xref: /openbmc/qemu/hw/ppc/ppc.c (revision dd8d6a2d)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "hw/hw.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/cpus.h"
33 #include "qemu/log.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
36 #include "kvm_ppc.h"
37 #include "trace.h"
38 
39 //#define PPC_DEBUG_IRQ
40 //#define PPC_DEBUG_TB
41 
42 #ifdef PPC_DEBUG_IRQ
43 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
44 #else
45 #  define LOG_IRQ(...) do { } while (0)
46 #endif
47 
48 
49 #ifdef PPC_DEBUG_TB
50 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
51 #else
52 #  define LOG_TB(...) do { } while (0)
53 #endif
54 
55 static void cpu_ppc_tb_stop (CPUPPCState *env);
56 static void cpu_ppc_tb_start (CPUPPCState *env);
57 
58 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
59 {
60     CPUState *cs = CPU(cpu);
61     CPUPPCState *env = &cpu->env;
62     unsigned int old_pending;
63     bool locked = false;
64 
65     /* We may already have the BQL if coming from the reset path */
66     if (!qemu_mutex_iothread_locked()) {
67         locked = true;
68         qemu_mutex_lock_iothread();
69     }
70 
71     old_pending = env->pending_interrupts;
72 
73     if (level) {
74         env->pending_interrupts |= 1 << n_IRQ;
75         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
76     } else {
77         env->pending_interrupts &= ~(1 << n_IRQ);
78         if (env->pending_interrupts == 0) {
79             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
80         }
81     }
82 
83     if (old_pending != env->pending_interrupts) {
84 #ifdef CONFIG_KVM
85         kvmppc_set_interrupt(cpu, n_IRQ, level);
86 #endif
87     }
88 
89 
90     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91                 "req %08x\n", __func__, env, n_IRQ, level,
92                 env->pending_interrupts, CPU(cpu)->interrupt_request);
93 
94     if (locked) {
95         qemu_mutex_unlock_iothread();
96     }
97 }
98 
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque, int pin, int level)
101 {
102     PowerPCCPU *cpu = opaque;
103     CPUPPCState *env = &cpu->env;
104     int cur_level;
105 
106     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
107                 env, pin, level);
108     cur_level = (env->irq_input_state >> pin) & 1;
109     /* Don't generate spurious events */
110     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
111         CPUState *cs = CPU(cpu);
112 
113         switch (pin) {
114         case PPC6xx_INPUT_TBEN:
115             /* Level sensitive - active high */
116             LOG_IRQ("%s: %s the time base\n",
117                         __func__, level ? "start" : "stop");
118             if (level) {
119                 cpu_ppc_tb_start(env);
120             } else {
121                 cpu_ppc_tb_stop(env);
122             }
123         case PPC6xx_INPUT_INT:
124             /* Level sensitive - active high */
125             LOG_IRQ("%s: set the external IRQ state to %d\n",
126                         __func__, level);
127             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128             break;
129         case PPC6xx_INPUT_SMI:
130             /* Level sensitive - active high */
131             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132                         __func__, level);
133             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134             break;
135         case PPC6xx_INPUT_MCP:
136             /* Negative edge sensitive */
137             /* XXX: TODO: actual reaction may depends on HID0 status
138              *            603/604/740/750: check HID0[EMCP]
139              */
140             if (cur_level == 1 && level == 0) {
141                 LOG_IRQ("%s: raise machine check state\n",
142                             __func__);
143                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
144             }
145             break;
146         case PPC6xx_INPUT_CKSTP_IN:
147             /* Level sensitive - active low */
148             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149             /* XXX: Note that the only way to restart the CPU is to reset it */
150             if (level) {
151                 LOG_IRQ("%s: stop the CPU\n", __func__);
152                 cs->halted = 1;
153             }
154             break;
155         case PPC6xx_INPUT_HRESET:
156             /* Level sensitive - active low */
157             if (level) {
158                 LOG_IRQ("%s: reset the CPU\n", __func__);
159                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
160             }
161             break;
162         case PPC6xx_INPUT_SRESET:
163             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164                         __func__, level);
165             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166             break;
167         default:
168             /* Unknown pin - do nothing */
169             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
170             return;
171         }
172         if (level)
173             env->irq_input_state |= 1 << pin;
174         else
175             env->irq_input_state &= ~(1 << pin);
176     }
177 }
178 
179 void ppc6xx_irq_init(PowerPCCPU *cpu)
180 {
181     CPUPPCState *env = &cpu->env;
182 
183     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
184                                                   PPC6xx_INPUT_NB);
185 }
186 
187 #if defined(TARGET_PPC64)
188 /* PowerPC 970 internal IRQ controller */
189 static void ppc970_set_irq(void *opaque, int pin, int level)
190 {
191     PowerPCCPU *cpu = opaque;
192     CPUPPCState *env = &cpu->env;
193     int cur_level;
194 
195     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
196                 env, pin, level);
197     cur_level = (env->irq_input_state >> pin) & 1;
198     /* Don't generate spurious events */
199     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
200         CPUState *cs = CPU(cpu);
201 
202         switch (pin) {
203         case PPC970_INPUT_INT:
204             /* Level sensitive - active high */
205             LOG_IRQ("%s: set the external IRQ state to %d\n",
206                         __func__, level);
