1 /* 2 * QEMU PowerPC 4xx embedded processors shared devices emulation 3 * 4 * Copyright (c) 2007 Jocelyn Mayer 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "sysemu/reset.h" 28 #include "cpu.h" 29 #include "hw/irq.h" 30 #include "hw/ppc/ppc.h" 31 #include "hw/ppc/ppc4xx.h" 32 #include "hw/boards.h" 33 #include "qemu/log.h" 34 #include "exec/address-spaces.h" 35 #include "qemu/error-report.h" 36 37 /*#define DEBUG_UIC*/ 38 39 #ifdef DEBUG_UIC 40 # define LOG_UIC(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__) 41 #else 42 # define LOG_UIC(...) do { } while (0) 43 #endif 44 45 static void ppc4xx_reset(void *opaque) 46 { 47 PowerPCCPU *cpu = opaque; 48 49 cpu_reset(CPU(cpu)); 50 } 51 52 /*****************************************************************************/ 53 /* Generic PowerPC 4xx processor instantiation */ 54 PowerPCCPU *ppc4xx_init(const char *cpu_type, 55 clk_setup_t *cpu_clk, clk_setup_t *tb_clk, 56 uint32_t sysclk) 57 { 58 PowerPCCPU *cpu; 59 CPUPPCState *env; 60 61 /* init CPUs */ 62 cpu = POWERPC_CPU(cpu_create(cpu_type)); 63 env = &cpu->env; 64 65 cpu_clk->cb = NULL; /* We don't care about CPU clock frequency changes */ 66 cpu_clk->opaque = env; 67 /* Set time-base frequency to sysclk */ 68 tb_clk->cb = ppc_40x_timers_init(env, sysclk, PPC_INTERRUPT_PIT); 69 tb_clk->opaque = env; 70 ppc_dcr_init(env, NULL, NULL); 71 /* Register qemu callbacks */ 72 qemu_register_reset(ppc4xx_reset, cpu); 73 74 return cpu; 75 } 76 77 /*****************************************************************************/ 78 /* "Universal" Interrupt controller */ 79 enum { 80 DCR_UICSR = 0x000, 81 DCR_UICSRS = 0x001, 82 DCR_UICER = 0x002, 83 DCR_UICCR = 0x003, 84 DCR_UICPR = 0x004, 85 DCR_UICTR = 0x005, 86 DCR_UICMSR = 0x006, 87 DCR_UICVR = 0x007, 88 DCR_UICVCR = 0x008, 89 DCR_UICMAX = 0x009, 90 }; 91 92 #define UIC_MAX_IRQ 32 93 typedef struct ppcuic_t ppcuic_t; 94 struct ppcuic_t { 95 uint32_t dcr_base; 96 int use_vectors; 97 uint32_t level; /* Remembers the state of level-triggered interrupts. */ 98 uint32_t uicsr; /* Status register */ 99 uint32_t uicer; /* Enable register */ 100 uint32_t uiccr; /* Critical register */ 101 uint32_t uicpr; /* Polarity register */ 102 uint32_t uictr; /* Triggering register */ 103 uint32_t uicvcr; /* Vector configuration register */ 104 uint32_t uicvr; 105 qemu_irq *irqs; 106 }; 107 108 static void ppcuic_trigger_irq (ppcuic_t *uic) 109 { 110 uint32_t ir, cr; 111 int start, end, inc, i; 112 113 /* Trigger interrupt if any is pending */ 114 ir = uic->uicsr & uic->uicer & (~uic->uiccr); 115 cr = uic->uicsr & uic->uicer & uic->uiccr; 116 LOG_UIC("%s: uicsr %08" PRIx32 " uicer %08" PRIx32 117 " uiccr %08" PRIx32 "\n" 118 " %08" PRIx32 " ir %08" PRIx32 " cr %08" PRIx32 "\n", 119 __func__, uic->uicsr, uic->uicer, uic->uiccr, 120 uic->uicsr & uic->uicer, ir, cr); 121 if (ir != 0x0000000) { 122 LOG_UIC("Raise UIC interrupt\n"); 123 qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_INT]); 