcmp(value, "dual") == 0) { 3348 spapr->irq = &spapr_irq_dual; 3349 } else { 3350 error_setg(errp, "Bad value for \"ic-mode\" property"); 3351 } 3352 } 3353 3354 static char *spapr_get_host_model(Object *obj, Error **errp) 3355 { 3356 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3357 3358 return g_strdup(spapr->host_model); 3359 } 3360 3361 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3362 { 3363 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3364 3365 g_free(spapr->host_model); 3366 spapr->host_model = g_strdup(value); 3367 } 3368 3369 static char *spapr_get_host_serial(Object *obj, Error **errp) 3370 { 3371 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3372 3373 return g_strdup(spapr->host_serial); 3374 } 3375 3376 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3377 { 3378 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3379 3380 g_free(spapr->host_serial); 3381 spapr->host_serial = g_strdup(value); 3382 } 3383 3384 static void spapr_instance_init(Object *obj) 3385 { 3386 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3387 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3388 MachineState *ms = MACHINE(spapr); 3389 MachineClass *mc = MACHINE_GET_CLASS(ms); 3390 3391 /* 3392 * NVDIMM support went live in 5.1 without considering that, in 3393 * other archs, the user needs to enable NVDIMM support with the 3394 * 'nvdimm' machine option and the default behavior is NVDIMM 3395 * support disabled. It is too late to roll back to the standard 3396 * behavior without breaking 5.1 guests. 3397 */ 3398 if (mc->nvdimm_supported) { 3399 ms->nvdimms_state->is_enabled = true; 3400 } 3401 3402 spapr->htab_fd = -1; 3403 spapr->use_hotplug_event_source = true; 3404 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3405 object_property_add_str(obj, "kvm-type", 3406 spapr_get_kvm_type, spapr_set_kvm_type); 3407 object_property_set_description(obj, "kvm-type", 3408 "Specifies the KVM virtualization mode (auto," 3409 " hv, pr). Defaults to 'auto'. This mode will use" 3410 " any available KVM module loaded in the host," 3411 " where kvm_hv takes precedence if both kvm_hv and" 3412 " kvm_pr are loaded."); 3413 object_property_add_bool(obj, "modern-hotplug-events", 3414 spapr_get_modern_hotplug_events, 3415 spapr_set_modern_hotplug_events); 3416 object_property_set_description(obj, "modern-hotplug-events", 3417 "Use dedicated hotplug event mechanism in" 3418 " place of standard EPOW events when possible" 3419 " (required for memory hot-unplug support)"); 3420 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3421 "Maximum permitted CPU compatibility mode"); 3422 3423 object_property_add_str(obj, "resize-hpt", 3424 spapr_get_resize_hpt, spapr_set_resize_hpt); 3425 object_property_set_description(obj, "resize-hpt", 3426 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3427 object_property_add_uint32_ptr(obj, "vsmt", 3428 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3429 object_property_set_description(obj, "vsmt", 3430 "Virtual SMT: KVM behaves as if this were" 3431 " the host's SMT mode"); 3432 3433 object_property_add_bool(obj, "vfio-no-msix-emulation", 3434 spapr_get_msix_emulation, NULL); 3435 3436 object_property_add_uint64_ptr(obj, "kernel-addr", 3437 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3438 object_property_set_description(obj, "kernel-addr", 3439 stringify(KERNEL_LOAD_ADDR) 3440 " for -kernel is the default"); 3441 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3442 3443 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3444 object_property_set_description(obj, "x-vof", 3445 "Enable Virtual Open Firmware (experimental)"); 3446 3447 /* The machine class defines the default interrupt controller mode */ 3448 spapr->irq = smc->irq; 3449 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3450 spapr_set_ic_mode); 3451 object_property_set_description(obj, "ic-mode", 3452 "Specifies the interrupt controller mode (xics, xive, dual)"); 3453 3454 object_property_add_str(obj, "host-model", 3455 spapr_get_host_model, spapr_set_host_model); 3456 object_property_set_description(obj, "host-model", 3457 "Host model to advertise in guest device tree"); 3458 object_property_add_str(obj, "host-serial", 3459 spapr_get_host_serial, spapr_set_host_serial); 3460 object_property_set_description(obj, "host-serial", 3461 "Host serial number to advertise in guest device tree"); 3462 } 3463 3464 static void spapr_machine_finalizefn(Object *obj) 3465 { 3466 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3467 3468 g_free(spapr->kvm_type); 3469 } 3470 3471 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3472 { 3473 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3474 PowerPCCPU *cpu = POWERPC_CPU(cs); 3475 CPUPPCState *env = &cpu->env; 3476 3477 cpu_synchronize_state(cs); 3478 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3479 if (spapr->fwnmi_system_reset_addr != -1) { 3480 uint64_t rtas_addr, addr; 3481 3482 /* get rtas addr from fdt */ 3483 rtas_addr = spapr_get_rtas_addr(); 3484 if (!rtas_addr) { 3485 qemu_system_guest_panicked(NULL); 3486 return; 3487 } 3488 3489 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3490 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3491 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3492 env->gpr[3] = addr; 3493 } 3494 ppc_cpu_do_system_reset(cs); 3495 if (spapr->fwnmi_system_reset_addr != -1) { 3496 env->nip = spapr->fwnmi_system_reset_addr; 3497 } 3498 } 3499 3500 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3501 { 3502 CPUState *cs; 3503 3504 CPU_FOREACH(cs) { 3505 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3506 } 3507 } 3508 3509 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3510 void *fdt, int *fdt_start_offset, Error **errp) 3511 { 3512 uint64_t addr; 3513 uint32_t node; 3514 3515 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3516 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3517 &error_abort); 3518 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3519 SPAPR_MEMORY_BLOCK_SIZE); 3520 return 0; 3521 } 3522 3523 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3524 bool dedicated_hp_event_source) 3525 { 3526 SpaprDrc *drc; 3527 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3528 int i; 3529 uint64_t addr = addr_start; 3530 bool hotplugged = spapr_drc_hotplugged(dev); 3531 3532 for (i = 0; i < nr_lmbs; i++) { 3533 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3534 addr / SPAPR_MEMORY_BLOCK_SIZE); 3535 g_assert(drc); 3536 3537 /* 3538 * memory_device_get_free_addr() provided a range of free addresses 3539 * that doesn't overlap with any existing mapping at pre-plug. The 3540 * corresponding LMB DRCs are thus assumed to be all attachable. 