xref: /openbmc/qemu/hw/ppc/ppc.c (revision f7ceab1e)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/runstate.h"
37 #include "kvm_ppc.h"
38 #include "migration/vmstate.h"
39 #include "trace.h"
40 
41 static void cpu_ppc_tb_stop (CPUPPCState *env);
42 static void cpu_ppc_tb_start (CPUPPCState *env);
43 
44 void ppc_set_irq(PowerPCCPU *cpu, int irq, int level)
45 {
46     CPUPPCState *env = &cpu->env;
47     unsigned int old_pending;
48 
49     /* We may already have the BQL if coming from the reset path */
50     BQL_LOCK_GUARD();
51 
52     old_pending = env->pending_interrupts;
53 
54     if (level) {
55         env->pending_interrupts |= irq;
56     } else {
57         env->pending_interrupts &= ~irq;
58     }
59 
60     if (old_pending != env->pending_interrupts) {
61         ppc_maybe_interrupt(env);
62         if (kvm_enabled()) {
63             kvmppc_set_interrupt(cpu, irq, level);
64         }
65     }
66 
67     trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts,
68                            CPU(cpu)->interrupt_request);
69 }
70 
71 /* PowerPC 6xx / 7xx internal IRQ controller */
72 static void ppc6xx_set_irq(void *opaque, int pin, int level)
73 {
74     PowerPCCPU *cpu = opaque;
75     CPUPPCState *env = &cpu->env;
76     int cur_level;
77 
78     trace_ppc_irq_set(env, pin, level);
79 
80     cur_level = (env->irq_input_state >> pin) & 1;
81     /* Don't generate spurious events */
82     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
83         CPUState *cs = CPU(cpu);
84 
85         switch (pin) {
86         case PPC6xx_INPUT_TBEN:
87             /* Level sensitive - active high */
88             trace_ppc_irq_set_state("time base", level);
89             if (level) {
90                 cpu_ppc_tb_start(env);
91             } else {
92                 cpu_ppc_tb_stop(env);
93             }
94             break;
95         case PPC6xx_INPUT_INT:
96             /* Level sensitive - active high */
97             trace_ppc_irq_set_state("external IRQ", level);
98             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
99             break;
100         case PPC6xx_INPUT_SMI:
101             /* Level sensitive - active high */
102             trace_ppc_irq_set_state("SMI IRQ", level);
103             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
104             break;
105         case PPC6xx_INPUT_MCP:
106             /* Negative edge sensitive */
107             /* XXX: TODO: actual reaction may depends on HID0 status
108              *            603/604/740/750: check HID0[EMCP]
109              */
110             if (cur_level == 1 && level == 0) {
111                 trace_ppc_irq_set_state("machine check", 1);
112                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
113             }
114             break;
115         case PPC6xx_INPUT_CKSTP_IN:
116             /* Level sensitive - active low */
117             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
118             /* XXX: Note that the only way to restart the CPU is to reset it */
119             if (level) {
120                 trace_ppc_irq_cpu("stop");
121                 cs->halted = 1;
122             }
123             break;
124         case PPC6xx_INPUT_HRESET:
125             /* Level sensitive - active low */
126             if (level) {
127                 trace_ppc_irq_reset("CPU");
128                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
129             }
130             break;
131         case PPC6xx_INPUT_SRESET:
132             trace_ppc_irq_set_state("RESET IRQ", level);
133             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
134             break;
135         default:
136             g_assert_not_reached();
137         }
138         if (level)
139             env->irq_input_state |= 1 << pin;
140         else
141             env->irq_input_state &= ~(1 << pin);
142     }
143 }
144 
145 void ppc6xx_irq_init(PowerPCCPU *cpu)
146 {
147     qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB);
148 }
149 
150 #if defined(TARGET_PPC64)
151 /* PowerPC 970 internal IRQ controller */
152 static void ppc970_set_irq(void *opaque, int pin, int level)
153 {
154     PowerPCCPU *cpu = opaque;
155     CPUPPCState *env = &cpu->env;
156     int cur_level;
157 
158     trace_ppc_irq_set(env, pin, level);
159 
160     cur_level = (env->irq_input_state >> pin) & 1;
161     /* Don't generate spurious events */
162     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
163         CPUState *cs = CPU(cpu);
164 
165         switch (pin) {
166         case PPC970_INPUT_INT:
167             /* Level sensitive - active high */
168             trace_ppc_irq_set_state("external IRQ", level);
169             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
170             break;
171         case PPC970_INPUT_THINT:
172             /* Level sensitive - active high */
173             trace_ppc_irq_set_state("SMI IRQ", level);
174             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
175             break;
176         case PPC970_INPUT_MCP:
177             /* Negative edge sensitive */
178             /* XXX: TODO: actual reaction may depends on HID0 status
179              *            603/604/740/750: check HID0[EMCP]
180              */
181             if (cur_level == 1 && level == 0) {
182                 trace_ppc_irq_set_state("machine check", 1);
183                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
184             }
185             break;
186         case PPC970_INPUT_CKSTP:
187             /* Level sensitive - active low */
188             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
189             if (level) {
190                 trace_ppc_irq_cpu("stop");
191                 cs->halted = 1;
192             } else {
193                 trace_ppc_irq_cpu("restart");
194                 cs->halted = 0;
195                 qemu_cpu_kick(cs);
196             }
197             break;
198         case PPC970_INPUT_HRESET:
199             /* Level sensitive - active low */
200             if (level) {
201                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
202             }
203             break;
204         case PPC970_INPUT_SRESET:
205             trace_ppc_irq_set_state("RESET IRQ", level);
206             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
207             break;
208         case PPC970_INPUT_TBEN:
209             trace_ppc_irq_set_state("TBEN IRQ", level);
210             /* XXX: TODO */
211             break;
212         default:
213             g_assert_not_reached();
214         }
215         if (level)
216             env->irq_input_state |= 1 << pin;
217         else
218             env->irq_input_state &= ~(1 << pin);
219     }
220 }
221 
222 void ppc970_irq_init(PowerPCCPU *cpu)
223 {
224     qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB);
225 }
226 
227 /* POWER7 internal IRQ controller */
228 static void power7_set_irq(void *opaque, int pin, int level)
229 {
230     PowerPCCPU *cpu = opaque;
231 
232     trace_ppc_irq_set(&cpu->env, pin, level);
233 
234     switch (pin) {
235     case POWER7_INPUT_INT:
236         /* Level sensitive - active high */
237         trace_ppc_irq_set_state("external IRQ", level);
238         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
239         break;
240     default:
241         g_assert_not_reached();
242     }
243 }
244 
245 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
246 {
247     qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB);
248 }
249 
250 /* POWER9 internal IRQ controller */
251 static void power9_set_irq(void *opaque, int pin, int level)
252 {
253     PowerPCCPU *cpu = opaque;
254 
255     trace_ppc_irq_set(&cpu->env, pin, level);
256 
257     switch (pin) {
258     case POWER9_INPUT_INT:
259         /* Level sensitive - active high */
260         trace_ppc_irq_set_state("external IRQ", level);
261         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
262         break;
263     case POWER9_INPUT_HINT:
264         /* Level sensitive - active high */
265         trace_ppc_irq_set_state("HV external IRQ", level);
266         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
267         break;
268     default:
269         g_assert_not_reached();
270     }
271 }
272 
273 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
274 {
275     qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB);
276 }
277 #endif /* defined(TARGET_PPC64) */
278 
279 void ppc40x_core_reset(PowerPCCPU *cpu)
280 {
281     CPUPPCState *env = &cpu->env;
282     target_ulong dbsr;
283 
284     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
285     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
286     dbsr = env->spr[SPR_40x_DBSR];
287     dbsr &= ~0x00000300;
288     dbsr |= 0x00000100;
289     env->spr[SPR_40x_DBSR] = dbsr;
290 }
291 
292 void ppc40x_chip_reset(PowerPCCPU *cpu)
293 {
294     CPUPPCState *env = &cpu->env;
295     target_ulong dbsr;
296 
297     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
298     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
299     /* XXX: TODO reset all internal peripherals */
300     dbsr = env->spr[SPR_40x_DBSR];
301     dbsr &= ~0x00000300;
302     dbsr |= 0x00000200;
303     env->spr[SPR_40x_DBSR] = dbsr;
304 }
305 
306 void ppc40x_system_reset(PowerPCCPU *cpu)
307 {
308     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
309     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
310 }
311 
312 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
313 {
314     PowerPCCPU *cpu = env_archcpu(env);
315 
316     bql_lock();
317 
318     switch ((val >> 28) & 0x3) {
319     case 0x0:
320         /* No action */
321         break;
322     case 0x1:
323         /* Core reset */
324         ppc40x_core_reset(cpu);
325         break;
326     case 0x2:
327         /* Chip reset */
328         ppc40x_chip_reset(cpu);
329         break;
330     case 0x3:
331         /* System reset */
332         ppc40x_system_reset(cpu);
333         break;
334     }
335 
336     bql_unlock();
337 }
338 
339 /* PowerPC 40x internal IRQ controller */
340 static void ppc40x_set_irq(void *opaque, int pin, int level)
341 {
342     PowerPCCPU *cpu = opaque;
343     CPUPPCState *env = &cpu->env;
344     int cur_level;
345 
346     trace_ppc_irq_set(env, pin, level);
347 
348     cur_level = (env->irq_input_state >> pin) & 1;
349     /* Don't generate spurious events */
350     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
351         CPUState *cs = CPU(cpu);
352 
353         switch (pin) {
354         case PPC40x_INPUT_RESET_SYS:
355             if (level) {
356                 trace_ppc_irq_reset("system");
357                 ppc40x_system_reset(cpu);
358             }
359             break;
360         case PPC40x_INPUT_RESET_CHIP:
361             if (level) {
362                 trace_ppc_irq_reset("chip");
363                 ppc40x_chip_reset(cpu);
364             }
365             break;
366         case PPC40x_INPUT_RESET_CORE:
367             /* XXX: TODO: update DBSR[MRR] */
368             if (level) {
369                 trace_ppc_irq_reset("core");
370                 ppc40x_core_reset(cpu);
371             }
372             break;
373         case PPC40x_INPUT_CINT:
374             /* Level sensitive - active high */
375             trace_ppc_irq_set_state("critical IRQ", level);
376             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
377             break;
378         case PPC40x_INPUT_INT:
379             /* Level sensitive - active high */
380             trace_ppc_irq_set_state("external IRQ", level);
381             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
382             break;
383         case PPC40x_INPUT_HALT:
384             /* Level sensitive - active low */
385             if (level) {
386                 trace_ppc_irq_cpu("stop");
387                 cs->halted = 1;
388             } else {
389                 trace_ppc_irq_cpu("restart");
390                 cs->halted = 0;
391                 qemu_cpu_kick(cs);
392             }
393             break;
394         case PPC40x_INPUT_DEBUG:
395             /* Level sensitive - active high */
396             trace_ppc_irq_set_state("debug pin", level);
397             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
398             break;
399         default:
400             g_assert_not_reached();
401         }
402         if (level)
403             env->irq_input_state |= 1 << pin;
404         else
405             env->irq_input_state &= ~(1 << pin);
406     }
407 }
408 
409 void ppc40x_irq_init(PowerPCCPU *cpu)
410 {
411     qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB);
412 }
413 
414 /* PowerPC E500 internal IRQ controller */
415 static void ppce500_set_irq(void *opaque, int pin, int level)
416 {
417     PowerPCCPU *cpu = opaque;
418     CPUPPCState *env = &cpu->env;
419     int cur_level;
420 
421     trace_ppc_irq_set(env, pin, level);
422 
423     cur_level = (env->irq_input_state >> pin) & 1;
424     /* Don't generate spurious events */