124 } else { 125 LOG_UIC("Lower UIC interrupt\n"); 126 qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_INT]); 127 } 128 /* Trigger critical interrupt if any is pending and update vector */ 129 if (cr != 0x0000000) { 130 qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_CINT]); 131 if (uic->use_vectors) { 132 /* Compute critical IRQ vector */ 133 if (uic->uicvcr & 1) { 134 start = 31; 135 end = 0; 136 inc = -1; 137 } else { 138 start = 0; 139 end = 31; 140 inc = 1; 141 } 142 uic->uicvr = uic->uicvcr & 0xFFFFFFFC; 143 for (i = start; i <= end; i += inc) { 144 if (cr & (1 << i)) { 145 uic->uicvr += (i - start) * 512 * inc; 146 break; 147 } 148 } 149 } 150 LOG_UIC("Raise UIC critical interrupt - " 151 "vector %08" PRIx32 "\n", uic->uicvr); 152 } else { 153 LOG_UIC("Lower UIC critical interrupt\n"); 154 qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_CINT]); 155 uic->uicvr = 0x00000000; 156 } 157 } 158 159 static void ppcuic_set_irq (void *opaque, int irq_num, int level) 160 { 161 ppcuic_t *uic; 162 uint32_t mask, sr; 163 164 uic = opaque; 165 mask = 1U << (31-irq_num); 166 LOG_UIC("%s: irq %d level %d uicsr %08" PRIx32 167 " mask %08" PRIx32 " => %08" PRIx32 " %08" PRIx32 "\n", 168 __func__, irq_num, level, 169 uic->uicsr, mask, uic->uicsr & mask, level << irq_num); 170 if (irq_num < 0 || irq_num > 31) 171 return; 172 sr = uic->uicsr; 173 174 /* Update status register */ 175 if (uic->uictr & mask) { 176 /* Edge sensitive interrupt */ 177 if (level == 1) 178 uic->uicsr |= mask; 179 } else { 180 /* Level sensitive interrupt */ 181 if (level == 1) { 182 uic->uicsr |= mask; 183 uic->level |= mask; 184 } else { 185 uic->uicsr &= ~mask; 186 uic->level &= ~mask; 187 } 188 } 189 LOG_UIC("%s: irq %d level %d sr %" PRIx32 " => " 190 "%08" PRIx32 "\n", __func__, irq_num, level, uic->uicsr, sr); 191 if (sr != uic->uicsr) 192 ppcuic_trigger_irq(uic); 193 } 194 195 static uint32_t dcr_read_uic (void *opaque, int dcrn) 196 { 197 ppcuic_t *uic; 198 uint32_t ret; 199 200 uic = opaque; 201 dcrn -= uic->dcr_base; 202 switch (dcrn) { 203 case DCR_UICSR: 204 case DCR_UICSRS: 205 ret = uic->uicsr; 206 break; 207 case DCR_UICER: 208 ret = uic->uicer; 209 break; 210 case DCR_UICCR: 211 ret = uic->uiccr; 212 break; 213 case DCR_UICPR: 214 ret = uic->uicpr; 215 break; 216 case DCR_UICTR: 217 ret = uic->uictr; 218 break; 219 case DCR_UICMSR: 220 ret = uic->uicsr & uic->uicer; 221 break; 222 case DCR_UICVR: 223 if (!uic->use_vectors) 224 goto no_read; 225 ret = uic->uicvr; 226 break; 227 case DCR_UICVCR: 228 if (!uic->use_vectors) 229 goto no_read; 230 ret = uic->uicvcr; 231 break; 232 default: 233 no_read: 234 ret = 0x00000000; 235 break; 236 } 237 238 return ret; 239 } 240 241 static void dcr_write_uic (void *opaque, int dcrn, uint32_t val) 242 { 243 ppcuic_t *uic; 244 245 uic = opaque; 246 dcrn -= uic->dcr_base; 247 LOG_UIC("%s: dcr %d val 0x%x\n", __func__, dcrn, val); 248 switch (dcrn) { 249 case DCR_UICSR: 250 uic->uicsr &= ~val; 251 uic->uicsr |= uic->level; 252 ppcuic_trigger_irq(uic); 253 break; 254 case DCR_UICSRS: 255 uic->uicsr |= val; 256 ppcuic_trigger_irq(uic); 257 break; 258 case DCR_UICER: 259 uic->uicer = val; 260 ppcuic_trigger_irq(uic); 261 break; 262 case DCR_UICCR: 263 uic->uiccr = val; 264 ppcuic_trigger_irq(uic); 265 break; 266 case DCR_UICPR: 267 uic->uicpr = val; 268 break; 269 case DCR_UICTR: 270 uic->uictr = val; 271 ppcuic_trigger_irq(uic); 272 break; 273 case DCR_UICMSR: 274 break; 275 case DCR_UICVR: 276 break; 277 case DCR_UICVCR: 278 uic->uicvcr = val & 0xFFFFFFFD; 279 ppcuic_trigger_irq(uic); 280 break; 281 } 282 } 283 284 static void ppcuic_reset (void *opaque) 285 { 286 ppcuic_t *uic; 287 288 uic = opaque; 289 uic->uiccr = 0x00000000; 290 uic->uicer = 0x00000000; 291 uic->uicpr = 0x00000000; 292 uic->uicsr = 0x00000000; 293 uic->uictr = 0x00000000; 294 if (uic->use_vectors) { 295 uic->uicvcr = 0x00000000; 296 uic->uicvr = 0x0000000; 297 } 298 } 299 300 qemu_irq *ppcuic_init (CPUPPCState *env, qemu_irq *irqs, 301 uint32_t dcr_base, int has_ssr, int has_vr) 302 { 303 ppcuic_t *uic; 304 int i; 305 306 uic = g_malloc0(sizeof(ppcuic_t)); 307 uic->dcr_base = dcr_base; 308 uic->irqs = irqs; 309 if (has_vr) 310 uic->use_vectors = 1; 311 for (i = 0; i < DCR_UICMAX; i++) { 312 ppc_dcr_register(env, dcr_base + i, uic, 313 &dcr_read_uic, &dcr_write_uic); 314 } 315 qemu_register_reset(ppcuic_reset, uic); 316 317 return qemu_allocate_irqs(&ppcuic_set_irq, uic, UIC_MAX_IRQ); 318 } 319 320 /*****************************************************************************/ 321 /* SDRAM controller */ 322 typedef struct ppc4xx_sdram_t ppc4xx_sdram_t; 323 struct ppc4xx_sdram_t { 324 uint32_t addr; 325 int nbanks; 326 MemoryRegion containers[4]; /* used for clipping */ 327 MemoryRegion *ram_memories; 328 hwaddr ram_bases[4]; 329 hwaddr ram_sizes[4]; 330 uint32_t besr0; 331 uint32_t besr1; 332 uint32_t bear; 333 uint32_t cfg; 334 uint32_t status; 335 uint32_t rtr; 336 uint32_t pmit; 337 uint32_t bcr[4]; 338 uint32_t tr; 339 uint32_t ecccfg; 340 uint32_t eccesr; 341 qemu_irq irq; 342 }; 343 344 enum { 345 SDRAM0_CFGADDR = 0x010, 346 SDRAM0_CFGDATA = 0x011, 347 }; 348 349 /* XXX: TOFIX: some patches have made this code become inconsistent: 350 * there are type inconsistencies, mixing hwaddr, target_ulong 351 * and uint32_t 352 */ 353 static uint32_t sdram_bcr (hwaddr ram_base, 354 hwaddr ram_size) 355 { 356 uint32_t bcr; 357 358 switch (ram_size) { 359 case 4 * MiB: 360 bcr = 0x00000000; 361 break; 362 case 8 * MiB: 363 bcr = 0x00020000; 364 break; 365 case 16 * MiB: 366 bcr = 0x00040000; 367 break; 368 case 32 * MiB: 369 bcr = 0x00060000; 370 break; 371 case 64 * MiB: 372 bcr = 0x00080000; 373 break; 374 case 128 * MiB: 375 bcr = 0x000A0000; 376 break; 377 case 256 * MiB: 378 bcr = 0x000C0000; 379 break; 380 default: 381 printf("%s: invalid RAM size " TARGET_FMT_plx "\n", __func__, 382 ram_size); 383 return 0x00000000; 384 } 