3541 */ 3542 spapr_drc_attach(drc, dev); 3543 if (!hotplugged) { 3544 spapr_drc_reset(drc); 3545 } 3546 addr += SPAPR_MEMORY_BLOCK_SIZE; 3547 } 3548 /* send hotplug notification to the 3549 * guest only in case of hotplugged memory 3550 */ 3551 if (hotplugged) { 3552 if (dedicated_hp_event_source) { 3553 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3554 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3555 g_assert(drc); 3556 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3557 nr_lmbs, 3558 spapr_drc_index(drc)); 3559 } else { 3560 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3561 nr_lmbs); 3562 } 3563 } 3564 } 3565 3566 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3567 { 3568 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3569 PCDIMMDevice *dimm = PC_DIMM(dev); 3570 uint64_t size, addr; 3571 int64_t slot; 3572 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3573 3574 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3575 3576 pc_dimm_plug(dimm, MACHINE(ms)); 3577 3578 if (!is_nvdimm) { 3579 addr = object_property_get_uint(OBJECT(dimm), 3580 PC_DIMM_ADDR_PROP, &error_abort); 3581 spapr_add_lmbs(dev, addr, size, 3582 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3583 } else { 3584 slot = object_property_get_int(OBJECT(dimm), 3585 PC_DIMM_SLOT_PROP, &error_abort); 3586 /* We should have valid slot number at this point */ 3587 g_assert(slot >= 0); 3588 spapr_add_nvdimm(dev, slot); 3589 } 3590 } 3591 3592 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3593 Error **errp) 3594 { 3595 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3596 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3597 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3598 PCDIMMDevice *dimm = PC_DIMM(dev); 3599 Error *local_err = NULL; 3600 uint64_t size; 3601 Object *memdev; 3602 hwaddr pagesize; 3603 3604 if (!smc->dr_lmb_enabled) { 3605 error_setg(errp, "Memory hotplug not supported for this machine"); 3606 return; 3607 } 3608 3609 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3610 if (local_err) { 3611 error_propagate(errp, local_err); 3612 return; 3613 } 3614 3615 if (is_nvdimm) { 3616 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3617 return; 3618 } 3619 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3620 error_setg(errp, "Hotplugged memory size must be a multiple of " 3621 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3622 return; 3623 } 3624 3625 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3626 &error_abort); 3627 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3628 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3629 return; 3630 } 3631 3632 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3633 } 3634 3635 struct SpaprDimmState { 3636 PCDIMMDevice *dimm; 3637 uint32_t nr_lmbs; 3638 QTAILQ_ENTRY(SpaprDimmState) next; 3639 }; 3640 3641 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3642 PCDIMMDevice *dimm) 3643 { 3644 SpaprDimmState *dimm_state = NULL; 3645 3646 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3647 if (dimm_state->dimm == dimm) { 3648 break; 3649 } 3650 } 3651 return dimm_state; 3652 } 3653 3654 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3655 uint32_t nr_lmbs, 3656 PCDIMMDevice *dimm) 3657 { 3658 SpaprDimmState *ds = NULL; 3659 3660 /* 3661 * If this request is for a DIMM whose removal had failed earlier 3662 * (due to guest's refusal to remove the LMBs), we would have this 3663 * dimm already in the pending_dimm_unplugs list. In that 3664 * case don't add again. 3665 */ 3666 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3667 if (!ds) { 3668 ds = g_new0(SpaprDimmState, 1); 3669 ds->nr_lmbs = nr_lmbs; 3670 ds->dimm = dimm; 3671 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3672 } 3673 return ds; 3674 } 3675 3676 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3677 SpaprDimmState *dimm_state) 3678 { 3679 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3680 g_free(dimm_state); 3681 } 3682 3683 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3684 PCDIMMDevice *dimm) 3685 { 3686 SpaprDrc *drc; 3687 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3688 &error_abort); 3689 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3690 uint32_t avail_lmbs = 0; 3691 uint64_t addr_start, addr; 3692 int i; 3693 3694 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3695 &error_abort); 3696 3697 addr = addr_start; 3698 for (i = 0; i < nr_lmbs; i++) { 3699 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3700 addr / SPAPR_MEMORY_BLOCK_SIZE); 3701 g_assert(drc); 3702 if (drc->dev) { 3703 avail_lmbs++; 3704 } 3705 addr += SPAPR_MEMORY_BLOCK_SIZE; 3706 } 3707 3708 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3709 } 3710 3711 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3712 { 3713 SpaprDimmState *ds; 3714 PCDIMMDevice *dimm; 3715 SpaprDrc *drc; 3716 uint32_t nr_lmbs; 3717 uint64_t size, addr_start, addr; 3718 g_autofree char *qapi_error = NULL; 3719 int i; 3720 3721 if (!dev) { 3722 return; 3723 } 3724 3725 dimm = PC_DIMM(dev); 3726 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3727 3728 /* 3729 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3730 * unplug state, but one of its DRC is marked as unplug_requested. 3731 * This is bad and weird enough to g_assert() out. 3732 */ 3733 g_assert(ds); 3734 3735 spapr_pending_dimm_unplugs_remove(spapr, ds); 3736 3737 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3738 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3739 3740 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3741 &error_abort); 3742 3743 addr = addr_start; 3744 for (i = 0; i < nr_lmbs; i++) { 3745 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3746 addr / SPAPR_MEMORY_BLOCK_SIZE); 3747 g_assert(drc); 3748 3749 drc->unplug_requested = false; 3750 addr += SPAPR_MEMORY_BLOCK_SIZE; 3751 } 3752 3753 /* 3754 * Tell QAPI that something happened and the memory 3755 * hotunplug wasn't successful. Keep sending 3756 * MEM_UNPLUG_ERROR even while sending 3757 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3758 * MEM_UNPLUG_ERROR is due. 3759 */ 3760 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3761 "for device %s", dev->id); 3762 3763 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3764 3765 qapi_event_send_device_unplug_guest_error(dev->id, 3766 dev->canonical_path); 3767 } 3768 3769 /* Callback to be called during DRC release. */ 3770 void spapr_lmb_release(DeviceState *dev) 3771 { 3772 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3773 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3774 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3775 3776 /* This information will get lost if a migration occurs 3777 * during the unplug process. In this case recover it. */ 3778 if (ds == NULL) { 3779 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3780 g_assert(ds); 3781 /* The DRC being examined by the caller at least must be counted */ 3782 g_assert(ds->nr_lmbs); 3783 } 3784 3785 if (--ds->nr_lmbs) { 3786 return; 3787 } 3788 3789 /* 3790 * Now that all the LMBs have been removed by the guest, call the 3791 * unplug handler chain. This can never fail. 3792 */ 3793 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3794 object_unparent(OBJECT(dev)); 3795 } 3796 3797 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3798 { 3799 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3800 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3801 3802 /* We really shouldn't get this far without anything to unplug */ 3803 g_assert(ds); 3804 3805 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3806 qdev_unrealize(dev); 3807 spapr_pending_dimm_unplugs_remove(spapr, ds); 3808 } 3809 3810 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3811 DeviceState *dev, Error **errp) 3812 { 3813 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3814 PCDIMMDevice *dimm = PC_DIMM(dev); 3815 uint32_t nr_lmbs; 3816 uint64_t size, addr_start, addr; 3817 int i; 3818 SpaprDrc *drc; 3819 3820 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3821 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3822 return; 3823 } 3824 3825 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3826 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3827 3828 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3829 &error_abort); 3830 3831 /* 3832 * An existing pending dimm state for this DIMM means that there is an 3833 * unplug operation in progress, waiting for the spapr_lmb_release 3834 * callback to complete the job (BQL can't cover that far). In this case, 3835 * bail out to avoid detaching DRCs that were already released. 