1 /* 2 * QEMU generic PowerPC hardware System Emulator 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/irq.h" 27 #include "hw/ppc/ppc.h" 28 #include "hw/ppc/ppc_e500.h" 29 #include "qemu/timer.h" 30 #include "sysemu/cpus.h" 31 #include "qemu/log.h" 32 #include "qemu/main-loop.h" 33 #include "qemu/error-report.h" 34 #include "sysemu/kvm.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/runstate.h" 37 #include "kvm_ppc.h" 38 #include "migration/vmstate.h" 39 #include "trace.h" 40 41 static void cpu_ppc_tb_stop (CPUPPCState *env); 42 static void cpu_ppc_tb_start (CPUPPCState *env); 43 44 void ppc_set_irq(PowerPCCPU *cpu, int irq, int level) 45 { 46 CPUPPCState *env = &cpu->env; 47 unsigned int old_pending; 48 49 /* We may already have the BQL if coming from the reset path */ 50 BQL_LOCK_GUARD(); 51 52 old_pending = env->pending_interrupts; 53 54 if (level) { 55 env->pending_interrupts |= irq; 56 } else { 57 env->pending_interrupts &= ~irq; 58 } 59 60 if (old_pending != env->pending_interrupts) { 61 ppc_maybe_interrupt(env); 62 if (kvm_enabled()) { 63 kvmppc_set_interrupt(cpu, irq, level); 64 } 65 } 66 67 trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts, 68 CPU(cpu)->interrupt_request); 69 } 70 71 /* PowerPC 6xx / 7xx internal IRQ controller */ 72 static void ppc6xx_set_irq(void *opaque, int pin, int level) 73 { 74 PowerPCCPU *cpu = opaque; 75 CPUPPCState *env = &cpu->env; 76 int cur_level; 77 78 trace_ppc_irq_set(env, pin, level); 79 80 cur_level = (env->irq_input_state >> pin) & 1; 81 /* Don't generate spurious events */ 82 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 83 CPUState *cs = CPU(cpu); 84 85 switch (pin) { 86 case PPC6xx_INPUT_TBEN: 87 /* Level sensitive - active high */ 88 trace_ppc_irq_set_state("time base", level); 89 if (level) { 90 cpu_ppc_tb_start(env); 91 } else { 92 cpu_ppc_tb_stop(env); 93 } 94 break; 95 case PPC6xx_INPUT_INT: 96 /* Level sensitive - active high */ 97 trace_ppc_irq_set_state("external IRQ", level); 98 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 99 break; 100 case PPC6xx_INPUT_SMI: 101 /* Level sensitive - active high */ 102 trace_ppc_irq_set_state("SMI IRQ", level); 103 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level); 104 break; 105 case PPC6xx_INPUT_MCP: 106 /* Negative edge sensitive */ 107 /* XXX: TODO: actual reaction may depends on HID0 status 108 * 603/604/740/750: check HID0[EMCP] 109 */ 110 if (cur_level == 1 && level == 0) { 111 trace_ppc_irq_set_state("machine check", 1); 112 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 113 } 114 break; 115 case PPC6xx_INPUT_CKSTP_IN: 116 /* Level sensitive - active low */ 117 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 118 /* XXX: Note that the only way to restart the CPU is to reset it */ 119 if (level) { 120 trace_ppc_irq_cpu("stop"); 121 cs->halted = 1; 122 } 123 break; 124 case PPC6xx_INPUT_HRESET: 125 /* Level sensitive - active low */ 126 if (level) { 127 trace_ppc_irq_reset("CPU"); 128 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 129 } 130 break; 131 case PPC6xx_INPUT_SRESET: 132 trace_ppc_irq_set_state("RESET IRQ", level); 133 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 134 break; 135 default: 136 g_assert_not_reached(); 137 } 138 if (level) 139 env->irq_input_state |= 1 << pin; 140 else 141 env->irq_input_state &= ~(1 << pin); 142 } 143 } 144 145 void ppc6xx_irq_init(PowerPCCPU *cpu) 146 { 147 qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB); 148 } 149 150 #if defined(TARGET_PPC64) 151 /* PowerPC 970 internal IRQ controller */ 152 static void ppc970_set_irq(void *opaque, int pin, int level) 153 { 154 PowerPCCPU *cpu = opaque; 155 CPUPPCState *env = &cpu->env; 156 int cur_level; 157 158 trace_ppc_irq_set(env, pin, level); 159 160 cur_level = (env->irq_input_state >> pin) & 1; 161 /* Don't generate spurious events */ 162 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 163 CPUState *cs = CPU(cpu); 164 165 switch (pin) { 166 case PPC970_INPUT_INT: 167 /* Level sensitive - active high */ 168 trace_ppc_irq_set_state("external IRQ", level); 169 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 170 break; 171 case PPC970_INPUT_THINT: 172 /* Level sensitive - active high */ 173 trace_ppc_irq_set_state("SMI IRQ", level); 174 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level); 175 break; 176 case PPC970_INPUT_MCP: 177 /* Negative edge sensitive */ 178 /* XXX: TODO: actual reaction may depends on HID0 status 179 * 603/604/740/750: check HID0[EMCP] 180 */ 181 if (cur_level == 1 && level == 0) { 182 trace_ppc_irq_set_state("machine check", 1); 183 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 184 } 185 break; 186 case PPC970_INPUT_CKSTP: 187 /* Level sensitive - active low */ 188 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 189 if (level) { 190 trace_ppc_irq_cpu("stop"); 191 cs->halted = 1; 192 } else { 193 trace_ppc_irq_cpu("restart"); 194 cs->halted = 0; 195 qemu_cpu_kick(cs); 196 } 197 break; 198 case PPC970_INPUT_HRESET: 199 /* Level sensitive - active low */ 200 if (level) { 201 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 202 } 203 break; 204 case PPC970_INPUT_SRESET: 205 trace_ppc_irq_set_state("RESET IRQ", level); 206 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 207 break; 208 case PPC970_INPUT_TBEN: 209 trace_ppc_irq_set_state("TBEN