1 /* 2 * QEMU generic PowerPC hardware System Emulator 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/irq.h" 27 #include "hw/ppc/ppc.h" 28 #include "hw/ppc/ppc_e500.h" 29 #include "qemu/timer.h" 30 #include "sysemu/cpus.h" 31 #include "qemu/log.h" 32 #include "qemu/main-loop.h" 33 #include "qemu/error-report.h" 34 #include "sysemu/kvm.h" 35 #include "sysemu/runstate.h" 36 #include "kvm_ppc.h" 37 #include "migration/vmstate.h" 38 #include "trace.h" 39 40 static void cpu_ppc_tb_stop (CPUPPCState *env); 41 static void cpu_ppc_tb_start (CPUPPCState *env); 42 43 void ppc_set_irq(PowerPCCPU *cpu, int irq, int level) 44 { 45 CPUPPCState *env = &cpu->env; 46 unsigned int old_pending; 47 48 /* We may already have the BQL if coming from the reset path */ 49 QEMU_IOTHREAD_LOCK_GUARD(); 50 51 old_pending = env->pending_interrupts; 52 53 if (level) { 54 env->pending_interrupts |= irq; 55 } else { 56 env->pending_interrupts &= ~irq; 57 } 58 59 if (old_pending != env->pending_interrupts) { 60 ppc_maybe_interrupt(env); 61 kvmppc_set_interrupt(cpu, irq, level); 62 } 63 64 trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts, 65 CPU(cpu)->interrupt_request); 66 } 67 68 /* PowerPC 6xx / 7xx internal IRQ controller */ 69 static void ppc6xx_set_irq(void *opaque, int pin, int level) 70 { 71 PowerPCCPU *cpu = opaque; 72 CPUPPCState *env = &cpu->env; 73 int cur_level; 74 75 trace_ppc_irq_set(env, pin, level); 76 77 cur_level = (env->irq_input_state >> pin) & 1; 78 /* Don't generate spurious events */ 79 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 80 CPUState *cs = CPU(cpu); 81 82 switch (pin) { 83 case PPC6xx_INPUT_TBEN: 84 /* Level sensitive - active high */ 85 trace_ppc_irq_set_state("time base", level); 86 if (level) { 87 cpu_ppc_tb_start(env); 88 } else { 89 cpu_ppc_tb_stop(env); 90 } 91 break; 92 case PPC6xx_INPUT_INT: 93 /* Level sensitive - active high */ 94 trace_ppc_irq_set_state("external IRQ", level); 95 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 96 break; 97 case PPC6xx_INPUT_SMI: 98 /* Level sensitive - active high */ 99 trace_ppc_irq_set_state("SMI IRQ", level); 100 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level); 101 break; 102 case PPC6xx_INPUT_MCP: 103 /* Negative edge sensitive */ 104 /* XXX: TODO: actual reaction may depends on HID0 status 105 * 603/604/740/750: check HID0[EMCP] 106 */ 107 if (cur_level == 1 && level == 0) { 108 trace_ppc_irq_set_state("machine check", 1); 109 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 110 } 111 break; 112 case PPC6xx_INPUT_CKSTP_IN: 113 /* Level sensitive - active low */ 114 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 115 /* XXX: Note that the only way to restart the CPU is to reset it */ 116 if (level) { 117 trace_ppc_irq_cpu("stop"); 118 cs->halted = 1; 119 } 120 break; 121 case PPC6xx_INPUT_HRESET: 122 /* Level sensitive - active low */ 123 if (level) { 124 trace_ppc_irq_reset("CPU"); 125 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 126 } 127 break; 128 case PPC6xx_INPUT_SRESET: 129 trace_ppc_irq_set_state("RESET IRQ", level); 130 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 131 break; 132 default: 133 g_assert_not_reached(); 134 } 135 if (level) 136 env->irq_input_state |= 1 << pin; 137 else 138 env->irq_input_state &= ~(1 << pin); 139 } 140 } 141 142 void ppc6xx_irq_init(PowerPCCPU *cpu) 143 { 144 qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB); 145 } 146 147 #if defined(TARGET_PPC64) 148 /* PowerPC 970 internal IRQ controller */ 149 static void ppc970_set_irq(void *opaque, int pin, int level) 150 { 151 PowerPCCPU *cpu = opaque; 152 CPUPPCState *env = &cpu->env; 153 int cur_level; 154 155 trace_ppc_irq_set(env, pin, level); 156 157 cur_level = (env->irq_input_state >> pin) & 1; 158 /* Don't generate spurious events */ 159 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 160 CPUState *cs = CPU(cpu); 161 162 switch (pin) { 163 case PPC970_INPUT_INT: 164 /* Level sensitive - active high */ 165 trace_ppc_irq_set_state("external IRQ", level); 166 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 167 break; 168 case PPC970_INPUT_THINT: 169 /* Level sensitive - active high */ 170 trace_ppc_irq_set_state("SMI IRQ", level); 171 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level); 172 break; 173 case PPC970_INPUT_MCP: 174 /* Negative edge sensitive */ 175 /* XXX: TODO: actual reaction may depends on HID0 status 176 * 603/604/740/750: check HID0[EMCP] 177 */ 178 if (cur_level == 1 && level == 0) { 179 trace_ppc_irq_set_state("machine check", 1); 180 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 181 } 182 break; 183 case PPC970_INPUT_CKSTP: 184 /* Level sensitive - active low */ 185 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 186 if (level) { 187 trace_ppc_irq_cpu("stop"); 188 cs->halted = 1; 189 } else { 190 trace_ppc_irq_cpu("restart"); 191 cs->halted = 0; 192 qemu_cpu_kick(cs); 193 } 194 break; 195 case PPC970_INPUT_HRESET: 