3836 */ 3837 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3838 error_setg(errp, "Memory unplug already in progress for device %s", 3839 dev->id); 3840 return; 3841 } 3842 3843 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3844 3845 addr = addr_start; 3846 for (i = 0; i < nr_lmbs; i++) { 3847 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3848 addr / SPAPR_MEMORY_BLOCK_SIZE); 3849 g_assert(drc); 3850 3851 spapr_drc_unplug_request(drc); 3852 addr += SPAPR_MEMORY_BLOCK_SIZE; 3853 } 3854 3855 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3856 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3857 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3858 nr_lmbs, spapr_drc_index(drc)); 3859 } 3860 3861 /* Callback to be called during DRC release. */ 3862 void spapr_core_release(DeviceState *dev) 3863 { 3864 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3865 3866 /* Call the unplug handler chain. This can never fail. */ 3867 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3868 object_unparent(OBJECT(dev)); 3869 } 3870 3871 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3872 { 3873 MachineState *ms = MACHINE(hotplug_dev); 3874 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3875 CPUCore *cc = CPU_CORE(dev); 3876 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3877 3878 if (smc->pre_2_10_has_unused_icps) { 3879 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3880 int i; 3881 3882 for (i = 0; i < cc->nr_threads; i++) { 3883 CPUState *cs = CPU(sc->threads[i]); 3884 3885 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3886 } 3887 } 3888 3889 assert(core_slot); 3890 core_slot->cpu = NULL; 3891 qdev_unrealize(dev); 3892 } 3893 3894 static 3895 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3896 Error **errp) 3897 { 3898 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3899 int index; 3900 SpaprDrc *drc; 3901 CPUCore *cc = CPU_CORE(dev); 3902 3903 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3904 error_setg(errp, "Unable to find CPU core with core-id: %d", 3905 cc->core_id); 3906 return; 3907 } 3908 if (index == 0) { 3909 error_setg(errp, "Boot CPU core may not be unplugged"); 3910 return; 3911 } 3912 3913 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3914 spapr_vcpu_id(spapr, cc->core_id)); 3915 g_assert(drc); 3916 3917 if (!spapr_drc_unplug_requested(drc)) { 3918 spapr_drc_unplug_request(drc); 3919 } 3920 3921 /* 3922 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3923 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3924 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3925 * attempt (e.g. the kernel will refuse to remove the last online 3926 * CPU), we will never attempt it again because unplug_requested 3927 * will still be 'true' in that case. 3928 */ 3929 spapr_hotplug_req_remove_by_index(drc); 3930 } 3931 3932 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3933 void *fdt, int *fdt_start_offset, Error **errp) 3934 { 3935 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3936 CPUState *cs = CPU(core->threads[0]); 3937 PowerPCCPU *cpu = POWERPC_CPU(cs); 3938 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3939 int id = spapr_get_vcpu_id(cpu); 3940 g_autofree char *nodename = NULL; 3941 int offset; 3942 3943 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3944 offset = fdt_add_subnode(fdt, 0, nodename); 3945 3946 spapr_dt_cpu(cs, fdt, offset, spapr); 3947 3948 /* 3949 * spapr_dt_cpu() does not fill the 'name' property in the 3950 * CPU node. The function is called during boot process, before 3951 * and after CAS, and overwriting the 'name' property written 3952 * by SLOF is not allowed. 3953 * 3954 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3955 * CPUs more compatible with the coldplugged ones, which have 3956 * the 'name' property. Linux Kernel also relies on this 3957 * property to identify CPU nodes. 3958 */ 3959 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3960 3961 *fdt_start_offset = offset; 3962 return 0; 3963 } 3964 3965 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3966 { 3967 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3968 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3969 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3970 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3971 CPUCore *cc = CPU_CORE(dev); 3972 CPUState *cs; 3973 SpaprDrc *drc; 3974 CPUArchId *core_slot; 3975 int index; 3976 bool hotplugged = spapr_drc_hotplugged(dev); 3977 int i; 3978 3979 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3980 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3981 3982 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3983 spapr_vcpu_id(spapr, cc->core_id)); 3984 3985 g_assert(drc || !mc->has_hotpluggable_cpus); 3986 3987 if (drc) { 3988 /* 3989 * spapr_core_pre_plug() already buys us this is a brand new 3990 * core being plugged into a free slot. Nothing should already 3991 * be attached to the corresponding DRC. 3992 */ 3993 spapr_drc_attach(drc, dev); 3994 3995 if (hotplugged) { 3996 /* 3997 * Send hotplug notification interrupt to the guest only 3998 * in case of hotplugged CPUs. 3999 */ 4000 spapr_hotplug_req_add_by_index(drc); 4001 } else { 4002 spapr_drc_reset(drc); 4003 } 4004 } 4005 4006 core_slot->cpu = OBJECT(dev); 4007 4008 /* 4009 * Set compatibility mode to match the boot CPU, which was either set 4010 * by the machine reset code or by CAS. This really shouldn't fail at 4011 * this point. 4012 */ 4013 if (hotplugged) { 4014 for (i = 0; i < cc->nr_threads; i++) { 4015 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 4016 &error_abort); 4017 } 4018 } 4019 4020 if (smc->pre_2_10_has_unused_icps) { 4021 for (i = 0; i < cc->nr_threads; i++) { 4022 cs = CPU(core->threads[i]); 4023 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4024 } 4025 } 4026 } 4027 4028 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4029 Error **errp) 4030 { 4031 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4032 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4033 CPUCore *cc = CPU_CORE(dev); 4034 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4035 const char *type = object_get_typename(OBJECT(dev)); 4036 CPUArchId *core_slot; 4037 int index; 4038 unsigned int smp_threads = machine->smp.threads; 4039 4040 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4041 error_setg(errp, "CPU hotplug not supported for this machine"); 4042 return; 4043 } 4044 4045 if (strcmp(base_core_type, type)) { 4046 error_setg(errp, "CPU core type should be %s", base_core_type); 4047 return; 4048 } 4049 4050 if (cc->core_id % smp_threads) { 4051 error_setg(errp, "invalid core id %d", cc->core_id); 4052 return; 4053 } 4054 4055 /* 4056 * In general we should have homogeneous threads-per-core, but old 4057 * (pre hotplug support) machine types allow the last core to have 4058 * reduced threads as a compatibility hack for when we allowed 4059 * total vcpus not a multiple of threads-per-core. 4060 */ 4061 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4062 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4063 smp_threads); 4064 return; 4065 } 4066 4067 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4068 if (!core_slot) { 4069 error_setg(errp, "core id %d out of range", cc->core_id); 4070 return; 4071 } 4072 4073 if (core_slot->cpu) { 4074 error_setg(errp, "core %d already populated", cc->core_id); 4075 return; 4076 } 4077 4078 numa_cpu_pre_plug(core_slot, dev, errp); 4079 } 4080 4081 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4082 void *fdt, int *fdt_start_offset, Error **errp) 4083 { 4084 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4085 int intc_phandle; 4086 4087 