385 bcr |= ram_base & 0xFF800000; 386 bcr |= 1; 387 388 return bcr; 389 } 390 391 static inline hwaddr sdram_base(uint32_t bcr) 392 { 393 return bcr & 0xFF800000; 394 } 395 396 static target_ulong sdram_size (uint32_t bcr) 397 { 398 target_ulong size; 399 int sh; 400 401 sh = (bcr >> 17) & 0x7; 402 if (sh == 7) 403 size = -1; 404 else 405 size = (4 * MiB) << sh; 406 407 return size; 408 } 409 410 static void sdram_set_bcr(ppc4xx_sdram_t *sdram, int i, 411 uint32_t bcr, int enabled) 412 { 413 if (sdram->bcr[i] & 0x00000001) { 414 /* Unmap RAM */ 415 #ifdef DEBUG_SDRAM 416 printf("%s: unmap RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n", 417 __func__, sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i])); 418 #endif 419 memory_region_del_subregion(get_system_memory(), 420 &sdram->containers[i]); 421 memory_region_del_subregion(&sdram->containers[i], 422 &sdram->ram_memories[i]); 423 object_unparent(OBJECT(&sdram->containers[i])); 424 } 425 sdram->bcr[i] = bcr & 0xFFDEE001; 426 if (enabled && (bcr & 0x00000001)) { 427 #ifdef DEBUG_SDRAM 428 printf("%s: Map RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n", 429 __func__, sdram_base(bcr), sdram_size(bcr)); 430 #endif 431 memory_region_init(&sdram->containers[i], NULL, "sdram-containers", 432 sdram_size(bcr)); 433 memory_region_add_subregion(&sdram->containers[i], 0, 434 &sdram->ram_memories[i]); 435 memory_region_add_subregion(get_system_memory(), 436 sdram_base(bcr), 437 &sdram->containers[i]); 438 } 439 } 440 441 static void sdram_map_bcr (ppc4xx_sdram_t *sdram) 442 { 443 int i; 444 445 for (i = 0; i < sdram->nbanks; i++) { 446 if (sdram->ram_sizes[i] != 0) { 447 sdram_set_bcr(sdram, i, sdram_bcr(sdram->ram_bases[i], 448 sdram->ram_sizes[i]), 1); 449 } else { 450 sdram_set_bcr(sdram, i, 0x00000000, 0); 451 } 452 } 453 } 454 455 static void sdram_unmap_bcr (ppc4xx_sdram_t *sdram) 456 { 457 int i; 458 459 for (i = 0; i < sdram->nbanks; i++) { 460 #ifdef DEBUG_SDRAM 461 printf("%s: Unmap RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n", 462 __func__, sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i])); 463 #endif 464 memory_region_del_subregion(get_system_memory(), 465 &sdram->ram_memories[i]); 466 } 467 } 468 469 static uint32_t dcr_read_sdram (void *opaque, int dcrn) 470 { 471 ppc4xx_sdram_t *sdram; 472 uint32_t ret; 473 474 sdram = opaque; 475 switch (dcrn) { 476 case SDRAM0_CFGADDR: 477 ret = sdram->addr; 478 break; 479 case SDRAM0_CFGDATA: 480 switch (sdram->addr) { 481 case 0x00: /* SDRAM_BESR0 */ 482 ret = sdram->besr0; 483 break; 484 case 0x08: /* SDRAM_BESR1 */ 485 ret = sdram->besr1; 486 break; 487 case 0x10: /* SDRAM_BEAR */ 488 ret = sdram->bear; 489 break; 490 case 0x20: /* SDRAM_CFG */ 491 ret = sdram->cfg; 492 break; 493 case 0x24: /* SDRAM_STATUS */ 494 ret = sdram->status; 495 break; 496 case 0x30: /* SDRAM_RTR */ 497 ret = sdram->rtr; 498 break; 499 case 0x34: /* SDRAM_PMIT */ 500 ret = sdram->pmit; 501 break; 502 case 