207             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
208             break;
209         case PPC970_INPUT_THINT:
210             /* Level sensitive - active high */
211             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
212                         level);
213             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
214             break;
215         case PPC970_INPUT_MCP:
216             /* Negative edge sensitive */
217             /* XXX: TODO: actual reaction may depends on HID0 status
218              *            603/604/740/750: check HID0[EMCP]
219              */
220             if (cur_level == 1 && level == 0) {
221                 LOG_IRQ("%s: raise machine check state\n",
222                             __func__);
223                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
224             }
225             break;
226         case PPC970_INPUT_CKSTP:
227             /* Level sensitive - active low */
228             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229             if (level) {
230                 LOG_IRQ("%s: stop the CPU\n", __func__);
231                 cs->halted = 1;
232             } else {
233                 LOG_IRQ("%s: restart the CPU\n", __func__);
234                 cs->halted = 0;
235                 qemu_cpu_kick(cs);
236             }
237             break;
238         case PPC970_INPUT_HRESET:
239             /* Level sensitive - active low */
240             if (level) {
241                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
242             }
243             break;
244         case PPC970_INPUT_SRESET:
245             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
246                         __func__, level);
247             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
248             break;
249         case PPC970_INPUT_TBEN:
250             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
251                         level);
252             /* XXX: TODO */
253             break;
254         default:
255             /* Unknown pin - do nothing */
256             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
257             return;
258         }
259         if (level)
260             env->irq_input_state |= 1 << pin;
261         else
262             env->irq_input_state &= ~(1 << pin);
263     }
264 }
265 
266 void ppc970_irq_init(PowerPCCPU *cpu)
267 {
268     CPUPPCState *env = &cpu->env;
269 
270     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
271                                                   PPC970_INPUT_NB);
272 }
273 
274 /* POWER7 internal IRQ controller */
275 static void power7_set_irq(void *opaque, int pin, int level)
276 {
277     PowerPCCPU *cpu = opaque;
278     CPUPPCState *env = &cpu->env;
279 
280     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
281                 env, pin, level);
282 
283     switch (pin) {
284     case POWER7_INPUT_INT:
285         /* Level sensitive - active high */
286         LOG_IRQ("%s: set the external IRQ state to %d\n",
287                 __func__, level);
288         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
289         break;
290     default:
291         /* Unknown pin - do nothing */
292         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
293         return;
294     }
295     if (level) {
296         env->irq_input_state |= 1 << pin;
297     } else {
298         env->irq_input_state &= ~(1 << pin);
299     }
300 }
301 
302 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
303 {
304     CPUPPCState *env = &cpu->env;
305 
306     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
307                                                   POWER7_INPUT_NB);
308 }
309 
310 /* POWER9 internal IRQ controller */
311 static void power9_set_irq(void *opaque, int pin, int level)
312 {
313     PowerPCCPU *cpu = opaque;
314     CPUPPCState *env = &cpu->env;
315 
316     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
317                 env, pin, level);
318 
319     switch (pin) {
320     case POWER9_INPUT_INT:
321         /* Level sensitive - active high */
322         LOG_IRQ("%s: set the external IRQ state to %d\n",
323                 __func__, level);
324         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
325         break;
326     case POWER9_INPUT_HINT:
327         /* Level sensitive - active high */
328         LOG_IRQ("%s: set the external IRQ state to %d\n",
329                 __func__, level);
330         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
331         break;
332     default:
333         /* Unknown pin - do nothing */
334         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
335         return;
336     }
337     if (level) {
338         env->irq_input_state |= 1 << pin;
339     } else {
340         env->irq_input_state &= ~(1 << pin);
341     }
342 }
343 
344 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
345 {
346     CPUPPCState *env = &cpu->env;
347 
348     env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
349                                                   POWER9_INPUT_NB);
350 }
351 #endif /* defined(TARGET_PPC64) */
352 
353 void ppc40x_core_reset(PowerPCCPU *cpu)
354 {
355     CPUPPCState *env = &cpu->env;
356     target_ulong dbsr;
357 
358     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
359     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
360     dbsr = env->spr[SPR_40x_DBSR];
361     dbsr &= ~0x00000300;
362     dbsr |= 0x00000100;
363     env->spr[SPR_40x_DBSR] = dbsr;
364 }
365 
366 void ppc40x_chip_reset(PowerPCCPU *cpu)
367 {
368     CPUPPCState *env = &cpu->env;
369     target_ulong dbsr;
370 
371     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
372     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
373     /* XXX: TODO reset all internal peripherals */
374     dbsr = env->spr[SPR_40x_DBSR];
375     dbsr &= ~0x00000300;
376     dbsr |= 0x00000200;
377     env->spr[SPR_40x_DBSR] = dbsr;
378 }
379 
380 void ppc40x_system_reset(PowerPCCPU *cpu)
381 {
382     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
383     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
384 }
385 
386 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