196 /* Level sensitive - active low */ 197 if (level) { 198 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 199 } 200 break; 201 case PPC970_INPUT_SRESET: 202 trace_ppc_irq_set_state("RESET IRQ", level); 203 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 204 break; 205 case PPC970_INPUT_TBEN: 206 trace_ppc_irq_set_state("TBEN IRQ", level); 207 /* XXX: TODO */ 208 break; 209 default: 210 g_assert_not_reached(); 211 } 212 if (level) 213 env->irq_input_state |= 1 << pin; 214 else 215 env->irq_input_state &= ~(1 << pin); 216 } 217 } 218 219 void ppc970_irq_init(PowerPCCPU *cpu) 220 { 221 qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB); 222 } 223 224 /* POWER7 internal IRQ controller */ 225 static void power7_set_irq(void *opaque, int pin, int level) 226 { 227 PowerPCCPU *cpu = opaque; 228 229 trace_ppc_irq_set(&cpu->env, pin, level); 230 231 switch (pin) { 232 case POWER7_INPUT_INT: 233 /* Level sensitive - active high */ 234 trace_ppc_irq_set_state("external IRQ", level); 235 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 236 break; 237 default: 238 g_assert_not_reached(); 239 } 240 } 241 242 void ppcPOWER7_irq_init(PowerPCCPU *cpu) 243 { 244 qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB); 245 } 246 247 /* POWER9 internal IRQ controller */ 248 static void power9_set_irq(void *opaque, int pin, int level) 249 { 250 PowerPCCPU *cpu = opaque; 251 252 trace_ppc_irq_set(&cpu->env, pin, level); 253 254 switch (pin) { 255 case POWER9_INPUT_INT: 256 /* Level sensitive - active high */ 257 trace_ppc_irq_set_state("external IRQ", level); 258 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 259 break; 260 case POWER9_INPUT_HINT: 261 /* Level sensitive - active high */ 262 trace_ppc_irq_set_state("HV external IRQ", level); 263 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level); 264 break; 265 default: 266 g_assert_not_reached(); 267 return; 268 } 269 } 270 271 void ppcPOWER9_irq_init(PowerPCCPU *cpu) 272 { 273 qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB); 274 } 275 #endif /* defined(TARGET_PPC64) */ 276 277 void ppc40x_core_reset(PowerPCCPU *cpu) 278 { 279 CPUPPCState *env = &cpu->env; 280 target_ulong dbsr; 281 282 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n"); 283 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 284 dbsr = env->spr[SPR_40x_DBSR]; 285 dbsr &= ~0x00000300; 286 dbsr |= 0x00000100; 287 env->spr[SPR_40x_DBSR] = dbsr; 288 } 289 290 void ppc40x_chip_reset(PowerPCCPU *cpu) 291 { 292 CPUPPCState *env = &cpu->env; 293 target_ulong dbsr; 294 295 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n"); 296 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 297 /* XXX: TODO reset all internal peripherals */ 298 dbsr = env->spr[SPR_40x_DBSR]; 299 dbsr &= ~0x00000300; 300 dbsr |= 0x00000200; 301 env->spr[SPR_40x_DBSR] = dbsr; 302 } 303 304 void ppc40x_system_reset(PowerPCCPU *cpu) 305 { 306 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n"); 307 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 308 } 309 310 void store_40x_dbcr0(CPUPPCState *env, uint32_t val) 311 { 312 PowerPCCPU *cpu = env_archcpu(env); 313 314 qemu_mutex_lock_iothread(); 315 316 switch ((val >> 28) & 0x3) { 317 case 0x0: 318 /* No action */ 319 break; 320 case 0x1: 321 /* Core reset */ 322 ppc40x_core_reset(cpu); 323 break; 324 case 0x2: 325 /* Chip reset */ 326 ppc40x_chip_reset(cpu); 327 break; 328 case 0x3: 329 /* System reset */ 330 ppc40x_system_reset(cpu); 331 break; 332 } 333 334 qemu_mutex_unlock_iothread(); 335 } 336 337 /* PowerPC 40x internal IRQ controller */ 338 static void ppc40x_set_irq(void *opaque, int pin, int level) 339 { 340 PowerPCCPU *cpu = opaque; 341 CPUPPCState *env = &cpu->env; 342 int cur_level; 343 344 trace_ppc_irq_set(env, pin, level); 345 346 cur_level = (env->irq_input_state >> pin) & 1; 347 /* Don't generate spurious events */ 348 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 349 CPUState *cs = CPU(cpu); 350 351 switch (pin) { 352 case PPC40x_INPUT_RESET_SYS: 353 if (level) { 354 trace_ppc_irq_reset("system"); 355 ppc40x_system_reset(cpu); 356 } 357 break; 358 case PPC40x_INPUT_RESET_CHIP: 359 if (level) { 360 trace_ppc_irq_reset("chip"); 361 ppc40x_chip_reset(cpu); 362 } 363 break; 364 case PPC40x_INPUT_RESET_CORE: 365 /* XXX: TODO: update DBSR[MRR] */ 366 if (level) { 367 trace_ppc_irq_reset("core"); 368 ppc40x_core_reset(cpu); 369 } 370 break; 371 case PPC40x_INPUT_CINT: 372 /* Level sensitive - active high */ 373 trace_ppc_irq_set_state("critical IRQ", level); 374 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 375 break; 376 case PPC40x_INPUT_INT: 377 /* Level sensitive - active high */ 378 trace_ppc_irq_set_state("external IRQ", level); 379 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 380 break; 381 case PPC40x_INPUT_HALT: 382 /* Level sensitive - active low */ 383 if (level) { 384 trace_ppc_irq_cpu("stop"); 385 cs->halted = 1; 386 } else { 387 trace_ppc_irq_cpu("restart"); 