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4088 if (intc_phandle <= 0) { 4089 return -1; 4090 } 4091 4092 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4093 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4094 return -1; 4095 } 4096 4097 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4098 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4099 4100 return 0; 4101 } 4102 4103 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4104 Error **errp) 4105 { 4106 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4107 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4108 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4109 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4110 SpaprDrc *drc; 4111 4112 if (dev->hotplugged && !smc->dr_phb_enabled) { 4113 error_setg(errp, "PHB hotplug not supported for this machine"); 4114 return false; 4115 } 4116 4117 if (sphb->index == (uint32_t)-1) { 4118 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4119 return false; 4120 } 4121 4122 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4123 if (drc && drc->dev) { 4124 error_setg(errp, "PHB %d already attached", sphb->index); 4125 return false; 4126 } 4127 4128 /* 4129 * This will check that sphb->index doesn't exceed the maximum number of 4130 * PHBs for the current machine type. 4131 */ 4132 return 4133 smc->phb_placement(spapr, sphb->index, 4134 &sphb->buid, &sphb->io_win_addr, 4135 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4136 windows_supported, sphb->dma_liobn, 4137 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 4138 errp); 4139 } 4140 4141 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4142 { 4143 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4144 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4145 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4146 SpaprDrc *drc; 4147 bool hotplugged = spapr_drc_hotplugged(dev); 4148 4149 if (!smc->dr_phb_enabled) { 4150 return; 4151 } 4152 4153 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4154 /* hotplug hooks should check it's enabled before getting this far */ 4155 assert(drc); 4156 4157 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4158 spapr_drc_attach(drc, dev); 4159 4160 if (hotplugged) { 4161 spapr_hotplug_req_add_by_index(drc); 4162 } else { 4163 spapr_drc_reset(drc); 4164 } 4165 } 4166 4167 void spapr_phb_release(DeviceState *dev) 4168 { 4169 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4170 4171 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4172 object_unparent(OBJECT(dev)); 4173 } 4174 4175 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4176 { 4177 qdev_unrealize(dev); 4178 } 4179 4180 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4181 DeviceState *dev, Error **errp) 4182 { 4183 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4184 SpaprDrc *drc; 4185 4186 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4187 assert(drc); 4188 4189 if (!spapr_drc_unplug_requested(drc)) { 4190 spapr_drc_unplug_request(drc); 4191 spapr_hotplug_req_remove_by_index(drc); 4192 } else { 4193 error_setg(errp, 4194 "PCI Host Bridge unplug already in progress for device %s", 4195 dev->id); 4196 } 4197 } 4198 4199 static 4200 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4201 Error **errp) 4202 { 4203 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4204 4205 if (spapr->tpm_proxy != NULL) { 4206 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4207 return false; 4208 } 4209 4210 return true; 4211 } 4212 4213 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4214 { 4215 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4216 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4217 4218 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4219 g_assert(spapr->tpm_proxy == NULL); 4220 4221 spapr->tpm_proxy = tpm_proxy; 4222 } 4223 4224 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4225 { 4226 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4227 4228 qdev_unrealize(dev); 4229 object_unparent(OBJECT(dev)); 4230 spapr->tpm_proxy = NULL; 4231 } 4232 4233 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4234 DeviceState *dev, Error **errp) 4235 { 4236 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4237 spapr_memory_plug(hotplug_dev, dev); 4238 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4239 spapr_core_plug(hotplug_dev, dev); 4240 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4241 spapr_phb_plug(hotplug_dev, dev); 4242 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4243 spapr_tpm_proxy_plug(hotplug_dev, dev); 4244 } 4245 } 4246 4247 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4248 DeviceState *dev, Error **errp) 4249 { 4250 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4251 spapr_memory_unplug(hotplug_dev, dev); 4252 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4253 spapr_core_unplug(hotplug_dev, dev); 4254 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4255 spapr_phb_unplug(hotplug_dev, dev); 4256 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4257 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4258 } 4259 } 4260 4261 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4262 { 4263 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4264 /* 4265 * CAS will process all pending unplug requests. 4266 * 4267 * HACK: a guest could theoretically have cleared all bits in OV5, 4268 * but none of the guests we care for do. 4269 */ 4270 spapr_ovec_empty(spapr->ov5_cas); 4271 } 4272 4273 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4274 DeviceState *dev, Error **errp) 4275 { 4276 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4277 MachineClass *mc = MACHINE_GET_CLASS(sms); 4278 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4279 4280 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4281 if (spapr_memory_hot_unplug_supported(sms)) { 4282 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4283 } else { 4284 error_setg(errp, "Memory hot unplug not supported for this guest"); 4285 } 4286 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4287 if (!mc->has_hotpluggable_cpus) { 4288 error_setg(errp, "CPU hot unplug not supported on this machine"); 4289 return; 4290 } 4291 spapr_core_unplug_request(hotplug_dev, dev, errp); 4292 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4293 if (!smc->dr_phb_enabled) { 4294 error_setg(errp, "PHB hot unplug not supported on this machine"); 4295 return; 4296 } 4297 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4298 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4299 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4300 } 4301 } 4302 4303 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4304 DeviceState *dev, Error **errp) 4305 { 4306 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4307 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4308 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4309 spapr_core_pre_plug(hotplug_dev, dev, errp); 4310 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4311 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4312 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4313 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4314 } 4315 } 4316 4317 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4318 DeviceState *dev) 4319 { 4320 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4321 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4322 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4323 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4324 return HOTPLUG_HANDLER(machine); 4325 } 4326 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4327 PCIDevice *pcidev = PCI_DEVICE(dev); 4328 PCIBus *root = pci_device_root_bus(pcidev); 4329 SpaprPhbState *phb = 4330 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4331 TYPE_SPAPR_PCI_HOST_BRIDGE); 4332 4333 if (phb) { 4334 return HOTPLUG_HANDLER(phb); 4335 } 4336 } 4337 return NULL; 4338 } 4339 4340 static CpuInstanceProperties 4341 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4342 { 4343 CPUArchId *core_slot; 4344 MachineClass *mc = MACHINE_GET_CLASS(machine); 4345 4346 /* make sure possible_cpu are intialized */ 4347 mc->possible_cpu_arch_ids(machine); 4348 /* get CPU core slot containing thread that matches cpu_index */ 4349 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4350 assert(core_slot); 4351 return core_slot->props; 4352 } 4353 4354 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4355 { 4356 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4357 } 4358 4359 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4360 { 4361 int i; 4362 unsigned int smp_threads = machine->smp.threads; 4363 unsigned int smp_cpus = machine->smp.cpus; 4364 const char *core_type; 4365 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4366 MachineClass *mc = MACHINE_GET_CLASS(machine); 4367 4368 if (!mc->has_hotpluggable_cpus) { 4369 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4370 } 4371 if (machine->possible_cpus) { 4372 assert(machine->possible_cpus->len == spapr_max_cores); 4373 return machine->possible_cpus; 4374 } 4375 4376 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4377 if (!core_type) { 4378 error_report("Unable to find sPAPR CPU Core definition"); 4379 exit(1); 4380 } 4381 4382 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4383 sizeof(CPUArchId) * spapr_max_cores); 4384 machine->possible_cpus->len = spapr_max_cores; 4385 for (i = 0; i < machine->possible_cpus->len; i++) { 4386 int core_id = i * smp_threads; 4387 4388 machine->possible_cpus->cpus[i].type = core_type; 4389 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4390 machine->possible_cpus->cpus[i].arch_id = core_id; 4391 machine->possible_cpus->cpus[i].props.has_core_id = true; 4392 machine->possible_cpus->cpus[i].props.core_id = core_id; 4393 } 4394 return machine->possible_cpus; 4395 } 4396 4397 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4398 uint64_t *buid, hwaddr *pio, 4399 hwaddr *mmio32, hwaddr *mmio64, 4400 unsigned n_dma, uint32_t *liobns, 4401 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4402 { 4403 /* 4404 * New-style PHB window placement. 4405 * 4406 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4407 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4408 * windows. 4409 * 4410 * Some guest kernels can't work with MMIO windows above 1<<46 4411 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4412 * 4413 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4414 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4415 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4416 * 1TiB 64-bit MMIO windows for each PHB. 4417 */ 4418 const uint64_t base_buid = 0x800000020000000ULL; 4419 int i; 4420 4421 /* Sanity check natural alignments */ 4422 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4423 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4424 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4425 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4426 /* Sanity check bounds */ 4427 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4428 SPAPR_PCI_MEM32_WIN_SIZE); 4429 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4430 SPAPR_PCI_MEM64_WIN_SIZE); 4431 4432 if (index >= SPAPR_MAX_PHBS) { 4433 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4434 SPAPR_MAX_PHBS - 1); 4435 return false; 4436 } 4437 4438 *buid = base_buid + index; 4439 for (i = 0; i < n_dma; ++i) { 4440 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4441 } 4442 4443 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4444 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4445 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4446 4447 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4448 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4449 return true; 4450 } 4451 4452 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4453 { 4454 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4455 4456 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4457 } 4458 4459 static void spapr_ics_resend(XICSFabric *dev) 4460 { 4461 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4462 4463 ics_resend(spapr->ics); 4464 } 4465 4466 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4467 { 4468 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4469 4470 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4471 } 4472 4473 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4474 Monitor *mon) 4475 { 4476 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4477 4478 spapr_irq_print_info(spapr, mon); 4479 monitor_printf(mon, "irqchip: %s\n", 4480 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4481 } 4482 4483 /* 4484 * This is a XIVE only operation 4485 */ 4486 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4487 uint8_t nvt_blk, uint32_t nvt_idx, 4488 bool cam_ignore, uint8_t priority, 4489 uint32_t logic_serv, XiveTCTXMatch *match) 4490 { 4491 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4492 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4493 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4494 int count; 4495 4496 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4497 priority, logic_serv, match); 4498 if (count < 0) { 4499 return count; 4500 } 4501 4502 /* 4503 * When we implement the save and restore of the thread interrupt 4504 * contexts in the enter/exit CPU handlers of the machine and the 4505 * escalations in QEMU, we should be able to handle non dispatched 4506 * vCPUs. 4507 * 4508 * Until this is done, the sPAPR machine should find at least one 4509 * matching context always. 4510 */ 4511 if (count == 0) { 4512 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4513 nvt_blk, nvt_idx); 4514 } 4515 4516 return count; 4517 } 4518 4519 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4520 { 4521 return cpu->vcpu_id; 4522 } 4523 4524 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4525 { 4526 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4527 MachineState *ms = MACHINE(spapr); 4528 int vcpu_id; 4529 4530 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4531 4532 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4533 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4534 error_append_hint(errp, "Adjust the number of cpus to %d " 4535 "or try to raise the number of threads per core\n", 4536 vcpu_id * ms->smp.threads / spapr->vsmt); 4537 return false; 4538 } 4539 4540 cpu->vcpu_id = vcpu_id; 4541 return true; 4542 } 4543 4544 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4545 { 4546 CPUState *cs; 4547 4548 CPU_FOREACH(cs) { 4549 PowerPCCPU *cpu = POWERPC_CPU(cs); 4550 4551 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4552 return cpu; 4553 } 4554 } 4555 4556 return NULL; 4557 } 4558 4559 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4560 { 4561 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4562 4563 return spapr_cpu->in_nested; 4564 } 4565 4566 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4567 { 4568 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4569 4570 /* These are only called by TCG, KVM maintains dispatch state */ 4571 4572 spapr_cpu->prod = false; 4573 if (spapr_cpu->vpa_addr) { 4574 CPUState *cs = CPU(cpu); 4575 uint32_t dispatch; 4576 4577 dispatch = ldl_be_phys(cs->as, 4578 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4579 dispatch++; 4580 if ((dispatch & 1) != 0) { 4581 qemu_log_mask(LOG_GUEST_ERROR, 4582 "VPA: incorrect dispatch counter value for " 4583 "dispatched partition %u, correcting.