1 /* 2 * QEMU generic PowerPC hardware System Emulator 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/irq.h" 27 #include "hw/ppc/ppc.h" 28 #include "hw/ppc/ppc_e500.h" 29 #include "qemu/timer.h" 30 #include "sysemu/cpus.h" 31 #include "qemu/log.h" 32 #include "qemu/main-loop.h" 33 #include "qemu/error-report.h" 34 #include "sysemu/kvm.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/runstate.h" 37 #include "kvm_ppc.h" 38 #include "migration/vmstate.h" 39 #include "trace.h" 40 41 static void cpu_ppc_tb_stop (CPUPPCState *env); 42 static void cpu_ppc_tb_start (CPUPPCState *env); 43 44 void ppc_set_irq(PowerPCCPU *cpu, int irq, int level) 45 { 46 CPUPPCState *env = &cpu->env; 47 unsigned int old_pending; 48 49 /* We may already have the BQL if coming from the reset path */ 50 BQL_LOCK_GUARD(); 51 52 old_pending = env->pending_interrupts; 53 54 if (level) { 55 env->pending_interrupts |= irq; 56 } else { 57 env->pending_interrupts &= ~irq; 58 } 59 60 if (old_pending != env->pending_interrupts) { 61 ppc_maybe_interrupt(env); 62 if (kvm_enabled()) { 63 kvmppc_set_interrupt(cpu, irq, level); 64 } 65 } 66 67 trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts, 68 CPU(cpu)->interrupt_request); 69 } 70 71 /* PowerPC 6xx / 7xx internal IRQ controller */ 72 static void ppc6xx_set_irq(void *opaque, int pin, int level) 73 { 74 PowerPCCPU *cpu = opaque; 75 CPUPPCState *env = &cpu->env; 76 int cur_level; 77 78 trace_ppc_irq_set(env, pin, level); 79 80 cur_level = (env->irq_input_state >> pin) & 1; 81 /* Don't generate spurious events */ 82 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 83 CPUState *cs = CPU(cpu); 84 85 switch (pin) { 86 case PPC6xx_INPUT_TBEN: 87 /* Level sensitive - active high */ 88 trace_ppc_irq_set_state("time base", level); 89 if (level) { 90 cpu_ppc_tb_start(env); 91 } else { 92 cpu_ppc_tb_stop(env); 93 } 94 break; 95 case PPC6xx_INPUT_INT: 96 /* Level sensitive - active high */ 97 trace_ppc_irq_set_state("external IRQ", level); 98 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 99 break; 100 case PPC6xx_INPUT_SMI: 101 /* Level sensitive - active high */ 102 trace_ppc_irq_set_state("SMI IRQ", level); 103 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level); 104 break; 105 case PPC6xx_INPUT_MCP: 106 /* Negative edge sensitive */ 107 /* XXX: TODO: actual reaction may depends on HID0 status 108 * 603/604/740/750: check HID0[EMCP] 109 */ 110 if (cur_level == 1 && level == 0) { 111 trace_ppc_irq_set_state("machine check", 1); 112 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 113 } 114 break; 115 case PPC6xx_INPUT_CKSTP_IN: 116 /* Level sensitive - active low */ 117 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 118 /* XXX: Note that the only way to restart the CPU is to reset it */ 119 if (level) { 120 trace_ppc_irq_cpu("stop"); 121 cs->halted = 1; 122 } 123 break; 124 case PPC6xx_INPUT_HRESET: 125 /* Level sensitive - active low */ 126 if (level) { 127 trace_ppc_irq_reset("CPU"); 128 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 129 } 130 break; 131 case PPC6xx_INPUT_SRESET: 132 trace_ppc_irq_set_state("RESET IRQ", level); 133 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 134 break; 135 default: 136 g_assert_not_reached(); 137 } 138 if (level) 139 env->irq_input_state |= 1 << pin; 140 else 141 env->irq_input_state &= ~(1 << pin); 142 } 143 } 144 145 void ppc6xx_irq_init(PowerPCCPU *cpu) 146 { 147 qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB); 148 } 149 150 #if defined(TARGET_PPC64) 151 /* PowerPC 970 internal IRQ controller */ 152 static void ppc970_set_irq(void *opaque, int pin, int level) 153 { 154 PowerPCCPU *cpu = opaque; 155 CPUPPCState *env = &cpu->env; 156 int cur_level; 157 158 trace_ppc_irq_set(env, pin, level); 159 160 cur_level = (env->irq_input_state >> pin) & 1; 161 /* Don't generate spurious events */ 162 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 163 CPUState *cs = CPU(cpu); 164 165 switch (pin) { 166 case PPC970_INPUT_INT: 167 /* Level sensitive - active high */ 168 trace_ppc_irq_set_state("external IRQ", level); 169 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 170 break; 171 case PPC970_INPUT_THINT: 172 /* Level sensitive - active high */ 173 trace_ppc_irq_set_state("SMI IRQ", level); 174 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level); 175 break; 176 case PPC970_INPUT_MCP: 177 /* Negative edge sensitive */ 178 /* XXX: TODO: actual reaction may depends on HID0 status 179 * 603/604/740/750: check HID0[EMCP] 180 */ 181 if (cur_level == 1 && level == 0) { 182 trace_ppc_irq_set_state("machine check", 1); 183 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 184 } 185 break; 186 case PPC970_INPUT_CKSTP: 187 /* Level sensitive - active low */ 188 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 189 if (level) { 190 trace_ppc_irq_cpu("stop"); 191 cs->halted = 1; 192 } else { 193 trace_ppc_irq_cpu("restart"); 194 cs->halted = 0; 195 qemu_cpu_kick(cs); 196 } 197 break; 198 case PPC970_INPUT_HRESET: 199 /* Level sensitive - active low */ 200 if (level) { 201 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 202 } 203 break; 204 case PPC970_INPUT_SRESET: 205 trace_ppc_irq_set_state("RESET IRQ", level); 206 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 207 break; 208 case PPC970_INPUT_TBEN: 