388 cs->halted = 0; 389 qemu_cpu_kick(cs); 390 } 391 break; 392 case PPC40x_INPUT_DEBUG: 393 /* Level sensitive - active high */ 394 trace_ppc_irq_set_state("debug pin", level); 395 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 396 break; 397 default: 398 g_assert_not_reached(); 399 } 400 if (level) 401 env->irq_input_state |= 1 << pin; 402 else 403 env->irq_input_state &= ~(1 << pin); 404 } 405 } 406 407 void ppc40x_irq_init(PowerPCCPU *cpu) 408 { 409 qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB); 410 } 411 412 /* PowerPC E500 internal IRQ controller */ 413 static void ppce500_set_irq(void *opaque, int pin, int level) 414 { 415 PowerPCCPU *cpu = opaque; 416 CPUPPCState *env = &cpu->env; 417 int cur_level; 418 419 trace_ppc_irq_set(env, pin, level); 420 421 cur_level = (env->irq_input_state >> pin) & 1; 422 /* Don't generate spurious events */ 423 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 424 switch (pin) { 425 case PPCE500_INPUT_MCK: 426 if (level) { 427 trace_ppc_irq_reset("system"); 428 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 429 } 430 break; 431 case PPCE500_INPUT_RESET_CORE: 432 if (level) { 433 trace_ppc_irq_reset("core"); 434 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level); 435 } 436 break; 437 case PPCE500_INPUT_CINT: 438 /* Level sensitive - active high */ 439 trace_ppc_irq_set_state("critical IRQ", level); 440 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 441 break; 442 case PPCE500_INPUT_INT: 443 /* Level sensitive - active high */ 444 trace_ppc_irq_set_state("core IRQ", level); 445 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 446 break; 447 case PPCE500_INPUT_DEBUG: 448 /* Level sensitive - active high */ 449 trace_ppc_irq_set_state("debug pin", level); 450 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 451 break; 452 default: 453 g_assert_not_reached(); 454 } 455 if (level) 456 env->irq_input_state |= 1 << pin; 457 else 458 env->irq_input_state &= ~(1 << pin); 459 } 460 } 461 462 void ppce500_irq_init(PowerPCCPU *cpu) 463 { 464 qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB); 465 } 466 467 /* Enable or Disable the E500 EPR capability */ 468 void ppce500_set_mpic_proxy(bool enabled) 469 { 470 CPUState *cs; 471 472 CPU_FOREACH(cs) { 473 PowerPCCPU *cpu = POWERPC_CPU(cs); 474 475 cpu->env.mpic_proxy = enabled; 476 if (kvm_enabled()) { 477 kvmppc_set_mpic_proxy(cpu, enabled); 478 } 479 } 480 } 481 482 /*****************************************************************************/ 483 /* PowerPC time base and decrementer emulation */ 484 485 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) 486 { 487 /* TB time in tb periods */ 488 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset; 489 } 490 491 uint64_t cpu_ppc_load_tbl (CPUPPCState *env) 492 { 493 ppc_tb_t *tb_env = env->tb_env; 494 uint64_t tb; 495 496 if (kvm_enabled()) { 497 return env->spr[SPR_TBL]; 498 } 499 500 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 501 trace_ppc_tb_load(tb); 502 503 return tb; 504 } 505 506 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env) 507 { 508 ppc_tb_t *tb_env = env->tb_env; 509 uint64_t tb; 510 511 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 512 trace_ppc_tb_load(tb); 513 514 return tb >> 32; 515 } 516 517 uint32_t cpu_ppc_load_tbu (CPUPPCState *env) 518 { 519 if (kvm_enabled()) { 520 return env->spr[SPR_TBU]; 521 } 522 523 return _cpu_ppc_load_tbu(env); 524 } 525 526 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk, 527 int64_t *tb_offsetp, uint64_t value) 528 { 529 *tb_offsetp = value - 530 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND); 531 532 trace_ppc_tb_store(value, *tb_offsetp); 533 } 534 535 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value) 536 { 537 ppc_tb_t *tb_env = env->tb_env; 538 uint64_t tb; 539 540 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 541 tb &= 0xFFFFFFFF00000000ULL; 542 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 543 &tb_env->tb_offset, tb | (uint64_t)value); 544 } 545 546 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value) 547 { 548 ppc_tb_t *tb_env = env->tb_env; 549 uint64_t tb; 550 551 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 552 tb &= 0x00000000FFFFFFFFULL; 553 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 554 &tb_env->tb_offset, ((uint64_t)value << 32) | tb); 555 } 556 557 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value) 558 { 559 _cpu_ppc_store_tbu(env, value); 560 } 561 562 uint64_t cpu_ppc_load_atbl (CPUPPCState *env) 563 { 564 ppc_tb_t *tb_env = env->tb_env; 565 uint64_t tb; 566 567 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 568 trace_ppc_tb_load(tb); 569 570 return tb; 571 } 572 573 uint32_t cpu_ppc_load_atbu (CPUPPCState *env) 574 { 575 ppc_tb_t *tb_env = env->tb_env; 576 uint64_t tb; 577 578 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 579 trace_ppc_tb_load(tb); 580 581 return tb >> 32; 582 } 583 