IRQ", level); 210 /* XXX: TODO */ 211 break; 212 default: 213 g_assert_not_reached(); 214 } 215 if (level) 216 env->irq_input_state |= 1 << pin; 217 else 218 env->irq_input_state &= ~(1 << pin); 219 } 220 } 221 222 void ppc970_irq_init(PowerPCCPU *cpu) 223 { 224 qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB); 225 } 226 227 /* POWER7 internal IRQ controller */ 228 static void power7_set_irq(void *opaque, int pin, int level) 229 { 230 PowerPCCPU *cpu = opaque; 231 232 trace_ppc_irq_set(&cpu->env, pin, level); 233 234 switch (pin) { 235 case POWER7_INPUT_INT: 236 /* Level sensitive - active high */ 237 trace_ppc_irq_set_state("external IRQ", level); 238 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 239 break; 240 default: 241 g_assert_not_reached(); 242 } 243 } 244 245 void ppcPOWER7_irq_init(PowerPCCPU *cpu) 246 { 247 qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB); 248 } 249 250 /* POWER9 internal IRQ controller */ 251 static void power9_set_irq(void *opaque, int pin, int level) 252 { 253 PowerPCCPU *cpu = opaque; 254 255 trace_ppc_irq_set(&cpu->env, pin, level); 256 257 switch (pin) { 258 case POWER9_INPUT_INT: 259 /* Level sensitive - active high */ 260 trace_ppc_irq_set_state("external IRQ", level); 261 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 262 break; 263 case POWER9_INPUT_HINT: 264 /* Level sensitive - active high */ 265 trace_ppc_irq_set_state("HV external IRQ", level); 266 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level); 267 break; 268 default: 269 g_assert_not_reached(); 270 } 271 } 272 273 void ppcPOWER9_irq_init(PowerPCCPU *cpu) 274 { 275 qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB); 276 } 277 #endif /* defined(TARGET_PPC64) */ 278 279 void ppc40x_core_reset(PowerPCCPU *cpu) 280 { 281 CPUPPCState *env = &cpu->env; 282 target_ulong dbsr; 283 284 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n"); 285 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 286 dbsr = env->spr[SPR_40x_DBSR]; 287 dbsr &= ~0x00000300; 288 dbsr |= 0x00000100; 289 env->spr[SPR_40x_DBSR] = dbsr; 290 } 291 292 void ppc40x_chip_reset(PowerPCCPU *cpu) 293 { 294 CPUPPCState *env = &cpu->env; 295 target_ulong dbsr; 296 297 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n"); 298 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 299 /* XXX: TODO reset all internal peripherals */ 300 dbsr = env->spr[SPR_40x_DBSR]; 301 dbsr &= ~0x00000300; 302 dbsr |= 0x00000200; 303 env->spr[SPR_40x_DBSR] = dbsr; 304 } 305 306 void ppc40x_system_reset(PowerPCCPU *cpu) 307 { 308 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n"); 309 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 310 } 311 312 void store_40x_dbcr0(CPUPPCState *env, uint32_t val) 313 { 314 PowerPCCPU *cpu = env_archcpu(env); 315 316 bql_lock(); 317 318 switch ((val >> 28) & 0x3) { 319 case 0x0: 320 /* No action */ 321 break; 322 case 0x1: 323 /* Core reset */ 324 ppc40x_core_reset(cpu); 325 break; 326 case 0x2: 327 /* Chip reset */ 328 ppc40x_chip_reset(cpu); 329 break; 330 case 0x3: 331 /* System reset */ 332 ppc40x_system_reset(cpu); 333 break; 334 } 335 336 bql_unlock(); 337 } 338 339 /* PowerPC 40x internal IRQ controller */ 340 static void ppc40x_set_irq(void *opaque, int pin, int level) 341 { 342 PowerPCCPU *cpu = opaque; 343 CPUPPCState *env = &cpu->env; 344 int cur_level; 345 346 trace_ppc_irq_set(env, pin, level); 347 348 cur_level = (env->irq_input_state >> pin) & 1; 349 /* Don't generate spurious events */ 350 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 351 CPUState *cs = CPU(cpu); 352 353 switch (pin) { 354 case PPC40x_INPUT_RESET_SYS: 355 if (level) { 356 trace_ppc_irq_reset("system"); 357 ppc40x_system_reset(cpu); 358 } 359 break; 360 case PPC40x_INPUT_RESET_CHIP: 361 if (level) { 362 trace_ppc_irq_reset("chip"); 363 ppc40x_chip_reset(cpu); 364 } 365 break; 366 case PPC40x_INPUT_RESET_CORE: 367 /* XXX: TODO: update DBSR[MRR] */ 368 if (level) { 369 trace_ppc_irq_reset("core"); 370 ppc40x_core_reset(cpu); 371 } 372 break; 373 case PPC40x_INPUT_CINT: 374 /* Level sensitive - active high */ 375 trace_ppc_irq_set_state("critical IRQ", level); 376 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 377 break; 378 case PPC40x_INPUT_INT: 379 /* Level sensitive - active high */ 380 trace_ppc_irq_set_state("external IRQ", level); 381 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 382 break; 383 case PPC40x_INPUT_HALT: 384 /* Level sensitive - active low */ 385 if (level) { 386 trace_ppc_irq_cpu("stop"); 387 cs->halted = 1; 388 } else { 389 trace_ppc_irq_cpu("restart"); 390 cs->halted = 0; 391 qemu_cpu_kick(cs); 392 } 393 break; 394 case PPC40x_INPUT_DEBUG: 395 /* Level sensitive - active high */ 396 trace_ppc_irq_set_state("debug pin", level); 397 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 398 break; 399 default: 400 g_assert_not_reached(); 401 } 402 if (level) 403 env->irq_input_state |= 1 << pin; 404 else 405 env->irq_input_state &= ~(1 << pin); 406 } 407 } 408 409 void ppc40x_irq_init(PowerPCCPU *cpu) 410 { 411 qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB); 412 } 413 414 /* PowerPC E500 internal IRQ controller */ 415 static void ppce500_set_irq(void *opaque, int pin, int level) 416 { 417 PowerPCCPU *cpu = opaque; 418 CPUPPCState *env = &cpu->env; 419 int cur_level; 420 421 trace_ppc_irq_set(env, pin, level); 