0x40: /* SDRAM_B0CR */ 503 ret = sdram->bcr[0]; 504 break; 505 case 0x44: /* SDRAM_B1CR */ 506 ret = sdram->bcr[1]; 507 break; 508 case 0x48: /* SDRAM_B2CR */ 509 ret = sdram->bcr[2]; 510 break; 511 case 0x4C: /* SDRAM_B3CR */ 512 ret = sdram->bcr[3]; 513 break; 514 case 0x80: /* SDRAM_TR */ 515 ret = -1; /* ? */ 516 break; 517 case 0x94: /* SDRAM_ECCCFG */ 518 ret = sdram->ecccfg; 519 break; 520 case 0x98: /* SDRAM_ECCESR */ 521 ret = sdram->eccesr; 522 break; 523 default: /* Error */ 524 ret = -1; 525 break; 526 } 527 break; 528 default: 529 /* Avoid gcc warning */ 530 ret = 0x00000000; 531 break; 532 } 533 534 return ret; 535 } 536 537 static void dcr_write_sdram (void *opaque, int dcrn, uint32_t val) 538 { 539 ppc4xx_sdram_t *sdram; 540 541 sdram = opaque; 542 switch (dcrn) { 543 case SDRAM0_CFGADDR: 544 sdram->addr = val; 545 break; 546 case SDRAM0_CFGDATA: 547 switch (sdram->addr) { 548 case 0x00: /* SDRAM_BESR0 */ 549 sdram->besr0 &= ~val; 550 break; 551 case 0x08: /* SDRAM_BESR1 */ 552 sdram->besr1 &= ~val; 553 break; 554 case 0x10: /* SDRAM_BEAR */ 555 sdram->bear = val; 556 break; 557 case 0x20: /* SDRAM_CFG */ 558 val &= 0xFFE00000; 559 if (!(sdram->cfg & 0x80000000) && (val & 0x80000000)) { 560 #ifdef DEBUG_SDRAM 561 printf("%s: enable SDRAM controller\n", __func__); 562 #endif 563 /* validate all RAM mappings */ 564 sdram_map_bcr(sdram); 565 sdram->status &= ~0x80000000; 566 } else if ((sdram->cfg & 0x80000000) && !(val & 0x80000000)) { 567 #ifdef DEBUG_SDRAM 568 printf("%s: disable SDRAM controller\n", __func__); 569 #endif 570 /* invalidate all RAM mappings */ 571 sdram_unmap_bcr(sdram); 572 sdram->status |= 0x80000000; 573 } 574 if (!(sdram->cfg & 0x40000000) && (val & 0x40000000)) 575 sdram->status |= 0x40000000; 576 else if ((sdram->cfg & 0x40000000) && !(val & 0x40000000)) 577 sdram->status &= ~0x40000000; 578 sdram->cfg = val; 579 break; 580 case 0x24: /* SDRAM_STATUS */ 581 /* Read-only register */ 582 break; 583 case 0x30: /* SDRAM_RTR */ 584 sdram->rtr = val & 0x3FF80000; 585 break; 586 case 0x34: /* SDRAM_PMIT */ 587 sdram->pmit = (val & 0xF8000000) | 0x07C00000; 588 break; 589 case 0x40: /* SDRAM_B0CR */ 590 sdram_set_bcr(sdram, 0, val, sdram->cfg & 0x80000000); 591 break; 592 case 0x44: /* SDRAM_B1CR */ 593 sdram_set_bcr(sdram, 1, val, sdram->cfg & 0x80000000); 594 break; 595 case 0x48: /* SDRAM_B2CR */ 596 sdram_set_bcr(sdram, 2, val, sdram->cfg & 0x80000000); 597 break; 598 case 0x4C: /* SDRAM_B3CR */ 599 sdram_set_bcr(sdram, 3, val, sdram->cfg & 0x80000000); 600 break; 601 case 0x80: /* SDRAM_TR */ 602 sdram->tr = val & 0x018FC01F; 603 break; 604 case 0x94: /* SDRAM_ECCCFG */ 605 sdram->ecccfg = val & 0x00F00000; 606 break; 607 case 0x98: /* SDRAM_ECCESR */ 608 val &= 0xFFF0F000; 609 if (sdram->eccesr == 0 && val != 0) 610 qemu_irq_raise(sdram->irq); 611 else if (sdram->eccesr != 0 && val == 0) 612 qemu_irq_lower(sdram->irq); 613 sdram->eccesr = val; 614 break; 615 default: /* Error */ 