\n", dispatch); 4584 dispatch++; 4585 } 4586 stl_be_phys(cs->as, 4587 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4588 } 4589 } 4590 4591 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4592 { 4593 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4594 4595 if (spapr_cpu->vpa_addr) { 4596 CPUState *cs = CPU(cpu); 4597 uint32_t dispatch; 4598 4599 dispatch = ldl_be_phys(cs->as, 4600 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4601 dispatch++; 4602 if ((dispatch & 1) != 1) { 4603 qemu_log_mask(LOG_GUEST_ERROR, 4604 "VPA: incorrect dispatch counter value for " 4605 "preempted partition %u, correcting.\n", dispatch); 4606 dispatch++; 4607 } 4608 stl_be_phys(cs->as, 4609 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4610 } 4611 } 4612 4613 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4614 { 4615 MachineClass *mc = MACHINE_CLASS(oc); 4616 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4617 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4618 NMIClass *nc = NMI_CLASS(oc); 4619 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4620 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4621 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4622 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4623 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4624 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4625 4626 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4627 mc->ignore_boot_device_suffixes = true; 4628 4629 /* 4630 * We set up the default / latest behaviour here. The class_init 4631 * functions for the specific versioned machine types can override 4632 * these details for backwards compatibility 4633 */ 4634 mc->init = spapr_machine_init; 4635 mc->reset = spapr_machine_reset; 4636 mc->block_default_type = IF_SCSI; 4637 4638 /* 4639 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values 4640 * should be limited by the host capability instead of hardcoded. 4641 * max_cpus for KVM guests will be checked in kvm_init(), and TCG 4642 * guests are welcome to have as many CPUs as the host are capable 4643 * of emulate. 4644 */ 4645 mc->max_cpus = INT32_MAX; 4646 4647 mc->no_parallel = 1; 4648 mc->default_boot_order = ""; 4649 mc->default_ram_size = 512 * MiB; 4650 mc->default_ram_id = "ppc_spapr.ram"; 4651 mc->default_display = "std"; 4652 mc->kvm_type = spapr_kvm_type; 4653 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4654 mc->pci_allow_0_address = true; 4655 assert(!mc->get_hotplug_handler); 4656 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4657 hc->pre_plug = spapr_machine_device_pre_plug; 4658 hc->plug = spapr_machine_device_plug; 4659 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4660 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4661 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4662 hc->unplug_request = spapr_machine_device_unplug_request; 4663 hc->unplug = spapr_machine_device_unplug; 4664 4665 smc->dr_lmb_enabled = true; 4666 smc->update_dt_enabled = true; 4667 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); 4668 mc->has_hotpluggable_cpus = true; 4669 mc->nvdimm_supported = true; 4670 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4671 fwc->get_dev_path = spapr_get_fw_dev_path; 4672 nc->nmi_monitor_handler = spapr_nmi; 4673 smc->phb_placement = spapr_phb_placement; 4674 vhc->cpu_in_nested = spapr_cpu_in_nested; 4675 vhc->deliver_hv_excp = spapr_exit_nested; 4676 vhc->hypercall = emulate_spapr_hypercall; 4677 vhc->hpt_mask = spapr_hpt_mask; 4678 vhc->map_hptes = spapr_map_hptes; 4679 vhc->unmap_hptes = spapr_unmap_hptes; 4680 vhc->hpte_set_c = spapr_hpte_set_c; 4681 vhc->hpte_set_r = spapr_hpte_set_r; 4682 vhc->get_pate = spapr_get_pate; 4683 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4684 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4685 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4686 xic->ics_get = spapr_ics_get; 4687 xic->ics_resend = spapr_ics_resend; 4688 xic->icp_get = spapr_icp_get; 4689 ispc->print_info = spapr_pic_print_info; 4690 /* Force NUMA node memory size to be a multiple of 4691 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4692 * in which LMBs are represented and hot-added 4693 */ 4694 mc->numa_mem_align_shift = 28; 4695 mc->auto_enable_numa = true; 4696 4697 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4698 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4699 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4700 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4701 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4702 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4703 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4704 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4705 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4706 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4707 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4708 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4709 4710 /* 4711 * This cap specifies whether the AIL 3 mode for 4712 * H_SET_RESOURCE is supported. The default is modified 4713 * by default_caps_with_cpu(). 4714 */ 4715 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4716 spapr_caps_add_properties(smc); 4717 smc->irq = &spapr_irq_dual; 4718 smc->dr_phb_enabled = true; 4719 smc->linux_pci_probe = true; 4720 smc->smp_threads_vsmt = true; 4721 smc->nr_xirqs = SPAPR_NR_XIRQS; 4722 xfc->match_nvt = spapr_match_nvt; 4723 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4724 vmc->quiesce = spapr_vof_quiesce; 4725 vmc->setprop = spapr_vof_setprop; 4726 } 4727 4728 static const TypeInfo spapr_machine_info = { 4729 .name = TYPE_SPAPR_MACHINE, 4730 .parent = TYPE_MACHINE, 4731 .abstract = true, 4732 .instance_size = sizeof(SpaprMachineState), 4733 .instance_init = spapr_instance_init, 4734 .instance_finalize = spapr_machine_finalizefn, 4735 .class_size = sizeof(SpaprMachineClass), 4736 .class_init = spapr_machine_class_init, 4737 .interfaces = (InterfaceInfo[]) { 4738 { TYPE_FW_PATH_PROVIDER }, 4739 { TYPE_NMI }, 4740 { TYPE_HOTPLUG_HANDLER }, 4741 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4742 { TYPE_XICS_FABRIC }, 4743 { TYPE_INTERRUPT_STATS_PROVIDER }, 4744 { TYPE_XIVE_FABRIC }, 4745 { TYPE_VOF_MACHINE_IF }, 4746 { } 4747 }, 4748 }; 4749 4750 static void spapr_machine_latest_class_options(MachineClass *mc) 4751 { 4752 mc->alias = "pseries"; 4753 mc->is_default = true; 4754 } 4755 4756 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4757 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4758 void *data) \ 4759 { \ 4760 MachineClass *mc = MACHINE_CLASS(oc); \ 4761 spapr_machine_##suffix##_class_options(mc); \ 4762 if (latest) { \ 4763 spapr_machine_latest_class_options(mc); \ 4764 } \ 4765 } \ 4766 static const TypeInfo spapr_machine_##suffix##_info = { \ 4767 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4768 .parent = TYPE_SPAPR_MACHINE, \ 4769 .class_init = spapr_machine_##suffix##_class_init, \ 4770 }; \ 4771 static void spapr_machine_register_##suffix(void) \ 4772 { \ 4773 type_register(&spapr_machine_##suffix##_info); \ 4774 } \ 4775 type_init(spapr_machine_register_##suffix) 4776 4777 /* 4778 * pseries-8.2 4779 */ 4780 static void spapr_machine_8_2_class_options(MachineClass *mc) 4781 { 4782 /* Defaults for the latest behaviour inherited from the base class */ 4783 } 4784 4785 DEFINE_SPAPR_MACHINE(8_2, "8.2", true); 4786 4787 /* 4788 * pseries-8.1 4789 */ 4790 static void spapr_machine_8_1_class_options(MachineClass *mc) 4791 { 4792 spapr_machine_8_2_class_options(mc); 