425     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
426         switch (pin) {
427         case PPCE500_INPUT_MCK:
428             if (level) {
429                 trace_ppc_irq_reset("system");
430                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
431             }
432             break;
433         case PPCE500_INPUT_RESET_CORE:
434             if (level) {
435                 trace_ppc_irq_reset("core");
436                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
437             }
438             break;
439         case PPCE500_INPUT_CINT:
440             /* Level sensitive - active high */
441             trace_ppc_irq_set_state("critical IRQ", level);
442             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
443             break;
444         case PPCE500_INPUT_INT:
445             /* Level sensitive - active high */
446             trace_ppc_irq_set_state("core IRQ", level);
447             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
448             break;
449         case PPCE500_INPUT_DEBUG:
450             /* Level sensitive - active high */
451             trace_ppc_irq_set_state("debug pin", level);
452             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
453             break;
454         default:
455             g_assert_not_reached();
456         }
457         if (level)
458             env->irq_input_state |= 1 << pin;
459         else
460             env->irq_input_state &= ~(1 << pin);
461     }
462 }
463 
464 void ppce500_irq_init(PowerPCCPU *cpu)
465 {
466     qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB);
467 }
468 
469 /* Enable or Disable the E500 EPR capability */
470 void ppce500_set_mpic_proxy(bool enabled)
471 {
472     CPUState *cs;
473 
474     CPU_FOREACH(cs) {
475         PowerPCCPU *cpu = POWERPC_CPU(cs);
476 
477         cpu->env.mpic_proxy = enabled;
478         if (kvm_enabled()) {
479             kvmppc_set_mpic_proxy(cpu, enabled);
480         }
481     }
482 }
483 
484 /*****************************************************************************/
485 /* PowerPC time base and decrementer emulation */
486 
487 /*
488  * Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks:
489  * TB ticks are arrived at by multiplying tb_freq then dividing by
490  * ns per second, and rounding down. TB ticks drive all clocks and
491  * timers in the target machine.
492  *
493  * Converting TB intervals to ns for the purpose of setting a
494  * QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding
495  * up. Rounding down could cause the timer to fire before the TB
496  * value has been reached.
497  */
498 static uint64_t ns_to_tb(uint32_t freq, int64_t clock)
499 {
500     return muldiv64(clock, freq, NANOSECONDS_PER_SECOND);
501 }
502 
503 /* virtual clock in TB ticks, not adjusted by TB offset */
504 static int64_t tb_to_ns_round_up(uint32_t freq, uint64_t tb)
505 {
506     return muldiv64_round_up(tb, NANOSECONDS_PER_SECOND, freq);
507 }
508 
509 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
510 {
511     /* TB time in tb periods */
512     return ns_to_tb(tb_env->tb_freq, vmclk) + tb_offset;
513 }
514 
515 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
516 {
517     ppc_tb_t *tb_env = env->tb_env;
518     uint64_t tb;
519 
520     if (kvm_enabled()) {
521         return env->spr[SPR_TBL];
522     }
523 
524     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
525                         tb_env->tb_offset);
526     trace_ppc_tb_load(tb);
527 
528     return tb;
529 }
530 
531 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
532 {
533     ppc_tb_t *tb_env = env->tb_env;
534     uint64_t tb;
535 
536     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
537                         tb_env->tb_offset);
538     trace_ppc_tb_load(tb);
539 
540     return tb >> 32;
541 }
542 
543 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
544 {
545     if (kvm_enabled()) {
546         return env->spr[SPR_TBU];
547     }
548 
549     return _cpu_ppc_load_tbu(env);
550 }
551 
552 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
553                                     int64_t *tb_offsetp, uint64_t value)
554 {
555     *tb_offsetp = value - ns_to_tb(tb_env->tb_freq, vmclk);
556 
557     trace_ppc_tb_store(value, *tb_offsetp);
558 }
559 
560 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
561 {
562     ppc_tb_t *tb_env = env->tb_env;
563     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
564     uint64_t tb;
565 
566     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
567     tb &= 0xFFFFFFFF00000000ULL;
568     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb | (uint64_t)value);
569 }
570 
571 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
572 {
573     ppc_tb_t *tb_env = env->tb_env;
574     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
575     uint64_t tb;
576 
577     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
578     tb &= 0x00000000FFFFFFFFULL;
579     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset,
580                      ((uint64_t)value << 32) | tb);
581 }
582 
583 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
584 {
585     _cpu_ppc_store_tbu(env, value);
586 }
587 
588 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
589 {
590     ppc_tb_t *tb_env = env->tb_env;
591     uint64_t tb;
592 
593     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
594                         tb_env->atb_offset);
595     trace_ppc_tb_load(tb);
596 
597     return tb;
598 }
599 
600 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
601 {
602     ppc_tb_t *tb_env = env->tb_env;
603     uint64_t tb;
604 
605     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
606                         tb_env->atb_offset);
607     trace_ppc_tb_load(tb);
608 
609     return tb >> 32;
610 }
611 
612 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
613 {
614     ppc_tb_t *tb_env = env->tb_env;
615     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
616     uint64_t tb;
617 
618     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
619     tb &= 0xFFFFFFFF00000000ULL;
620     cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, tb | (uint64_t)value);
621 }
622 
623 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
624 {
625     ppc_tb_t *tb_env = env->tb_env;
626     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
627     uint64_t tb;
628 
629     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
630     tb &= 0x00000000FFFFFFFFULL;
631     cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset,