616 break; 617 } 618 break; 619 } 620 } 621 622 static void sdram_reset (void *opaque) 623 { 624 ppc4xx_sdram_t *sdram; 625 626 sdram = opaque; 627 sdram->addr = 0x00000000; 628 sdram->bear = 0x00000000; 629 sdram->besr0 = 0x00000000; /* No error */ 630 sdram->besr1 = 0x00000000; /* No error */ 631 sdram->cfg = 0x00000000; 632 sdram->ecccfg = 0x00000000; /* No ECC */ 633 sdram->eccesr = 0x00000000; /* No error */ 634 sdram->pmit = 0x07C00000; 635 sdram->rtr = 0x05F00000; 636 sdram->tr = 0x00854009; 637 /* We pre-initialize RAM banks */ 638 sdram->status = 0x00000000; 639 sdram->cfg = 0x00800000; 640 } 641 642 void ppc4xx_sdram_init (CPUPPCState *env, qemu_irq irq, int nbanks, 643 MemoryRegion *ram_memories, 644 hwaddr *ram_bases, 645 hwaddr *ram_sizes, 646 int do_init) 647 { 648 ppc4xx_sdram_t *sdram; 649 650 sdram = g_malloc0(sizeof(ppc4xx_sdram_t)); 651 sdram->irq = irq; 652 sdram->nbanks = nbanks; 653 sdram->ram_memories = ram_memories; 654 memset(sdram->ram_bases, 0, 4 * sizeof(hwaddr)); 655 memcpy(sdram->ram_bases, ram_bases, 656 nbanks * sizeof(hwaddr)); 657 memset(sdram->ram_sizes, 0, 4 * sizeof(hwaddr)); 658 memcpy(sdram->ram_sizes, ram_sizes, 659 nbanks * sizeof(hwaddr)); 660 qemu_register_reset(&sdram_reset, sdram); 661 ppc_dcr_register(env, SDRAM0_CFGADDR, 662 sdram, &dcr_read_sdram, &dcr_write_sdram); 663 ppc_dcr_register(env, SDRAM0_CFGDATA, 664 sdram, &dcr_read_sdram, &dcr_write_sdram); 665 if (do_init) 666 sdram_map_bcr(sdram); 667 } 668 669 /* 670 * Split RAM between SDRAM banks. 671 * 672 * sdram_bank_sizes[] must be in descending order, that is sizes[i] > sizes[i+1] 673 * and must be 0-terminated. 674 * 675 * The 4xx SDRAM controller supports a small number of banks, and each bank 676 * must be one of a small set of sizes. The number of banks and the supported 677 * sizes varies by SoC. 678 */ 679 void ppc4xx_sdram_banks(MemoryRegion *ram, int nr_banks, 680 MemoryRegion ram_memories[], 681 hwaddr ram_bases[], hwaddr ram_sizes[], 682 const ram_addr_t sdram_bank_sizes[]) 683 { 684 ram_addr_t size_left = memory_region_size(ram); 685 ram_addr_t base = 0; 686 ram_addr_t bank_size; 687 int i; 688 int j; 689 690 for (i = 0; i < nr_banks; i++) { 691 for (j = 0; sdram_bank_sizes[j] != 0; j++) { 692 bank_size = sdram_bank_sizes[j]; 693 if (bank_size <= size_left) { 694 char name[32]; 695 696 ram_bases[i] = base; 697 ram_sizes[i] = bank_size; 698 base += bank_size; 699 size_left -= bank_size; 700 snprintf(name, sizeof(name), "ppc4xx.sdram%d", i); 701 memory_region_init_alias(&ram_memories[i], NULL, name, ram, 702 ram_bases[i], ram_sizes[i]); 703 break; 704 } 705 } 706 if (!size_left) { 707 /* No need to use the remaining banks. */ 708 break; 709 } 710 } 711 712 if (size_left) { 713 ram_addr_t used_size = memory_region_size(ram) - size_left; 714 GString *s = g_string_new(NULL); 715 716 for (i = 0; sdram_bank_sizes[i]; i++) { 717 g_string_append_printf(s, "%" PRIi64 "%s", 718 sdram_bank_sizes[i] / MiB, 719 