209 trace_ppc_irq_set_state("TBEN IRQ", level); 210 /* XXX: TODO */ 211 break; 212 default: 213 g_assert_not_reached(); 214 } 215 if (level) 216 env->irq_input_state |= 1 << pin; 217 else 218 env->irq_input_state &= ~(1 << pin); 219 } 220 } 221 222 void ppc970_irq_init(PowerPCCPU *cpu) 223 { 224 qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB); 225 } 226 227 /* POWER7 internal IRQ controller */ 228 static void power7_set_irq(void *opaque, int pin, int level) 229 { 230 PowerPCCPU *cpu = opaque; 231 232 trace_ppc_irq_set(&cpu->env, pin, level); 233 234 switch (pin) { 235 case POWER7_INPUT_INT: 236 /* Level sensitive - active high */ 237 trace_ppc_irq_set_state("external IRQ", level); 238 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 239 break; 240 default: 241 g_assert_not_reached(); 242 } 243 } 244 245 void ppcPOWER7_irq_init(PowerPCCPU *cpu) 246 { 247 qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB); 248 } 249 250 /* POWER9 internal IRQ controller */ 251 static void power9_set_irq(void *opaque, int pin, int level) 252 { 253 PowerPCCPU *cpu = opaque; 254 255 trace_ppc_irq_set(&cpu->env, pin, level); 256 257 switch (pin) { 258 case POWER9_INPUT_INT: 259 /* Level sensitive - active high */ 260 trace_ppc_irq_set_state("external IRQ", level); 261 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 262 break; 263 case POWER9_INPUT_HINT: 264 /* Level sensitive - active high */ 265 trace_ppc_irq_set_state("HV external IRQ", level); 266 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level); 267 break; 268 default: 269 g_assert_not_reached(); 270 return; 271 } 272 } 273 274 void ppcPOWER9_irq_init(PowerPCCPU *cpu) 275 { 276 qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB); 277 } 278 #endif /* defined(TARGET_PPC64) */ 279 280 void ppc40x_core_reset(PowerPCCPU *cpu) 281 { 282 CPUPPCState *env = &cpu->env; 283 target_ulong dbsr; 284 285 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n"); 286 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 287 dbsr = env->spr[SPR_40x_DBSR]; 288 dbsr &= ~0x00000300; 289 dbsr |= 0x00000100; 290 env->spr[SPR_40x_DBSR] = dbsr; 291 } 292 293 void ppc40x_chip_reset(PowerPCCPU *cpu) 294 { 295 CPUPPCState *env = &cpu->env; 296 target_ulong dbsr; 297 298 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n"); 299 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 300 /* XXX: TODO reset all internal peripherals */ 301 dbsr = env->spr[SPR_40x_DBSR]; 302 dbsr &= ~0x00000300; 303 dbsr |= 0x00000200; 304 env->spr[SPR_40x_DBSR] = dbsr; 305 } 306 307 void ppc40x_system_reset(PowerPCCPU *cpu) 308 { 309 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n"); 310 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 311 } 312 313 void store_40x_dbcr0(CPUPPCState *env, uint32_t val) 314 { 315 PowerPCCPU *cpu = env_archcpu(env); 316 317 bql_lock(); 318 319 switch ((val >> 28) & 0x3) { 320 case 0x0: 321 /* No action */ 322 break; 323 case 0x1: 324 /* Core reset */ 325 ppc40x_core_reset(cpu); 326 break; 327 case 0x2: 328 /* Chip reset */ 329 ppc40x_chip_reset(cpu); 330 break; 331 case 0x3: 332 /* System reset */ 333 ppc40x_system_reset(cpu); 334 break; 335 } 336 337 bql_unlock(); 338 } 339 340 /* PowerPC 40x internal IRQ controller */ 341 static void ppc40x_set_irq(void *opaque, int pin, int level) 342 { 343 PowerPCCPU *cpu = opaque; 344 CPUPPCState *env = &cpu->env; 345 int cur_level; 346 347 trace_ppc_irq_set(env, pin, level); 348 349 cur_level = (env->irq_input_state >> pin) & 1; 350 /* Don't generate spurious events */ 351 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 352 CPUState *cs = CPU(cpu); 353 354 switch (pin) { 355 case PPC40x_INPUT_RESET_SYS: 356 if (level) { 357 trace_ppc_irq_reset("system"); 358 ppc40x_system_reset(cpu); 359 } 360 break; 361 case PPC40x_INPUT_RESET_CHIP: 362 if (level) { 363 trace_ppc_irq_reset("chip"); 364 ppc40x_chip_reset(cpu); 365 } 366 break; 367 case PPC40x_INPUT_RESET_CORE: 368 /* XXX: TODO: update DBSR[MRR] */ 369 if (level) { 370 trace_ppc_irq_reset("core"); 371 ppc40x_core_reset(cpu); 372 } 373 break; 374 case PPC40x_INPUT_CINT: 375 /* Level sensitive - active high */ 376 trace_ppc_irq_set_state("critical IRQ", level); 377 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 378 break; 379 case PPC40x_INPUT_INT: 380 /* Level sensitive - active high */ 381 trace_ppc_irq_set_state("external IRQ", level); 382 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 383 break; 384 case PPC40x_INPUT_HALT: 385 /* Level sensitive - active low */ 386 if (level) { 387 trace_ppc_irq_cpu("stop"); 388 cs->halted = 1; 389 } else { 390 trace_ppc_irq_cpu("restart"); 391 cs->halted = 0; 392 qemu_cpu_kick(cs); 393 } 394 break; 395 case PPC40x_INPUT_DEBUG: 396 /* Level sensitive - active high */ 397 trace_ppc_irq_set_state("debug pin", level); 398 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 399 break; 400 default: 401 g_assert_not_reached(); 402 } 403 if (level) 404 env->irq_input_state |= 1 << pin; 405 else 406 env->irq_input_state &= ~(1 << pin); 407 } 408 } 409 410 void ppc40x_irq_init(PowerPCCPU *cpu) 411 { 412 qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB); 413 } 414 415 /* PowerPC E500 internal IRQ controller */ 416 static void ppce500_set_irq(void *opaque, int pin, int level) 417 { 418 PowerPCCPU *cpu = opaque; 419 CPUPPCState *env = &cpu->env; 420 int cur_level; 421 422 trace_ppc_irq_set(env, pin, level); 423 424 cur_level = (env->irq_input_state >> pin) & 1; 425 /* Don't generate spurious events */ 426 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 427 switch (pin) { 428 case PPCE500_INPUT_MCK: 429 if (level) { 430 trace_ppc_irq_reset("system"); 431 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 432 } 433 break; 434 case PPCE500_INPUT_RESET_CORE: 435 if (level) { 436 trace_ppc_irq_reset("core"); 437 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level); 438 } 439 break; 440 case PPCE500_INPUT_CINT: 441 /* Level sensitive - active high */ 442 trace_ppc_irq_set_state("critical IRQ", level); 443 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 444 break; 445 case PPCE500_INPUT_INT: 446 /* Level sensitive - active high */ 447 trace_ppc_irq_set_state("core IRQ", level); 448 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 449 break; 450 case PPCE500_INPUT_DEBUG: 451 /* Level sensitive - active high */ 452 trace_ppc_irq_set_state("debug pin", level); 453 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 454 break; 455 default: 456 g_assert_not_reached(); 457 } 458 if (level) 459 env->irq_input_state |= 1 << pin; 460 else 461 env->irq_input_state &= ~(1 << pin); 462 } 463 } 464 465 void ppce500_irq_init(PowerPCCPU *cpu) 466 { 467 qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB); 468 } 469 470 /* Enable or Disable the E500 EPR capability */ 471 void ppce500_set_mpic_proxy(bool enabled) 472 { 473 CPUState *cs; 474 475 CPU_FOREACH(cs) { 476 PowerPCCPU *cpu = POWERPC_CPU(cs); 477 478 cpu->env.mpic_proxy = enabled; 479 if (kvm_enabled()) { 480 kvmppc_set_mpic_proxy(cpu, enabled); 481 } 482 } 483 } 484 485 /*****************************************************************************/ 486 /* PowerPC time base and decrementer emulation */ 487 488 /* 489 * Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks: 490 * TB ticks are arrived at by multiplying tb_freq then dividing by 491 * ns per second, and rounding down. TB ticks drive all clocks and 492 * timers in the target machine. 493 * 494 * Converting TB intervals to ns for the purpose of setting a 495 * QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding 496 * up. Rounding down could cause the timer to fire before the TB 497 * value has been reached. 498 */ 499 static uint64_t ns_to_tb(uint32_t freq, int64_t clock) 500 { 501 return muldiv64(clock, freq, NANOSECONDS_PER_SECOND); 502 } 503 504 /* virtual clock in TB ticks, not adjusted by TB offset */ 505 static int64_t tb_to_ns_round_up(uint32_t freq, uint64_t tb) 506 { 507 return muldiv64_round_up(tb, NANOSECONDS_PER_SECOND, freq); 508 } 509 510 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) 511 { 512 /* TB time in tb periods */ 513 return ns_to_tb(tb_env->tb_freq, vmclk) + tb_offset; 514 } 515 516 uint64_t cpu_ppc_load_tbl (CPUPPCState *env) 517 { 518 ppc_tb_t *tb_env = env->tb_env; 519 uint64_t tb; 520 521 if (kvm_enabled()) { 522 return env->spr[SPR_TBL]; 523 } 524 525 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 526 tb_env->tb_offset); 527 trace_ppc_tb_load(tb); 528 529 return tb; 530 } 531 532 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env) 533 { 534 ppc_tb_t *tb_env = env->tb_env; 535 uint64_t tb; 536 537 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 538 tb_env->tb_offset); 539 trace_ppc_tb_load(tb); 540 541 return tb >> 32; 542 } 543 544 uint32_t cpu_ppc_load_tbu (CPUPPCState *env) 545 { 546 if (kvm_enabled()) { 547 return env->spr[SPR_TBU]; 548 } 549 550 return _cpu_ppc_load_tbu(env); 551 } 552 553 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk, 554 int64_t *tb_offsetp, uint64_t value) 555 { 556 *tb_offsetp = value - ns_to_tb(tb_env->tb_freq, vmclk); 557 558 trace_ppc_tb_store(value, *tb_offsetp); 559 } 560 561 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value) 562 { 563 ppc_tb_t *tb_env = env->tb_env; 564 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 565 uint64_t tb; 566 567 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); 568 tb &= 0xFFFFFFFF00000000ULL; 569 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb | (uint64_t)value); 570 } 571 572 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value) 573 { 574 ppc_tb_t *tb_env = env->tb_env; 575 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 576 uint64_t tb; 577 578 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); 579 tb &= 0x00000000FFFFFFFFULL; 580 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, 581 ((uint64_t)value << 32) | tb); 582 } 583 584 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value) 585 { 586 _cpu_ppc_store_tbu(env, value); 587 } 588 589 uint64_t cpu_ppc_load_atbl (CPUPPCState *env) 590 { 591 ppc_tb_t *tb_env = env->tb_env; 592 uint64_t tb; 593 594 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 595 tb_env->atb_offset); 596 trace_ppc_tb_load(tb); 597 598 return tb; 599 } 600 601 uint32_t cpu_ppc_load_atbu (CPUPPCState *env) 602 { 603 ppc_tb_t *tb_env = env->tb_env; 604 uint64_t tb; 605 606 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 607 tb_env->atb_offset); 608 trace_ppc_tb_load(tb); 609 610 return tb >> 32; 611 } 612 613 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value) 614 { 615 ppc_tb_t *tb_env = env->tb_env; 616 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 617 uint64_t tb; 618 619 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset); 620 tb &= 0xFFFFFFFF00000000ULL; 621 cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, tb | (uint64_t)value); 622 } 623 624 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value) 625 { 626 ppc_tb_t *tb_env = env->tb_env; 627 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 628 uint64_t tb; 629 630 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset); 631 tb &= 0x00000000FFFFFFFFULL; 632 cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, 633 ((uint64_t)value << 32) | tb); 634 } 635 636 uint64_t cpu_ppc_load_vtb(CPUPPCState *env) 637 { 638 ppc_tb_t *tb_env = env->tb_env; 639 640 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 641 tb_env->vtb_offset); 642 } 643 644 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value) 645 { 646 ppc_tb_t *tb_env = env->tb_env; 647 648 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 649 &tb_env->vtb_offset, value); 650 } 651 652 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value) 653 { 654 ppc_tb_t *tb_env = env->tb_env; 655 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 656 uint64_t tb; 657 658 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); 659 tb &= 0xFFFFFFUL; 660 tb |= (value & ~0xFFFFFFUL); 661 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb); 662 } 663 664 static void cpu_ppc_tb_stop (CPUPPCState *env) 665 { 666 ppc_tb_t *tb_env = env->tb_env; 667 uint64_t tb, atb, vmclk; 668 669 /* If the time base is already frozen, do nothing */ 670 if (tb_env->tb_freq != 0) { 671 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 672 /* Get the time base */ 673 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); 674 /* Get the alternate time base */ 675 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); 676 /* Store the time base value (ie compute the current offset) */ 677 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 678 /* Store the alternate time base value (compute the current offset) */ 679 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 680 /* Set the time base frequency to zero */ 681 tb_env->tb_freq = 0; 682 /* Now, the time bases are frozen to tb_offset / atb_offset value */ 683 } 684 } 685 686 static void cpu_ppc_tb_start (CPUPPCState *env) 687 { 688 ppc_tb_t *tb_env = env->tb_env; 689 uint64_t tb, atb, vmclk; 690 691 /* If the time base is not frozen, do nothing */ 692 if (tb_env->tb_freq == 0) { 693 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 694 /* Get the time base from tb_offset */ 695 tb = tb_env->tb_offset; 696 /* Get the alternate time base from atb_offset */ 697 atb = tb_env->atb_offset; 698 /* Restore the tb frequency from the decrementer frequency */ 699 tb_env->tb_freq = tb_env->decr_freq; 700 /* Store the time base value */ 701 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 702 /* Store the alternate time base value */ 703 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 704 } 705 } 706 707 bool ppc_decr_clear_on_delivery(CPUPPCState *env) 708 { 709 ppc_tb_t *tb_env = env->tb_env; 710 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL; 711 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED); 712 } 713 714 static inline int64_t __cpu_ppc_load_decr(CPUPPCState *env, int64_t now, 715 uint64_t next) 716 { 717 ppc_tb_t *tb_env = env->tb_env; 718 uint64_t n; 719 int64_t decr; 720 721 n = ns_to_tb(tb_env->decr_freq, now); 722 if (next > n && tb_env->flags & PPC_TIMER_BOOKE) { 723 decr = 0; 724 } else { 725 decr = next - n; 726 } 727 728 trace_ppc_decr_load(decr); 729 730 return decr; 731 } 732 733 static target_ulong _cpu_ppc_load_decr(CPUPPCState *env, int64_t now) 734 { 735 ppc_tb_t *tb_env = env->tb_env; 736 uint64_t decr; 737 738 decr = __cpu_ppc_load_decr(env, now, tb_env->decr_next); 739 740 /* 741 * If large decrementer is enabled then the decrementer is signed extended 742 * to 64 bits, otherwise it is a 32 bit value. 743 */ 744 if (env->spr[SPR_LPCR] & LPCR_LD) { 745 PowerPCCPU *cpu = env_archcpu(env); 746 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 747 return sextract64(decr, 0, pcc->lrg_decr_bits); 748 } 749 return (uint32_t) decr; 750 } 751 752 target_ulong cpu_ppc_load_decr(CPUPPCState *env) 753 { 754 if (kvm_enabled()) { 755 return env->spr[SPR_DECR]; 756 } else { 757 return _cpu_ppc_load_decr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 758 } 759 } 760 761 static target_ulong _cpu_ppc_load_hdecr(CPUPPCState *env, int64_t now) 762 { 763 PowerPCCPU *cpu = env_archcpu(env); 764 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 765 ppc_tb_t *tb_env = env->tb_env; 766 uint64_t hdecr; 767 768 hdecr = __cpu_ppc_load_decr(env, now, tb_env->hdecr_next); 769 770 /* 771 * If we have a large decrementer (POWER9 or later) then hdecr is sign 772 * extended to 64 bits, otherwise it is 32 bits. 773 */ 774 if (pcc->lrg_decr_bits > 32) { 775 return sextract64(hdecr, 0, pcc->lrg_decr_bits); 776 } 777 return (uint32_t) hdecr; 778 } 779 780 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env) 781 { 782 return _cpu_ppc_load_hdecr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 783 } 784 785 uint64_t cpu_ppc_load_purr (CPUPPCState *env) 786 { 787 ppc_tb_t *tb_env = env->tb_env; 788 789 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 790 tb_env->purr_offset); 791 } 792 793 /* When decrementer expires, 794 * all we need to do is generate or queue a CPU exception 795 */ 796 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu) 797 { 798 /* Raise it */ 799 trace_ppc_decr_excp("raise"); 800 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1); 801 } 802 803 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu) 804 { 805 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); 806 } 807 808 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu) 809 { 810 CPUPPCState *env = &cpu->env; 811 812 /* Raise it */ 813 trace_ppc_decr_excp("raise HV"); 814 815 /* The architecture specifies that we don't deliver HDEC 816 * interrupts in a PM state. Not only they don't cause a 817 * wakeup but they also get effectively discarded. 818 */ 819 if (!env->resume_as_sreset) { 820 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1); 821 } 822 } 823 824 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu) 825 { 826 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); 827 } 828 829 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, uint64_t *nextp, 830 QEMUTimer *timer, 831 void (*raise_excp)(void *), 832 void (*lower_excp)(PowerPCCPU *), 833 uint32_t flags, target_ulong decr, 834 target_ulong value, int nr_bits) 835 { 836 CPUPPCState *env = &cpu->env; 837 ppc_tb_t *tb_env = env->tb_env; 838 uint64_t next; 839 int64_t signed_value; 840 int64_t signed_decr; 841 842 /* Truncate value to decr_width and sign extend for simplicity */ 843 value = extract64(value, 0, nr_bits); 844 decr = extract64(decr, 0, nr_bits); 845 signed_value = sextract64(value, 0, nr_bits); 846 signed_decr = sextract64(decr, 0, nr_bits); 847 848 trace_ppc_decr_store(nr_bits, decr, value); 849 850 /* 851 * Calculate the next decrementer event and set a timer. 852 * decr_next is in timebase units to keep rounding simple. Note it is 853 * not adjusted by tb_offset because if TB changes via tb_offset changing, 854 * decrementer does not change, so not directly comparable with TB. 855 */ 856 next = ns_to_tb(tb_env->decr_freq, now) + value; 857 *nextp = next; /* nextp is in timebase units */ 858 859 /* 860 * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt. 861 * 862 * On MSB level based DEC implementations the MSB always means the interrupt 863 * is pending, so raise it on those. 864 * 865 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers 866 * an edge interrupt, so raise it here too. 867 */ 868 if (((flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) || 869 ((flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0 870 && signed_decr >= 0)) { 871 (*raise_excp)(cpu); 872 return; 873 } 874 875 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */ 876 if (signed_value >= 0 && (flags & PPC_DECR_UNDERFLOW_LEVEL)) { 877 (*lower_excp)(cpu); 878 } 879 880 /* Adjust timer */ 881 timer_mod(timer, tb_to_ns_round_up(tb_env->decr_freq, next)); 882 } 883 884 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, 885 target_ulong decr, target_ulong value, 886 int nr_bits) 887 { 888 ppc_tb_t *tb_env = cpu->env.tb_env; 889 890 __cpu_ppc_store_decr(cpu, now, &tb_env->decr_next, tb_env->decr_timer, 891 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, 892 tb_env->flags, decr, value, nr_bits); 893 } 894 895 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value) 896 { 897 PowerPCCPU *cpu = env_archcpu(env); 898 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 899 int64_t now; 900 target_ulong decr; 901 int nr_bits = 32; 902 903 if (kvm_enabled()) { 904 /* KVM handles decrementer exceptions, we don't need our own timer */ 905 return; 906 } 907 908 if (env->spr[SPR_LPCR] & LPCR_LD) { 909 nr_bits = pcc->lrg_decr_bits; 910 } 911 912 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 913 decr = _cpu_ppc_load_decr(env, now); 914 _cpu_ppc_store_decr(cpu, now, decr, value, nr_bits); 915 } 916 917 static void cpu_ppc_decr_cb(void *opaque) 918 { 919 PowerPCCPU *cpu = opaque; 920 921 cpu_ppc_decr_excp(cpu); 922 } 923 924 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, int64_t now, 925 target_ulong hdecr, target_ulong value, 926 int nr_bits) 927 { 928 ppc_tb_t *tb_env = cpu->env.tb_env; 929 930 if (tb_env->hdecr_timer != NULL) { 931 /* HDECR (Book3S 64bit) is edge-based, not level like DECR */ 932 __cpu_ppc_store_decr(cpu, now, &tb_env->hdecr_next, tb_env->hdecr_timer, 933 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower, 934 PPC_DECR_UNDERFLOW_TRIGGERED, 935 hdecr, value, nr_bits); 936 } 937 } 938 939 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value) 940 { 941 PowerPCCPU *cpu = env_archcpu(env); 942 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 943 int64_t now; 944 target_ulong hdecr; 945 946 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 947 hdecr = _cpu_ppc_load_hdecr(env, now); 948 _cpu_ppc_store_hdecr(cpu, now, hdecr, value, pcc->lrg_decr_bits); 949 } 950 951 static void cpu_ppc_hdecr_cb(void *opaque) 952 { 953 PowerPCCPU *cpu = opaque; 954 955 cpu_ppc_hdecr_excp(cpu); 956 } 957 958 static void _cpu_ppc_store_purr(CPUPPCState *env, int64_t now, uint64_t value) 959 { 960 ppc_tb_t *tb_env = env->tb_env; 961 962 cpu_ppc_store_tb(tb_env, now, &tb_env->purr_offset, value); 963 } 964 965 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value) 966 { 967 _cpu_ppc_store_purr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), value); 968 } 969 970 static void timebase_save(PPCTimebase *tb) 971 { 972 uint64_t ticks = cpu_get_host_ticks(); 973 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 974 975 if (!first_ppc_cpu->env.tb_env) { 976 error_report("No timebase object"); 977 return; 978 } 979 980 if (replay_mode == REPLAY_MODE_NONE) { 981 /* not used anymore, we keep it for compatibility */ 982 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST); 983 } else { 984 /* simpler for record-replay to avoid this event, compat not needed */ 985 tb->time_of_the_day_ns = 0; 986 } 987 988 /* 989 * tb_offset is only expected to be changed by QEMU so 990 * there is no need to update it from KVM here 991 */ 992 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset; 993 994 tb->runstate_paused = 995 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM); 996 } 997 998 static void timebase_load(PPCTimebase *tb) 999 { 1000 CPUState *cpu; 1001 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1002 int64_t tb_off_adj, tb_off; 1003 unsigned long freq; 1004 1005 if (!first_ppc_cpu->env.tb_env) { 1006 error_report("No timebase object"); 1007 return; 1008 } 1009 1010 freq = first_ppc_cpu->env.tb_env->tb_freq; 1011 1012 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks(); 1013 1014 tb_off = first_ppc_cpu->env.tb_env->tb_offset; 1015 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off, 1016 (tb_off_adj - tb_off) / freq); 1017 1018 /* Set new offset to all CPUs */ 1019 CPU_FOREACH(cpu) { 1020 PowerPCCPU *pcpu = POWERPC_CPU(cpu); 1021 pcpu->env.tb_env->tb_offset = tb_off_adj; 1022 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset); 1023 } 1024 } 1025 1026 void cpu_ppc_clock_vm_state_change(void *opaque, bool running, 1027 RunState state) 1028 { 1029 PPCTimebase *tb = opaque; 1030 1031 if (running) { 1032 timebase_load(tb); 1033 } else { 1034 timebase_save(tb); 1035 } 1036 } 1037 1038 /* 1039 * When migrating a running guest, read the clock just 1040 * before migration, so that the guest clock counts 1041 * during the events between: 1042 * 1043 * * vm_stop() 1044 * * 1045 * * pre_save() 1046 * 1047 * This reduces clock difference on migration from 5s 1048 * to 0.1s (when max_downtime == 5s), because sending the 1049 * final pages of memory (which happens between vm_stop() 1050 * and pre_save()) takes max_downtime. 1051 */ 1052 static int timebase_pre_save(void *opaque) 1053 { 1054 PPCTimebase *tb = opaque; 1055 1056 /* guest_timebase won't be overridden in case of paused guest or savevm */ 1057 if (!tb->runstate_paused) { 1058 timebase_save(tb); 1059 } 1060 1061 return 0; 1062 } 1063 1064 const VMStateDescription vmstate_ppc_timebase = { 1065 .name = "timebase", 1066 .version_id = 1, 1067 .minimum_version_id = 1, 1068 .pre_save = timebase_pre_save, 1069 .fields = (const VMStateField []) { 1070 VMSTATE_UINT64(guest_timebase, PPCTimebase), 1071 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase), 1072 VMSTATE_END_OF_LIST() 1073 }, 1074 }; 1075 1076 /* Set up (once) timebase frequency (in Hz) */ 1077 void cpu_ppc_tb_init(CPUPPCState *env, uint32_t freq) 1078 { 1079 PowerPCCPU *cpu = env_archcpu(env); 1080 ppc_tb_t *tb_env; 1081 1082 tb_env = g_new0(ppc_tb_t, 1); 1083 env->tb_env = tb_env; 1084 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1085 if (is_book3s_arch2x(env)) { 1086 /* All Book3S 64bit CPUs implement level based DEC logic */ 1087 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL; 1088 } 1089 /* Create new timer */ 1090 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 1091 &cpu_ppc_decr_cb, cpu); 1092 if (env->has_hv_mode && !cpu->vhyp) { 1093 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 1094 &cpu_ppc_hdecr_cb, cpu); 1095 } else { 1096 tb_env->hdecr_timer = NULL; 1097 } 1098 1099 tb_env->tb_freq = freq; 1100 tb_env->decr_freq = freq; 1101 } 1102 1103 void cpu_ppc_tb_reset(CPUPPCState *env) 1104 { 1105 PowerPCCPU *cpu = env_archcpu(env); 1106 ppc_tb_t *tb_env = env->tb_env; 1107 1108 timer_del(tb_env->decr_timer); 1109 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); 1110 tb_env->decr_next = 0; 1111 if (tb_env->hdecr_timer != NULL) { 1112 timer_del(tb_env->hdecr_timer); 1113 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); 1114 tb_env->hdecr_next = 0; 1115 } 1116 1117 /* 1118 * There is a bug in Linux 2.4 kernels: 1119 * if a decrementer exception is pending when it enables msr_ee at startup, 1120 * it's not ready to handle it... 1121 */ 1122 cpu_ppc_store_decr(env, -1); 1123 cpu_ppc_store_hdecr(env, -1); 1124 cpu_ppc_store_purr(env, 0x0000000000000000ULL); 1125 } 1126 1127 void cpu_ppc_tb_free(CPUPPCState *env) 1128 { 1129 timer_free(env->tb_env->decr_timer); 1130 timer_free(env->tb_env->hdecr_timer); 1131 g_free(env->tb_env); 1132 } 1133 1134 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */ 1135 void cpu_ppc_hdecr_init(CPUPPCState *env) 1136 { 1137 PowerPCCPU *cpu = env_archcpu(env); 1138 1139 assert(env->tb_env->hdecr_timer == NULL); 1140 1141 env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 1142 &cpu_ppc_hdecr_cb, cpu); 1143 } 1144 1145 void cpu_ppc_hdecr_exit(CPUPPCState *env) 1146 { 1147 PowerPCCPU *cpu = env_archcpu(env); 1148 1149 timer_free(env->tb_env->hdecr_timer); 1150 env->tb_env->hdecr_timer = NULL; 1151 1152 cpu_ppc_hdecr_lower(cpu); 1153 } 1154 1155 /*****************************************************************************/ 1156 /* PowerPC 40x timers */ 1157 1158 /* PIT, FIT & WDT */ 1159 typedef struct ppc40x_timer_t ppc40x_timer_t; 1160 struct ppc40x_timer_t { 1161 uint64_t pit_reload; /* PIT auto-reload value */ 1162 uint64_t fit_next; /* Tick for next FIT interrupt */ 1163 QEMUTimer *fit_timer; 1164 uint64_t wdt_next; /* Tick for next WDT interrupt */ 1165 QEMUTimer *wdt_timer; 1166 1167 /* 405 have the PIT, 440 have a DECR. */ 1168 unsigned int decr_excp; 1169 }; 1170 1171 /* Fixed interval timer */ 1172 static void cpu_4xx_fit_cb (void *opaque) 1173 { 1174 PowerPCCPU *cpu = opaque; 1175 CPUPPCState *env = &cpu->env; 1176 ppc_tb_t *tb_env; 1177 ppc40x_timer_t *ppc40x_timer; 1178 uint64_t now, next; 1179 1180 tb_env = env->tb_env; 1181 ppc40x_timer = tb_env->opaque; 1182 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1183 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { 1184 case 0: 1185 next = 1 << 9; 1186 break; 1187 case 1: 1188 next = 1 << 13; 1189 break; 1190 case 2: 1191 next = 1 << 17; 1192 break; 1193 case 3: 1194 next = 1 << 21; 1195 break; 1196 default: 1197 /* Cannot occur, but makes gcc happy */ 1198 return; 1199 } 1200 next = now + tb_to_ns_round_up(tb_env->tb_freq, next); 1201 timer_mod(ppc40x_timer->fit_timer, next); 1202 env->spr[SPR_40x_TSR] |= 1 << 26; 1203 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { 1204 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1); 1205 } 1206 trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), 1207 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1208 } 1209 1210 /* Programmable interval timer */ 1211 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) 1212 { 1213 ppc40x_timer_t *ppc40x_timer; 1214 uint64_t now, next; 1215 1216 ppc40x_timer = tb_env->opaque; 1217 if (ppc40x_timer->pit_reload <= 1 || 1218 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || 1219 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { 1220 /* Stop PIT */ 1221 trace_ppc4xx_pit_stop(); 1222 timer_del(tb_env->decr_timer); 1223 } else { 1224 trace_ppc4xx_pit_start(ppc40x_timer->pit_reload); 1225 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1226 1227 if (is_excp) { 1228 tb_env->decr_next += ppc40x_timer->pit_reload; 1229 } else { 1230 tb_env->decr_next = ns_to_tb(tb_env->decr_freq, now) 1231 + ppc40x_timer->pit_reload; 1232 } 1233 next = tb_to_ns_round_up(tb_env->decr_freq, tb_env->decr_next); 1234 timer_mod(tb_env->decr_timer, next); 1235 } 1236 } 1237 1238 static void cpu_4xx_pit_cb (void *opaque) 1239 { 1240 PowerPCCPU *cpu = opaque; 1241 CPUPPCState *env = &cpu->env; 1242 ppc_tb_t *tb_env; 1243 ppc40x_timer_t *ppc40x_timer; 1244 1245 tb_env = env->tb_env; 1246 ppc40x_timer = tb_env->opaque; 1247 env->spr[SPR_40x_TSR] |= 1 << 27; 1248 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) { 1249 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1); 1250 } 1251 start_stop_pit(env, tb_env, 1); 1252 trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), 1253 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), 1254 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], 1255 ppc40x_timer->pit_reload); 1256 } 1257 1258 /* Watchdog timer */ 1259 static void cpu_4xx_wdt_cb (void *opaque) 1260 { 1261 PowerPCCPU *cpu = opaque; 1262 CPUPPCState *env = &cpu->env; 1263 ppc_tb_t *tb_env; 1264 ppc40x_timer_t *ppc40x_timer; 1265 uint64_t now, next; 1266 1267 tb_env = env->tb_env; 1268 ppc40x_timer = tb_env->opaque; 1269 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1270 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { 1271 case 0: 1272 next = 1 << 17; 1273 break; 1274 case 1: 1275 next = 1 << 21; 1276 break; 1277 case 2: 1278 next = 1 << 25; 1279 break; 1280 case 3: 1281 next = 1 << 29; 1282 break; 1283 default: 1284 /* Cannot occur, but makes gcc happy */ 1285 return; 1286 } 1287 next = now + tb_to_ns_round_up(tb_env->decr_freq, next); 1288 trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1289 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { 1290 case 0x0: 1291 case 0x1: 1292 timer_mod(ppc40x_timer->wdt_timer, next); 1293 ppc40x_timer->wdt_next = next; 1294 env->spr[SPR_40x_TSR] |= 1U << 31; 1295 break; 1296 case 0x2: 1297 timer_mod(ppc40x_timer->wdt_timer, next); 1298 ppc40x_timer->wdt_next = next; 1299 env->spr[SPR_40x_TSR] |= 1 << 30; 1300 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) { 1301 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1); 1302 } 1303 break; 1304 case 0x3: 1305 env->spr[SPR_40x_TSR] &= ~0x30000000; 1306 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; 1307 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { 1308 case 0x0: 1309 /* No reset */ 1310 break; 1311 case 0x1: /* Core reset */ 1312 ppc40x_core_reset(cpu); 1313 break; 1314 case 0x2: /* Chip reset */ 1315 ppc40x_chip_reset(cpu); 1316 break; 1317 case 0x3: /* System reset */ 1318 ppc40x_system_reset(cpu); 1319 break; 1320 } 1321 } 1322 } 1323 1324 void store_40x_pit (CPUPPCState *env, target_ulong val) 1325 { 1326 ppc_tb_t *tb_env; 1327 ppc40x_timer_t *ppc40x_timer; 1328 1329 tb_env = env->tb_env; 1330 ppc40x_timer = tb_env->opaque; 1331 trace_ppc40x_store_pit(val); 1332 ppc40x_timer->pit_reload = val; 1333 start_stop_pit(env, tb_env, 0); 1334 } 1335 1336 target_ulong load_40x_pit (CPUPPCState *env) 1337 { 1338 return cpu_ppc_load_decr(env); 1339 } 1340 1341 void store_40x_tsr(CPUPPCState *env, target_ulong val) 1342 { 1343 PowerPCCPU *cpu = env_archcpu(env); 1344 1345 trace_ppc40x_store_tcr(val); 1346 1347 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000); 1348 if (val & 0x80000000) { 1349 ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0); 1350 } 1351 } 1352 1353 void store_40x_tcr(CPUPPCState *env, target_ulong val) 1354 { 1355 PowerPCCPU *cpu = env_archcpu(env); 1356 ppc_tb_t *tb_env; 1357 1358 trace_ppc40x_store_tsr(val); 1359 1360 tb_env = env->tb_env; 1361 env->spr[SPR_40x_TCR] = val & 0xFFC00000; 1362 start_stop_pit(env, tb_env, 1); 1363 cpu_4xx_wdt_cb(cpu); 1364 } 1365 1366 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq) 1367 { 1368 CPUPPCState *env = opaque; 1369 ppc_tb_t *tb_env = env->tb_env; 1370 1371 trace_ppc40x_set_tb_clk(freq); 1372 tb_env->tb_freq = freq; 1373 tb_env->decr_freq = freq; 1374 /* XXX: we should also update all timers */ 1375 } 1376 1377 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq, 1378 unsigned int decr_excp) 1379 { 1380 ppc_tb_t *tb_env; 1381 ppc40x_timer_t *ppc40x_timer; 1382 PowerPCCPU *cpu = env_archcpu(env); 1383 1384 trace_ppc40x_timers_init(freq); 1385 1386 tb_env = g_new0(ppc_tb_t, 1); 1387 ppc40x_timer = g_new0(ppc40x_timer_t, 1); 1388 1389 env->tb_env = tb_env; 1390 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1391 tb_env->tb_freq = freq; 1392 tb_env->decr_freq = freq; 1393 tb_env->opaque = ppc40x_timer; 1394 1395 /* We use decr timer for PIT */ 1396 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu); 1397 ppc40x_timer->fit_timer = 1398 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu); 1399 ppc40x_timer->wdt_timer = 1400 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu); 1401 ppc40x_timer->decr_excp = decr_excp; 1402 1403 return &ppc_40x_set_tb_clk; 1404 } 1405 1406 /*****************************************************************************/ 1407 /* Embedded PowerPC Device Control Registers */ 1408 typedef struct ppc_dcrn_t ppc_dcrn_t; 1409 struct ppc_dcrn_t { 1410 dcr_read_cb dcr_read; 1411 dcr_write_cb dcr_write; 1412 void *opaque; 1413 }; 1414 1415 /* XXX: on 460, DCR addresses are 32 bits wide, 1416 * using DCRIPR to get the 22 upper bits of the DCR address 1417 */ 1418 #define DCRN_NB 1024 1419 struct ppc_dcr_t { 1420 ppc_dcrn_t dcrn[DCRN_NB]; 1421 int (*read_error)(int dcrn); 1422 int (*write_error)(int dcrn); 1423 }; 1424 1425 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1426 { 1427 ppc_dcrn_t *dcr; 1428 1429 if (dcrn < 0 || dcrn >= DCRN_NB) 1430 goto error; 1431 dcr = &dcr_env->dcrn[dcrn]; 1432 if (dcr->dcr_read == NULL) 1433 goto error; 1434 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); 1435 trace_ppc_dcr_read(dcrn, *valp); 1436 1437 return 0; 1438 1439 error: 1440 if (dcr_env->read_error != NULL) 1441 return (*dcr_env->read_error)(dcrn); 1442 1443 return -1; 1444 } 1445 1446 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1447 { 1448 ppc_dcrn_t *dcr; 1449 1450 if (dcrn < 0 || dcrn >= DCRN_NB) 1451 goto error; 1452 dcr = &dcr_env->dcrn[dcrn]; 1453 if (dcr->dcr_write == NULL) 1454 goto error; 1455 trace_ppc_dcr_write(dcrn, val); 1456 (*dcr->dcr_write)(dcr->opaque, dcrn, val); 1457 1458 return 0; 1459 1460 error: 1461 if (dcr_env->write_error != NULL) 1462 return (*dcr_env->write_error)(dcrn); 1463 1464 return -1; 1465 } 1466 1467 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque, 1468 dcr_read_cb dcr_read, dcr_write_cb dcr_write) 1469 { 1470 ppc_dcr_t *dcr_env; 1471 ppc_dcrn_t *dcr; 1472 1473 dcr_env = env->dcr_env; 1474 if (dcr_env == NULL) 1475 return -1; 1476 if (dcrn < 0 || dcrn >= DCRN_NB) 1477 return -1; 1478 dcr = &dcr_env->dcrn[dcrn]; 1479 if (dcr->opaque != NULL || 1480 dcr->dcr_read != NULL || 1481 dcr->dcr_write != NULL) 1482 return -1; 1483 dcr->opaque = opaque; 1484 dcr->dcr_read = dcr_read; 1485 dcr->dcr_write = dcr_write; 1486 1487 return 0; 1488 } 1489 1490 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn), 1491 int (*write_error)(int dcrn)) 1492 { 1493 ppc_dcr_t *dcr_env; 1494 1495 dcr_env = g_new0(ppc_dcr_t, 1); 1496 dcr_env->read_error = read_error; 1497 dcr_env->write_error = write_error; 1498 env->dcr_env = dcr_env; 1499 1500 return 0; 1501 } 1502 1503 /*****************************************************************************/ 1504 1505 int ppc_cpu_pir(PowerPCCPU *cpu) 1506 { 1507 CPUPPCState *env = &cpu->env; 1508 return env->spr_cb[SPR_PIR].default_value; 1509 } 1510 1511 int ppc_cpu_tir(PowerPCCPU *cpu) 1512 { 1513 CPUPPCState *env = &cpu->env; 1514 return env->spr_cb[SPR_TIR].default_value; 1515 } 1516 1517 PowerPCCPU *ppc_get_vcpu_by_pir(int pir) 1518 { 1519 CPUState *cs; 1520 1521 CPU_FOREACH(cs) { 1522 PowerPCCPU *cpu = POWERPC_CPU(cs); 1523 1524 if (ppc_cpu_pir(cpu) == pir) { 1525 return cpu; 1526 } 1527 } 1528 1529 return NULL; 1530 } 1531 1532 void ppc_irq_reset(PowerPCCPU *cpu) 1533 { 1534 CPUPPCState *env = &cpu->env; 1535 1536 env->irq_input_state = 0; 1537 if (kvm_enabled()) { 1538 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0); 1539 } 1540 } 1541