422 423 cur_level = (env->irq_input_state >> pin) & 1; 424 /* Don't generate spurious events */ 425 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 426 switch (pin) { 427 case PPCE500_INPUT_MCK: 428 if (level) { 429 trace_ppc_irq_reset("system"); 430 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 431 } 432 break; 433 case PPCE500_INPUT_RESET_CORE: 434 if (level) { 435 trace_ppc_irq_reset("core"); 436 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level); 437 } 438 break; 439 case PPCE500_INPUT_CINT: 440 /* Level sensitive - active high */ 441 trace_ppc_irq_set_state("critical IRQ", level); 442 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 443 break; 444 case PPCE500_INPUT_INT: 445 /* Level sensitive - active high */ 446 trace_ppc_irq_set_state("core IRQ", level); 447 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 448 break; 449 case PPCE500_INPUT_DEBUG: 450 /* Level sensitive - active high */ 451 trace_ppc_irq_set_state("debug pin", level); 452 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 453 break; 454 default: 455 g_assert_not_reached(); 456 } 457 if (level) 458 env->irq_input_state |= 1 << pin; 459 else 460 env->irq_input_state &= ~(1 << pin); 461 } 462 } 463 464 void ppce500_irq_init(PowerPCCPU *cpu) 465 { 466 qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB); 467 } 468 469 /* Enable or Disable the E500 EPR capability */ 470 void ppce500_set_mpic_proxy(bool enabled) 471 { 472 CPUState *cs; 473 474 CPU_FOREACH(cs) { 475 PowerPCCPU *cpu = POWERPC_CPU(cs); 476 477 cpu->env.mpic_proxy = enabled; 478 if (kvm_enabled()) { 479 kvmppc_set_mpic_proxy(cpu, enabled); 480 } 481 } 482 } 483 484 /*****************************************************************************/ 485 /* PowerPC time base and decrementer emulation */ 486 487 /* 488 * Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks: 489 * TB ticks are arrived at by multiplying tb_freq then dividing by 490 * ns per second, and rounding down. TB ticks drive all clocks and 491 * timers in the target machine. 492 * 493 * Converting TB intervals to ns for the purpose of setting a 494 * QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding 495 * up. Rounding down could cause the timer to fire before the TB 496 * value has been reached. 497 */ 498 static uint64_t ns_to_tb(uint32_t freq, int64_t clock) 499 { 500 return muldiv64(clock, freq, NANOSECONDS_PER_SECOND); 501 } 502 503 /* virtual clock in TB ticks, not adjusted by TB offset */ 504 static int64_t tb_to_ns_round_up(uint32_t freq, uint64_t tb) 505 { 506 return muldiv64_round_up(tb, NANOSECONDS_PER_SECOND, freq); 507 } 508 509 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) 510 { 511 /* TB time in tb periods */ 512 return ns_to_tb(tb_env->tb_freq, vmclk) + tb_offset; 513 } 514 515 uint64_t cpu_ppc_load_tbl (CPUPPCState *env) 516 { 517 ppc_tb_t *tb_env = env->tb_env; 518 uint64_t tb; 519 520 if (kvm_enabled()) { 521 return env->spr[SPR_TBL]; 522 } 523 524 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 525 tb_env->tb_offset); 526 trace_ppc_tb_load(tb); 527 528 return tb; 529 } 530 531 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env) 532 { 533 ppc_tb_t *tb_env = env->tb_env; 534 uint64_t tb; 535 536 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 537 tb_env->tb_offset); 538 trace_ppc_tb_load(tb); 539 540 return tb >> 32; 541 } 542 543 uint32_t cpu_ppc_load_tbu (CPUPPCState *env) 544 { 545 if (kvm_enabled()) { 546 return env->spr[SPR_TBU]; 547 } 548 549 return _cpu_ppc_load_tbu(env); 550 } 551 552 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk, 553 int64_t *tb_offsetp, uint64_t value) 554 { 555 *tb_offsetp = value - ns_to_tb(tb_env->tb_freq, vmclk); 556 557 trace_ppc_tb_store(value, *tb_offsetp); 558 } 559 560 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value) 561 { 562 ppc_tb_t *tb_env = env->tb_env; 563 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 564 uint64_t tb; 565 566 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); 567 tb &= 0xFFFFFFFF00000000ULL; 568 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb | (uint64_t)value); 569 } 570 571 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value) 572 { 573 ppc_tb_t *tb_env = env->tb_env; 574 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 575 uint64_t tb; 576 577 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); 578 tb &= 0x00000000FFFFFFFFULL; 579 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, 580 ((uint64_t)value << 32) | tb); 581 } 582 583 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value) 584 { 585 _cpu_ppc_store_tbu(env, value); 586 } 587 588 uint64_t cpu_ppc_load_atbl (CPUPPCState *env) 589 { 590 ppc_tb_t *tb_env = env->tb_env; 591 uint64_t tb; 592 593 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 594 tb_env->atb_offset); 595 trace_ppc_tb_load(tb); 596 597 return tb; 598 } 599 600 uint32_t cpu_ppc_load_atbu (CPUPPCState *env) 601 { 602 ppc_tb_t *tb_env = env->tb_env; 603 uint64_t tb; 604 605 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 606 tb_env->atb_offset); 607 trace_ppc_tb_load(tb); 608 609 return tb >> 32; 610 } 611 612 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value) 613 { 614 ppc_tb_t *tb_env = env->tb_env; 615 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 616 uint64_t tb; 617 618 