387 {
388     PowerPCCPU *cpu = ppc_env_get_cpu(env);
389 
390     switch ((val >> 28) & 0x3) {
391     case 0x0:
392         /* No action */
393         break;
394     case 0x1:
395         /* Core reset */
396         ppc40x_core_reset(cpu);
397         break;
398     case 0x2:
399         /* Chip reset */
400         ppc40x_chip_reset(cpu);
401         break;
402     case 0x3:
403         /* System reset */
404         ppc40x_system_reset(cpu);
405         break;
406     }
407 }
408 
409 /* PowerPC 40x internal IRQ controller */
410 static void ppc40x_set_irq(void *opaque, int pin, int level)
411 {
412     PowerPCCPU *cpu = opaque;
413     CPUPPCState *env = &cpu->env;
414     int cur_level;
415 
416     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
417                 env, pin, level);
418     cur_level = (env->irq_input_state >> pin) & 1;
419     /* Don't generate spurious events */
420     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
421         CPUState *cs = CPU(cpu);
422 
423         switch (pin) {
424         case PPC40x_INPUT_RESET_SYS:
425             if (level) {
426                 LOG_IRQ("%s: reset the PowerPC system\n",
427                             __func__);
428                 ppc40x_system_reset(cpu);
429             }
430             break;
431         case PPC40x_INPUT_RESET_CHIP:
432             if (level) {
433                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
434                 ppc40x_chip_reset(cpu);
435             }
436             break;
437         case PPC40x_INPUT_RESET_CORE:
438             /* XXX: TODO: update DBSR[MRR] */
439             if (level) {
440                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
441                 ppc40x_core_reset(cpu);
442             }
443             break;
444         case PPC40x_INPUT_CINT:
445             /* Level sensitive - active high */
446             LOG_IRQ("%s: set the critical IRQ state to %d\n",
447                         __func__, level);
448             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
449             break;
450         case PPC40x_INPUT_INT:
451             /* Level sensitive - active high */
452             LOG_IRQ("%s: set the external IRQ state to %d\n",
453                         __func__, level);
454             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
455             break;
456         case PPC40x_INPUT_HALT:
457             /* Level sensitive - active low */
458             if (level) {
459                 LOG_IRQ("%s: stop the CPU\n", __func__);
460                 cs->halted = 1;
461             } else {
462                 LOG_IRQ("%s: restart the CPU\n", __func__);
463                 cs->halted = 0;
464                 qemu_cpu_kick(cs);
465             }
466             break;
467         case PPC40x_INPUT_DEBUG:
468             /* Level sensitive - active high */
469             LOG_IRQ("%s: set the debug pin state to %d\n",
470                         __func__, level);
471             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
472             break;
473         default:
474             /* Unknown pin - do nothing */
475             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
476             return;
477         }
478         if (level)
479             env->irq_input_state |= 1 << pin;
480         else
481             env->irq_input_state &= ~(1 << pin);
482     }
483 }
484 
485 void ppc40x_irq_init(PowerPCCPU *cpu)
486 {
487     CPUPPCState *env = &cpu->env;
488 
489     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
490                                                   cpu, PPC40x_INPUT_NB);
491 }
492 
493 /* PowerPC E500 internal IRQ controller */
494 static void ppce500_set_irq(void *opaque, int pin, int level)
495 {
496     PowerPCCPU *cpu = opaque;
497     CPUPPCState *env = &cpu->env;
498     int cur_level;
499 
500     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
501                 env, pin, level);
502     cur_level = (env->irq_input_state >> pin) & 1;
503     /* Don't generate spurious events */
504     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
505         switch (pin) {
506         case PPCE500_INPUT_MCK:
507             if (level) {
508                 LOG_IRQ("%s: reset the PowerPC system\n",
509                             __func__);
510                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
511             }
512             break;
513         case PPCE500_INPUT_RESET_CORE:
514             if (level) {
515                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
516                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
517             }
518             break;
519         case PPCE500_INPUT_CINT:
520             /* Level sensitive - active high */
521             LOG_IRQ("%s: set the critical IRQ state to %d\n",
522                         __func__, level);
523             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
524             break;
525         case PPCE500_INPUT_INT:
526             /* Level sensitive - active high */
527             LOG_IRQ("%s: set the core IRQ state to %d\n",
528                         __func__, level);
529             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
530             break;
531         case PPCE500_INPUT_DEBUG:
532             /* Level sensitive - active high */
533             LOG_IRQ("%s: set the debug pin state to %d\n",
534                         __func__, level);
535             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
536             break;
537         default:
538             /* Unknown pin - do nothing */
539             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
540             return;
541         }
542         if (level)
543             env->irq_input_state |= 1 << pin;
544         else
545             env->irq_input_state &= ~(1 << pin);
546     }
547 }
548 
549 void ppce500_irq_init(PowerPCCPU *cpu)
550 {
551     CPUPPCState *env = &cpu->env;
552 
553     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
554                                                   cpu, PPCE500_INPUT_NB);
555 }
556 
557 /* Enable or Disable the E500 EPR capability */
558 void ppce500_set_mpic_proxy(bool enabled)