632                      ((uint64_t)value << 32) | tb);
633 }
634 
635 void cpu_ppc_increase_tb_by_offset(CPUPPCState *env, int64_t offset)
636 {
637     env->tb_env->tb_offset += offset;
638 }
639 
640 void cpu_ppc_decrease_tb_by_offset(CPUPPCState *env, int64_t offset)
641 {
642     env->tb_env->tb_offset -= offset;
643 }
644 
645 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
646 {
647     ppc_tb_t *tb_env = env->tb_env;
648 
649     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
650                           tb_env->vtb_offset);
651 }
652 
653 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
654 {
655     ppc_tb_t *tb_env = env->tb_env;
656 
657     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
658                      &tb_env->vtb_offset, value);
659 }
660 
661 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
662 {
663     ppc_tb_t *tb_env = env->tb_env;
664     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
665     uint64_t tb;
666 
667     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
668     tb &= 0xFFFFFFUL;
669     tb |= (value & ~0xFFFFFFUL);
670     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb);
671 }
672 
673 static void cpu_ppc_tb_stop (CPUPPCState *env)
674 {
675     ppc_tb_t *tb_env = env->tb_env;
676     uint64_t tb, atb, vmclk;
677 
678     /* If the time base is already frozen, do nothing */
679     if (tb_env->tb_freq != 0) {
680         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
681         /* Get the time base */
682         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
683         /* Get the alternate time base */
684         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
685         /* Store the time base value (ie compute the current offset) */
686         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
687         /* Store the alternate time base value (compute the current offset) */
688         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
689         /* Set the time base frequency to zero */
690         tb_env->tb_freq = 0;
691         /* Now, the time bases are frozen to tb_offset / atb_offset value */
692     }
693 }
694 
695 static void cpu_ppc_tb_start (CPUPPCState *env)
696 {
697     ppc_tb_t *tb_env = env->tb_env;
698     uint64_t tb, atb, vmclk;
699 
700     /* If the time base is not frozen, do nothing */
701     if (tb_env->tb_freq == 0) {
702         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
703         /* Get the time base from tb_offset */
704         tb = tb_env->tb_offset;
705         /* Get the alternate time base from atb_offset */
706         atb = tb_env->atb_offset;
707         /* Restore the tb frequency from the decrementer frequency */
708         tb_env->tb_freq = tb_env->decr_freq;
709         /* Store the time base value */
710         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
711         /* Store the alternate time base value */
712         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
713     }
714 }
715 
716 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
717 {
718     ppc_tb_t *tb_env = env->tb_env;
719     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
720     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
721 }
722 
723 static inline int64_t __cpu_ppc_load_decr(CPUPPCState *env, int64_t now,
724                                           uint64_t next)
725 {
726     ppc_tb_t *tb_env = env->tb_env;
727     uint64_t n;
728     int64_t decr;
729 
730     n = ns_to_tb(tb_env->decr_freq, now);
731 
732     /* BookE timers stop when reaching 0.  */
733     if (next < n && tb_env->flags & PPC_TIMER_BOOKE) {
734         decr = 0;
735     } else {
736         decr = next - n;
737     }
738 
739     trace_ppc_decr_load(decr);
740 
741     return decr;
742 }
743 
744 static target_ulong _cpu_ppc_load_decr(CPUPPCState *env, int64_t now)
745 {
746     ppc_tb_t *tb_env = env->tb_env;
747     uint64_t decr;
748 
749     decr = __cpu_ppc_load_decr(env, now, tb_env->decr_next);
750 
751     /*
752      * If large decrementer is enabled then the decrementer is signed extended
753      * to 64 bits, otherwise it is a 32 bit value.
754      */
755     if (env->spr[SPR_LPCR] & LPCR_LD) {
756         PowerPCCPU *cpu = env_archcpu(env);
757         PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
758         return sextract64(decr, 0, pcc->lrg_decr_bits);
759     }
760     return (uint32_t) decr;
761 }
762 
763 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
764 {
765     if (kvm_enabled()) {
766         return env->spr[SPR_DECR];
767     } else {
768         return _cpu_ppc_load_decr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
769     }
770 }
771 
772 static target_ulong _cpu_ppc_load_hdecr(CPUPPCState *env, int64_t now)
773 {
774     PowerPCCPU *cpu = env_archcpu(env);
775     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
776     ppc_tb_t *tb_env = env->tb_env;
777     uint64_t hdecr;
778 
779     hdecr =  __cpu_ppc_load_decr(env, now, tb_env->hdecr_next);
780 
781     /*
782      * If we have a large decrementer (POWER9 or later) then hdecr is sign
783      * extended to 64 bits, otherwise it is 32 bits.
784      */
785     if (pcc->lrg_decr_bits > 32) {
786         return sextract64(hdecr, 0, pcc->lrg_decr_bits);
787     }
788     return (uint32_t) hdecr;
789 }
790 
791 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
792 {
793     return _cpu_ppc_load_hdecr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
794 }
795 
796 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
797 {
798     ppc_tb_t *tb_env = env->tb_env;
799 
800     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
801                           tb_env->purr_offset);
802 }
803 
804 /* When decrementer expires,
805  * all we need to do is generate or queue a CPU exception
806  */
807 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
808 {
809     /* Raise it */
810     trace_ppc_decr_excp("raise");
811     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
812 }
813 
814 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
815 {
816     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
817 }
818 
819 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
820 {
821     CPUPPCState *env = &cpu->env;
822 
823     /* Raise it */
824     trace_ppc_decr_excp("raise HV");
825 
826     /* The architecture specifies that we don't deliver HDEC
827      * interrupts in a PM state. Not only they don't cause a
828      * wakeup but they also get effectively discarded.