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset); 619 tb &= 0xFFFFFFFF00000000ULL; 620 cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, tb | (uint64_t)value); 621 } 622 623 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value) 624 { 625 ppc_tb_t *tb_env = env->tb_env; 626 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 627 uint64_t tb; 628 629 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset); 630 tb &= 0x00000000FFFFFFFFULL; 631 cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, 632 ((uint64_t)value << 32) | tb); 633 } 634 635 void cpu_ppc_increase_tb_by_offset(CPUPPCState *env, int64_t offset) 636 { 637 env->tb_env->tb_offset += offset; 638 } 639 640 void cpu_ppc_decrease_tb_by_offset(CPUPPCState *env, int64_t offset) 641 { 642 env->tb_env->tb_offset -= offset; 643 } 644 645 uint64_t cpu_ppc_load_vtb(CPUPPCState *env) 646 { 647 ppc_tb_t *tb_env = env->tb_env; 648 649 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 650 tb_env->vtb_offset); 651 } 652 653 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value) 654 { 655 ppc_tb_t *tb_env = env->tb_env; 656 657 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 658 &tb_env->vtb_offset, value); 659 } 660 661 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value) 662 { 663 ppc_tb_t *tb_env = env->tb_env; 664 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 665 uint64_t tb; 666 667 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); 668 tb &= 0xFFFFFFUL; 669 tb |= (value & ~0xFFFFFFUL); 670 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb); 671 } 672 673 static void cpu_ppc_tb_stop (CPUPPCState *env) 674 { 675 ppc_tb_t *tb_env = env->tb_env; 676 uint64_t tb, atb, vmclk; 677 678 /* If the time base is already frozen, do nothing */ 679 if (tb_env->tb_freq != 0) { 680 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 681 /* Get the time base */ 682 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); 683 /* Get the alternate time base */ 684 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); 685 /* Store the time base value (ie compute the current offset) */ 686 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 687 /* Store the alternate time base value (compute the current offset) */ 688 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 689 /* Set the time base frequency to zero */ 690 tb_env->tb_freq = 0; 691 /* Now, the time bases are frozen to tb_offset / atb_offset value */ 692 } 693 } 694 695 static void cpu_ppc_tb_start (CPUPPCState *env) 696 { 697 ppc_tb_t *tb_env = env->tb_env; 698 uint64_t tb, atb, vmclk; 699 700 /* If the time base is not frozen, do nothing */ 701 if (tb_env->tb_freq == 0) { 702 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 703 /* Get the time base from tb_offset */ 704 tb = tb_env->tb_offset; 705 /* Get the alternate time base from atb_offset */ 706 atb = tb_env->atb_offset; 707 /* Restore the tb frequency from the decrementer frequency */ 708 tb_env->tb_freq = tb_env->decr_freq; 709 /* Store the time base value */ 710 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 711 /* Store the alternate time base value */ 712 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 713 } 714 } 715 716 bool ppc_decr_clear_on_delivery(CPUPPCState *env) 717 { 718 ppc_tb_t *tb_env = env->tb_env; 719 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL; 720 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED); 721 } 722 723 static inline int64_t __cpu_ppc_load_decr(CPUPPCState *env, int64_t now, 724 uint64_t next) 725 { 726 ppc_tb_t *tb_env = env->tb_env; 727 uint64_t n; 728 int64_t decr; 729 730 n = ns_to_tb(tb_env->decr_freq, now); 731 732 /* BookE timers stop when reaching 0. */ 733 if (next < n && tb_env->flags & PPC_TIMER_BOOKE) { 734 decr = 0; 735 } else { 736 decr = next - n; 737 } 738 739 trace_ppc_decr_load(decr); 740 741 return decr; 742 } 743 744 static target_ulong _cpu_ppc_load_decr(CPUPPCState *env, int64_t now) 745 { 746 ppc_tb_t *tb_env = env->tb_env; 747 uint64_t decr; 748 749 decr = __cpu_ppc_load_decr(env, now, tb_env->decr_next); 750 751 /* 752 * If large decrementer is enabled then the decrementer is signed extended 753 * to 64 bits, otherwise it is a 32 bit value. 754 */ 755 if (env->spr[SPR_LPCR] & LPCR_LD) { 756 PowerPCCPU *cpu = env_archcpu(env); 757 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 758 return sextract64(decr, 0, pcc->lrg_decr_bits); 759 } 760 return (uint32_t) decr; 761 } 762 763 target_ulong cpu_ppc_load_decr(CPUPPCState *env) 764 { 765 if (kvm_enabled()) { 766 return env->spr[SPR_DECR]; 767 } else { 768 return _cpu_ppc_load_decr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 769 } 770 } 771 772 static target_ulong _cpu_ppc_load_hdecr(CPUPPCState *env, int64_t now) 773 { 774 PowerPCCPU *cpu = env_archcpu(env); 775 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 776 ppc_tb_t *tb_env = env->tb_env; 777 uint64_t hdecr; 778 779 hdecr = __cpu_ppc_load_decr(env, now, tb_env->hdecr_next); 780 781 /* 782 * If we have a large decrementer (POWER9 or later) then hdecr is sign 783 * extended to 64 bits, otherwise it is 32 bits. 784 */ 785 if (pcc->lrg_decr_bits > 32) { 786 return sextract64(hdecr, 0, pcc->lrg_decr_bits); 787 } 788 return (uint32_t) hdecr; 789 } 790 791 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env) 792 { 793 return _cpu_ppc_load_hdecr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 794 } 795 796 uint64_t cpu_ppc_load_purr (CPUPPCState *env) 797 { 798 ppc_tb_t *tb_env = env->tb_env; 799 800 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 801 tb_env->purr_offset); 802 } 803 804 /* When decrementer expires, 805 * all we need to do is generate or queue a CPU exception 806 */ 807 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu) 808 { 809 /* Raise it */ 810 trace_ppc_decr_excp("raise"); 811 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1); 812 } 813 814 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu) 815 { 816 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); 817 } 818 819 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu) 820 { 821 CPUPPCState *env = &cpu->env; 822 823 /* Raise it */ 824 trace_ppc_decr_excp("raise HV"); 825 826 /* The architecture specifies that we don't deliver HDEC 827 * interrupts in a PM state. Not only they don't cause a 828 * wakeup but they also get effectively discarded. 829 */ 830 if (!env->resume_as_sreset) { 831 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1); 832 } 833 } 834 835 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu) 836 { 837 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); 838 } 839 840 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, uint64_t *nextp, 841 QEMUTimer *timer, 842 void (*raise_excp)(void *), 843 void (*lower_excp)(PowerPCCPU *), 844 uint32_t flags, target_ulong decr, 845 target_ulong value, int nr_bits) 846 { 847 CPUPPCState *env = &cpu->env; 848 ppc_tb_t *tb_env = env->tb_env; 849 uint64_t next; 850 int64_t signed_value; 851 int64_t signed_decr; 852 853 /* Truncate value to decr_width and sign extend for simplicity */ 854 value = extract64(value, 0, nr_bits); 855 decr = extract64(decr, 0, nr_bits); 856 signed_value = sextract64(value, 0, nr_bits); 857 signed_decr = sextract64(decr, 0, nr_bits); 858 859 trace_ppc_decr_store(nr_bits, decr, value); 860 861 /* 862 * Calculate the next decrementer event and set a timer. 863 * decr_next is in timebase units to keep rounding simple. Note it is 864 * not adjusted by tb_offset because if TB changes via tb_offset changing, 865 * decrementer does not change, so not directly comparable with TB. 866 */ 867 next = ns_to_tb(tb_env->decr_freq, now) + value; 868 *nextp = next; /* nextp is in timebase units */ 869 870 /* 871 * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt. 872 * 873 * On MSB level based DEC implementations the MSB always means the interrupt 874 * is pending, so raise it on those. 875 * 876 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers 877 * an edge interrupt, so raise it here too. 878 */ 879 if (((flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) || 880 ((flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0 881 && signed_decr >= 0)) { 882 (*raise_excp)(cpu); 883 return; 884 } 885 886 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */ 887 if (signed_value >= 0 && (flags & PPC_DECR_UNDERFLOW_LEVEL)) { 888 (*lower_excp)(cpu); 889 } 890 891 /* Adjust timer */ 892 timer_mod(timer, tb_to_ns_round_up(tb_env->decr_freq, next)); 893 } 894 895 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, 896 target_ulong decr, target_ulong value, 897 int nr_bits) 898 { 899 ppc_tb_t *tb_env = cpu->env.tb_env; 900 901 __cpu_ppc_store_decr(cpu, now, &tb_env->decr_next, tb_env->decr_timer, 902 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, 903 tb_env->flags, decr, value, nr_bits); 904 } 905 906 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value) 907 { 908 PowerPCCPU *cpu = env_archcpu(env); 909 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 910 int64_t now; 911 target_ulong decr; 912 int nr_bits = 32; 913 914 if (kvm_enabled()) { 915 /* KVM handles decrementer exceptions, we don't need our own timer */ 916 return; 917 } 918 919 if (env->spr[SPR_LPCR] & LPCR_LD) { 920 nr_bits = pcc->lrg_decr_bits; 921 } 922 923 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 924 decr = _cpu_ppc_load_decr(env, now); 925 _cpu_ppc_store_decr(cpu, now, decr, value, nr_bits); 926 } 927 928 static void cpu_ppc_decr_cb(void *opaque) 929 { 930 PowerPCCPU *cpu = opaque; 931 932 cpu_ppc_decr_excp(cpu); 933 } 934 935 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, int64_t now, 936 target_ulong hdecr, target_ulong value, 937 int nr_bits) 938 { 939 ppc_tb_t *tb_env = cpu->env.tb_env; 940 941 if (tb_env->hdecr_timer != NULL) { 942 /* HDECR (Book3S 64bit) is edge-based, not level like DECR */ 943 __cpu_ppc_store_decr(cpu, now, &tb_env->hdecr_next, tb_env->hdecr_timer, 944 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower, 945 PPC_DECR_UNDERFLOW_TRIGGERED, 946 hdecr, value, nr_bits); 947 } 948 } 949 950 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value) 951 { 952 PowerPCCPU *cpu = env_archcpu(env); 953 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 954 int64_t now; 955 target_ulong hdecr; 956 957 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 958 hdecr = _cpu_ppc_load_hdecr(env, now); 959 _cpu_ppc_store_hdecr(cpu, now, hdecr, value, pcc->lrg_decr_bits); 960 } 961 962 static void cpu_ppc_hdecr_cb(void *opaque) 963 { 964 PowerPCCPU *cpu = opaque; 965 966 cpu_ppc_hdecr_excp(cpu); 967 } 968 969 static void _cpu_ppc_store_purr(CPUPPCState *env, int64_t now, uint64_t value) 970 { 971 