559 {
560     CPUState *cs;
561 
562     CPU_FOREACH(cs) {
563         PowerPCCPU *cpu = POWERPC_CPU(cs);
564 
565         cpu->env.mpic_proxy = enabled;
566         if (kvm_enabled()) {
567             kvmppc_set_mpic_proxy(cpu, enabled);
568         }
569     }
570 }
571 
572 /*****************************************************************************/
573 /* PowerPC time base and decrementer emulation */
574 
575 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
576 {
577     /* TB time in tb periods */
578     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
579 }
580 
581 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
582 {
583     ppc_tb_t *tb_env = env->tb_env;
584     uint64_t tb;
585 
586     if (kvm_enabled()) {
587         return env->spr[SPR_TBL];
588     }
589 
590     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
591     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
592 
593     return tb;
594 }
595 
596 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
597 {
598     ppc_tb_t *tb_env = env->tb_env;
599     uint64_t tb;
600 
601     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
602     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
603 
604     return tb >> 32;
605 }
606 
607 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
608 {
609     if (kvm_enabled()) {
610         return env->spr[SPR_TBU];
611     }
612 
613     return _cpu_ppc_load_tbu(env);
614 }
615 
616 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
617                                     int64_t *tb_offsetp, uint64_t value)
618 {
619     *tb_offsetp = value -
620         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
621 
622     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
623                 __func__, value, *tb_offsetp);
624 }
625 
626 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
627 {
628     ppc_tb_t *tb_env = env->tb_env;
629     uint64_t tb;
630 
631     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
632     tb &= 0xFFFFFFFF00000000ULL;
633     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
634                      &tb_env->tb_offset, tb | (uint64_t)value);
635 }
636 
637 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
638 {
639     ppc_tb_t *tb_env = env->tb_env;
640     uint64_t tb;
641 
642     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
643     tb &= 0x00000000FFFFFFFFULL;
644     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
645                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
646 }
647 
648 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
649 {
650     _cpu_ppc_store_tbu(env, value);
651 }
652 
653 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
654 {
655     ppc_tb_t *tb_env = env->tb_env;
656     uint64_t tb;
657 
658     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
659     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
660 
661     return tb;
662 }
663 
664 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
665 {
666     ppc_tb_t *tb_env = env->tb_env;
667     uint64_t tb;
668 
669     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
670     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
671 
672     return tb >> 32;
673 }
674 
675 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
676 {
677     ppc_tb_t *tb_env = env->tb_env;
678     uint64_t tb;
679 
680     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
681     tb &= 0xFFFFFFFF00000000ULL;
682     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
683                      &tb_env->atb_offset, tb | (uint64_t)value);
684 }
685 
686 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
687 {
688     ppc_tb_t *tb_env = env->tb_env;
689     uint64_t tb;
690 
691     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
692     tb &= 0x00000000FFFFFFFFULL;
693     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
694                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
695 }
696 
697 static void cpu_ppc_tb_stop (CPUPPCState *env)
698 {
699     ppc_tb_t *tb_env = env->tb_env;
700     uint64_t tb, atb, vmclk;
701 
702     /* If the time base is already frozen, do nothing */
703     if (tb_env->tb_freq != 0) {
704         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
705         /* Get the time base */
706         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
707         /* Get the alternate time base */
708         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
709         /* Store the time base value (ie compute the current offset) */
710         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
711         /* Store the alternate time base value (compute the current offset) */
712         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
713         /* Set the time base frequency to zero */
714         tb_env->tb_freq = 0;
715         /* Now, the time bases are frozen to tb_offset / atb_offset value */
716     }
717 }
718 
719 static void cpu_ppc_tb_start (CPUPPCState *env)
720 {
721     ppc_tb_t *tb_env = env->tb_env;
722     uint64_t tb, atb, vmclk;
723 
724     /* If the time base is not frozen, do nothing */
725     if (tb_env->tb_freq == 0) {
726         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
727         /* Get the time base from tb_offset */
728         tb = tb_env->tb_offset;
729         /* Get the alternate time base from atb_offset */
730         atb = tb_env->atb_offset;
731         /* Restore the tb frequency from the decrementer frequency */
732         tb_env->tb_freq = tb_env->decr_freq;
733         /* Store the time base value */
734         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
735         /* Store the alternate time base value */
736         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
737     }
738 }
739 
740 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
741 {
742     ppc_tb_t *tb_env = env->tb_env;
743     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
744     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
745 }
746 
747 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
748 {
749     ppc_tb_t *tb_env = env->tb_env;
750     uint32_t decr;
751     int64_t diff;
752 