829      */
830     if (!env->resume_as_sreset) {
831         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
832     }
833 }
834 
835 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
836 {
837     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
838 }
839 
840 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, uint64_t *nextp,
841                                  QEMUTimer *timer,
842                                  void (*raise_excp)(void *),
843                                  void (*lower_excp)(PowerPCCPU *),
844                                  uint32_t flags, target_ulong decr,
845                                  target_ulong value, int nr_bits)
846 {
847     CPUPPCState *env = &cpu->env;
848     ppc_tb_t *tb_env = env->tb_env;
849     uint64_t next;
850     int64_t signed_value;
851     int64_t signed_decr;
852 
853     /* Truncate value to decr_width and sign extend for simplicity */
854     value = extract64(value, 0, nr_bits);
855     decr = extract64(decr, 0, nr_bits);
856     signed_value = sextract64(value, 0, nr_bits);
857     signed_decr = sextract64(decr, 0, nr_bits);
858 
859     trace_ppc_decr_store(nr_bits, decr, value);
860 
861     /*
862      * Calculate the next decrementer event and set a timer.
863      * decr_next is in timebase units to keep rounding simple. Note it is
864      * not adjusted by tb_offset because if TB changes via tb_offset changing,
865      * decrementer does not change, so not directly comparable with TB.
866      */
867     next = ns_to_tb(tb_env->decr_freq, now) + value;
868     *nextp = next; /* nextp is in timebase units */
869 
870     /*
871      * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt.
872      *
873      * On MSB level based DEC implementations the MSB always means the interrupt
874      * is pending, so raise it on those.
875      *
876      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
877      * an edge interrupt, so raise it here too.
878      */
879     if (((flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
880         ((flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
881           && signed_decr >= 0)) {
882         (*raise_excp)(cpu);
883         return;
884     }
885 
886     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
887     if (signed_value >= 0 && (flags & PPC_DECR_UNDERFLOW_LEVEL)) {
888         (*lower_excp)(cpu);
889     }
890 
891     /* Adjust timer */
892     timer_mod(timer, tb_to_ns_round_up(tb_env->decr_freq, next));
893 }
894 
895 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now,
896                                        target_ulong decr, target_ulong value,
897                                        int nr_bits)
898 {
899     ppc_tb_t *tb_env = cpu->env.tb_env;
900 
901     __cpu_ppc_store_decr(cpu, now, &tb_env->decr_next, tb_env->decr_timer,
902                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower,
903                          tb_env->flags, decr, value, nr_bits);
904 }
905 
906 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
907 {
908     PowerPCCPU *cpu = env_archcpu(env);
909     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
910     int64_t now;
911     target_ulong decr;
912     int nr_bits = 32;
913 
914     if (kvm_enabled()) {
915         /* KVM handles decrementer exceptions, we don't need our own timer */
916         return;
917     }
918 
919     if (env->spr[SPR_LPCR] & LPCR_LD) {
920         nr_bits = pcc->lrg_decr_bits;
921     }
922 
923     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
924     decr = _cpu_ppc_load_decr(env, now);
925     _cpu_ppc_store_decr(cpu, now, decr, value, nr_bits);
926 }
927 
928 static void cpu_ppc_decr_cb(void *opaque)
929 {
930     PowerPCCPU *cpu = opaque;
931 
932     cpu_ppc_decr_excp(cpu);
933 }
934 
935 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, int64_t now,
936                                         target_ulong hdecr, target_ulong value,
937                                         int nr_bits)
938 {
939     ppc_tb_t *tb_env = cpu->env.tb_env;
940 
941     if (tb_env->hdecr_timer != NULL) {
942         /* HDECR (Book3S 64bit) is edge-based, not level like DECR */
943         __cpu_ppc_store_decr(cpu, now, &tb_env->hdecr_next, tb_env->hdecr_timer,
944                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
945                              PPC_DECR_UNDERFLOW_TRIGGERED,
946                              hdecr, value, nr_bits);
947     }
948 }
949 
950 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
951 {
952     PowerPCCPU *cpu = env_archcpu(env);
953     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
954     int64_t now;
955     target_ulong hdecr;
956 
957     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
958     hdecr = _cpu_ppc_load_hdecr(env, now);
959     _cpu_ppc_store_hdecr(cpu, now, hdecr, value, pcc->lrg_decr_bits);
960 }
961 
962 static void cpu_ppc_hdecr_cb(void *opaque)
963 {
964     PowerPCCPU *cpu = opaque;
965 
966     cpu_ppc_hdecr_excp(cpu);
967 }
968 
969 static void _cpu_ppc_store_purr(CPUPPCState *env, int64_t now, uint64_t value)
970 {
971     ppc_tb_t *tb_env = env->tb_env;
972 
973     cpu_ppc_store_tb(tb_env, now, &tb_env->purr_offset, value);
974 }
975 
976 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
977 {
978     _cpu_ppc_store_purr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), value);
979 }
980 
981 static void timebase_save(PPCTimebase *tb)
982 {
983     uint64_t ticks = cpu_get_host_ticks();
984     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
985 
986     if (!first_ppc_cpu->env.tb_env) {
987         error_report("No timebase object");
988         return;
989     }
990 
991     if (replay_mode == REPLAY_MODE_NONE) {
992         /* not used anymore, we keep it for compatibility */
993         tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
994     } else {
995         /* simpler for record-replay to avoid this event, compat not needed */
996         tb->time_of_the_day_ns = 0;
997     }
998 
999     /*
1000      * tb_offset is only expected to be changed by QEMU so
1001      * there is no need to update it from KVM here
1002      */
1003     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1004 
1005     tb->runstate_paused =
1006         runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
1007 }
1008 
1009 static void timebase_load(PPCTimebase *tb)
1010 {
1011     CPUState *cpu;
1012     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1013     int64_t tb_off_adj, tb_off;
1014     unsigned long freq;
1015 
1016     if (!first_ppc_cpu->env.tb_env) {
1017         error_report("No timebase object");
1018         return;
1019     }
1020 
1021     freq = first_ppc_cpu->env.tb_env->tb_freq;
1022 
1023     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1024 
1025     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1026     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1027                         (tb_off_adj - tb_off) / freq);
1028 
1029     /* Set new offset to all CPUs */
1030     CPU_FOREACH(cpu) {
1031         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1032         pcpu->env.tb_env->tb_offset = tb_off_adj;
1033         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1034     }
1035 }
1036 
1037 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
1038                                    RunState state)
1039 {
1040     PPCTimebase *tb = opaque;
1041 
1042     if (running) {
1043         timebase_load(tb);
1044     } else {
1045         timebase_save(tb);
1046     }
1047 }
1048 
1049 /*
1050  * When migrating a running guest, read the clock just
1051  * before migration, so that the guest clock counts
1052  * during the events between:
1053  *
1054  *  * vm_stop()
1055  *  *
1056  *  * pre_save()
1057  *
1058  *  This reduces clock difference on migration from 5s
1059  *  to 0.1s (when max_downtime == 5s), because sending the
1060  *  final pages of memory (which happens between vm_stop()
1061  *  and pre_save()) takes max_downtime.