ppc_tb_t *tb_env = env->tb_env; 972 973 cpu_ppc_store_tb(tb_env, now, &tb_env->purr_offset, value); 974 } 975 976 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value) 977 { 978 _cpu_ppc_store_purr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), value); 979 } 980 981 static void timebase_save(PPCTimebase *tb) 982 { 983 uint64_t ticks = cpu_get_host_ticks(); 984 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 985 986 if (!first_ppc_cpu->env.tb_env) { 987 error_report("No timebase object"); 988 return; 989 } 990 991 if (replay_mode == REPLAY_MODE_NONE) { 992 /* not used anymore, we keep it for compatibility */ 993 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST); 994 } else { 995 /* simpler for record-replay to avoid this event, compat not needed */ 996 tb->time_of_the_day_ns = 0; 997 } 998 999 /* 1000 * tb_offset is only expected to be changed by QEMU so 1001 * there is no need to update it from KVM here 1002 */ 1003 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset; 1004 1005 tb->runstate_paused = 1006 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM); 1007 } 1008 1009 static void timebase_load(PPCTimebase *tb) 1010 { 1011 CPUState *cpu; 1012 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1013 int64_t tb_off_adj, tb_off; 1014 unsigned long freq; 1015 1016 if (!first_ppc_cpu->env.tb_env) { 1017 error_report("No timebase object"); 1018 return; 1019 } 1020 1021 freq = first_ppc_cpu->env.tb_env->tb_freq; 1022 1023 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks(); 1024 1025 tb_off = first_ppc_cpu->env.tb_env->tb_offset; 1026 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off, 1027 (tb_off_adj - tb_off) / freq); 1028 1029 /* Set new offset to all CPUs */ 1030 CPU_FOREACH(cpu) { 1031 PowerPCCPU *pcpu = POWERPC_CPU(cpu); 1032 pcpu->env.tb_env->tb_offset = tb_off_adj; 1033 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset); 1034 } 1035 } 1036 1037 void cpu_ppc_clock_vm_state_change(void *opaque, bool running, 1038 RunState state) 1039 { 1040 PPCTimebase *tb = opaque; 1041 1042 if (running) { 1043 timebase_load(tb); 1044 } else { 1045 timebase_save(tb); 1046 } 1047 } 1048 1049 /* 1050 * When migrating a running guest, read the clock just 1051 * before migration, so that the guest clock counts 1052 * during the events between: 1053 * 1054 * * vm_stop() 1055 * * 1056 * * pre_save() 1057 * 1058 * This reduces clock difference on migration from 5s 1059 * to 0.1s (when max_downtime == 5s), because sending the 1060 * final pages of memory (which happens between vm_stop() 1061 * and pre_save()) takes max_downtime. 1062 */ 1063 static int timebase_pre_save(void *opaque) 1064 { 1065 PPCTimebase *tb = opaque; 1066 1067 /* guest_timebase won't be overridden in case of paused guest or savevm */ 1068 if (!tb->runstate_paused) { 1069 timebase_save(tb); 1070 } 1071 1072 return 0; 1073 } 1074 1075 const VMStateDescription vmstate_ppc_timebase = { 1076 .name = "timebase", 1077 .version_id = 1, 1078 .minimum_version_id = 1, 1079 .pre_save = timebase_pre_save, 1080 .fields = (const VMStateField []) { 1081 VMSTATE_UINT64(guest_timebase, PPCTimebase), 1082 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase), 1083 VMSTATE_END_OF_LIST() 1084 }, 1085 }; 1086 1087 /* Set up (once) timebase frequency (in Hz) */ 1088 void cpu_ppc_tb_init(CPUPPCState *env, uint32_t freq) 1089 { 1090 PowerPCCPU *cpu = env_archcpu(env); 1091 ppc_tb_t *tb_env; 1092 1093 tb_env = g_new0(ppc_tb_t, 1); 1094 env->tb_env = tb_env; 1095 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1096 if (is_book3s_arch2x(env)) { 1097 /* All Book3S 64bit CPUs implement level based DEC logic */ 1098 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL; 1099 } 1100 /* Create new timer */ 1101 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 1102 &cpu_ppc_decr_cb, cpu); 1103 if (env->has_hv_mode && !cpu->vhyp) { 1104 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 1105 &cpu_ppc_hdecr_cb, cpu); 1106 } else { 1107 tb_env->hdecr_timer = NULL; 1108 } 1109 1110 tb_env->tb_freq = freq; 1111 tb_env->decr_freq = freq; 1112 } 1113 1114 void cpu_ppc_tb_reset(CPUPPCState *env) 1115 { 1116 PowerPCCPU *cpu = env_archcpu(env); 1117 ppc_tb_t *tb_env = env->tb_env; 1118 1119 timer_del(tb_env->decr_timer); 1120 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); 1121 tb_env->decr_next = 0; 1122 if (tb_env->hdecr_timer != NULL) { 1123 timer_del(tb_env->hdecr_timer); 1124 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); 1125 tb_env->hdecr_next = 0; 1126 } 1127 1128 /* 1129 * There is a bug in Linux 2.4 kernels: 1130 * if a decrementer exception is pending when it enables msr_ee at startup, 1131 * it's not ready to handle it... 1132 */ 1133 cpu_ppc_store_decr(env, -1); 1134 cpu_ppc_store_hdecr(env, -1); 1135 cpu_ppc_store_purr(env, 0x0000000000000000ULL); 1136 } 1137 1138 void cpu_ppc_tb_free(CPUPPCState *env) 1139 { 1140 timer_free(env->tb_env->decr_timer); 1141 timer_free(env->tb_env->hdecr_timer); 1142 g_free(env->tb_env); 1143 } 1144 1145 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */ 1146 void cpu_ppc_hdecr_init(CPUPPCState *env) 1147 { 1148 PowerPCCPU *cpu = env_archcpu(env); 1149 1150 assert(env->tb_env->hdecr_timer == NULL); 1151 1152 env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 1153 &cpu_ppc_hdecr_cb, cpu); 1154 } 1155 1156 void