753     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
754     if (diff >= 0) {
755         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
756     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
757         decr = 0;
758     }  else {
759         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
760     }
761     LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
762 
763     return decr;
764 }
765 
766 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
767 {
768     ppc_tb_t *tb_env = env->tb_env;
769 
770     if (kvm_enabled()) {
771         return env->spr[SPR_DECR];
772     }
773 
774     return _cpu_ppc_load_decr(env, tb_env->decr_next);
775 }
776 
777 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
778 {
779     ppc_tb_t *tb_env = env->tb_env;
780 
781     return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
782 }
783 
784 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
785 {
786     ppc_tb_t *tb_env = env->tb_env;
787     uint64_t diff;
788 
789     diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
790 
791     return tb_env->purr_load +
792         muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
793 }
794 
795 /* When decrementer expires,
796  * all we need to do is generate or queue a CPU exception
797  */
798 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
799 {
800     /* Raise it */
801     LOG_TB("raise decrementer exception\n");
802     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
803 }
804 
805 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
806 {
807     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
808 }
809 
810 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
811 {
812     CPUPPCState *env = &cpu->env;
813 
814     /* Raise it */
815     LOG_TB("raise hv decrementer exception\n");
816 
817     /* The architecture specifies that we don't deliver HDEC
818      * interrupts in a PM state. Not only they don't cause a
819      * wakeup but they also get effectively discarded.
820      */
821     if (!env->resume_as_sreset) {
822         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
823     }
824 }
825 
826 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
827 {
828     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
829 }
830 
831 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
832                                  QEMUTimer *timer,
833                                  void (*raise_excp)(void *),
834                                  void (*lower_excp)(PowerPCCPU *),
835                                  uint32_t decr, uint32_t value)
836 {
837     CPUPPCState *env = &cpu->env;
838     ppc_tb_t *tb_env = env->tb_env;
839     uint64_t now, next;
840 
841     LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
842                 decr, value);
843 
844     if (kvm_enabled()) {
845         /* KVM handles decrementer exceptions, we don't need our own timer */
846         return;
847     }
848 
849     /*
850      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
851      * interrupt.
852      *
853      * If we get a really small DEC value, we can assume that by the time we
854      * handled it we should inject an interrupt already.
855      *
856      * On MSB level based DEC implementations the MSB always means the interrupt
857      * is pending, so raise it on those.
858      *
859      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
860      * an edge interrupt, so raise it here too.
861      */
862     if ((value < 3) ||
863         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
864         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
865           && !(decr & 0x80000000))) {
866         (*raise_excp)(cpu);
867         return;
868     }
869 
870     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
871     if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
872         (*lower_excp)(cpu);
873     }
874 
875     /* Calculate the next timer event */
876     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
877     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
878     *nextp = next;
879 
880     /* Adjust timer */
881     timer_mod(timer, next);
882 }
883 
884 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
885                                        uint32_t value)
886 {
887     ppc_tb_t *tb_env = cpu->env.tb_env;
888 
889     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
890                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
891                          value);
892 }
893 
894 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
895 {
896     PowerPCCPU *cpu = ppc_env_get_cpu(env);
897 
898     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
899 }
900 
901 static void cpu_ppc_decr_cb(void *opaque)
902 {
903     PowerPCCPU *cpu = opaque;
904 
905     cpu_ppc_decr_excp(cpu);
906 }
907 
908 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
909                                         uint32_t value)
910 {
911     ppc_tb_t *tb_env = cpu->env.tb_env;
912 
913     if (tb_env->hdecr_timer != NULL) {
914         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
915                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
916                              hdecr, value);
917     }
918 }
919 
920 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
921 {
922     PowerPCCPU *cpu = ppc_env_get_cpu(env);
923 
924     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
925 }
926 
927 static void cpu_ppc_hdecr_cb(void *opaque)
928 {
929     PowerPCCPU *cpu = opaque;
930 
931     cpu_ppc_hdecr_excp(cpu);
932 }
933 
934 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
935 {
936     ppc_tb_t *tb_env = cpu->env.tb_env;
937 
938     tb_env->purr_load = value;
939     tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
940 }
941 
942 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
943 {
944     CPUPPCState *env = opaque;
945     PowerPCCPU *cpu = ppc_env_get_cpu(env);
946     ppc_tb_t *tb_env = env->tb_env;
947 
948     tb_env->tb_freq = freq;
949     tb_env->decr_freq = freq;
950     /* There is a bug in Linux 2.4 kernels:
951      * if a decrementer exception is pending when it enables msr_ee at startup,
952      * it's not ready to handle it...