4793 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4794 } 4795 4796 DEFINE_SPAPR_MACHINE(8_1, "8.1", false); 4797 4798 /* 4799 * pseries-8.0 4800 */ 4801 static void spapr_machine_8_0_class_options(MachineClass *mc) 4802 { 4803 spapr_machine_8_1_class_options(mc); 4804 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4805 } 4806 4807 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4808 4809 /* 4810 * pseries-7.2 4811 */ 4812 static void spapr_machine_7_2_class_options(MachineClass *mc) 4813 { 4814 spapr_machine_8_0_class_options(mc); 4815 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4816 } 4817 4818 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4819 4820 /* 4821 * pseries-7.1 4822 */ 4823 static void spapr_machine_7_1_class_options(MachineClass *mc) 4824 { 4825 spapr_machine_7_2_class_options(mc); 4826 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4827 } 4828 4829 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4830 4831 /* 4832 * pseries-7.0 4833 */ 4834 static void spapr_machine_7_0_class_options(MachineClass *mc) 4835 { 4836 spapr_machine_7_1_class_options(mc); 4837 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4838 } 4839 4840 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4841 4842 /* 4843 * pseries-6.2 4844 */ 4845 static void spapr_machine_6_2_class_options(MachineClass *mc) 4846 { 4847 spapr_machine_7_0_class_options(mc); 4848 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4849 } 4850 4851 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4852 4853 /* 4854 * pseries-6.1 4855 */ 4856 static void spapr_machine_6_1_class_options(MachineClass *mc) 4857 { 4858 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4859 4860 spapr_machine_6_2_class_options(mc); 4861 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4862 smc->pre_6_2_numa_affinity = true; 4863 mc->smp_props.prefer_sockets = true; 4864 } 4865 4866 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4867 4868 /* 4869 * pseries-6.0 4870 */ 4871 static void spapr_machine_6_0_class_options(MachineClass *mc) 4872 { 4873 spapr_machine_6_1_class_options(mc); 4874 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4875 } 4876 4877 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4878 4879 /* 4880 * pseries-5.2 4881 */ 4882 static void spapr_machine_5_2_class_options(MachineClass *mc) 4883 { 4884 spapr_machine_6_0_class_options(mc); 4885 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4886 } 4887 4888 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4889 4890 /* 4891 * pseries-5.1 4892 */ 4893 static void spapr_machine_5_1_class_options(MachineClass *mc) 4894 { 4895 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4896 4897 spapr_machine_5_2_class_options(mc); 4898 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4899 smc->pre_5_2_numa_associativity = true; 4900 } 4901 4902 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4903 4904 /* 4905 * pseries-5.0 4906 */ 4907 static void spapr_machine_5_0_class_options(MachineClass *mc) 4908 { 4909 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4910 static GlobalProperty compat[] = { 4911 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4912 }; 4913 4914 spapr_machine_5_1_class_options(mc); 4915 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4916 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4917 mc->numa_mem_supported = true; 4918 smc->pre_5_1_assoc_refpoints = true; 4919 } 4920 4921 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4922 4923 /* 4924 * pseries-4.2 4925 */ 4926 static void spapr_machine_4_2_class_options(MachineClass *mc) 4927 { 4928 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4929 4930 spapr_machine_5_0_class_options(mc); 4931 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4932 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4933 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4934 smc->rma_limit = 16 * GiB; 4935 mc->nvdimm_supported = false; 4936 } 4937 4938 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4939 4940 /* 4941 * pseries-4.1 4942 */ 4943 static void spapr_machine_4_1_class_options(MachineClass *mc) 4944 { 4945 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4946 static GlobalProperty compat[] = { 4947 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4948 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4949 }; 4950 4951 spapr_machine_4_2_class_options(mc); 4952 smc->linux_pci_probe = false; 4953 smc->smp_threads_vsmt = false; 4954 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4955 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4956 } 4957 4958 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4959 4960 /* 4961 * pseries-4.0 4962 */ 4963 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4964 uint64_t *buid, hwaddr *pio, 4965 hwaddr *mmio32, hwaddr *mmio64, 4966 unsigned n_dma, uint32_t *liobns, 4967 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4968 { 4969 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4970 liobns, nv2gpa, nv2atsd, errp)) { 4971 return false; 4972 } 4973 4974 *nv2gpa = 0; 4975 *nv2atsd = 0; 4976 return true; 4977 } 4978 static void spapr_machine_4_0_class_options(MachineClass *mc) 4979 { 4980 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4981 4982 spapr_machine_4_1_class_options(mc); 4983 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4984 smc->phb_placement = phb_placement_4_0; 4985 smc->irq = &spapr_irq_xics; 4986 smc->pre_4_1_migration = true; 4987 } 4988 4989 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4990 4991 /* 4992 * pseries-3.1 4993 */ 4994 static void spapr_machine_3_1_class_options(MachineClass *mc) 4995 { 4996 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4997 4998 spapr_machine_4_0_class_options(mc); 4999 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 5000 5001 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 5002 smc->update_dt_enabled = false; 5003 smc->dr_phb_enabled = false; 5004 smc->broken_host_serial_model = true; 5005 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 5006 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 5007 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 5008 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 5009 } 5010 5011 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 5012 5013 /* 5014 * pseries-3.0 5015 */ 5016 5017 static void spapr_machine_3_0_class_options(MachineClass *mc) 5018 { 5019 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5020 5021 spapr_machine_3_1_class_options(mc); 5022 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5023 5024 smc->legacy_irq_allocation = true; 5025 smc->nr_xirqs = 0x400; 5026 smc->irq = &spapr_irq_xics_legacy; 5027 } 5028 5029 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 5030 5031 /* 5032 * pseries-2.12 5033 */ 5034 static void spapr_machine_2_12_class_options(MachineClass *mc) 5035 { 5036 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5037 static GlobalProperty compat[] = { 5038 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5039 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5040 }; 5041 5042 spapr_machine_3_0_class_options(mc); 5043 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5044 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5045 5046 /* We depend on kvm_enabled() to choose a default value for the 5047 * hpt-max-page-size capability. Of course we can't do it here 5048 * because this is too early and the HW accelerator isn't initialzed 5049 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5050 */ 5051 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5052 } 5053 5054 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5055 5056 