584 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value) 585 { 586 ppc_tb_t *tb_env = env->tb_env; 587 uint64_t tb; 588 589 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 590 tb &= 0xFFFFFFFF00000000ULL; 591 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 592 &tb_env->atb_offset, tb | (uint64_t)value); 593 } 594 595 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value) 596 { 597 ppc_tb_t *tb_env = env->tb_env; 598 uint64_t tb; 599 600 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 601 tb &= 0x00000000FFFFFFFFULL; 602 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 603 &tb_env->atb_offset, ((uint64_t)value << 32) | tb); 604 } 605 606 uint64_t cpu_ppc_load_vtb(CPUPPCState *env) 607 { 608 ppc_tb_t *tb_env = env->tb_env; 609 610 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 611 tb_env->vtb_offset); 612 } 613 614 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value) 615 { 616 ppc_tb_t *tb_env = env->tb_env; 617 618 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 619 &tb_env->vtb_offset, value); 620 } 621 622 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value) 623 { 624 ppc_tb_t *tb_env = env->tb_env; 625 uint64_t tb; 626 627 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 628 tb_env->tb_offset); 629 tb &= 0xFFFFFFUL; 630 tb |= (value & ~0xFFFFFFUL); 631 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 632 &tb_env->tb_offset, tb); 633 } 634 635 static void cpu_ppc_tb_stop (CPUPPCState *env) 636 { 637 ppc_tb_t *tb_env = env->tb_env; 638 uint64_t tb, atb, vmclk; 639 640 /* If the time base is already frozen, do nothing */ 641 if (tb_env->tb_freq != 0) { 642 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 643 /* Get the time base */ 644 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); 645 /* Get the alternate time base */ 646 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); 647 /* Store the time base value (ie compute the current offset) */ 648 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 649 /* Store the alternate time base value (compute the current offset) */ 650 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 651 /* Set the time base frequency to zero */ 652 tb_env->tb_freq = 0; 653 /* Now, the time bases are frozen to tb_offset / atb_offset value */ 654 } 655 } 656 657 static void cpu_ppc_tb_start (CPUPPCState *env) 658 { 659 ppc_tb_t *tb_env = env->tb_env; 660 uint64_t tb, atb, vmclk; 661 662 /* If the time base is not frozen, do nothing */ 663 if (tb_env->tb_freq == 0) { 664 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 665 /* Get the time base from tb_offset */ 666 tb = tb_env->tb_offset; 667 /* Get the alternate time base from atb_offset */ 668 atb = tb_env->atb_offset; 669 /* Restore the tb frequency from the decrementer frequency */ 670 tb_env->tb_freq = tb_env->decr_freq; 671 /* Store the time base value */ 672 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 673 /* Store the alternate time base value */ 674 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 675 } 676 } 677 678 bool ppc_decr_clear_on_delivery(CPUPPCState *env) 679 { 680 ppc_tb_t *tb_env = env->tb_env; 681 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL; 682 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED); 683 } 684 685 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next) 686 { 687 ppc_tb_t *tb_env = env->tb_env; 688 int64_t decr, diff; 689 690 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 691 if (diff >= 0) { 692 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); 693 } else if (tb_env->flags & PPC_TIMER_BOOKE) { 694 decr = 0; 695 } else { 696 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); 697 } 698 trace_ppc_decr_load(decr); 699 700 return decr; 701 } 702 703 target_ulong cpu_ppc_load_decr(CPUPPCState *env) 704 { 705 ppc_tb_t *tb_env = env->tb_env; 706 uint64_t decr; 707 708 if (kvm_enabled()) { 709 return env->spr[SPR_DECR]; 710 } 711 712 decr = _cpu_ppc_load_decr(env, tb_env->decr_next); 713 714 /* 715 * If large decrementer is enabled then the decrementer is signed extened 716 * to 64 bits, otherwise it is a 32 bit value. 717 */ 718 if (env->spr[SPR_LPCR] & LPCR_LD) { 719 return decr; 720 } 721 return (uint32_t) decr; 722 } 723 724 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env) 725 { 726 PowerPCCPU *cpu = env_archcpu(env); 727 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 728 ppc_tb_t *tb_env = env->tb_env; 729 uint64_t hdecr; 730 731 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next); 732 733 /* 734 * If we have a large decrementer (POWER9 or later) then hdecr is sign 735 * extended to 64 bits, otherwise it is 32 bits. 736 */ 737 if (pcc->lrg_decr_bits > 32) { 738 return hdecr; 739 } 740 return (uint32_t) hdecr; 741 } 742 743 uint64_t cpu_ppc_load_purr (CPUPPCState *env) 744 { 745 ppc_tb_t *tb_env = env->tb_env; 746 747 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 748 tb_env->purr_offset); 749 } 750 751 /* When decrementer expires, 752 * all we need to do is generate or queue a CPU exception 753 */ 754 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu) 755 { 756 /* Raise it */ 757 trace_ppc_decr_excp("raise"); 758 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1); 759 } 760 761 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu) 762 { 763 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); 764 } 765 766 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu) 767 { 768 CPUPPCState *env = &cpu->env; 769 770 /* Raise it */ 771 trace_ppc_decr_excp("raise HV"); 772 773 /* The architecture specifies that we don't deliver HDEC 774 * interrupts in a PM state. Not only they don't cause a 775 * wakeup but they also get effectively discarded. 776 */ 777 if (!env->resume_as_sreset) { 778 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1); 779 } 780 } 781 782 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu) 783 { 784 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); 785 } 786 787 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp, 788 QEMUTimer *timer, 789 void (*raise_excp)(void *), 790 void (*lower_excp)(PowerPCCPU *), 791 target_ulong decr, target_ulong value, 792 int nr_bits) 793 { 794 CPUPPCState *env = &cpu->env; 795 ppc_tb_t *tb_env = env->tb_env; 796 uint64_t now, next; 797 int64_t signed_value; 798 int64_t signed_decr; 799 800 /* Truncate value to decr_width and sign extend for simplicity */ 801 value = extract64(value, 0, nr_bits); 802 decr = extract64(decr, 0, nr_bits); 803 signed_value = sextract64(value, 0, nr_bits); 804 signed_decr = sextract64(decr, 0, nr_bits); 805 806 trace_ppc_decr_store(nr_bits, decr, value); 807 808 if (kvm_enabled()) { 809 /* KVM handles decrementer exceptions, we don't need our own timer */ 810 return; 811 } 812 813 /* 814 * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt. 815 * 816 * On MSB level based DEC implementations the MSB always means the interrupt 817 * is pending, so raise it on those. 818 * 819 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers 820 * an edge interrupt, so raise it here too. 821 */ 822 if (((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) || 823 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0 824 && signed_decr >= 0)) { 825 (*raise_excp)(cpu); 826 return; 827 } 828 829 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */ 830 if (signed_value >= 0 && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) { 831 (*lower_excp)(cpu); 832 } 833 834 /* Calculate the next timer event */ 835 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 836 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq); 837 *nextp = next; 838 839 /* Adjust timer */ 840 timer_mod(timer, next); 841 } 842 843 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr, 844 target_ulong value, int nr_bits) 845 { 846 ppc_tb_t *tb_env = cpu->env.tb_env; 847 848 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer, 849 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr, 850 value, nr_bits); 851 } 852 853 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value) 854 { 855 PowerPCCPU *cpu = env_archcpu(env); 856 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 857 int nr_bits = 32; 858 859 if (env->spr[SPR_LPCR] & LPCR_LD) { 860 nr_bits = pcc->lrg_decr_bits; 861 } 862 863 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits); 864 } 865 866 static void cpu_ppc_decr_cb(void *opaque) 867 { 868 PowerPCCPU *cpu = opaque; 869 870 cpu_ppc_decr_excp(cpu); 871 } 872 873 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr, 874 target_ulong value, int nr_bits) 875 { 876 ppc_tb_t *tb_env = cpu->env.tb_env; 877 878 if (tb_env->hdecr_timer != NULL) { 879 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer, 880 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower, 881 hdecr, value, nr_bits); 882 } 883 } 884 885 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value) 886 { 887 PowerPCCPU *cpu = env_archcpu(env); 888 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 889 890 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 891 pcc->lrg_decr_bits); 892 } 893 894 static void cpu_ppc_hdecr_cb(void *opaque) 895 { 896 PowerPCCPU *cpu = opaque; 897 898 cpu_ppc_hdecr_excp(cpu); 899 } 900 901 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value) 902 { 903 ppc_tb_t *tb_env = env->tb_env; 904 905 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 906 &tb_env->purr_offset, value); 907 } 908 909 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq) 910 { 911 CPUPPCState *env = opaque; 912 PowerPCCPU *cpu = env_archcpu(env); 913 ppc_tb_t *tb_env = env->tb_env; 914 915 tb_env->tb_freq = freq; 916 tb_env->decr_freq = freq; 917 /* There is a bug in Linux 2.4 kernels: 918 * if a decrementer exception is pending when it enables msr_ee at startup, 919 * it's not ready to handle it... 920 */ 921 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32); 922 