953      */
954     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
955     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
956     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
957 }
958 
959 static void timebase_save(PPCTimebase *tb)
960 {
961     uint64_t ticks = cpu_get_host_ticks();
962     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
963 
964     if (!first_ppc_cpu->env.tb_env) {
965         error_report("No timebase object");
966         return;
967     }
968 
969     /* not used anymore, we keep it for compatibility */
970     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
971     /*
972      * tb_offset is only expected to be changed by QEMU so
973      * there is no need to update it from KVM here
974      */
975     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
976 }
977 
978 static void timebase_load(PPCTimebase *tb)
979 {
980     CPUState *cpu;
981     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
982     int64_t tb_off_adj, tb_off;
983     unsigned long freq;
984 
985     if (!first_ppc_cpu->env.tb_env) {
986         error_report("No timebase object");
987         return;
988     }
989 
990     freq = first_ppc_cpu->env.tb_env->tb_freq;
991 
992     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
993 
994     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
995     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
996                         (tb_off_adj - tb_off) / freq);
997 
998     /* Set new offset to all CPUs */
999     CPU_FOREACH(cpu) {
1000         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1001         pcpu->env.tb_env->tb_offset = tb_off_adj;
1002 #if defined(CONFIG_KVM)
1003         kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET,
1004                         &pcpu->env.tb_env->tb_offset);
1005 #endif
1006     }
1007 }
1008 
1009 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1010                                    RunState state)
1011 {
1012     PPCTimebase *tb = opaque;
1013 
1014     if (running) {
1015         timebase_load(tb);
1016     } else {
1017         timebase_save(tb);
1018     }
1019 }
1020 
1021 /*
1022  * When migrating, read the clock just before migration,
1023  * so that the guest clock counts during the events
1024  * between:
1025  *
1026  *  * vm_stop()
1027  *  *
1028  *  * pre_save()
1029  *
1030  *  This reduces clock difference on migration from 5s
1031  *  to 0.1s (when max_downtime == 5s), because sending the
1032  *  final pages of memory (which happens between vm_stop()
1033  *  and pre_save()) takes max_downtime.
1034  */
1035 static int timebase_pre_save(void *opaque)
1036 {
1037     PPCTimebase *tb = opaque;
1038 
1039     timebase_save(tb);
1040 
1041     return 0;
1042 }
1043 
1044 const VMStateDescription vmstate_ppc_timebase = {
1045     .name = "timebase",
1046     .version_id = 1,
1047     .minimum_version_id = 1,
1048     .minimum_version_id_old = 1,
1049     .pre_save = timebase_pre_save,
1050     .fields      = (VMStateField []) {
1051         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1052         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1053         VMSTATE_END_OF_LIST()
1054     },
1055 };
1056 
1057 /* Set up (once) timebase frequency (in Hz) */
1058 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1059 {
1060     PowerPCCPU *cpu = ppc_env_get_cpu(env);
1061     ppc_tb_t *tb_env;
1062 
1063     tb_env = g_malloc0(sizeof(ppc_tb_t));
1064     env->tb_env = tb_env;
1065     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1066     if (env->insns_flags & PPC_SEGMENT_64B) {
1067         /* All Book3S 64bit CPUs implement level based DEC logic */
1068         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1069     }
1070     /* Create new timer */
1071     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1072     if (env->has_hv_mode) {
1073         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1074                                                 cpu);
1075     } else {
1076         tb_env->hdecr_timer = NULL;
1077     }
1078     cpu_ppc_set_tb_clk(env, freq);
1079 
1080     return &cpu_ppc_set_tb_clk;
1081 }
1082 
1083 /* Specific helpers for POWER & PowerPC 601 RTC */
1084 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1085 {
1086     _cpu_ppc_store_tbu(env, value);
1087 }
1088 
1089 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1090 {
1091     return _cpu_ppc_load_tbu(env);
1092 }
1093 
1094 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1095 {
1096     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1097 }
1098 
1099 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1100 {
1101     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1102 }
1103 
1104 /*****************************************************************************/
1105 /* PowerPC 40x timers */
1106 
1107 /* PIT, FIT & WDT */
1108 typedef struct ppc40x_timer_t ppc40x_timer_t;
1109 struct ppc40x_timer_t {
1110     uint64_t pit_reload;  /* PIT auto-reload value        */
1111     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1112     QEMUTimer *fit_timer;
1113     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1114     QEMUTimer *wdt_timer;
1115 
1116     /* 405 have the PIT, 440 have a DECR.  */
1117     unsigned int decr_excp;
1118 };
1119 
1120 /* Fixed interval timer */
1121 static void cpu_4xx_fit_cb (void *opaque)