sdram_bank_sizes[i + 1] ? " ," : ""); 720 } 721 error_report("Max %d banks of %s MB DIMM/bank supported", 722 nr_banks, s->str); 723 error_report("Possible valid RAM size: %" PRIi64, 724 used_size ? used_size / MiB : sdram_bank_sizes[i - 1] / MiB); 725 726 g_string_free(s, true); 727 exit(EXIT_FAILURE); 728 } 729 } 730 731 /*****************************************************************************/ 732 /* MAL */ 733 734 enum { 735 MAL0_CFG = 0x180, 736 MAL0_ESR = 0x181, 737 MAL0_IER = 0x182, 738 MAL0_TXCASR = 0x184, 739 MAL0_TXCARR = 0x185, 740 MAL0_TXEOBISR = 0x186, 741 MAL0_TXDEIR = 0x187, 742 MAL0_RXCASR = 0x190, 743 MAL0_RXCARR = 0x191, 744 MAL0_RXEOBISR = 0x192, 745 MAL0_RXDEIR = 0x193, 746 MAL0_TXCTP0R = 0x1A0, 747 MAL0_RXCTP0R = 0x1C0, 748 MAL0_RCBS0 = 0x1E0, 749 MAL0_RCBS1 = 0x1E1, 750 }; 751 752 typedef struct ppc4xx_mal_t ppc4xx_mal_t; 753 struct ppc4xx_mal_t { 754 qemu_irq irqs[4]; 755 uint32_t cfg; 756 uint32_t esr; 757 uint32_t ier; 758 uint32_t txcasr; 759 uint32_t txcarr; 760 uint32_t txeobisr; 761 uint32_t txdeir; 762 uint32_t rxcasr; 763 uint32_t rxcarr; 764 uint32_t rxeobisr; 765 uint32_t rxdeir; 766 uint32_t *txctpr; 767 uint32_t *rxctpr; 768 uint32_t *rcbs; 769 uint8_t txcnum; 770 uint8_t rxcnum; 771 }; 772 773 static void ppc4xx_mal_reset(void *opaque) 774 { 775 ppc4xx_mal_t *mal; 776 777 mal = opaque; 778 mal->cfg = 0x0007C000; 779 mal->esr = 0x00000000; 780 mal->ier = 0x00000000; 781 mal->rxcasr = 0x00000000; 782 mal->rxdeir = 0x00000000; 783 mal->rxeobisr = 0x00000000; 784 mal->txcasr = 0x00000000; 785 mal->txdeir = 0x00000000; 786 mal->txeobisr = 0x00000000; 787 } 788 789 static uint32_t dcr_read_mal(void *opaque, int dcrn) 790 { 791 ppc4xx_mal_t *mal; 792 uint32_t ret; 793 794 mal = opaque; 795 switch (dcrn) { 796 case MAL0_CFG: 797 ret = mal->cfg; 798 break; 799 case MAL0_ESR: 800 ret = mal->esr; 801 break; 802 case MAL0_IER: 803 ret = mal->ier; 804 break; 805 case MAL0_TXCASR: 806 ret = mal->txcasr; 807 break; 808 case MAL0_TXCARR: 809 ret = mal->txcarr; 810 break; 811 case MAL0_TXEOBISR: 812 ret = mal->txeobisr; 813 break; 814 case MAL0_TXDEIR: 815 ret = mal->txdeir; 816 break; 817 case MAL0_RXCASR: 818 ret = mal->rxcasr; 819 break; 820 case MAL0_RXCARR: 821 ret = mal->rxcarr; 822 break; 823 case MAL0_RXEOBISR: 824 ret = mal->rxeobisr; 825 break; 826 case MAL0_RXDEIR: 827 ret = mal->rxdeir; 828 break; 829 default: 830 ret = 0; 831 break; 832 } 833 if (dcrn >= MAL0_TXCTP0R && dcrn < MAL0_TXCTP0R + mal->txcnum) { 834 ret = mal->txctpr[dcrn - MAL0_TXCTP0R]; 835 } 836 if (dcrn >= MAL0_RXCTP0R && dcrn < MAL0_RXCTP0R + mal->rxcnum) { 837 ret = mal->rxctpr[dcrn - MAL0_RXCTP0R]; 838 } 839 if (dcrn >= MAL0_RCBS0 && dcrn < MAL0_RCBS0 + mal->rxcnum) { 840 ret = mal->rcbs[dcrn - MAL0_RCBS0]; 841 } 842 843 return ret; 844 } 845 846 static void dcr_write_mal(void *opaque, int dcrn, uint32_t val) 847 { 848 ppc4xx_mal_t *mal; 849 850 mal = opaque; 851 switch (dcrn) { 852 case MAL0_CFG: 853 if (val & 0x80000000) { 