1062  */
1063 static int timebase_pre_save(void *opaque)
1064 {
1065     PPCTimebase *tb = opaque;
1066 
1067     /* guest_timebase won't be overridden in case of paused guest or savevm */
1068     if (!tb->runstate_paused) {
1069         timebase_save(tb);
1070     }
1071 
1072     return 0;
1073 }
1074 
1075 const VMStateDescription vmstate_ppc_timebase = {
1076     .name = "timebase",
1077     .version_id = 1,
1078     .minimum_version_id = 1,
1079     .pre_save = timebase_pre_save,
1080     .fields = (const VMStateField []) {
1081         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1082         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1083         VMSTATE_END_OF_LIST()
1084     },
1085 };
1086 
1087 /* Set up (once) timebase frequency (in Hz) */
1088 void cpu_ppc_tb_init(CPUPPCState *env, uint32_t freq)
1089 {
1090     PowerPCCPU *cpu = env_archcpu(env);
1091     ppc_tb_t *tb_env;
1092 
1093     tb_env = g_new0(ppc_tb_t, 1);
1094     env->tb_env = tb_env;
1095     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1096     if (is_book3s_arch2x(env)) {
1097         /* All Book3S 64bit CPUs implement level based DEC logic */
1098         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1099     }
1100     /* Create new timer */
1101     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1102                                       &cpu_ppc_decr_cb, cpu);
1103     if (env->has_hv_mode && !cpu->vhyp) {
1104         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1105                                            &cpu_ppc_hdecr_cb, cpu);
1106     } else {
1107         tb_env->hdecr_timer = NULL;
1108     }
1109 
1110     tb_env->tb_freq = freq;
1111     tb_env->decr_freq = freq;
1112 }
1113 
1114 void cpu_ppc_tb_reset(CPUPPCState *env)
1115 {
1116     PowerPCCPU *cpu = env_archcpu(env);
1117     ppc_tb_t *tb_env = env->tb_env;
1118 
1119     timer_del(tb_env->decr_timer);
1120     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
1121     tb_env->decr_next = 0;
1122     if (tb_env->hdecr_timer != NULL) {
1123         timer_del(tb_env->hdecr_timer);
1124         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
1125         tb_env->hdecr_next = 0;
1126     }
1127 
1128     /*
1129      * There is a bug in Linux 2.4 kernels:
1130      * if a decrementer exception is pending when it enables msr_ee at startup,
1131      * it's not ready to handle it...
1132      */
1133     cpu_ppc_store_decr(env, -1);
1134     cpu_ppc_store_hdecr(env, -1);
1135     cpu_ppc_store_purr(env, 0x0000000000000000ULL);
1136 }
1137 
1138 void cpu_ppc_tb_free(CPUPPCState *env)
1139 {
1140     timer_free(env->tb_env->decr_timer);
1141     timer_free(env->tb_env->hdecr_timer);
1142     g_free(env->tb_env);
1143 }
1144 
1145 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1146 void cpu_ppc_hdecr_init(CPUPPCState *env)
1147 {
1148     PowerPCCPU *cpu = env_archcpu(env);
1149 
1150     assert(env->tb_env->hdecr_timer == NULL);
1151 
1152     env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1153                                             &cpu_ppc_hdecr_cb, cpu);
1154 }
1155 
1156 void cpu_ppc_hdecr_exit(CPUPPCState *env)
1157 {
1158     PowerPCCPU *cpu = env_archcpu(env);
1159 
1160     timer_free(env->tb_env->hdecr_timer);
1161     env->tb_env->hdecr_timer = NULL;
1162 
1163     cpu_ppc_hdecr_lower(cpu);
1164 }
1165 
1166 /*****************************************************************************/
1167 /* PowerPC 40x timers */
1168 
1169 /* PIT, FIT & WDT */
1170 typedef struct ppc40x_timer_t ppc40x_timer_t;
1171 struct ppc40x_timer_t {
1172     uint64_t pit_reload;  /* PIT auto-reload value        */
1173     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1174     QEMUTimer *fit_timer;
1175     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1176     QEMUTimer *wdt_timer;
1177 
1178     /* 405 have the PIT, 440 have a DECR.  */
1179     unsigned int decr_excp;
1180 };
1181 
1182 /* Fixed interval timer */
1183 static void cpu_4xx_fit_cb (void *opaque)
1184 {
1185     PowerPCCPU *cpu = opaque;
1186     CPUPPCState *env = &cpu->env;
1187     ppc_tb_t *tb_env;
1188     ppc40x_timer_t *ppc40x_timer;
1189     uint64_t now, next;
1190 
1191     tb_env = env->tb_env;
1192     ppc40x_timer = tb_env->opaque;
1193     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1194     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1195     case 0:
1196         next = 1 << 9;
1197         break;
1198     case 1:
1199         next = 1 << 13;
1200         break;
1201     case 2:
1202         next = 1 << 17;
1203         break;
1204     case 3:
1205         next = 1 << 21;
1206         break;
1207     default:
1208         /* Cannot occur, but makes gcc happy */
1209         return;
1210     }
1211     next = now + tb_to_ns_round_up(tb_env->tb_freq, next);
1212     timer_mod(ppc40x_timer->fit_timer, next);
1213     env->spr[SPR_40x_TSR] |= 1 << 26;
1214     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1215         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1216     }