1122 {
1123     PowerPCCPU *cpu;
1124     CPUPPCState *env;
1125     ppc_tb_t *tb_env;
1126     ppc40x_timer_t *ppc40x_timer;
1127     uint64_t now, next;
1128 
1129     env = opaque;
1130     cpu = ppc_env_get_cpu(env);
1131     tb_env = env->tb_env;
1132     ppc40x_timer = tb_env->opaque;
1133     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1134     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1135     case 0:
1136         next = 1 << 9;
1137         break;
1138     case 1:
1139         next = 1 << 13;
1140         break;
1141     case 2:
1142         next = 1 << 17;
1143         break;
1144     case 3:
1145         next = 1 << 21;
1146         break;
1147     default:
1148         /* Cannot occur, but makes gcc happy */
1149         return;
1150     }
1151     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1152     if (next == now)
1153         next++;
1154     timer_mod(ppc40x_timer->fit_timer, next);
1155     env->spr[SPR_40x_TSR] |= 1 << 26;
1156     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1157         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1158     }
1159     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1160            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1161            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1162 }
1163 
1164 /* Programmable interval timer */
1165 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1166 {
1167     ppc40x_timer_t *ppc40x_timer;
1168     uint64_t now, next;
1169 
1170     ppc40x_timer = tb_env->opaque;
1171     if (ppc40x_timer->pit_reload <= 1 ||
1172         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1173         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1174         /* Stop PIT */
1175         LOG_TB("%s: stop PIT\n", __func__);
1176         timer_del(tb_env->decr_timer);
1177     } else {
1178         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1179                     __func__, ppc40x_timer->pit_reload);
1180         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1181         next = now + muldiv64(ppc40x_timer->pit_reload,
1182                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1183         if (is_excp)
1184             next += tb_env->decr_next - now;
1185         if (next == now)
1186             next++;
1187         timer_mod(tb_env->decr_timer, next);
1188         tb_env->decr_next = next;
1189     }
1190 }
1191 
1192 static void cpu_4xx_pit_cb (void *opaque)
1193 {
1194     PowerPCCPU *cpu;
1195     CPUPPCState *env;
1196     ppc_tb_t *tb_env;
1197     ppc40x_timer_t *ppc40x_timer;
1198 
1199     env = opaque;
1200     cpu = ppc_env_get_cpu(env);
1201     tb_env = env->tb_env;
1202     ppc40x_timer = tb_env->opaque;
1203     env->spr[SPR_40x_TSR] |= 1 << 27;
1204     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1205         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1206     }
1207     start_stop_pit(env, tb_env, 1);
1208     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1209            "%016" PRIx64 "\n", __func__,
1210            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1211            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1212            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1213            ppc40x_timer->pit_reload);
1214 }
1215 
1216 /* Watchdog timer */
1217 static void cpu_4xx_wdt_cb (void *opaque)
1218 {
1219     PowerPCCPU *cpu;
1220     CPUPPCState *env;
1221     ppc_tb_t *tb_env;
1222     ppc40x_timer_t *ppc40x_timer;
1223     uint64_t now, next;
1224 
1225     env = opaque;
1226     cpu = ppc_env_get_cpu(env);
1227     tb_env = env->tb_env;
1228     ppc40x_timer = tb_env->opaque;
1229     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1230     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1231     case 0:
1232         next = 1 << 17;
1233         break;
1234     case 1:
1235         next = 1 << 21;
1236         break;
1237     case 2:
1238         next = 1 << 25;
1239         break;
1240     case 3:
1241         next = 1 << 29;
1242         break;
1243     default:
1244         /* Cannot occur, but makes gcc happy */
1245         return;
1246     }
1247     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1248     if (next == now)
1249         next++;
1250     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1251            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1252     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1253     case 0x0:
1254     case 0x1:
1255         timer_mod(ppc40x_timer->wdt_timer, next);
1256         ppc40x_timer->wdt_next = next;
1257         env->spr[SPR_40x_TSR] |= 1U << 31;
1258         break;
1259     case 0x2:
1260         timer_mod(ppc40x_timer->wdt_timer, next);
1261         ppc40x_timer->wdt_next = next;
1262         env->spr[SPR_40x_TSR] |= 1 << 30;
1263         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1264             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1265         }
1266         break;
1267     case 0x3:
1268         env->spr[SPR_40x_TSR] &= ~0x30000000;
1269         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1270         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1271         case 0x0:
1272             /* No reset */
1273             break;
1274         case 0x1: /* Core reset */