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32); 923 cpu_ppc_store_purr(env, 0x0000000000000000ULL); 924 } 925 926 static void timebase_save(PPCTimebase *tb) 927 { 928 uint64_t ticks = cpu_get_host_ticks(); 929 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 930 931 if (!first_ppc_cpu->env.tb_env) { 932 error_report("No timebase object"); 933 return; 934 } 935 936 /* not used anymore, we keep it for compatibility */ 937 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST); 938 /* 939 * tb_offset is only expected to be changed by QEMU so 940 * there is no need to update it from KVM here 941 */ 942 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset; 943 944 tb->runstate_paused = 945 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM); 946 } 947 948 static void timebase_load(PPCTimebase *tb) 949 { 950 CPUState *cpu; 951 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 952 int64_t tb_off_adj, tb_off; 953 unsigned long freq; 954 955 if (!first_ppc_cpu->env.tb_env) { 956 error_report("No timebase object"); 957 return; 958 } 959 960 freq = first_ppc_cpu->env.tb_env->tb_freq; 961 962 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks(); 963 964 tb_off = first_ppc_cpu->env.tb_env->tb_offset; 965 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off, 966 (tb_off_adj - tb_off) / freq); 967 968 /* Set new offset to all CPUs */ 969 CPU_FOREACH(cpu) { 970 PowerPCCPU *pcpu = POWERPC_CPU(cpu); 971 pcpu->env.tb_env->tb_offset = tb_off_adj; 972 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset); 973 } 974 } 975 976 void cpu_ppc_clock_vm_state_change(void *opaque, bool running, 977 RunState state) 978 { 979 PPCTimebase *tb = opaque; 980 981 if (running) { 982 timebase_load(tb); 983 } else { 984 timebase_save(tb); 985 } 986 } 987 988 /* 989 * When migrating a running guest, read the clock just 990 * before migration, so that the guest clock counts 991 * during the events between: 992 * 993 * * vm_stop() 994 * * 995 * * pre_save() 996 * 997 * This reduces clock difference on migration from 5s 998 * to 0.1s (when max_downtime == 5s), because sending the 999 * final pages of memory (which happens between vm_stop() 1000 * and pre_save()) takes max_downtime. 1001 */ 1002 static int timebase_pre_save(void *opaque) 1003 { 1004 PPCTimebase *tb = opaque; 1005 1006 /* guest_timebase won't be overridden in case of paused guest or savevm */ 1007 if (!tb->runstate_paused) { 1008 timebase_save(tb); 1009 } 1010 1011 return 0; 1012 } 1013 1014 const VMStateDescription vmstate_ppc_timebase = { 1015 .name = "timebase", 1016 .version_id = 1, 1017 .minimum_version_id = 1, 1018 .pre_save = timebase_pre_save, 1019 .fields = (VMStateField []) { 1020 VMSTATE_UINT64(guest_timebase, PPCTimebase), 1021 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase), 1022 VMSTATE_END_OF_LIST() 1023 }, 1024 }; 1025 1026 /* Set up (once) timebase frequency (in Hz) */ 1027 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq) 1028 { 1029 PowerPCCPU *cpu = env_archcpu(env); 1030 ppc_tb_t *tb_env; 1031 1032 tb_env = g_new0(ppc_tb_t, 1); 1033 env->tb_env = tb_env; 1034 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1035 if (is_book3s_arch2x(env)) { 1036 /* All Book3S 64bit CPUs implement level based DEC logic */ 1037 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL; 1038 } 1039 /* Create new timer */ 1040 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu); 1041 if (env->has_hv_mode && !cpu->vhyp) { 1042 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb, 1043 cpu); 1044 } else { 1045 tb_env->hdecr_timer = NULL; 1046 } 1047 cpu_ppc_set_tb_clk(env, freq); 1048 1049 return &cpu_ppc_set_tb_clk; 1050 } 1051 1052 void cpu_ppc_tb_free(CPUPPCState *env) 1053 { 1054 timer_free(env->tb_env->decr_timer); 1055 timer_free(env->tb_env->hdecr_timer); 1056 g_free(env->tb_env); 1057 } 1058 1059 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */ 1060 void cpu_ppc_hdecr_init(CPUPPCState *env) 1061 { 1062 PowerPCCPU *cpu = env_archcpu(env); 1063 1064 assert(env->tb_env->hdecr_timer == NULL); 1065 1066 env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 1067 &cpu_ppc_hdecr_cb, cpu); 1068 } 1069 1070 void cpu_ppc_hdecr_exit(CPUPPCState *env) 1071 { 1072 PowerPCCPU *cpu = env_archcpu(env); 1073 1074 timer_free(env->tb_env->hdecr_timer); 1075 env->tb_env->hdecr_timer = NULL; 1076 1077 cpu_ppc_hdecr_lower(cpu); 1078 } 1079 1080 /*****************************************************************************/ 1081 /* PowerPC 40x timers */ 1082 1083 /* PIT, FIT & WDT */ 1084 typedef struct ppc40x_timer_t ppc40x_timer_t; 1085 struct ppc40x_timer_t { 1086 uint64_t pit_reload; /* PIT auto-reload value */ 1087 uint64_t fit_next; /* Tick for next FIT interrupt */ 1088 QEMUTimer *fit_timer; 1089 uint64_t wdt_next; /* Tick for next WDT interrupt */ 1090 QEMUTimer *wdt_timer; 1091 1092 /* 405 have the PIT, 440 have a DECR. */ 1093 unsigned int decr_excp; 1094 }; 1095 1096 /* Fixed interval timer */ 1097 static void cpu_4xx_fit_cb (void *opaque) 1098 { 1099 PowerPCCPU *cpu = opaque; 1100 CPUPPCState *env = &cpu->env; 1101 ppc_tb_t *tb_env; 1102 ppc40x_timer_t *ppc40x_timer; 1103 uint64_t now, next; 1104 1105 tb_env = env->tb_env; 1106 ppc40x_timer = tb_env->opaque; 1107 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1108 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { 1109 case 0: 1110 next = 1 << 9; 1111 break; 1112 case 1: 1113 next = 1 << 13; 1114 break; 1115 case 2: 1116 next = 1 << 17; 1117 break; 1118 case 3: 1119 next = 1 << 21; 1120 break; 1121 default: 1122 /* Cannot occur, but makes gcc happy */ 1123 return; 1124 } 1125 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq); 1126 if (next == now) 1127 next++; 1128 timer_mod(ppc40x_timer->fit_timer, next); 1129 env->spr[SPR_40x_TSR] |= 1 << 26; 1130 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { 1131 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1); 1132 } 1133 trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), 1134 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1135 } 1136 1137 /* Programmable interval timer */ 1138 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) 1139 { 1140 ppc40x_timer_t *ppc40x_timer; 1141 uint64_t now, next; 1142 1143 ppc40x_timer = tb_env->opaque; 1144 if (ppc40x_timer->pit_reload <= 1 || 1145 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || 1146 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { 1147 /* Stop PIT */ 1148 trace_ppc4xx_pit_stop(); 1149 timer_del(tb_env->decr_timer); 1150 } else { 1151 trace_ppc4xx_pit_start(ppc40x_timer->pit_reload); 1152 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1153 next = now + muldiv64(ppc40x_timer->pit_reload, 1154 NANOSECONDS_PER_SECOND, tb_env->decr_freq); 1155 if (is_excp) 1156 next += tb_env->decr_next - now; 1157 if (next == now) 1158 next++; 1159 timer_mod(tb_env->decr_timer, next); 1160 tb_env->decr_next = next; 1161 } 1162 } 1163 1164 static void cpu_4xx_pit_cb (void *opaque) 1165 { 1166 PowerPCCPU *cpu = opaque; 1167 CPUPPCState *env = &cpu->env; 1168 ppc_tb_t *tb_env; 1169 ppc40x_timer_t *ppc40x_timer; 1170 1171 tb_env = env->tb_env; 1172 ppc40x_timer = tb_env->opaque; 1173 env->spr[SPR_40x_TSR] |= 1 << 27; 1174 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) { 1175 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1); 1176 } 1177 start_stop_pit(env, tb_env, 1); 1178 trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), 1179 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), 1180 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], 1181 ppc40x_timer->pit_reload); 1182 } 1183 1184 /* Watchdog timer */ 1185 static void cpu_4xx_wdt_cb (void *opaque) 1186 { 1187 PowerPCCPU *cpu = opaque; 1188 CPUPPCState *env = &cpu->env; 1189 ppc_tb_t *tb_env; 1190 ppc40x_timer_t *ppc40x_timer; 1191 uint64_t now, next; 1192 1193 tb_env = env->tb_env; 1194 ppc40x_timer = tb_env->opaque; 1195 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1196 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { 1197 case 0: 1198 next = 1 << 17; 1199 break; 1200 case 1: 1201 next = 1 << 21; 1202 break; 1203 case 2: 1204 next = 1 << 25; 1205 break; 1206 case 3: 1207 next = 1 << 29; 1208 break; 1209 default: 1210 /* Cannot occur, but makes gcc happy */ 1211 return; 1212 } 1213 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq); 1214 if (next == now) 1215 next++; 1216 trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1217 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { 1218 case 0x0: 1219 case 0x1: 1220 timer_mod(ppc40x_timer->wdt_timer, next); 1221 ppc40x_timer->wdt_next = next; 1222 env->spr[SPR_40x_TSR] |= 1U << 31; 1223 break; 1224 case 0x2: 1225 timer_mod(ppc40x_timer->wdt_timer, next); 1226 ppc40x_timer->wdt_next = next; 1227 env->spr[SPR_40x_TSR] |= 1 << 30; 1228 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) { 1229 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1); 1230 } 1231 break; 1232 case 0x3: 1233 env->spr[SPR_40x_TSR] &= ~0x30000000; 1234 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; 1235 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { 1236 case 0x0: 1237 /* No reset */ 1238 break; 1239 case 0x1: /* Core reset */ 1240 ppc40x_core_reset(cpu); 1241 break; 1242 case 0x2: /* Chip reset */ 1243 ppc40x_chip_reset(cpu); 1244 break; 1245 case 0x3: /* System reset */ 1246 ppc40x_system_reset(cpu); 1247 break; 1248 } 1249 } 1250 } 1251 1252 void store_40x_pit (CPUPPCState *env, target_ulong val) 1253 { 1254 ppc_tb_t *tb_env; 1255 ppc40x_timer_t *ppc40x_timer; 1256 1257 tb_env = env->tb_env; 1258 ppc40x_timer = tb_env->opaque; 1259 trace_ppc40x_store_pit(val); 1260 ppc40x_timer->pit_reload = val; 1261 start_stop_pit(env, tb_env, 0); 1262 } 1263 1264 target_ulong load_40x_pit (CPUPPCState *env) 1265 { 1266 return cpu_ppc_load_decr(env); 1267 } 1268 1269 void store_40x_tsr(CPUPPCState *env, target_ulong val) 1270 { 1271 PowerPCCPU *cpu = env_archcpu(env); 1272 1273 trace_ppc40x_store_tcr(val); 1274 1275 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000); 1276 if (val & 0x80000000) { 1277 ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0); 1278 } 1279 } 1280 1281 void store_40x_tcr(CPUPPCState *env, target_ulong val) 1282 { 1283 PowerPCCPU *cpu = env_archcpu(env); 1284 ppc_tb_t *tb_env; 1285 1286 trace_ppc40x_store_tsr(val); 1287 1288 tb_env = env->tb_env; 1289 env->spr[SPR_40x_TCR] = val & 0xFFC00000; 1290 start_stop_pit(env, tb_env, 1); 1291 cpu_4xx_wdt_cb(cpu); 1292 } 1293 1294 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq) 1295 { 1296 CPUPPCState *env = opaque; 1297 ppc_tb_t *tb_env = env->tb_env; 1298 1299 trace_ppc40x_set_tb_clk(freq); 1300 tb_env->tb_freq = freq; 1301 tb_env->decr_freq = freq; 1302 /* XXX: we should also update all timers */ 1303 } 1304 1305 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq, 1306 unsigned int decr_excp) 1307 { 1308 ppc_tb_t *tb_env; 1309 ppc40x_timer_t *ppc40x_timer; 1310 PowerPCCPU *cpu = env_archcpu(env); 1311 1312 trace_ppc40x_timers_init(freq); 1313 1314 tb_env = g_new0(ppc_tb_t, 1); 1315 ppc40x_timer = g_new0(ppc40x_timer_t, 1); 1316 1317 env->tb_env = tb_env; 1318 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1319 tb_env->tb_freq = freq; 1320 tb_env->decr_freq = freq; 1321 tb_env->opaque = ppc40x_timer; 1322 1323 /* We use decr timer for PIT */ 1324 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu); 1325 ppc40x_timer->fit_timer = 1326 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu); 1327 ppc40x_timer->wdt_timer = 1328 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu); 1329 ppc40x_timer->decr_excp = decr_excp; 1330 1331 return &ppc_40x_set_tb_clk; 1332 } 1333 1334 /*****************************************************************************/ 1335 /* Embedded PowerPC Device Control Registers */ 1336 typedef struct ppc_dcrn_t ppc_dcrn_t; 1337 struct ppc_dcrn_t { 1338 dcr_read_cb dcr_read; 1339 dcr_write_cb dcr_write; 1340 void *opaque; 1341 }; 1342 1343 /* XXX: on 460, DCR addresses are 32 bits wide, 1344 * using DCRIPR to get the 22 upper bits of the DCR address 1345 */ 1346 #define DCRN_NB 1024 1347 struct ppc_dcr_t { 1348 ppc_dcrn_t dcrn[DCRN_NB]; 1349 int (*read_error)(int dcrn); 1350 int (*write_error)(int dcrn); 1351 }; 1352 1353 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1354 { 1355 ppc_dcrn_t *dcr; 1356 1357 if (dcrn < 0 || dcrn >= DCRN_NB) 1358 goto error; 1359 dcr = &dcr_env->dcrn[dcrn]; 1360 if (dcr->dcr_read == NULL) 1361 goto error; 1362 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); 1363 trace_ppc_dcr_read(dcrn, *valp); 1364 1365 return 0; 1366 1367 error: 1368 if (dcr_env->read_error != NULL) 1369 return (*dcr_env->read_error)(dcrn); 1370 1371 return -1; 1372 } 1373 1374 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1375 { 1376 ppc_dcrn_t *dcr; 1377 1378 if (dcrn < 0 || dcrn >= DCRN_NB) 1379 goto error; 1380 dcr = &dcr_env->dcrn[dcrn]; 1381 if (dcr->dcr_write == NULL) 1382 goto error; 1383 trace_ppc_dcr_write(dcrn, val); 1384 (*dcr->dcr_write)(dcr->opaque, dcrn, val); 1385 1386 return 0; 1387 1388 error: 1389 if (dcr_env->write_error != NULL) 1390 return (*dcr_env->write_error)(dcrn); 1391 1392 return -1; 1393 } 1394 1395 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque, 1396 dcr_read_cb dcr_read, dcr_write_cb dcr_write) 1397 { 1398 ppc_dcr_t *dcr_env; 1399 ppc_dcrn_t *dcr; 1400 1401 dcr_env = env->dcr_env; 1402 if (dcr_env == NULL) 1403 return -1; 1404 if (dcrn < 0 || dcrn >= DCRN_NB) 1405 return -1; 1406 dcr = &dcr_env->dcrn[dcrn]; 1407 if (dcr->opaque != NULL || 1408 dcr->dcr_read != NULL || 1409 dcr->dcr_write != NULL) 1410 return -1; 1411 dcr->opaque = opaque; 1412 dcr->dcr_read = dcr_read; 1413 dcr->dcr_write = dcr_write; 1414 1415 return 0; 1416 } 1417 1418 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn), 1419 int (*write_error)(int dcrn)) 1420 { 1421 ppc_dcr_t *dcr_env; 1422 1423 dcr_env = g_new0(ppc_dcr_t, 1); 1424 dcr_env->read_error = read_error; 1425 dcr_env->write_error = write_error; 1426 env->dcr_env = dcr_env; 1427 1428 return 0; 1429 } 1430 1431 /*****************************************************************************/ 1432 1433 int ppc_cpu_pir(PowerPCCPU *cpu) 1434 { 1435 CPUPPCState *env = &cpu->env; 1436 return env->spr_cb[SPR_PIR].default_value; 1437 } 1438 1439 int ppc_cpu_tir(PowerPCCPU *cpu) 1440 { 1441 CPUPPCState *env = &cpu->env; 1442 return env->spr_cb[SPR_TIR].default_value; 1443 } 1444 1445 PowerPCCPU *ppc_get_vcpu_by_pir(int pir) 1446 { 1447 CPUState *cs; 1448 1449 CPU_FOREACH(cs) { 1450 PowerPCCPU *cpu = POWERPC_CPU(cs); 1451 1452 if (ppc_cpu_pir(cpu) == pir) { 1453 return cpu; 1454 } 1455 } 1456 1457 return NULL; 1458 } 1459 1460 void ppc_irq_reset(PowerPCCPU *cpu) 1461 { 1462 CPUPPCState *env = &cpu->env; 1463 1464 env->irq_input_state = 0; 1465 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0); 1466 } 1467