1217     trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1218                          env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1219 }
1220 
1221 /* Programmable interval timer */
1222 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1223 {
1224     ppc40x_timer_t *ppc40x_timer;
1225     uint64_t now, next;
1226 
1227     ppc40x_timer = tb_env->opaque;
1228     if (ppc40x_timer->pit_reload <= 1 ||
1229         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1230         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1231         /* Stop PIT */
1232         trace_ppc4xx_pit_stop();
1233         timer_del(tb_env->decr_timer);
1234     } else {
1235         trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1236         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1237 
1238         if (is_excp) {
1239             tb_env->decr_next += ppc40x_timer->pit_reload;
1240         } else {
1241             tb_env->decr_next = ns_to_tb(tb_env->decr_freq, now)
1242                                 + ppc40x_timer->pit_reload;
1243         }
1244         next = tb_to_ns_round_up(tb_env->decr_freq, tb_env->decr_next);
1245         timer_mod(tb_env->decr_timer, next);
1246     }
1247 }
1248 
1249 static void cpu_4xx_pit_cb (void *opaque)
1250 {
1251     PowerPCCPU *cpu = opaque;
1252     CPUPPCState *env = &cpu->env;
1253     ppc_tb_t *tb_env;
1254     ppc40x_timer_t *ppc40x_timer;
1255 
1256     tb_env = env->tb_env;
1257     ppc40x_timer = tb_env->opaque;
1258     env->spr[SPR_40x_TSR] |= 1 << 27;
1259     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1260         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1261     }
1262     start_stop_pit(env, tb_env, 1);
1263     trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1264            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1265            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1266            ppc40x_timer->pit_reload);
1267 }
1268 
1269 /* Watchdog timer */
1270 static void cpu_4xx_wdt_cb (void *opaque)
1271 {
1272     PowerPCCPU *cpu = opaque;
1273     CPUPPCState *env = &cpu->env;
1274     ppc_tb_t *tb_env;
1275     ppc40x_timer_t *ppc40x_timer;
1276     uint64_t now, next;
1277 
1278     tb_env = env->tb_env;
1279     ppc40x_timer = tb_env->opaque;
1280     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1281     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1282     case 0:
1283         next = 1 << 17;
1284         break;
1285     case 1:
1286         next = 1 << 21;
1287         break;
1288     case 2:
1289         next = 1 << 25;
1290         break;
1291     case 3:
1292         next = 1 << 29;
1293         break;
1294     default:
1295         /* Cannot occur, but makes gcc happy */
1296         return;
1297     }
1298     next = now + tb_to_ns_round_up(tb_env->decr_freq, next);
1299     trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1300     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1301     case 0x0:
1302     case 0x1:
1303         timer_mod(ppc40x_timer->wdt_timer, next);
1304         ppc40x_timer->wdt_next = next;
1305         env->spr[SPR_40x_TSR] |= 1U << 31;
1306         break;
1307     case 0x2:
1308         timer_mod(ppc40x_timer->wdt_timer, next);
1309         ppc40x_timer->wdt_next = next;
1310         env->spr[SPR_40x_TSR] |= 1 << 30;
1311         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1312             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1313         }
1314         break;
1315     case 0x3:
1316         env->spr[SPR_40x_TSR] &= ~0x30000000;
1317         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1318         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1319         case 0x0:
1320             /* No reset */
1321             break;
1322         case 0x1: /* Core reset */
1323             ppc40x_core_reset(cpu);
1324             break;
1325         case 0x2: /* Chip reset */
1326             ppc40x_chip_reset(cpu);
1327             break;
1328         case 0x3: /* System reset */
1329             ppc40x_system_reset(cpu);
1330             break;
1331         }
1332     }
1333 }
1334 
1335 void store_40x_pit (CPUPPCState *env, target_ulong val)
1336 {
1337     ppc_tb_t *tb_env;
1338     ppc40x_timer_t *ppc40x_timer;
1339 
1340     tb_env = env->tb_env;
1341     ppc40x_timer = tb_env->opaque;
1342     trace_ppc40x_store_pit(val);
1343     ppc40x_timer->pit_reload = val;
1344     start_stop_pit(env, tb_env, 0);
1345 }
1346 
1347 target_ulong load_40x_pit (CPUPPCState *env)
1348 {
1349     return cpu_ppc_load_decr(env);
1350 }
1351 
1352 void store_40x_tsr(CPUPPCState *env, target_ulong val)
1353 {
1354     PowerPCCPU *cpu = env_archcpu(env);
1355 
1356     trace_ppc40x_store_tcr(val);
1357 
1358     env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1359     if (val & 0x80000000) {
1360         ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0);
1361     }
1362 }
1363 
1364 void store_40x_tcr(CPUPPCState *env, target_ulong val)
1365 {
1366     PowerPCCPU *cpu = env_archcpu(env);
1367     ppc_tb_t *tb_env;
1368 
1369     trace_ppc40x_store_tsr(val);
1370 
1371     tb_env = env->tb_env;