1275             ppc40x_core_reset(cpu);
1276             break;
1277         case 0x2: /* Chip reset */
1278             ppc40x_chip_reset(cpu);
1279             break;
1280         case 0x3: /* System reset */
1281             ppc40x_system_reset(cpu);
1282             break;
1283         }
1284     }
1285 }
1286 
1287 void store_40x_pit (CPUPPCState *env, target_ulong val)
1288 {
1289     ppc_tb_t *tb_env;
1290     ppc40x_timer_t *ppc40x_timer;
1291 
1292     tb_env = env->tb_env;
1293     ppc40x_timer = tb_env->opaque;
1294     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1295     ppc40x_timer->pit_reload = val;
1296     start_stop_pit(env, tb_env, 0);
1297 }
1298 
1299 target_ulong load_40x_pit (CPUPPCState *env)
1300 {
1301     return cpu_ppc_load_decr(env);
1302 }
1303 
1304 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1305 {
1306     CPUPPCState *env = opaque;
1307     ppc_tb_t *tb_env = env->tb_env;
1308 
1309     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1310                 freq);
1311     tb_env->tb_freq = freq;
1312     tb_env->decr_freq = freq;
1313     /* XXX: we should also update all timers */
1314 }
1315 
1316 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1317                                   unsigned int decr_excp)
1318 {
1319     ppc_tb_t *tb_env;
1320     ppc40x_timer_t *ppc40x_timer;
1321 
1322     tb_env = g_malloc0(sizeof(ppc_tb_t));
1323     env->tb_env = tb_env;
1324     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1325     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1326     tb_env->tb_freq = freq;
1327     tb_env->decr_freq = freq;
1328     tb_env->opaque = ppc40x_timer;
1329     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1330     if (ppc40x_timer != NULL) {
1331         /* We use decr timer for PIT */
1332         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1333         ppc40x_timer->fit_timer =
1334             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1335         ppc40x_timer->wdt_timer =
1336             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1337         ppc40x_timer->decr_excp = decr_excp;
1338     }
1339 
1340     return &ppc_40x_set_tb_clk;
1341 }
1342 
1343 /*****************************************************************************/
1344 /* Embedded PowerPC Device Control Registers */
1345 typedef struct ppc_dcrn_t ppc_dcrn_t;
1346 struct ppc_dcrn_t {
1347     dcr_read_cb dcr_read;
1348     dcr_write_cb dcr_write;
1349     void *opaque;
1350 };
1351 
1352 /* XXX: on 460, DCR addresses are 32 bits wide,
1353  *      using DCRIPR to get the 22 upper bits of the DCR address
1354  */
1355 #define DCRN_NB 1024
1356 struct ppc_dcr_t {
1357     ppc_dcrn_t dcrn[DCRN_NB];
1358     int (*read_error)(int dcrn);
1359     int (*write_error)(int dcrn);
1360 };
1361 
1362 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1363 {
1364     ppc_dcrn_t *dcr;
1365 
1366     if (dcrn < 0 || dcrn >= DCRN_NB)
1367         goto error;
1368     dcr = &dcr_env->dcrn[dcrn];
1369     if (dcr->dcr_read == NULL)
1370         goto error;
1371     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1372 
1373     return 0;
1374 
1375  error:
1376     if (dcr_env->read_error != NULL)
1377         return (*dcr_env->read_error)(dcrn);
1378 
1379     return -1;
1380 }
1381 
1382 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1383 {
1384     ppc_dcrn_t *dcr;
1385 
1386     if (dcrn < 0 || dcrn >= DCRN_NB)
1387         goto error;
1388     dcr = &dcr_env->dcrn[dcrn];
1389     if (dcr->dcr_write == NULL)
1390         goto error;
1391     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1392 
1393     return 0;
1394 
1395  error:
1396     if (dcr_env->write_error != NULL)
1397         return (*dcr_env->write_error)(dcrn);
1398 
1399     return -1;
1400 }
1401 
1402 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1403                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1404 {
1405     ppc_dcr_t *dcr_env;
1406     ppc_dcrn_t *dcr;
1407 
1408     dcr_env = env->dcr_env;
1409     if (dcr_env == NULL)
1410         return -1;
1411     if (dcrn < 0 || dcrn >= DCRN_NB)
1412         return -1;
1413     dcr = &dcr_env->dcrn[dcrn];
1414     if (dcr->opaque != NULL ||
1415         dcr->dcr_read != NULL ||
1416         dcr->dcr_write != NULL)
1417         return -1;
1418     dcr->opaque = opaque;
1419     dcr->dcr_read = dcr_read;
1420     dcr->dcr_write = dcr_write;
1421 
1422     return 0;
1423 }
1424 
1425 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1426                   int (*write_error)(int dcrn))
1427 {
1428     ppc_dcr_t *dcr_env;
1429 
1430     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1431     dcr_env->read_error = read_error;
1432     dcr_env->write_error = write_error;
1433     env->dcr_env = dcr_env;
1434 
1435     return 0;
1436 }
1437 
1438 /*****************************************************************************/
1439 /* Debug port */
1440 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1441 {
1442     addr &= 0xF;
1443     switch (addr) {
1444     case 0:
1445         printf("%c", val);
1446         break;
1447     case 1:
1448         printf("\n");
1449         fflush(stdout);
1450         break;
1451     case 2:
1452         printf("Set loglevel to %04" PRIx32 "\n", val);
1453         qemu_set_log(val | 0x100);
1454         break;
1455     }
1456 }
1457