cpu_ppc_hdecr_exit(CPUPPCState *env) 1157 { 1158 PowerPCCPU *cpu = env_archcpu(env); 1159 1160 timer_free(env->tb_env->hdecr_timer); 1161 env->tb_env->hdecr_timer = NULL; 1162 1163 cpu_ppc_hdecr_lower(cpu); 1164 } 1165 1166 /*****************************************************************************/ 1167 /* PowerPC 40x timers */ 1168 1169 /* PIT, FIT & WDT */ 1170 typedef struct ppc40x_timer_t ppc40x_timer_t; 1171 struct ppc40x_timer_t { 1172 uint64_t pit_reload; /* PIT auto-reload value */ 1173 uint64_t fit_next; /* Tick for next FIT interrupt */ 1174 QEMUTimer *fit_timer; 1175 uint64_t wdt_next; /* Tick for next WDT interrupt */ 1176 QEMUTimer *wdt_timer; 1177 1178 /* 405 have the PIT, 440 have a DECR. */ 1179 unsigned int decr_excp; 1180 }; 1181 1182 /* Fixed interval timer */ 1183 static void cpu_4xx_fit_cb (void *opaque) 1184 { 1185 PowerPCCPU *cpu = opaque; 1186 CPUPPCState *env = &cpu->env; 1187 ppc_tb_t *tb_env; 1188 ppc40x_timer_t *ppc40x_timer; 1189 uint64_t now, next; 1190 1191 tb_env = env->tb_env; 1192 ppc40x_timer = tb_env->opaque; 1193 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1194 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { 1195 case 0: 1196 next = 1 << 9; 1197 break; 1198 case 1: 1199 next = 1 << 13; 1200 break; 1201 case 2: 1202 next = 1 << 17; 1203 break; 1204 case 3: 1205 next = 1 << 21; 1206 break; 1207 default: 1208 /* Cannot occur, but makes gcc happy */ 1209 return; 1210 } 1211 next = now + tb_to_ns_round_up(tb_env->tb_freq, next); 1212 timer_mod(ppc40x_timer->fit_timer, next); 1213 env->spr[SPR_40x_TSR] |= 1 << 26; 1214 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { 1215 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1); 1216 } 1217 trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), 1218 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1219 } 1220 1221 /* Programmable interval timer */ 1222 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) 1223 { 1224 ppc40x_timer_t *ppc40x_timer; 1225 uint64_t now, next; 1226 1227 ppc40x_timer = tb_env->opaque; 1228 if (ppc40x_timer->pit_reload <= 1 || 1229 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || 1230 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { 1231 /* Stop PIT */ 1232 trace_ppc4xx_pit_stop(); 1233 timer_del(tb_env->decr_timer); 1234 } else { 1235 trace_ppc4xx_pit_start(ppc40x_timer->pit_reload); 1236 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1237 1238 if (is_excp) { 1239 tb_env->decr_next += ppc40x_timer->pit_reload; 1240 } else { 1241 tb_env->decr_next = ns_to_tb(tb_env->decr_freq, now) 1242 + ppc40x_timer->pit_reload; 1243 } 1244 next = tb_to_ns_round_up(tb_env->decr_freq, tb_env->decr_next); 1245 timer_mod(tb_env->decr_timer, next); 1246 } 1247 } 1248 1249 static void cpu_4xx_pit_cb (void *opaque) 1250 { 1251 PowerPCCPU *cpu = opaque; 1252 CPUPPCState *env = &cpu->env; 1253 ppc_tb_t *tb_env; 1254 ppc40x_timer_t *ppc40x_timer; 1255 1256 tb_env = env->tb_env; 1257 ppc40x_timer = tb_env->opaque; 1258 env->spr[SPR_40x_TSR] |= 1 << 27; 1259 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) { 1260 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1); 1261 } 1262 start_stop_pit(env, tb_env, 1); 1263 trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), 1264 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), 1265 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], 1266 ppc40x_timer->pit_reload); 1267 } 1268 1269 /* Watchdog timer */ 1270 static void cpu_4xx_wdt_cb (void *opaque) 1271 { 1272 PowerPCCPU *cpu = opaque; 1273 CPUPPCState *env = &cpu->env; 1274 ppc_tb_t *tb_env; 1275 ppc40x_timer_t *ppc40x_timer; 1276 uint64_t now, next; 1277 1278 tb_env = env->tb_env; 1279 ppc40x_timer = tb_env->opaque; 1280 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1281 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { 1282 case 0: 1283 next = 1 << 17; 1284 break; 1285 case 1: 1286 next = 1 << 21; 1287 break; 1288 case 2: 1289 next = 1 << 25; 1290 break; 1291 case 3: 1292 next = 1 << 29; 1293 break; 1294 default: 1295 /* Cannot occur, but makes gcc happy */ 1296 return; 1297 } 1298 next = now + tb_to_ns_round_up(tb_env->decr_freq, next); 1299 trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1300 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { 1301 case 0x0: 1302 case 0x1: 1303 timer_mod(ppc40x_timer->wdt_timer, next); 1304 ppc40x_timer->wdt_next = next; 1305 env->spr[SPR_40x_TSR] |= 1U << 31; 1306 break; 1307 case 0x2: 1308 timer_mod(ppc40x_timer->wdt_timer, next); 1309 ppc40x_timer->wdt_next = next; 1310 env->spr[SPR_40x_TSR] |= 1 << 30; 1311 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) { 1312 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1); 1313 } 1314 break; 1315 case 0x3: 1316 env->spr[SPR_40x_TSR] &= ~0x30000000; 1317 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; 1318 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { 1319 case 0x0: 1320 /* No reset */ 1321 break; 1322 case 0x1: /* Core reset */ 1323 ppc40x_core_reset(cpu); 1324 break; 1325 case 0x2: /* Chip reset */ 1326 ppc40x_chip_reset(cpu); 1327 break; 1328 case 0x3: /* System reset */ 1329 ppc40x_system_reset(cpu); 1330 break; 1331 } 1332 } 1333 } 1334 1335 void store_40x_pit (CPUPPCState *env, target_ulong val) 1336 { 1337 ppc_tb_t *tb_env; 1338 ppc40x_timer_t *ppc40x_timer; 1339 1340 tb_env = env->tb_env; 1341 ppc40x_timer = tb_env->opaque; 1342 trace_ppc40x_store_pit(val); 1343 ppc40x_timer->pit_reload = val; 1344 start_stop_pit(env, tb_env, 0); 1345 } 1346 1347 target_ulong load_40x_pit (CPUPPCState *env) 1348 { 1349 return cpu_ppc_load_decr(env); 1350 } 1351 1352 void store_40x_tsr(CPUPPCState *env, target_ulong val) 1353 { 1354 PowerPCCPU *cpu = env_archcpu(env); 1355 1356 trace_ppc40x_store_tcr(val); 1357 1358 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000); 1359 if (val & 0x80000000) { 1360 ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0); 1361 } 1362 } 1363 1364 void store_40x_tcr(CPUPPCState *env, target_ulong val) 1365 { 1366 PowerPCCPU *cpu = env_archcpu(env); 1367 ppc_tb_t *tb_env; 1368 1369 trace_ppc40x_store_tsr(val); 1370 1371 tb_env = env->tb_env; 1372 env->spr[SPR_40x_TCR] = val & 0xFFC00000; 1373 start_stop_pit(env, tb_env, 1); 1374 cpu_4xx_wdt_cb(cpu); 1375 } 1376 1377 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq) 1378 { 1379 CPUPPCState *env = opaque; 1380 ppc_tb_t *tb_env = env->tb_env; 1381 1382 trace_ppc40x_set_tb_clk(freq); 1383 tb_env->tb_freq = freq; 1384 tb_env->decr_freq = freq; 1385 /* XXX: we should also update all timers */ 1386 } 1387 1388 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq, 1389 unsigned int decr_excp) 1390 { 1391 ppc_tb_t *tb_env; 1392 ppc40x_timer_t *ppc40x_timer; 1393 PowerPCCPU *cpu = env_archcpu(env); 1394 1395 trace_ppc40x_timers_init(freq); 1396 1397 tb_env = g_new0(ppc_tb_t, 1); 1398 ppc40x_timer = g_new0(ppc40x_timer_t, 1); 1399 1400 env->tb_env = tb_env; 1401 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1402 tb_env->tb_freq = freq; 1403 tb_env->decr_freq = freq; 1404 tb_env->opaque = ppc40x_timer; 1405 1406 /* We use decr timer for PIT */ 1407 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu); 1408 ppc40x_timer->fit_timer = 1409 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu); 1410 ppc40x_timer->wdt_timer = 1411 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu); 1412 ppc40x_timer->decr_excp = decr_excp; 1413 1414 return &ppc_40x_set_tb_clk; 1415 } 1416 1417 /*****************************************************************************/ 1418 /* Embedded PowerPC Device Control Registers */ 1419 typedef struct ppc_dcrn_t ppc_dcrn_t; 1420 struct ppc_dcrn_t { 1421 dcr_read_cb dcr_read; 1422 dcr_write_cb dcr_write; 1423 void *opaque; 1424 }; 1425 1426 /* XXX: on 460, DCR addresses are 32 bits wide, 1427 * using DCRIPR to get the 22 upper bits of the DCR address 1428 */ 1429 #define DCRN_NB 1024 1430 struct ppc_dcr_t { 1431 ppc_dcrn_t dcrn[DCRN_NB]; 1432 int (*read_error)(int dcrn); 1433 int (*write_error)(int dcrn); 1434 }; 1435 1436 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1437 { 1438 ppc_dcrn_t *dcr; 1439 1440 if (dcrn < 0 || dcrn >= DCRN_NB) 1441 goto error; 1442 dcr = &dcr_env->dcrn[dcrn]; 1443 if (dcr->dcr_read == NULL) 1444 goto error; 1445 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); 1446 trace_ppc_dcr_read(dcrn, *valp); 1447 1448 return 0; 1449 1450 error: 1451 if (dcr_env->read_error != NULL) 1452 return (*dcr_env->read_error)(dcrn); 1453 1454 return -1; 1455 } 1456 1457 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1458 { 1459 ppc_dcrn_t *dcr; 1460 1461 if (dcrn < 0 || dcrn >= DCRN_NB) 1462 goto error; 1463 dcr = &dcr_env->dcrn[dcrn]; 1464 if (dcr->dcr_write == NULL) 1465 goto error; 1466 trace_ppc_dcr_write(dcrn, val); 1467 (*dcr->dcr_write)(dcr->opaque, dcrn, val); 1468 1469 return 0; 1470 1471 error: 1472 if (dcr_env->write_error != NULL) 1473 return (*dcr_env->write_error)(dcrn); 1474 1475 return -1; 1476 } 1477 1478 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque, 1479 dcr_read_cb dcr_read, dcr_write_cb dcr_write) 1480 { 1481 ppc_dcr_t *dcr_env; 1482 ppc_dcrn_t *dcr; 1483 1484 dcr_env = env->dcr_env; 1485 if (dcr_env == NULL) 1486 return -1; 1487 if (dcrn < 0 || dcrn >= DCRN_NB) 1488 return -1; 1489 dcr = &dcr_env->dcrn[dcrn]; 1490 if (dcr->opaque != NULL || 1491 dcr->dcr_read != NULL || 1492 dcr->dcr_write != NULL) 1493 return -1; 1494 dcr->opaque = opaque; 1495 dcr->dcr_read = dcr_read; 1496 dcr->dcr_write = dcr_write; 1497 1498 return 0; 1499 } 1500 1501 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn), 1502 int (*write_error)(int dcrn)) 1503 { 1504 ppc_dcr_t *dcr_env; 1505 1506 dcr_env = g_new0(ppc_dcr_t, 1); 1507 dcr_env->read_error = read_error; 1508 dcr_env->write_error = write_error; 1509 env->dcr_env = dcr_env; 1510 1511 return 0; 1512 } 1513 1514 /*****************************************************************************/ 1515 1516 int ppc_cpu_pir(PowerPCCPU *cpu) 1517 { 1518 CPUPPCState *env = &cpu->env; 1519 return env->spr_cb[SPR_PIR].default_value; 1520 } 1521 1522 int ppc_cpu_tir(PowerPCCPU *cpu) 1523 { 1524 CPUPPCState *env = &cpu->env; 1525 return env->spr_cb[SPR_TIR].default_value; 1526 } 1527 1528 PowerPCCPU *ppc_get_vcpu_by_pir(int pir) 1529 { 1530 CPUState *cs; 1531 1532 CPU_FOREACH(cs) { 1533 PowerPCCPU *cpu = POWERPC_CPU(cs); 1534 1535 if (ppc_cpu_pir(cpu) == pir) { 1536 return cpu; 1537 } 1538 } 1539 1540 return NULL; 1541 } 1542 1543 void ppc_irq_reset(PowerPCCPU *cpu) 1544 { 1545 CPUPPCState *env = &cpu->env; 1546 1547 env->irq_input_state = 0; 1548 if (kvm_enabled()) { 1549 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0); 1550 } 1551 } 1552