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5057 { 5058 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5059 5060 spapr_machine_2_12_class_options(mc); 5061 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5062 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5063 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5064 } 5065 5066 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5067 5068 /* 5069 * pseries-2.11 5070 */ 5071 5072 static void spapr_machine_2_11_class_options(MachineClass *mc) 5073 { 5074 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5075 5076 spapr_machine_2_12_class_options(mc); 5077 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5078 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5079 } 5080 5081 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5082 5083 /* 5084 * pseries-2.10 5085 */ 5086 5087 static void spapr_machine_2_10_class_options(MachineClass *mc) 5088 { 5089 spapr_machine_2_11_class_options(mc); 5090 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5091 } 5092 5093 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5094 5095 /* 5096 * pseries-2.9 5097 */ 5098 5099 static void spapr_machine_2_9_class_options(MachineClass *mc) 5100 { 5101 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5102 static GlobalProperty compat[] = { 5103 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5104 }; 5105 5106 spapr_machine_2_10_class_options(mc); 5107 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5108 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5109 smc->pre_2_10_has_unused_icps = true; 5110 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5111 } 5112 5113 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5114 5115 /* 5116 * pseries-2.8 5117 */ 5118 5119 static void spapr_machine_2_8_class_options(MachineClass *mc) 5120 { 5121 static GlobalProperty compat[] = { 5122 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5123 }; 5124 5125 spapr_machine_2_9_class_options(mc); 5126 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5127 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5128 mc->numa_mem_align_shift = 23; 5129 } 5130 5131 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5132 5133 /* 5134 * pseries-2.7 5135 */ 5136 5137 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5138 uint64_t *buid, hwaddr *pio, 5139 hwaddr *mmio32, hwaddr *mmio64, 5140 unsigned n_dma, uint32_t *liobns, 5141 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 5142 { 5143 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5144 const uint64_t base_buid = 0x800000020000000ULL; 5145 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5146 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5147 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5148 const uint32_t max_index = 255; 5149 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5150 5151 uint64_t ram_top = MACHINE(spapr)->ram_size; 5152 hwaddr phb0_base, phb_base; 5153 int i; 5154 5155 /* Do we have device memory? */ 5156 if (MACHINE(spapr)->device_memory) { 5157 /* Can't just use maxram_size, because there may be an 5158 * alignment gap between normal and device memory regions 5159 */ 5160 ram_top = MACHINE(spapr)->device_memory->base + 5161 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5162 } 5163 5164 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5165 5166 if (index > max_index) { 5167 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5168 max_index); 5169 return false; 5170 } 5171 5172 *buid = base_buid + index; 5173 for (i = 0; i < n_dma; ++i) { 5174 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5175 } 5176 5177 phb_base = phb0_base + index * phb_spacing; 5178 *pio = phb_base + pio_offset; 5179 *mmio32 = phb_base + mmio_offset; 5180 /* 5181 * We don't set the 64-bit MMIO window, relying on the PHB's 5182 * fallback behaviour of automatically splitting a large "32-bit" 5183 * window into contiguous 32-bit and 64-bit windows 5184 */ 5185 5186 *nv2gpa = 0; 5187 *nv2atsd = 0; 5188 return true; 5189 } 5190 5191 static void spapr_machine_2_7_class_options(MachineClass *mc) 5192 { 5193 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5194 static GlobalProperty compat[] = { 5195 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5196 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5197 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5198 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5199 }; 5200 5201 spapr_machine_2_8_class_options(mc); 5202 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5203 mc->default_machine_opts = "modern-hotplug-events=off"; 5204 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5205 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5206 smc->phb_placement = phb_placement_2_7; 5207 } 5208 5209 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5210 5211 /* 5212 * pseries-2.6 5213 */ 5214 5215 static void spapr_machine_2_6_class_options(MachineClass *mc) 5216 { 5217 static GlobalProperty compat[] = { 5218 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5219 }; 5220 5221 spapr_machine_2_7_class_options(mc); 5222 mc->has_hotpluggable_cpus = false; 5223 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5224 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5225 } 5226 5227 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5228 5229 /* 5230 * pseries-2.5 5231 */ 5232 5233 static void spapr_machine_2_5_class_options(MachineClass *mc) 5234 { 5235 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5236 static GlobalProperty compat[] = { 5237 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5238 }; 5239 5240 spapr_machine_2_6_class_options(mc); 5241 smc->use_ohci_by_default = true; 5242 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5243 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5244 } 5245 5246 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5247 5248 /* 5249 * pseries-2.4 5250 */ 5251 5252 static void spapr_machine_2_4_class_options(MachineClass *mc) 5253 { 5254 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5255 5256 spapr_machine_2_5_class_options(mc); 5257 smc->dr_lmb_enabled = false; 5258 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5259 } 5260 5261 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5262 5263 /* 5264 * pseries-2.3 5265 */ 5266 5267 static void spapr_machine_2_3_class_options(MachineClass *mc) 5268 { 5269 static GlobalProperty compat[] = { 5270 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5271 }; 5272 spapr_machine_2_4_class_options(mc); 5273 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5274 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5275 } 5276 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5277 5278 /* 5279 * pseries-2.2 5280 */ 5281 5282 static void spapr_machine_2_2_class_options(MachineClass *mc) 5283 { 5284 static GlobalProperty compat[] = { 5285 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5286 }; 5287 5288 spapr_machine_2_3_class_options(mc); 5289 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5290 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5291 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5292 } 5293 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5294 5295 /* 5296 * pseries-2.1 5297 */ 5298 5299 static void spapr_machine_2_1_class_options(MachineClass *mc) 5300 { 5301 spapr_machine_2_2_class_options(mc); 5302 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5303 } 5304 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5305 5306 static void spapr_machine_register_types(void) 5307 { 5308 type_register_static(&spapr_machine_info); 5309 } 5310 5311 type_init(spapr_machine_register_types) 5312