1372     env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1373     start_stop_pit(env, tb_env, 1);
1374     cpu_4xx_wdt_cb(cpu);
1375 }
1376 
1377 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1378 {
1379     CPUPPCState *env = opaque;
1380     ppc_tb_t *tb_env = env->tb_env;
1381 
1382     trace_ppc40x_set_tb_clk(freq);
1383     tb_env->tb_freq = freq;
1384     tb_env->decr_freq = freq;
1385     /* XXX: we should also update all timers */
1386 }
1387 
1388 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1389                                   unsigned int decr_excp)
1390 {
1391     ppc_tb_t *tb_env;
1392     ppc40x_timer_t *ppc40x_timer;
1393     PowerPCCPU *cpu = env_archcpu(env);
1394 
1395     trace_ppc40x_timers_init(freq);
1396 
1397     tb_env = g_new0(ppc_tb_t, 1);
1398     ppc40x_timer = g_new0(ppc40x_timer_t, 1);
1399 
1400     env->tb_env = tb_env;
1401     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1402     tb_env->tb_freq = freq;
1403     tb_env->decr_freq = freq;
1404     tb_env->opaque = ppc40x_timer;
1405 
1406     /* We use decr timer for PIT */
1407     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu);
1408     ppc40x_timer->fit_timer =
1409         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu);
1410     ppc40x_timer->wdt_timer =
1411         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu);
1412     ppc40x_timer->decr_excp = decr_excp;
1413 
1414     return &ppc_40x_set_tb_clk;
1415 }
1416 
1417 /*****************************************************************************/
1418 /* Embedded PowerPC Device Control Registers */
1419 typedef struct ppc_dcrn_t ppc_dcrn_t;
1420 struct ppc_dcrn_t {
1421     dcr_read_cb dcr_read;
1422     dcr_write_cb dcr_write;
1423     void *opaque;
1424 };
1425 
1426 /* XXX: on 460, DCR addresses are 32 bits wide,
1427  *      using DCRIPR to get the 22 upper bits of the DCR address
1428  */
1429 #define DCRN_NB 1024
1430 struct ppc_dcr_t {
1431     ppc_dcrn_t dcrn[DCRN_NB];
1432     int (*read_error)(int dcrn);
1433     int (*write_error)(int dcrn);
1434 };
1435 
1436 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1437 {
1438     ppc_dcrn_t *dcr;
1439 
1440     if (dcrn < 0 || dcrn >= DCRN_NB)
1441         goto error;
1442     dcr = &dcr_env->dcrn[dcrn];
1443     if (dcr->dcr_read == NULL)
1444         goto error;
1445     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1446     trace_ppc_dcr_read(dcrn, *valp);
1447 
1448     return 0;
1449 
1450  error:
1451     if (dcr_env->read_error != NULL)
1452         return (*dcr_env->read_error)(dcrn);
1453 
1454     return -1;
1455 }
1456 
1457 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1458 {
1459     ppc_dcrn_t *dcr;
1460 
1461     if (dcrn < 0 || dcrn >= DCRN_NB)
1462         goto error;
1463     dcr = &dcr_env->dcrn[dcrn];
1464     if (dcr->dcr_write == NULL)
1465         goto error;
1466     trace_ppc_dcr_write(dcrn, val);
1467     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1468 
1469     return 0;
1470 
1471  error:
1472     if (dcr_env->write_error != NULL)
1473         return (*dcr_env->write_error)(dcrn);
1474 
1475     return -1;
1476 }
1477 
1478 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1479                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1480 {
1481     ppc_dcr_t *dcr_env;
1482     ppc_dcrn_t *dcr;
1483 
1484     dcr_env = env->dcr_env;
1485     if (dcr_env == NULL)
1486         return -1;
1487     if (dcrn < 0 || dcrn >= DCRN_NB)
1488         return -1;
1489     dcr = &dcr_env->dcrn[dcrn];
1490     if (dcr->opaque != NULL ||
1491         dcr->dcr_read != NULL ||
1492         dcr->dcr_write != NULL)
1493         return -1;
1494     dcr->opaque = opaque;
1495     dcr->dcr_read = dcr_read;
1496     dcr->dcr_write = dcr_write;
1497 
1498     return 0;
1499 }
1500 
1501 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1502                   int (*write_error)(int dcrn))
1503 {
1504     ppc_dcr_t *dcr_env;
1505 
1506     dcr_env = g_new0(ppc_dcr_t, 1);
1507     dcr_env->read_error = read_error;
1508     dcr_env->write_error = write_error;
1509     env->dcr_env = dcr_env;
1510 
1511     return 0;
1512 }
1513 
1514 /*****************************************************************************/
1515 
1516 int ppc_cpu_pir(PowerPCCPU *cpu)
1517 {
1518     CPUPPCState *env = &cpu->env;
1519     return env->spr_cb[SPR_PIR].default_value;
1520 }
1521 
1522 int ppc_cpu_tir(PowerPCCPU *cpu)
1523 {
1524     CPUPPCState *env = &cpu->env;
1525     return env->spr_cb[SPR_TIR].default_value;
1526 }
1527 
1528 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1529 {
1530     CPUState *cs;
1531 
1532     CPU_FOREACH(cs) {
1533         PowerPCCPU *cpu = POWERPC_CPU(cs);
1534 
1535         if (ppc_cpu_pir(cpu) == pir) {
1536             return cpu;
1537         }
1538     }
1539 
1540     return NULL;
1541 }
1542 
1543 void ppc_irq_reset(PowerPCCPU *cpu)
1544 {
1545     CPUPPCState *env = &cpu->env;
1546 
1547     env->irq_input_state = 0;
1548     if (kvm_enabled()) {
1549         kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1550     }
1551 }
1552