854 ppc4xx_mal_reset(mal); 855 } 856 mal->cfg = val & 0x00FFC087; 857 break; 858 case MAL0_ESR: 859 /* Read/clear */ 860 mal->esr &= ~val; 861 break; 862 case MAL0_IER: 863 mal->ier = val & 0x0000001F; 864 break; 865 case MAL0_TXCASR: 866 mal->txcasr = val & 0xF0000000; 867 break; 868 case MAL0_TXCARR: 869 mal->txcarr = val & 0xF0000000; 870 break; 871 case MAL0_TXEOBISR: 872 /* Read/clear */ 873 mal->txeobisr &= ~val; 874 break; 875 case MAL0_TXDEIR: 876 /* Read/clear */ 877 mal->txdeir &= ~val; 878 break; 879 case MAL0_RXCASR: 880 mal->rxcasr = val & 0xC0000000; 881 break; 882 case MAL0_RXCARR: 883 mal->rxcarr = val & 0xC0000000; 884 break; 885 case MAL0_RXEOBISR: 886 /* Read/clear */ 887 mal->rxeobisr &= ~val; 888 break; 889 case MAL0_RXDEIR: 890 /* Read/clear */ 891 mal->rxdeir &= ~val; 892 break; 893 } 894 if (dcrn >= MAL0_TXCTP0R && dcrn < MAL0_TXCTP0R + mal->txcnum) { 895 mal->txctpr[dcrn - MAL0_TXCTP0R] = val; 896 } 897 if (dcrn >= MAL0_RXCTP0R && dcrn < MAL0_RXCTP0R + mal->rxcnum) { 898 mal->rxctpr[dcrn - MAL0_RXCTP0R] = val; 899 } 900 if (dcrn >= MAL0_RCBS0 && dcrn < MAL0_RCBS0 + mal->rxcnum) { 901 mal->rcbs[dcrn - MAL0_RCBS0] = val & 0x000000FF; 902 } 903 } 904 905 void ppc4xx_mal_init(CPUPPCState *env, uint8_t txcnum, uint8_t rxcnum, 906 qemu_irq irqs[4]) 907 { 908 ppc4xx_mal_t *mal; 909 int i; 910 911 assert(txcnum <= 32 && rxcnum <= 32); 912 mal = g_malloc0(sizeof(*mal)); 913 mal->txcnum = txcnum; 914 mal->rxcnum = rxcnum; 915 mal->txctpr = g_new0(uint32_t, txcnum); 916 mal->rxctpr = g_new0(uint32_t, rxcnum); 917 mal->rcbs = g_new0(uint32_t, rxcnum); 918 for (i = 0; i < 4; i++) { 919 mal->irqs[i] = irqs[i]; 920 } 921 qemu_register_reset(&ppc4xx_mal_reset, mal); 922 ppc_dcr_register(env, MAL0_CFG, 923 mal, &dcr_read_mal, &dcr_write_mal); 924 ppc_dcr_register(env, MAL0_ESR, 925 mal, &dcr_read_mal, &dcr_write_mal); 926 ppc_dcr_register(env, MAL0_IER, 927 mal, &dcr_read_mal, &dcr_write_mal); 928 ppc_dcr_register(env, MAL0_TXCASR, 929 mal, &dcr_read_mal, &dcr_write_mal); 930 ppc_dcr_register(env, MAL0_TXCARR, 931 mal, &dcr_read_mal, &dcr_write_mal); 932 ppc_dcr_register(env, MAL0_TXEOBISR, 933 mal, &dcr_read_mal, &dcr_write_mal); 934 ppc_dcr_register(env, MAL0_TXDEIR, 935 mal, &dcr_read_mal, &dcr_write_mal); 936 ppc_dcr_register(env, MAL0_RXCASR, 937 mal, &dcr_read_mal, &dcr_write_mal); 938 ppc_dcr_register(env, MAL0_RXCARR, 939 mal, &dcr_read_mal, &dcr_write_mal); 940 ppc_dcr_register(env, MAL0_RXEOBISR, 941 mal, &dcr_read_mal, &dcr_write_mal); 942 ppc_dcr_register(env, MAL0_RXDEIR, 943 mal, &dcr_read_mal, &dcr_write_mal); 944 for (i = 0; i < txcnum; i++) { 945 ppc_dcr_register(env, MAL0_TXCTP0R + i, 946 mal, &dcr_read_mal, &dcr_write_mal); 947 } 948 for (i = 0; i < rxcnum; i++) { 949 ppc_dcr_register(env, MAL0_RXCTP0R + i, 950 mal, &dcr_read_mal, &dcr_write_mal); 951 } 952 for (i = 0; i < rxcnum; i++) { 953 ppc_dcr_register(env, MAL0_RCBS0 + i, 954 mal, &dcr_read_mal, &dcr_write_mal); 955 } 956 } 957